
SMOOTH FANO VARIETIES WITH PSEUDOINDEX EQUAL TO
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Abstract. Let X be a complex smooth Fano variety of dimension n. Assume
that X admits a birational contraction of an extremal ray. In this paper, we

give a classification of such X when the pseudoindex is equal to dimX
2

.

1. Introduction

Let X be a complex n-dimensional smooth projective variety. We call a vari-
ety X Fano if the anticanonical divisor −KX is ample. Fano varieties (with mild
singularities) are considered one of the three fundamental building blocks of alge-
braic varieties in birational geometry. Two important invariants arise in studying
smooth Fano varieties: the largest integer that divides −KX in the Picard group of
X, which is known as the Fano index of X. The second is the minimum anticanon-
ical degree of rational curves on X, called the pseudoindex of X. The Fano index of
X and the pseudoindex of X are denoted by iX and ιX , respectively. Historically,
smooth Fano varieties have been studied primarily from the perspective of the Fano
index. It is known that iX ≤ n+1 and that smooth Fano varieties with iX ≥ n− 2
can be classified (see, for example, [23]). By contrast, addressing similar problems
for the pseudoindex is considerably more challenging. For instance, it follows from
Mori’s bend-and-break lemma that ιX ≤ n + 1. Moreover, K. Cho, Y. Miyaoka,
and N. I. Shepherd-Barron [8] proved that when ιX = n + 1, X is isomorphic to
projective space Pn. Additionally, T. Dedieu and A. Höring [9] proved that when
ιX = n, X is isomorphic to a smooth quadric hypersurface Qn. The author [27]
classified smooth Fano varieties with Picard number ρX > 1 when ιX = n − 1
and ιX = n − 2. However, unlike the case of the Fano index, the classification of
varieties with ιX = n − 1 and ιX = n − 2 is still unresolved when ρX = 1. As a
broader geometric problem concerning general smooth Fano varieties, we state the
following generalized Mukai conjecture:

Conjecture 1.1 ([6]). For an n-dimensional smooth Fano variety X, we have

ρX(ιX − 1) ≤ n.

Furthermore, the equality holds if and only if X is isomorphic to a product of ρX
projective spaces, (PιX−1)ρX .

S. Mukai’s original conjecture [24, Conjecture 4], now known as the Mukai con-
jecture, replaces the pseudoindex with the Fano index in the above statement. The
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generalized Mukai conjecture is partially motivated by the following theorem of J.
Wísniewski:

Theorem 1.2 ([30]). Let X be an n-dimensional smooth Fano variety. If ιX >
n
2 + 1, then ρX = 1. Moreover, if iX = n

2 + 1 and ρX > 1, then X is isomorphic to

a product of two projective spaces, (PiX−1)2.

In the latter part of this theorem, G. Occhetta [19, Theorem 1.1] extended the
result by replacing the Fano index with the pseudoindex. For the case where iX =
n+1
2 and ρX > 1, the classification of n-dimensional smooth Fano varieties was

obtained by Wísniewski [31]. The extension of this classification from the Fano
index to the pseudoindex was provided by the author [28]. Additionally, in the
next case, n-dimensional smooth Fano varieties with iX = n

2 and ρX > 1 were
classified in a series of papers by Wísniewski et al. [21, 32, 5, 33].

This paper aims to study n-dimensional smooth Fano varieties X with ιX =
n
2 and ρX > 1 when X admits a birational contraction of an extremal ray. In
the following, for a smooth projective variety X and its smooth projective closed
subvariety Y , we denote by BlYX the blow-up of X along Y .

Theorem 1.3. Let X be an n-dimensional smooth Fano variety with ιX = n
2 ≥ 2.

Assume that X admits a birational contraction φ : X → Y of an extremal ray.
Then X is isomorphic to one of the following:

(i) BlP
n
2

−1(Pn) with a linear subvariety Pn
2 −1;

(ii) BlP
n
2

−1(Qn) with a linear subvariety Pn
2 −1;

(iii) Bl
Q

n
2

−1(Qn) with a smooth quadric Q
n
2 −1 of Qn not contained in a linear

subspace of Qn;
(iv) BlP

n
2

−2(Pn) with a linear subspace Pn
2 −2;

(v) P(OP
n
2

+1(2)⊕O⊕n
2 −1

P
n
2

+1 );

(vi) P(O
Q

n
2

+1(1)⊕O⊕n
2 −1

Q
n
2

+1 );

(vii) P(O⊕2

P
n
2

+1(1)⊕O⊕n
2 −2

P
n
2

+1 );

(viii) P1 × P(OP2(1)⊕OP2).

If X is as in (i), (iv), or (viii), then iX = 1; otherwise iX = ιX .

