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ABSTRACT. We propose new invariants in equivariant birational
geometry, combining equivariant intermediate Jacobians and the
Burnside formalism, for smooth rationally connected threefolds
with actions of finite groups.

1. INTRODUCTION

This note is inspired by [CKK25|, which introduced a version of
atomic birational invariants of [KKPY25] into equivariant geometry.

We recall the main problem in this area: to determine whether a
given generically free regular action of a finite group G' on a smooth
projective rational variety X of dimension n, over C, is equivariantly
birational to a linear, or projectively linear, action on P", i.e., to an
action arising from a projectivization P(V') of a (n + 1)-dimensional
representation V' of G, respectively, of a central extension of G. We
refer to [HKT21] and [HT22] for an introduction to these notions. The
linearization problem is settled in dimension 2 [PSY24], but is largely
open in dimensions > 3.

Here, we focus on threefolds. We connect the Burnside formalism
of [KT22a] with the theory of (equivariant) intermediate Jacobians to
recover the most striking applications in [CKK25] in a more classi-
cal framework. Concretely, the invariants we offer take into account
only the stabilizer stratification and the G-action on the intermediate
Jacobian.

Our main contributions in this paper are:

e definition of new birational invariants of G-actions on rationally
connected threefolds over C, for arbitrary finite G, in Section [3}

e Proposition , a classical analog of [CKK25, Theorem 3.6];

e applications to conic bundles, quadric surface bundles, and nodal
cubic threefolds, in Section [6]
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2. GENERALITIES

Notation. Throughout, we work over k = C, the complex numbers.
We let GG be a finite group. By convention, G-actions on varieties are
from the right, we emphasize this by writing X © G correspondingly,
the action on the function field is from the left, G & k(X). We write

X ~g X'

to indicate G-equivariant birationality of X and X”.

We briefly recall the framework of equivariant intermediate Jacobians
as in [CTT25] and the main ingredients of the Burnside formalism de-
veloped in [KT22a] which are relevant for the construction of enhanced
birational invariants.

Curves and their Jacobians. Let C' be an irreducible smooth pro-
jective curve of genus ¢g(C') > 1 and (J(C),0¢) its Jacobian, with its
principal polarization. We have a homomorphism

Aut(C) — Aut((J(C),00)). (2.1)
It is well-known (see, e.g., [Math8, Section 4]) that by ([2.1),

Aut(C)/C(k) = Aut((J(C),00)), if g(C) =1,
Aut(C) = Aut((J(C),00)), if hyperelliptic, g(C) > 2,
Aut(C) x {£1} = Aut((J(C),0¢)), otherwise.

G-abelian varieties. Let (A,04) be a principally polarized abelian
variety. It is called a G-equivariant principally polarized abelian variety
if G acts regularly on A preserving both the origin and the class of 64 in
the Néron-Severi group NS(A); the action is not assumed to be faithful.

We will use the following observation [CTT25l Corollary 3.2]: A G-
equivariant principally polarized abelian variety admits a unique, up to
permutation of factors, decomposition as a product of indecomposable
G-equivariant principally polarized abelian varieties. In combination
with [Deb99, Corollary 9.2], we also see that in the non-equivariant de-
composition of A as a product of indecomposable principally polarized
abelian varieties Ag, the union (J; A5 is G-invariant, hence there is an
induced G-action on the disjoint union LisAs.
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Intermediate Jacobians. Let X be a smooth projective rationally
connected threefold and

1J(X) := H3(X,C)/(HYX,0%) @ H}(X, Z))

its intermediate Jacobian, with its principal polarization 0y arising
from the cup product

NH}(X,Z) — HY(X,Z) ~ Z.

