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Chern’s Conjecture in the Dupin case
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Abstract. Chern’s conjecture states that a closed minimal hypersurface

in the Euclidean sphere is isoparametric if it has constant scalar curvature.
When the number g of distinct principal curvatures exceeds three, only limited
results have been established. In this work, we examine the conjecture for

Dupin hypersurfaces, and establish the following results: a closed proper Dupin
hypersurface with constant mean curvature is isoparametric (i) if g = 3; (ii) if

g = 4 and it has constant scalar curvature; (iii) if g = 4 and it has constant

Lie curvature; and (iv) if g = 6 and it has constant Lie curvatures. These
cases cover all nontrivial possibilities for closed proper Dupin hypersurfaces.
Our proof employs topological and geometric methods, in contrast to earlier

algebraic and analytic approaches.

1. Introduction

In the early twentieth century, Italian geometric opticians began studying light wave

fronts that propagate at a constant speed. This led to the notion of isoparametric hy-

persurfaces, which consist of parallel hypersurfaces of constant mean curvature (CMC)

and, in fact, have constant principal curvatures.

Let M be a hypersurface in Sn, A its shape operator, and H =TrA the mean

curvature. Using the principal curvatures λ1, λ2, . . . , λn−1 of M , the scalar curvature is

expressed as

R = (n− 1)(n− 2) +H2 − ∥A∥2 = (n− 1)(n− 2) +
(∑

λi

)2
−
∑

λ2i . (1)

Chern’s conjecture [14]: A closed minimal hypersurface in Sn is isoparametric if it

has constant scalar curvature (CSC), where closed means a compact without boundary.

This problem corresponds to Yau’s 105th problem [43].

When both
∑
λi and

∑
λ2i are constant, λi’s themselves are constant if the number

g of distinct principal curvatures satisfies g ≤ 2. However, when dimM = 3, the case

g = 3 occurs, and the closedness condition is essential for Almeida-Brito’s affirmative

solution [16], completing earlier work of Peng-Terng [33]. See Chang [11] and Cheng-

Wan [13] for related results, and Chen-Li [12] for the case dimM > 3 and g ≤ 3. For

g ≥ 4, it becomes difficult to reach a definite conclusion without further assumptions

[39], [40], [41]. The latter two works effectively extend the method of [16] to arbitrary

dimensions.
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Isoparametric hypersurfaces in Euclidean and hyperbolic spaces are only totally

umbilic ones and cylinders [2]. In contrast, in the sphere Sn, É. Cartan discovered

examples with g = 3 and g = 4 [3]. Later, Ozeki-Takeuchi constructed infinitely many

homogeneous and non-homogeneous examples with g = 4 [32], which were extended by

Ferus-Karcher-Münzner to those arising from all representations of the Clifford algebra

[18].

Isoparametric hypersurfaces are algebraic [28]: they are level sets of certain ho-

mogenous polynomials intersected with Sn. Topological arguments then show that

g ∈ {1, 2, 3, 4, 6} [29]. All these cases have been classified (Yau’s 34th problem [44])

[2], [3], [6], [15], [17],[24]-[26], and thoroughly studied [18], [28], [29].

To approach the case dimM ≥ 3 and g ≥ 3, we introduce an additional geometric

assumption: the Dupin condition together with CMC and CSC.

A hypersurface is called Dupin if

(i) each principal curvature λ has constant multiplicity, and

(ii) λ is constant along its curvature direction.

Pinkall calls it a proper Dupin in [34], but we omit “proper” here. If only (ii) holds, we call

it weak Dupin. When the multiplicitym of λ exceeds one, (ii) is automatically satisfied. If

(ii) also holds form = 1, each leaf of the curvature distribution is anm-dimensional sphere

[30], [37]. Thus a Dupin hypersurface is foliated by spheres and belongs naturally to the

broader framework of Lie sphere geometry, which extends Riemannian and conformal

geometry (see §5, [4], [34]).
Our main result is:

Theorem 1.1. A closed CMC Dupin hypersurface M in Sn is isoparametric

(i) if g = 3.

(ii) if g = 4 and M has constant scalar curvature.

(iii) if g = 4 and M has constant Lie curvature.

(iv) if g = 6 and M has constant Lie curvatures.

Remark 1.2 : The Lie curvature is the cross ratio of distinct four principal curvatures,

discovered by the author as an invarint in Lie sphere geometry [22] (see §5).

Corollary 1.3. Let dimM ≥ 3 and g ≥ 3. A closed CMC hypersurface M in Sn

with g principal curvatures, each constant along its curvature direction, is isoparametric

(i) if g = 3.

(ii) if g = 4 and M has constant scalar curvature.

(iii) if g = 4 and has constant Lie curvature.

(iv) if g = 6 and has three independent constant Lie curvatures.

Although the Dupin condition is local, a closed embedded Dupin hypersurface has

the global topological property tautness [42] (Fact 2, §2). This is based on the fact

that they have the same homology as isoparametric hypersurfaces [42]. In particular,

g ∈ {1, 2, 3, 4, 6}. When g = 1, 2, 3, such hypersurfaces are images of isoparametric ones

under Lie contact transformations [9], [7]. The last case extends the author’s earlier

result in the closed setting [20], which motivated Cecil and Ryan to conjecture that every

closed embedded Dupin hypersurface is a Lie images of an isoparametric hypersurface
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[9]. However, counterexamples for g = 4, 6 were constructed in [27] (see also [36] to

g = 4). The Lie curvature and the analysis of critical sets of the distance function due

to T. Ozawa [31] play essential roles. (see the expository article [5]).

When g = 4, 6, even if all the Lie curvatures are constant, this does not imply

Lie equivalence to an isoparametric hypersurface [22], [23]; see also [8]. Thus the Dupin

remains substantially weaker, and proving Chern’s conjecture in the Dupin case for g ≥ 4

is still highly nontrivial.

By part (ii) of Theorem 1.1, Chern’s conjecture reduces to the following statement:

A closed CMC hypersurface with g = 4 is Dupin if it has CSC.

In parts (iii) and (iv), we replace scalar curvature with Lie curvatures, both are

quadratic in λi’s. For g = 4, this invariant is unique, while for g = 6, three Lie curvatures

are essential if they are independent, that is, if none of the three can be expressed by the

other two (Lemma in the front page of [23]).

For further results on Chern’s conjecture, see [39], [41] and the references therein.

In §2, we give basic definitions and the known results. In §3 and in §4, we give proofs
of (i) and (ii) of Theorem 1.1, which are relatively elementary. However, the proofs of

(iii) and (iv) require Lie sphere geometry, introduced in §5, and are carried out in §§6
–7.

2. Preliminaries

We mainly follow the notation in [22]. Let Sn be the n-dimensional unit sphere in

Rn+1 centered at the origin. Consider an isometrically embedded orientable hypersurface

p : M → Sn with a unit normal vector field n. Let A denote the second fundamental

tensor ofM and λ1 ≥ · · · ≥ λn−1 be the principal curvatures. For λ ∈ {λi}, the curvature
distribution D(λ) is defined by

Dp(λ) = {X ∈ TpM | AX = λX}, p ∈M.

The following is well-known [30], [37].

Fact 1. When dimD(λ) is constant (say= m) on M , the distribution D(λ) is involutive.

Moreover if λ is constant along D(λ), (which is the case when m > 1), the leaf L is a

piece of an m-dimensional subsphere of the curvature sphere C(λ) at p.

Note that Dupin hypersurfaces satisfy the statement of Fact 1.

Example 2.1 : The following are Dupin hypersurfaces:

(1) Isoparametric hypersurfaces.

(2) Conformal or Lie images (§5) of isoparametric hypersurfaces.

(3) IfM is a Dupin hypersurface in Rm, then a cylinder or a tube overM in Rm⊕Rk

is a new (weak) Dupin hypersurface in Rm+k. By a stereographic projection, we obtain

a weak Dupin hypersurface in Sm+k [34].

Remark 2.2 : Item (3) implies that, locally, there exist Dupin hypersurfaces with any

number of principal curvatures and arbitrary multiplicities.

It is obvious locally that:

(1) When g = 1, a Dupin hypersurface is a piece of hypersphere.
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(2) When g = 2, a CMC Dupin hypersurface is a piece of a Clifford hypersurface (the

orthogonal product of two spheres), that is, of an isoparametric hypersurface with g = 2.

Indeed, when g = 2, CMC condition implies that the principal curvatures λ, µ satisfy

m1λ+m2µ = H for some constant H, where m1 (resp. m2) is the multiplicity of λ (resp.

µ). Since λ (resp. µ) is constant along D(λ) (resp. D(µ)), so is µ (resp. λ), and hence

λ and µ are constant on M .

When dimM = 3, Chern’s conjecture has been affirmatively settled [16], where

analytic methods play a crucial role. In Theorem 1.1 (i), we consider closed CMC hy-

persurfaces M with g = 3 in arbitrary dimensions. Instead of assuming constant scalar

curvature, we impose the Dupin condition. Our approach also provides insight into the

cases g = 4, 6.

The focal points of p ∈M are given by

f ip = cos θi p+ sin θi np, 0 < θi = cot−1 λi < π

and their antipodal points f̄ ip in Sn, 1 ≤ i ≤ n− 1. For x ∈ Sn \M , let lx : M → R be

the squared spherical distance function on M , defined by

lx(p) = d(x, p)2, p ∈M. (2)

Let p ∈ M be a critical point of lx. Then the index of p is given by the sum of the

multiplicities of the focal points of p along the oriented open geodesic segment
⌢
xp. For

details, see [9].

Fact 2. A closed embedded Dupin hypersurface is taut [42], that is, lx satisfies the

equality in the Morse inequality for generic x ∈ Sn \M , where homology is taken with

Z2 coefficients. In such a case, lx is called a perfect Morse function. Conversely, taut

hypersurfaces are weak Dupin [21], [35].

Fact 3. Isoparametric hypersurfaces in Sn consist of parallel CMC hypersurfaces Mθ

with constant principal curvatures λ1 > · · · > λg, g ∈ {1, 2, 3, 4, 6} given by [28]

λi(θ) = cot θi = cot
( π
2g

+ θ +
(i− 1)π

g

)
, i ∈ {1, . . . , g}, − π

2g
< θ <

π

2g
. (3)

In particular,

0 < θ1 =
π

2g
+ θ <

π

g
, cot

π

g
< λ1(θ) <∞. (4)

Fact 4. For any normal geodesic γ of Mθ, Mθ ∩ γ is a parallel 2g-gon, that is, a 2g-gon

obtained from a regurlar one by a parallel transformation in the Lie geometric sense (see

Figure 3, 6, 11, and Example 5.2).

