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Abstract

In this paper, we define a new concept of Noetherian commutative
rings which stands between Gorenstein and Cohen-Macaulay proper-
ties. We show that this new property keep hold under common opera-
tions of commutative rings such as localization, polynomial extension
and under mild assumptions, flat extension, tensor product, Segre
product and so on. We show that for Schubert cycles, the Ehrhart
rings of the stable set polytopes of cycle graphs and perfect graphs,
this new concept is close to Gorenstein property.
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1 Introduction

There is a hierarchy of commutative Noetherian local rings.

regular = complete intersection
= Gorenstein = Cohen-Macaulay = Buchsbaum.

A Cohen-Macaulay rings was originally defined as a Noetherian ring which
satisfy the unmixedness theorem. Macaulay showed that the unmixedness



theorem holds for polynomial rings over a field and Cohen showed that the
unmixedness theorem holds for regular local rings. In old days, Cohen-
Macaulay rings were sometimes called semi-regular rings. Further, there are
many situations that rings under consideration is Cohen-Macaulay. There-
fore Cohen-Macaulay rings are a platform for many theories.

On the other hand, the notion of Gorenstein rings was defined by Bass
[Bas]. A Gorenstein local ring is by definition a commutative Noetherian local
ring whose self injective dimension is finite. A Gorenstein ring is a Cohen-
Macaulay ring whose parameter ideal is irreducible and has very beautiful
properties especially concerning symmetry of related objects such as syzygies
and dualities.

In pursuing the study of Gorenstein and Cohen-Macaulay rings, many re-
searchers felt that there is a rather large gap between Gorenstein and Cohen-
Macaulay properties. Thus, there were attempts to define notions between
Gorenstein and Cohen-Macaulay properties and fill this gap. The first one
is the level property defined by Stanley [Stal]. However, the level property
can be defined only for semi-standard graded rings over a field.

After that, the almost Gorenstein property [BF, GMP, GTT] and the
nearly Gorenstein property [HHS] were defined. However, there are few rings
that are non-Gorenstein but almost or nearly Gorenstein.

In this paper, we define a new notion, called canonical trace radical (CTR
for short) property, which lies between Gorenstein and Cohen-Macaulay
properties. We define a Cohen-Macaulay local ring to be CTR if it ad-
mits a canonical module and its trace ideal is a radical ideal. We show that,
under mild assumptions, CTR property is preserved or reflected by familiar
operations on Noetherian rings, such as localization, flat extension, tensor
product, Segre product and some others. We also show that in some com-
binatorial rings, the combinatorial property corresponding to CTR property
is weaker than but is close to the combinatorial property corresponding to
Gorenstein property.

Recently, Esentepe [Ese| treated the radical property of the trace ideal
of the canonical module of a Cohen-Macaulay ring in relation to Auslander-
Reiten conjecture.

This paper is organized as follows. In §2, we establish notation and termi-
nology used in this paper and recall some basic facts, especially the trace of
a module. In §3, we define the canonical trace radical (CTR for short) prop-
erty and show under the following ring operations, with sometimes additional
assumptions, CTR property is retained: localization, flat extension, polyno-
mial extension, completion, division by a regular sequence, tensor product
and Segre product.

In §84 and 5, we state criteria of CTR property for certain classes of rings



which motivated us to define CTR property. In §4, we deal with Schubert
cycles, i.e. the homogeneous coordinate rings of the Schubert subvarieties of
Grassmannians: let R be a Schubert cycle. Then by [BV, §8], it is known that
R is a Cohen-Macaulay normal domain and there are height 1 prime ideals
Py, Py, ..., P, such that the divisor class group CI(R) is generated by cl(F),
A(Py), ..., cl(P) and !_, cl(P;) = 0 is the only relation between them. Let
Sty kicl(P;) be the canonical class of CI(R), k = max{x; : 0 < i < t} and
k' =min{k; : 0 < i < t}. Then k — £’ is independent of the representation
of the canonical class above. It is known that R is Gorenstein if and only if
k — k' = 0. We show that R is CTR if and only if x — ¥’ < 1. See Theorem
4.3.

In §5, we deal with the Ehrhart ring of the stable set polytope of a cycle
graph: let R be such a ring. It is known that R is Gorenstein if and only if
the length n of the cycle is even or less than 7. We show that R is CTR if
and only if n is even or less than 9. See Theorem 5.2.

Finally in §6, we state a necessary condition that the Ehrhart ring R of
the stable set polytope of a perfect graph G is CTR: set k = max{| K| : K is
a maximal clique in G} and &' = min{| K| : K is a maximal clique in G}. It
is known that R is Gorenstein if and only if £k — &' = 0. We show that if R
is CTR, then k — k' < 1. See Proposition 6.2.

2 Preliminaries

In this section, we establish notation and terminology used in this paper. For
unexplained term of commutative algebra, we consult [Mat] and [BH].

All rings and algebras are assumed to be commutative with identity ele-
ment and Noetherian. We denote the set of nonnegative integers, the set of
integers, the set of rational numbers and the set of real numbers by N, Z, Q
and R respectively.

For a set X, we denote by | X| the cardinality of X. For sets X and Y, we
denote by X \ Y the set {z € X : x € Y'}. For nonempty sets X and Y, we
denote the set of maps from X to Y by Y. If X is a finite set, we identify
RX with the Euclidean space RX!. For f, fi, f» € R¥ and a € R, we define
maps fi £ fo and af by (fi + f2)(x) = fi(z) £ fo(x) and (af)(x) = a(f())
for x € X. Let A be a subset of X. We define the characteristic function
xa € RY of Aby xa(x) =1 for x € A and ya(z) =0 for z € X \ A. For a
nonempty subset 2~ of R¥, we denote by conv.Z” the convex hull of .2 .

Next we fix notation about Ehrhart rings. Let K be a field, X a finite
set and & a rational convex polytope in R¥, i.e. a convex polytope whose
vertices are contained in Q%. Let —oco be a new element with —oco & X



and set X~ := X U{—o00}. Also let {T,},cx- be a family of indeterminates
indexed by X . For f € Z* ", we denote the Laurent monomial [], - TI®
by T7. We set degT, = 0 for x € X and deg7_., = 1. Then the Ehrhart
ring of & over a field K is the N-graded subring

K[T!: f € Z¥, f(—o0) > 0, ﬁf{x € 7

of the Laurent polynomial ring K[TF! : z € X 7], where f|x is the restriction
of f to X. We denote the Ehrhart ring of & over K by Ex[Z]. If X is a
poset, we define the order on X~ by —oo < z for any x € X.

Let R be a ring. For p € Spec(R), we denote by x(p) the quotient field
R, /pR, of R/p. For an ideal I of R, we denote by min(/) the set of minimal
over primes of I. For a ring R and a matrix M with entries in R, we denote
by I;(M) the ideal of R generated by t-minors of M.