When X is rational, IJ(X) is a product of Jacobians of curves.
Examples of X with computable intermediate Jacobians are standard
conic bundles 7: X — 5, with smooth discriminant curve C' C 5.
There is an associated étale double cover 7: C' — C', parametrizing
lines over C'. The intermediate Jacobian 1J(X) is the Prym variety
P(7) associated with 7; it is the identity component of the locus in the

Jacobian J(C') where the involution induced by 7 acts as (—1):
1J(X) = P(r) = im(1 — 7) = (ker(1 4 7))",

see, e.g., [MumT74] for more details regarding this construction. Let G
act on X. Then 1J(X) is a G-equivariant principally polarized abelian
variety. We consider the non-equivariant decomposition

1J(X) = []1s(X) (2.2)

0eA

as a product of indecomposable principally polarized abelian varieties.
Then there is an induced G-action on A, such that the orbits A/G
index the indecomposable G-equivariant principally polarized abelian
varieties
11.(X) = [[1s(X), weA/G.
dEw

The G-action on 1J,(X) induces an action on Ujse,As, transitive on
components; in particular, the As, for § € w, are non-equivariantly
isomorphic. For given § € w, we get an action of the stabilizer G5 on
[J5(X), which we express as faithful action

IJ(S D) G(;/Hg, with H5 g G(g. (23)

Let C' be an irreducible smooth projective curve of positive genus
and J(C') its Jacobian, with its principal polarization. We will say that
w is C-relevant if 1J5(X) = J(C) for § € w, as principally polarized
abelian varieties. Then, with the union of the C-relevant orbits, we
have a G-invariant subset

A(C) C A,
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such that the set of C-relevant orbits may be recovered as
{C-relevant orbits} = A(C)/G C A/G.

Burnside formalism. The Burnside formalism takes as input for the
analysis of a regular G-action on a smooth projective X the following
data:

e the stabilizer stratification,
e representations of the stabilizers in the normal bundles of strata.

A key initial step is passage to a birational model in divisorial form.
This is a model satisfying the condition called Assumption 2 in [KT22al,
Section 3]. On such a model, the stabilizers are abelian, and their rep-
resentations in the normal bundles decompose into direct sums of char-
acters. By [KT22al, Proposition 3.6], two birational models in divisorial
form can be connected by a sequence of blow-ups and blow-downs with
smooth centers, and each intermediate model is in divisorial form.

In particular, this condition is satisfied if the action is in standard
form, i.e., X is smooth projective, with simple normal crossing bound-
ary divisor

D= UaDom
such that

e we have a free action of G on X \ D, and
e for all @ and g € G, either g(D,) = D, or g(Ds) N D, = 0.
The class of the action on an n-dimensional X, in divisorial form, is
defined as a sum of symbols

(X OG:=) Y (HY CkF)p) (2.4)

a sum over representatives H of conjugacy classes of abelian subgroups
of G and over strata I’ of dimension d with abelian stabilizer H. The
symbols record

e the residual action of a subgroup Y C Z;(H)/H, the quotient
of the centralizer of H in G by H, on the function field of F,
and

e a sequence 3 = (by,...,b,_4) of characters of H, which appear
in the normal bundle to F.

The expression takes values in a group
Burn, (G)

defined by symbols as in (2.4), subject to explicit relations [KT22al
Section 4]. This group has an intricate internal structure. In particu-
lar, it admits a direct sum decomposition based on the birational class
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of the MRC quotient of the stratum F, by |[KT25, Remark 3.5]. In
the following section, we develop this framework in dimension 3, ad-
ditionally taking into account information about the G-action on the
intermediate Jacobian of the threefold.

3. CURVE-LOCALIZED BURNSIDE GROUPS

We proceed with the definition of new invariants for G-actions on
rationally connected threefolds combining intermediate Jacobians and
Burnside invariants.

Let C' be an irreducible smooth projective curve of genus > 1. We
define the C-localized Burnside group

Burn§ (G)

by generators and relations. The computation of the class of the G-
action on a smooth projective rationally connected threefold X in this
group takes into account only those strata in the stabilizer stratifica-
tion and only those components of the intermediate Jacobian that are
“related” to C, i.e., copies of C| ruled surfaces over C, and J(C).

