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Abstract. Let k be an algebraically closed uncountable field of characteristic zero. Let R be a complete
local hypersurface over k. Denote by CM(R) the category of maximal Cohen–Macaulay R-modules and by

Dsg(R) the singularity category of R. Denote by CM0(R) the full category of CM(R) consisting of modules
that are locally free on the punctured spectrum of R, and by Dsg

0 (R) the full subcategory of Dsg(R) consisting

of objects that are locally zero on the punctured spectrum of R. In this paper, under the assumption that R
has finite or countable CM-representation type, we completely classify the extension-closed subcategories of

CM0(R) in dimension at most two, and the extension-closed subcategories of Dsg
0 (R) in arbitrary dimension.
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1. Introduction

Let R be a local hypersurface ring. By virtue of [9, 11] there are one-to-one correspondences between:

• the resolving subcategories of modR contained in CM(R),
• the thick subcategories of Dsg(R),
• the specialization-closed subsets of the singular locus of R,

where modR, CM(R), and Dsg(R) respectively stand for the category of finitely generated R-modules, the
full subcategory of maximal Cohen–Macaulay R-modules, and the singularity category of R, i.e., the Verdier
quotient of the bounded derived category of modR by perfect complexes. The bijections are explicitly given,
which leads to complete classifications of the resolving subcategories and thick subcategories mentioned above.

An extension-closed subcategory of an extriangulated category C (in the sense of [7]) is defined to be a full
subcategory X of C which is closed under direct summands and such that for each conflation X → Y → Z in
C, if X and Z belong to X , then Y also belongs to X . Note by definition that both a resolving subcategory
of modR and a thick subcategory of Dsg(R) are extension-closed subcategories.

Denote by CM0(R) the full subcategory of CM(R) consisting of maximal Cohen–Macaulay modules which
are locally free on the punctured spectrum of R, and by Dsg

0 (R) the full subcategory of Dsg(R) consisting of
objects which are locally zero on the punctured spectrum of R. Note that the equalities CM0(R) = CM(R)
and Dsg

0 (R) = Dsg(R) hold whenever R has an isolated singularity. The classification theorem stated above
implies that, if R is a local hypersurface ring, then there exist only trivial resolving subcategories of modR
contained in CM0(R) and there exist only trivial thick subcategories of Dsg(R) contained in Dsg

0 (R). This
fact motivates us to classify the extension-closed subcategories of CM0(R) and Dsg

0 (R).
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In the present paper, we shall prove the following theorem. The separation of the theorem into two parts is
based on the fact that Knörrer’s periodicity allows one to describe Dsg

0 (R) in all dimensions, but for CM0(R)
in higher dimensions it is not clear which extension-closed subcategories contain R.

Theorem 1.1. Let k be an algebraically closed uncountable field of characteristic 0. Let R be a singular
complete local hypersurface ring with residue field k. Suppose that R has either finite or countable CM-
representation type.

(1) The Hasse diagram of the partially ordered set of extension-closed subcategories of Dsg
0 (R) with respect

to the inclusion relation is one of the following four graphs.
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(2) If R has Krull dimension at most two, then the Hasse diagram of the partially ordered set of extension-
closed subcategories of CM0(R) with respect to the inclusion relation is one of the following five graphs.
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Note that 0, addR,CM0(R) are always extension-closed subcategories of CM0(R), and that 0,Dsg
0 (R) are

always extension-closed subcategories of Dsg
0 (R). Hence the first diagrams in the two assertions of the above

theorem mean that there exist only trivial extension-closed subcategories.
The organization of this paper is as follows. In Section 2, we collect definitions and lemmas which are used

in later sections. In Sections 3 and 4, we respectively deal with finite CM-representation type and countable
CM-representation type in dimension at most two. In the final Section 5, we give proofs of Theorem 1.1.

2. Basic definitions and fundamental lemmas

This section is devoted to stating basic definitions and proving fundamental lemmas for later use. First
of all, let us provide our convention.

Convention 2.1. Let k be an algebraically closed field of characteristic zero, so
√
−1 ∈ k. We assume that all

rings are commutative and noetherian, all modules are finitely generated, and all subcategories are nonempty
and strictly full. Let R be a (commutative noetherian) ring. We denote by modR the category of (finitely
generated) R-modules, by CM(R) the (strictly full) subcategory of modR consisting of maximal Cohen–
Macaulay R-modules (we regard the zero R-module 0 as maximal Cohen–Macaulay, so that 0 belongs to
CM(R)), and by Dsg(R) the singularity category of R, which is defined as the Verdier quotient of the bounded
derived category Db(modR) of modR by perfect complexes. For each P ∈ {An,A∞,Dn,D∞,E6,E7,E8} we
write Pd to indicate that the dimension of the P-singularity considered is d. We may omit a subscript or a
superscript when it is clear from the context.

We recall the notion of an exact square which plays an essential role in the proofs of our main results.
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Definition 2.2. A commutative diagram of homomorphisms of R-modules

A
a //

c
��

B

b
��

C
d // D

is called an exact square if it is a both pushout and pullback diagram, or in other words, if the sequence

0→ A
(ac)−−→ B ⊕ C (−b,d)−−−−→ D → 0 is exact.

It can be verified directly that the following lemma holds true; see [12, Lemma 2.2(2)].

Lemma 2.3. Let (1) and (2) below be exact squares. Then (3) below is an exact square as well.

A
a //

d
��

(1)

B

g
��

b //

(2)

C

c
��

D
e // E

f // F

A
ba //

d
��

(3)

C

c
��

D
fe // F

In other words, if the sequences 0→ A
(ad)−−→ B ⊕D (−g,e)−−−−→ E → 0 and 0→ B

(bg)−−→ C ⊕ E (−c,f)−−−−→ F → 0 are

exact, then so is the sequence 0→ A
(bad )−−−→ C ⊕D (−c,fe)−−−−−→ F → 0.

The following elementary lemma will also be necessary.

Lemma 2.4. (1) If 0 → A
(fg)−−→ B ⊕ C (h,l)−−−→ D → 0 and 0 → E

m−→ A
f−→ B → 0 are exact sequences in

modR, then there exists an exact sequence 0→ E
gm−−→ C

l−→ D → 0 in modR.

(2) If 0→ A
(hl)−−→ B ⊕ C (f,g)−−−→ D → 0 and 0→ C

g−→ D
m−→ E → 0 are exact sequences in modR, then there

exists an exact sequence 0→ A
h−→ B

mf−−→ E → 0 in modR.

Proof. In the situations of (1) and (2), there respectively exist pullback and pushout diagrams

0 // E
m // A

f //
g��

B //

−h��

0

0 // E
gm // C

l // D // 0

0 // A
h //

−l��

B
mf //

f��

E // 0

0 // C
g // D

m // E // 0

which show the assertions of the lemma. ■

We introduce our two main ambient categories.

Definition 2.5. Let R be a local ring with maximal ideal m. Denote by Dsg
0 (R) the subcategory of Dsg(R)

consisting of objects that are locally zero on the punctured spectrum of R, and by CM0(R) the subcategory
of CM(R) consisting of R-modules that are locally free on the punctured spectrum of R. Thus:

Dsg
0 (R) = {X ∈ Dsg(R) | Xp

∼= 0 for all m 6= p ∈ SpecR},
CM0(R) = {M ∈ CM(R) |Mp is Rp-free for all m 6= p ∈ SpecR}.

Remark 2.6. Let R be a local ring. Then R has an isolated singularity if and only if Dsg
0 (R) = Dsg(R).

When R is a Cohen–Macaulay local ring, R has an isolated singularity if and only if CM0(R) = CM(R).

Now we give the precise definition of an extension-closed subcategory. Note that in our sense an extension-
closed subcategory is necessarily closed under direct summands.

Definition 2.7. Let C be an additive category.

(1) We say that a subcategory X of C is closed under finite direct sums provided that if X1, . . . , Xn are a
finite number of objects of C that belong to X , then the direct sum X1 ⊕ · · · ⊕Xn belongs to X as well.

(2) We say that a subcategory X of C is closed under direct summands provided that if X is an object of C
that belongs to X and Y is an object of C which is a direct summand of X, then Y belongs to X .

(3) An additively closed subcategory of C is defined to be a subcategory of C which is closed under finite
direct sums and direct summands.
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(4) Assume that C is extriangulated in the sense of [7]. Let X be a subcategory of C closed under direct
summands. We say that X is extension-closed provided that for every conflation L→M → N in C, if L
and N belong to X , then so does M .