An N-graded ring R = @, R» is said to be an N-graded K-algebra if
Ry = K. An N-graded K-algebra R = @, . R» is said to be standard graded
if R = K[R;]. For an N-graded ring R, a greded R-module M and m € Z,
we denote by Ms,, the graded R-submodule €, ., M, of M. When R is a
Cohen-Macaulay local ring with a canonical module or an N-graded algebra
over a field, we denote by wg, the (graded) canonical module of R. If R is an N-
graded algebra and wg is the canonical module of R, — min{m : (wg),, # 0}

is called the a-invariant of R and denoted by a(R). See [GW]. For N-graded

K-algebras RV, ..., R(™ we denote by R4 - #R™ the Segre product
@D, R @ @R of RW, ... R
Let R = @,y Rn be a standard graded K-algebra, where K is a field.

We say that R is level if the graded canonical module wg is generated in
one degree. If Hompg(wg, R) (whice is a graded module. See [GW].) is
generated in one degree, we say that R is anticanonical level. Level and
anticanonical level properties are independent, see [Pag, Miyl, Miy2]. We
denote Hompg(wg, R) by wy'.

Now we recall the following.

Definition 2.1. Let R be a ring and M an R-module. We define the trace
of M denoted by trg(M) by

trp(M):= > (M)

peHomp (M,R)
If R is clear from context, we omit the subscript R and denote tr(M).

It follows from the definition, the following.



Lemma 2.2. Let R be a ring and M an R-module. Then trg(M) is the
image of the canonical map

Homgr(M,R)@ M — R, f®m— f(m).

In particular, if M s a finitely generated R-module and S is a flat R-algebra,
then trg(M ® S) = trgr(M)S and therefore for p € Spec(R), trg,(M,) =
tI‘R(M)p.

Flat extension part of this lemma is shown in [HHS, Lemma 1.5 (iii)].
Further, if I is an ideal of R and contains an R-regular element b, then
Hompg(I,R) = {x € (1/b)R : xI C R} C Q(R), where Q(R) is the total
quotient ring of R, and therefore, trr(I) = I{x € (1/b)R : I C R}. See the
proof of [HHS, Lemma 1.1].

Let R be a normal domain. For divisorial fractionary ideal I of R and
n € Z, we denote by I™ the n-th power of I in Div(R). Note that if I is
a height 1 prime ideal of R and n > 0, then 1™ coincide with the n-the
symbolic power of I. Further, by the argument in the previous paragraph,
trr(l) = 1Y for any divisorial fractionary ideal I.

Next we state a tool to compute the trace of a canonical module which
is a generalization of [HHS, Corollary 3.2]. A homomorphism ¢: F' — G of
finitely generated free modules over a ring can be expressed by a matrix by
fixing bases of F' and G. Let M be such a matrix and ¢ a positive integer
with ¢ < min{rankF,rankG}. Then the ideal I;(M) is independent of the
choice of bases of ' and G. We denote this ideal by I;(¢).

Lemma 2.3. Let S be a Gorenstein local ring (N-graded ring over a field),
J a (homogeneous) ideal of S such that R = S/J is a Cohen-Macaulay ring.
Suppose that there exists a finite (graded) S-free resolution

0=F2 .. BF 3R-0

of R with h = dim S —dim R. Let G be a free R-module and ¢v: G — F;, ® R
a (graded) R-homomorphism with

¢4 FoR"S B ®R
is exact. Then trg(wg) = 1(¢).

Proof. Since wg = Ext (R, wg) = Ext%(R, S), we see that wg = Coker((p, ®
1)*). Therefore, by [HHS, Proposition 3.1], we see the result. O



3 Canonical trace radical rings

In this section, we define the notion of canonical trace radical rings (CTR
rings for short) and study basic properties of CTR rings. The reasons that we
think CTR property is close to Gorenstein property is shown in the following
sections. First we recall the following.

Fact 3.1. Let R be a Cohen-Macaulay local ring with canonical module wg.
Then R is Gorenstein if and only if trr(wgr) = R.

For the proof, see e.g. [HHS, Lemma 2.1].

Definition 3.2. Let R be a Cohen-Macaulay ring. If for any p € Spec(R),
R, has a canonical module wg, and trg, (pr) is a radical ideal, then we say
that R is a canonical trace radical (CTR for short) ring.

Since the unit ideal is a radical ideal, a Gorenstein ring is a CTR ring.
Further, it is evident from the definition that CTR property is kept by local-
ization.

By Lemma 2.2, we see the following.

Proposition 3.3. Let (R,m) be a Cohen-Macaulay local ring with canonical
module. Then R is CTR if and only if trg(wg) is a radical ideal.

Proof. “Only if” part is a direct consequence of the definition. We prove the
“if” part. Let p be an arbitrary prime ideal of R. By Lemma 2.2, we see that
trr, ((Wr)p) = trr(wr)p. Since wr, = (wr)p and trr(wg), is a radical ideal of
Ry, we see the result. O

Next we show a similar fact to the above proposition, which may be regarded
as a graded version of the above proposition.

Proposition 3.4. Let R be an N-graded Cohen-Macaulay ring over a field
K and wg the graded canonical module of R. Then R is CTR if and only if
trr(wg) is a radical ideal.

Proof. We first prove the “only if” part. Let m be the irrelevant maximal
ideal of R. Then (wg)m is the canonical module of R,,. Therefore, by as-
sumption and Lemma 2.2, trp(wg)m = trr, ((Wr)m) is a radical ideal. Since
trr(wg) is a graded ideal, every associated prime of trr(wg) is graded and
therefore contained in m. Thus, the radical property of trg(wg)n implies the
radical property of trg(wg).

Now we prove the “if” part. Let p be an arbitrary prime ideal of R. Take
a polynomial ring S with weighted degree over K and a graded surjective



K-algebra homomorphism S — R. Let P be the preimage of p. Also take a
minimal graded S-free resolution

0=F2% .. BF 3R-0

of R, a free R-module G and a graded R-homomorphism v such that
GLFoR™S F,_ ®R
is exact. Then
0= (F)p 247 Y (F)p — Ry — 0
is a (not necessarily minimal) Sp-free resolution of R, and

P ®1
Gy = (Fu)p ®s, Ry (enlg (Fho1)p ®sp Ry

is exact.

Since R is Cohen-Macaulay, it follows that AssR = AsshR and therefore
h =dim$S — dim R = dim Sp — dim R,. Thus, by Lemma 2.3, we see that
trg, (wr,) = 11(¢y). Since trg(wgr) = I1(¥) by Lemma 2.3 and trg(wg) is a
radical ideal, we see that

trr, (wr,) = 1i(Yp) = (L1(¢))p = trr(wr)y

is a radical ideal. O

By Propositions 3.3 and 3.4, we see that nearly Gorenstein rings are CTR
rings.
Next we consider the CTR property under the flat extension.

Proposition 3.5. Let (R,m) be a Cohen-Macaulay local ring with canonical
module and (R, m) — (S,n) be a flat local homomorphism. Suppose S/mS is
a Gorenstein ring. Then the followings hold.