Fact 5. If Mθ has distinct g principal curvatures, the multiplicity mi of λi is all equal

when g = 1, 3, 6, and m1 = modd and m2 = meven when g = 2, 4. In §2 of [41], Tang-Yan

show that the mean curvature Hθ of Mθ is given by
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Hθ =
g

2

(
m1t−

m2

t

)
, t = cot

gθ1
2
, 0 < θ1 =

π

2g
+ θ <

π

g
. (5)

Thus Hθ is monotone with respect to θ, and θ is uniquely determined by the mean

curvature. The minimal case occurs when

t2 = cot2
gθ1
2

=
m2

m1
. (6)

In particular when g = 1, 3, 6, m1t−
m2

t
= m

t2 − 1

t
= 2m cot gθ1, and hence

Hθ = gm cot(gθ1),

which vanishes only when θ = 0, i.e., θ1 =
π

2g
. When g = 2, 4, M0 is not necessarily

minimal, since Hθ depends on m1,m2 in (5).

3. Closed case: g = 3

Hereafter, let M be a closed embedded Dupin hypersurface in Sn. Then M is taut

[42], that is, the function (2) is generically a perfect Morse function. In the following,

we make use of this important property in the background.

When g = 3, the principal curvatures λ1 > λ2 > λ3 have the same multiplicity m ∈
{1, 2, 4, 8} [3],[42]. In the non-closed case, there is freedom in the choice of multiplicities

(Example 2.1 (3)), and hence the following argument does not apply.

For later use, we put λ1 = λ, λ2 = µ and λ3 = ν, and denote byDi the corresponding

curvature distributions which decompose the tangent bundle as D1 ⊕ D2 ⊕ D3. Let ej
be any unit vector in Dj . The mean curvature is given by

H = m(λ+ µ+ ν), m ∈ {1, 2, 4, 8}

where we do not take the average.

Lemma 3.1. If M is a closed CMC Dupin hypersurface with g = 3, then there

exists a point p ∈M at which all dji = ej(λi) vanish.

Proof. Since H is constant, we have, for any ej ∈ Dj ,

dj1 + dj2 + dj3 = 0, j = 1, 2, 3.

Let p ∈M be a critical point of λ = λ1 on M . Then

dj1 = 0, j = 1, 2, 3.

Since djj = 0 because M is Dupin, we have at p:

d12 + d13 = 0, d23 = 0, d32 = 0.

Thus if we choose a critical point p1 of λ2 on L1(p), the proof is complete. □
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Figure 1: Link of leaves

At p = p1 in the lemma, according to the argument in [20], each leaf Li(p
1) of Di is

totally geodesic in the corresponding curvature sphere Ci, and meets the normal geodesic

γ through p1 orthogonally at p2i ∈ γ, i = 1, 2, 3, where p2i is the antipodal point of p1

in each leaf Li(p
1). The situation is the same as Figure 4.1 ∼ 4.3 in [20]. By the same

argument using tautness, we see that M ∩ γ = {p1, . . . , p6}, and that each leaf at pt

intersects some other leaves at points on γ as illustrated in Figure 1. More precisely,

denoting λt = λ(pt) etc., we have

λ1 = λ2, λ3 = λ4, λ5 = λ6

µ1 = µ4, µ2 = µ5, µ3 = µ6

ν1 = ν6, ν2 = ν3, ν4 = ν5.

Lemma 3.2. Assume λ attains its maximum at p1 ∈M , and λ1 ≥ λ3 ≥ λ5 without

loss of generality. Then, from CMC condition, it follows that

µ1 ≤ µ2 = µ5 ≤ µ3, and ν3 ≤ ν1 ≤ ν5.

Proof. Since λ1 ≥ λ3 ≥ λ5, we have µ1+ ν1 ≤ µ3+ ν3 ≤ µ5+ ν5. From λ1 = λ2,

we obtain µ1 + ν1 = µ2 + ν2 ≤ µ3 + ν3, and ν2 = ν3 implies µ2 ≤ µ3. Similarly, from

λ3 = λ4 ≥ λ5, we have µ3 + ν3 = µ4 + ν4 ≤ µ5 + ν5, and ν4 = ν5 implies µ4 ≤ µ5, that

is, µ1 ≤ µ2. Then λ1 + ν1 ≥ λ2 + ν2 follows, hence ν1 ≥ ν2. Finally from λ5 = λ6, we

have µ5 + ν5 = µ6 + ν6, and µ5 = µ2 ≤ µ3 = µ6 implies ν5 ≥ ν6 = ν1. □

Proposition 3.3. In the situation of Lemma 3.2, each principal curvature coin-

cides at all pt’s, and M ∩ γ is a parallel hexagon (Figure 3).

Proof. Put

λt = cot θt1, µt = cot θt2, νt = cot θt3, 0 < θti < π, t = 1, . . . , 6,
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and define

θ̄t3 = π − θt3, νt = cot θt3 = − cot θ̄t3,

which satisfies 0 < θ̄t3 < π. Recall the cotangent is a decreasing function (so − cot is

increasing).

Figure 2: Angles Figure 3: Parallel hexagon

As illustrated in Figure 2, noting the direction of the normal vector, we observe that

µ1 = cot θ12 = cot 1
2∠(p1Op4) = cot(θ11 + θ̄33 + θ31),

µ2 = µ5 = cot θ52 = cot 1
2∠(p5Op2) = cot(θ51 + θ11 + θ̄13),

µ3 = cot θ32 = cot 1
2∠(p3Op6) = cot(θ31 + θ̄53 + θ51).

(7)

Since ν3 ≤ ν1 (θ̄33 ≤ θ̄13) and λ3 ≥ λ5 (θ31 ≤ θ51), we have θ̄33 + θ31 ≤ θ̄13 + θ51, and thus

µ1 ≥ µ2. Then by the previous lemma, µ1 = µ2, and since λ1 = λ2, we also have ν1 = ν2.

Similary, from λ1 ≥ λ3 and ν1 ≤ ν5, we obtain θ11 + θ̄13 ≤ θ31 + θ̄53, which implies µ2 ≥ µ3.

Hence, by the lemma,

µ1 = µ2 = µ3(= µ6).

From ν2 = ν3, we deduce λ2 = λ3; and from ν1 = ν6, we obtain λ1 = λ6. Finally it

follows that λ1 = λ3 = λ5 and ν1 = ν3 = ν5. □
Remark 3.4 : M ∩ γ is a parallel hexagon when λt and νt are independent of t.

Next, let q be a minimum point of λ, and let q5 be a critical point of µ on L1(q).

Then as before, all dji vanish at q5, and denoting the normal geodesic through q5 by γ′,

we obtain M ∩ γ′ = {q1, . . . , q6} replacing pt by qt in Figure 1. Setting λtq = λ(qt) etc.,

and assuming λ5q ≤ λ3q ≤ λ1q without loss of generality, we conclude, replacing pt by qt in

the above argument, M ∩ γ′ is also a parallel hexagon.

Proof of Theorem 1.1 (i): By Proposition 3.3, {p1, . . . , p6} =M ∩γ is a parallel hexagon,
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hence isometric to Mθ ∩ γθ for some θ. Here, θ is uniquely determined by the mean

curvature H of M (Fact 5). Thus at p1, we have λ = λθ = λ1(θ) in (3). Since the same

holds at the minimum point q5 of λ, it follows that λ is constant onM . Then as m(µ+ν)

and m(µ2 + ν2) become constant, µ, ν are constant, and hence M is isoparametric. □
Remark 3.5 : Tang-Yan [41] give the scalar curvature of Mθ

Rθ = 9m(m− 1)
(
1 + cot2(3θ1)

)
, θ1 =

π

6
+ θ.

Thus when m = 1 Mθ is scalar flat, while for m > 1, it has positive scalar curvature.

Remark 3.6 : There is a simpler proof if we use the result in [20] and a conformal

invariant
λ− µ

µ− ν
. However, the above strategy can be applied to the cases g = 4, 6.

4. Closed CMC and CSC Dupin Hypersurfaces with g = 4

When g = 4, let λ1 > λ2 > λ3 > λ4 be the principal curvatures with multiplicities

m1 = m3,m2 = m4. Let Di denote the curvature distribution corresponding to λi. As

before, we write ej for any unit vector in Dj . We show the following:

Theorem 1.1 (ii). A closed CMC Dupin hypersurface in Sn with g = 4 is isoparametric

if it has constant scalar curvature (CSC).

Since the scalar curvature R is given by (1), the assumption implies that both

H = m1λ1 +m2λ2 +m3λ3 +m4λ4, S = m1λ
2
1 +m2λ

2
2 +m3λ

2
3 +m4λ

2
4

are constant. Throughout this section, we assume CMC and CSC.

Remark 4.1 : Hence two principal curvatures determine the other two.

For ej ∈ Dj , we have

4∑
i=1

midji = 0,

4∑
i=1

miλidji = 0, j = 1, . . . 4,

namely, for j = 1,

m2d12 +m3d13 +m4d14 = 0, m2λ2d12 +m3λ3d13 +m4λ4d14 = 0,

because e1(λ1) = 0 asM is Dupin. Thus d13 and d14 are determined by d12. In particular,

they vanish when d12 = 0, since m3m4(λ4 − λ3) ̸= 0. Just in the same way, we have

Lemma 4.2. For distinct i, j, k, l ∈ {1, 2, 3, 4}, the quantities djk and djl are de-

termined by dji. In particular, dji = 0 implies djk = djl = 0.

Lemma 4.3. There exists a point p ∈M at which all dji vanish.

Proof. Let p ∈ M be a critical point of λ1. Then on L1(p), dj1 = 0 holds, and

by Lemma 4.2, we have dj2 = dj3 = dj4 = 0 for j = 2, 3, 4. Next consider d1i, i = 2, 3, 4.

Since λ2 attains a critical value at some point of L1(p), take such a point p1 ∈ L1(p).

Then d12 = 0, implying d13 = d14 = 0 by Lemma 4.2. Thus all dji’s vanish at p1. □
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Let γ be the normal geodesic of M at p1. Since the leaf Li of Di is totally geodesic

in the curvature sphere Ci if and only if λi takes a critical value on M ([20], [22]), Li(p
1)

is totally geodesic in Ci. We may put

L1(p
1)∩γ = {p1, p2}, L2(p

1)∩γ = {p1, p4}, L3(p
1)∩γ = {p1, p6}, L4(p

1)∩γ = {p1, p8},

where p2i is the antipodal point of p1 in Li(p
1). Thus, at p1, the situation becomes the

same as in Proposition 6.1 of [22]. Applying that proposition, in which tautness plays a

crucial role, we obtain:

Proposition 4.4. We have M ∩ γ = {p1, p2, p3, p4, p5, p6, p7, p8}, where

p1, p2, p4, p6, p8 are as above, and p3, p5, p7 are as in Figure 4, denoting λ = λ1, µ = λ2,

ν = λ3 and τ = λ4. The leaves at each pt are all totally geodesic in their respective

curvature spheres and meet γ orthogonally, intersecting as shown in Figure 4.

