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Abstract. We propose new invariants in equivariant birational
geometry, combining equivariant intermediate Jacobians and the
Burnside formalism, for smooth rationally connected threefolds
with actions of finite groups.

1. Introduction

This note is inspired by [CKK25], which introduced a version of
atomic birational invariants of [KKPY25] into equivariant geometry.

We recall the main problem in this area: to determine whether a
given generically free regular action of a finite group G on a smooth
projective rational variety X of dimension n, over C, is equivariantly
birational to a linear, or projectively linear, action on Pn, i.e., to an
action arising from a projectivization P(V ) of a (n + 1)-dimensional
representation V of G, respectively, of a central extension of G. We
refer to [HKT21] and [HT22] for an introduction to these notions. The
linearization problem is settled in dimension 2 [PSY24], but is largely
open in dimensions ≥ 3.

Here, we focus on threefolds. We connect the Burnside formalism
of [KT22a] with the theory of (equivariant) intermediate Jacobians to
recover the most striking applications in [CKK25] in a more classi-
cal framework. Concretely, the invariants we offer take into account
only the stabilizer stratification and the G-action on the intermediate
Jacobian.

Our main contributions in this paper are:

• definition of new birational invariants of G-actions on rationally
connected threefolds over C, for arbitrary finite G, in Section 3;
• Proposition 5.2, a classical analog of [CKK25, Theorem 3.6];
• applications to conic bundles, quadric surface bundles, and nodal

cubic threefolds, in Section 6.
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2. Generalities

Notation. Throughout, we work over k = C, the complex numbers.
We let G be a finite group. By convention, G-actions on varieties are
from the right, we emphasize this by writing X ý G; correspondingly,
the action on the function field is from the left, G ýk(X). We write

X ∼G X ′

to indicate G-equivariant birationality of X and X ′.
We briefly recall the framework of equivariant intermediate Jacobians

as in [CTT25] and the main ingredients of the Burnside formalism de-
veloped in [KT22a] which are relevant for the construction of enhanced
birational invariants.

Curves and their Jacobians. Let C be an irreducible smooth pro-
jective curve of genus g(C) ≥ 1 and (J(C), θC) its Jacobian, with its
principal polarization. We have a homomorphism

Aut(C)→ Aut((J(C), θC)). (2.1)

It is well-known (see, e.g., [Mat58, Section 4]) that by (2.1),
Aut(C)/C(k) ∼= Aut((J(C), θC)), if g(C) = 1,

Aut(C) ∼= Aut((J(C), θC)), if hyperelliptic, g(C) ≥ 2,

Aut(C)× {±1} ∼= Aut((J(C), θC)), otherwise.

G-abelian varieties. Let (A, θA) be a principally polarized abelian
variety. It is called a G-equivariant principally polarized abelian variety
if G acts regularly on A preserving both the origin and the class of θA in
the Néron-Severi group NS(A); the action is not assumed to be faithful.

We will use the following observation [CTT25, Corollary 3.2]: A G-
equivariant principally polarized abelian variety admits a unique, up to
permutation of factors, decomposition as a product of indecomposable
G-equivariant principally polarized abelian varieties. In combination
with [Deb99, Corollary 9.2], we also see that in the non-equivariant de-
composition of A as a product of indecomposable principally polarized
abelian varieties Aδ, the union

⋃
δ Aδ is G-invariant, hence there is an

induced G-action on the disjoint union tδAδ.
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Intermediate Jacobians. Let X be a smooth projective rationally
connected threefold and

IJ(X) := H3(X,C)/(H1(X,Ω2
X)⊕ H3(X,Z))

its intermediate Jacobian, with its principal polarization θX arising
from the cup product

∧2H3(X,Z)→ H6(X,Z) ' Z.

When X is rational, IJ(X) is a product of Jacobians of curves.
Examples ofX with computable intermediate Jacobians are standard

conic bundles π : X → S, with smooth discriminant curve C ⊂ S.