(1) If S is CTR, then so is R.

(2) If R is CTR and for any p € min(trg(wg)), Sp/pSy = Kk(p) ®r S is a
reduced ring, then S is C'TR.

Proof. First note that S is Cohen-Macaulay and wg ® S is the canonical
module of S. See [Mat, Theorem 23.3 Corollary] and [BH, Theorem 3.3.14].
Therefore, by Lemma 2.2 we see that trg(ws) = trr(wg)S.



(1) Since the natural map R/trr(wgr) — S/trr(wg)S = S/trs(ws) is
faithfully flat, R/trg(wg) is isomorphic to a subring of S/trg(wg). Since
S/trs(ws) is reduced by assumption, R/trr(wg) is also reduced.

(2) Let P be an arbitrary associated prime ideal of trg(wg) and set
p = PN R. Since (R/trg(wr)), — (S/trg(ws))p is a flat local homomor-
phism, depth(R/trg(wgr))y, < depth(S/trg(ws))p = 0 by [Mat, Theorem
23.3]. Therefore, p is an associated prime ideal of trgp(wg). Since trr(wg)
is a radical ideal, we see that p € min(trg(wg)) and (R/trg(wg)), = K(p).
Thus, since k(p) @r Sp is a localization of k(p) ®p S, we see by assumption
that (S/trs(wS))p = (S/tI’R(wR)S)p = (R/trR(wR))p XRpr Sp = /i(p) KRR SP is
reduced. Since P is an arbitrary associated prime ideal of trg(wg), we see
that trg(ws) is a radical ideal. O

Corollary 3.6. Let R be a ring and S = R[X1,...,X,] a polynomial ring
over R. Then S is CTR if and only if so is R.

Proof. First assume that S is CTR. Let p be an arbitrary prime ideal of
R. Set P = pS + (Xi,...,X,)S. Then P is a prime ideal of S and
R, = Sp/(Xi,...,X,)Sp. Since Sp admits a canonical module, Sp is a
homomorphic image of a Gorenstein ring. Therefore, R, is also a homomor-
phic image of a Gorenstein ring. Thus, R, admits a canonical module.
Since Sp/pSp is a localization of k(p)[X1, ..., X,], therefore is Gorenstein
and R, — Sp is a flat local homomorphism, we see by Proposition 3.5 that
R, is CTR. Since p is an arbitrary prime ideal of R, we see that R is CTR.
Next we assume that that R is CTR. Let P be an arbitrary prime
ideal of S and set p = P N R. Then Sp/pSp = k(p) ®gr Sp is a lo-
calization of k(p)[X1,...,X,] and therefore Gorenstein. Further, for any
q € min(trg, (wg,)), £(q) @r, Sp is a localization of £(q) ¥, S = Kk(q) QS =
k(q)[X1,. .., X,] and therefore is reduced. Thus, by Proposition 3.5, we see
that Sp is CTR. Since P is an arbitrary prime ideal of S, we see that S is
CTR. O

Next consider the CTR property under completion.

Proposition 3.7. Let (R,m) be a Cohen-Macaulay local ring with canonical

module and R the completion of R with respect to m. Then the followings
hold.

(1) If R is CTR, then so is R.

(2) If R is a Nagata ring (pseudo-geometric ring in Nagata’s terminology)
and CTR, then R is also CTR.



Proof. Since R/mR = R/m is a field, (1) follows from Proposition 3.5. For
(2), note that for any p € Spec(R), R/p is analytically unramified, i.e.
(E/?) is reduced. See [Nag, Theorem 36.4]. Therefore, (R/trgr(wg))” is
reduced, since trg(wg) is a radical ideal. Since ﬁ/trﬁ(wﬁ) = R/trp(wr)R =
(R/trr(wr))", we see that trgp(wg) is a radical ideal of R. O

Next we consider the CTR property under the quotient of an ideal gen-
erated by a regular sequence.

Proposition 3.8. Let (R,m) be a Cohen-Macaulay local ring with canon-
ical module or an N-graded algebra over a field with (irrelevant) mazximal
ideal m. Suppose that x1, ..., T, € m is a (homogeneous) reqular se-
quence with xy, ..., x, € trg(wg). Set R = R/(xy,...,x.)R. Then
trp(wg) = trr(wr)/(z1,...,2.)R. In particular, R is CTR if and only if

so 1s R.

Proof. Localizing by m, we can reduce the N-graded case to the local case.
First note that wy = wr/(1,...,2,)wr = wg ®r R. See [BH, Theorem
3.3.5]. By [HHS, Lemma 1.5 (ii)], we see that

trp(wr)R C trg(wp ® R) = trg(wg).

On the other hand, let M be an arbitrary maximal Cohen-Macaulay R-
module and 2z’ an R-regular element with 2’ € trg(wg). Then by [DKT,
Theorem 2.3], we see that 2’Exty(M, R) = 0. By considering the long exact

sequence induced by 0 — M M M /x'M — 0, we get the following
exact sequence.

ExtlL(M, R) % ExtL (M, R) — Ext%(M/2'M, R).

Since #'Extp(M, R) = 0 and Ext%(M/2'M, R) = Ext}%/m,R(M/x’M, R/2'R)
(see, e.g. [BH, Lemma 3.1.16]), we see that anngz(Extp(M,R)) D
annR(Ext}%/m,R(M/a:’M, R/x'R)). Therefore, by [DKT, Theorem 2.3], we see
that trp(wr)(R/2'R) D trr/wr(wr/wr). Using this fact repeatedly, we see
that

trp(wr)R D tre(wg).

Therefore,

trp(wg) = trr(wr) R = trr(wr)/(z1, ..., 2,)R.
In particular, trg(wg) is a radical ideal if and only if so is trz(wg). O

Next, we consider the behavior of CTR property under the tensor product.
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Proposition 3.9. Let RY and R® be N-graded K-algebras, where K is a
field and set R = R ®@x R?).

(1) If R is CTR and trpe) (wre)) contains an R(Q)-regular element, then
RW s CTR.

(2) If RY is Cohen-Macaulay and (R /trpe (wre ) @k RE™) is reduced
fori1=1,2, then R is CTR.

Proof. First note that by [Mat, Theorem 23.3 Corollary|, R is Cohen-
Macaulay if and only if both R and R® are Cohen-Macaulay and by [HHS,
Proposition 4.1 and Theorem 4.2], it holds that trr(wg) = trzw (Wrw)R N
tI‘R(z) (wR(z) )R

We first prove (1). Take an R®)-regular element a from trpe (wWre ).

Since
0— R® % RO

is exact, we see that
0— R(l)/trR(1)<WR(l)> & R(Q) 1@;1 R(l)/trR(l)(wR(l)) & R(2)

is also exact. Since R /trpo) (wpa) @ R® = R/trpa) (wra) )R, we see that
1®a € Ris an R/trpa (wra)R-regular element of R. On the other hand,
since 1 ® a € trpe) (Wre )R, we see that

trp(wp)R[(1®a) "N R
(tI"R(1) (WR(I))R N tI‘R(z) (wR(z))R)R[(l X a)_l] N R
= trR(1)(wR<1))R.

