SMOOTH FANO VARIETIES WITH PSEUDOINDEX EQUAL TO
HALF OF THEIR DIMENSION

KIWAMU WATANABE

ABSTRACT. Let X be a complex smooth Fano variety of dimension n. Assume
that X admits a birational contraction of an extremal ray. In this paper, we
give a classification of such X when the pseudoindex is equal to %

1. INTRODUCTION

Let X be a complex n-dimensional smooth projective variety. We call a vari-
ety X Fano if the anticanonical divisor —Kx is ample. Fano varieties (with mild
singularities) are considered one of the three fundamental building blocks of alge-
braic varieties in birational geometry. Two important invariants arise in studying
smooth Fano varieties: the largest integer that divides —Kx in the Picard group of
X, which is known as the Fano indezx of X. The second is the minimum anticanon-
ical degree of rational curves on X, called the pseudoinder of X. The Fano index of
X and the pseudoindex of X are denoted by ix and tx, respectively. Historically,
smooth Fano varieties have been studied primarily from the perspective of the Fano
index. It is known that ix < n + 1 and that smooth Fano varieties with ix > n — 2
can be classified (see, for example, [23]). By contrast, addressing similar problems
for the pseudoindex is considerably more challenging. For instance, it follows from
Mori’s bend-and-break lemma that tx < n 4+ 1. Moreover, K. Cho, Y. Miyaoka,
and N. I. Shepherd-Barron [8] proved that when tx = n + 1, X is isomorphic to
projective space P™. Additionally, T. Dedieu and A. Horing [9] proved that when
tx = n, X is isomorphic to a smooth quadric hypersurface Q™. The author [27]
classified smooth Fano varieties with Picard number px > 1 when tx = n —1
and tx = n — 2. However, unlike the case of the Fano index, the classification of
varieties with t1x = n — 1 and tx = n — 2 is still unresolved when px = 1. As a
broader geometric problem concerning general smooth Fano varieties, we state the
following generalized Mukai conjecture:

Conjecture 1.1 ([6]). For an n-dimensional smooth Fano variety X, we have
pX(LX — 1) S n.

Furthermore, the equality holds if and only if X is isomorphic to a product of px

projective spaces, (P*x~1)Px.

S. Mukai’s original conjecture [24, Conjecture 4], now known as the Mukai con-
jecture, replaces the pseudoindex with the Fano index in the above statement. The
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generalized Mukai conjecture is partially motivated by the following theorem of J.
Widniewski:

Theorem 1.2 ([B0]). Let X be an n-dimensional smooth Fano variety. If 1x >
5+ 1, then px = 1. Moreover, if ix = § +1 and px > 1, then X is isomorphic to
a product of two projective spaces, (Px~1)2.

In the latter part of this theorem, G. Occhetta [[9, Theorem 1.1] extended the
result by replacing the Fano index with the pseudoindex. For the case where ix =
"TH and px > 1, the classification of n-dimensional smooth Fano varieties was
obtained by Wisniewski [B1]. The extension of this classification from the Fano
index to the pseudoindex was provided by the author [28]. Additionally, in the
next case, n-dimensional smooth Fano varieties with ix = § and px > 1 were
classified in a series of papers by Wisniewski et al. |21, B2, b, B3].

This paper aims to study n-dimensional smooth Fano varieties X with 1x =
5 and px > 1 when X admits a birational contraction of an extremal ray. In
the following, for a smooth projective variety X and its smooth projective closed

subvariety Y, we denote by Bly X the blow-up of X along Y.

Theorem 1.3. Let X be an n-dimensional smooth Fano variety with 1x = % > 2.
Assume that X admits a birational contraction ¢ : X — Y of an extremal ray.
Then X is isomorphic to one of the following:
(i) Bl
(ii) Blyg-1(Q") with a linear subvariety Pz—1;
(iii) BZQ%,l(Q”) with a smooth quadric Q%=1 of Q™ not contained in a linear
subspace of Q";
) Bl,»_»(P") with a linear subspace P2 ~2;
) P(Op3:(2) © O L)
(vi) PO 3 (1) @072 ));
)
)

., (P™) with a linear subvariety P%~1;

SRRV

Q Q3tt
on-2
P(O;}%QJA (1) & OP%Q+1 );
]Pl X ]P)(O[pa(].) (&5) Opz).
If X is as in (i), (iv), or (viii), then ix = 1; otherwise ix = tx.