Generators. The generators are symbols
(H,)Y C K, (b1, b)),
(H,)Y & L, (b)),
(H,JOY),

where, respectively,

e H C (G is an abelian subgroup, nontrivial characters by, b, gen-
erate the dual HY, and Y C Z5(H)/H is a subgroup that acts
faithfully on K = k(C),

e H C G is nontrivial cyclic, with character group generated by
b,and Y C Zg(H)/H acts faithfully on L = k(C x P1),

e H C G,and Y C Ng(H)/H is a subgroup, with action on
the principally polarized abelian variety J = J(C) (action and
isomorphism compatible with polarization), which

— is a faithful action, if g(C) > 2,
— comes from a faithful action on C| if g(C) = 1.
The symbols are subject to permutation of characters and conjugation

relations as in [KT22al, Section 4]:
(P) (Permutation)

(H7YGK><blab2)):(H7YcKa(b2>b1))> VblabQ'
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(C) (Conjugation)
(H,Y G K, (b,b)) = (H,)Y' & K', (b}, b)),
when there exists a g € G such that
H' =gHg™, Y'=gYg"

and b},b, are g-conjugates of by, by; and similarly for the other two
kinds of symbols.

The blow-up relations of [KT22a] are modified to reflect the fact
that a blow-up of a G-orbit of C' contributes one factor J(C) to the
intermediate Jacobian for every component of the G-orbit, with G-
action permuting the factors.

(B1): For H,Y,by, by as above, with by + by = 0, using the action of YV
on J(C) induced by C' O Y, we impose

(B2): For H,Y, by, by, and action of Y on J(C') as above,
(H,Y c k(C)u (bla b2)) = @1 + @2 + (H7 J(C> O Y)7
where, with 3y = (b1, b2 — b1), B2 = (b, by — by),
O, if bl = b27
O, = .
(H,)Y Ck(C), 1) + (H,Y Ck(C), ), otherwise,
and
0, if (by —by) =HY,
@2 - —_— .
(H,Y G k(C xPY), (b|7)), otherwise.
In the expression for ©5 we put H = ker(b; — by) and apply the action

construction, see [KT22al Section 2] or [KT25| Section 2], to obtain Y,
with action on k(C x P).

(B3): Forany Y C G and C ©Y,

(LJC)DY)=0
for the corresponding action of Y on J(C').

(B4): For any C with ¢(C) =1,
(H,J(C) O Y) = (H,)(C) D Y/Y),

where Y] is the subgroup of Y, acting trivially on J(C'), giving rise to
H-extension H; of Y].
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The class of the action. Given a smooth projective rationally con-
nected G-threefold in divisorial form, we define the class of the G-action
in the C-localized Burnside group

(X © G]° € Burn§ (G)

as follows:
(X ©G)° = (Hp,Yr C k(F), Br(X)) +
> (Hp,Yp € k(D), Bo(X)) + D _(Hs, 15(X) © ),
D 5
where

e the first sum is over orbit representatives F' of subvarieties F' =
C of X, where the generic stabilizer is Hr and generic normal
bundle representation Sp(X) = (b1, bs) with nontrivial by, bs,

e the second sum is over orbit representatives D of divisors in X
that are ruled surfaces over C', nontrivial generic stabilizer Hp,
and generic normal bundle representation fp(X) = (b),

e the third sum is over orbit representatives d of C-relevant orbits
w € A/G, with A as in (2.2)), where H; is as in (2.3),

e in each sum there is the residual action of Yz on k(F'), respec-
tively Yp on k(D), respectively Ys on 1J5(X).