There is an associated étale double cover τ : C̃ → C, parametrizing
lines over C. The intermediate Jacobian IJ(X) is the Prym variety
P(τ) associated with τ ; it is the identity component of the locus in the

Jacobian J(C̃) where the involution induced by τ acts as (−1):

IJ(X) = P(τ) = im(1− τ) =
(
ker(1 + τ)

)0
,

see, e.g., [Mum74] for more details regarding this construction. Let G
act on X. Then IJ(X) is a G-equivariant principally polarized abelian
variety. We consider the non-equivariant decomposition

IJ(X) =
∏
δ∈∆

IJδ(X) (2.2)

as a product of indecomposable principally polarized abelian varieties.
Then there is an induced G-action on ∆, such that the orbits ∆/G
index the indecomposable G-equivariant principally polarized abelian
varieties

IJω(X) =
∏
δ∈ω

IJδ(X), ω ∈ ∆/G.

The G-action on IJω(X) induces an action on tδ∈ωAδ, transitive on
components; in particular, the Aδ, for δ ∈ ω, are non-equivariantly
isomorphic. For given δ ∈ ω, we get an action of the stabilizer Gδ on
IJδ(X), which we express as faithful action

IJδ ý Gδ/Hδ, with Hδ ⊆ Gδ. (2.3)

Let C be an irreducible smooth projective curve of positive genus
and J(C) its Jacobian, with its principal polarization. We will say that
ω is C-relevant if IJδ(X) ∼= J(C) for δ ∈ ω, as principally polarized
abelian varieties. Then, with the union of the C-relevant orbits, we
have a G-invariant subset

∆(C) ⊆ ∆,
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such that the set of C-relevant orbits may be recovered as

{C-relevant orbits} = ∆(C)/G ⊆ ∆/G.

Burnside formalism. The Burnside formalism takes as input for the
analysis of a regular G-action on a smooth projective X the following
data:

• the stabilizer stratification,
• representations of the stabilizers in the normal bundles of strata.

A key initial step is passage to a birational model in divisorial form.
This is a model satisfying the condition called Assumption 2 in [KT22a,
Section 3]. On such a model, the stabilizers are abelian, and their rep-
resentations in the normal bundles decompose into direct sums of char-
acters. By [KT22a, Proposition 3.6], two birational models in divisorial
form can be connected by a sequence of blow-ups and blow-downs with
smooth centers, and each intermediate model is in divisorial form.

In particular, this condition is satisfied if the action is in standard
form, i.e., X is smooth projective, with simple normal crossing bound-
ary divisor

D = ∪αDα,

such that

• we have a free action of G on X \D, and
• for all α and g ∈ G, either g(Dα) = Dα or g(Dα) ∩Dα = ∅.

The class of the action on an n-dimensional X, in divisorial form, is
defined as a sum of symbols

[X ý G] :=
∑
H

∑
F

(H,Y ýk(F ), β), (2.4)

a sum over representatives H of conjugacy classes of abelian subgroups
of G and over strata F of dimension d with abelian stabilizer H. The
symbols record

• the residual action of a subgroup Y ⊆ ZG(H)/H, the quotient
of the centralizer of H in G by H, on the function field of F ,
and
• a sequence β = (b1, . . . , bn−d) of characters of H, which appear

in the normal bundle to F .

The expression takes values in a group

Burnn(G)

defined by symbols as in (2.4), subject to explicit relations [KT22a,
Section 4]. This group has an intricate internal structure. In particu-
lar, it admits a direct sum decomposition based on the birational class
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of the MRC quotient of the stratum F , by [KT25, Remark 3.5]. In
the following section, we develop this framework in dimension 3, ad-
ditionally taking into account information about the G-action on the
intermediate Jacobian of the threefold.

3. Curve-localized Burnside groups

We proceed with the definition of new invariants for G-actions on
rationally connected threefolds combining intermediate Jacobians and
Burnside invariants.

Let C be an irreducible smooth projective curve of genus ≥ 1. We
define the C-localized Burnside group

BurnC3 (G)

by generators and relations. The computation of the class of the G-
action on a smooth projective rationally connected threefold X in this
group takes into account only those strata in the stabilizer stratifica-
tion and only those components of the intermediate Jacobian that are
“related” to C, i.e., copies of C, ruled surfaces over C, and J(C).