This paper is structured as follows. Chapter 2 summarizes what is known about
contractions and the deformation theory of rational curves. Furthermore, we verify
through explicit calculations that the pseudoindex of the smooth Fano varieties
appearing in Theorem I3 is 5. In Chapter 3, we classify smooth Fano varieties
with pseudoindex § that exhibit special structures, such as blow-ups and projective
bundles. In Chapter 4, we will classify smooth Fano varieties appearing in Theo-
rem 3 into cases with small contraction and cases with divisorial contraction. In
particular, we show that any smooth Fano variety admitting either a small or a
divisorial contraction also admits a structure as a blow-up or a projective bundle,

thereby allowing us to reduce the classification to the cases covered in Chapter 3.

Notation and Conventions. In this paper, we work over the complex number
field. We use standard notation and conventions as in the books [[10], [4] and [IH].
e We denote by P™ the projective space of dimension n and by @™ a smooth
quadric hypersurface of dimension n.
e A curve means a projective curve.
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For a smooth projective variety X and its smooth projective closed sub-
variety Y, we write Ny, x for the normal bundle of Y in X.

For projective varieties X,Y and F, a smooth surjective morphism f :
X — Y is called an F-bundle if any fiber of f is isomorphic to F.

A contraction of an extremal ray is called simply an elementary contraction
when no extremal ray is specified.

For a smooth projective variety X, we denote by px the Picard number
of X.

For a smooth projective variety X, the corresponding numerical class of a
curve C' C X is denoted by [C] € N1 (X).

For a vector bundle £ over a variety X, we denote by £ the dual of £.

2. PRELIMINARIES

2.1. Contractions.

Definition 2.1. For a smooth projective variety X and a Kx-negative extremal
ray R C NE(X), the length of R is defined as

¢(R) := min{—Kx - C'| C is a rational curve and [C] € R}.

Proposition 2.2 (Tonescu-Wisniewski inequality [2, Theorem 0.4], [34, Theo-
rem 1.1]). Let X be a smooth projective variety, and let ¢ : X — Y be the contrac-
tion of a K x-negative extremal ray R C NE(X), where E denotes an irreducible
component of the exceptional locus of the contraction p. Let F' be an irreducible
component of a non-trivial fiber of ¢ contained in E. Then,

dim £ + dim F > dim X + ¢(R) — 1.

Theorem 2.3 ([0, Theorem 1.3]). Let X be a smooth projective variety, and let
¢ : X — Y be the contraction of an extremal ray R C NE(X) such that the
dimension of each fiber is d and ¢(R) = d+ 1. Then, ¢ is a projective bundle.

Theorem 2.4 ([2, Theorem 5.1]). For a smooth projective variety X , the following
are equivalent:

(i) There exists an extremal ray R C NE(X) such that the associated con-
traction is divisorial, and the fibers are of dimension £(R).

(ii) X is a blow-up of a smooth projective variety X' along a smooth subvariety
of codimension {(R) + 1.

In this paper, we often use the following inequality concerning the dimensions
of the fibers of a contraction without mentioning it:

Lemma 2.5. Let X be a smooth projective variety. For projective subvarieties Y
and Z of X, if Y N Z is nonempty, then we have

dim(YNZ) >dimY + dim Z — dim X.