Figure 4: Link of leaves Figure 5: Angles

Proposition 4.5. Let λti = λi(p
t) = cot θti , 0 < θti < π, for i = 1, 2, 3, 4, and

t = 1, . . . , 8. Putting

θ12 = θ11 + α, θ13 = θ12 + β, θ14 = θ13 + γ

θ21 = θ11, θ
2
2 = θ11 + a, θ23 = θ22 + b, θ24 = θ13 + c,

and defining δ = π− (α+ β + γ) and d = π− a− b− c, we obtain the following relations

among angles (see Table 1).
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point θt1 θt2 θt3 θt4 π + θt1
p1 θ11 + α + β + γ + δ

p2 θ11 + a + b + c + d

p3 θ31 + β + γ + δ + α

p4 θ31 + d + a + b + c

p5 θ51 + γ + δ + α + β

p6 θ51 + c + d + a + b

p7 θ71 + δ + α + β + γ

p8 θ71 + b + c + d + a

Table 1: Angles

Proof. Consider γ as a unit circle1. Noting the direction of the normal given in

Figure 5 (where we denote pt by zt), we have as in (7),

µ1 = cot(θ11 + θ31 + θ̄34), ν
1 = cot(θ12 + θ51 + θ̄54), τ

1 = cot(θ13 + θ71 + θ̄74),

µ2 = cot(θ11 + θ81 + θ̄84), ν
2 = cot(θ12 + θ61 + θ̄64), τ

1 = cot(θ13 + θ41 + θ̄44),

hence

α = θ31 + θ̄34, β = θ51 + θ̄54, γ = θ71 + θ̄74
a = θ81 + θ̄84, b = θ61 + θ̄64, c = θ41 + θ̄44.

Also from Figure 4 and Figure 5, we see,

θ32 = θ31 + θ51 + θ̄54 = θ31 + β, θ33 = θ32 + θ71 + θ̄74 = θ32 + γ,

θ34 = θ33 + θ11 + θ̄14 = θ33 + δ

where δ = θ11 + θ̄14 = θ11 + (π− θ14) = π− (α+ β+ γ). Since θ41 = θ31, we have in the same

way,

θ42 = θ41 + θ21 + θ̄24 = θ31 + d, θ43 = θ42 + θ81 + θ̄84 = θ42 + a,

θ44 = θ43 + θ61 + θ̄64 = θ63 + b,

where d = θ21 + θ̄24 = θ21 + (π− θ24) = π− a− b− c. In a similar way, θ5i , θ
6
i , θ

7
i and θ8i are

obtained. □
Recall (Figure 4)

λ1 = λ2, λ3 = λ4, λ5 = λ6, λ7 = λ8

µ1 = µ4, µ2 = µ7, µ3 = µ6, µ5 = µ8

ν1 = ν6, ν2 = ν5, ν3 = ν8, ν4 = ν7

τ1 = τ8, τ2 = τ3, τ4 = τ5, τ6 = τ7.

Lemma 4.6. We have

θ31 = θ11 + α− d, θ51 = θ11 + a+ b− γ − δ, θ71 = θ11 + a− δ. (8)

1Note that γ is also used to denote an angle; do not confuse the two.
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Proof. Since µ1 = µ4, it follows from Table 1 that θ11 + α = θ31 + d, hence θ31 =

θ11 +α−d. Similarly, from µ2 = µ7, we obtain θ11 +a = θ71 + δ, i.e., θ
7
1 = θ11 +a− δ. From

µ5 = µ8, we also have θ51+γ = θ71+b = θ11+a−δ+b, which gives θ51 = θ11+a+b−(γ+δ).

□

Lemma 4.7. Assume that at p1, λ attains its maximum and µ1 ≥ µ2 without loss

of generality. Then at p1,

ν7 ≥ ν5 ≥ ν1 ≥ ν3, τ1 ≥ τ3, τ7 ≥ τ5. (9)

Proof. Since m1 = m3 and m2 = m4, we have at p1 and p8,{
m1(λ

1 + ν1) +m2(µ
1 + τ1) = H

m1(λ
8 + ν8) +m2(µ

8 + τ8) = H{
m1((λ

1)2 + (ν1)2) +m2((µ
1)2 + (τ1)2) = S

m1((λ
8)2 + (ν8)2) +m2((µ

8)2 + (τ8)2) = S

where τ1 = τ8. Taking the difference of the former two, and the latter two, respectively,

we obtain

m1(λ
1 − λ8 + ν1 − ν8) +m2(µ

1 − µ8) = 0

m1((λ
1)2 − (λ8)2 + (ν1)2 − (ν8)2) +m2((µ

1)2 − (µ8)2) = 0.

Then multiplying the former by (µ1 + µ8) and subtracting the second, we obtain

(λ1 − λ8)(µ1 + µ8 − λ1 − λ8) + (ν1 − ν8)(µ1 + µ8 − ν1 − ν8) = 0, (10)

where µ1 + µ8 − λ1 − λ8 < 0 and µ1 + µ8 − ν1 − ν8 > 0. Since λ1 is max, (10) implies

λ1 ≥ λ8 = λ7, ν1 ≥ ν8 = ν3.

A similar argument at p2 and p7 using µ2 = µ7 implies

m1(λ
2 − λ7 + ν2 − ν7) +m2(τ

2 − τ7) = 0

m1((λ
2)2 − (λ7)2 + (ν2)2 − (ν7)2) +m2((τ

2)2 − (τ7)2) = 0,

and multiplying the former by (τ2 + τ7) and subtracting the second, we have

(λ2 − λ7)(τ2 + τ7 − λ2 − λ7) + (ν2 − ν7)(τ2 + τ7 − ν2 − ν7) = 0, (11)

where τ2 + τ7 − λ2 − λ7 < 0 and τ2 + τ7 − ν2 − ν7 < 0. Thus in (11), λ2 = λ1 ≥ λ7

implies

ν2 = ν5 ≤ ν7. (12)
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Next, at p1 and p2, using λ1 = λ2, we have

m1(ν
1 − ν2) +m2(µ

1 − µ2 + τ1 − τ2) = 0

m1((ν
1)2 − (ν2)2) +m2((µ

1)2 − (µ2)2 + (τ1)2 − (τ2)2) = 0,

and multiplying the former by (ν1 + ν2) and subtracting the second, we have

(µ1 − µ2)(ν1 + ν2 − µ1 − µ2) + (τ1 − τ2)(ν1 + ν2 − τ1 − τ2) = 0, (13)

where ν1 + ν2 − µ1 − µ2 < 0 and ν1 + ν2 − τ1 − τ2 > 0. Since we have chosen p1 so that

µ1 ≥ µ2, we obtain from (13)

µ1 ≥ µ2, τ1 ≥ τ2 = τ3.

This impies µ1 + τ1 ≥ µ2 + τ2 and so λ1 + ν1 ≤ λ2 + ν2. Thus by λ1 = λ2,

ν1 ≤ ν2 = ν5

holds. Next, at p4 and p7, using ν4 = ν7, we have

m1(λ
4 − λ7) +m2(µ

4 − µ7 + τ4 − τ7) = 0

m1((λ
4)2 − (λ7)2) +m2((µ

4)2 − (µ7)2 + (τ4)2 − (τ7)2) = 0,

and multiplying the former by (λ4 + λ7) and subtracting the second, we obtain

(µ4 − µ7)(λ4 + λ7 − µ4 − µ7) + (τ4 − τ7)(λ4 + λ7 − τ4 − τ7) = 0, (14)

where λ4 + λ7 − µ4 − µ7 > 0 and λ4 + λ7 − τ4 − τ7 > 0. Since we are assuming

µ1 = µ4 ≥ µ2 = µ7, it holds

τ4 = τ5 ≤ τ7 = τ6,

and the lemma is proved. □

Proposition 4.8. We have

α = a, β = b, γ = c, δ = d. (15)

Proof. Since the cotangent function is decreasing, µ1 ≥ µ2 implies

α ≤ a. (16)

The second inequality of (9) is written as, using (8),

(θ11 + a− δ) + δ + α ≤ θ11 + a+ b ≤ θ11 + α+ β ≤ (θ11 − d+ α) + β + γ

and we have immediately
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α ≤ b, a+ b ≤ α+ β, d ≤ γ. (17)

Then from τ7 ≥ τ5, we have

(θ11 + a− δ) + δ + α+ β = θ11 + a+ α+ β

≤ (θ11 + a+ b− γ − δ) + (γ + δ + α) = θ11 + a+ b+ α,

and so

β ≤ b. (18)

Thus from (16) + (18), and the middle innequality of (17), we obtain

α+ β = a+ b,

and hence

α = a, β = b. (19)

From θ11 = θ21 and (19), µ1 = µ2 and ν1 = ν2 follow. These imply τ1 = τ2, and we obtain

γ = c and δ = d. □

Lemma 4.9. We have

δ ≤ γ ≤ α ≤ β. (20)

Proof. As we assume λ1 ≥ λ3 = cot(θ11 + α− δ), we have

δ ≤ α.

From ν7 ≥ ν5 ≥ ν1 ≥ ν3 follows θ73 ≤ θ53 ≤ θ13 ≤ θ33, and using (8) and (15), we have

θ71 + δ + α= θ11 + 2α

≤ θ51 + γ + δ = θ11 + α+ β = θ13
≤ θ31 + β + γ = (θ11 − δ + α) + β + γ,

namely,

δ ≤ α ≤ β, δ ≤ γ.

Since we have λ3 = λ4, ν3 ≤ ν7 = ν4, and µ3 = cot(θ31 + β) ≤ cot(θ31 + δ) = µ4, we

obtain τ3 ≥ τ4. Hence β + γ + δ ≤ δ + α+ β implies

γ ≤ α.

□

Proposition 4.10. All the principal curvatures coincide at pt for 1 ≤ t ≤ 8, and
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M ∩ γ is a parallel octagon.

Proof. Together with λ3 ≤ λ1, from (15) and (20) we have

µ3 = cot(θ31 + β) = cot(θ11 + α− δ + β)) ≤ cot(θ11 + α) = µ1

and

ν3 = cot(θ31 + β + γ) = cot(θ11 + α− δ + β + γ) ≤ ν1.