Remark 2.8. (1) Since Dsg
0 (R) is a triangulated category, it is an extriangulated category. A subcategory

X of Dsg
0 (R) closed under direct summands is extension-closed if and only if for each exact triangle

L→M → N ⇝ in Dsg
0 (R) with L,N ∈ X one has M ∈ X .

(2) Let R be a Cohen–Macaulay local ring. Then CM0(R) is an exact category whose conflations are the
short exact sequences of maximal Cohen–Macaulay R-modules that are locally free on the punctured
spectrum. Hence CM0(R) is an extriangulated category. A subcategory X of CM0(R) closed under
direct summands is extension-closed if and only if for an exact sequence 0 → L → M → N → 0 of
modules in CM0(R) with L,N ∈ X one has M ∈ X .

Next we introduce some notations.

Definition 2.9. Let C be an essentially small additive category, and let X be a subcategory of C.
(1) We denote by indC X the set of isomorphism classes of indecomposable objects in X .
(2) Denote by addC X the additive closure of X , which is defined as the smallest additively closed subcategory

of C containing X . Hence addC X consists of the direct summands of finite direct sums of objects in X .
(3) Assume that C is extriangulated. We denote by extC X the extension closure of X , which is by definition

the smallest extension-closed subcategory of C containing X .
When X is the subcategory of C defined by a single object X, we may write addC X and extC X instead of
addC X and extC X , respectively. Note that addC X consists of the direct summands of finite direct sums of
copies of X. Let E(R),E0(R) be the sets of extension-closed subcategories of CM(R),CM0(R) respectively.
Note that E(R),E0(R) are posets (partially ordered sets) with respect to the inclusion relation ⊆.

We pose a natural question regarding the set E0(R). Applying our main results, we will give some answers
to this question in Remark 4.4. Note that this question is closely related to the problem studied intensively
in [10] in the case of artinian local rings. It is also worth pointing out that if the question is affirmative, then
for such a ring R as in the question, the extension-closed subcategories of Dsg

0 (R) are the trivial ones: 0 and
Dsg

0 (R).

Question 2.10. Let R = k[[x0, x1, . . . , xd]]/(f) be a complete local hypersurface domain over a field k with
dimension at most two. Then does it hold that E0(R) = {0, addR,CM0(R)} ?

We recall the definitions of finite and countable CM-representation types.

Definition 2.11. Let R be a Cohen–Macaulay local ring. We say that R has finite CM-representation type if
indCM(R) is finite. We say that R has countable CM-representation type if indCM(R) is countably infinite.

The following lemma states some properties of additive and extension closures which will often be used.

Lemma 2.12. (1) Let 0→ L→M → N → 0 be an exact sequence of R-modules. Let X be a subcategory of
modR. Suppose that L,N belong to addX . Then there exists an exact sequence 0 → A → B → C → 0
of R-modules such that A,C are finite direct sums of modules in X and M is a direct summand of B.

(2) Let M and N be R-modules, and let S be a multiplicatively closed subset of R. Suppose that M belongs to
the extension closure extmodRN . Then the localizationMS belongs to the extension closure extmodRS

NS.
(3) Let R be a Gorenstein local ring. Let X and Y be subcategories of CM(R). If the equality extX = addY

holds, then the equality ext(X ∪ {R}) = add(Y ∪ {R}) holds as well.

Proof. (1) There exist R-modules L′, N ′ and finite direct sums A,C of R-modules in X such that L⊕L′ ∼= A
and N ⊕ N ′ ∼= C. Taking the direct sum with the trivial exact sequences 0 → L′ → L′ → 0 → 0 and
0 → 0 → N ′ → N ′ → 0, we get an exact sequence 0 → L ⊕ L′ → L′ ⊕M ⊕ N ′ → N ⊕ N ′ → 0. Setting
B = L′ ⊕M ⊕N ′, we obtain such an exact sequence 0→ A→ B → C → 0 as in the assertion.

(2) Let X be the subcategory of modR consisting of R-modules X such that XS ∈ extmodRS
NS . Then X

containsN . Let Z be an R-module in X andW is a direct summand of Z. Then ZS is in extmodRS
NS andWS

is a direct summand of ZS . Hence WS is in extmodRS
NS , so that W is in X . Let 0→ X → E → Y → 0 be

an exact sequence in modR such that X,Y ∈ X . Then there is an exact sequence 0→ XS → ES → YS → 0
in modRS and XS , YS belong to extmodRS

NS . Hence ES belongs to extmodRS
NS , and we see that E is in
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X . The subcategory X of modR contains N and is extension-closed. It follows that extN is contained in X .
Since M is in extN , we observe that MS is in extmodRS

NS .
(3) We have R ∈ add(Y ∪ {R}) ⊇ addY = extX ⊇ X . Hence add(Y ∪ {R}) contains X ∪ {R}, and is

closed under direct summands by definition. Let 0→ L→M → N → 0 be an exact sequence in modR with
L,N ∈ add(Y ∪ {R}). By assertion (1), we get an exact sequence 0 → A⊕ R⊕a → B → C ⊕ R⊕c → 0 with
a, c ∈ N and A,C ∈ addY such that M is a direct summand of B. We have pushout and pullback diagrams:

0

��

0

��
R⊕a

��

R⊕a

��
0 // A⊕R⊕a //

��

B //

��

C ⊕R⊕c // 0

0 // A //

��

V //

��

C ⊕R⊕c // 0

0 0

0

��

0

��
0 // A // W //

��

C //

��

0

0 // A // V

��

// C ⊕R⊕c //

��

0

R⊕c

��

R⊕c

��
0 0

As R is Gorenstein and V is maximal Cohen–Macaulay, the middle column in the left diagram splits and we
get B ∼= R⊕a⊕V . The middle column in the right diagram splits, so V ∼=W⊕R⊕c. Hence B ∼=W⊕R⊕(a+c).
As addY = extX is extension-closed and contains A,C, the first row in the right diagram shows W ∈ addY.
Therefore, B is in add(Y∪{R}), and so isM . We have shown that add(Y∪{R}) contains ext(X∪{R}). Let Z
be an extension-closed subcategory of modR containing X ∪{R}. Since Z contains X and is extension-closed,
Z contains extX = addY. Hence Z contains add(Y∪{R}). It follows that add(Y∪{R}) = ext(X ∪{R}). ■

Next we recall some notions from commutative algebra.

Definition 2.13. Let R be a local ring.

(1) We say that R is a hypersurface if it satisfies the inequality edimR − depthR ⩽ 1, where edimR and
depthR stand for the embedding dimension of R and the depth of R, respectively.

(2) LetM be an R-module. For an integer n > 0, we denote by ΩnM the nth syzygy ofM , that is, the image
of the nth differential map in a minimal free resolution of M . We put ΩM = Ω1M and Ω0M =M .

(3) An R-module M is called rigid if Ext1R(M,M) = 0.

Remark 2.14. (1) A local ring (R,m) is a hypersurface if and only if the m-adic completion of R is isomor-
phic to S/(f) for some regular local ring (S, n) and some element f ∈ n; see [1, 5.1].

(2) Let R be a hypersurface. LetM be a nonfree maximal Cohen–Macaulay R-module with no free summand.
Then there is an isomorphism Ω2M ∼=M ; see [1, 5.1.1 and 5.1.2].

(3) For an R-moduleM and an integer n ⩾ 0, the nth syzygy ΩnM is uniquely determined up to isomorphism,
since so is a minimal free resolution of M .

We investigate the relationship between extension closures and syzygies over a local ring.

Lemma 2.15. Let (R,m, k) be a local ring of (Krull) dimension d. Let M be an R-module.

(1) Let N be an R-module. If N belongs to extM , then ΩN belongs to extΩM .
(2) Suppose that the local ring R is Gorenstein and singular, and that the R-module M is maximal Cohen–

Macaulay. If extM = CM0(R), then extΩiM = CM0(R) for all integers i ⩾ 0.

Proof. (1) Let X be the subcategory of modR consisting of R-modules X such that ΩX is in extΩM . Then
M is in X . Let X be an R-module in X and Y a direct summand of X. Then ΩY is a direct summand of
ΩX. Since ΩX is in extΩM , so is ΩY . Therefore, Y belongs to X . Let 0 → A → B → C → 0 be an exact
sequence of R-modules with A,C ∈ X . Then there is an exact sequence 0 → ΩA → ΩB ⊕ R⊕n → ΩC → 0
with n ∈ N. Since ΩA,ΩC are in extΩM , so is ΩB. Hence B is in X . Thus, X is extension-closed and
contains M . It follows that X contains extM , and N belongs to X , which means that ΩN is in extΩM .