Example 3.1. Let X = Sx P!, where S is a degree 2 del Pezzo surface.
The threefold X has trivial intermediate Jacobian. Let G = Z/27Z,
acting by the standard covering involution of 7 : S — P? and trivially
on P'. Let C be the ramification curve of 7, a smooth quadric curve.
The G-fixed locus of X is C' x P!. The class of the G-action in the
C-localized Burnside group is

(X ©G° = (G,1 & k(C xPY, (1)) € Burn§ (G).
By relations (B1)-(B2) this is equal to

see the further discussion in Section [6l

4. BLOW-UP RELATIONS

Theorem 4.1. Let X and X' be smooth projective rationally connected
threefolds with a reqular action of a finite group G, in divisorial form.
Let C' be a curve of genus > 1. Then

X~ X = [X92GY=[X'92G)°.
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Proof. By the consequence of functorial weak factorization, recalled in
Section [2, the theorem reduces to the equality of classes in the C-
localized Burnside group in the case of a G-equivariant blow-up

o: X' — X,
with smooth center Z. Given the shape of the invariant, it suffices to

consider the case that Z is the orbit of a curve, isomorphic to C, which
by abuse of notation we denote by C' in the analysis of the possibilities:

(1) C has trivial generic stabilizer,

(2) the generic stabilizer H of C' is nontrivial and S¢(X) is of the
form (0, b),

(3) the generic stabilizer H of C' is nontrivial and S¢(X) = (b, be)
with nontrivial by, bs.

Case (1): The generic stabilizer of the exceptional divisor E of the
blow-up is trivial, and there is no curve C’ C E which is isomorphic to
C and has nontrivial generic stabilizer. Thus there is no effect on the
first two sums in the expression for [X © G]¢. The third sum gets an
extra term, but this vanishes by (B3).

In case g(C) = 1, it may be necessary to combine with (B4) to
obtain the claimed vanishing. In the remaining cases there is a similar,
implicit use of (B4) when ¢(C) = 1.

Case (2): In this case, there is a divisor D of the stabilizer stratifica-
tion such that its generic stabilizer is H, and C' C D. The first sum
picks up a term g (X) = (b, —b), and the third sum gets a contribution
from the residual action on C'. Their sum vanishes by (B1).

Case (3): Let H be the generic stabilizer. Let E be the exceptional
divisor. If by # bo, then the exceptional divisor £ admits two curves
with stabilizer H, and respective weights (b1, by — by) and (by, by — by).
If (by — by) is a proper subgroup of HY, then E has nontrivial generic
stabilizer ker(by — by). Thus the term (H,Y C k(C), (b1, b2)) in the
first sum gets replaced by O, with the addition to the second sum of
O,, from (B2). The third term gets the required extra term, so that
the equality [X © G]¢ = [X' © G]° holds by (B2). O

Example 4.2. Let X be a smooth rational threefold with a regular
involution ¢. Put G = (¢). Let C' C X be an elliptic curve. We examine
the blow-up relations:

e C' C X% with normal bundle (1,1). Blowing up we obtain an
exceptional divisor birational to C' x P! with generic stabilizer
G. We have the relation

—(G,1 2 k(0C),(1,1))+ (G, 1 c k(C xPY, (1) + (G,J(C) D 1) =0.
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e C C X%, with normal bundle (0, 1), then
(G, 12 k(C),(1,1)+ (G, J(C) D 1) =0.

e (' has a G-action via translation by Z/2 and no stabilizer. After
blowing up, we have the relation

(G, I(C)D1) = (1,J(C) B @) = 0.
e (' has a G-action fixing 4 points. Then
(L,J(C) D G)=0.
e (' has no G-action, no stabilizer. Then
(LLJ(C)oD1)=0.

In conclusion, all symbols involving C' vanish.

5. STRUCTURE

The paper [KT25] introduced filtrations on the full Burnside group
Burn,, (G), based on combinatorial properties of the subgroup lattice of
G these allow to simplify the analysis of the class

[X © G] € Burn,(G),

in some cases.

Briefly, [KT25, Section 3] introduced the notion of a filter H, con-
sisting of pairs (H,Y), subject to certain properties, which ensure that
the quotient

Burn, (G) — Burnt(G)
by symbols with (H,Y) ¢ H is a well-defined homomorphism to a
group that is generated by symbols with (H,Y) € H, with the same
relations as in Burn, (G), but applied only to these symbols.