Thus, trpm (wro )R is a radical ideal since R is CTR.

Since RY — R, x — z®1 is a faithfully flat homomorphism, we see that
trp) (Wry) = trrm (Wpa ) RNRM and therefore tr ) (wro) ) is a radical ideal
of RW.

Next, we prove (2). Since trg(wg) = trzm (W )R N trpe) (Wre) )R, it is
enough to show that R/trgzu (wgae )R is a reduced ring for i = 1,2. However,

R/trgo (wro) R = RY [trpe (wpo ) © RO
and the right hand side is assumed to be reduced, we see the result. O

Remark 3.10. In the situation of Proposition 3.9 (1), if R® is reduced,

then for any p € Ass(R?), R,EQ) is a field and therefore Gorenstein. Thus
trpe (Wre) ¢ p. Since p is an arbitrary associated prime of R, we see
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that trze) (wre) ) contains an R(Q)—regular element. On the other hand, if the
assumption of Proposition 3.9 (2) is satisfied, then RV and R are reduced
CTR rings. Conversely, if R and R® are reduced CTR and K is a perfect
field, then R /trp) (W) @x RE™ is reduced for i = 1,2 by Lemma 3.12
below.

By the above remark, we see the following.

Corollary 3.11. Let K be a field and let RV and R® be reduced N-graded
K-algebras. Then the followings hold.

(1) If RY @ R® is CTR, then both RV and R® are CTR.

(2) If K is a perfect field and RV and R® are CTR, then RY @ R?) is
CTR.

Next we consider the behavior of CTR property under the Segre product.
First, we state the following fact which is a direct consequence of [Mat,
Theorem 26.3].

Lemma 3.12. Let K be a perfect field and let RV and R® be reduced K-
algebras. Then RY @xg R® is a reduced ring.

Next we state the following.

Lemma 3.13. Let K be a perfect field and let RV, ..., R™ be N-graded
reduced K-algebras and I; a graded radical ideal of R® for 1 <i < n. Then
Li# - #1, is a radical ideal of RW4 ... #R™)

Proof. Since RW#R®is a subring of RY @k R®), we see that RV#R® ig
a reduced ring by the previous lemma. Therefore, by induction on n, it is
enough to prove the case where n = 2.

Since
0—1 —RY - RY/I, -0

is exact, we see that
0— L#R® = ROLR® — (RW/T)#R® — 0

is exact. Since (R /I,)#R® is a subring of (R /I,)® Ry and (RW /1,)® Ry
is reduced by Lemma 3.12, we see that (R /I))#R® is a reduced ring.
Therefore, [;#R® is a radical ideal of RV#R?) . We see by the same way
that RW41, is a radical ideal of RW#R?),

Since I1#1, = (L#R®) N (RW41,), we see that I #1, is a radical ideal
of RO#R®, O
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Next we note a basic fact about non-zero-divizor and Segre product.

Lemma 3.14. Let K be a'{ield, RW and R® N-graded K-algebras, d a
positive integer and x; € R((; a non-zero-divizor of R® for i = 1,2. Then
T1#xo is a non-zero-divizor of RV#RA).

Proof. 1t is enough to show that for any non-zero homogeneous element « €
RM#R®P it holds that (x1#x)a # 0.

Set degay = d', a = Zle ziftw;, z; € RE;), w; € Rfi) 21, ..., Z are
linearly independent over K and w; # 0 for 1 < ¢ < /. Then ¢ > 1 since
a # 0. Further, (z1#z)a = Zle 12, F# w5, X121, ..., T12¢ are linearly
independent over K and xow; # 0 for 1 < ¢ < ¢. Therefore, (x1#xs)a #
0. O

Now we show the following.

Proposition 3.15. Let K be a perfect field and let RV, R®, .. . R®
be standard graded K-algebras. Suppose that R is a reduced CTR ring,
dim R® > 2, a(R%W) < 0, R contains a linear R -regular element and R
is level and anticanonical level for any i. Set a; = a(RW) and b; = min{m :
(w};é))m # 0} for 1 <i < n. Suppose also that a; > a; and b; < by for 2 <
i < n. Then the Segre product R = RW4 ... #R™ is also a reduced CTR
ring, level and anticanonical level, a(R) = a;, min{m : (wp')m # 0} = b
and R contains a linear R-reqular element.

Proof. By induction on n, it is enough to prove the case where n = 2, since
by [GW, Theorem 4.2.3], dim(RMW#R?) > 2. By [GW, Theorem 4.2.3],
RM#R®? is Cohen-Macaulay and by [GW, Theorem 4.3.1] and [HMP, The-
orem 2.4], we see that wr = wro) Fwre and W;zl = w;}l)#w};}m. Note the
assumption of [HMP, Theorem 2.4] that K is an infinite field is used only for
the existence of linear non-zero-divizor.

Since wg) is generated by (Wrt))—a,, Wre is generated by (wpe) )_q, and
(2)

—ay < —ay, we see that wg is generated by (wr) )—a, @(Wg@) ) —ay Ry —q, - Sim-

ilarly, we see that wy' is generated by (wj_%(ll))bl ® (w;}Q))bQRé?le. Therefore,

trr(wr) is generated by (wrm))—o (%;(11))191 ® (Wr)-as (W;z(lm)bzRg)—aﬁbl—bz-

Since by — a1 > by — as, we see that

trR(wR) = trR(l)(wR(l))#trR(2)<wR(2>>2b1—a1
= trpo (me )#trR(z) ((.UR(2) )

Therefore, by Lemma 3.13, we see that trg(wg) is a radical ideal, by Lemma
3.14, we see that there is a linear R-regular element and by Lemma 3.12, we
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see that R @ R® is a reduced ring and therefore R, a subring of R @ R
is also a reduced ring. Further, since wrp = wrm #wre is generated in degree
—aq and w;}l)#w};é) is generated in degree by, we see that R is level and
anticanoncal level, a(R) = a; and min{m : (wz"), # 0} = b;. O

In general, the converse of this proposition does not hold. See Example 3.16.

As a special case of Proposition 3.15, if R®, ..., R™ are Gorenstein and
a; < a(RW) < by for 2 < i < n, then ROFERD# ... 4#RM is a CTR ring.
Note that in this case, we do not need to assume that R is a reduced ring,
since trr(wr) = tTRw (Wro )#RP in the equation above.