(2) We may assume i = 1. The module M is in extM = CM0(R), so that ΩM is also in CM0(R), whence
extΩM ⊆ CM0(R). As R is Gorenstein and M is maximal Cohen–Macaulay, there exists a maximal Cohen–
Macaulay R-module N such that Ωdk ∼= ΩN ⊕ R⊕n for some n ∈ N. As R is singular, we have n = 0 by [4,
Corollary 1.3]. Since Ωdk belongs to CM0(R), so does ΩN . Since N is a maximal Cohen–Macaulay module
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over a Gorenstein ring R, it is observed that N is in CM0(R). As CM0(R) = extM , we see from (1) that ΩN
belongs to extΩM . Hence Ωdk is in extΩM . It follows from [9, Corollary 2.6] that extΩM = CM0(R). ■

We study extension-closedness of additive closures of rigid maximal Cohen–Macaulay modules.

Lemma 2.16. Let R be a Cohen–Macaulay local ring. Let M be a rigid maximal Cohen–Macaulay R-module.

(1) The additive closure addM is an extension-closed subcategory of CM(R).
(2) If R is Gorenstein, then add{R,M} is an extension-closed subcategory of CM(R).
(3) If M has no nonzero free summand, then addM 6= add{R,M}.

Proof. (1) By definition, addM is closed under direct summands. Let 0 → X → Y → Z → 0 be an exact
sequence of maximal Cohen–Macaulay R-modules, and suppose that X and Z are in addM . By Lemma
2.12(1) there is an exact sequence σ : 0 → M⊕a → W → M⊕b → 0 in modR with a, b ∈ N such that Y is
a direct summand of W . Since M is rigid, Ext1R(M

⊕b,M⊕a) = 0. Hence the short exact sequence σ splits,
and W is isomorphic to M⊕(a+b). Therefore, Y belongs to addM . It follows that addM is extension-closed.

(2) If R is Gorenstein, then the maximal Cohen–Macaulay R-module R ⊕M is rigid. It follows from (1)
that add{R,M} = add(R⊕M) is an extension-closed subcategory of CM(R).

(3) Assume addM = add{R,M}. Then R is a direct summand of a finite direct sum of copies of M . By
[6, Corollaries 1.10 and 1.15], we see that R is a direct summand of M . Thus the assertion follows. ■

The following lemma will be used in the case where S is a regular local ring.

Lemma 2.17. Let S be a local ring. Let x, y be a regular sequence on S. Take the quotient ring R = S/(xy).
Then the R-modules R/(x) and R/(y) are rigid.

Proof. Using the fact that the elements x and y are regular on S, we observe that the equalities 0 :R x = yR

and 0 :R y = xR hold true. This implies that the sequence · · · y−→ R
x−→ R

y−→ R
x−→ R → R/xR → 0 is exact.

We have Ext1R(R/xR,R/xR) = H1(0 → R/xR
0−→ R/xR

y−→ R/xR
0−→ R/xR

y−→ · · · ) = 0, since y is regular
on S/xS = R/xR. Hence R/xR is a rigid R-module. By symmetry, the R-module R/yR is also rigid. ■

Here we recall the definitions of the stable category and cosyzygies of maximal Cohen–Macaulay modules.

Definition 2.18. (1) Let R be a Cohen–Macaulay local ring. Let CM(R) be the stable category of CM(R);
the objects of CM(R) are the same as those of CM(R), and the hom-set from M to N is given by

HomCM(R)(M,N) = HomR(M,N)/{f ∈ HomR(M,N) | f factors through a free R-module}.
(2) Let R be a Gorenstein local ring. Let M be a maximal Cohen–Macaulay R-module. We define the (first)

cosyzygy Ω−1M ofM as (Ω(M∗))∗, where (−)∗ = HomR(−, R). Note then that Ω−1M is maximal Cohen–
Macaulay. For n ⩾ 2, we define the nth cosyzygy Ω−nM of M inductively by Ω−nM = Ω−1(Ω−(n−1)M).
Note that Ω−nM = 0 for every integer n > 0 when M is a free R-module.

Remark 2.19. (1) Let R be a Cohen–Macaulay local ring. For each integer n ⩾ 0, taking the nth syzygy
defines an additive functor Ωn : CM(R)→ CM(R).

(2) Let R be a Gorenstein local ring. For each n > 0, taking the nth cosyzygy defines an additive functor
Ω−n : CM(R) → CM(R). The functors Ωn,Ω−n : CM(R) → CM(R) are mutually quasi-inverse equiv-
alences. The stable category CM(R) is a triangulated category, and the assignment M 7→ M gives a
triangle equivalence CM(R)→ Dsg(R). For the details, we refer the reader to [2, Theorem 4.4.1].

The lemma below follows from [13, Proposition (3.11)]. For the definition and fundamental properties of
the Auslander–Reiten translation functor, we refer the reader to [13, Chapters 3 and 5].

Lemma 2.20. Let R be a Gorenstein local ring of dimension d. Let τ : CM(R) → CM(R) stand for the
Auslander–Reiten translation functor. Then τ ∼= Ω2−d.

Next we introduce the syzygy of a subcategory of modules.

Definition 2.21. Let R be a local ring. For a subcategory X of modR we denote by ΩX the subcategory of
modR consisting of R-modules Y such that there exists an exact sequence 0 → Y → P → X → 0 in modR
with P ∈ addR and X ∈ X . Note that ΩX necessarily contains addR.

The lemma below describes commutativity of the syzygy and extension closure of a subcategory of modules.
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Lemma 2.22. Let R be a Gorenstein local ring. Let X be a subcategory of modR contained in CM(R).
Then there is an equality ext(ΩX ) = addΩ(extX ).

Proof. We have that addΩ(extX ) contains ΩX and is closed under direct summands. Let 0 → L → M →
N → 0 be an exact sequence in modR with L,N ∈ addΩ(extX ). Lemma 2.12(1) implies that there exists
an exact sequence 0 → A→ B → C → 0 in modR with A,C ∈ Ω(extX ) such that M is a direct summand
of B. There exist exact sequences 0→ A→ F → V → 0 and 0→ C → G→ W → 0 with F,G ∈ addR and
V,W ∈ extX . We have a pushout diagram as in the left below. The middle row splits since R is Gorenstein
and C is maximal Cohen–Macaulay. Hence we get another pushout diagram as in the right below.

0

��

0

��
0 // A //

��

B //

��

C // 0

0 // F //

��

D //

��

C // 0

V

��

V

��
0 0

0

��

0

��
0 // B // F ⊕ C //

��

V //

��

0

0 // B // F ⊕G
��

// E //

��

0

W

��

W

��
0 0

The right column in the right diagram shows that E is in extX , and then the middle row in the same diagram
shows that B is in Ω(extX ). Hence M is in addΩ(extX ), and therefore, addΩ(extX ) is extension-closed.

It remains to prove that if Y is an extension-closed subcategory of modR containing ΩX , then Y contains
addΩ(extX ). Let Z be the subcategory of modR consisting of R-modules Z with ΩZ ∈ Y . Then Z contains
X . If an R-module Z is in Z and W is a direct summand of Z, then ΩW is a direct summand of ΩZ, which
belongs to Y, and so does ΩW since Y is closed under direct summands. Hence Z is closed under direct
summands. Let 0→ A→ B → C → 0 be an exact sequence with A,C ∈ Z. Then there is an exact sequence
0→ ΩA→ ΩB ⊕ F → ΩC → 0 with F ∈ addR and ΩA,ΩC ∈ Y . As Y is extension-closed, ΩB belongs to
Y, and hence B is in Z. It follows that Z is extension-closed. We now observe that Z contains extX , which
implies Ω(extX ) ⊆ Y . As Y is extension-closed, we get the desired inclusion addΩ(extX ) ⊆ Y . ■

3. On the An,Dn,E6,E7,E8-singularities with dimension at most two

In this section, we give a complete classification of the extension-closed subcategories of CM(R) in the
case where R is a P -singularity with P ∈ {An,Dn,E6,E7,E8} and has dimension at most two.