Now let C' be an irreducible smooth projective curve of genus > 2.
Then, by the same reasoning, we have the C-localized Burnside group

Burn§ (G) — Burnf“(@),

generated by symbols (H,Y) € H and with relations (B1)—(B3), ap-
plied only to these symbols. (When g = 1 the same reasoning is not
applicable on account of the additional relation (B4).)

For G abelian, an example of a G-filter is

{(G, 1)},
see [KT25, Example 3.4] and [KT22b| Section 8]. The corresponding
Burnside group

Burn(G)
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records only the strata with maximal stabilizer G, i.e., G-fixed loci. An
analogous formalism applies to the C-localized Burnside group
Burn$“(@).

We denote by [X © G]%¢ the image of the class [X © G]¢, by means
of the filter, in Burn$"“(G). Concretely, this is given by picking out
just the symbols with first argument equal to G, in the formula for
X © G°.

In particular, specializing to abelian groups G, we obtain:

Proposition 5.1. Let G be abelian and g(C) > 2. Then there is a
homomorphism

©%: Burn§“(G) — Z,
determined by
(G,1C K, (b,b2)) — —1,
(G,1 L, (b)) — —2,
(G,JO 1)~ 1.

Proof. The abelian group Burn$©(Q) is generated by symbols with G
as first argument, and has relations given by (B1)—(B3) with H = G.
It is straightforward to verify that ¢ respects the relations. U

This yields a more classical analog of [CKK25, Theorem 3.6]:

Proposition 5.2. Let X be a smooth projective rationally connected
threefold with a reqular action of an abelian group G and

X% =U,F,

the decomposition of the G-fized locus into a disjoint union of smooth
irreducible components. Let C' be an irreducible smooth projective curve
of genus > 2 and

o [; be the number of F, isomorphic to C,

e I, be the number of F, birational to C x P, and

e [ be the number of factors of the intermediate Jacobian 1J(X)

isomorphic to J(C), with trivial G-action.
Then
I:=—1 -2+ 13
1s a G-equivariant birational invariant, given by
PO (X © G199,

Furthermore, if I # 0 then the G-action on X is not linearizable, and
also not projectively linearizable.
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Proof. The proof of the first statement is immediate from the definition
of the class [X © G]%¢ and map ¢¢.

To show the second statement, we pass to a standard model of the
G-action on P3| as in [KT22h], and observe that the G-action cannot
fix higher genus curves or nonrational surfaces. O

6. APPLICATIONS

In this section we provide several applications of the formalism of C-
localized Burnside groups. The applications are most interesting when
the group G is small — for large GG, one can often deploy techniques from
birational rigidity. For this reason, we focus on cyclic groups of order
2 and 3. For the treatment of the examples given here, the equivariant
Burnside groups without C-localization are insufficient, on account of
the relations for symbols in Burns(G).

Involutions. The first steps towards classification of involutions in the
Cremona group Crz were undertaken by Prokhorov in [Prol3]. Follow-
ing the classification of involutions in Cry, which is based on the exis-
tence of higher-genus curves in the fixed locus of the action, Prokhorov
considered involutions ¢ on rational X with a nonuniruled divisor in
the fixed locus X*. In [CTT25], we constructed nonconjugated involu-
tions in Crg without any divisors in the fixed locus; this was based on
the intermediate Jacobian torsor obstruction, which already obstructs
linearizability. Here, we offer further examples of involutions ¢ without
nonuniruled divisors in X*.

Example 6.1. We return to Example : X = S x P!, where S is
a degree 2 del Pezzo surface and G = Z/2Z, acting via the covering
involution on S, which fixes a smooth quartic curve C'. We have

L=13=0, LL=1,

thus I = —2 in Proposition [5.2] In particular, the G-action on X is
not linearizable; see [CKK25, Theorem I|. However, by [BP13| Theorem
1.1], we have

HY(G, Pic(S)) = (Z/27,)°,
so the G-action on S is not even stably linearizable.