However, since

θ34 = θ31 + β + γ + δ = (θ11 − δ + α) + β + γ + δ = θ11 + α+ β + γ = θ14,

by the CMC condition, we must have λ1 = λ3, ν1 = ν3 and µ3 = µ1. Hence

α = β = γ = δ =
π

4
,

and θ51 = θ71 = θ11 follows. By Proposition 4.8 and by Table 1, all principal curvatures

coincide at each pt, 1 ≤ t ≤ 8. Thus, M ∩ γ forms a parallel octagon. □

Figure 6: Parallel octagon

Next, we apply the above argument at a minimum point q of λ, instead of the

maximum point p. Let q1 be a minimum point of µ on L1(q). Then by Lemma 4.2,

all dij vanish at q1. Let γ′ be the normal geodesic through q1. By tautness again,

M ∩ γ′ = {q1, q2, . . . , q8} yields a configuration similar figure to Figure 5 along γ′.

The following argument is almost parallel as before, but we need to check the change

of inequalities. In all the argument of Lemma 4.7, 4.8 and Lemma 4.9 using Table 1, we

replace pt by qt. Then Lemma 4.6 holds for qt, and we show instead of Lemma 4.7:

Lemma 4.11. Take q1 as a minimum point of λ on M and also minimum of µ on

L1(q
1). Then we have, denoting νt = ν(qt), etc.2,

2should be written as νtq but we omit q for short.
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ν7 ≤ ν5 ≤ ν1 ≤ ν3, τ1 ≤ τ3, τ7 ≤ τ5.

Proof. As before, (10) holds at q1 and q8, where λ1−λ8 and ν1−ν8 should have

the same sign. Since λ1 is the minimum, we have

λ1 ≤ λ8 = λ7, ν1 ≤ ν8 = ν3.

At q2 and q7 we have (11), and λ2 = λ1 ≤ λ7 implies

ν2 = ν5 ≥ ν7.

Next, at q1 and q2 in (13), since q1 is chosen so that µ1 ≤ µ2, we obtain

µ1 ≤ µ2, τ1 ≤ τ2 = τ3.

This impies µ1 + τ1 ≤ µ2 + τ2 and so λ1 + ν1 ≥ λ2 + ν2. As λ1 = λ2,

ν1 ≥ ν2 = ν5

follows. Next, at q4 and q7, in (14), from µ1 = µ4 ≤ µ2 = µ7, it follows

τ4 = τ5 ≥ τ7 = τ6.

□

Proposition 4.12. Under the situation in Lemma 4.11, denoting the correspond-

ing angles with primes, we have

α′ = a′, β′ = b′, γ′ = c′, δ′ = d′,

and all these values are
π

4
.

Proof. The argument parallels that of Proposition 4.8, Lemma 4.9 and Proposi-

tion 4.10, with reversed inequalities. We check all the processes but omit details. □
Finally, we obtain:

Proposition 4.13. All principal curvatures coincide at qt for 1 ≤ t ≤ 8, and

M ∩ γ′ is a parallel octagon.

Proof of Theorem 1.1 (ii): Both octagons p1 . . . p8 and q1 . . . q8 are isometric to the

parallel octagon Mθ ∩ γθ, where θ is uniquely determined by H (Fact 5). This implies

λ(p1) = λθ = λ(q1), hence λ is constant all over M . Therefore dj1 = 0 everywhere on

M , and by Lemma 4.2, we have dji = 0 for j = 2, 3, 4 and i ̸= 1. Taking maximum and

minimum points of µ where d12 = 0, and hence d13 = d14 = 0, we see that all dji vanish

at such points. Then by a similar argument, we obtain max µ = minµ and thus µ is

constant on M . By Remark 4.1, ν and τ become constant. This proves Theorem 1.1 (ii).
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□

Remark 4.14 : When g = 4, the scalar curvature Rθ of Mθ is given by ([41])

Rθ = 4
(
m1(m1 − 1)(1 + t2) +m2(m2 − 1)

(
1 +

1

t2

))
,

where t = cot 2θ1 = cot 2
(
π
8 + θ

)
, and n− 1 = 2(m1 +m2). Thus Mθ is scalar flat only

when m1 = m2 = 1; otherwise, scalar positive. When Mθ is minimal, i.e. t2 = m2

m1
by

(6), the scalar curvature is

R = 4(m1 +m2)(m1 +m2 − 2).

Using the classification of isoparametric hypersurfaces with g = 4 [6],[15], we have:

Proposition 4.15. If a closed minimal Dupin hypersurface M in Sn with g = 4

has constant scalar curvature R, then M is isoparametric, and R lies in the discrete set

{4(m1 +m2)(m1 +m2 − 2)},

where (m1,m2) = (1, 1), (2, 2), (4, 5) . . . are infinite series given in [18]. The cases other

than (m1,m2) = (2, 2), (4, 5) correspond to representation of Clifford algebras.

5. Review of the Lie sphere geometry

Up to this point, we have used only elementary arguments. However, to prove parts

(iii) and (iv) of Theorem1.1, we need to employ Lie sphere geometry, in particular the

concept of Lie curvature. In this section, we briefly review the necessary background.

For details, see [4].

Let Rn+3
2 = Rn+1 ⊕ R2

2 be endowed with the bilinear form ⟨ , ⟩2 of signature

(+ . . . ,+,−,−). The hyperquadric of RPn+2
2 consisting of null vectors

Qn+1 = {[k] ∈ RPn+2
2 | ⟨k, k⟩2 = 0}

represents the space of oriented hyperspheres of Sn. An oriented hypersphere centered

at p ∈ Sn with oriented radius −π ≤ θ ≤ π is given by k = t(p, cos θ, sin θ) ∈ Rn+3
2 .

We denote k for [k]. Then t(p, 1, 0) ∈ Rn+3
2 represents a point sphere, and t(n, 0, 1)

represents an oriented totally geodesic hypersphere centered at n. Two elements k1 =
t(u, cosφ, sinφ), k2 = t(v, cosψ, sinψ) in Qn+1 have oriented contact if they meet at a

common point with coinciding normal directions. This occurs if and only if

⟨k1, k2⟩2 = ⟨u, v⟩ − cos(φ− ψ) = 0.

For instance, k1 = t(p, 1, 0) and k2 = t(n, 0, 1) have oriented contact precisely when p is

orthogonal to n. If ⟨k1, k2⟩2 = 0, the line

l = {[ak1 + bk2] | a, b ∈ R}

lies in Qn+1; it represents a one-parameter family of oriented hyperspheres having ori-
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ented contact at p. The space of such lines, denoted by Λ2n−1, is identified with the unit

tangent bundle T1S
n, since l is uniquely determined by the contact point p ∈ Sn and the

oriented unit normal n ∈ TpS
n.

The Lie contact transformation group O(n+1, 2) is the linear group preserving ⟨ , ⟩2.
It preserves Qn+1, the oriented contact between oriented hyperspheres, and the space of

lines Λ2n−1 ∼= T1S
n. An element L = (l1, l2, . . . , ln+3) ∈ O(n+ 1, 2) is characterized by

(⟨li, lj⟩2) =
(
In+1 0

0 −I2

)
where In+1 and I2 are the unit matrices. The set of column vectors li (row vectors,

respectively) is called a Lie frame.

An oriented hypersurface p : M → Sn with unit normal vector field n can be

expressed as a Lie geometric hypersurface by the pair (k1, k2):

k1 =

p1
0

 ∈ Qn+1, k2 =

n0
1

 ∈ Qn+1,

not both dk1(X) and dk2(X) vanish for non-zero vector X ∈ TM . Since ⟨k1, k2⟩2 = 0,

(k1, k2) defines a line l ∈ Λ2n−1 ∼= T1S
n. Indeed,

(k1, k2) :M → Λ2n−1 ∼= T1S
n

is precisely the Legendre map of M into the contact manifold T1S
n.

A curvature sphere of M at p is an oriented hypersphere having oriented contact

with M of contact order ≥ 2. For each principal curvature λ, it is given by [22]

vk1 + uk2 ∈ Qn+1, λ =
v

u
= cot θ.

Applying L ∈ O(n+ 1, 2) to k1, k2 yields a new Lie geometric hypersurface (Lk1, Lk2) :

M → Λ2n−1:

Lk1 =

qa
b

 , Lk2 =

mc
d

 .

Then the principal curvature λ̃ of the image hypersurface is given by (4.2) in [22]

λ̃ =
aλ+ c

bλ+ d
. (21)

Remark 5.1 : A suitable projection π : Λ2n−1 → Sn may be applied to obtain a

hypersurface in Sn from (Lk1, Lk2). Note that q and m themselves are not, respectively,

the position and the normal vector of the resulting hypersurface.

Example 5.2 : (Parallel transformations) For
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L =

(
L1 0

0 Lα

)
∈ O(n+ 1)⊕O(2), Lα =

(
cosα − sinα

sinα cosα

)
,

the transformation Lα deforms a hypersurface M into its parallel hypersurface Mα (see

Remark 3.8 of [22]). If λ = cot θ is a principal curvature of M , then by (21), Mα has

the principal curvature

λα =
aλ+ c

bλ+ d
=

cosα cot θ − sinα

sinα cot θ + cosα
= cot(θ + α).

Remark 5.3 : The subgroup O(n+ 1, 1) of O(n+ 1, 2) corresponds to the conformal

(Möbius) group.

Next, for w1, w2, w3, w4 ∈ C, define the cross ratio by

[w1, w2;w3, w4] =
(w1 − w3)(w2 − w4)

(w1 − w4)(w2 − w3)
∈ C,

which is real if and only if w1, w2, w3, w4 are concircular.

Let γ be the normal geodesic of a hypersurface M in Sn at p ∈ M . Suppose M

has four principal curvatures λi = cot θi, each with curvature sphere Ci of radius θi.

Then Ci intersects γ = S1 orthogonally at a point whose spherical distance from p is 2θi.

Labeling these points z2i ∈ γ = S1 ⊂ C and using λi = cot θi, we have:

Fact 6. (Lemma 6.8 [22]) The Lie curvature defined by

Φ(p) =
(λ1 − λ3)(λ2 − λ4)

(λ1 − λ4)(λ2 − λ3)
= [z2, z4; z6, z8] ∈ R (22)

is invariant under Lie contact transformations.

This serves as an index for determining whether two hypersurfaces are Lie equivalent.

6. Closed CMC and CLC Dupin with g = 4 (iii)

In this section, we prove:

Theorem 1.1 (iii) Let M be a closed CMC Dupin hypersurface with g = 4. If M has

constant Lie curvature (CLC), then M is isoparametric.