In particular, when X admits two distinct elementary contractions ¢ : X — Y
and ¢ : X — Z, if an irreducible component F of a fiber of ¢ and an irreducible
component F' of a fiber of 1 intersect nontrivially, we have

dim X > dim F + dim F".
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Proof. The first part is known as Serre’s inequality. Regarding the second part,
if dimX < dimF + dim F’, then the first part tells us the existence of a curve
C C F N F'. However, this is a contradiction because the elementary contractions
¢ and 1 are distinct. [ |

Lemma 2.6 (|6, Lemma 2.5]). Let X be a smooth Fano variety and i : X — Z be
a P"-bundle. Then the following statements hold:

(i) The base space Z is a smooth Fano variety with vz > 1x;
(ii) If Lx = tz, then for a rational curve f : P! — Z such that deg f*(—Kyz) =
Lz, the fiber product P! x z X is isomorphic to P' x P,

2.2. Families of rational curves. Let X be a smooth projective variety, and
consider the space of rational curves denoted by RatCurves™(X) (for details, see
[[4, Section I1.2]). A family of rational curves M on X is an irreducible component
of RatCurves”(X). This family M comes with a P'-bundle p : / — M and an
evaluation morphism ¢ : Y/ — X. We denote by Locus(M) the union of all curves
parameterized by M. For a point x € X, we denote by M, the normalization
of p(¢~1(z)) and by Locus(M,) the union of all curves parametrized by M,. An
M-curve is a curve parametrized by M. Any M-curve is numerically equivalent
to any other, so the intersection number (—Kx) - C' does not depend on the choice
of an M-curve C. We therefore define the anticanonical degree deg(_ g,y M of M
as (—Kx) - C for [C] € M.

Definition 2.7. Let X be a smooth projective variety and M C RatCurves”(X)
a family of rational curves.
(i) M is a dominating family (resp. covering family) if Locus(M) = X (resp.
Locus(M) = X).
(ii) M is a minimal dominating family if it is a dominating family with the
minimal degree for some fixed ample line bundle A on X. When X is a
smooth Fano variety, we always take the anticanonical divisor —Kx as A
in this paper.
(iii) M is locally unsplit if, for a general point « € Locus(M), the family M,
is proper.
(iv) M is unsplit if the family M is proper.

A minimal dominating family M is locally unsplit. For an unsplit family M
and a closed subset Y C X such that Locus(M) NY is nonempty, we denote by
Locus(M)y the set of points that can be connected to Y by a M-curve.

Theorem 2.8. Let X be an n-dimensional smooth Fano variety, and let M be a
locally unsplit family of rational curves on X. Then the following statements hold:
(i) deg_gyM <n+1.
(i) If deg(_ gy M =n+1, then X is isomorphic to P".
(iil) Ifdeg_g )M =n, then X is isomorphic either to Q" or to the blow-up of
P™ along a smooth codimension two subvariety contained in a hyperplane.
Moreover, in the latter case, we have tx = 1.

Proof. The first and second statements follow from [R] (see also [I3]). The former
part of the third statement follows from [9] and [7]. To check the latter part of the
third statement on the pseudoindex, let ¢ : X := Bly (P"*) — P™ be the blow-up of
P™ along a codimension two smooth subvariety W contained in a hyperplane, and
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let F be the exceptional divisor and ¢ be a fiber of ¢|g : E — ¢(F). Then we have
Ky l=p*(—Kp) L—E-f=—E-{=1. n

Proposition 2.9 ([14, IV Corollary 2.6]). Let X be a smooth projective variety,
and let M be a locally unsplit family of rational curves on X. For a general point
x € Locus(M),

dim Locus(M,;) > deg(_ gy M + codim x Locus(M) — 1.
Moreover, if M is unsplit, this inequality holds for any point x € Locus(M).

Proposition 2.10 ([0, Lemma 5.4]). Let X be a smooth projective variety and
Y an irreducible closed subset, and let M be an unsplit family of rational curves
on X. Assume that curves in'Y are numerically independent of curves in M and
Y NLocus(M) is nonempty. Then we have

dim Locus(M)y > dimY + deg(_ ) M — 1.

Remark 2.11. Although Proposition 2.10 (originally stated as [{, Lemma 5.4])
does not require Y to be irreducible, this condition is in fact necessary. To see this,
assume that Y consists of two irreducible components, Y; and Y3, where only Y
meets Locus(M). In this case, increasing the dimension of Y2 has no effect on the
left-hand side but arbitrarily enlarges the right-hand side of the inequality, thus
invalidating the estimate.

