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Chern’s Conjecture in the Dupin case

By Reiko MI1YAOKA

(Received Oct. 16, 2025)

Abstract. Chern’s conjecture states that a closed minimal hypersurface
in the Euclidean sphere is isoparametric if it has constant scalar curvature.
When the number g of distinct principal curvatures exceeds three, only limited
results have been established. In this work, we examine the conjecture for
Dupin hypersurfaces, and establish the following results: a closed proper Dupin
hypersurface with constant mean curvature is isoparametric (i) if g = 3; (ii) if
g = 4 and it has constant scalar curvature; (iii) if ¢ = 4 and it has constant
Lie curvature; and (iv) if ¢ = 6 and it has constant Lie curvatures. These
cases cover all nontrivial possibilities for closed proper Dupin hypersurfaces.
Our proof employs topological and geometric methods, in contrast to earlier
algebraic and analytic approaches.

1. Introduction

In the early twentieth century, Italian geometric opticians began studying light wave
fronts that propagate at a constant speed. This led to the notion of isoparametric hy-
persurfaces, which consist of parallel hypersurfaces of constant mean curvature (CMC)
and, in fact, have constant principal curvatures.

Let M be a hypersurface in S™, A its shape operator, and H =TrA the mean
curvature. Using the principal curvatures Ay, Mg, ..., Ap_1 of M, the scalar curvature is
expressed as

R=mn-1)n-2)+H?>—||A]?=(n-1)(n-2)+ (Z)\i)Q —Z)\?. (1)

Chern’s conjecture [14]: A closed minimal hypersurface in S™ is isoparametric if it
has constant scalar curvature (CSC), where closed means a compact without boundary.

This problem corresponds to Yau’s 105th problem [43].

When both 3" \; and 3" A? are constant, \;’s themselves are constant if the number
g of distinct principal curvatures satisfies ¢ < 2. However, when dim M = 3, the case
g = 3 occurs, and the closedness condition is essential for Almeida-Brito’s affirmative
solution [16], completing earlier work of Peng-Terng [33]. See Chang [11] and Cheng-
Wan [13] for related results, and Chen-Li [12] for the case dim M > 3 and g < 3. For
g > 4, it becomes difficult to reach a definite conclusion without further assumptions
[39], [40], [41]. The latter two works effectively extend the method of [16] to arbitrary
dimensions.
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Isoparametric hypersurfaces in Euclidean and hyperbolic spaces are only totally
umbilic ones and cylinders [2]. In contrast, in the sphere S™, E. Cartan discovered
examples with ¢ = 3 and g = 4 [3]. Later, Ozeki-Takeuchi constructed infinitely many
homogeneous and non-homogeneous examples with g = 4 [32], which were extended by
Ferus-Karcher-Miinzner to those arising from all representations of the Clifford algebra
[18].

Isoparametric hypersurfaces are algebraic [28]: they are level sets of certain ho-
mogenous polynomials intersected with S™. Topological arguments then show that
g € {1,2,3,4,6} [29]. All these cases have been classified (Yau's 34th problem [44])
(2], [3], [6], [15], [17],[24]-[26], and thoroughly studied [18], [28], [29].

To approach the case dim M > 3 and g > 3, we introduce an additional geometric
assumption: the Dupin condition together with CMC and CSC.

A hypersurface is called Dupin if

(1) each principal curvature A has constant multiplicity, and

(ii) A is constant along its curvature direction.
Pinkall calls it a proper Dupin in [34], but we omit “proper” here. If only (ii) holds, we call
it weak Dupin. When the multiplicity m of A exceeds one, (ii) is automatically satisfied. If
(ii) also holds for m = 1, each leaf of the curvature distribution is an m-dimensional sphere
[30], [37]. Thus a Dupin hypersurface is foliated by spheres and belongs naturally to the
broader framework of Lie sphere geometry, which extends Riemannian and conformal
geometry (see §5, [4], [34]).

Our main result is:

THEOREM 1.1. A closed CMC Dupin hypersurface M in S™ is isoparametric
(i) if g = 3.

(i) if g =4 and M has constant scalar curvature.

(iii) if g = 4 and M has constant Lie curvature.

(iv) if g =6 and M has constant Lie curvatures.

Remark 1.2 : The Lie curvature is the cross ratio of distinct four principal curvatures,
discovered by the author as an invarint in Lie sphere geometry [22] (see §5).

COROLLARY 1.3. LetdimM >3 and g > 3. A closed CMC hypersurface M in S™
with g principal curvatures, each constant along its curvature direction, is isoparametric

(i) if g = 3.

(ii) if g =4 and M has constant scalar curvature.

(i) if g =4 and has constant Lie curvature.

(iv) if g = 6 and has three independent constant Lie curvatures.

Although the Dupin condition is local, a closed embedded Dupin hypersurface has
the global topological property tautness [42] (Fact 2, §2). This is based on the fact
that they have the same homology as isoparametric hypersurfaces [42]. In particular,
g €{1,2,3,4,6}. When g = 1,2, 3, such hypersurfaces are images of isoparametric ones
under Lie contact transformations [9], [7]. The last case extends the author’s earlier
result in the closed setting [20], which motivated Cecil and Ryan to conjecture that every
closed embedded Dupin hypersurface is a Lie images of an isoparametric hypersurface
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[9]. However, counterezamples for g = 4,6 were constructed in [27] (see also [36] to
g = 4). The Lie curvature and the analysis of critical sets of the distance function due
to T. Ozawa [31] play essential roles. (see the expository article [5]).

When g = 4,6, even if all the Lie curvatures are constant, this does not imply
Lie equivalence to an isoparametric hypersurface [22], [23]; see also [8]. Thus the Dupin
remains substantially weaker, and proving Chern’s conjecture in the Dupin case for g > 4
is still highly nontrivial.

By part (ii) of Theorem 1.1, Chern’s conjecture reduces to the following statement:

A closed CMC hypersurface with g = 4 is Dupin if it has CSC.

In parts (iii) and (iv), we replace scalar curvature with Lie curvatures, both are
quadratic in A;’s. For g = 4, this invariant is unique, while for g = 6, three Lie curvatures
are essential if they are independent, that is, if none of the three can be expressed by the
other two (Lemma in the front page of [23]).

For further results on Chern’s conjecture, see [39], [41] and the references therein.

In §2, we give basic definitions and the known results. In §3 and in §4, we give proofs
of (i) and (ii) of Theorem 1.1, which are relatively elementary. However, the proofs of
(iii) and (iv) require Lie sphere geometry, introduced in §5, and are carried out in §§6
7.

2. Preliminaries

We mainly follow the notation in [22]. Let S™ be the n-dimensional unit sphere in
R™*1 centered at the origin. Consider an isometrically embedded orientable hypersurface
p: M — S™ with a unit normal vector field n. Let A denote the second fundamental
tensor of M and Ay > - -+ > A\, _; be the principal curvatures. For A € {);}, the curvature
distribution D(A) is defined by

D,(\) ={X € T,M | AX =X}, pe M.

The following is well-known [30], [37].

Fact 1. When dim D()) is constant (say= m) on M, the distribution D(\) is involutive.
Moreover if A is constant along D(\), (which is the case when m > 1), the leaf L is a
piece of an m-dimensional subsphere of the curvature sphere C'(\) at p.

Note that Dupin hypersurfaces satisfy the statement of Fact 1.

Example 2.1 : The following are Dupin hypersurfaces:

(1) Isoparametric hypersurfaces.

(2) Conformal or Lie images (§5) of isoparametric hypersurfaces.

(3) If M is a Dupin hypersurface in R™, then a cylinder or a tube over M in R™ ®R*
is a new (weak) Dupin hypersurface in R™**. By a stereographic projection, we obtain
a weak Dupin hypersurface in S™** [34].

Remark 2.2 : Ttem (3) implies that, locally, there exist Dupin hypersurfaces with any
number of principal curvatures and arbitrary multiplicities.

It is obvious locally that:

(1) When g = 1, a Dupin hypersurface is a piece of hypersphere.
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(2) When g = 2, a CMC Dupin hypersurface is a piece of a Clifford hypersurface (the
orthogonal product of two spheres), that is, of an isoparametric hypersurface with g = 2.

Indeed, when g = 2, CMC condition implies that the principal curvatures A, u satisfy
miA+maop = H for some constant H, where m; (resp. ms) is the multiplicity of A (resp.
p). Since A (resp. p) is constant along D(A) (resp. D(u)), so is p (resp. A), and hence
A and p are constant on M.