Generators. The generators are symbols

(H,Y ýK, (b1, b2)),

(H,Y ýL, (b)),

(H, J ý Y ),

where, respectively,

• H ⊆ G is an abelian subgroup, nontrivial characters b1, b2 gen-
erate the dual H∨, and Y ⊆ ZG(H)/H is a subgroup that acts
faithfully on K ∼= k(C),
• H ⊆ G is nontrivial cyclic, with character group generated by
b, and Y ⊆ ZG(H)/H acts faithfully on L ∼= k(C × P1),
• H ⊆ G, and Y ⊆ NG(H)/H is a subgroup, with action on

the principally polarized abelian variety J ∼= J(C) (action and
isomorphism compatible with polarization), which

– is a faithful action, if g(C) ≥ 2,
– comes from a faithful action on C, if g(C) = 1.

The symbols are subject to permutation of characters and conjugation
relations as in [KT22a, Section 4]:

(P) (Permutation)

(H,Y ýK, (b1, b2)) = (H,Y ýK, (b2, b1)), ∀ b1, b2.
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(C) (Conjugation)

(H,Y ýK, (b1, b2)) = (H ′, Y ′ ýK ′, (b′1, b
′
2)),

when there exists a g ∈ G such that

H ′ = gHg−1, Y ′ = gY g−1,

and b′1, b
′
2 are g-conjugates of b1, b2; and similarly for the other two

kinds of symbols.

The blow-up relations of [KT22a] are modified to reflect the fact
that a blow-up of a G-orbit of C contributes one factor J(C) to the
intermediate Jacobian for every component of the G-orbit, with G-
action permuting the factors.

(B1): For H, Y, b1, b2 as above, with b1 + b2 = 0, using the action of Y
on J(C) induced by C ý Y , we impose

(H,Y ýk(C), (b1,−b1)) + (H, J(C) ý Y ) = 0.

(B2): For H,Y, b1, b2, and action of Y on J(C) as above,

(H,Y ýk(C), (b1, b2)) = Θ1 + Θ2 + (H, J(C) ý Y ),

where, with β1 = (b1, b2 − b1), β2 = (b2, b1 − b2),

Θ1 =

{
0, if b1 = b2,

(H, Y ýk(C), β1) + (H,Y ýk(C), β2), otherwise,

and

Θ2 =

{
0, if 〈b1 − b2〉 = H∨,

(H, Y ýk(C × P1), (b1|H)), otherwise.

In the expression for Θ2 we put H = ker(b1 − b2) and apply the action
construction, see [KT22a, Section 2] or [KT25, Section 2], to obtain Y ,
with action on k(C × P1).

(B3): For any Y ⊆ G and C ý Y ,

(1, J(C) ý Y ) = 0

for the corresponding action of Y on J(C).

(B4): For any C with g(C) = 1,

(H, J(C) ý Y ) = (H1, J(C) ý Y/Y1),

where Y1 is the subgroup of Y , acting trivially on J(C), giving rise to
H-extension H1 of Y1.
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The class of the action. Given a smooth projective rationally con-
nected G-threefold in divisorial form, we define the class of the G-action
in the C-localized Burnside group

[X ý G]C ∈ BurnC3 (G)

as follows:

[X ý G]C :=
∑
F

(HF , YF ýk(F ), βF (X)) +∑
D

(HD, YD ýk(D), βD(X)) +
∑
δ

(Hδ, IJδ(X) ý Yδ),

where

• the first sum is over orbit representatives F of subvarieties F ∼=
C of X, where the generic stabilizer is HF and generic normal
bundle representation βF (X) = (b1, b2) with nontrivial b1, b2,
• the second sum is over orbit representatives D of divisors in X

that are ruled surfaces over C, nontrivial generic stabilizer HD,
and generic normal bundle representation βD(X) = (b),
• the third sum is over orbit representatives δ of C-relevant orbits
ω ∈ ∆/G, with ∆ as in (2.2), where Hδ is as in (2.3),
• in each sum there is the residual action of YF on k(F ), respec-

tively YD on k(D), respectively Yδ on IJδ(X).

Example 3.1. Let X = S×P1, where S is a degree 2 del Pezzo surface.
The threefold X has trivial intermediate Jacobian. Let G = Z/2Z,
acting by the standard covering involution of π : S → P2 and trivially
on P1. Let C be the ramification curve of π, a smooth quadric curve.
The G-fixed locus of X is C × P1. The class of the G-action in the
C-localized Burnside group is

[X ý G]C = (G, 1 ýk(C × P1), (1)) ∈ BurnC3 (G).