Lemma 2.12 ([I9, Lemma 3.2]). Let X be a smooth projective variety and Y a
closed subset, and let M be an unsplit family of rational curves on X . If Locus(M)N
Y is nonempty, then Locus(M)y is closed in X. Moreover, for any curve C' C
Locus(M)y, there exist a non-negative rational number a, a rational number b,
and a curve Cy contained in'Y and an M-curve Cnq that satisfy the following

[C} = CL[Cy] + b[CM] S Nl(X)

Lemma 2.13 ([26, Lemma 2.7]). Let X be a smooth projective variety and M a
family of rational curves on X. If M 1is not unsplit, then there exists a rational
l-cycle Z =%"7_, a;Z; satisfying the following conditions:
(i) Z is algebraically equivalent to M-curves, where each a; is a positive in-
teger and each Z; is a rational curve;

(i) >oi_,a; > 2.
2.3. Specific calculation of pseudoindex. In this subsection, we explicitly cal-
culate the pseudoindex of the smooth Fano varieties appearing in Theorem @=3.

Although this result may be known to experts, we present it for the convenience of
the reader.

Example 2.14. Let X be one of the smooth Fano varieties as in Theorem I3, other
than cases (i), (iv), and (viii). We claim that the Fano index and the pseudoindex
of X are equal to 5. By Theorem [, it is sufficient to show that —Kx is divisible
by 5 in PicX.
Let X be the blow-up of Q™ along a linear subspace P2z~ of Q™, that is,
X = Blp . (Q") = Q.

By the canonical bundle formula for blow-ups, we have

~Kx =5 (20"H — E),
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where H is a hyperplane section of Q™ and E is the exceptional divisor of ¢. Thus
—Kx is divisible by 4 in PicX. The same holds true when X is the variety as in

(iii) of Theorem 3. Similarly, for varieties in cases (v)-(vii) or (iv) of Theorem I3,

the canonical bundle formula for projective bundles gives tx = ix = 3.

For the variety X in (viii) of Theorem I3, we see that tx = 2 and ix = 1.

Example 2.15. Let X be the blow-up of P" along a linear subspace P! with
t <5 —1, that is,
X = Blp:(P") = P(Opn—i-1(1) ® OFL ).

Following the idea as in the proof of [25, Theorem 1], we compute the pseudoindex
of X. We denote the blow-up morphism by

¢ : X = Blp:(P") — P".
We denote the P**!-bundle morphism by
Y X =P(Opn—i-1(1) & OSIFL ) — Pt 1,
Let E be the exceptional divisor of ¢; then it can be written as
E = P(Ngl jpn) = P(Ope (—1)"7%) = P" =1 x P".

We denote by Og(1) the tautological line bundle of E = P(Ng, /]P,n). Then we have
Ogr(F) = Og(-1). For a line £ C P!, set C' := P(O,(—1)) C E, which is an
extremal rational curve of ¥. Then we have

E-C'=0g(-1)-C' = (-1)-(~1) = L.

We denote by C a line in a fiber of p|g : E — P!. This is an extremal rational
curve of ¢. Then we have

(1) —KX-C:n—t—l, —KX'C/:t—f—Z.
For any curve I' C X, we claim
(2) —Kx -I'>min{n—t—1,t+2}.

We will prove this by dividing it into two cases.

Firstly, assume that I' is not contained in E. In this case, we may take a
hyperplane H C P" such that P* C H and (') ¢ H. For the strict transform H
of H, we have o*H -T'= (E 4+ H)-T' > E -T. This yields

Ky T={(n+1)g"H—(n—t—1)E} - T>(t+2E -T>t+2.

Secondly, assume that I' is contained in E = P*~*~! x Pt. In this case, there
exist non-negative integers a and b such that [['] = a[C] + a[C'] € N1(X) and
(a,b) # (0,0). By the equalities (M), we have

—Kx -I'=an—t—1)+b(t+2) >min{n —t — 1,t + 2}.
Thus, our claim holds. Combining the inequality (2) with the equalities (), we

obtain ¢x = min{n —t —1,¢+2}. This implies that 1x = § if and only if t = § — 1
or § — 2. In particular, the pseudoindex of smooth Fano varieties as in (i) and (iv)
of Theorem I3 are both 7.