We state an example of a pair of graded rings one of it is not CTR, but
their Segre product is. First we recall the definition of order polytopes. Let
P be a poset. The convex polytope

ng(x)glforanyxeP,:cgy:}
fl@) = fy)

is called the order polytope of P and denoted by &(P). See [Sta2]. Note
that we reverse the inequality of f(z) and f(y) above from [Sta2] in order to
make the Ehrhart ring of &(P) over a field K is identical with the Hibi ring

Rx[-#(P)| defined by Hibi [Hib|, where . (P) is the set of poset ideals of P.
For n € 7Z, we set

conv{fE]RP:

v(x) > n for any maximal element z
TW(P):={veZ :of Pandif x <y in P, then v(z) > 3,
v(y) +n
where x < y means that y covers x, i.e. * < y and there is no z € P~ with
x < z <y. Then by [Miyl, Theorem 2.9], it holds that

(n) _ v
Wiy = D KT
for any n € Z.

Example 3.16. Let K be a perfect field and let P, P, and P; be posets
with the following Hasse diagrams.

a
as bl
by
Pl = as PQ = P3 =
a1
ay e
as
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Then Ex[O(P)] is CTR. In fact, let 7" be an arbitrary monomial in

tr(wpyo(py)), Wwhere v € T©(P;). Then by [MP, Theorem 4.5], we see that
viay) <wv(az) <wv(as). Set Iy = {b; : v(b;) > v(a1)}, I = {c; - v(e;) > v(as)}
and define ¢ and n € Z"~ by

_Z.a T = ay,

_ _i_l—i_Xh(:U)? $:bi,

C(x) = —1— 3+ xp,(x), T = ¢,
—6, Tr=—00

and 7 = v — (. Then it is verified by hand calculation that ( € TV (P,)
and n € TW(P). Since v = 5+ ¢, we see that T € tr(wg,(g(p,)). Thus, we
see that Ex[0(P;)] is a CTR ring. Further, we see by [Miyl, Theorems 3.11
and 3.12] that Fx[O(P,)] is level and anticanonical level, a( Ex[0(P;)]) = —8
and min{m : (ng[?ﬁ pypm # 0} =

Since Fx[O(Py)] and Ex|[O (Pg)] are 1somorphic to polynomial rings with 6
and 8 variables respectively, we see that Ex[0(F,)] and Ex[0(Ps)] are Goren-
stein rings with a(Ex[0(P,)]) = —6 and a(Ex[0(Ps)]) = —8. Therefore, we
see by Proposition 3.15 that

Ex[O(P)|#Ex[0(P)|#Ex[0(Ps)] = Ex[0(PL U Py U P3)]

is a CTR ring. However, by [HMP, Theorem 2.7], the trace of the canonical
module of Ex [0(P,)|#Ex|O(Ps)] is the square of the irrelevant maximal ideal
of Ex[O(Py)|#FEx|[O(Ps)]. Therefore, Ex|O(P2)]|#Ex|O(Ps)] is not CTR.

4 CTR property of Schubert cycles

In this section and next, we state criteria of CTR property of certain classes
of rings which motivated us to define CTR property. First in this section,
we study Schubert cycles.

Before going into the details, we first establish notation and recall basic
facts. Let K be a field. For the terms concerning algebras with straightening
law (ASL for short) we consult [BV]. In particular, if R is a graded ASL
on a poset Il over K, ) a poset ideal of Il and I = QR, we say that ) or
I is straightening closed if for any incomparable elements v, £ € €1, every
standard monomial y; appearing in the standard representation

vE = Zcmi, ¢; € K\ {0}
has at least 2 factors in 2. By [DEP, Proposition 1], we see the following.
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Lemma 4.1. Let R be a graded ASL over K on a poset I1, Q2 a straightening
closed poset ideal of I1 and I = QQR. Then for any positive integer n, I™ is an
ideal of R generated by {&1 -+ &, : & € Q for1 <i<mn, & <--- <&} Also,
I" is a K-vector subspace of R with basis {& ---& : & € 11 for 1 < i < ¢,
S <<, >n, &, 6 € QL

Since () is a poset ideal, &, € ) implies &, ..., &, € Q. However, we
expressed the above lemma by the above form for convenience of later use.

For integers m and n with 1 <m <n we set I'(m x n) := {[a1, ..., an] :
a; € Zfor1 <i<m,1<a <- < a, <n} and define the order on
['(m x n) by

[at, ... am] < [b1y...,0n) A g, < b for 1 <i<m.

Then I'(m x n) is a distributive lattice whose join, denoted by U, and meet,
denoted by M, are

[ar, ... an) U by, ... by = [max{ay, b}, ..., max{am, b}
and
a1, ... an) T b1, ..., by] = [min{ay, b1}, ..., min{a,,, by, }].

Further, for v € I'(m x n), we set I'(m x n;y) :={d € I'(m xn) : 6 > ~v}.
Then I'(m x n;7) is a sublattice of I'(m x n).

For an m x n matrix M and v = [ay,...,a,] € I'(m X n), we denote by
Y OF [a1, ..., a4y the m-minor of M consisting of columns ay, ..., a,.

Let m and n be integers with 1 < m < n, V an n-dimensional K-vector
space and X = (X;;) an m X n matrix of indeterminates. It is known that
K-subalgebra G(X) of the polynomial ring K[X;; : 1 <i <m, 1< j < nj
generated by the maximal minors of X is the homogeneous coordinate ring
of the Grassmannian of the m-dimensional subspaces Gr,,(V') of V. Further
G(X) is an ASL on I'(m x n) over K by the identification I'(m x n) 3 v <
vx € G(X). See [BV, §4] for details.

We introduce the column degree, denoted by cdeg; by setting

_J1 (=7,
Cdengkg = { 0 / 7&]

for 1 < j < n. Further, we define grading of G(X) by deg~y = 1 for any
v € T'(m x n). Note that dega = (1/m) > "_, cdeg;a for any homogeneous
element a € G(X) in the N"-grading defined by column degree. Note also
for any incomparable elements v, £ € I'(m x n) the standard representation
of v¢ is of the following form.

vE = ZC{Y@'@', ci € K\ {0}, <6
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cdeg,v + cdeg;§ = cdeg;v; + cdeg;0;

for 1 < j <n and for any i. See [BV, §4] for details.

Now let 0 = Vo Cc Vi C --- C V, = V be a complete flag of V. For
integers by, ..., by, with 1 <b; < -+ < b,, < n, set Qby,...,by,) ={W €
Grp,, (V) : dim(WNV,,) >ifor 1 <i<m}. This is a subvariety of Gr,,(V)
called the Schubert subvariety of Gr,,(V). Set a; := n — by_;41 + 1 for
1 <i<mand~:=[ay,...,a,]. Then the homogeneous coordinate ring
of Qby,...,bn) is G(X)/(6d € T(m xn): 3§ # 7) and called the Schubert
cycle. By [DEP, Proposition 1.2], G(X)/(d € I'(mxn) :d # ) is an ASL on
I'(mxn)\{d € I'(mxn):6 2 v} =T(mxn;y). Therefore the homogeneous
coordinate ring of Q(by, ..., b,) is an ASL over K on I'(m x n;~). We denote
this ring by G(X; 7). See [BV, §1.D] for details. Further G(X;~) is a normal
domain by [BV, Theorem 6.3].