The following fact plays an essential role in the proof.

Fact 7. (Proposition 8.1 and Corollary 8.3 in [22]) If the Lie curvature of a closed

Dupin hypersurface M with g = 4 is constant, then at each point of p ∈ M , there exists

a Lie contact transformation that maps M ∩ γ onto a regular octagon, where γ is the

normal geodesic of M at p.

This statement is purely local, and no global consequence follows directly from it.

However, since Lie curvatures are invariant under Lie sphere transformations, their values

can be computed from the principal curvatures of the (not necessarily minimal, see Fact

5) isoparametric hypersurface M̄ satisfying that M̄ ∩ γ is a regular octagon:

λ =
√
2 + 1 = −τ, µ =

√
2− 1 = −ν. (23)
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Nevertheless, we cannot relate this fact directly to the mean curvature of M , because

the Lie contact transformation does not preserve the metric structure.

6.1. Critical point of all the principal curvatures

Lemma 6.1. If a closed CMC Dupin hypersurface with g = 4 has CLC, then there

exists a point p ∈M at which all dji vanish.

Proof. Since

H = m1λ+m2µ+m1ν +m2τ, Φ =
(λ− µ)(ν − τ)

(λ− τ)(ν − µ)
= −1 (24)

are constant on M where the value of Φ is computed from (23), we can describe µ, τ by

λ, ν. Indeed, putting

A = µ+ τ =
1

m2
(H −m1(λ+ ν)),

we have from the second equation of (24)

0 = (λ− µ)(ν − τ) + (λ− τ)(ν − µ) = 2µτ −A(λ+ ν) + 2λν.

Hence defining

B := µτ =
1

2
(A(λ+ ν)− 2λν) =

1

2

( 1

m2
(H −m1(λ+ ν))(λ+ ν)− 2λν)

)
,

we know that µ, τ are two solutions of

t2 −At+B = 0. (25)

Then on a λ-leaf L1, µ, τ are functions of only ν, and consequently,

d12 = f(ν)d13, d14 = g(ν)d13.

Therefore, if λ is critical on M and ν is critical at p on L1(p), then at p,

dj1 = 0, d1i = 0, 1 ≤ j, i ≤ 4.

On the other hand, from (24), we obtain

0 = m1dj1 +m2dj2 +m1dj3 +m2dj4 = 0

0= ej(log Φ) =
dj1 − dj2
λ− µ

− dj1 − dj4
λ− τ

+
dj3 − dj4
ν − τ

− dj3 − dj2
ν − µ

=
( 1

ν − µ
− 1

λ− µ

)
dj2 +

( 1

ν − τ
− 1

ν − µ

)
dj3 +

( 1

λ− τ
− 1

ν − τ

)
dj4.

At p, the following relations hold:
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m1d23 +m2d24 = 0

d32 + d34 = 0

m2d42 +m1d43 = 0,

(26)



τ − µ

ν − µ
d23 +

ν − λ

λ− τ
d24 = 0

1

(ν − µ)(λ− µ)
d32 −

1

(λ− τ)(ν − τ)
d34 = 0

λ− ν

λ− µ
d42 +

τ − µ

ν − τ
d43 = 0.

(27)

In (26), all coefficients are positive, whereas in (27), two coefficients of the first and third

equations each have coefficients of opposite signs. Hence d23 = d24 = d42 = d43 = 0.

Next, rewriting the second equation of (27) and using Φ = −1, we have

d32 −
(λ− µ)(ν − τ)

(λ− τ)(ν − µ)

(ν − µ

ν − τ

)2
d34

= d32 − Φ
(ν − µ

ν − τ

)2
d34 = (1−

(ν − µ

ν − τ

)2)
d32 = 0,

Thus from
(
ν−µ
ν−τ

)2
< 1, it follows d32 = d34 = 0, namely, all dji’s vanish at p. □

Finally at p = p1, the situation coincides with that in Proposition 6.1 of [22], which

is stated as Proposition 4.4 in §4 in the present paper.

Next, we denote p1, p2 by z1, z2 where

z2 = e2iθ1z1, λ1 = cot θ1.

Moreover, define

z4 = e2i(θ1+α), z6 = e2i(θ1+α+β), z8 = e2i(θ1+α+β+γ),

where

α = θ31 + θ̄34, β = θ51 + θ̄54, γ = θ71 + θ̄74,

which follow from Table 1. From (24), we then have

−1 = Φ =
(λ− µ)(ν − τ)

(λ− τ)(ν − µ)
= [z2, z6 : z4, z8] =

(z2 − z4)(z6 − z8)

(z2 − z8)(z6 − z4)

=
(e2iθ1 − e2i(θ1+α))(e2i(θ1+α+β) − e2i(θ1+α+β+γ))

(e2iθ1 − e2i(θ1+α+β+γ))(e2i(θ1+α+β) − e2i(θ1+α))

=
(1− e2iα)(e2i(α+β) − e2i(α+β+γ))

(1− e2i(α+β+γ))(e2i(α+β) − e2iα)
=

(1− e2iα)(e2iβ − e2i(β+γ))

(1− e2i(α+β+γ)(e2iβ − 1)
,

and hence

0 = (1− e2iα)(e2iβ − e2i(β+γ)) + (1− e2i(α+β+γ))(e2iβ − 1)

= 2(e2iβ + e2i(α+β+γ))− e2i(α+β) − e2i(β+γ) − e2i(α+2β+γ) − 1.
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Multiplying e−2iβ and using α+ β + γ = π − δ, we obtain:

Lemma 6.2. In this situation, Φ = −1 implies

2(1 + e2i(α+γ))− e2iα − e2iγ − e−2iδ − e−2iβ = 0. (28)

6.2. Conformal transformation

It is easy to see that there exists a conformal transformation Ĉ on Sn which maps

M → M̂ , so that the leaves Lλ(p
1) and Lλ(p

5) become antipodally symmetric, and Lν(p
1)

and Lν(p
2) become parallel (see Figure 7). In fact, we may regard Ĉ as restricted to the

plane on which γ lies, keeping its orthogonal complement invariant (see (31) below).

Figure 7: Conformal image

We denote the image objects with hats, such as M̂ , p̂t, λ̂t etc. Then λ̂1 = λ̂6 and

ν̂1 = ν̂2 = ν̂5 = ν̂6 hold, and hence, from Table 1 with hats, it follows that

θ̂1 = θ̂5, α̂+ β̂ = â+ b̂ = γ̂ + δ̂ = ĉ+ d̂ =
π

2
. (29)

Thus denoting λ̂t = cot θ̂t1, we obtain

λ̂1ν̂1 = cot θ̂1 cot(θ̂1 + α̂+ β̂) = −1,

λ̂2ν̂2 = cot θ̂21 cot(θ̂
2
1 + â+ b̂) = −1.

Now apply the argument in the previous subsection to M̂ . This is legitimate because

the Lie curvature is invariant under Ĉ. Then we obtain (28) replacing the data with that

of M̂ , namely,

2(1 + e2i(α̂+γ̂))− e2iα̂ − e2iγ̂ − e−2iδ̂ − e−2iβ̂ = 0,

2(1 + e2i(â+ĉ))− e2iâ − e2iĉ − e−2id̂ − e−2ib̂ = 0.
(30)
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From (29), e−2iβ̂ = e−2i(π/2−α̂) = −e2iα̂ etc. holds, and (30) becomes 1 + e2i(α̂+γ̂) = 0

and 1 + e2i(â+ĉ) = 0. Thus we obtain

α̂ = β̂ = γ̂ = δ̂ = â = b̂ = ĉ = d̂ =
π

4
.

This means that M̂ ∩ γ̂ is a parallel octagon (see Figure 6 with hat). We can denote

p̂1 =

(
û

v̂

)
= −p̂5, n̂1 =

(
−v̂
û

)
= −n̂5

p̂2 =

(
−û
v̂

)
= −p̂6, n̂2 =

(
v̂

û

)
= −n̂6,

p̂3 =

(
−v̂
û

)
= −p̂7, n̂3 =

(
−û
−v̂

)
= −n̂7

p̂4 =

(
−v̂
−û

)
= −p̂8, n̂4 =

(
−û
v̂

)
= −n̂8.

where n̂t denotes the oriented unit normal of M̂ at p̂t, and

λ̂t =
v̂

û
, ν̂t = − û

v̂
, û2 + v̂2 = 1.

More precisely, omitting t:

Lemma 6.3. We have λ̂ = cot θ̂1 > 1 and

λ̂ =
v̂

û
, µ̂ =

v̂ − û

û+ v̂
, ν̂ = − û

v̂
, τ̂ =

û+ v̂

û− v̂
.

Proof. From (4), we have θ̂1 = π
8 + θ < π

4 , hence λ̂ > 1. We compute µ̂, where

τ̂ = − 1
µ̂ :

µ̂ = cot
(
θ̂1 +

π

4

)
=

−1 + λ̂

λ̂+ 1
=

−1 + v̂
û

v̂
û + 1

=
−û+ v̂

v̂ + û
.

□
Next consider the inverse C : M̂ → M of Ĉ. Denote the conformal transformation

C restricted to R4
2 = R2 ⊕ R2

2, where R2 is the plane on which γ lies, by

C =


∗ ∗ ∗ 0

∗ ∗ ∗ 0

x y r 0

0 0 0 1

 ∈ O(2, 1) ⊂ O(2, 2). (31)

Apply C to k1 =

p̂t1
0

 and k2 =

n̂t0
1

, and express
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Ck1 =

qtat
0

 , Ck2 =

ntct
1

 .

The principal curvature λti at the original point pt ∈M is given by (21):

λti = atλ̂i + ct, i = 1, . . . , 4, t = 1, . . . 8, (32)

since b̂t = 0 and d̂t = 1. We know{
a1 = ûx+ v̂y + r

c1 = −v̂x+ ûy

{
a2 = −ûx+ v̂y + r

c2 = v̂x+ ûy{
a3 = −v̂x+ ûy + r

c3 = −ûx− v̂y.

Note that the mean curvature Ĥt does not depend on t since M̂ ∩ γ̂ is a parallel octagon.

Denote

Ĥt = Ĥ = m1(λ̂+ ν̂) +m2(µ̂+ τ̂).

On the other hand, the mean curvature Ht of M is obtained from (32):

Ht = atĤ
t + ctK, t = 1, . . . , 8,

where K = 2(m1 +m2). Since H
t is constant, we have

0 = H1 −H2 = (a1 − a2)Ĥ + (c1 − c2)K = 2x(ûĤ − v̂K) = 2xû(Ĥ − λ̂K).