This paper is structured as follows. Chapter 2 summarizes what is known about
contractions and the deformation theory of rational curves. Furthermore, we verify
through explicit calculations that the pseudoindex of the smooth Fano varieties
appearing in Theorem 1.3 is n

2 . In Chapter 3, we classify smooth Fano varieties
with pseudoindex n

2 that exhibit special structures, such as blow-ups and projective
bundles. In Chapter 4, we will classify smooth Fano varieties appearing in Theo-
rem 1.3 into cases with small contraction and cases with divisorial contraction. In
particular, we show that any smooth Fano variety admitting either a small or a
divisorial contraction also admits a structure as a blow-up or a projective bundle,
thereby allowing us to reduce the classification to the cases covered in Chapter 3.

Notation and Conventions. In this paper, we work over the complex number
field. We use standard notation and conventions as in the books [10], [14] and [15].

• We denote by Pn the projective space of dimension n and by Qn a smooth
quadric hypersurface of dimension n.

• A curve means a projective curve.
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• For a smooth projective variety X and its smooth projective closed sub-
variety Y , we write NY/X for the normal bundle of Y in X.

• For projective varieties X,Y and F , a smooth surjective morphism f :
X → Y is called an F -bundle if any fiber of f is isomorphic to F .

• A contraction of an extremal ray is called simply an elementary contraction
when no extremal ray is specified.

• For a smooth projective variety X, we denote by ρX the Picard number
of X.

• For a smooth projective variety X, the corresponding numerical class of a
curve C ⊂ X is denoted by [C] ∈ N1(X).

• For a vector bundle E over a variety X, we denote by E∨ the dual of E .

2. Preliminaries

2.1. Contractions.

Definition 2.1. For a smooth projective variety X and a KX -negative extremal
ray R ⊂ NE(X), the length of R is defined as

ℓ(R) := min{−KX · C | C is a rational curve and [C] ∈ R}.

Proposition 2.2 (Ionescu-Wísniewski inequality [12, Theorem 0.4], [34, Theo-
rem 1.1]). Let X be a smooth projective variety, and let φ : X → Y be the contrac-
tion of a KX-negative extremal ray R ⊂ NE(X), where E denotes an irreducible
component of the exceptional locus of the contraction φ. Let F be an irreducible
component of a non-trivial fiber of φ contained in E. Then,

dimE + dimF ≥ dimX + ℓ(R)− 1.

Theorem 2.3 ([11, Theorem 1.3]). Let X be a smooth projective variety, and let
φ : X → Y be the contraction of an extremal ray R ⊂ NE(X) such that the
dimension of each fiber is d and ℓ(R) = d+ 1. Then, φ is a projective bundle.

Theorem 2.4 ([2, Theorem 5.1]). For a smooth projective variety X, the following
are equivalent:

(i) There exists an extremal ray R ⊂ NE(X) such that the associated con-
traction is divisorial, and the fibers are of dimension ℓ(R).

(ii) X is a blow-up of a smooth projective variety X ′ along a smooth subvariety
of codimension ℓ(R) + 1.

In this paper, we often use the following inequality concerning the dimensions
of the fibers of a contraction without mentioning it:

Lemma 2.5. Let X be a smooth projective variety. For projective subvarieties Y
and Z of X, if Y ∩ Z is nonempty, then we have

dim(Y ∩ Z) ≥ dimY + dimZ − dimX.

In particular, when X admits two distinct elementary contractions φ : X → Y
and ψ : X → Z, if an irreducible component F of a fiber of φ and an irreducible
component F ′ of a fiber of ψ intersect nontrivially, we have

dimX ≥ dimF + dimF ′.
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Proof. The first part is known as Serre’s inequality. Regarding the second part,
if dimX < dimF + dimF ′, then the first part tells us the existence of a curve
C ⊂ F ∩ F ′. However, this is a contradiction because the elementary contractions
φ and ψ are distinct.

Lemma 2.6 ([6, Lemma 2.5]). Let X be a smooth Fano variety and ψ : X → Z be
a Pr-bundle. Then the following statements hold:

(i) The base space Z is a smooth Fano variety with ιZ ≥ ιX ;
(ii) If ιX = ιZ , then for a rational curve f : P1 → Z such that deg f∗(−KZ) =

ιZ , the fiber product P1 ×Z X is isomorphic to P1 × Pr.