Now we fix v = [ay,...,a,] € T'(m x n) and consider the canonical
class of G(X;v). If v = [n —m + 1,...,n], then G(X;~) is isomorphic
to a polynomial ring with 1 variable over K. Therefore, we assume that
v # [n—m+1,...,n] in the following. We first decompose 7 into blocks and
gaps as in BV, §6]: [a1,...,an] = [Bo, Brs- -, Bis1], Bo = a1, a9, ..., aka),
pr = A(1)+15 Ak(1)+25 - -+ 5 Ak(2)5 -« - By = Ak(t)+1s Ak(t)+25 « - - » Ak(t+1), Biy1 =
Alo(t41) 415 Ue(t41)425 - - - N Qi1 — a; = 1 if k(7)) < j < k(i + 1) for some @
with 0 <@ <t 4 1, where k(0) := 0, ar@uy41 — arey > 2 for 1 <i <t +1,
where a,,.1 := n + 1. Note that £;.; may be an empty block: B, = 0 if
and only if a,, < n. This part is different from [BV] but this makes the case
dividing simpler. We also define symbols of gaps between blocks by setting
xi={j€Z: agiv1) < J < ak(i+1)+1} for 0 <i<t.

Next, we set ; := [Bo, B1,-- -, Bi-1, lo(i)+15 Qhe(i)+25 - - - 5 Vk(i+1)—15 Ch(i+1) T
L Bis1, s Bea], Qi :i={0 € D(m x n;v) : 0 2 G} (=T(m x n;y) \ I'(m x
n; () and J(z;¢) = QG(X;7) for 0 < i < ¢. Then G(X;v)/J(z;¢) =
G(X; () is an integral domain with dim(G(X;v)/J(z; () = dim G(X;v)—1.
In particular, J(z;¢;) is a height 1 prime ideal of G(X;v) for 0 < i < t.
Further, vG(X;7) = i—, J(2;¢). See [BV, §§5 and 6]. Note that ©; =
{[b1, ..., bn) € T(m x n;7) : bgiy1) = ag@y1y} for 0 < i <t

Set i .
ko= )18+ Ixl
=0 =i

for 0 <i <t, k:=max{r; : 0 <i <t} and £ := min{k; : 0 < i < t}. Then
by [BV, Theorem 8.12 and Corollary 8.13], we see the following.
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Fact 4.2. The class
Z ricl(J(x; )

in the divisor class group Cl(G(X;’y)) is the canonical class of G(X;v) and
G(X;7) is Gorenstein if and only if Kk — k' = 0.

Now we state the characterization of CTR property of G(X;~).

Theorem 4.3. With the above notation, G(X;v) is CTR if and only if
k—r <1.

Proof. By Fact 4.2, G(X;7) is Gorenstein if and only if k—x" = 0. Therefore,
we may assume that k — k' > 1.

Set J; = J(x;¢;) for 0 < i <t. Then by [BV, Corollary 9.18], we see that
Ji(g) = J! for any positive integer £ and 0 < i < t. Set also a = ﬂﬁzo J
Then by Fact 4.2, we see that a is a canonical module of G(X;~) up to shift
of degree and tr(a) = aal"" is the trace of the graded canonical module
of G(X;7v). (In fact, a is the graded canonical module of G(X;~) by [FM,
Proposition 3.7], but we do not use this fact.)

First we consider the case where k — k' = 1. Set

L = {i:0<i<tk =k} and
L = {i:0<i<t kK =~}

Then I, UL, = {0,1,...,t}. Since a = (_,J;* and Q; is straightening
closed for any i by [BV, Lemma 9.1], a is generated by {& -+ & : £ > &,
&, o, & eT(mxmny), & < -+ <&, &,...,& € Q; for i € I; and
&1y &1 € Q; for i € I} as a K-vector subspace of G(X;~) by Lemma
4.1. Since Ni_, Qi = {7}, we see that a = /yﬁil(ﬂie[l J;). Note that
is an ideal of G(X;7) generated by (7,

On the other hand, since at=" = }_, J ) and yG(X;7) = Ny i, we

see that y"a=) = NL_, Jf i) = MNics, Ji- Therefore, 7*a"Y) is generated
by (Vies, 2 as an ideal of G(X;7). Therefore,

yitr(a) = a(y"aY) = () I )

i€ly

S i€l
and we see that
ytr(a ﬂ J;) ﬂ J;).
icly i€ls

Thus, ytr(a) is generated by {£€' 1 & € (;cp, & € ey, SUi}-
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Consider the standard representation of £’ for arbitrary § € [, € and
§" € e, - First note that {M¢" € ﬂﬁzo Q; = {7} since Q; is a poset ideal
for any ¢. Thus, £ M & = ~. Suppose that

55/ = Z cooveBe
1

is the standard representation of £’ in G(X;~v). Then, since {ME = v <
ap <&, &, ay =~ for any £. Moreover, since

cdeg;y + cdeg;fy = cdeg;€ + cdeg;&’ = cdeg;€ ME 4 cdeg;& LE

for any j, we see that 5, = £ LU &’ for any ¢. Therefore, the standard repre-
sentation of ££ is of the following form.

¢ =cy(Eue), ceK,c#£0.

(In fact, ¢ = 1, but we do not use this fact.)
Now consider £ L&', Set k£(0) = 0 and

o; = [50, c. 7ﬁi72; ak(i_l)ﬂ, e ,ak(i)_l, ak(i)ﬂ, Ce ,ak(z’_t,_l), ak(i+1)+17 ﬁi+17 Ce 7ﬁt+1]
for 1 <i<tasin [BV, (6.8)],
O, :=T(m x n;y) \ T'(m x n;0;)

and J(z;0;) = ©;G(X;7v) for 1 <i <t. Then G(X;v)/J(x;0;) = G(X;0;)
is an integral domain and therefore J(x;0;) is a prime ideal of G(X;~) for
1 < ¢ <t. Note that

@i = {[bl, . ,bm] € F(m X Tl,’}/) : bk(z) < ak(i)ﬂ}

for 1 < ¢ < t. Further, it is easily verified that (;_1, (; < o; and therefore
Qifl, Q@ C @2 for 1 S 1 S t.
Set

I'={i:ieh,i—1e€el} and [":={i:i€,i—1¢€L}.

Since & € [y, i and & € (;¢y, Sk, we see that § € (e O and & €
MNicrur ©i- On the other hand, since

©; =A{[b1,....bn] €T(m X n;7) : ey < an@y+1},

we see that £ UE € Niepum ©i Thus, §UE € Niepupm J(x304). Since £
(resp. &) is an arbitrary element of [),c; €2 (resp. [;cp, $%), we see that

ytr(a) C ( ﬂ J(x;0;)).

el’'uI”

18



ThuS, tr(a) C miEI’UI" J(xv Ul)

Now consider the reverse inclusion. It is enough to show that for any
B € Niepur i, it holds that 73 € ~ytr(a). Set 8 = [by,...,by]. Set also
k(0) =0,

H = {jeZ:Fiel;k(i)<j<k(+1)]},
Hy = {j€Z:3i€Lik(i)<j<k(i+1)}, and
Hy = {k(t+1)+1,...,m}.