Because λ̂ is the largest or smallest principal curvature by (32), we have Ĥ − λ̂K ̸= 0,

and it follows

x = 0.

Next, from

0= H1 −H3 = (a1 − a3)Ĥ + (c1 − c3)K = 2y((v̂ − û)Ĥ + (û+ v̂))K

= 2y(v̂ − û)(Ĥ − τ̂K)

and since (v̂ − û)(Ĥ − τ̂K) ̸= 0 by Lemma 6.3 (as τ̂ is smallest or largest), we have

y = 0.

Therefore, we obtain:

Proposition 6.4. C is an isometry

(
T 0

0 I ′

)
∈ O(2, 2), I ′ =

(
ϵ 0

0 1

)
, and M ∩ γ

itself is a parallel octagon isometric to Mθ ∩ γθ, where θ is uniquely determined by the

mean curvature H of M (Fact 5).
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Proof of Theorem 1.1 (iii): In the same way as the proof of Theorem 1.1 (ii), M ∩ γ

at a maximum point p = p1 of λ, with ν critical on L(p1), and M ∩ γ′ at a minimum

point q = q1 of λ, with ν critical on L(q1), are both congruent to a parallel octagon

Mθ ∩ γθ, where θ is uniquely determined by the mean curvature of M . Thus, λ is

constant. A similar argument at the maximum and minimum points of ν implies that

ν is constant. Then (24) uniquely determines µ > τ as solutions of (25), and thus all

principal curvatures are constant throughout M . Therefore, M is isoparametric. □

7. Closed case: g = 6 (iv)

7.1. Strategy for g = 6

Now we consider the case g = 6, where the multiplicity m = m1 = m2 ∈ {1, 2}
[1]. Let the distinct principal curvatures be λ1 > · · · > λ6, which we also denote by

λ = λ1, µ = λ2, ν = λ3, ρ = λ4, σ = λ5 and τ = λ6, following the notation in [23]. Later,

we use upper indices to indicate the corresponding points pt. The curvature distributions

decompose the tangent space into D1 ⊕ · · · ⊕D6, and we denote by ej any unit vector in

Dj .

Assuming M has constant mean curvature (CMC), we put

H = m
∑6

i=1 λi, m = 1, 2. (33)

Note that when g = 6, there exist essentially three independent Lie curvatures [23]. We

now prove the following:

Theorem 1.1 (iv) Let M be a closed CMC Dupin hypersurface with g = 6. If M has

three independent constant Lie curvatures, then M is isoparametric.

Remark 7.1 : Even if all the Lie curvatures are constant, a Dupin hypersurface with

g = 6 is not necessarily Lie equivalent to an isoparametric hypersurface [23].

Recall that for any normal geodesic γ̄ of the minimal isoparametric hypersurface

M0, the intersection M0 ∩ γ̄ forms a regular dodecagon. In [23] we prove:

Fact 6. (Lemma 4 in [23]) When all the Lie curvatures of a closed Dupin hypersurface

M with g = 6 are constant, there exists a Lie transformation at each point of p ∈ M

which maps M ∩ γ onto a regular dodecagon, where γ denotes the normal geodesic of M

at p.

As before, this is a local statement, and does not yield a global result. However,

since the Lie curvatures are invariant under Lie transformations, their values can be

computed from the principal curvatures of M0. By setting g = 6 and θ = 0 in (3), we

obtain:

λ = 2 +
√
3 = −τ, µ = 1 = −σ, ν = 2−

√
3 = −ρ. (34)

Now, using the CMC condition together with these explicit values of the Lie curva-

tures, we find a point p ∈ M at which all dji vanish (Proposition 7.4). Our goal is to

show M ∩ γ at this point is itself a parallel dodecagon (Proposition 7.10). Then as in the

case g = 4, the mean curvature uniquely determines θ so that M ∩ γ is isometric to the
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parallel dodecagonMθ∩γθ, and the maximum and minimum values of λ coincide. Hence

λ is constant on all of M ; with further arguments, we conclude that M is isoparametric.

7.2. Critical point of principal curvatures

We use indices 1 ≤ i, j ≤ 6. From (33), it follows that for ej ∈ Dj ,

dj1 + dj2 + dj3 + dj4 + dj5 + dj6 = 0, j = 1, . . . , 6. (35)

Since the multiplicities of λi’s are common (m = 1, 2), we may omit them. As before, it

is essential to find a point where all dji = 0 under the conditions CMC and constant Lie

curvatures (Proposition 7.4). This is the delicate part of the proof.

For instance, in the case m = 1, there are 30 unknowns dji = ej(λi), 1 ≤ i, j ≤ 6,

since djj = 0 by the Dupin condition. Equation (35) provides six relations, reducing the

number of independent unknowns to 24. Let p ∈M be a critical point of λ, and assume

further that µ is critical at p along L1(p). Then at p,

dj1 = 0, d12 = 0, 1 ≤ j ≤ 6.

These yield six equations (since d11 = 0 already), leaving 18 unknowns. Now consider

three Lie curvatures

Φh =
(λ− µ)(λh − σ)

(λ− σ)(λh − µ)
, h = 3, 4, 6. (36)

Assume that each Φh is constant on M for h = 3, 4, 6. Then

ej(Φh) = 0, j = 1, . . . , 6, h = 3, 4, 6,

provides 18 further equations among the dji’s for the 18 unknowns, allowing us to examine

whether dji(p) = 0 holds.

In the following, we investigate this process for m = 1, 2.

Lemma 7.2. At a point p ∈M where λ is critical on M and µ is critical on L1(p),

all d1i vanish for any e1 ∈ D1(p) and i ∈ {1, . . . , 6}.

Proof. From (36), for h ∈ {3, 4, 6},

ej(log Φh) =
dj1 − dj2
λ− µ

− dj1 − dj5
λ− σ

+
djh − dj5
λh − σ

− djh − dj2
λh − µ

= uhdj2 + vhdj5 + whdjh = 0, j = 1, . . . , 6, h = 3, 4, 6,

(37)

for j = 1, . . . , 6, since dj1 = 0 holds at p, where
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uh =
1

λh − µ
− 1

λ− µ
=

(λ− λh)

(λh − µ)(λ− µ)

vh =
1

λ− σ
− 1

λh − σ
=

(λh − λ)

(λ− σ)(λh − σ)

wh =
1

λh − σ
− 1

λh − µ
=

(σ − µ)

(λh − σ)(λh − µ)
.

Putting j = 1 in (37) and using d12 = 0 at p, we obtain

v3d15 + w3d13 = 0, i.e., d13 = − v3
w3
d15,

v4d15 + w4d14 = 0, i.e., d14 = − v4
w4
d15,

v6d15 + w6d16 = 0, i.e., d16 = − v6
w6
d15.

(38)

Substituting these into (35), we obtain(
1− v3

w3
− v4
w4

− v6
w6

)
d15 = 0.

Since v3, v4 < 0, v6 > 0, w3, w4 > 0 and w6 < 0, we have

1− v3
w3

− v4
w4

− v6
w6

> 0,

which implies

d1i = 0.

□

Lemma 7.3. On L1(p) where λ is critical, we have d2i = d3i = d4i = d6i = 0.

Proof. We do not use d12 = 0 in the proof below. Hence the argument holds all

over L1(p).

1. First, to show d2i = 0 on L1(p), put j = 2 in (37), and we have

v3d25 + w3d23 = 0, i.e., d23 = − v3
w3
d25

v4d25 + w4d24 = 0, i.e., d24 = − v4
w4
d25

v6d25 + w6d26 = 0, i.e., d26 = − v6
w6
d25.

which are identical to (38) with d1j replaced by d2j . Thus

d2i = 0.

2. For d3i = 0, consider

Ψ̌h =
(ν − ρ)(λh − λ)

(ν − λ)(λh − ρ)
, h = 2, 5, 6.
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A calculation using d31 = 0 and d33 = 0 gives

0 = e3(log Ψ̌h) =
−d34
ν − ρ

+
d3h

λh − λ
− d3h − d34

λh − ρ

=
( 1

λh − λ
− 1

λh − ρ

)
d3h +

( 1

λh − ρ
− 1

ν − ρ

)
d34

=
1

λh − ρ

( λ− ρ

λh − λ
d3h +

ν − λh
ν − ρ

d34

)
.

Putting h = 2, 5, 6, we obtain

d32 =
(λ− µ)(ν − µ)

(λ− ρ)(ν − ρ)
d34, d35 =

(λ− σ)(ν − σ)

(λ− ρ)(ν − ρ)
d34, d36 =

(λ− τ)(ν − τ)

(λ− ρ)(ν − ρ)
d34.

Here, we use the Lie curvature. Using (34), we compute

(λ− µ)(ν − µ)

(λ− ρ)(ν − ρ)
=

(λ− ρ)(ν − µ)

(λ− µ)(ν − ρ)

(λ− µ

λ− ρ

)2
= −2

(λ− µ

λ− ρ

)2
,

(λ− σ)(ν − σ)

(λ− ρ)(ν − ρ)
=

(λ− ρ)(ν − σ)

(λ− σ)(ν − ρ)

(λ− σ

λ− ρ

)2
= 2
(λ− σ

λ− ρ

)2
,

(λ− τ)(ν − τ)

(λ− ρ)(ν − ρ)
=

(λ− ρ)(ν − τ)

(λ− τ)(ν − ρ)

(λ− τ

λ− ρ

)2
= 4
(λ− τ

λ− ρ

)2
.

Therefore, (35) becomes

0 = d32 + d34 + d35 + d36

= d34

(
− 2
(λ− µ

λ− ρ

)2
+ 1 + 2

(λ− σ

λ− ρ

)2
+ 4
(λ− τ

λ− ρ

)2)
,

but as the coefficient satisfies

−2
(λ− µ

λ− ρ

)2
+ 1 + 2

(λ− σ

λ− ρ

)2
+ 4
(λ− τ

λ− ρ

)2
> −2 + 1 + 2 + 4 = 5 > 0,

we obtain

d3i = 0.

3. Similarly, for d4i = 0, consider

Ψ̄h =
(ρ− ν)(λh − λ)

(ρ− λ)(λh − ν)
, h = 2, 5, 6.