When dim M = 3, Chern’s conjecture has been affirmatively settled [16], where
analytic methods play a crucial role. In Theorem 1.1 (i), we consider closed CMC hy-
persurfaces M with g = 3 in arbitrary dimensions. Instead of assuming constant scalar
curvature, we impose the Dupin condition. Our approach also provides insight into the
cases g = 4,6.

The focal points of p € M are given by
f; =cosf;p+sinb;n, 0<0;= cot™tN\ <7

and their antipodal points fzﬁ inS" 1<i<n-—1 ForxzeS"\ M, letl, : M — R be
the squared spherical distance function on M, defined by

lo(p) = d(z,p)*>, pe M. (2)

Let p € M be a critical point of I,. Then the index of p is given by the sum of the
multiplicities of the focal points of p along the oriented open geodesic segment zp. For
details, see [9].

Fact 2. A closed embedded Dupin hypersurface is taut [42], that is, [, satisfies the
equality in the Morse inequality for generic € S™ \ M, where homology is taken with
Zso coefficients. In such a case, [, is called a perfect Morse function. Conversely, taut
hypersurfaces are weak Dupin [21], [35].

Fact 3. Isoparametric hypersurfaces in S™ consist of parallel CMC hypersurfaces My
with constant principal curvatures Ay > --- > A\, g € {1,2,3,4,6} given by [28]

1
Ai(ﬂ)cot9i00t<27;+0+(lg)7r), ie{l,....q}, f%<9<%. (3)

In particular,

0<b=—+0<2, cot™ < A(f) < oco. (4)
29 g g
Fact 4. For any normal geodesic v of My, My N~ is a parallel 2g-gon, that is, a 2g-gon
obtained from a regurlar one by a parallel transformation in the Lie geometric sense (see
Figure 3, 6, 11, and Example 5.2).

Fact 5. If My has distinct g principal curvatures, the multiplicity m; of \; is all equal
when g = 1, 3,6, and m; = moqq and ms = Meyen when g = 2, 4. In §2 of [41], Tang-Yan
show that the mean curvature Hy of Mjy is given by
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g mo g6, T T
H, :7( t——), t = cot =—, 0= —+60<—.
0=5 mi 7 co 5 0<6, Qng <g (5)

Thus Hp is monotone with respect to 6, and 6 is uniquely determined by the mean
curvature. The minimal case occurs when

961 ma
t2 = cot? = = —=. 6
> = (6)
. mo t2 —1
In particular when g =1, 3,6, mit — 5 = m ;= 2m cot gf1, and hence

Hy = gmcot(gb1),

which vanishes only when 6 = 0, ie., 6; = 21 When g = 2,4, My is not necessarily
g

minimal, since Hy depends on my,ms in (5).

3. Closed case: g =3

Hereafter, let M be a closed embedded Dupin hypersurface in S™. Then M is taut
[42], that is, the function (2) is generically a perfect Morse function. In the following,
we make use of this important property in the background.

When g = 3, the principal curvatures A1 > Ay > A3 have the same multiplicity m €
{1,2,4,8} [3],[42]. In the non-closed case, there is freedom in the choice of multiplicities
(Example 2.1 (3)), and hence the following argument does not apply.

For later use, we put Ay = A\, Ao = g and A3 = v, and denote by D, the corresponding
curvature distributions which decompose the tangent bundle as Dy ® Dy @ D3. Let ¢;
be any unit vector in D;. The mean curvature is given by

H=mA+p+v), me{l,2,4,8}
where we do not take the average.

LeEmMA 3.1.  If M is a closed CMC Dupin hypersurface with g = 3, then there
exists a point p € M at which all dj; = e;(\;) vanish.

Proor. Since H is constant, we have, for any e; € D;,
dj1+djp+d3=0, j=1,2,3.
Let p € M be a critical point of A = A\; on M. Then
di1 =0, j7=1,2,3.
Since d;; = 0 because M is Dupin, we have at p:
dig +di3 =0, doz =0, d32=0.

Thus if we choose a critical point p! of Ay on L;(p), the proof is complete. O
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Figure 1: Link of leaves

At p = p! in the lemma, according to the argument in [20], each leaf L;(p') of D; is
totally geodesic in the corresponding curvature sphere C;, and meets the normal geodesic
7 through p! orthogonally at p? € v, i = 1,2,3, where p* is the antipodal point of p'
in each leaf L;(p'). The situation is the same as Figure 4.1 ~ 4.3 in [20]. By the same
argument using tautness, we see that M N~ = {p',...,p%}, and that each leaf at p’
intersects some other leaves at points on -« as illustrated in Figure 1. More precisely,
denoting A\! = \(p') etc., we have

LEMMA 3.2. Assume X attains its mazimum at p' € M, and A* > X3 > \° without
loss of generality. Then, from CMC condition, it follows that

pt <p?=p° <p®, and VP <vl <00

PROOF. Since A' > A3 > A%, we have p! +v! < 3+ 12 < u? 4+ 05, From \! = )2,
we obtain p! 4+ vt = p? + 12 < 3 + 13, and v? = 13 implies p? < p3. Similarly, from
A2 = At > N5 we have p? + 13 = p* +v* < p® +1°, and v* = v° implies p* < p®, that
is, ! < p?. Then A + vt > A2 + 12 follows, hence v! > v2. Finally from A5 = A%, we
have p® + 5 = b + %, and p® = p? < p? = p® implies v° > % = vt O

PROPOSITION 3.3.  In the situation of Lemma 3.2, each principal curvature coin-
cides at all pt’s, and M N~ is a parallel hexagon (Figure 3).

PrROOF. Put

M o=cotfl, p'=coty, vi=cotb, 0<@<m t=1,...,6,
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and define
0L =7 — 0., v'=cotf =—coth,

which satisfies 0 < §§ < 7. Recall the cotangent is a decreasing function (so — cot is
increasing).

p r

Figure 2: Angles Figure 3: Parallel hexagon

As illustrated in Figure 2, noting the direction of the normal vector, we observe that

pt = cot 0 = cot 1 ZL(p*Op*) = cot (0} + 63 + 6%),
p? = pd = cot 3 = cot 3£(p°Op?) = cot(ﬁ? + 61 +03), (7)
1 = cot 03 = cot 3£ (p30p°®) = cot(63 + 63 + 67).

Since v? < v (03 < 0)) and A\ > X (63 < 67), we have 03 + 63 < 03 + 607, and thus
p* > p?. Then by the previous lemma, ' = p?, and since A! = A2, we also have v! = 12
Similary, from A! > A3 and v! < v°, we obtain 61 + 603 < 63 + 63, which implies p? > 3.

Hence, by the lemma,

pt=p? =i (= ).
From 12 = 13, we deduce A\?> = \?; and from v' = 15, we obtain A' = \6. Finally it
follows that A = A3 = A\ and v! =13 =15, O
Remark 3.4 : M N~ is a parallel hexagon when A\’ and v are independent of ¢.
Next, let ¢ be a minimum point of \, and let ¢° be a critical point of u on Li(q).
Then as before, all d;; vanish at ¢°, and denoting the normal geodesic through ¢° by v/,
we obtain M N~ = {¢*,..., "} replacing p’ by ¢" in Figure 1. Setting A} = X(¢") etc.,
and assuming )\2 < )\2 < )\(11 without loss of generality, we conclude, replacing p* by ¢' in
the above argument, M N~ is also a parallel hexagon.

Proof of Theorem 1.1 (i): By Proposition 3.3, {p',...,p%} = M N+ is a parallel hexagon,
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hence isometric to My N vy for some 6. Here, # is uniquely determined by the mean
curvature H of M (Fact 5). Thus at p!, we have A = Ay = A\;(#) in (3). Since the same
holds at the minimum point ¢° of ), it follows that ) is constant on M. Then as m(u+v)
and m(pu? + v?) become constant, u,v are constant, and hence M is isoparametric. [
Remark 3.5 : Tang-Yan [41] give the scalar curvature of My

Ry = 9m(m —1)(1 + cot®(361)), 61 = % +o.

Thus when m = 1 My is scalar flat, while for m > 1, it has positive scalar curvature.
Remark 3.6 : There is a simpler proof if we use the result in [20] and a conformal

invariant 7'&. However, the above strategy can be applied to the cases g =4, 6.
v

4. Closed CMC and CSC Dupin Hypersurfaces with g = 4

When g = 4, let Ay > Ay > A3 > Ay be the principal curvatures with multiplicities
my = mg,me = my. Let D; denote the curvature distribution corresponding to A;. As
before, we write e; for any unit vector in D;. We show the following:

Theorem 1.1 (ii). A closed CMC Dupin hypersurface in S™ with g = 4 is isoparametric
if it has constant scalar curvature (CSC).