Theorem 3.1. Let R = k[[x, y]]/(x2 + yn+1) be the A1
n-singularity, where n is a positive integer. When n is

odd, put N± = R/(y(n+1)/2 ±
√
−1x). The Hasse diagram of the poset E(R) is

CM(R)

addR if n is even, and

0

CM(R)

RRR
RRR

R

add{R,N+}

SSSS
SSSS

add{R,N−}
PPP

PPP
if n is odd.

addN+

SSSS
SSSS

SS
addR addN−

mmmm
mmmm

m

0

Proof. We begin with the case where n is even. Put l = n/2, I0 = R and Ij = (x, yj)R for each 1 ⩽ j ⩽ l.
By [13, (5.12)] we have indCM(R) = {I0, I1, . . . , Il} and there exist exact sequences 0→ Ij → Ij−1⊕ Ij+1 →
Ij → 0 for each 1 ⩽ j ⩽ l−1, and 0→ Il → Il−1⊕Il → Il → 0. Hence R = I0 ∈ ext I1 = ext I2 = · · · = ext Il.
It is observed that ext Ij = CM(R) for all 1 ⩽ j ⩽ l. We obtain the equality E(R) = {0, addR,CM(R)}.

Next we deal with the case where n is odd. Put l = (n−1)/2, N± = R/(yl+1±
√
−1x) ∼= (yl+1∓

√
−1x)R,

M0 = R and Mj = Cok
(

x yj

yn+1−j −x

)
∼= (x, yj)R for each integer 1 ⩽ j ⩽ l. Using [13, (9.9)], we have that

indCM(R) = {M0,M1, . . . ,Ml, N+, N−} and there exist exact sequences

0→Mj →Mj−1 ⊕Mj+1 →Mj → 0 for each 1 ⩽ j ⩽ l − 1,
0→Ml →Ml−1 ⊕N+ ⊕N− →Ml → 0 and 0→ N± →Ml → N∓ → 0.
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Hence R =M0 ∈ extM1 = extM2 = · · · = extMl 3 N± and Ml ∈ ext{N+, N−}. We get extM1 = extM2 =
· · · = extMl = ext{N+, N−} = CM(R). Applying Lemma 2.17, we see that N+, N− are rigid R-modules. By
Lemma 2.16, we conclude that E(R) = {0, addR, addN+, addN−, add{R,N+}, add{R,N−},CM(R)}. ■

Theorem 3.2. Let R = k[[x, y]]/(x3+y4) be the E1
6-singularity. The Hasse diagram of E(R) is the following.

CM(R)

addR

0

Proof. By virtue of [13, (9.13)], we have that indCM(R) = {R,M1,M2, N1, A,B,X} with N1
∼= m := (x, y)R,

B ∼= m2, and there exist exact sequences

a : 0→M2 → X →M2 → 0, b : 0→ X →M2 ⊕A⊕B → X → 0, c : 0→ A→ X ⊕N1 → B → 0,
d : 0→ B → X ⊕M1 → A→ 0, e : 0→M1 → A→ N1 → 0, f : 0→ N1 → B ⊕R→M1 → 0

such that the maps C → D with C,D ∈ indCM(R) appearing in different exact sequences (e.g., the maps
X → M2 in a, b) are the same. It follows from [9, Corollary 2.7] that extN1 = CM(R). The associated
graded ring grmR is isomorphic to k[x, y]/(x3), which has depth one. We see from [5, Theorem 5.5] that
extB = CM(R). The exact sequences a and b show that X ∈ extM2 and B ∈ extX, respectively. Hence
the equalities extM2 = extX = extB = CM(R) hold. The exact sequences b, c, d, f make exact squares as
in the left below, while b, c, e, f make exact squares as in the right below.

A //

��

X //

��

M2 ⊕A
��

N1
//

��

B //

��

X

��
R // M1

// A

M1
//

��

A //

��

X //

��

M2 ⊕A //

��

M2 ⊕N1
//

��

M2 ⊕R
��

0 // N1
// B // X // B // M1

In view of Lemma 2.3, there exist short exact sequences 0 → A → M2 ⊕ A ⊕ R → A → 0 and 0 → M1 →
M2 ⊕ R → M1 → 0, which show that M2 ∈ extA ∩ extM1. It is seen that the equalities extA = extM1 =
extM2 = CM(R) hold. Now it is observed that E(R) = {0, addR,CM(R)}. ■

Theorem 3.3. Let R = k[[x, y]]/(x3+y5) be the E1
8-singularity. The Hasse diagram of E(R) is the following.

CM(R)

addR

0

Proof. Put U =

(
y −x 0
0 y −x
x 0 y3

)
and V =

(
y −x 0

0 y2 −x
x 0 y2

)
. In view of [13, (9.15)] and Lemma 2.20, we have that

indCM(R) = {R,M1,M2, N1, N2, A1, A2, B1, B2, C1, C2, D1, D2, X1, X2, Y1, Y2},

where A1 = CokU , A2 = CokV , M1
∼= (x2, y)R, M2

∼= (x2, y2)R, N1
∼= m := (x, y)R, N2

∼= (x, y2)R,
Ni ∼= ΩMi, Bi ∼= ΩAi, Di

∼= ΩCi, Yi ∼= ΩXi for i = 1, 2, and there exist exact sequences

0→ Y2 → D1 ⊕X1 → X2 → 0, 0→ X1 → X2 ⊕A2 ⊕ C2 → Y1 → 0, 0→ D1 → A1 ⊕X2 → C1 → 0,
0→ X2 → C1 ⊕ Y1 → Y2 → 0, 0→ C2 → Y1 ⊕N2 → D2 → 0, 0→ Y1 → Y2 ⊕B2 ⊕D2 → X1 → 0,
0→ C1 → B1 ⊕ Y2 → D1 → 0, 0→ B1 → N1 ⊕D1 → A1 → 0, 0→ N2 → D2 →M2 → 0,
0→ D2 → X1 ⊕M2 → C2 → 0,

where the maps E → F with E,F ∈ indCM(R) are all the same. It is verified that R
( xy x2 −y2 )
←−−−−−−−− R⊕3 U←−

R⊕3 and R
( xy2 x2 −y3 )
←−−−−−−−−− R⊕3 V←− R⊕3 are exact sequences, so A1

∼= m2 and A2
∼= (x2, xy2, y3)R. For each

I ∈ {M1,M2, N1, N2, A1, A2}, by [5, Proposition 6.8] and completion R/m is in extR/I. Lemma 2.15(1) (or
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[5, Lemma 5.2(1)]) implies m ∈ ext I. This gives ext I = CM(R) by [9, Corollary 2.7]. It follows from Lemma
2.15(2) that extB1 = extB2 = CM(R). The above exact sequences make the following exact squares.

Y2 //

��

D1
//

��

A1

��
X1

//

��

X2
//

��

C1

��
A2 ⊕ C2

// Y1 // Y2

X1
//

��

X2
//

��

C1 ⊕B2

��
A2 ⊕ C2

//

��

Y1 //

��

Y2 ⊕B2

��
A2 ⊕N2

// D2
// X1

C1
//

��

B1
//

��

N1

��
Y2 //

��

D1
//

��

A1

��
X1

// X2
// C1

C2
//

��

Y1 //

��

Y2 ⊕B2

��
N2

//

��

D2
//

��

X1

��
0 // M2

// C2

By Lemma 2.3, these exact squares produce the following four exact sequences:

0→ Y2 → A1 ⊕A2 ⊕ C2 → Y2 → 0, 0→ X1 → C1 ⊕B2 ⊕A2 ⊕N2 → X1 → 0,
0→ C1 → N1 ⊕X1 → C1 → 0, 0→ C2 → Y2 ⊕B2 → C2 → 0.

Hence A2 ∈ extY2∩extX1, X1 ∈ extC1 and B2 ∈ extC2, and we get ext I = CM(R) for I ∈ {Y2, X1, C1, C2}.
Lemma 2.15(2) implies ext I = CM(R) for I ∈ {X2, Y1, D1, D2}. Consequently, ext I = CM(R) for all I ∈
{M1,M2, N1, N2, A1, A2, B1, B2, Y2, X1, C1, C2, X2, Y1, D1, D2}. We obtain E(R) = {0, addR,CM(R)}. ■

Theorem 3.4. Let R = k[[x, y]]/(x3+xy3) be the E1
7-singularity. The Hasse diagram of E(R) is the following.