2.2. Families of rational curves. Let X be a smooth projective variety, and
consider the space of rational curves denoted by RatCurvesn(X) (for details, see
[14, Section II.2]). A family of rational curves M on X is an irreducible component
of RatCurvesn(X). This family M comes with a P1-bundle p : U → M and an
evaluation morphism q : U → X. We denote by Locus(M) the union of all curves
parameterized by M. For a point x ∈ X, we denote by Mx the normalization
of p(q−1(x)) and by Locus(Mx) the union of all curves parametrized by Mx. An
M-curve is a curve parametrized by M. Any M-curve is numerically equivalent
to any other, so the intersection number (−KX) ·C does not depend on the choice
of an M-curve C. We therefore define the anticanonical degree deg(−KX) M of M
as (−KX) · C for [C] ∈ M.

Definition 2.7. Let X be a smooth projective variety and M ⊂ RatCurvesn(X)
a family of rational curves.

(i) M is a dominating family (resp. covering family) if Locus(M) = X (resp.
Locus(M) = X).

(ii) M is a minimal dominating family if it is a dominating family with the
minimal degree for some fixed ample line bundle A on X. When X is a
smooth Fano variety, we always take the anticanonical divisor −KX as A
in this paper.

(iii) M is locally unsplit if, for a general point x ∈ Locus(M), the family Mx

is proper.
(iv) M is unsplit if the family M is proper.

A minimal dominating family M is locally unsplit. For an unsplit family M
and a closed subset Y ⊂ X such that Locus(M) ∩ Y is nonempty, we denote by
Locus(M)Y the set of points that can be connected to Y by a M-curve.

Theorem 2.8. Let X be an n-dimensional smooth Fano variety, and let M be a
locally unsplit family of rational curves on X. Then the following statements hold:

(i) deg(−KX) M ≤ n+ 1.

(ii) If deg(−KX) M = n+ 1, then X is isomorphic to Pn.

(iii) If deg(−KX) M = n, then X is isomorphic either to Qn or to the blow-up of
Pn along a smooth codimension two subvariety contained in a hyperplane.
Moreover, in the latter case, we have ιX = 1.

Proof. The first and second statements follow from [8] (see also [13]). The former
part of the third statement follows from [9] and [7]. To check the latter part of the
third statement on the pseudoindex, let φ : X := BlW (Pn) → Pn be the blow-up of
Pn along a codimension two smooth subvariety W contained in a hyperplane, and
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let E be the exceptional divisor and ℓ be a fiber of φ|E : E → φ(E). Then we have
−KX · ℓ = φ∗(−KPn) · ℓ− E · ℓ = −E · ℓ = 1.

Proposition 2.9 ([14, IV Corollary 2.6]). Let X be a smooth projective variety,
and let M be a locally unsplit family of rational curves on X. For a general point
x ∈ Locus(M),

dimLocus(Mx) ≥ deg(−KX) M+ codimXLocus(M)− 1.

Moreover, if M is unsplit, this inequality holds for any point x ∈ Locus(M).

Proposition 2.10 ([1, Lemma 5.4]). Let X be a smooth projective variety and
Y an irreducible closed subset, and let M be an unsplit family of rational curves
on X. Assume that curves in Y are numerically independent of curves in M and
Y ∩ Locus(M) is nonempty. Then we have

dimLocus(M)Y ≥ dimY + deg(−KX) M− 1.

Remark 2.11. Although Proposition 2.10 (originally stated as [1, Lemma 5.4])
does not require Y to be irreducible, this condition is in fact necessary. To see this,
assume that Y consists of two irreducible components, Y1 and Y2, where only Y1
meets Locus(M). In this case, increasing the dimension of Y2 has no effect on the
left-hand side but arbitrarily enlarges the right-hand side of the inequality, thus
invalidating the estimate.

Lemma 2.12 ([19, Lemma 3.2]). Let X be a smooth projective variety and Y a
closed subset, and let M be an unsplit family of rational curves on X. If Locus(M)∩
Y is nonempty, then Locus(M)Y is closed in X. Moreover, for any curve C ⊂
Locus(M)Y , there exist a non-negative rational number a, a rational number b,
and a curve CY contained in Y and an M-curve CM that satisfy the following

[C] = a[CY ] + b[CM] ∈ N1(X).

Lemma 2.13 ([26, Lemma 2.7]). Let X be a smooth projective variety and M a
family of rational curves on X. If M is not unsplit, then there exists a rational
1-cycle Z =

∑s
i=1 aiZi satisfying the following conditions:

(i) Z is algebraically equivalent to M-curves, where each ai is a positive in-
teger and each Zi is a rational curve;

(ii)
∑s

i=1 ai ≥ 2.

2.3. Specific calculation of pseudoindex. In this subsection, we explicitly cal-
culate the pseudoindex of the smooth Fano varieties appearing in Theorem 1.3.
Although this result may be known to experts, we present it for the convenience of
the reader.