Since the scalar curvature R is given by (1), the assumption implies that both
H =mi A +mods +m3Az +myry, S= ml/\§ + mg)\g + m3/\§ + m4/\i

are constant. Throughout this section, we assume CMC and CSC.
Remark 4.1 : Hence two principal curvatures determine the other two.

For e; € D;, we have

4 4
Zmldﬂ :07 Zml/\ldﬂ :O, j = 1,...4,
i=1 i=1

namely, for j =1,
madiz + madiz +madia =0, maladia + m3Asdis + madadia =0,

because e1 (A1) = 0 as M is Dupin. Thus dy5 and dy4 are determined by d2. In particular,
they vanish when dy5 = 0, since mgmg(Ag — A3) # 0. Just in the same way, we have

LEMMA 4.2.  For distinct 1,7, k,l € {1,2,3,4}, the quantities dj;, and dj; are de-
termined by dj;. In particular, dj; = 0 implies d;i, = dj; = 0.

LEMMA 4.3.  There exists a point p € M at which all dj; vanish.

PROOF. Let p € M be a critical point of A;. Then on L(p), dj1 = 0 holds, and
by Lemma 4.2, we have d;3 = d;3 = djs = 0 for j = 2,3,4. Next consider dy;, i = 2,3, 4.
Since Ay attains a critical value at some point of L;(p), take such a point p' € L;(p).
Then di2 = 0, implying di3 = d14 = 0 by Lemma 4.2. Thus all d;;’s vanish at pt. U
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Let v be the normal geodesic of M at p'. Since the leaf L; of D; is totally geodesic
in the curvature sphere C; if and only if \; takes a critical value on M (]20], [22]), L;(p')
is totally geodesic in C;. We may put

Li(p")ny = {p",p*}, L2(p")Ny = {p".p"}, Ls(p" )Ny = {»".p°}, La(p')Ny = {p*,p%},

where p? is the antipodal point of p! in L;(p!). Thus, at p!, the situation becomes the
same as in Proposition 6.1 of [22]. Applying that proposition, in which tautness plays a
crucial role, we obtain:

PROPOSITION 4.4. We have M N ~v = {p',p? p p* 0%, 0% 07,08}, where
pl,p%, pt, 8, p® are as above, and p3, p°, p” are as in Figure 4, denoting X\ = A1, jt = Ao,
v = XA and T = M\y. The leaves at each pt are all totally geodesic in their respective
curvature spheres and meet v orthogonally, intersecting as shown in Figure 4.

Figure 4: Link of leaves Figure 5: Angles
PROPOSITION 4.5. Let A\l = X\;(p') = cot b, 0 < 0! < 7, for i = 1,2,3,4, and
t=1,...,8. Putting
03 =01+, 03 =03+ 5, 05 =035+~
62— 6!, 62 =0 +a, 02 =02 +b, 02 —0) +c,

and defining 6 =7 — (a+B+7) and d =7 —a— b — ¢, we obtain the following relations
among angles (see Table 1).
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Table 1: Angles

ProoF. Consider 7 as a unit circle!. Noting the direction of the normal given in
Figure 5 (where we denote p® by 2;), we have as in (7),

pt = cot(01 + 67 +03), v = cot(03 + 07 +03), 7' = cot(05 + 67 + ),
u? = cot(01 + 6% +0%), v? = cot (63 + 05 +09), 71 = cot (63 + 0F + 63),

hence

a=0}+05, B=60+60], y=0]{+0]
a=05+0%, b=0%+05 c=0f+0}

Also from Figure 4 and Figure 5, we see,

03 = 03 + 03 + 05 = 03 + 3, 05 = 03 + 0] + 05 = 05+,
03 =03+ 01 +0; =03 +6

where § = 0} + 0} = 01 + (7 —0}) = 7 — (a+ B+ 7). Since 67 = 03, we have in the same
way,

05 =01 +02+02 =0} +d, 03 =05+65+05=05+a,
0% =05 + 05 + 05 = 05 + b,

where d = 02 + 02 = 02 + (7 — 02) = 1 —a — b —c. In a similar way, 67, 65, 07 and 6% are
obtained. 0
Recall (Figure 4)

A =2% A =at A =6, AT =)

pt=pt, =t P =t b= b
vl = 1/67 V2 = 1/5, V3= yg, vt =17
=78 2=73 si=75 +6=77
LEMMA 4.6. We have
03 =0 +a—d, 07=0+a+b—vy—06, 0] =0{+a—0. (8)

INote that v is also used to denote an angle; do not confuse the two.



Chern’s Congecture in the Dupin case 11

PROOF. Since ut = p?, it follows from Table 1 that 6} + o = 63 + d, hence 63 =
01 +a —d. Similarly, from p? = u”, we obtain 0 +a = 0] 4+, i.e., ] = 0} +a— 4. From
p® = u®, we also have 07 +~v = 07 +b = 01 +a— 35 +b, which gives 67 = 0] +a+b—(y+9).
(]

LEMMA 4.7.  Assume that at p', X attains its mazimum and p' > u? without loss
of generality. Then at p',

VIS >t >3 >3 T >0 9)

PROOF. Since m; = msz and my = my, we have at p' and p8,
o
1(
i
1(
1

where 7! = 78. Taking the difference of the former two, and the latter two, respectively,
we obtain

+vh) +ma(p' +71) = H
NP4 V8) +my(uf +77) = H
AD?+ (1)) +ma((u')? + (71)?) = §
(A%)2 + (%) + ma (1) + (7%)%) = S

mi( A = A8+t — 18+ mg(put —p®) =0
ma((AD)? = (A%)? + (1) = (%)%) + ma((u')? = (4®)?) = 0.
Then multiplying the former by (u! + u®) and subtracting the second, we obtain
A= XS (4 15 = A =X+ (=) S = —h) =0, (10)
where p! + p® — A — X8 <0 and pt + p® — vt — 8 > 0. Since A\! is max, (10) implies
)\12)\8:)\7, vl > 08 =13
A similar argument at p? and p” using p? = 7 implies

mi(A%2 = AT+ 12 =) +ma(r? —77) =0

A2
mi((A%)? = (A2 + ()2 = (V")) + ma((72)* = (v7)?) = 0,
and multiplying the former by (72 4+ 77) and subtracting the second, we have
W= A2+ 7T =N = A+ (=) (P2 + 17 = =T =0, (11)

where 72 4+ 77 = X2 = X" < 0and 72 + 77 — 2 — 7 < 0. Thus in (11), A2 = A} > X7
implies
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Next, at p' and p?, using A' = A2, we have
my(vt —v2) +ma(pt —p?2 + 71— 72) =0
mi((vh)? = (1*)?) + ma((p')? = (4*)* + (71)% = (7%)%) = 0,
and multiplying the former by (¢! 4+ v?) and subtracting the second, we have
(0 = ) 02 =t =)+ (P =) R - ) =0, (13)

1

where vt +1v2 — pt — 2 < 0 and v + 2 — 71 — 72 > 0. Since we have chosen p! so that

ut > p?, we obtain from (13)
pt >t >t =10
This impies ' + 7! > p? + 72 and so A' + v! < A% + 2. Thus by A! = A%,

vt < V2 =15

7

holds. Next, at p* and p”, using v* = /7, we have

mi(A* = A+ mo(pt —p "+ 14— 77) =0
ma (V)2 — (7)2) + ma((u)? = (72 + ()2 = (7)2) = 0,

and multiplying the former by (A* + A7) and subtracting the second, we obtain
(it = YO 4 AT it 1) 4 (YT T =0, (1)

where \* + A7 — p* — 47 > 0 and M + A7 — 7% — 77 > 0. Since we are assuming
pt = p* > p? =47, it holds

and the lemma is proved. O

PROPOSITION 4.8.  We have

PROOF. Since the cotangent function is decreasing, u' > p? implies
a<a. (16)
The second inequality of (9) is written as, using (8),
0 +a—08)+0+a<b+a+b<O+a+B< (0 —d+a)+B+ry

and we have immediately
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a<b a+b<a+p, d<n. (17)
Then from 77 > 7°, we have

Ot+a—-0)+d+a+B=0{+a+a+p
<@Ot+a+b—v-8)+(y+d+a)=0l+a+b+a

and so
B<b. (18)
Thus from (16) + (18), and the middle innequality of (17), we obtain
a+B8=a+b,
and hence
a=a

, B=0b. (19)

From 61 = 6% and (19), u' = p? and v! = 12 follow. These imply 7! = 72, and we obtain
v=cand § =d. O

LEMMA 4.9. We have

§<y<ac<B. (20)

PROOF.  As we assume \! > A3 = cot(6] + a — §), we have
0 < a.
From v7 > v° > vt > 13 follows 0] < 63 < 01 < 03, and using (8) and (15), we have

07+ 5+ a=0} +2a
<HB+y+5=0+a+3=0%
<@ +B+y=(01—-0+a)+ B+,

namely,
d<a<fB, <.