CM(R)

SSSS
SSSS

add{R,A,C} add{R,B,D}
RRRR

RRR

add{R,A}
TTTT

TTTT
add{R,B}

SSSS
SSSS

add{B,D}

addA

UUUU
UUUU

UUUU
addR addB

jjjj
jjjj

jjj

0

Here, A = R/(x), B = ΩA = R/(x2 + y3), C = Cok
(
x2 xy

xy2 −x2

)
and D = ΩC = Cok

(
x y

y2 −x

)
.

Proof. We observe from [13, (9.14)] and Lemma 2.20 that

indCM(R) = {R,A,B,C,D,Mi, Ni, Xj , Yj | i = 1, 2 and j = 1, 2, 3},

where A = R/(x), ΩA ∼= B = R/(x2 + y3), C = Cok
(
x2 xy

xy2 −x2

)
, ΩC ∼= D = Cok δ with δ =

(
x y

y2 −x

)
,

ΩMi
∼= Ni for i = 1, 2, ΩXj

∼= Yj for j = 1, 2, 3, N1 = Cokψ1 with ψ1 =
(
x2 y

xy2 −x

)
, Y1 = Cok η1 with

η1 =

(
y 0 x
−x xy 0
0 −x y

)
, and there exist exact sequences

0→ X3 → X1 ⊕D ⊕ Y2 → Y3 → 0, 0→ Y2 → Y3 ⊕N2 → X2 → 0, 0→ X1 → N1 ⊕ Y3 → Y1 → 0,
0→ Y3 → Y1 ⊕ C ⊕X2 → X3 → 0, 0→ N1 → R⊕ Y1 →M1 → 0, 0→ Y1 →M1 ⊕X3 → X1 → 0,
0→M2 → Y2 ⊕B → N2 → 0, ρ : 0→ B → N2 → A→ 0, 0→ N2 → X2 ⊕A→M2 → 0,
0→ X2 → X3 ⊕M2 → Y2 → 0, σ : 0→ C → X3 → D → 0, τ : 0→ D → Y3 → C → 0,

where the maps F → G with F,G ∈ indCM(R) are all the same. Lemmas 2.16 and 2.17 give the subdiagram

add{R,A}
RRRR

RRR
add{R,B}

OOO
OOO

addA

SSSS
SSSS

SS addR addB

nnn
nnn

nnn

0

of the Hasse diagram of E(R). It is easily verified that the sequences R
( x y )←−−−− R3 ψ1←−− R3 and R

( xy y2 −x2 )
←−−−−−−−−

R3 η2←− R3 are exact. Hence N1
∼= m and Y1 ∼= m2, where m stands for the maximal ideal of R. Note that
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grmR
∼= k[x, y]/(x3). The extension closures extN1 and extY1 coincide with CM(R) by [9, Corollary 2.7] and

[5, Theorem 5.5], respectively. Lemma 2.15(2) yields extM1 = extX1 = CM(R). There exist exact squares

X3
//

��

X1 ⊕D //

��

N1 ⊕D //

��

R⊕D
��

Y2 //

��

Y3 //

��

Y1 //

��

M1

��
N2 ⊕ C //

��

X2 ⊕ C //

��

X3
//

��

X1

��
D ⊕A⊕ C // D ⊕M2 ⊕ C // D ⊕ Y2 // Y3

X2
//

��

M2
//

��

B

��
X3

//

��

Y2 //

��

N2

��
X1 ⊕D // Y3 // X2

M2
//

��

Y2 //

��

Y3

��
B //

��

N2
//

��

X2

� �
0 // A // M2

Applying Lemma 2.3, we obtain the following four exact sequences.

α : 0→ X3 → N1 ⊕D ⊕N2 ⊕ C → X3 → 0, β : 0→ X2 → B ⊕X1 ⊕D → X2 → 0,
γ : 0→M2 → Y3 →M2 → 0, ζ : 0→ X3 → R⊕D ⊕D ⊕A⊕ C → Y3 → 0.

The exact sequences α, β, γ respectively show that N1 ∈ extX3, X1 ∈ extX2 and Y3 ∈ extM2. The first two
containments give equalities extX3 = extX2 = CM(R), which give equalities ext Y3 = extY2 = CM(R) by
Lemma 2.15(2). The third containment now shows that extM2 = CM(R), which implies extN2 = CM(R)
by Lemma 2.15(2) again. In summary, we have

(3.4.1) extE = CM(R) for all E ∈ {Mi, Ni, Xj , Yj | i = 1, 2 and j = 1, 2, 3}.
Applying Lemma 2.4 to the exact sequences σ, τ, ζ, we get an exact sequence 0→ C → R⊕A⊕C → C → 0,
which shows that R,A ∈ extC. It follows from Lemma 2.15(1) that B ∈ extD, and thus add{B,D} ⊆ extD.

Let p be the prime ideal of R generated by x. We claim that B,D are the only nonisomorphic indecompos-
able maximal Cohen–Macaulay R-modules X with Xp = 0. Indeed, by (3.4.1), for all E ∈ {Mi, Ni, Xj , Yj |
i = 1, 2 and j = 1, 2, 3} the module R belongs to extE, so that Rp belongs to extEp by Lemma 2.12(2), and
in particular, Ep 6= 0. Since A = R/(x) and B = R/(x2 + y3), we have Ap 6= 0 = Bp. There are equivalences(

x y

y2 −x

)
∼=
(
x 1
y2 −y−1x

)
∼=
(

0 1
y2+y−1x2 −y−1x

)
∼=
(

0 1
y2+y−1x2 0

)
∼= ( 0 1

1 0 )
∼= ( 1 0

0 1 )

of matrices over Rp. Hence it holds that Dp
∼= Cok ( 1 0

0 1 ) = 0. The localized exact sequence σp : 0 → Cp →
(X3)p → Dp → 0 shows that Cp

∼= (X3)p 6= 0. Thus the claim follows.
It follows from Lemma 2.12(2) and the equality Dp = 0 that every R-module E that belongs to extD is

such that Ep = 0. Therefore, the above claim implies that add{B,D} = extD. Using Lemma 2.12(3), we
get add{B,D,R} = ext{D,R}. In summary, we have

(3.4.2) 0 ⊊ (extB = addB) ⊊ (extD = add{B,D}) ⊊ (ext{D,R} = add{B,D,R}) ⊊ CM(R).

Suppose that there exists an extension-closed subcategory X with add{B,D,R} ⊊ X ⊊ CM(R). Then X
contains some module

E ∈ indCM(R) \ {B,D,R} = {A,C,Mi, Ni, Xj , Yj | i = 1, 2 and j = 1, 2, 3}.
In view of (3.4.1), the module E must be either A or C. Hence X contains either ext{A,B} or ext{C,D}. The
exact sequences ρ, σ give rise to equalities ext{A,B} = ext{C,D} = CM(R). Therefore we have X = CM(R),
which is a contradiction. Thus, the chain (3.4.2) is saturated.

Applying Lemma 2.22 to X = {D}, we obtain ext(Ω{D}) = addΩ(extD). Hence

extC = ext{C,R} = ext(Ω{D}) = addΩ(extD) = add{ΩB,ΩD,R} = add{A,C,R}.
We have a chain of subcategories of CM(R):

(3.4.3) 0 ⊊ (extA = addA) ⊊ (ext{A,R} = add{A,R}) ⊊ (extC = add{A,C,R}) ⊊ CM(R).

Suppose that there exists an extension-closed subcategory X with add{A,C,R} ⊊ X ⊊ CM(R). Then X
contains some module E ∈ indCM(R) \ {A,C,R} = {B,D,Mi, Ni, Xj , Yj | i = 1, 2 and j = 1, 2, 3}. By
(3.4.1) we must have E ∈ {B,D}. Hence X contains either ext{A,B} or ext{C,D}, and get a contradiction
as before. Thus, the chain (3.4.3) is saturated. Now we obtain the Hasse diagram in the theorem. ■

Theorem 3.5. Let R = k[[x, y]]/(x2y+yn−1) be the D1
n-singularity, where n ⩾ 4 is an integer. Set A = R/(y),

B = R/(x2 + yn−2), Mj = Cok
(

x yj

yn−j−2 −x

)
and Nj = Cok

(
xy yj+1

yn−j−1 −xy

)
for each 0 ⩽ j ⩽ n− 3.
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(1) Suppose that n is odd and put l = n−3
2 . Then the Hasse diagram of the poset E(R) is the following.