If X is (i) or (iv), then, by the canonical bundle formula for projective bundles,

we have ix = 1.
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3. SPECIAL CASES

Lemma 3.1. Let X be a 4-dimensional smooth Fano variety. We assume that
tx =2 and px > 1. If X admits an elementary birational contraction, then X is
isomorphic to one of the varieties described in Theorem 3.

Proof. This is a direct consequence of [27, Theorem 6.2] and [24]. [ |

Lemma 3.2. Let X be an n-dimensional smooth Fano variety. We assume that
tx =% >3 and px > 3. Then X is isomorphic to (P2)3.

Proof. We have 1x = § > ”T” Then, our assertion follows from [I7, Theorem|. B

To prove Theorem [3, by using Lemma B and Lemma B2, we need only to
address the case where n = dim X > 6 and px = 2. As we will see in Theorem BT
and Lemma B3 below, under the assumptions and notation of Theorem =3, X
admits either a blow-up structure or a projective bundle structure. Therefore, the
remainder of this section deals with those cases.

Theorem 3.3 ([3, Theorem 1.3]). Let X be an n-dimensional smooth Fano variety
and let R be an extremal ray of NE(X). Assume that the associated contraction
wr: X =Y is the blow-up of a smooth variety Y along a smooth subvariety T CY
such that vx + £(R) > n or equivalently tx > dimT + 1. Then X is isomorphic to
one of the following:

(i) Blp:(P™), with P a linear subspace of dimension < % —1,
(ii) Blp:(Q™), with P* a linear subspace of dimension <% —1,
(iii) Blg+(Q™), with Q' a smooth quadric of dimension < % —1 not contained
in a linear subspace of Q",
(iv) Blyygp (P™) where Y is a smooth subvariety of dimension n—2 and degree
< n contained in a hyperplane H C P™ such that p ¢ H,
(V) Blﬂ»lx{p}(Pl X ]mel).

Proposition 3.4. Let X be an n-dimensional smooth Fano variety admitting a
Px—1_pundle structure P X — P+l and assume that 1x = % > 2. Then X is
isomorphic to one of the following:
(i) Prx—1 x Pex+l;
(if) P(Opix+1(1) ® O2X51);
(iii) P(Opix+1(1)22 @ 02572);
(iv) P(Opix+1(2) ® O X5

Proof. Since the Brauer group of P***! vanishes, there exists a rank ty vector
bundle £ over P*X*! such that ¢ : X — P***! is given by the natural projection
P(&) — Px+1 Let £ C Px*! be a line. By tensoring a line bundle if necessary,
we may assume that

5|g = Opl(—al) EB Opl(—ag) EB e EB Opl(—abx)

with0=a;1 <as < < a,,.
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Set Xy := £ Xpix+1 X and ¢ := P(Op1(—a,,)). Remark that £ is a section of
Xy — £. Then we have

15'¢ S 7KX E: ZD*(*KPLXJA) 'gf KX/PLx+1 -/
~ LX

=(x+2)+ <_KX[/£ ~€) =(tx +2) —txa,y +Zai.
i=1

This implies that
0<(a,x —a1)+(a, —a2)+ -+ (a —a,) <2
Therefore, £|, is isomorphic to
O5%, Op@Op(-1)"x71 OF2@Op(-1)®*X"2 or Op ®Op(-2)®* "1

Since deg &|, is independent of the choice of a line ¢ C P***! we see that £ is a
uniform vector bundle. Applying [22, Main Theorem], £ is isomorphic to one of the
following:

° OGBLX

Prx +15
° OIPLX'H D O]PH,X+1(—].)®LX_1;
®2 —-2.
[ ) O[PLX+1 @ O]PI,X+1(_1)®LX 5

o Opx+1 B OIP)LX<F1(72)®LX71.
|

Proposition 3.5. Let X be an n-dimensional smooth Fano variety. Assume that
X admits a P**~'-bundle structure ¥ : X — Q**t! and 1x = 5 > 2. Then X s
isomorphic to one of the following:

(1) Pt x Qe

(il) P(Ogex+1 (1) ® OZ ),

(iii) P(S(1) & Oga), where S is the spinor bundle on Q* [20].