By relations (B1)–(B2) this is equal to

−2(G, J(C) ý 1);

see the further discussion in Section 6.

4. Blow-up relations

Theorem 4.1. Let X and X ′ be smooth projective rationally connected
threefolds with a regular action of a finite group G, in divisorial form.
Let C be a curve of genus ≥ 1. Then

X ∼G X ′ ⇒ [X ý G]C = [X ′ ý G]C .
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Proof. By the consequence of functorial weak factorization, recalled in
Section 2, the theorem reduces to the equality of classes in the C-
localized Burnside group in the case of a G-equivariant blow-up

% : X ′ → X,

with smooth center Z. Given the shape of the invariant, it suffices to
consider the case that Z is the orbit of a curve, isomorphic to C, which
by abuse of notation we denote by C in the analysis of the possibilities:

(1) C has trivial generic stabilizer,
(2) the generic stabilizer H of C is nontrivial and βC(X) is of the

form (0, b),
(3) the generic stabilizer H of C is nontrivial and βC(X) = (b1, b2)

with nontrivial b1, b2.

Case (1): The generic stabilizer of the exceptional divisor E of the
blow-up is trivial, and there is no curve C ′ ⊂ E which is isomorphic to
C and has nontrivial generic stabilizer. Thus there is no effect on the
first two sums in the expression for [X ý G]C . The third sum gets an
extra term, but this vanishes by (B3).

In case g(C) = 1, it may be necessary to combine with (B4) to
obtain the claimed vanishing. In the remaining cases there is a similar,
implicit use of (B4) when g(C) = 1.

Case (2): In this case, there is a divisor D of the stabilizer stratifica-
tion such that its generic stabilizer is H, and C ⊂ D. The first sum
picks up a term βF (X) = (b,−b), and the third sum gets a contribution
from the residual action on C. Their sum vanishes by (B1).

Case (3): Let H be the generic stabilizer. Let E be the exceptional
divisor. If b1 6= b2, then the exceptional divisor E admits two curves
with stabilizer H, and respective weights (b1, b2 − b1) and (b2, b1 − b2).
If 〈b1 − b2〉 is a proper subgroup of H∨, then E has nontrivial generic
stabilizer ker(b1 − b2). Thus the term (H,Y ýk(C), (b1, b2)) in the
first sum gets replaced by Θ1, with the addition to the second sum of
Θ2, from (B2). The third term gets the required extra term, so that
the equality [X ý G]C = [X ′ ý G]C holds by (B2). �

Example 4.2. Let X be a smooth rational threefold with a regular
involution ι. Put G = 〈ι〉. Let C ⊂ X be an elliptic curve. We examine
the blow-up relations:

• C ⊆ XG, with normal bundle (1, 1). Blowing up we obtain an
exceptional divisor birational to C × P1 with generic stabilizer
G. We have the relation

−(G, 1 ýk(C), (1, 1)) + (G, 1 ýk(C × P1), (1)) + (G, J(C) ý 1) = 0.
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• C ⊆ XG, with normal bundle (0, 1), then

(G, 1 ýk(C), (1, 1)) + (G, J(C) ý 1) = 0.

• C has a G-action via translation by Z/2 and no stabilizer. After
blowing up, we have the relation

(G, J(C) ý 1) = (1, J(C)
triv
ý G) = 0.

• C has a G-action fixing 4 points. Then

(1, J(C) ý G) = 0.

• C has no G-action, no stabilizer. Then

(1, J(C) ý 1) = 0.

In conclusion, all symbols involving C vanish.

5. Structure

The paper [KT25] introduced filtrations on the full Burnside group
Burnn(G), based on combinatorial properties of the subgroup lattice of
G; these allow to simplify the analysis of the class

[X ý G] ∈ Burnn(G),

in some cases.
Briefly, [KT25, Section 3] introduced the notion of a filter H, con-

sisting of pairs (H,Y ), subject to certain properties, which ensure that
the quotient

Burnn(G)→ BurnH
n (G)

by symbols with (H, Y ) /∈ H is a well-defined homomorphism to a
group that is generated by symbols with (H,Y ) ∈ H, with the same
relations as in Burnn(G), but applied only to these symbols.