CM(R)

WWWWW
WWWWW

WWWW

add{R,A,N1, . . . , Nl} add{R,B,M1, . . . ,Ml}
WWWWW

WWWWW

add{R,A}

XXXXX
XXXXX

XXXXX
X add{R,B}

WWWWW
WWWWW

WWWWW
add{B,M1, . . . ,Ml}

addA

XXXXXX
XXXXXX

XXXXXX
XX addR addB

fffff
fffff

fffff
ffff

0

(2) Suppose that n is even and put l = n−4
2 . Then the Hasse diagram of the poset E(R) is the following.

CM(R)

ooo
ooo

ooo
ooo

o

{{
{{
{{
{{

CC
CC

CC
CC

OOO
OOO

OOO
OOO

O

TTTT
TTTT

TTTT
TTTT

TTT

X1

��
��
��
�

X2

ppp
ppp

ppp
ppp

p

QQQ
QQQ

QQQ
QQQ

QQQ
Q X3

nnn
nnn

nnn
nnn

nn

PPP
PPP

PPP
PPP

PP X4

==
==

==
=

NNN
NNN

NNN
NNN

N X5

��
��
��
�

NNN
NNN

NNN
NNN

N X6

==
==

==
=

NNN
NNN

NNN
NNN

N

Y1

��
��
��
�

NNN
NNN

NNN
NNN

N Y2

qqq
qqq

qqq
qqq

PPP
PPP

PPP
PPP

PP Y3

QQQ
QQQ

QQQ
QQQ

QQQ
Q Y4

PPP
PPP

PPP
PPP

PP Y5

ggggg
ggggg

ggggg
ggggg

ggggg
ggggg

NNN
NNN

NNN
NNN

N Y6

ggggg
ggggg

ggggg
ggggg

ggggg
ggggg

NNN
NNN

NNN
NNN

N Y7

==
==

==
=

NNN
NNN

NNN
NNN

N

TTTT
TTTT

TTTT
TTTT

TTTT
Y8

��
��
��
�

>>
>>

>>
>

TTTT
TTTT

TTTT
TTTT

TTTT Y9

>>
>>

>>
>

OOO
OOO

OOO
OOO

O

Z1

MMM
MMM

MMM
MMM

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYYYY Z2

NNN
NNN

NNN
NNN

WWWWW
WWWWW

WWWWW
WWWWW

WWWWW
WWWWW Z3

PPP
PPP

PPP
PPP

PP

UUUU
UUUU

UUUU
UUUU

UUUU
UUU Z4

��
��
��
�

Z5

nnn
nnn

nnn
nnn

nn
Z6

mmm
mmm

mmm
mmm

mmm
m

==
==

==
= Z7

nnn
nnn

nnn
nnn

nn

==
==

==
= Z8

ppp
ppp

ppp
ppp

��
��
��
�

Z9

jjjj
jjjj

jjjj
jjjj

jjj

��
��
��
�

Z10

hhhhh
hhhhh

hhhhh
hhhhh

hhhhh
h

��
��
��
�

Z11

jjjj
jjjj

jjjj
jjjj

jjj

ppp
ppp

ppp
ppp

Z12

ffffff
ffffff

ffffff
ffffff

ffffff
ffff

jjjj
jjjj

jjjj
jjjj

jjjj

W1

UUUU
UUUU

UUUU
UUUU

UUUU
UUU W2

RRR
RRR

RRR
RRR

RRR
R W3

DD
DD

DD
DD

D W4 W5

��
��
��
�

W6

ppp
ppp

ppp
ppp

p W7

jjjj
jjjj

jjjj
jjjj

jjjj

0

The vertices in the diagram are as follows, where C± = R/(xy±
√
−1 yl+2) and D± = R/(x∓

√
−1 yl+1).

X1 = add{R,A,C+, C−, N1, . . . , Nl}, X2 = add{R,A,C+, D−}, X3 = add{R,A,C−, D+},
X4 = add{R,B,C−, D+}, X5 = add{R,B,C+, D−}, X6 = add{R,B,D+, D−,M1, . . . ,Ml},
Y1 = add{R,A,C+}, Y2 = add{R,A,C−}, Y3 = add{A,C+, D−}, Y4 = add{A,C−, D+},
Y5 = add{R,C+, D−}, Y6 = add{R,C−, D+}, Y7 = add{R,B,D+}, Y8 = add{R,B,D−},
Y9 = add{B,D+, D−,M1, . . . ,Ml}, Z1 = add{R,A}, Z2 = add{R,C+}, Z3 = add{R,C−},
Z4 = add{A,C+}, Z5 = add{A,C−}, Z6 = add{C+, D−}, Z7 = add{C−, D+}, Z8 = add{R,D−},
Z9 = add{R,D+}, Z10 = add{R,B}, Z11 = add{B,D+}, Z12 = add{B,D−}, W1 = addA,
W2 = addC+, W3 = addC−, W4 = addR, W5 = addD−, W6 = addD+, W7 = addB.

Proof. Put Xj = Cok
(

x yj

yn−j−1 −xy

)
and Yj = Cok

(
xy yj

yn−j−1 −x

)
for each 0 ⩽ j ⩽ n − 3. By [13, (9.11) and

(9.12)] and Lemma 2.20, we have that

(3.5.1) indCM(R) ⊇ {R,A,B,Xl+1, Yl+1, Xj , Yj ,Mj , Nj | 1 ⩽ j ⩽ l},

and that there exist exact sequences

ρj : 0→ Yj+1 →Mj+1 ⊕Nj → Xj+1 → 0, 0→Mj → Xj ⊕ Yj+1 → Nj → 0,
ζj : 0→ Xj+1 → Nj+1 ⊕Mj → Yj+1 → 0, σj : 0→ Nj → Yj ⊕Xj+1 →Mj → 0

(0 ⩽ j ⩽ l)

where the maps F → G with F,G ∈ indCM(R) are all the same, and isomorphisms M0
∼= B, N0

∼= A ⊕ R,
X0
∼= Y0 ∼= R, ΩA ∼= B, ΩXj

∼= Yj ∼= (x, yj)R and ΩNj ∼= Mj
∼= (xy, yj+1)R for all 1 ⩽ j ⩽ l + 1. For each
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1 ⩽ j ⩽ l there are exact squares in the left below, which produce exact sequences in the right below.

Mj
//

��

Xj
//

��

Mj−1
//

��

Xj−1

��

0→Mj →Mj+1 ⊕Mj−1 →Mj → 0,

Yj+1
//

��

Nj //

��

Yj //

��

Nj−1
//

��

Yj−1

��

0→ Xj → Xj+1 ⊕Xj−1 → Xj → 0,

Mj+1
// Xj+1

//

��

Mj
//

��

Xj
//

��

Mj−1

��

0→ Nj → Nj+1 ⊕Nj−1 → Nj → 0,

Nj+1
// Yj+1

// Nj // Yj 0→ Yj → Yj+1 ⊕ Yj−1 → Yj → 0.

These four exact sequences show that

Ml+1 ∈ extMl = extMl−1 = · · · = extM1 3M0 = B, extXl = extXl−1 = · · · = extX1,
Nl+1 ∈ extNl = extNl−1 = · · · = extN1 3 N0 = A⊕R, extYl = extYl−1 = · · · = extY1.

Since Y1 is isomorphic to the maximal ideal (x, y)R, we have extY1 = CM(R) by [9, Corollary 2.7]. Lemma
2.15(2) implies that extX1 = CM(R). Thus for all 1 ⩽ j ⩽ l there are inclusions and equalities

(3.5.2) extMj ⊇ add{B,M1, . . . ,Ml+1}, extNj ⊇ add{R,A,N1, . . . , Nl+1}, extXj = extYj = CM(R).

(1) Let n be odd. By Lemmas 2.16 and 2.17, we get the subdiagram of the Hasse diagram of E(R):

add{R,A}

UUUU
UUUU

UU
add{R,B}

TTTT
TTTT

T

addA

VVVV
VVVV

VVVV
VV addR addB

iiii
iiii

iiii

0

By virtue of [13, (9.11)], the inclusion (3.5.1) is an equality. Put p = (y) ∈ SpecR. It is clear that (M0)p =
Bp = 0 6= Ap. For each 1 ⩽ j ⩽ l + 1, as Mj

∼= (xy, yj+1)R and Yj ∼= (x, yj)R, we have (Mj)p ⊆ pRp = 0
and (Yj)p ∼= Rp. For each 1 ⩽ j ⩽ l + 1, there is an exact sequence 0 → Xj → R⊕2 → Yj → 0, which shows
that (Xj)p ∼= Rp. For each 1 ⩽ j ⩽ l, the exact sequence σj shows (Nj)p 6= 0. Hence there is an equality

(3.5.3) {E ∈ indCM(R) | Ep = 0} = {B,M1, . . . ,Ml}.