Since we have A3 = X4, 13 < o7 = 14 and p® = cot(63 + B) < cot(63 + §) = ut, we
obtain 73 > 7%. Hence 8+~ + 6 < 6 + a+ 3 implies
v < a.

O

PROPOSITION 4.10.  All the principal curvatures coincide at p* for 1 <t < 8, and



14 R. M1vyAOKA

M N~ is a parallel octagon.
PROOF. Together with A3 < A\!, from (15) and (20) we have
p? = cot(03 + B) = cot(6] +a — &+ B)) < cot(f] + ) = u*
and
¥ =cot(83 +B+7) =cot(fl +a— 5+ +7) <vh
However, since
03 =0 +B+v+d6=(01 —6+a)+B+v+d=0{ +a+B+v =04,
by the CMC condition, we must have A = A3, v! =3 and p® = pu'. Hence

71'
a_ﬂ_’y_&_Zv

and 07 = 07 = 61 follows. By Proposition 4.8 and by Table 1, all principal curvatures
coincide at each p?, 1 <t < 8. Thus, M N~ forms a parallel octagon. ]

1

P

5 6

P P

Figure 6: Parallel octagon

Next, we apply the above argument at a minimum point g of A, instead of the
maximum point p. Let ¢! be a minimum point of x4 on Li(q). Then by Lemma 4.2,
all d;; vanish at ¢'. Let 7 be the normal geodesic through ¢'. By tautness again,
M0y ={q¢',¢%...,q%} yields a configuration similar figure to Figure 5 along +'.

The following argument is almost parallel as before, but we need to check the change
of inequalities. In all the argument of Lemma 4.7, 4.8 and Lemma 4.9 using Table 1, we
replace p’ by ¢'. Then Lemma 4.6 holds for ¢*, and we show instead of Lemma 4.7:

LEMMA 4.11.  Take ¢' as a minimum point of A on M and also minimum of u on
Li(q'). Then we have, denoting v* = v(q'), etc.?,

2should be written as I/é but we omit ¢ for short.
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, T7§T5.

V7§V5§V1§u3, T1§T3

PROOF.  As before, (10) holds at ¢! and ¢®, where A! — A% and v — /® should have
the same sign. Since A! is the minimum, we have

A< A8 =27, pl<B =08

At ¢? and ¢ we have (11), and A% = A! < A7 implies

pl <2, rl<7?=r3

This impies p! + 7! < p? + 72 and so A' + 01 > A2 + 02, As AL = \2,

vl > V2 =10

follows. Next, at ¢* and ¢7, in (14), from p! = p* < p? = 47, it follows

™ =7 >7" =15

O

ProprosITION 4.12.  Under the situation in Lemma 4.11, denoting the correspond-
ing angles with primes, we have

o = a/’ 5/ _ b/, ’YI _ CI, 5 = d/,
T
and all these values are 1

PROOF. The argument parallels that of Proposition 4.8, Lemma 4.9 and Proposi-
tion 4.10, with reversed inequalities. We check all the processes but omit details. O
Finally, we obtain:

PROPOSITION 4.13.  All principal curvatures coincide at gt for 1 < t < 8, and
M N~ is a parallel octagon.

Proof of Theorem 1.1 (ii): Both octagons p'...p% and ¢'...¢% are isometric to the
parallel octagon My N 7y, where 6 is uniquely determined by H (Fact 5). This implies
A(p') = Ao = A(q'), hence X is constant all over M. Therefore dj; = 0 everywhere on
M, and by Lemma 4.2, we have d;; = 0 for j = 2,3,4 and 7 # 1. Taking maximum and
minimum points of yu where di2 = 0, and hence di3 = d14 = 0, we see that all d;; vanish
at such points. Then by a similar argument, we obtain max gy = minp and thus p is
constant on M. By Remark 4.1, v and 7 become constant. This proves Theorem 1.1 (ii).
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(]
Remark 4.14 : When g = 4, the scalar curvature Ry of My is given by ([41])

Ry = 4(m1(m1 “ D)1+ 2) + ma(ma — 1)(1 + %2))

where t = cot 20, = cot 2(% + 9), and n — 1 = 2(my + ma). Thus My is scalar flat only
when m; = my = 1; otherwise, scalar positive. When Mp is minimal, i.e. t? = % by
(6), the scalar curvature is

R = 4(m1 + mg)(ml +mg — 2).
Using the classification of isoparametric hypersurfaces with g = 4 [6],[15], we have:

ProroSITION 4.15.  If a closed minimal Dupin hypersurface M in S™ with g = 4
has constant scalar curvature R, then M 1is isoparametric, and R lies in the discrete set

{4(m1 + mg)(ml + mo — 2)},

where (mqy,ms) = (1,1),(2,2),(4,5) ... are infinite series given in [18]. The cases other
than (my1,ma) = (2,2),(4,5) correspond to representation of Clifford algebras.

5. Review of the Lie sphere geometry

Up to this point, we have used only elementary arguments. However, to prove parts
(iii) and (iv) of Theoreml.1, we need to employ Lie sphere geometry, in particular the
concept of Lie curvature. In this section, we briefly review the necessary background.
For details, see [4].

Let Ry = R"! @ R3 be endowed with the bilinear form (, ) of signature
(+...,+,—,—). The hyperquadric of RPy"? consisting of null vectors

Q" = {[k] € RP;** | (k, k)2 = 0}

represents the space of oriented hyperspheres of S™. An oriented hypersphere centered
at p € S™ with oriented radius —w < 6 < 7 is given by k = *(p,cosf,sinf) € R3S,
We denote k for [k]. Then ‘(p,1,0) € Ry represents a point sphere, and *(n,0,1)
represents an oriented totally geodesic hypersphere centered at n. Two elements ky =
t(u, cos @, sin ), ke = *(v,cosp,siny) in Q" have oriented contact if they meet at a
common point with coinciding normal directions. This occurs if and only if

(k1, ka)2 = (u,v) — cos(p — ) = 0.

For instance, k1 = *(p,1,0) and ke = *(n,0,1) have oriented contact precisely when p is
orthogonal to n. If (k1, k2)2 = 0, the line

= {[akl +bk2] | a,b S R}

lies in Q™T'; it represents a one-parameter family of oriented hyperspheres having ori-
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ented contact at p. The space of such lines, denoted by A2"~1, is identified with the unit
tangent bundle T1.S™, since [ is uniquely determined by the contact point p € S™ and the
oriented unit normal n € T,,5".

The Lie contact transformation group O(n+1,2) is the linear group preserving (, )o.
It preserves Q" T!, the oriented contact between oriented hyperspheres, and the space of
lines A?"~1 = 778" An element L = (I,la,...,l,1+3) € O(n + 1,2) is characterized by

(ot = (T )

where I,41 and Iy are the unit matrices. The set of column vectors I; (row vectors,
respectively) is called a Lie frame.

An oriented hypersurface p : M — S™ with unit normal vector field n can be
expressed as a Lie geometric hypersurface by the pair (ki, k2):

p n
k’l = 1 S Qn+17 k2 = 0 € Qn+1a
1

not both dk1(X) and dko(X) vanish for non-zero vector X € TM. Since (ki,ks)s = 0,
(k1, ko) defines a line [ € A>*»~! = 775", Indeed,

(k1 ko) : M — A"t =T 8"

is precisely the Legendre map of M into the contact manifold 77.5".
A curvature sphere of M at p is an oriented hypersphere having oriented contact
with M of contact order > 2. For each principal curvature A, it is given by [22]

vki +uks € QVTY, A= % = cot d.

Applying L € O(n+ 1,2) to ki, ko yields a new Lie geometric hypersurface (Lki, Lks) :
M — AZ L

q m
Lkl =l1al, L]CQ = C
b d

Then the principal curvature A of the image hypersurface is given by (4.2) in [22]

a\+c

A= d

(21)

Remark 5.1 : A suitable projection 7 : A>”~! — S™ may be applied to obtain a
hypersurface in S™ from (Lky, Lks). Note that ¢ and m themselves are not, respectively,
the position and the normal vector of the resulting hypersurface.

Example 5.2 : (Parallel transformations) For
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I— (L1 0) cOM+1)®0(2), L= (cosa —smoz)’

0 Lg sina  cosa

the transformation L, deforms a hypersurface M into its parallel hypersurface M, (see
Remark 3.8 of [22]). If A = cot§ is a principal curvature of M, then by (21), M, has
the principal curvature

al+c¢ cosacot —sina

= = = 0 .
Aa bA\+d sinacotf + cosa cot(6 + o)

Remark 5.3 : The subgroup O(n + 1,1) of O(n + 1,2) corresponds to the conformal
(Mébius) group.