Proof. By the same argument as in Proposition B4, there exists a vector bundle £
over @Q***1! such that

e 1 : X — QxT1 is given by the natural projection P(£) — Q*x+1;

e For any line £ C Q* 1, £|, is isomorphic to Of'* or Op1 & Ops (—1)Px 1.

e & is a uniform vector bundle.
If &|; is isomorphic to OHE,%”X for any line £ C QX1 [@, Proposition 1.2] implies
= ngj{‘ﬂ; thus X is as in (i). So, we assume that £|y is isomorphic to Op1 @
Op1 (—1)®x~! for any line £ C Q***'. Then we have det £ = Og.x+1(1 —tx); this
implies that —Kx = tx& + ny*H, where £ is the tautological divisor of X = P(£)
and H is a hyperplane of Q*x*1. Set L := £ + 2¢*H and &' := ¢,O(L). Then
&' = £(2) and this implies that the anticanonical divisor of Q*X 1 is equal to det &£’
Applying [1] and [I¥], we see that X is isomorphic to the variety as in (ii) or (iii).
|

Remark 3.6. The vareity P(S(1)@®Oga) as in Proposition B33 has a scroll structure
with a 4-dimensional fiber (see [33, Remarks 4.2]). In particular, it does not admit
a birational contraction.

Proposition 3.7. Let X be an n-dimensional smooth Fano variety. Assume that
there exists a vector bundle £ over a variety Z such that X is isomorphic to P(£).
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Moreover, we assume that 1x =1z = 5 > 2 and px = 2. Then X is isomorphic to
Px—1 x 7.

Proof. Let us take a minimal dominating family /' C RatCurves"(Z). By Theo-
rem 28 and our assumption, we obtain

Lz < deg(_Kz)N< dmZ =1x+1=15+1.

Thus we have deg(_j,) N = tz; this implies that N is an unsplit covering family. In
fact, if M is not unsplit, we obtain a rational 1-cycle Zle a;Z; as in Lemma 27T3.
Then we have deg(_yx )M = 337 ai(—Kx) - Z; > 2tx = n. This is a contra-
diction. For [/] € N, let f : P* — ¢ C Z be the normalization of ¢; Lemma 2B
(i) implies that P(f*€) = P! xz X is isomorphic to P! x P*X~1. This means that
Ele = Opi(a)®> for some integer a. Since deg &|, is independent of the choice of
[(] € N, we see that & is a uniform vector bundle with respect to . Thus [4,
Proposition 1.2] concludes that X is isomorphic to P*X~1 x Z. |

4. PROOF OF THE MAIN THEOREM

4.1. The case where X admits an elementary small contraction. The pur-
pose of this subsection is to prove the following:

Theorem 4.1. Let X be a smooth Fano variety with 1x = 5 > 3 and px = 2.
Assume that X admits a small contraction ¢ : X — Y of an extremal ray R C
NE(X). Then X is isomorphic to P(OS2 ., (1) @ 02X7?).

PLX+1 PLX+1
Proof. Let M C RatCurves”(X) be a minimal dominating family of rational curves.
Since px > 1 and tx = 7, by Theorem P, we have deg_ g,y M < n. Applying
Lemma 2713, it follows that M is unsplit. By Proposition 29, for any « € X, the
following inequality holds

dim Locus(M;) > deg_ g yM —1>ux — L.

Let F' be an irreducible component of a nontrivial fiber of ¢, and let E be an irre-
ducible component of the exceptional locus of ¢ containing F'. By Proposition 272,
we have an inequality

(3) dimF > ¢(R)+1>u1x + 1.
Applying Proposition EZ10, we obtain
n > dim Locus(M)p > dim F' + deg_ g y M —1> (tx +1) +1x —1=n.

This inequality implies that dim F' = tx +1, X = Locus(M)p, and deg(_ g,y M =
tx. Then Proposition B4 implies that codim £ = 2 and ¢x = ¢(R).