Since n is odd, we have isomorphisms Xl+1
∼= Yl+1, Ml

∼= Ml+1 and Nl ∼= Nl+1 by [13, (9.11.5)]. The
short exact sequence σl gives rise to a short exact sequence 0→ Nl+1 → Yl ⊕ Yl+1 →Ml+1 → 0. Therefore,
there are exact squares in the left below, which produce an exact sequence in the right below.

Xl+1
//

��

Ml
//

��

Xl

��
Nl+1

//

��

Yl+1
//

��

Nl
��

0→ Xl+1 → Xl ⊕ Yl → Xl+1 → 0.

Yl // Ml+1
// Xl+1

This exact sequence and (3.5.2) give CM(R) = extXl ⊆ extXl+1, which and Lemma 2.15(2) yield CM(R) =
extXl+1 = extYl+1. By (3.5.3), for any 1 ⩽ j ⩽ l and any E ∈ extMj it holds that Ep = 0. Using (3.5.2) and
(3.5.3), we get extMj = add{B,M1, . . . ,Ml} for each 1 ⩽ j ⩽ l. This equality, (3.5.2), and Lemma 2.15(1)
yield extNj = add{R,A,N1, . . . , Nl} for each 1 ⩽ j ⩽ l. Applying Lemma 2.12(3), we get ext{R,Mj} =
add{R,B,M1, . . . ,Ml} for every 1 ⩽ j ⩽ l. The exact sequence σl shows that Xl+1 ∈ ext{Ml, Nl}, which
implies ext{Ml, Nl} = CM(R). Therefore, ext{Mj , Nh} = CM(R) for all 1 ⩽ j, h ⩽ l. From σ0 and the proof
of Lemma 2.12(3) (or [13, page 78, line 2]) we get an exact sequence 0 → A→ X1 → B → 0, which implies
X1 ∈ ext{A,B}, and ext{A,B} = CM(R) by (3.5.2). Now we obtain the Hasse diagram as in the theorem.

(2) We consider the case where n is even. In view of [13, (9.12)] and Lemma 2.20, we have that

indCM(R) = {R,A,B,C±, D±, Xl+1, Yl+1, Xj , Yj ,Mj , Nj | 1 ⩽ j ⩽ l}
with ΩC± ∼= D±, Ml+1

∼= D+ ⊕D− and Nl+1
∼= C+ ⊕ C−, and that there are exact sequences

α± : 0→ C± → Yl+1 → D± → 0, β : 0→ B → Y1 → A→ 0,
γ± : 0→ D± → Xl+1 → C± → 0, δ : 0→ A→ X1 → B → 0.
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By Lemma 2.17 we see that R,A,B,C±, D± are rigid. As is shown in the proof of [3, Proposition 2.6], the
direct sums C+ ⊕D−, C− ⊕D+, C+ ⊕A, D+ ⊕B, A⊕C−, B ⊕D− are (maximal) rigid. Applying Lemma
2.16, we see that the following subcategories are extension-closed.

Y1,Y2,Y5,Y6,Y7,Y8,Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11,Z12,W1,W2,W3,W4,W5,W6,W7.

Taking the direct sum of α+ and α−, we get an exact sequence 0→ Nl+1 → Yl+1⊕ Yl+1 →Ml+1 → 0. Thus
there are exact squares in the left below, which produce an exact sequence in the right below.

Xl+1
//

��

Ml
//

��

Xl

��
Nl+1

//

��

Yl+1
//

��

Nl
��

0→ Xl+1 → Xl ⊕ Yl+1 → Xl+1 → 0.

Yl+1
// Ml+1

// Xl+1

Hence Xl belongs to extXl+1. Thanks to (3.5.2) and Lemma 2.15(2), for all integers 1 ⩽ h ⩽ l, it holds that
extYh = extXh = extY1 = extXl = extXl+1 = extYl+1 = CM(R).

By β, γ± we have ext{A,B} = ext{C+, D+} = ext{C−, D−} = CM(R). As Ml+1
∼= D+ ⊕D−, it holds that

C+, D+ ∈ ext{C+, D+, D−} = ext{Ml+1, C+} ⊆ ext{Mj , C+},
C−, D− ∈ ext{C−, D+, D−} = ext{Ml+1, C−} ⊆ ext{Mj , C−}

for all 1 ⩽ j ⩽ l, where the inclusions follow from (3.5.2). Hence ext{Mj , C+} = ext{Mj , C−} = CM(R) hold
for every 1 ⩽ j ⩽ l + 1. Applying Lemma 2.15(2), we get ext{Nj , D+} = ext{Nj , D−} = CM(R) for every
1 ⩽ j ⩽ l+1. It is observed from (3.5.2) that A,B ∈ ext{A,Mj}∩ ext{B,Nj}∩ ext{Mj , Nj′}, which implies
that ext{A,Mj} = ext{B,Nj} = ext{Mj , Nj′} = CM(R) for all 1 ⩽ j, j′ ⩽ l. So far, we have shown that

(3.5.4) ext C = CM(R) for all C ∈

 {Xh}, {Yh}, {A,B}, {C+, D+}, {C−, D−},
{C+,Mj}, {C−,Mj}, {D+, Nj}, {D−, Nj},

{A,Mj}, {B,Nj}, {Mj , Nj′}

1 ⩽ h ⩽ l + 1
1 ⩽ j, j′ ⩽ l

 .

Since Ml+1
∼= D+ ⊕D− and N0

∼= A ⊕ R, the exact sequences α±, ρl, σl, ρl−1, σl−1, . . . , ρ1, σ1, ρ0, δ and the
exact sequences γ+, ζl, α− respectively give rise to the following two diagrams of exact squares.

C± //

��

Yl+1
//

��

D∓ ⊕Nl //

��

D∓ ⊕ Yl //

��

D∓ ⊕Nl−1
//

��

· · · // D∓ ⊕N1
//

��

D∓ ⊕ Y1 //

��

D∓ ⊕A⊕R //

��

D∓ ⊕R

��
0 // D± // Xl+1

// Ml
// Xl

// · · · // X2
// M1

// X1
// B

D+
//

��

Xl+1
//

��

Ml ⊕ C− //

��

Ml

��
0 // C+

// Yl+1
// D−

We obtain exact sequences 0→ C± → D∓ ⊕R→ B → 0 and ε : 0→ D+ →Ml → D− → 0, which show

(3.5.5) R,D± ∈ ext{B,C∓}, Ml ∈ ext{D+, D−}.
It follows from Lemma 2.15(1) and (3.5.2) that there are containments

(3.5.6) C± ∈ ext{A,D∓} and B,Mj ∈ extMl ⊆ ext{D+, D−} for all 1 ⩽ j ⩽ l + 1.

Put p = (y), q = (x+
√
−1 yl+1)R and r = (x−

√
−1 yl+1)R; these are the minimal prime ideals of R. For

each E ∈ indCM(R) we denote by χ(E) = (χ1(E), χ2(E), χ3(E)) the triple of the dimensions of the vector
spaces Ep, Eq, Er over the fields Rp, Rq, Rr respectively. Note that

A = R/p, B = R/qr, C+ = R/pq, C− = R/pr, D+ = R/r, D− = R/q.

We see that χ(R) = (1, 1, 1), χ(A) = (1, 0, 0), χ(B) = (0, 1, 1), χ(C+) = (1, 1, 0), χ(C−) = (1, 0, 1), χ(D+) =
(0, 0, 1) and χ(D−) = (0, 1, 0). Fix 1 ⩽ h ⩽ l+1 and 1 ⩽ j ⩽ l. As ΩXh

∼= Yh ∼= (x, yh)R and Xh is generated
by two elements, there is an exact sequence 0→ (x, yh)R→ R⊕2 → Xh → 0. Localizing this at p, q, r shows
χ(Xh) = χ(Yh) = (1, 1, 1). Since ΩNj ∼= Mj

∼= (xy, yj+1)R, a similar argument shows χ(Mj) = (0, 1, 1) and
χ(Nj) = (2, 1, 1). In summary, for all 1 ⩽ h ⩽ l + 1 and 1 ⩽ j ⩽ l we have the following table.