Next, for wy, ws, ws,wy € C, define the cross ratio by

(w1 — w3)(we — wy)
(w1 — wq)(we — w3)

eC,

[w17w2;w3>w4] =

which is real if and only if wy, ws, w3, w4 are concircular.

Let v be the normal geodesic of a hypersurface M in S™ at p € M. Suppose M
has four principal curvatures \; = cot8;, each with curvature sphere C; of radius 6;.
Then C; intersects v = S' orthogonally at a point whose spherical distance from p is 26;.
Labeling these points zg; € v = S! C C and using \; = cot 6;, we have:

Fact 6. (Lemma 6.8 [22]) The Lie curvature defined by

(A1 = A3)(A2 — \g)
(A1 = A1) (A2 — A3)

is invariant under Lie contact transformations.

O(p) = = [22, 24; 26, 28] € R (22)

This serves as an index for determining whether two hypersurfaces are Lie equivalent.

6. Closed CMC and CLC Dupin with g = 4 (iii)

In this section, we prove:

Theorem 1.1 (iii) Let M be a closed CMC Dupin hypersurface with g = 4. If M has
constant Lie curvature (CLC), then M is isoparametric.

The following fact plays an essential role in the proof.

Fact 7. (Proposition 8.1 and Corollary 8.3 in [22]) If the Lie curvature of a closed
Dupin hypersurface M with g = 4 is constant, then at each point of p € M, there exists
a Lie contact transformation that maps M N~ onto a regular octagon, where ~y is the
normal geodesic of M at p.

This statement is purely local, and no global consequence follows directly from it.
However, since Lie curvatures are invariant under Lie sphere transformations, their values
can be computed from the principal curvatures of the (not necessarily minimal, see Fact
5) isoparametric hypersurface M satisfying that M N~ is a regular octagon:

A=V2+4+1=—-7, p=vV2-1=—u (23)
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Nevertheless, we cannot relate this fact directly to the mean curvature of M, because
the Lie contact transformation does not preserve the metric structure.

6.1. Critical point of all the principal curvatures
LEMMA 6.1.  If a closed CMC Dupin hypersurface with g = 4 has CLC, then there
exists a point p € M at which all dj; vanish.

PROOF. Since

A= —7)
A=7)(v—p)

are constant on M where the value of ® is computed from (23), we can describe u, 7 by
A, v. Indeed, putting

H =mi A+ mop +mqv+mer, &= =1 (24)

%(H—ml@wm

A=p+7=
m
we have from the second equation of (24)
O=A=—pwv-=—1)+A=7)v—p)=2ur — AXA+v) + 2\
Hence defining

B = pr = %(A()\ ) —2w) = %(miz(ﬂ —m )+ ) - 200)),

we know that p, 7 are two solutions of
t? — At + B =0. (25)

Then on a A-leaf Ly, u, 7 are functions of only v, and consequently,

diz = f(v)diz, dig = g(v)dis.
Therefore, if A is critical on M and v is critical at p on L1 (p), then at p,

diy =0, di; =0, 1<7,i<4.
On the other hand, from (24), we obtain

0= midj1 + mad;s + midjz + madjs =0

dj1 —d; di1 —d; din —d. din — ds
0=r¢e;j(log®) = 7)1\_/;2_ J/\_TJ + Ji_TJ4_ ]5_u]2

(e o e

At p, the following relations hold:
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midaz + madas =0
d3a +d3s =0 (26)

madas + midyz = 0,

T— v—A
Md23+ d2g =0
V— A—T
1 1

S S . S
&V—M)()\—M) OO 2r
— v _

d42+T Md43=0.
— i v—T

d3y =0 (27)

A

In (26), all coefficients are positive, whereas in (27), two coefficients of the first and third
equations each have coefficients of opposite signs. Hence doz = doy = dyo = dy3 = 0.
Next, rewriting the second equation of (27) and using ® = —1, we have

S = KN
=02 = - (22 =0

vV—T

Thus from (%)2 < 1, it follows dga = d3s4 = 0, namely, all d;;’s vanish at p. O
Finally at p = p', the situation coincides with that in Proposition 6.1 of [22], which
is stated as Proposition 4.4 in §4 in the present paper.

Next, we denote p', p® by 21, 2o where
2o =291z A = cot .

Moreover, define

_ e2i(01+a) 2i(01+a+B+7)
b)

24 zp = e2iOrtath) = o —e )

where
a=03+603 p=0]+06;, ’yz@f—l-él,
which follow from Table 1. From (24), we then have
A—p(v—r7) (22 — 24) (26 — 28)

A ()‘_T)(V_ %[Z2326:Z4azé]: (22_28)(26_2:4)
62101 o 621(91+a))(621(01+a+5) _ 622(91+a+ﬂ+’y))

e2i01 _ €2i(91+o¢+ﬁ+7))(e2i(01+a+ﬁ) _ 62i(91+a))
1— eQia)(eQi(a+/3) _ eQi(a-&-ﬂ-{-y)) (1 _ e2ia)(e2i[3 _ 6272([34-’7))
1

— e2i(a+B+7))(e2i(a+h) — g2ia) (1 — e2i(at+B+7)(e2i8 — 1)’

(
(
(
(
and hence

0 _ e2z‘a)(62iﬁ _ eQi(ﬁ-‘,—y)) +(1— e2z’(a+ﬁ+'¥))(e2z’ﬁ -1)

(1
2(621'6 + e?i(a—i—ﬁ-‘r'y)) _ eQi(oz-‘r,B) _ e2i(ﬁ+'y) _ €2i(a+25+'\/) —1.
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Multiplying e~2*? and using a4+ 8 + v = 7 — 6, we obtain:
LEMMA 6.2. In this situation, ® = —1 implies

2(1 + 627:((1-‘1-"/)) _ eQia _ eQi’y _ e—2i5 _ 6_2i6 =0. (28)

6.2. Conformal transformation

It is easy to see that there exists a conformal transformation C on S™ which maps
M — M, so that the leaves Ly (p*) and L (p®) become antipodally symmetric, and L, (p*)
and L, (p?) become parallel (see Figure 7). In fact, we may regard C as restricted to the
plane on which v lies, keeping its orthogonal complement invariant (see (31) below).

A2 5 A1

p A7 D

ﬁ3 TV |4 f V|t

28
i v p
/)
a N A
ﬁ4 P 5 ﬁ7
v
v 7,
i
AS P A6
p A p

Figure 7: Conformal image

We denote the image objects with hats, such as M, pf, A\* etc. Then A\! = A and
5 = % hold, and hence, from Table 1 with hats, it follows that

<
Il
>
I
>

™

91:05
2

., A4+ B=a+b=4+b=¢+d=
Thus denoting A’ = cot #%, we obtain

Mol = cot 6, cot(él + &+ B) =1,
\202 = cot é% cot(é% +a+ B) = _1.

Now apply the argument in the previous subsection to M. This is legitimate because
the Lie curvature is invariant under C. Then we obtain (28) replacing the data with that
of M, namely,

2(1 + €2i(d+’y)) L p2ia _ p2i4 _ 67215 . e’ZiB =0,

i - i - I’ 30
2(1 + 627,(a+c)) o 6210, o 6220 o ef2zd o 672117 =0. ( )
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From (29), e=21f = ¢=2i(7/2=6) — _¢2i6 ofc. holds, and (30) becomes 1 4 e2(@+) = @
and 1 + ¢%(4+% = 0. Thus we obtain

This means that M N 4 is a parallel octagon (see Figure 6 with hat). We can denote

= (“) =% il = (”) = =i
v u

More precisely, omitting ¢:

LEMMA 6.3.  We have \ = cot él > 1 and

N O e O R T o
>\:T7 M:A ~ 9 V=——, T == ~
U U+ v v U—1v

ProoF. From (4), we have 6, = § 0 < 7, hence A > 1. We compute i1, where

F=—

==

e e S o R

7 t(é +7r)
= CO — ) = — = — — —.
a Py Arl i41 0 d+a

O

Next consider the inverse C' : M — M of C. Denote the conformal transformation
C restricted to R = R? @ R2, where R? is the plane on which 7 lies, by

€ 0(2,1) C0(2,2). (31)

S8 ¥ ¥
o *x ¥
[ 3
— O O O

ﬁt

ot
p

Apply Ctoky = | 1| and ke = | 0 ], and express
0 1
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t t

q n
Cki= | a; s Cko = | ¢
0 1

The principal curvature \! at the original point p* € M is given by (21):
MN=adite, i=1,...,4, t=1,...8, (32)

since b; = 0 and d; = 1. We know

a =ux +oy+r ay = —Ux + 0y + 7
{cl = —lz + Uy {02 =0z 4 Uy

a3 = —tr+uy+r
{@-ﬁxﬁy.