Example 2.14. LetX be one of the smooth Fano varieties as in Theorem 1.3, other
than cases (i), (iv), and (viii). We claim that the Fano index and the pseudoindex
of X are equal to n

2 . By Theorem 1.2, it is sufficient to show that −KX is divisible
by n

2 in PicX.

Let X be the blow-up of Qn along a linear subspace Pn
2 −1 of Qn, that is,

φ : X := BlP
n
2

−1(Qn) → Qn.

By the canonical bundle formula for blow-ups, we have

−KX =
n

2
(2φ∗H − E) ,
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where H is a hyperplane section of Qn and E is the exceptional divisor of φ. Thus
−KX is divisible by n

2 in PicX. The same holds true when X is the variety as in
(iii) of Theorem 1.3. Similarly, for varieties in cases (v)-(vii) or (iv) of Theorem 1.3,
the canonical bundle formula for projective bundles gives ιX = iX = n

2 .
For the variety X in (viii) of Theorem 1.3, we see that ιX = 2 and iX = 1.

Example 2.15. Let X be the blow-up of Pn along a linear subspace Pt with
t ≤ n

2 − 1, that is,

X = BlPt(Pn) = P(OPn−t−1(1)⊕O⊕t+1
Pn−t−1).

Following the idea as in the proof of [25, Theorem 1], we compute the pseudoindex
of X. We denote the blow-up morphism by

φ : X = BlPt(Pn) → Pn.

We denote the Pt+1-bundle morphism by

ψ : X = P(OPn−t−1(1)⊕O⊕t+1
Pn−t−1) → Pn−t−1.

Let E be the exceptional divisor of φ; then it can be written as

E = P(N∨
Pt/Pn) = P(OPt(−1)⊕n−t) = Pn−t−1 × Pt.

We denote by OE(1) the tautological line bundle of E = P(N∨
Pt/Pn). Then we have

OE(E) = OE(−1). For a line ℓ ⊂ Pt, set C ′ := P(Oℓ(−1)) ⊂ E, which is an
extremal rational curve of ψ. Then we have

E · C ′ = OE(−1) · C ′ = (−1) · (−1) = 1.

We denote by C a line in a fiber of φ|E : E → Pt. This is an extremal rational
curve of φ. Then we have

−KX · C = n− t− 1, −KX · C ′ = t+ 2.(1)

For any curve Γ ⊂ X, we claim

−KX · Γ ≥ min{n− t− 1, t+ 2}.(2)

We will prove this by dividing it into two cases.
Firstly, assume that Γ is not contained in E. In this case, we may take a

hyperplane H ⊂ Pn such that Pt ⊂ H and φ(Γ) ̸⊂ H. For the strict transform H̃

of H, we have φ∗H · Γ = (E + H̃) · Γ ≥ E · Γ. This yields

−KX · Γ = {(n+ 1)φ∗H − (n− t− 1)E} · Γ ≥ (t+ 2)E · Γ ≥ t+ 2.

Secondly, assume that Γ is contained in E ∼= Pn−t−1 × Pt. In this case, there
exist non-negative integers a and b such that [Γ] = a[C] + a[C ′] ∈ N1(X) and
(a, b) ̸= (0, 0). By the equalities (1), we have

−KX · Γ = a(n− t− 1) + b(t+ 2) ≥ min{n− t− 1, t+ 2}.

Thus, our claim holds. Combining the inequality (2) with the equalities (1), we
obtain ιX = min{n− t− 1, t+2}. This implies that ιX = n

2 if and only if t = n
2 − 1

or n
2 − 2. In particular, the pseudoindex of smooth Fano varieties as in (i) and (iv)

of Theorem 1.3 are both n
2 .

If X is (i) or (iv), then, by the canonical bundle formula for projective bundles,
we have iX = 1.
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3. Special cases

Lemma 3.1. Let X be a 4-dimensional smooth Fano variety. We assume that
ιX = 2 and ρX > 1. If X admits an elementary birational contraction, then X is
isomorphic to one of the varieties described in Theorem 1.3.

Proof. This is a direct consequence of [27, Theorem 6.2] and [29].

Lemma 3.2. Let X be an n-dimensional smooth Fano variety. We assume that
ιX = n

2 ≥ 3 and ρX ≥ 3. Then X is isomorphic to (P2)3.

Proof. We have ιX = n
2 ≥ n+2

3 . Then, our assertion follows from [17, Theorem].

To prove Theorem 1.3, by using Lemma 3.1 and Lemma 3.2, we need only to
address the case where n = dimX ≥ 6 and ρX = 2. As we will see in Theorem 4.1
and Lemma 4.4 below, under the assumptions and notation of Theorem 1.3, X
admits either a blow-up structure or a projective bundle structure. Therefore, the
remainder of this section deals with those cases.