Note that Hz = () if and only if a,, < n and a; = b; for j € H;. We define
integers ¢y, ..., ¢ and ¢, ..., by

o= as, lfj € Hy U H;, J = aj, lfj € Hy U Hs,
T by, ifj € Ho, J bj, ifje€ H.

Here we show the following key fact.

Claim 4.3.1. It holds that ¢; < -+ < ¢y and ¢y < -+ < ..

We prove the claim ¢; < -+ < ¢,. Claim ¢} < -+ < ¢, is proved

similarly.

Ifj,j+1 S H1UH3, then Cj = aj < Qi1 = Cjy1 and 1fj,]+1 S HQ,
then ¢; = b; < bj41 = ¢j41. Assume that j € H; U Hs and j + 1 € Hy. Then
c; = a; < ajy1 < bjy1 = c¢j41. Finally, assume that j € Hy and j +1 €
H,UHs. Then j = k(i+1) for some i € I,. If i =¢, then j+1 € Hs and we
see that ¢; = b; < bj;1 = ¢j41. If ¢ <, then i € I, and ¢+ 1 € I;. Therefore,
1+ 1€ I. Since B S ®i+17 we see that ¢ = bk(i+1) < Ag(i+1)4+1 = Cj+1 and
the claim is proved.

By Claim 4.3.1, we see that [c1,...,cn], [, ..., c,] € T(m x n). Set
€ :=lc1,...,cn) and & = [¢],...,c,]. Then, since &, & > v, we see that
£, & € I'(m x n;y). Moreover, since cpp1) = apeeny for @ € I (resp.
Chiirny = ri+1) for i € ), we see that £ € [N, Qi (vesp. & € (igy, ).
Since £ M & =~ and £ UE = [, we see that the standard representation of
&€& is the following form.

(' =cyB, ceK,c#0.
Since € € (;¢y, Ji and & € (¢, Ji, we see that

B=cee e (1)) J) = ra).
i€l 1€ls
This is what we wanted to show and we see that tr(a) = (V,cpupm J (23 0%).

Since J(x;0;) is a prime ideal for any i, we see that tr(a) is a radical ideal.
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Next consider the case where kK — k' > 2. Since a = ﬂﬁ:o J, we
see that a is generated by {& & @ &,..., &, € Q for 0 < i < t}.
On the other hand, since y*a(~1 = ﬂfzo JF 0 y*a=l) s generated by
{& &oowr ¢+ &1y &omny € Q; for 0 < ¢ < t}. Therefore v*tr(a) =
a(y®a=) = (N_y JF) Nz, J7 ™) is generated by homogeneous elements
of degree 2k — k/. Thus tr(a) is generated by homogeneous elements of degree
k — K. In particular, v ¢ tr(a), since k — k' > 2.

On the other hand, by the above description, we see that v* € ﬂ:zo J
and v € N, JE% . Thus, we see that 42~ ¢ (Nizo T (Misy I =
v%tr(a), and therefore v*~* € tr(a). Thus, we see that tr(a) is not a radical
ideal. O

Remark 4.4. Ficarra et al. [FHST, Theorem 1.1] showed that if K is a field,
m and n are integers with 2 < m < n, X = (X;;) is an m X n matrix of
indeterminates and ¢ is an integer with 2 <t < m then

trR(wR) = [t—l (X)n_mR,

where R =K[X;; : 1 <i<m,1<j <n|/[(X). Since I;_1(X)R is a prime
ideal of R, we see that R is CTR if and only if n — m < 1. While by [BV,
Corollary 8.9] R is Gorenstein if and only if n —m = 0.

5 CTR property of the Ehrhart rings of the
stable set polytopes of cycle graphs

In this section, we establish a criterion of the CTR propety of the Ehrhart
ring of the stable set polytope of a cycle graph. For basic terminology and
facts of graph theory, we consult [Die].

Let G = (V,E) be a graph. A stable set S of G is a subset of V' with
no pair of elements in S are adjacent. () and {v} for any v € V are trivially
stable. We define the stable set polytope, denoted by STAB(G) of G by

STAB(G) := conv{ys € RV : S is a stable set of G}.

Next we state the following.

Definition 5.1. Let X be a finite set and £ € R*. For B C X, we set
EH(B) = 3 e (D).

We call a graph G a cycle graph if G consists of one cycle only, i.e.
V ={vg,v1,...,vn1}, E = {{vi,v;} 1 i—j =1 (mod n)} for some n with
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n > 3. A graph G = (V, E) is called a t-perfect graph if

0< f(v)<lforanyveV, ff(e) <1
STAB(G) ={ f € RY :for any ¢ € E and f7(C) < |C‘T_1 for
any odd cycle C' without chord

It is known that a cycle graph is t-perfect. See [Mah].
Let G = (V, E) be a t-perfect graph. For n € Z, set

pu(v) >nforany v e V, ut(K)+n <
p(—o0) for any maximal clique K in G

U™ = p e :and pt(C)+n < |C|T_1,u(—oo) for any
odd cycle C without chord and length
at least b

Since G is t-perfect, there are no cliques with size greater than 3, we see by
[Miy3, Remark 3.10] that

wEK[STAB @ KT*

petd™

for any n € Z.

Let G = (V, E) be a cycle graph. If the length of the cycle is even, then G
is a bipartite graph and therefore is a perfect graph whose maximal cliques
have size 2. Thus, by [OH, Theorem 2.1 (b)], we see that Ex[STAB(G)] is
a Gorenstein ring. Further, if the length n of the cycle is odd, then by [HT,
Theorem 1], Ex[STAB(G)] is Gorenstein if and only if n < 5.

Therefore, we assume in the following of this section that G = (V, E) is a
cycle graph of odd length n with n > 7. Set n =20+ 1, V = {vg, vy, ..., v}
and we consider indices modulo 20+1, E' = {{v;,v;} :i—j =1 (mod 2(+1)},
e; = {v;, viq1} for 0 < i < 2¢. Further, we denote by w the canonical ideal of
Ex[STAB(G)].

Set

p; = S5 KT*

pettd(0),
1(v3)>0 or pt(V)<lu(—oo)

for 0 <7 < 2¢. Then p; is a prime ideal of Ex[STAB(G)] and

Vir(w) = ﬂ P

by [Miy4, Theorem 3.1].
Now we state the following criterion of CTR property of Ex[STAB(G)].
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Theorem 5.2. Let G = (V,E) be a cycle graph of odd length n. Then
Ex[STAB(G)] is a CTR ring if and only if n < T7.