Now let C be an irreducible smooth projective curve of genus ≥ 2.
Then, by the same reasoning, we have the C-localized Burnside group

BurnC3 (G)→ BurnH,C
3 (G),

generated by symbols (H,Y ) ∈ H and with relations (B1)–(B3), ap-
plied only to these symbols. (When g = 1 the same reasoning is not
applicable on account of the additional relation (B4).)

For G abelian, an example of a G-filter is

{(G, 1)},
see [KT25, Example 3.4] and [KT22b, Section 8]. The corresponding
Burnside group

BurnGn (G)
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records only the strata with maximal stabilizer G, i.e., G-fixed loci. An
analogous formalism applies to the C-localized Burnside group

BurnG,C3 (G).

We denote by [X ý G]G,C the image of the class [X ý G]G, by means

of the filter, in BurnG,C3 (G). Concretely, this is given by picking out
just the symbols with first argument equal to G, in the formula for
[X ý G]C .

In particular, specializing to abelian groups G, we obtain:

Proposition 5.1. Let G be abelian and g(C) ≥ 2. Then there is a
homomorphism

ϕG : BurnG,C3 (G)→ Z,
determined by

(G, 1 ýK, (b1, b2)) 7→ −1,

(G, 1 ýL, (b)) 7→ −2,

(G, J ý 1) 7→ 1.

Proof. The abelian group BurnG,C3 (G) is generated by symbols with G
as first argument, and has relations given by (B1)–(B3) with H = G.
It is straightforward to verify that ϕG respects the relations. �

This yields a more classical analog of [CKK25, Theorem 3.6]:

Proposition 5.2. Let X be a smooth projective rationally connected
threefold with a regular action of an abelian group G and

XG = tαFα
the decomposition of the G-fixed locus into a disjoint union of smooth
irreducible components. Let C be an irreducible smooth projective curve
of genus ≥ 2 and

• I1 be the number of Fα isomorphic to C,
• I2 be the number of Fα birational to C × P1, and
• I3 be the number of factors of the intermediate Jacobian IJ(X)

isomorphic to J(C), with trivial G-action.

Then
I := −I1 − 2I2 + I3

is a G-equivariant birational invariant, given by

ϕG([X ý G]G,C).

Furthermore, if I 6= 0 then the G-action on X is not linearizable, and
also not projectively linearizable.
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Proof. The proof of the first statement is immediate from the definition
of the class [X ý G]G,C and map ϕG.

To show the second statement, we pass to a standard model of the
G-action on P3, as in [KT22b], and observe that the G-action cannot
fix higher genus curves or nonrational surfaces. �

6. Applications

In this section we provide several applications of the formalism of C-
localized Burnside groups. The applications are most interesting when
the group G is small – for large G, one can often deploy techniques from
birational rigidity. For this reason, we focus on cyclic groups of order
2 and 3. For the treatment of the examples given here, the equivariant
Burnside groups without C-localization are insufficient, on account of
the relations for symbols in Burn3(G).

Involutions. The first steps towards classification of involutions in the
Cremona group Cr3 were undertaken by Prokhorov in [Pro13]. Follow-
ing the classification of involutions in Cr2, which is based on the exis-
tence of higher-genus curves in the fixed locus of the action, Prokhorov
considered involutions ι on rational X with a nonuniruled divisor in
the fixed locus X ι. In [CTT25], we constructed nonconjugated involu-
tions in Cr3 without any divisors in the fixed locus; this was based on
the intermediate Jacobian torsor obstruction, which already obstructs
linearizability. Here, we offer further examples of involutions ι without
nonuniruled divisors in X ι.

Example 6.1. We return to Example 3.1: X = S × P1, where S is
a degree 2 del Pezzo surface and G = Z/2Z, acting via the covering
involution on S, which fixes a smooth quartic curve C. We have

I1 = I3 = 0, I2 = 1,

thus I = −2 in Proposition 5.2. In particular, the G-action on X is
not linearizable; see [CKK25, Theorem I]. However, by [BP13, Theorem
1.1], we have

H1(G,Pic(S)) = (Z/2Z)6,

so the G-action on S is not even stably linearizable.