Theorem 3.3 ([3, Theorem 1.3]). Let X be an n-dimensional smooth Fano variety
and let R be an extremal ray of NE(X). Assume that the associated contraction
φR : X → Y is the blow-up of a smooth variety Y along a smooth subvariety T ⊂ Y
such that ιX + ℓ(R) ≥ n or equivalently ιX ≥ dimT + 1. Then X is isomorphic to
one of the following:

(i) BlPt(Pn), with Pt a linear subspace of dimension ≤ n
2 − 1,

(ii) BlPt(Qn), with Pt a linear subspace of dimension ≤ n
2 − 1,

(iii) BlQt(Qn), with Qt a smooth quadric of dimension ≤ n
2 − 1 not contained

in a linear subspace of Qn,
(iv) BlY ⊔{p}(Pn) where Y is a smooth subvariety of dimension n−2 and degree

≤ n contained in a hyperplane H ⊂ Pn such that p /∈ H,
(v) BlP1×{p}(P1 × Pn−1).

Proposition 3.4. Let X be an n-dimensional smooth Fano variety admitting a
PιX−1-bundle structure ψ : X → PιX+1, and assume that ιX = n

2 ≥ 2. Then X is
isomorphic to one of the following:

(i) PιX−1 × PιX+1;
(ii) P(OPιX+1(1)⊕O⊕ιX−1

PιX+1 );

(iii) P(OPιX+1(1)⊕2 ⊕O⊕ιX−2
PιX+1 );

(iv) P(OPιX+1(2)⊕O⊕ιX−1
PιX+1 ).

Proof. Since the Brauer group of PιX+1 vanishes, there exists a rank ιX vector
bundle E over PιX+1 such that ψ : X → PιX+1 is given by the natural projection
P(E) → PιX+1. Let ℓ ⊂ PιX+1 be a line. By tensoring a line bundle if necessary,
we may assume that

E|ℓ ∼= OP1(−a1)⊕OP1(−a2)⊕ · · · ⊕ OP1(−aιX )

with 0 = a1 ≤ a2 ≤ · · · ≤ aιX .
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Set Xℓ := ℓ ×PιX+1 X and ℓ̃ := P(OP1(−aιX )). Remark that ℓ̃ is a section of
Xℓ → ℓ. Then we have

ιX ≤ −KX · ℓ̃ = ψ∗(−KPιX+1) · ℓ̃−KX/PιX+1 · ℓ̃

= (ιX + 2) +
(
−KXℓ/ℓ · ℓ̃

)
= (ιX + 2)− ιXaιX +

ιX∑
i=1

ai.

This implies that

0 ≤ (aιX − a1) + (aιX − a2) + · · ·+ (aιX − aιX ) ≤ 2.

Therefore, E|ℓ is isomorphic to

O⊕ιX
P1 , OP1 ⊕OP1(−1)⊕ιX−1, O⊕2

P1 ⊕OP1(−1)⊕ιX−2 or OP1 ⊕OP1(−2)⊕ιX−1.

Since deg E|ℓ is independent of the choice of a line ℓ ⊂ PιX+1, we see that E is a
uniform vector bundle. Applying [22, Main Theorem], E is isomorphic to one of the
following:

• O⊕ιX
PιX+1 ;

• OPιX+1 ⊕OPιX+1(−1)⊕ιX−1;
• O⊕2

PιX+1 ⊕OPιX+1(−1)⊕ιX−2;

• OPιX+1 ⊕OPιX+1(−2)⊕ιX−1.

Proposition 3.5. Let X be an n-dimensional smooth Fano variety. Assume that
X admits a PιX−1-bundle structure ψ : X → QιX+1 and ιX = n

2 ≥ 2. Then X is
isomorphic to one of the following:

(i) PιX−1 ×QιX+1;
(ii) P(OQιX+1(1)⊕O⊕ιX−1

QιX+1 );

(iii) P(S(1)⊕OQ4), where S is the spinor bundle on Q4 [20].

Proof. By the same argument as in Proposition 3.4, there exists a vector bundle E
over QιX+1 such that

• ψ : X → QιX+1 is given by the natural projection P(E) → QιX+1;
• For any line ℓ ⊂ QιX+1, E|ℓ is isomorphic to O⊕ιX

P1 or OP1⊕OP1(−1)⊕ιX−1.
• E is a uniform vector bundle.