Proof. Set n = 2¢+1 as above. First we prove the “if” part. Suppose £ = 3,
W E U and T+ e ﬂ?io p;. Then by the proof of [Miy4, Lemmas 3.4 and
3.5], we see that T € tr(w). Therefore, we see that ﬂ?io p; C tr(w). Since

Vir(w) = ﬂ?ﬁo p;, we see that
tr(w) = tr(w)

and Ex[STAB(G)] is a CTR ring.
Next we prove the contraposition of “only if” part. Suppose that ¢ > 4
and define u € ZV~ by

(z) = 1 ifz € {vg,vy,...,09 9, —00},
ME) =3 0  otherwise.

Then, pu € U and pt(V) =€ — 1 < £ = fu(—00). Therefore, we see that
T € ﬂ?ﬁo p; = y/tr(w). We assume that p can be expressed as a sum of
elements in t4V and #4/Y and deduce a contradiction.

Suppose =1+ ¢, n € tUY and ¢ € U Y. Since n(z) > 1 for any
zeVand nt(V)+1 < In(—o0), we see that

n(—o0) > PETHW =3.

Similarly, since ((z) > —1 for any z € V and (*(V) — 1 < £{(—00), we see

that T
((—00) > [_ g_ -‘:—2.

On the other hand, since n(—o0) + ((—00) = pu(—o0) = 1, we see that
n(—o0) =3 and ((—o0) = —2.

Moreover, since 1(v;) +n(vip1) + 1 =n"(e;) +1 < n(—o0) = 3 and n(v;) > 1
for any ¢ and j, we see that n(v;) = 1 for any j. Thus,

0 ifx € {UQ,’U4,"' ,02z—2}>
—1 otherwise.

Therefore, (*(V) = —¢ — 2 and we see that

("(V)—1=—0—3> =20 ={((—00),
since ¢ > 4. This contradicts to the assumption that ¢ € t4™Y. Therefore,
we see that T" ¢ tr(w) and tr(w) is not a radical ideal. O
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6 A necessary condition for the Ehrhart ring
of the stable set polytope of a perfect graph
to be CTR

In this section, we state a necessary condition of an Ehrhart ring of the stable
set polytope of a perfect graph to be CTR, which shows that CTR property
is close to Gorenstein property. Let G = (V, F) be a perfect graph and set
k = max{|K| : K is a maximal clique of G} and ¥ = min{|K| : K is a
maximal clique of G'}.

By Chvatal [Chv, Theorem 3.1], we see that

STAB(G):{fGRV.f(fE)ZOfOT any z € V and f*(K)g}.

"1 for any maximal clique K of G

Further, by Ohsugi and Hibi [OH, Theorem 2.1 (b)], Ex[STAB(G)] is Goren-
stein if and only if £ — k" = 0. We recall notation and basic facts from [Miy3,
Remark 3.10]. For n € Z, we set

~ w(x) >nforany x € V and p*(K) +
QU™ = per’ q < p(—00) for any maximal clique K
of G

Then

for n € Z, where w is the canonical ideal of Ex[STAB(G)].
Here, we state a very easily proved but very useful fact.

Lemma 6.1. If z € V, n € gV, ¢ € g™V and (n+ ¢)(z) = 0, then
n(x) =1 and {(z) = —1.

Now we state the following necessary condition for Fx[STAB(G)] to be a
CTR ring.

Proposition 6.2. Let G = (V, E) be a perfect graph. If Ex[STAB(G)] is
CTR, then k — k' < 1.

Proof. We prove the contraposition of the proposition, so we assume that
k —k > 2. Let u be an element of Z"~ defined by

(z) = 0 ifzeV,
MET=Y 1 ifr = —oo.
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Then ;€ gi'” and therefore T# € Ex[STAB(G)]. Further, if we define 7,
C€ZYV by

1 ifreV, (-1 ifzeV,
n(ﬂf)—{k+1 ifr— 0o ond g(x)_{—k’—l if 7 = —o0,

then n € qUY, ¢ € ™Y and (k — k')p = n + ¢. Therefore,
(TH)** € tr(w).

On the other hand, if there are ' € gV and ¢’ € g™ with = 5/ +',
then n'(z) = 1 and ('(z) = —1 for any x € V by Lemma 6.1. Therefore,
n'(—o00) > k+1and {'(—o0) > —k" — 1. Thus,

1= p(=00) = 1f (=00) + ¢'(—00) > k= K = 2.

This is a contradiction. Therefore, T" ¢ tr(w) and we see that tr(w) is not a
radical ideal. ]

As the following example shows, the condition in the above proposition
is not sufficient.

Example 6.3. Let G = (V, E) be the following graph.
Y2 Y3

EVANEVAN

n T T2 T3 Ya

This is a comparability graph of a poset P whose Hasse diagram is

n T2 Ya
2 Y3
T T3

ie. G=(V,E),V =P, F={{z,w}:z,w € P,z < w}. In particular,
G is perfect. Further, max{|K| : K is a maximal clique in G} = 3 and
min{| K| : K is a maximal clique in G} = 2.

Define . € ZV~ by

1 if z € {z1, 29, 23},

w(iz)=4¢ 0 if z € {y1,y2,y3, Y},
2 if z = —o0.
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Then p € qU©.

We first show that 7" ¢ tr(w). Assume the contrary. Then there are
neqdV and ¢ € U 7Y with = n+¢. Then n(y;) = 1 and ¢(y;) = —1 for
1 <14 <4 by Lemma 6.1. Further,

1(=00) + ((—0)

|
=

(
n(x;) +C(z;) = plz)=1 forl<i<3,
C(z1) +¢y1) =1 < ((—00),
n(wi) +n(xz) +n(y2) +1 < n(—00),
((w9) +((23) =1 < ((~00)
and
n(xs) +nys) +nys) +1 < n(—00)
Therefore
4 = 2p(—o0)
= 2n(—00) + 2¢(—00)
> (C(z1) —2) + (n(z1) + n(x2) +2) + (C(x2) + ((23) — 1) + (n(23) + 3)
= n(z1) +n(x2) + nlzs) + ((v1) + ((z2) + ((23) + 2
= plz1) + p(z2) + plzs) + 2
= 5

This is a contradiction. Thus, we see that T ¢ tr(w).

Next, we show that T# € (/tr(w). Since G is a comparability graph of P,
STAB(G) = €(P) by [Chv, Theorem 3.1], where & (P) is the chain polytope
of P. See [Sta2] for the definition of the chain polytope. Therefore, by [MP,
Theorem 3.7], we see that T" € (/tr(w). In fact, by using the idea of the
proof of [MP, Theorem 3.7], we can construct 7 € qUW and ¢ € Y as
follows.

if 2 € {y1, Y2, Y3, ¥4},
if z € {z1, 22},

if Z = I3,

if 2 = —o0,

if z € {z1, 22},

C(2) = —1 if z € {z3,y1, Y2, Y3, Ya },
-2 ifz=—-0

1
2
n(z) = § 3
6
0

Then 7 + ¢ = 2u and therefore (T")? € tr(w).
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We end with the following.

Problem 6.4. Give a criterion of the Ehrhart ring of the chain polytope of
a poset to be CTR.
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