Since px = 2, there exists an extremal ray R’ C NE(X) which is not R. Let
C and C’ denote an extremal rational curve of R and of R/, respectively. We
claim that R’ contains any M-curve. Since any curve contained in F' is numerically
proportional to C';, Lemma T2 implies there exist a non-negative rational number
a, a rational number b and an M-curve Cy, that satisfy the following

[C"] = a[C] + b[Cp] € Ni(X).
If b is negative, we have [C'],[Cr] € R since [C'] — b[Caq] = a[C] € R. This is a
contradiction. Hence, we have b is non-negative. Then a[C] + b[Cnm] = [C'] € R';
this yields a[C],b[Crm] € R’. Since R and R’ are distinct, we obtain ¢ = 0. Then
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we see that b # 0 and [Cpq] € R'. Since any M-curve is numerically equivalent to
each other, our claim holds.

Let ¢ : X — Z be the contraction of R’, which contracts any M-curve. Since
we have a finite morphism ¢|r : F — Z, we have dimZ > dim F = 1x + 1. We
also have an inequality

dim X > dim Locus(M,) +dimZ > tx — 1+ dim Z.

This yields that tx + 1 > dim Z. Thus we see that dimZ = 1x + 1, and this
concludes that ¢|p : F — Z is surjective and the dimension of a general fiber of
is Lx — 1.

Here, we claim that ¢ : X — Z is equidimensional. Suppose the contrary to
prove this. Then there exists an irreducible component I’ of a jumping fiber of
¥, such as dim F' > 1x — 1. Since we have Locus(M)r = X, for a general point
x € F', we may find an M-curve C such that x € C and FNC # 0. Since z is a
general point of F’, C is contained in F’. Thus we see that F N F’ is nonempty.
Then, by Lemma P73, we have

dim X >dim F +dim F' > (1x + 1) + (tx — 1) = dim X.

This is a contradiction. Consequently, we see that ¢ : X — Z is equidimen-
sional. Remark that .x = deg(_j ) M; this yields that {(R') = 1x. Applying
Theorem P23, we see that 1 is a P*X ~!-bundle.

Let E — E be the normalization of E and Q E — W be the morphism
obtained by the Stein factorization of E — E — Y. Since we have dimE +
dim F = dim X + ¢(R) — 1, [, Theorem 1.4] implies £ — W is a projective
bundle in codimension one. From this, we obtain a surjective morphism P*x*1 — 7.
Applying |16, Theorem 4.1], it follows that Z is isomorphic to P***1. Then our
assertion follows from Proposition B.

|

4.2. The case where X admits an elementary divisorial contraction. The
purpose of this subsection is to prove the following:

Theorem 4.2. Let X be a smooth Fano variety with 1x = % >3 and px = 2.
Assume that X admits a divisorial contraction ¢ : X — Y of an extremal ray
R C NE(X). Then X is isomorphic to one of the varieties in Theorem 3.

Since px = 2, there exists an extremal ray R’ C NFE(X) such that NE(X) =
R + R'. We denote by C and C’ an extremal rational curve of R and that of
R/, respectively. Let 1 : X — Z be the contraction of R’. We denote by E the
exceptional divisor of . Throughout this section, we will use these notations. By
the negativity lemma [I5, Lemma 3.39], we have F - C < 0. Since F is an effective

divisor, a curve Cy C X with E-Cy > 0 exists. For non-negative numbers a, b such
that [Co] = a[C] 4 b[C'] € N1(X), we have

0<E-Cy=aE-C+bE-C'<bE-(C'.
This implies that E - C' > 0. We now claim the following;:
Lemma 4.3. The contraction v is of fiber type.

Proof. Assume the contrary, that is, ¢ is of birational type. If ¢ is a small con-
traction, then X is isomorphic to the variety as in Theorem BT In this case, ¥ is
of fiber type; this is a contradiction. Thus, 1) is a divisorial contraction. Let E’ be
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the exceptional divisor of 1. We denote by F and F’ an irreducible component of
a nontrivial fiber of ¢ and that of 1, respectively. By Proposition Z2, we have

(4) dimF >/¢(R) >tx and dimF’ > ¢(R') > 1x.