If E|ℓ is isomorphic to O⊕ιX
P1 for any line ℓ ⊂ QιX+1, [4, Proposition 1.2] implies

E ∼= O⊕ιX
QιX+1 ; thus X is as in (i). So, we assume that E|ℓ is isomorphic to OP1 ⊕

OP1(−1)⊕ιX−1 for any line ℓ ⊂ QιX+1. Then we have det E ∼= OQιX+1(1− ιX); this
implies that −KX = ιXξ + nψ∗H, where ξ is the tautological divisor of X = P(E)
and H is a hyperplane of QιX+1. Set L := ξ + 2ψ∗H and E ′ := ψ∗O(L). Then
E ′ = E(2) and this implies that the anticanonical divisor of QιX+1 is equal to det E ′.
Applying [21] and [18], we see that X is isomorphic to the variety as in (ii) or (iii).

Remark 3.6. The vareity P(S(1)⊕OQ4) as in Proposition 3.5 has a scroll structure
with a 4-dimensional fiber (see [33, Remarks 4.2]). In particular, it does not admit
a birational contraction.

Proposition 3.7. Let X be an n-dimensional smooth Fano variety. Assume that
there exists a vector bundle E over a variety Z such that X is isomorphic to P(E).
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Moreover, we assume that ιX = ιZ = n
2 ≥ 2 and ρX = 2. Then X is isomorphic to

PιX−1 × Z.

Proof. Let us take a minimal dominating family N ⊂ RatCurvesn(Z). By Theo-
rem 2.8 and our assumption, we obtain

ιZ ≤ deg(−KZ) N < dimZ = ιX + 1 = ιZ + 1.

Thus we have deg(−KZ) N = ιZ ; this implies that N is an unsplit covering family. In

fact, if M is not unsplit, we obtain a rational 1-cycle
∑s

i=1 aiZi as in Lemma 2.13.
Then we have deg(−KX) M =

∑s
i=1 ai(−KX) · Zi ≥ 2ιX = n. This is a contra-

diction. For [ℓ] ∈ N , let f : P1 → ℓ ⊂ Z be the normalization of ℓ; Lemma 2.6
(ii) implies that P(f∗E) = P1 ×Z X is isomorphic to P1 × PιX−1. This means that
E|ℓ ∼= OP1(a)⊕ιX for some integer a. Since deg E|ℓ is independent of the choice of
[ℓ] ∈ N , we see that E is a uniform vector bundle with respect to N . Thus [4,
Proposition 1.2] concludes that X is isomorphic to PιX−1 × Z.

4. Proof of the main theorem

4.1. The case where X admits an elementary small contraction. The pur-
pose of this subsection is to prove the following:

Theorem 4.1. Let X be a smooth Fano variety with ιX = n
2 ≥ 3 and ρX = 2.

Assume that X admits a small contraction φ : X → Y of an extremal ray R ⊂
NE(X). Then X is isomorphic to P(O⊕2

PιX+1(1)⊕O⊕ιX−2
PιX+1 ).

Proof. LetM ⊂ RatCurvesn(X) be a minimal dominating family of rational curves.
Since ρX > 1 and ιX = n

2 , by Theorem 2.8, we have deg(−KX) M < n. Applying
Lemma 2.13, it follows that M is unsplit. By Proposition 2.9, for any x ∈ X, the
following inequality holds

dimLocus(Mx) ≥ deg(−KX) M− 1 ≥ ιX − 1.

Let F be an irreducible component of a nontrivial fiber of φ, and let E be an irre-
ducible component of the exceptional locus of φ containing F . By Proposition 2.2,
we have an inequality

dimF ≥ ℓ(R) + 1 ≥ ιX + 1.(3)

Applying Proposition 2.10, we obtain

n ≥ dimLocus(M)F ≥ dimF + deg(−KX) M− 1 ≥ (ιX + 1) + ιX − 1 = n.

This inequality implies that dimF = ιX +1, X = Locus(M)F , and deg(−KX) M =

ιX . Then Proposition 2.2 implies that codimE = 2 and ιX = ℓ(R).
Since ρX = 2, there exists an extremal ray R′ ⊂ NE(X) which is not R. Let

C and C ′ denote an extremal rational curve of R and of R′, respectively. We
claim that R′ contains any M-curve. Since any curve contained in F is numerically
proportional to C, Lemma 2.12 implies there exist a non-negative rational number
a, a rational number b and an M-curve CM that satisfy the following

[C ′] = a[C] + b[CM] ∈ N1(X).

If b is negative, we have [C ′], [CM] ∈ R since [C ′] − b[CM] = a[C] ∈ R. This is a
contradiction. Hence, we have b is non-negative. Then a[C] + b[CM] = [C ′] ∈ R′;
this yields a[C], b[CM] ∈ R′. Since R and R′ are distinct, we obtain a = 0. Then
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we see that b ̸= 0 and [CM] ∈ R′. Since any M-curve is numerically equivalent to
each other, our claim holds.