Note that the mean curvature H* does not depend on t since M N4 is a parallel octagon.
Denote

H = H=mi(\+ D) + ma(fi + 7).
On the other hand, the mean curvature H' of M is obtained from (32):
H'=aqH' + K, t=1,...,8,
where K = 2(mj + m2). Since H' is constant, we have
0=H"—H?= (a1 — a2)H + (¢; — o) K = 2z(0H — 0K) = 2za(H — \K).

Because A is the largest or smallest principal curvature by (32), we have H-)\K # 0,
and it follows

z=0.

Next, from

0=H'— H?= (a1 —a3)H + (c1 — e3) K = 2y((0 — @) H + (4 + 0)) K

=2y(0 — 0)(H — 7K)
and since (¢ — @)(H — 7K) # 0 by Lemma 6.3 (as 7 is smallest or largest), we have
y=0.

Therefore, we obtain:

(e 0

-~ \o 1)’

itself is a parallel octagon isometric to My N g, where 6 is uniquely determined by the
mean curvature H of M (Fact 5).

T
PROPOSITION 6.4. C is an isometry (0 ?,) €0(2,2), I and M N~
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Proof of Theorem 1.1 (4i): In the same way as the proof of Theorem 1.1 (ii), M N~
at a maximum point p = p! of A\, with v critical on L(p'), and M N+ at a minimum
point ¢ = ¢' of A\, with v critical on L(q'), are both congruent to a parallel octagon
My N ~p, where 6 is uniquely determined by the mean curvature of M. Thus, A is
constant. A similar argument at the maximum and minimum points of v implies that
v is constant. Then (24) uniquely determines p > 7 as solutions of (25), and thus all
principal curvatures are constant throughout M. Therefore, M is isoparametric. U

7. Closed case: g = 6 (iv)

7.1. Strategy for g =6

Now we consider the case g = 6, where the multiplicity m = m; = ms € {1,2}
[1]. Let the distinct principal curvatures be A\; > --- > Xg, which we also denote by
A=A, 0= A, v = A3, p = Ayg,0 = A5 and 7 = Ag, following the notation in [23]. Later,
we use upper indices to indicate the corresponding points pf. The curvature distributions
decompose the tangent space into D1 @ - - - ® Dg, and we denote by e; any unit vector in
Dj.

Assuming M has constant mean curvature (CMC), we put

H=mY?’ N, m=12 (33)

Note that when g = 6, there exist essentially three independent Lie curvatures [23]. We
now prove the following;:

Theorem 1.1 (iv) Let M be a closed CMC Dupin hypersurface with g = 6. If M has
three independent constant Lie curvatures, then M is isoparametric.

Remark 7.1 : Even if all the Lie curvatures are constant, a Dupin hypersurface with
g = 6 is not necessarily Lie equivalent to an isoparametric hypersurface [23].

Recall that for any normal geodesic 74 of the minimal isoparametric hypersurface

My, the intersection My N7 forms a regular dodecagon. In [23] we prove:
Fact 6. (Lemma 4 in [23]) When all the Lie curvatures of a closed Dupin hypersurface
M with g = 6 are constant, there exists a Lie transformation at each point of p € M
which maps M N~ onto a reqular dodecagon, where vy denotes the normal geodesic of M
at p.

As before, this is a local statement, and does not yield a global result. However,
since the Lie curvatures are invariant under Lie transformations, their values can be
computed from the principal curvatures of M. By setting ¢ = 6 and 8 = 0 in (3), we
obtain:

A=24+V3=—-7, p=1l=-0, v=2-V3=—p. (34)

Now, using the CMC condition together with these explicit values of the Lie curva-
tures, we find a point p € M at which all d;; vanish (Proposition 7.4). Our goal is to
show M N~ at this point is itself a parallel dodecagon (Proposition 7.10). Then as in the
case g = 4, the mean curvature uniquely determines 6 so that M N~ is isometric to the
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parallel dodecagon My Ny, and the maximum and minimum values of A coincide. Hence
A is constant on all of M; with further arguments, we conclude that M is isoparametric.

7.2. Critical point of principal curvatures
We use indices 1 < ¢,j < 6. From (33), it follows that for e; € D;;,

dj1 +dj2 +djz +dju +djs +dje =0, j=1,...,6. (35)

Since the multiplicities of \;’s are common (m = 1,2), we may omit them. As before, it
is essential to find a point where all d;; = 0 under the conditions CMC and constant Lie
curvatures (Proposition 7.4). This is the delicate part of the proof.

For instance, in the case m = 1, there are 30 unknowns dj; = e;(\;), 1 <4,5 <6,
since d;; = 0 by the Dupin condition. Equation (35) provides six relations, reducing the
number of independent unknowns to 24. Let p € M be a critical point of A\, and assume
further that p is critical at p along L1 (p). Then at p,

dj1 =0, di2=0, 1<j5<6.

These yield six equations (since di; = 0 already), leaving 18 unknowns. Now consider
three Lie curvatures

(A=) (An—0)
A=) A —p)’

Assume that each @, is constant on M for h = 3,4,6. Then

®), = h =3,4,6. (36)

e;j(®n) =0, j=1,...,6, h=346,

provides 18 further equations among the d;;’s for the 18 unknowns, allowing us to examine
whether d;;(p) = 0 holds.

In the following, we investigate this process for m =1, 2.

LEMMA 7.2. At a point p € M where X\ is critical on M and p is critical on L1 (p),
all dy; vanish for any ey € D1(p) and i € {1,...,6}.

PrOOF. From (36), for h € {3,4,6},

Ay —dis  diy —dys  dip—dys  dyp — dyo
oz ®, ) = & j2 ¢ j j j5 @) j
¢;(log ®n) = =\— Ao o —u

:Uhdj2+vlzdj5+whdjh =0, j=1,...,6, h:354767

for j =1,...,6, since d;; = 0 holds at p, where
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w — 1 _ I (A= 2Ap)
" A—u Gw—p(—p)
1 _ 1 _ (A — )
R = M—0 A—0o)\,—o0)
o 1 L (0 — )

:)\hfa_)\h—u ()\hfa)()\hf,u)'

Putting j = 1 in (37) and using d12 = 0 at p, we obtain

U,
vadis +wydiz =0, e, diz=——dis,
3
vadis +wadiy =0, ie., dyg= —w*dw, (38)
4
. v
vedis + wedig =0, ie., dig=——ds.
We

Substituting these into (35), we obtain

(- -ty
w3 W4y Weg

which implies

LEMMA 7.3.  On Ly(p) where X is critical, we have dg; = dg; = dy; = dg; = 0.

PrROOF. We do not use di2 = 0 in the proof below. Hence the argument holds all
over Li(p).

1. First, to show dy; = 0 on Ly(p), put j = 2 in (37), and we have

. U3

v3das +wadaz =0, ie., dyz=——"das
111))3
. i

vados + Wyadoy = 0, i.e., doy = ——dos
%)4
. 6

vedas + wedze = 0, i.e., dag = —w*dzso
6

which are identical to (38) with di; replaced by dg;. Thus

dgi =0.

2. For dz; = 0, consider
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A calculation using d3; = 0 and d33 = 0 gives

0=e3(log ;) = + -
= (A;A N Ahl—p)d3h+ (

1 A — — A\
=3 ( pd3h+y }d34)~
h—p v—p

Putting h = 2,5, 6, we obtain

dsp = d3s =

O p)w—p ™

(A—u)(v—u):(A—p(v—u)(k—uf:%(k—u)?
(A—p%l/—p) gk—u)(v—pg A=p A=p/
AN—o y—a): A—p)lv—0 ()\—0)2:2()\—0)2
e s i SR Gt c)
<A—p><v—p):<A—T)<v—p>(A—p) :4(A—p>'

Therefore, (35) becomes
0=ds2 + dss J)r\d35 +2d36 \ , \ )
=i -2(525) 1e2(5=)) G5))

but as the coefficient satisfies

_2(/;;“>2+1+2(;\\_;)2+4(/\_7)2>—2+1+2+4:5>0,

_ _ A—p
we obtain
dgi =0.
. Similarly, for d4; = 0, consider
= (p=v)(An— )
U, = —-——"—~  h=275,6.
(p=ANAn—v)

Then we have, using d4s; = 0 and dyq = 0,

- —dys dap dap, — dus
0= log Uy) = —
ea(log Wn) p—1/+)\h—)\ Ap — UV

- ()\hl—)\ R )\h—u)d4h+ ()\hl—l/ B pil/)d43

B A—v p— Ap
_)\h—y<)\h—)\d4h+ p—yd“?’)'