Let G := (1) and C be an irreducible smooth projective curve of
genus > 2. We spell out generators and relations in Burn§ (@), taking
into account that the only possibilities for a C-relevant components of
[J(X) are

e J(C) with trivial or nontrivial G-action,
e J(C) x J(C) with G-action permuting the factors.
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For the generators, we have
1) 51 := (G, 1 C k(C),(1,1)),
) s50:= (G, 1 C k(C xP), (1)),
) 53 1= (GvJ(C) O 1)a
) 54 1= (17‘](0) O G)a
(5) 85 := (1, J(C) O 1).
For C hyperelliptic, every involution on J(C') can be realized on C'; thus,

relation (B3) implies that the symbols s, and s5 vanish in Burn$ (G).
Relations (B1) and (B2) yield

51+53:0, §1 = S9 + 53.

It follows that
Burn§ (G) ~ Z

and the homomorphism ¢“ of Proposition is an isomorphism; in
particular, for C' hyperelliptic, the invariant I of Proposition |5.2]is the
only invariant of involutions accessible via the C-localized Burnside
groups.

When C' is non-hyperelliptic and the G-action on J(C') does not arise
from an automorphism of C, the corresponding symbol of type s4 does
not participate in blow-up relations. In this case, Burng(G) is a free
abelian group generated by s; and such symbols of type s,.

The following example gives an alternative approach to [CTT25]
Example 6.9].

Example 6.2. Consider
X C P%tl:m x P

(.’El 2 :1‘3:1‘4) Y

given by the vanishing of

Ztlltgiz(fi(xlvlé) —|—gi($3,l‘4)), n > 37

i=0
for general binary quadratic forms f;, g;, so that X is smooth. Pro-
jection to P! yields a quadric surface bundle, with discriminant cover
a smooth hyperelliptic curve C' of genus g(C) = 2n — 1, see [CTT25,
Section 6]. The threefold X is rational, with 1J(X) = J(C). The
involution

L (Tt e i x3 i wy) = (—xy T —Tg Xy Xy)

fixes two (nonisomorphic, for general f;, g;) hyperelliptic curves C’, C”
of genus n — 1. Applying Proposition [5.2] to either C” or C” shows that
I # 0 and the action is not linearizable.
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Example 6.3. Assume that X is rational with [J(X) = J(C), for a
smooth projective non-hyperelliptic curve C' of genus > 3. Assume
that the G-action on LJ(X) does not come from any G-action on C,
i.e., some element of G' acts by an automorphism, not in the image
of the homomorphism ({2.1)). Then the G-action is not linearizable.
Examples of this arise from conic bundles X C A% x P? given by

tth — f(xlaanx3)7

where f is a form of degree 4 defining a smooth non-hyperelliptic curve
C C P?, and ¢ acts by switching ¢; and t,. This situation arises also
from 2-nodal cubic threefolds, see [CTZ25, Theorems 2.3 and 3.3].

We claim that the action of ¢ on IJ(X) is by (—1). There are two fam-
ilies {l.},{¢.} of vertical lines in the conic bundle, each parametrized
by C. The Abel-Jacobi map for such a family of lines defines a non-
equivariant isomorphism

J(C) 2 13(X).

The two families are swapped by the G-action. The evident rational
equivalence
gco + glcO ~rat gq + 0

c1?

for ¢g, ¢; € C, justifies the claim.

Actions of Z/37Z. Our first application is a down-to-earth version of
[CKK25, Example 3.10].

Example 6.4. Let X C A* be given by
r1x9x3 = P(14),

where P is a general polynomial of degree 3d with d > 2, with an action
of G = Z/3Z permuting the first 3 variables. By embedding X in

1 1 1 1
P(Slitl) X ]P)(Sgttz) X P(Sg:tg) X A$47
with x; = s;/t;, for i = 1,2,3, we obtain the defining equation

515983 = P(l’4)t1t2t3
of a fibration in degree 6 del Pezzo surfaces, with 3 singular points of
type A; in the fiber over each zero of P for a total of 9d singular points.