Then we have, using d41 = 0 and d44 = 0,

0 = e4(log Ψ̄h) =
−d43
ρ− ν

+
d4h

λh − λ
− d4h − d43

λh − ν

=
( 1

λh − λ
− 1

λh − ν

)
d4h +

( 1

λh − ν
− 1

ρ− ν

)
d43

=
1

λh − ν

( λ− ν

λh − λ
d4h +

ρ− λh
ρ− ν

d43

)
.
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Putting h = 2, 5, 6, we obtain

d42 =
(λ− µ)(ρ− µ)

(λ− ν)(ρ− ν)
d43, d45 =

(λ− σ)(ρ− σ)

(λ− ν)(ρ− ν)
d43, d46 =

(λ− τ)(ρ− τ)

(λ− ν)(ρ− ν)
d43

Using the Lie curvature which we compute from (34), we have

(λ− µ)(ρ− µ)

(λ− ν)(ρ− ν)
=

(λ− ν)(ρ− µ)

(λ− µ)(ρ− ν)

(λ− µ

λ− ν

)2
= 3
(λ− µ

λ− ρ

)2
,

(λ− σ)(ρ− σ)

(λ− ν)(ρ− ν)
=

(λ− ν)(ρ− σ)

(λ− σ)(ρ− ν)

(λ− σ

λ− ν

)2
= −

(λ− σ

λ− ρ

)2
(λ− τ)(ρ− τ)

(λ− ν)(ρ− ν)
=

(λ− ν)(ρ− τ)

(λ− τ)(ρ− ν)

(λ− τ

λ− ν

)2
= −3

(λ− τ

λ− ν

)2
.

Then (35) becomes

0 = d42 + d43 + d45 + d46

= d43

(
3
(λ− µ

λ− ρ

)2
+ 1−

(λ− σ

λ− ρ

)2
− 3
(λ− τ

λ− ν

)2)
,

where the coefficient satisfies

3
(λ− µ

λ− ρ

)2
+ 1−

(λ− σ

λ− ρ

)2
− 3
(λ− τ

λ− ν

)2
< 3 + 1− 1− 3 = 0.

Thus we have

d4i = 0.

4. Finally, for d6i, take

Ψ̃h =
(τ − ν)(λh − λ)

(τ − λ)(λh − ν)
, h = 2, 4, 5.

Then we have, using d61 = 0 and d66 = 0,

0 = e6(log Ψ̃h) =
−d63
τ − ν

+
d6h

λh − λ
− d6h − d63

λh − ν

=
( 1

λh − λ
− 1

λh − ν

)
d6h +

( 1

λh − ν
− 1

τ − ν

)
d63

=
1

λh − ν

( λ− ν

λh − λ
d6h +

τ − λh
τ − ν

d63

)
,

which implies

d62 =
(λ− µ)(τ − µ)

(λ− ν)(τ − ν)
d63, d64 =

(λ− ρ)(τ − ρ)

(λ− ν)(τ − ν)
d63, d65 =

(λ− σ)(τ − σ)

(λ− ν)(τ − ν)
d63.

The coefficient of d63 in d61 + · · ·+ d65 is positive, hence

d6i = 0.
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□
To determine whether d5i = 0, consider

Ψ̃h =
(σ − µ)(λh − λ)

(σ − λ)(λh − µ)
, h = 3, 4, 6.

Then using d51 = 0 and d55 = 0, we have

0 = e5(log Ψ̃h) =
−d52
σ − µ

+
d5h

λh − λ
− d5h − d52

λh − µ

=
( 1

λh − λ
− 1

λh − µ

)
d5h +

( 1

λh − µ
− 1

σ − µ

)
d52

=
1

λh − µ

( λ− µ

λh − λ
d5h +

σ − λh
σ − µ

d52

)
,

which implies

d53 =
(λ− ν)(σ − ν)

(λ− µ)(σ − µ)
d52, d54 =

(λ− ρ)(σ − ρ)

(λ− µ)(σ − µ)
d52, d56 =

(λ− τ)(σ − τ)

(λ− µ)(σ − µ)
d52. (39)

Thus we have

0 = d52

(
1 +

(λ− ν)(σ − ν)

(λ− µ)(σ − µ)
+

(λ− ρ)(σ − ρ)

(λ− µ)(σ − µ)
+

(λ− τ)(σ − τ)

(λ− µ)(σ − µ)

)
.

However, even with the values of the Lie curvatures, the sign of the coefficient cannot be

determined a priori. Assuming d52 ̸= 0 on an open neighborhood U ⊂ L1, we have

(λ− µ)(σ − µ) + (λ− ν)(σ − ν) + (λ− ρ)(σ − ρ) + (λ− τ)(σ − τ) = 0, (40)

i.e.,

µ2 + ν2 + ρ2 + τ2 − (λ+ σ)(µ+ ν + ρ+ τ) + 4λσ = 0

on U . Since d51 = d55 = 0, and e5(H) = 0 = d52 + d53 + d54 + d56, we have

0 = e5
(
µ2 + ν2 + ρ2 + τ2 − (λ+ σ)(µ+ ν + ρ+ τ) + 4λσ

)
= 2(µd52 + νd53 + ρd54 + τd56)− (λ+ σ)(d52 + d53 + d54 + d56)

= 2(µd52 + νd53 + ρd54 + τd56),

and using (39) again, we have

0 = d52

(
µ+ ν

(λ− ν)(σ − ν)

(λ− µ)(σ − µ)
+ ρ

(λ− ρ)(σ − ρ)

(λ− µ)(σ − µ)
+ τ

(λ− τ)(σ − τ)

(λ− µ)(σ − µ)

)
.

This implies, since d52 ̸= 0 on U ,

µ(λ− µ)(σ − µ) + ν(λ− ν)(σ − ν) + ρ(λ− ρ)(σ − ρ) + τ(λ− τ)(σ − τ) = 0. (41)

On the other hand, from(40), it follows
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τ(λ− τ)(σ − τ) = −τ
(
(λ− µ)(σ − µ) + (λ− ν)(σ − ν) + (λ− ρ)(σ − ρ)

)
.

Substituting this into (41), we obtain

(µ− τ)(λ− µ)(σ − µ) + (ν − τ)(λ− ν)(σ − ν) + (ρ− τ)(λ− ρ)(σ − ρ) = 0.

However, each term of the LHS is negative, a contradiction. Therefore, we have

d5i = 0.

As a conclusion:

Proposition 7.4. All dji vanish at p.

7.3. Angle relation and the Lie curvature

In [23],it is shown that if all dji vanish at p, then all the leaves Li through p
1 = p

are totally geodesic in their curvature spheres Ci, and that Li ∩ γ = {p1, p2i}, where γ is

the normal geodesic through p1, and p2i is the antipodal point of p1 in Li. From Lemma

3 in [23], where tautness is used, we have:

Lemma 7.5. M ∩ γ = {p = p1, . . . , p12}, where p1, p2i, i = 2, 3, 4, 5, 6 are as above,

and podd are as in Figure 8. At each pt, all the leaves are totally geodesic in the curvature

spheres and intersect γ orthogonally at some ps. Their mutual intersections are as shown

in Figure 8.

Figure 8: Link of leaves Figure 9: Angle relation

For an isoparametric hypersurface Mθ, the intersection Mθ ∩ γθ is a parallel do-

decagon (Figure 11) for any normal geodesic γθ of Mθ. Our goal is to show that

M ∩ γ = {p1, . . . , p12} is itself a parallel dodecagon. We prove this in several steps.

Proposition 7.6. Denote λti = λi(p
t) = cot θti , 0 < θti < π, for i = 1, . . . , 6, and

t = 1, . . . , 12. Setting
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θ12 = θ11 + α, θ13 = θ12 + β, θ14 = θ13 + γ, θ15 = θ14 + δ, θ16 = θ15 + ζ

θ22 = θ21 + a, θ23 = θ22 + b, θ24 = θ23 + c, θ25 = θ24 + d, θ26 = θ25 + e,

and putting η = π − (α + β + γ + δ + ζ) and f = π − a − b − c − d − e, we can express

the angles between θti and θti+1 at pt (t = 1, . . . , 12) as follows:

pt θt1 θt2 θt3 θt4 θt5 θt6 π + θt1
p1 α β γ δ ζ η
p2 a b c d e f
p3 β γ δ ζ η α
p4 f a b c d e
p5 γ δ ζ η α β
p6 e f a b c d
p7 δ ζ η α β γ
p8 d e f a b c
p9 ζ η α β γ δ
p10 c d e f a b
p11 η α β γ δ ζ
p12 b c d e f a

Table 2: Angles

Proof. We apply an argument similar to that of Proposition 4.5 and summarize

it briefly. Denote pt by the complex number zt, and put θ̄ti = π − θti , 0 < θ̄ti < π. From

Figure 9, taking the orientation into account, we have for instance:

θ12 = θ11 + θ31 + θ̄36 = θ11 + α, θ13 = θ12 + θ51 + θ̄56 = θ11 + β, . . .

Proceeding in this manner, we obtain the table for podd; starting from p2 = z2 clockwise,

we obtain the table for peven. □
In the following, all the angles stay in (0, π) modulo π, and we may use (22), taking

care of the order of the principal curvatures,:

Ψν(z1) =
(λ− µ)(ν − σ)

(λ− σ)(ν − µ)
= [z2, z6; z4, z10] = −1,

where, the value of Ψ is computed from (34).

For the moment, we advance our argument under the assumption λ1ρ1 = −1 at

p1 ∈ M . In §7.4, we apply the argument to a conformal image of M satisfying this

condition.

Lemma 7.7. Assume λ1ρ1 = −1 at p1 ∈M . Then putting Ψt
ν = Ψν(p

t) and

w1 = e2iα, w2 = e2iβ , w3 = e2iγ , w4 = e2iδ, w5 = e2iζ , w6 = e2iη,

we have
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Ψ1
ν = [z2, z6; z4, z10] =

(1− w1)(1− w3w4)

(1 + w4)(1 + w1w3)
,

Ψ5
ν = [z6, z10; z8, z2] =

(1− w3)(1− w5w6)

(1 + w3)(1 + w5w6)
,

Ψ11
ν = [z12, z4; z2, z8] =

(1− w6)(1− w2w3)

(1 + w6)(1 + w2w3)
.

(42)

Proof. By our assumption 2(α+ β + γ) = π = 2(δ + ζ + η) and ei(π+φ) = −eiφ,
the first relation follows from

z4 = e2iαz2, z10 = e2i(α+β+γ+δ)z2 = −z2iδz2,
z10 = e2i(γ+δ)z6, z4 = e2i(γ+δ+ζ+η+α)z6 = −e2i(α+γ)z6,

as

Ψ1
ν = [z2, z6; z4, z10] =

(z2 − z4)(z6 − z10)

(z2 − z10)(z6 − z4)

=
(1− e2iα)(1− e2i(γ+δ))

(1 + e2iδ)(1 + e2i(α+γ))
=

(1− w1)(1− w3w4)

(1 + w4)(1 + w1w3)
.