Let ψ : X → Z be the contraction of R′, which contracts any M-curve. Since
we have a finite morphism ψ|F : F → Z, we have dimZ ≥ dimF = ιX + 1. We
also have an inequality

dimX ≥ dimLocus(Mx) + dimZ ≥ ιX − 1 + dimZ.

This yields that ιX + 1 ≥ dimZ. Thus we see that dimZ = ιX + 1, and this
concludes that ψ|F : F → Z is surjective and the dimension of a general fiber of ψ
is ιX − 1.

Here, we claim that ψ : X → Z is equidimensional. Suppose the contrary to
prove this. Then there exists an irreducible component F ′ of a jumping fiber of
ψ, such as dimF ′ > ιX − 1. Since we have Locus(M)F = X, for a general point
x ∈ F ′, we may find an M-curve C such that x ∈ C and F ∩ C ̸= ∅. Since x is a
general point of F ′, C is contained in F ′. Thus we see that F ∩ F ′ is nonempty.
Then, by Lemma 2.5, we have

dimX ≥ dimF + dimF ′ > (ιX + 1) + (ιX − 1) = dimX.

This is a contradiction. Consequently, we see that ψ : X → Z is equidimen-
sional. Remark that ιX = deg(−KX) M; this yields that ℓ(R′) = ιX . Applying

Theorem 2.3, we see that ψ is a PιX−1-bundle.
Let Ẽ → E be the normalization of E and φ̃ : Ẽ → W̃ be the morphism

obtained by the Stein factorization of Ẽ → E → Y . Since we have dimE +
dimF = dimX + ℓ(R) − 1, [11, Theorem 1.4] implies Ẽ → W̃ is a projective
bundle in codimension one. From this, we obtain a surjective morphism PιX+1 → Z.
Applying [16, Theorem 4.1], it follows that Z is isomorphic to PιX+1. Then our
assertion follows from Proposition 3.4.

4.2. The case where X admits an elementary divisorial contraction. The
purpose of this subsection is to prove the following:

Theorem 4.2. Let X be a smooth Fano variety with ιX = n
2 ≥ 3 and ρX = 2.

Assume that X admits a divisorial contraction φ : X → Y of an extremal ray
R ⊂ NE(X). Then X is isomorphic to one of the varieties in Theorem 1.3.

Since ρX = 2, there exists an extremal ray R′ ⊂ NE(X) such that NE(X) =
R + R′. We denote by C and C ′ an extremal rational curve of R and that of
R′, respectively. Let ψ : X → Z be the contraction of R′. We denote by E the
exceptional divisor of φ. Throughout this section, we will use these notations. By
the negativity lemma [15, Lemma 3.39], we have E · C < 0. Since E is an effective
divisor, a curve C0 ⊂ X with E ·C0 > 0 exists. For non-negative numbers a, b such
that [C0] = a[C] + b[C ′] ∈ N1(X), we have

0 < E · C0 = aE · C + bE · C ′ ≤ bE · C ′.

This implies that E · C ′ > 0. We now claim the following:

Lemma 4.3. The contraction ψ is of fiber type.

Proof. Assume the contrary, that is, ψ is of birational type. If ψ is a small con-
traction, then X is isomorphic to the variety as in Theorem 4.1. In this case, ψ is
of fiber type; this is a contradiction. Thus, ψ is a divisorial contraction. Let E′ be
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the exceptional divisor of ψ. We denote by F and F ′ an irreducible component of
a nontrivial fiber of φ and that of ψ, respectively. By Proposition 2.2, we have

dimF ≥ ℓ(R) ≥ ιX and dimF ′ ≥ ℓ(R′) ≥ ιX .(4)

Since E · C ′ > 0, E ∩ F ′ is nonempty. We claim that ψ|E′ is an equidimensional
morphism of relative dimension ιX . If not, there exists an irreducible component
F ′
0 of a nontrivial fiber of ψ such that dimF ′

0 > ιX . Since E ∩ F ′
0 is nonempty, we

may find an irreducible component F0 of a nontrivial fiber of φ such that F0 ∩ F ′
0

is nonempty. Then we have

dimF0 ∩ F ′
0 ≥ dimF0 + dimF ′

0 − n > 0.

This is a contradiction. Therefore, ψ|E′ is an equidimensional morphism of relative
dimension ιX . By the inequality (4), we have ℓ(R′) = ιX . Applying Theorem 2.4,
we see that ψ : X → Z is the blow-up of a smooth projective variety Z along a
smooth variety of codimension ιX +1. Then X is isomorphic to any of the varieties
appearing in (i), (ii), and (iii) of Theorem 3.3, but these varieties have only one
birational contraction. Consequently, we see that ψ is of fiber type.