Compactification in the P! x P! x P!-fibration
P(Opl (d) D O[Pl) Xp1 ]P)(Opl (d) D O[[Dl) Xp1 P(Opl (d) D Opl)

over P! does not introduce any further singularities. By blowing up
the singular points we get a smooth projective model X with

7 X — P
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By Proposition the G-action is not linearizable, since G fixes
a curve of genus 3d — 2, and 1J(X) is trivial; the last fact makes no
reference to the GG action and may be explained either directly or via
monodromy. Directly, X can be obtained (non-equivariantly) by re-
peatedly blowing up rational curves in a P2-bundle over P!; in doing
so the intermediate Jacobian starts out and remains trivial. But also
there is the trivial monodromy of , from which it is possible to con-
clude that 1J(X) is trivial using [Kan89, Corollary 4.3].

Example 6.5. Let
XCcP!

(z1:@2:w3:w4:25)

be the 3-nodal cubic threefold given by
112223 + (21 + T2 + 23)Ta%5 + f3(24,75) = 0,

where f3(xy,z5) is

( ) (1’4 + .I'5) or

(2) Mzy + x5)(x4 — x5)?, or

(3) (x4 + @5)(Awy + pas) (s + Axs),
with A\, n € kX (A2 # —1/16 in (1), A2 # —27/64 in (2), (A +p)* # —1
and (\ — u) # 27\ in (3)). The intermediate Jacobian of a minimal
resolution X of X is the Jacobian of a genus 2 curve. Indeed, projection
from two of the nodes expresses X as a conic bundle over P2, with
a quartic curve as degeneracy locus and equation in split form as in
Example , see also [CTZ25, Section 3]. The quartic curve has exactly
one node and thus geometric genus 2.

Let G = Z/3Z act by permuting the first three variables. As ex-
plained in [CTZ25l Section 4], an equivariant birational model of X is
a fibration

Y — IP’%M:%),
with generic fiber a del Pezzo surface of degree 6; it is given by

(x1: 29wy x4 @5) = (T4 T5).
The model Y is obtained from X by performing flops. Thus
L(Y) = LJ(X).

Since GG does not act on x4, x5, the G-action is trivial on the base
P!. The G-fixed locus on the model Y is an elliptic curve. The generic
fiber of 7 has Picard rank 3; it admits three conic fibrations. The mon-
odromy factors through the Z /27, exchanging opposite pairs of lines,
and determines a double cover C of P!, branched over 6 points. The
relative Fano variety of lines is a union of three copies of C', permuted
by G. The variety of vertical conics is a union of three P!-bundles
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over P!, permuted by G. The variety of vertical rational cubics is a
P2-bundle over C, where G acts trivially on C.

Since the class of vertical rational cubics is G-invariant, it defines
the equivariant Abel-Jacobi map

J(C) = 1I(Y).

We claim that this is surjective, so that the triviality of the G-action
on the intermediate Jacobian is a consequence of the trivial G-action
on C. To see this, we follow the proof of [Kan89, Corollary 4.3], but
instead of using the relative Fano variety of lines we use a family of
rational cubics parametrized by C', plus conics parametrized by three
copies of P!. Such families may be obtained by choosing a section of
the P2-bundle over C, respectively, the P!-bundles over P*.

We have observed that 1J(Y) is the Jacobian of a genus 2 curve; to
this we apply Proposition and obtain

[1:[2:0, 13:1

We conclude that the G-action on X is not linearizable. (Though not
needed here, we record the fact 1J(Y) = J(C'), obtained by the analysis
of [Kan89, Section 5], with ¢ = 3 in the notation of loc. cit.)

Example strengthens [CTZ25, Proposition 4.3], which showed
nonlinearizability of a wery general member of the third family, via
specialization.
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