(43)

Similarly, we have

z8 = e2iγz6, z2 = e2i(γ+δ+ζ+η)z6 = −e2iγz6
z2 = e2i(ζ+η)z10, z8 = e2i(ζ+η+α+β+γ)z10 = −e2i(ζ+η)z10,

and we obtain

Ψ5
ν = [z6, z10; z8, z2] =

(z6 − z8)(z10 − z2)

(z6 − z2)(z10 − z8)

=
(1− e2iγ)(1− e2i(ζ+η))

(1 + e2iγ)(1 + e2i(ζ+η))
=

(1− w3)(1− w5w6)

(1 + w3)(1 + w5w6)
.

Also from

z2 = e2iηz12, z8 = e2i(η+α+β+γ)z12 = −e2iηz12
z8 = e2i(β+γ)z4, z2 = e2i(β+γ+δ+ζ+η)z4 = −e2i(β+γ)z4,

we have

Ψ11
ν = [z12, z4; z2, z8] =

(z12 − z2)(z4 − z8)

(z12 − z8)(z4 − z2)

=
(1− e2iη)(1− e2i(β+γ))

(1 + e2iη)(1 + e2i(β+γ))
=

(1− w6)(1− w2w3)

(1 + w6)(1 + w2w3)
.

□

Proposition 7.8. Under the assumption λ1ρ1 = −1, we have

α = β = γ = δ = ζ = η =
π

6
.



Chern’s Conjecture in the Dupin case 33

Proof. From (42), using w4w5w6 = −1 and Ψ5
ν = −1,

(1− w3)(1− w5w6)

(1 + w3)(1 + w5w6)
=

(1− w3)(w4 + 1)

(1 + w3)(w4 − 1)
= −1.

This gives

(1− w3)(w4 + 1) + (1 + w3)(w4 − 1) = 0,

hence

w3 = w4 i.e., γ = δ.

Similarly from Ψ11
ν = −1,

(1− w6)(1− w2w3)

(1 + w6)(1 + w2w3)
=

(1− w6)(w1 + 1)

(1 + w6)(w1 − 1)
= −1,

and we obtain

w1 = w6 i.e., α = η.

Then from 2(α+ β + γ) = π = 2(δ + ζ + η), it follows that

β = ζ i.e., w2 = w5.

Next, from (43),

(1− w1)(1− w3w4)

(1 + w4)(1 + w1w3)
=

(1− w1)(1− w2
3)

(1 + w3)(1 + w1w3)
=

(1− w1)(1− w3)

(1 + w1w3)
= −1,

hence we obtain

2(w1w3 + 1) = w1 + w3, (44)

which provides two real equations allowing us to solve for α and γ.

Since 0 < 2α, 2γ < π, we have sin 2α, sin 2γ > 0, and can put w1 = e2iα = x +

i
√
1− x2, and w3 = e2iγ = y + i

√
1− y2, x, y ∈ R. Then (44) becomes

2(x+ i
√
1− x2)(y + i

√
1− y2) + 1) = x+ i

√
1− x2 + y + i

√
1− y2,

which implies {
2(xy −

√
1− x2

√
1− y2) + 1) = x+ y

2(x
√
1− y2) + y

√
1− x2) =

√
1− x2 +

√
1− y2,

namely
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(2xy + 2− x− y)2 = 4(1− x2)(1− y2)

(2x− 1)2(1− y2) = (2y − 1)2(1− x2).

Thus we have {
(x+ y)(5(x+ y)− 4(xy + 1)) = 0

(x− y)(5(x+ y)− 4(xy + 1)) = 0.

Here, x± y = 0 implies x = y = 0, and α = γ = π
4 , contradicts 0 < β = π

2 − (α+ γ). If

x+ y = 0 and x− y ̸= 0, we have

0 = 5(x+ y)− 4(xy + 1) = 4(x2 − 1)

which implies x = cot 2α = ±1 and α = 0 or π
2 , again impossible. If x + y ̸= 0 and

x− y = 0, we have

0 = 5(x+ y)− 4(xy + 1) = −4x2 + 10x− 4 = −2(2x− 1)(x− 2),

which implies

x = cos 2α =
1

2
= y = cos 2γ

namely,

α = γ =
π

6
,

and consequently β =
π

6
, proving the proposition. □

When λ2ρ2 = −1, replacing zt and wt suitably, the same argument applies to to

a, b, c, d, e, f , and we obtain:

Proposition 7.9. If λ1ρ1 = −1 = λ2ρ2, then

α = β = γ = δ = ζ = η = a = b = c = d = e = f =
π

6
,

and hence M ∩ γ is a parallel dodecagon.

7.4. Conformal transformation

We have obtained Proposition 7.9 under the assumption λ1ρ1 = −1 = λ2ρ2. Since

there exists a conformal transformation Ĉ : M → M̂ such that the leaves L1(p̂
1) and

L1(p̂
7) are antipodally symmetric, we denote the conformal image with hats, such as

M̂ , p̂t, λ̂t etc. Then we have λ̂1ρ̂1 = −1 = λ̂2ρ̂2 (see Figure 10), and we can apply the

preceding argument to M̂ , since Ĉ preserves the Lie curvatures. Thus M̂ ∩ γ̂ is a parallel

dodecagon. Let C : M̂ →M be the inverse conformal transformation of Ĉ.

Proposition 7.10. The conformal transformation C : M̂ → M is an isometry,

and M ∩ γ is itself a parallel dodecagon.
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Figure 10: Conformal deformation Figure 11: Parallel dodecagon

Proof. Restrict C : M̂ →M to R4
2 = R2 ⊕ R2

2 where γ ⊂ R2, and write

C =


∗ ∗ ∗ 0

∗ ∗ ∗ 0

x y r 0

0 0 0 1

 ∈ O(2, 1) ⊂ O(2, 2).

Applying C to k1 =

p̂t1
0

 and k2 =

n̂t0
1

, we express

Ck1 =

qtât
0

 , Ck2 =

mt

ĉt
1

 .

Then by (21), the principal curvatures λti at the original point pt ∈M ∩ γ are:

λti = âtλ̂i + ĉt, i = 1, . . . , t = 1, . . . 8.

The mean curvature Ĥt along M̂ ∩ γ̂ is constant, since it is a parallel dodecagon. Hence,

denoting Ĥ = Ĥt, the mean curvature Ht of M at pt is

Ht = âtĤ + 6mĉt, Ĥ = m(λ̂+ µ̂+ ν̂ + ρ̂+ σ̂ + τ̂), m = 1, 2,

which is also independent of t as M is CMC.

We express some vertices of the parallel dodecagon M̂ ∩ γ̂ = {p̂1, . . . , p̂12} (Figure

11) using positive numbers û, v̂, k̂, l̂ such that

λ̂1 =
v̂

û
, τ̂4 = − k̂

l̂
,
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as 
p̂1 =

(
û

v̂

)
= −p̂7

n̂1 =

(
−v̂
û

)
= −n̂7


p̂2 =

(
−û
v̂

)
= p̂8

n̂2 =

(
v̂

û

)
= −n̂8,

p̂4 =

(
−k̂
l̂

)
= −p̂10

n̂4 =

(
l̂

k̂

)
= −n̂10


p̂5 =

(
−k̂
−l̂

)
= −p̂11

n̂5 =

(
l̂

−k̂

)
= −n̂11.

Thus we have {
â1 = ûx+ v̂y + r

ĉ1 = −v̂x+ ûy

{
â2 = −ûx+ v̂y + r

ĉ2 = v̂x+ ûy{
â4 = −k̂x+ l̂y + r

ĉ4 = l̂x+ k̂y

{
â5 = −k̂x− l̂y + r

ĉ5 = l̂x− k̂y.

Since M has constant mean curvature (CMC), at points p1 and p2, we have

0 = H1 −H2 = (â1 − â2)Ĥ + 6m(ĉ1 − ĉ2) = 2ûx(Ĥ − 6mλ̂),

where û(Ĥ − 6mλ̂) < 0 because λ̂ is the largest principal curvature. Hence

x = 0

follows. Similarly, at p4 and p5, we have

0 = H4 −H5 = (â4 − â5)Ĥ + 6m(ĉ4 − ĉ5)

= 2l̂yĤ + 6m · 2k̂y = 2yl̂(Ĥ − 6mτ̂),

and since l̂(Ĥ − 6mτ̂) > 0 (because τ̂ is the smallest principal curvature), we obtain

y = 0.

Therefore, C is an isometry

(
T 0

0 I ′

)
∈ O(2, 2), I ′ =

(
ϵ 0

0 1

)
, andM∩γ itself is a parallel

dodecagonMθ∩γθ, where θ is uniquely determined by the mean curvature H ofM (Fact

5). □

Proof of Theorem 1.1 (iv): Let p ∈ M be a point where λ attains its maximum or

minimum and suppose d12 = 0 at p. By the previous argument, M ∩ γ is isometric

to Mθ ∩ γθ where θ is uniquely determined by the mean curvature H of M . Thus

maxλ = λθ = minλ, so λ is constant on M . Next, let p be a point where µ attains

its tmaximum or minimum. Since dj1 = 0 and d12 = 0 hold at p, the same argument

shows that M ∩ γ is again isometric to Mθ ∩ γθ. Hence maxµ = µθ = minµ, and µ is
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constant on M . The remaining principal curvatures ν, ρ, σ, τ are constant on M , because

the CMC and CLC conditions provide four relations among the six principal curvatures.

This completes the proof of Theorem 1.1 (iv). □
Remark 7.11 : For λ1 = cot θ1 where θ1 = π

12 +θ, −
π
12 < θ < π

12 , the scalar curvature

is given in [41] p.147,

Rθ = 36m(m− 1)(1 + cot2(6θ1)).

In the minimal case this becomes

R = 36m(m− 1).

Thus the minimal isoparametric hypersurface is scalar flat if m = 1, and scalar positive

if m = 2.

8. Problems

Finally, we propose some problems based on the above results :

Problem 1. If a closed minimal (or CMC) hypersurface M with g = 4 has constant

scalar curvature (CSC), is M Dupin?

This conclusion is weaker than isoparametric, but if the answer is affirmative, it

implies Chern’s conjecture true for g = 4 via Theorem 1.1 (ii).

Problem 2. If a closed minimal (or CMC) hypersurface M with g = 4 has constant Lie

curvature (CLC), is M Dupin?

If so, M is isoparametric via Theorem 1.1 (iii).

Problem 3. If a closed minimal (or CMC) hypersurface M with g = 6 has CSC, is M

Dupin with constant Lie curvatures?

It seems unlikely, but if it is true, it implies Chern’s conjecture holds for g = 6 via

Theorem 1.1 (iv).
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