A=pv—p) A-o)v-o) _QA=n=

27
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Putting h = 2,5, 6, we obtain

(A= w)(p—p) (A—0a)(p—

daz G o) p—p) l4»

Using the Lie curvature which we compute from (34), we have

A=pwlp—p) _ A=v)(p—p) (A—p\2 _ (A—p\2
85;55) —EAM);)%(A’;) _3(%/;) :

—o)(p— ): A—v)(p—o ()\— )2:_<)\—0>2
I e
(/\fl/)(pfl/):(AfT)(p—V)()\fl/) =-3(5—,)

Then (35) becomes
~t(3(525) w1 (G=5) -8G5

where the coefficient satisfies

3(ﬂ)2+1—(A_U)Q—:J)(A_T)Q<3+1—1—3:0.

A—p A—p A—v

Thus we have

dy; = 0.
. Finally, for dg;, take
~ (t—=v)(An =)
Uy = —F——=, h=24,5.
h (T_/\)()\h_y)v )Ty

Then we have, using dg; = 0 and dgg = 0,

- —dg: d den — d:
0=eﬁ(log\11h)=7_ 63 + 6h o 6h 63

- ()\hl—)\ B )\hl—y)d6h+ ()\h—l/ B Tizj)d63

1 A—v T*)\h
= d d
)\h—y(/\h—)\6h+7'—u 63)’

which implies

A= p)(T—p) (A =p)(T—
()\—V)(T—V)d63’ d64_()\—u)(7'—u)

The coefficient of dggz in dgy + - - - + dgs is positive, hence

deo = de3, des =

dﬁi = 0.

o) Q= ne-1)
C—p—n)™ BT BTy

AN=0o)(t—0
A=v)(r—v
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O
To determine whether ds; = 0, consider
(o= =)
U,=—-—"-——= h=3,46.
S CEDN PN
Then using ds; = 0 and ds5 = 0, we have
- 52 . dsn dsn—ds
0=es5(log¥y) = 2 h_ 5k 2
—p A=A A p
( L1 >d5h+( — >d52
)\;i—)\ An— /\)\ —u o—pu
_ —H g h
_/\h*u()\ )\d5h+ 7Md52),
which implies
(A—v)(o—v) (A—p)(o—p) A—7)(c—7)
dss = d dsq = d dsg = dsa.
L e O T e R T o Rl

Thus we have
()\—y)(o—l/)+ (A=p)(c—p)
A=po—p)  A=—p)(oc—p) A=p)o—p)

However, even with the values of the Lie curvatures, the sign of the coefficient cannot be
determined a priori. Assuming dss # 0 on an open neighborhood U C Ly, we have

0= dsa (1+

A=—wlo—p+A=v)o-v)+A=p)lo=p+A=-7)(c-7)=0, (40)
ie.,
WA+t = (Ao (ut vt p+T) 4o =0
on U. Since ds; = ds5 =0, and e5(H) = 0 = ds2 + ds3 + ds4 + dsg, we have

0=es(u + 17 +p* +7° = (A+0)(p+v+p+7)+4)0)
= 2(pdse + vdss + pdsa + Tdsg) — (A + 0)(ds2 + dss + dsa + dsg)
= 2(udss + vdss + pdss + Tdsg),

and using (39) again, we have

M=v)o=v) | A=plo=p) A=7)o=7)
G —m oo T TG )

This implies, since dso # 0 on U,

O=d52(u+y

WO = 1) (0= 1) + V(A= 1) (0 =)+ pA = p) (0 = )+ TN =)o —7) = 0. (41)

On the other hand, from(40), it follows
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TA=T)(o—7)=-m((A=p)o—m+A=-v)(e—v)+ (A =p)o—p)).

Substituting this into (41), we obtain
(w=m)A=p)(o—p)+¥-1)A=v)(c-v)+(p—7)(A=p)(o—p) =0.
However, each term of the LHS is negative, a contradiction. Therefore, we have
ds; = 0.
As a conclusion:
ProposiTION 7.4.  All dj; vanish at p.

7.3. Angle relation and the Lie curvature

In [23],it is shown that if all d;; vanish at p, then all the leaves L; through p* = p
are totally geodesic in their curvature spheres C;, and that L; Ny = {p!, p?*}, where v is
the normal geodesic through p', and p?* is the antipodal point of p' in L;. From Lemma
3 in [23], where tautness is used, we have:

LEMMA 7.5. Mn~y={p=p',...,p'2}, where p',p*, i =2,3,4,5,6 are as above,
and p°?® are as in Figure 8. At each pt, all the leaves are totally geodesic in the curvature
spheres and intersect v orthogonally at some p®. Their mutual intersections are as shown
in Figure 8.

Figure 8: Link of leaves Figure 9: Angle relation

For an isoparametric hypersurface My, the intersection My N 7y is a parallel do-
decagon (Figure 11) for any normal geodesic vy of My. Our goal is to show that
M Ny ={p',...,p'?} is itself a parallel dodecagon. We prove this in several steps.

PROPOSITION 7.6.  Denote A\l = \;(p') = cot 6}, 0 < 6! <, fori=1,...,6, and
t=1,...,12. Setting
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0 =0 + o, 03 =01+ 3, 0L =01 +~,0L =60} +6, 68 =01 +¢
03 =07 +a,02=05+b,07=03+c02=07+d,02=02+e,

and puttingn =7n— (a+B+v+0+¢) and f =7 —a—b—c—d—e, we can express
the angles between 0¢ and 0!, at p* (t=1,...,12) as follows:

o} 05 05 05 A 0% T+ 0}
p' o B v ) ¢ 7
p? a b c d e f
p’ B v ) ¢ 7 @
p? f a b c d e
p° v ) ¢ n o B
p° e I a b c d
P’ 5 ¢ 7 ! B8 v
p® d e f a b c
P’ ¢ n ! B v )
pt? c d e f a b
p' n @ B ¥ ) ¢
p*? b c d e f a

Table 2: Angles

PrROOF. We apply an argument similar to that of Proposition 4.5 and summarize
it briefly. Denote p' by the complex number z;, and put 8! = 7 — 6%, 0 < ! < w. From
Figure 9, taking the orientation into account, we have for instance:

03 =01 +034+05=0{ +a, 03=05+074+03=0]+5,...
Proceeding in this manner, we obtain the table for p°d9; starting from p? = 2, clockwise,
we obtain the table for pever. O

In the following, all the angles stay in (0, 7) modulo 7, and we may use (22), taking
care of the order of the principal curvatures,:

A—p)v—o)
Uy (21) = = = [#2, 265 24, 210] = —1,
A—0o)(v —p)
where, the value of ¥ is computed from (34).
For the moment, we advance our argument under the assumption A'p! = —1 at

p' € M. In §7.4, we apply the argument to a conformal image of M satisfying this
condition.

LEMMA 7.7.  Assume A'p' = —1 at p* € M. Then putting V!, = U, (p) and

wy = 622(1, Wy = 62’Lﬁ’ ws = 621’}/’ wy = 62157 wy = 621(:7 wg = 62“7,

we have
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(1 —w1)(1 — wawy)
1+ w4ggl + wl’LUg; ’
)

lel [227Z67247Z10

El — W3 1-— W5 We
(1 + w3 (1 + wswe
(1 — we)(1 — waws)
(1 + we) (1 + waws)”

‘I’i [267 2105 285 22]

)

ULl = (219, 24; 22, 28] =

PROOF. By our assumption 2(a+ 8 +7) = 7 = 2(6 + ¢ +n) and ("+¢) = ¢!

the first relation follows from

24 = eZioz2,2’ 210 = e2i(a+ﬁ+’y+5)Z2 — _221'62:27

— 627;(’7—"_6)2:67 24 = 621(’Y+5+C+7l+0¢)26 — _627;(04"_7)

210 26,

as

(Zz - 24)(26 - 210)

‘ (22 — z10)(%6 — 24)
(1= €)1 — 20FD) (1 —wy)(1 — wawy)

- (1+62i5)(1+62i(“+7)) (1 4+ wq)(1 +wiws)

Ul = (29, 26; 24, 210] =

Similarly, we have

28 = eQi’YZﬁ7 29 = 62i(7+5+g+77)2;6 = —eQi'YZG

2y = 2 0 g = e2i(CHnTatEY) —2i(C+m)

210 = 210,

and we obtain

(26 — 28)(210 — 22)

' (26 — 22)(210 — 28)
_ (=1 — ) (1= wg)(1 - U’S%‘)