Since E - C' > 0, EN F’ is nonempty. We claim that ¢|gs is an equidimensional
morphism of relative dimension ¢x. If not, there exists an irreducible component
F{ of a nontrivial fiber of ¢ such that dim Fj > vx. Since E N F{ is nonempty, we
may find an irreducible component Fy of a nontrivial fiber of ¢ such that Fy N F{
is nonempty. Then we have

dim Fy N F} > dim Fy + dim F; — n > 0.

This is a contradiction. Therefore, 9|/ is an equidimensional morphism of relative
dimension ¢x. By the inequality (B), we have ¢/(R') = tx. Applying Theorem P4,
we see that ¢ : X — Z is the blow-up of a smooth projective variety Z along a
smooth variety of codimension ¢tx +1. Then X is isomorphic to any of the varieties
appearing in (i), (ii), and (iii) of Theorem B33, but these varieties have only one
birational contraction. Consequently, we see that v is of fiber type. ]

Subsequently, an irreducible component of a non-trivial fibre of ¢ and that of
are denoted by F' and F”, respectively. Any fibre of ¢ whose dimension is equal to
dim X — dim Z is denoted by Féen, and any fibre of ¢|gp whose dimension is equal
to dim F — dim ¢(F) is denoted by Fyen.

Since ¢|p : F — Z is finite, applying Proposition EZ2 for ¢, we have
(5) dimZ > dim F > dim Fge, > ¢(R) > tx.

Applying Proposition EZ2 for v, we obtain

(6) dim F’' > dimFg/en >UR)—1>ux — 1.
Moreover, we have
(7) n=dimFy,, +dimZ > (tx — 1) +tx =n— 1.

This implies
(8) dim Fy,,, = tx or tx — 1.

Lemma 4.4. One of the following holds:

(i) The contraction ¢ : X — Y is the blow-up of a smooth projective variety
Y along a smooth subvariety W of dimension vx — 1;
(ii) The contraction ¢ : X — Z is a P**~1-bundle.

Proof. If dim F' = 1x for any irreducible component F' of any fiber of ¢|g, then ¢|g
is equidimensional and dim F' = ¢(R) by (8), so by Theorem P2 we are in case (i).
Therefore, we may assume that there exists an irreducible component Fj of a fiber
of ¢|g with dim Fy > tx 4+ 1. Then, since ¢¥|g, : Fy — Z is finite, it follows that

(1) dimZ >dimFy > 1x + 1.

Now, if dim F’ = 1x — 1 for any irreducible component F” of any fiber of v, then 1
is equidimensional and dim F’ = ¢(R’) — 1 by (B), so by Theorem E=3 we are in case
(ii). Hence we may assume that there exists an irreducible component Fj of a fiber
of ¢ with dim F§j > tx. Let M C RatCurves"(X) be a dominating family of 1)-
contracted rational curves of minimal anticanonical degree. By the same argument
as in Theorem B, we see that M is unsplit and that Locus(M)p, = X. Moreover,
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by the same argument as in Theorem BT, we conclude that Fo N F§ # (. Then, by
Lemma 3, we have

dim X > dim Fy + dim F} > (tx + 1) + tx =dim X + 1,
a contradiction. ]

Proof of Theorem F-3. We see that ¢ and ¢ satisfy either (i) or (ii) of Lemma B,
In the first case, Theorem B33 yields that X is isomorphic to one of the varieties
as in (i)-(iii) of Theorem EZ2. So, assume that 1) : X — Z is a P**~L-bundle. By
Lemma @, Z is a smooth Fano variety with ¢tz > tx. Moreover, since dim Z =
dim X — (tx — 1), it follows that 1z < dimZ+1=1x+2. If 1z =1x +2o0r 1x +1,
then Theorem I8 implies that Z is isomorphic to P*X+! or Q*X+!, respectively. In
these cases, by Proposition B and Proposition B3, X is isomorphic to one of the
varieties as in (iv)-(vi) of Theorem E72. Finally, Proposition B2 implies that the
case 1z = tx does not occur. ]

4.3. Conclusion.

Proof of Theorem I23. Our assertion follows from Example 214, Example B3,
Lemma B, Lemma B=, Theorem B, and Theorem E—2. [ |
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