Let G := 〈ι〉 and C be an irreducible smooth projective curve of
genus ≥ 2. We spell out generators and relations in BurnC3 (G), taking
into account that the only possibilities for a C-relevant components of
IJ(X) are

• J(C) with trivial or nontrivial G-action,
• J(C)× J(C) with G-action permuting the factors.
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For the generators, we have

(1) s1 := (G, 1 ýk(C), (1, 1)),
(2) s2 := (G, 1 ýk(C × P1), (1)),
(3) s3 := (G, J(C) ý 1),
(4) s4 := (1, J(C) ý G),
(5) s5 := (1, J(C) ý 1).

For C hyperelliptic, every involution on J(C) can be realized on C; thus,
relation (B3) implies that the symbols s4 and s5 vanish in BurnC3 (G).
Relations (B1) and (B2) yield

s1 + s3 = 0, s1 = s2 + s3.

It follows that

BurnC3 (G) ' Z
and the homomorphism ϕG of Proposition 5.1 is an isomorphism; in
particular, for C hyperelliptic, the invariant I of Proposition 5.2 is the
only invariant of involutions accessible via the C-localized Burnside
groups.

When C is non-hyperelliptic and the G-action on J(C) does not arise
from an automorphism of C, the corresponding symbol of type s4 does
not participate in blow-up relations. In this case, BurnC3 (G) is a free
abelian group generated by s1 and such symbols of type s4.

The following example gives an alternative approach to [CTT25,
Example 6.9].

Example 6.2. Consider

X ⊂ P1
(t1:t2) × P3

(x1:x2:x3:x4),

given by the vanishing of
n∑
i=0

ti1t
n−i
2 (fi(x1, x2) + gi(x3, x4)), n ≥ 3,

for general binary quadratic forms fi, gi, so that X is smooth. Pro-
jection to P1 yields a quadric surface bundle, with discriminant cover
a smooth hyperelliptic curve C of genus g(C) = 2n − 1, see [CTT25,
Section 6]. The threefold X is rational, with IJ(X) = J(C). The
involution

ι : (x1 : x2 : x3 : x4) 7→ (−x1 : −x2 : x3 : x4)

fixes two (nonisomorphic, for general fi, gi) hyperelliptic curves C ′, C ′′

of genus n− 1. Applying Proposition 5.2 to either C ′ or C ′′ shows that
I 6= 0 and the action is not linearizable.
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Example 6.3. Assume that X is rational with IJ(X) = J(C), for a
smooth projective non-hyperelliptic curve C of genus ≥ 3. Assume
that the G-action on IJ(X) does not come from any G-action on C,
i.e., some element of G acts by an automorphism, not in the image
of the homomorphism (2.1). Then the G-action is not linearizable.
Examples of this arise from conic bundles X ⊂ A2 × P2 given by

t1t2 = f(x1, x2, x3),

where f is a form of degree 4 defining a smooth non-hyperelliptic curve
C ⊂ P2, and ι acts by switching t1 and t2. This situation arises also
from 2-nodal cubic threefolds, see [CTZ25, Theorems 2.3 and 3.3].

We claim that the action of ι on IJ(X) is by (−1). There are two fam-
ilies {`c}, {`′c} of vertical lines in the conic bundle, each parametrized
by C. The Abel-Jacobi map for such a family of lines defines a non-
equivariant isomorphism

J(C) ∼= IJ(X).

The two families are swapped by the G-action. The evident rational
equivalence

`c0 + `′c0 ∼rat `c1 + `′c1 ,

for c0, c1 ∈ C, justifies the claim.

Actions of Z/3Z. Our first application is a down-to-earth version of
[CKK25, Example 3.10].