Subsequently, an irreducible component of a non-trivial fibre of φ and that of ψ
are denoted by F and F ′, respectively. Any fibre of ψ whose dimension is equal to
dimX − dimZ is denoted by F ′

gen, and any fibre of φ|E whose dimension is equal
to dimE − dimφ(E) is denoted by Fgen.

Since ψ|F : F → Z is finite, applying Proposition 2.2 for φ, we have

dimZ ≥ dimF ≥ dimFgen ≥ ℓ(R) ≥ ιX .(5)

Applying Proposition 2.2 for ψ, we obtain

dimF ′ ≥ dimF ′
gen ≥ ℓ(R′)− 1 ≥ ιX − 1.(6)

Moreover, we have

n = dimF ′
gen + dimZ ≥ (ιX − 1) + ιX = n− 1.(7)

This implies

dimF ′
gen = ιX or ιX − 1.(8)

Lemma 4.4. One of the following holds:

(i) The contraction φ : X → Y is the blow-up of a smooth projective variety
Y along a smooth subvariety W of dimension ιX − 1;

(ii) The contraction ψ : X → Z is a PιX−1-bundle.

Proof. If dimF = ιX for any irreducible component F of any fiber of φ|E , then φ|E
is equidimensional and dimF = ℓ(R) by (5), so by Theorem 2.4 we are in case (i).
Therefore, we may assume that there exists an irreducible component F0 of a fiber
of φ|E with dimF0 ≥ ιX + 1. Then, since ψ|F0

: F0 → Z is finite, it follows that

(1) dimZ ≥ dimF0 ≥ ιX + 1.

Now, if dimF ′ = ιX − 1 for any irreducible component F ′ of any fiber of ψ, then ψ
is equidimensional and dimF ′ = ℓ(R′)− 1 by (6), so by Theorem 2.3 we are in case
(ii). Hence we may assume that there exists an irreducible component F ′

0 of a fiber
of ψ with dimF ′

0 ≥ ιX . Let M ⊂ RatCurvesn(X) be a dominating family of ψ-
contracted rational curves of minimal anticanonical degree. By the same argument
as in Theorem 4.1, we see that M is unsplit and that Locus(M)F0

= X. Moreover,



12 KIWAMU WATANABE

by the same argument as in Theorem 4.1, we conclude that F0 ∩ F ′
0 ̸= ∅. Then, by

Lemma 2.5, we have

dimX ≥ dimF0 + dimF ′
0 > (ιX + 1) + ιX = dimX + 1,

a contradiction.

Proof of Theorem 4.2. We see that φ and ψ satisfy either (i) or (ii) of Lemma 4.4.
In the first case, Theorem 3.3 yields that X is isomorphic to one of the varieties
as in (i)-(iii) of Theorem 4.2. So, assume that ψ : X → Z is a PιX−1-bundle. By
Lemma 2.6, Z is a smooth Fano variety with ιZ ≥ ιX . Moreover, since dimZ =
dimX − (ιX − 1), it follows that ιZ ≤ dimZ+1 = ιX +2. If ιZ = ιX +2 or ιX +1,
then Theorem 2.8 implies that Z is isomorphic to PιX+1 or QιX+1, respectively. In
these cases, by Proposition 3.4 and Proposition 3.5, X is isomorphic to one of the
varieties as in (iv)-(vi) of Theorem 4.2. Finally, Proposition 3.7 implies that the
case ιZ = ιX does not occur.

4.3. Conclusion.

Proof of Theorem 1.3. Our assertion follows from Example 2.14, Example 2.15,
Lemma 3.1, Lemma 3.2, Theorem 4.1, and Theorem 4.2.
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[33] Jaros law A. Wísniewski. A report on Fano manifolds of middle index and b2 ≥ 2. In Projective
geometry with applications, volume 166 of Lecture Notes in Pure and Appl. Math., pages 19–
26. Dekker, New York, 1994.

[34] Jaros law A. Wísniewski. On contractions of extremal rays of Fano manifolds. J. Reine Angew.
Math., 417:141–157, 1991.

Department of Mathematics, Faculty of Science and Engineering, Chuo University.
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Email address: watanabe@math.chuo-u.ac.jp


	1. Introduction
	Notation and Conventions

	2. Preliminaries
	2.1. Contractions
	2.2. Families of rational curves
	2.3. Specific calculation of pseudoindex

	3. Special cases
	4. Proof of the main theorem
	4.1. The case where X admits an elementary small contraction
	4.2. The case where X admits an elementary divisorial contraction
	4.3. Conclusion
	Acknowledgments

	References