)
(14 e2)(1 +e2i6Hm) (1 + ws3)(1 + wswe)

WP = [26, 210; 28, 22) =

Also from
zo = €¥Mzyy,  zg = 2 FATIY 5y = 20z,
25 = 2B 5y 7y = 2UBHYHIHCHN) 5 — _e2i(FH) 5,
we have
W = (219, 241 2, 28] = (2712 — 22) (24 — 23)
T (212 — 28)(24 — 22)
_ (=P =) (1 - we) (1 — waws)
(1 e2in)(1 4 e2B+)) (14 we) (1 + waws)
PROPOSITION 7.8.  Under the assumption \'p' = —1, we have

s

(42)

(43)



Chern’s Congecture in the Dupin case

PROOF. From (42), using wywswg = —1 and ¥5 = —1,

(1 —ws3)(1 — wswg) _ (1 —ws)(wg+1) _

(I+w3)(1+wswe) (14 ws3)(wg —1)
This gives

(1 —ws)(ws+1)+ (1 +ws)(wsg — 1) =0,
hence
w3 =wy ie., y=9§

Similarly from Wl = —1,

(1 —wg)(1 — waws) _ (1 —wg)(wy +1) _

(14 we)(1 +wows) (1 + we)(wy — 1) ’
and we obtain
w; = we l.e., a=n1.
Then from 2(a + 8+ v) =7 = 2(6 + ¢ +7), it follows that
B=C( ie., wy=uws.
Next, from (43),

(1 —wy)(1 — wawy) _ (1 —wy)(1 —w3?) _ (1 —wp)(1 —ws) _ 4
(]. + ’U)4)(]. —+ wlwg) (1 —+ 11)3)(]. + wlwg) (]. —+ wl’lUg)

)

hence we obtain
2(w1w3 + 1) = w1 + w3,

which provides two real equations allowing us to solve for « and ~.
Since 0 < 2a,2v < 7, we have sin2a,sin2vy > 0, and can put w; = e

iv1— 22, and w3 = €*7 =y +1i\/1 — 42, z,y € R. Then (44) becomes

20z+ivi—a?)(y+ivi—y)+ ) =z+iv1—22+y+iv/1—y?

which implies

2t

202y —V1—22/1—y2)+ 1) =z +y
2ay/T—9?) +yVT—22) = VI—22 + /1- 12,

namely

33

(44)

x +



34 R. M1vyAOKA

(2zy +2 -2 —y)* =4(1 - 2*)(1 - ¢?)
(20— 12(1 - ) = 2y — D*(1 - 22).
Thus we have
(x+y)6(x+y) —4(zy+1)) =0
(z—y)6+y) —4(zy + 1)) =0.
Here, z £y = 0 implies =y = 0, and o =y = 7, contradicts 0 < f = § — (a + 7). If
xr+y=0and z—y #0, we have
0="5(x+y)—4(xy+1) =4(x* - 1)

us

which implies z = cot2a = 1 and a = 0 or 7, again impossible. If x +y # 0 and

x —y =0, we have
0=>5(x+y)—4(zy+1) =42 + 10z — 4 = —2(2x — 1)(z — 2),

which implies

1
T = cos2a = 3 =y = cos 2y

namely,
™
o = = -
LG
0
and consequently § = 5 proving the proposition. O
When A2p? = —1, replacing z and w; suitably, the same argument applies to to

a,b,c,d,e, f, and we obtain:
PROPOSITION 7.9. If M pl = —1 = A\2p2, then
i
a:ﬂ:’y:(g:g:n:a:b:c:d:e:f:67
and hence M N~y is a parallel dodecagon.

7.4. Conformal transformation

We have obtained Proposition 7.9 under the assumptlon AMpt = —1 = A\2p2. Since
there exists a conformal transformation C' : M — M such that the leaves Ly(p*) and
Ly (p”) are antipodally symmetric, we denote the conformal image with hats, such as
M, pt, At etc. Then we have A!pt = —1 = )\2 52 (see Figure 10), and we can apply the
precedlng argument to M, since C preserves the Lie curvatures. Thus M ﬁ'y is a parallel
dodecagon. Let C : M — M be the inverse conformal transformation of C.

PROPOSITION 7.10.  The conformal transformation C : M — M is an isometry,
and M N~ is itself a parallel dodecagon.
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pz i pl
ﬁ} pIZ
p) 1
p* / st
p° \ p10
1 p)
pe »°
P @ AN
P
Figure 10: Conformal deformation Figure 11: Parallel dodecagon

PROOF. Restrict C': M — M to R} = R? ® RZ where v C R?, and write

x % x 0
* x x 0
C= c oy 0 €0(2,1) C 0(2,2).
0 001
ﬁt ﬁt
Applying Ctoky = | 1 | and ke = | 0 |, we express

0 1

gt mt

Cki=\a:], Chka=| ¢

0 1

Then by (21), the principal curvatures A! at the original point p* € M N+ are:
A= i+é, i=1,..., t=1,...8

The mean curvature H'* along MnN 4 is constant, since it is a parallel dodecagon. Hence,
denoting H = H*!, the mean curvature H® of M at p! is

H'=a,H+6mé;, H=mA+p+i+p+6+7), m=12

which is also independent of ¢t as M is CMC.
We express some vertices of the parallel dodecagon M N4 = {p*,...,p'?} (Figure
11) using positive numbers 4, v, k, I such that

0
A1:T7 T = —
u
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as
7 —il
]31 - <A> - _ﬁ7 ﬁ2 - ( 0 ) :ﬁs
(% (%
Al = -v — —p7 H2 = v _ 7A8’
U U
i i
ﬁ4 — R — _ﬁlO ﬁ5 — K — _]511
l —
’ﬁ4 — { — 7,&10 ,ﬁS — lA — 7,&11.
k —k

Thus we have

R. M1vyAOKA

a1 =uxr+oy+r Gy = —ur + oy +r
{61 = —0x + Uy {62@z+ﬂy

iy = —kx +1ly+r a5 = —kx —ly+r
{64=Zx+l%y {észfx—l%y.

Since M has constant mean curvature (CMC), at points p! and p?, we have
0=H'— H? = (a1 — a2)H + 6m(&, — &) = 2ax(H — 6m\),
where ﬁ(f[ — 6m5\) < 0 because A is the largest principal curvature. Hence
z=0
follows. Similarly, at p* and p®, we have

0=H*—H°= (d4 — é5)f1+6m(é4 — 65)
= 2yH + 6m - 2ky = 2yl(H — 6m7),

and since [, (ﬁ — 6m7) > 0 (because 7 is the smallest principal curvature), we obtain

y=0.
. . T 0 , e 0 . .
Therefore, C' is an isometry 0T €0(2,2),I' = 0 1) and M Ny itself is a parallel
dodecagon My Ny, where 6 is uniquely determined by the mean curvature H of M (Fact

5). O

Proof of Theorem 1.1 (iw): Let p € M be a point where A\ attains its maximum or
minimum and suppose dis = 0 at p. By the previous argument, M N ~ is isometric
to My N 79 where 6 is uniquely determined by the mean curvature H of M. Thus
max A = A\g = min A, so A is constant on M. Next, let p be a point where p attains
its tmaximum or minimum. Since d;; = 0 and di2 = 0 hold at p, the same argument
shows that M N~ is again isometric to My N 9. Hence max p = pg = min p, and p is
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constant on M. The remaining principal curvatures v, p, o, 7 are constant on M, because
the CMC and CLC conditions provide four relations among the six principal curvatures.
This completes the proof of Theorem 1.1 (iv). O
Remark 7.11 : For A; = cot 6y where 0; = {5 +0, —75 < 0 < {5, the scalar curvature
is given in [41] p.147,

Ry = 36m(m — 1)(1 + cot?(66;)).
In the minimal case this becomes
R =36m(m —1).

Thus the minimal isoparametric hypersurface is scalar flat if m = 1, and scalar positive
if m=2.

8. Problems

Finally, we propose some problems based on the above results :
Problem 1. If a closed minimal (or CMC) hypersurface M with g = 4 has constant
scalar curvature (CSC), is M Dupin?

This conclusion is weaker than isoparametric, but if the answer is affirmative, it
implies Chern’s conjecture true for g = 4 via Theorem 1.1 (ii).
Problem 2. If a closed minimal (or CMC) hypersurface M with g = 4 has constant Lie
curvature (CLC), is M Dupin?

If so, M is isoparametric via Theorem 1.1 (iii).
Problem 3. If a closed minimal (or CMC) hypersurface M with g = 6 has CSC, is M
Dupin with constant Lie curvatures?

It seems unlikely, but if it is true, it implies Chern’s conjecture holds for g = 6 via
Theorem 1.1 (iv).
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