Example 6.4. Let X ⊂ A4 be given by

x1x2x3 = P (x4),

where P is a general polynomial of degree 3d with d ≥ 2, with an action
of G = Z/3Z permuting the first 3 variables. By embedding X in

P1
(s1:t1) × P1

(s2:t2) × P1
(s3:t3) × A1

x4
,

with xi = si/ti, for i = 1, 2, 3, we obtain the defining equation

s1s2s3 = P (x4)t1t2t3

of a fibration in degree 6 del Pezzo surfaces, with 3 singular points of
type A1 in the fiber over each zero of P for a total of 9d singular points.
Compactification in the P1 × P1 × P1-fibration

P(OP1(d)⊕OP1)×P1 P(OP1(d)⊕OP1)×P1 P(OP1(d)⊕OP1)

over P1 does not introduce any further singularities. By blowing up

the singular points we get a smooth projective model X̃ with

π : X̃ → P1.
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By Proposition 5.2 the G-action is not linearizable, since G fixes

a curve of genus 3d − 2, and IJ(X̃) is trivial; the last fact makes no
reference to the G action and may be explained either directly or via

monodromy. Directly, X̃ can be obtained (non-equivariantly) by re-
peatedly blowing up rational curves in a P2-bundle over P1; in doing
so the intermediate Jacobian starts out and remains trivial. But also
there is the trivial monodromy of π, from which it is possible to con-

clude that IJ(X̃) is trivial using [Kan89, Corollary 4.3].

Example 6.5. Let
X ⊂ P4

(x1:x2:x3:x4:x5)

be the 3-nodal cubic threefold given by

x1x2x3 + (x1 + x2 + x3)x4x5 + f3(x4, x5) = 0,

where f3(x4, x5) is

(1) λ(x4 + x5)3, or
(2) λ(x4 + x5)(x4 − x5)2, or
(3) (x4 + x5)(λx4 + µx5)(µx4 + λx5),

with λ, µ ∈ k× (λ2 6= −1/16 in (1), λ2 6= −27/64 in (2), (λ+ µ)4 6= −1
and (λ− µ)6 6= 27λµ in (3)). The intermediate Jacobian of a minimal

resolution X̃ of X is the Jacobian of a genus 2 curve. Indeed, projection
from two of the nodes expresses X as a conic bundle over P2, with
a quartic curve as degeneracy locus and equation in split form as in
Example 6.3, see also [CTZ25, Section 3]. The quartic curve has exactly
one node and thus geometric genus 2.

Let G = Z/3Z act by permuting the first three variables. As ex-

plained in [CTZ25, Section 4], an equivariant birational model of X̃ is
a fibration

π : Y → P1
(x4:x5),

with generic fiber a del Pezzo surface of degree 6; it is given by

(x1 : x2 : x3 : x4 : x5) 7→ (x4 : x5).

The model Y is obtained from X̃ by performing flops. Thus

IJ(Y ) ∼= IJ(X̃).

Since G does not act on x4, x5, the G-action is trivial on the base
P1. The G-fixed locus on the model Y is an elliptic curve. The generic
fiber of π has Picard rank 3; it admits three conic fibrations. The mon-
odromy factors through the Z/2Z, exchanging opposite pairs of lines,
and determines a double cover C of P1, branched over 6 points. The
relative Fano variety of lines is a union of three copies of C, permuted
by G. The variety of vertical conics is a union of three P1-bundles
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over P1, permuted by G. The variety of vertical rational cubics is a
P2-bundle over C, where G acts trivially on C.

Since the class of vertical rational cubics is G-invariant, it defines
the equivariant Abel-Jacobi map

J(C)→ IJ(Y ).

We claim that this is surjective, so that the triviality of the G-action
on the intermediate Jacobian is a consequence of the trivial G-action
on C. To see this, we follow the proof of [Kan89, Corollary 4.3], but
instead of using the relative Fano variety of lines we use a family of
rational cubics parametrized by C, plus conics parametrized by three
copies of P1. Such families may be obtained by choosing a section of
the P2-bundle over C, respectively, the P1-bundles over P1.

We have observed that IJ(Y ) is the Jacobian of a genus 2 curve; to
this we apply Proposition 5.2 and obtain

I1 = I2 = 0, I3 = 1.

We conclude that the G-action on X is not linearizable. (Though not
needed here, we record the fact IJ(Y ) ∼= J(C), obtained by the analysis
of [Kan89, Section 5], with q = 3 in the notation of loc. cit.)

Example 6.5 strengthens [CTZ25, Proposition 4.3], which showed
nonlinearizability of a very general member of the third family, via
specialization.
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