E R,Xh, Yh A B,Mj C+ C− D+ D− Nj
χ(E) (1, 1, 1) (1, 0, 0) (0, 1, 1) (1, 1, 0) (1, 0, 1) (0, 0, 1) (0, 1, 0) (2, 1, 1)
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Since the equalities in the left below hold, so do the equalities in the right below by (3.5.6).
{E | χ1(E) = 0} = {B,M1, . . . ,Ml, D+, D−},
{E | χ2(E) = 0} = {A,C−, D+},
{E | χ3(E) = 0} = {A,C+, D−}.


ext{D+, D−} = add{B,M1, . . . ,Ml, D+, D−} = Y9,
ext{A,D+} = add{A,C−, D+} = Y4,
ext{A,D−} = add{A,C+, D−} = Y3.

Hence Y3,Y4,Y9 are extension-closed. Using Lemmas 2.12(3) and 2.22, we obtain the following six equalities.
ext{R,D+, D−} = add{R,D+, D−, B,M1, . . . ,Ml} = X6,

ext{R,A,D+} = add{R,A,D+, C−} = X3,

ext{R,A,D−} = add{R,A,D−, C+} = X2,
ext{R,C+, C−} = add{R,C+, C−, A,N1, . . . , Nl} = X1,

ext{R,B,C+} = add{R,B,C+, D−} = X5,

ext{R,B,C−} = add{R,B,C−, D+} = X4.

Consequently, the subcategories X1,X2,X3,X4,X5,X6 are extension-closed. It is observed from (3.5.4) that
for each integer 1 ⩽ p ⩽ 6 there exists no extension-closed subcategory C of CM(R) with Xp ⊊ C ⊊ CM(R).

We claim that for each (p, q) ∈ {(1, 1), (2, 1), (7, 6), (8, 6)} there exists no extension-closed subcategory C
of CM(R) with Yp ⊊ C ⊊ Xq. Indeed, we have ext(Y1 ∪{C−}) = ext{R,A,C+, C−} ⊇ ext{R,C+, C−} = X1,
so that ext(Y1 ∪ {C−}) = X1. Also, by (3.5.2), for each 1 ⩽ j ⩽ l, it holds that

ext(Y1 ∪ {Nj}) = ext{R,A,C+, Nj} ⊇ ext{R,C+, Nl+1} = ext{R,C+, C+ ⊕ C−} ⊇ ext{R,C+, C−} = X1.

Hence ext(Y1 ∪ {Nj}) = X1, and thus the claim follows for (p, q) = (1, 1). A similar argument shows the
claim for (p, q) = (2, 1). Also, analogously, we can show that ext(Y7 ∪ {D−}) = ext(Y7 ∪ {Mj}) = X6 for
1 ⩽ j ⩽ l, which deduces the claim for (p, q) = (7, 6). The claim for (p, q) = (8, 6) is shown similarly.

It holds that ext(Z11 ∪ {D−}) = ext{B,D+, D−} ⊇ ext{D+, D−} = Y9, and therefore ext(Z11 ∪ {D−}) =
Y9. By using (3.5.2), for each integer 1 ⩽ j ⩽ l we have

ext(Z11 ∪ {Mj}) = ext{B,D+,Mj} ⊇ ext{B,D+,Ml+1} = ext{B,D+, D+ ⊕D−} ⊇ ext{D+, D−} = Y9,

whence ext(Z11 ∪{Mj}) = Y9. It is observed that there is no extension-closed subcategory C of CM(R) with
Z11 ⊊ C ⊊ Y9. By an analogous argument, there is no extension-closed subcategory C with Z12 ⊊ C ⊊ Y9.

Now we have obtained the Hasse diagram of E(R) as in the theorem. ■

Remark 3.6. In Theorem 3.5(2), we can prove more. Applying Ω to the exact sequence ε, we get Nl ∈
ext{C+, C−}. It follows from (3.5.2) that R ∈ extNl ⊆ ext{C+, C−}. Using (3.5.5), we obtain equalities

X1 = ext{C+, C−}, X5 = ext{B,C+}, X4 = ext{B,C−}.

Using (3.5.2), the isomorphisms Ml+1
∼= D+ ⊕D−, Nl+1

∼= C+ ⊕ C− and Lemma 2.12(3), for all 1 ⩽ j ⩽ l
we have

extMj = add{B,M1, . . . ,Ml+1} = add{B,M1, . . . ,Ml, D+, D−} = ext{D+, D−} = Y9,
extNj = add{R,A,N1, . . . , Nl+1} = add{R,A,N1, . . . , Nl, C+, C−} = ext{C+, C−} = X1,
ext{R,Mj} = add{R,B,M1, . . . ,Ml, D+, D−} = ext{R,D+, D−} = X6.

Theorem 3.7. Let R be one of the following hypersurfaces, where n is an integer.

A0
n : k[[x]]/(xn+1) (n ⩾ 1),

A2
n : k[[x, y, z]]/(x2 + yn+1 + z2) (n ⩾ 1),

D2
n : k[[x, y, z]]/(x2y + yn−1 + z2) (n ⩾ 4),

E2
6 : k[[x, y, z]]/(x3 + y4 + z2),

E2
7 : k[[x, y, z]]/(x3 + xy3 + z2),

E2
8 : k[[x, y, z]]/(x3 + y5 + z2).
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Then the Hasse diagram of the poset E(R) is the following graph.

CM(R)

addR

0

Proof. The case A0
n follows from [9, Proposition 5.6]. In the other cases, since dimR = 2, Lemma 2.20 implies

that the Auslander–Reiten translation functor is isomorphic to the identity functor. From the Auslander–
Reiten quivers exhibited in [13, (10.15)] it is easy to observe that for any nonfree indecomposable maximal
Cohen–Macaulay R-module E the equality extE = CM(R) holds. The assertion follows from this. ■

4. On the A∞,D∞-singularities with dimension at most two

In this section, we give a complete classification of the extension-closed subcategories of CM0(R) in the
case where R is a P -singularity with P ∈ {A∞,D∞} and has dimension at most two.

Theorem 4.1. Let R be one of the following hypersurfaces.{
A1

∞ : k[[x, y]]/(x2),

D2
∞ : k[[x, y, z]]/(x2y + z2).

Then the Hasse diagram of the poset E0(R) is the following.

CM0(R)

addR

0

Proof. Let E be a nonfree indecomposable maximal Cohen–Macaulay R-module that is locally free on the
punctured spectrum of R. Then there is an isomorphism τE ∼= E; this follows from [8, (6.1)] in case A1

∞,
and from Lemma 2.20 in case D2

∞. From the Auslander–Reiten quiver in [8, (6.1)] in case A1
∞ and in [8,

(6.2)] in case D2
∞, it is easy to observe that extE = CM0(R). The assertion follows from this. ■

Theorem 4.2. Let R = k[[x, y, z]]/(xy) be the A2
∞-singularity. For each integer i > 0, let Ii = (x, zi) and

Ji = (y, zi) be ideals of R. Then the Hasse diagram of the poset E0(R) is the following.

CM0(R)

VVVVV
VVVVV

V

add{R, I1, I2, . . . }

VVVVV
VVVVV

V
add{R, J1, J2, . . . }

addR

0

Proof. By Lemma 2.20 we have τE ∼= E for every E ∈ indCM0(R)\{R}. From the Auslander–Reiten quiver
given in [8, (6.2)], we see that indCM0(R) = {R, Ii, Ji | i ∈ Z>0} and that

R ∈ ext I1 = ext I2 = ext I3 = · · · , R ∈ ext J1 = ext J2 = ext J3 = · · · .
Hence ext{Ip, Jq} = CM0(R) for all integers p, q > 0. To get the Hasse diagram in the assertion, it suffices
to show that Jq /∈ ext Ip (and then by symmetry we get Iq /∈ ext Jp) for all integers p, q > 0. We have only
to verify J1 /∈ ext I1, as if Jq ∈ ext Ip, then J1 ∈ ext J1 = ext Jq ⊆ ext Ip = ext I1.

Now, assume that J1 ∈ ext I1. It follows from [10, Propositions 2.2(1) and 2.4] that there exist an R-
module M and a filtration 0 = M0 ⊊ M1 ⊊ · · · ⊊ Mn = M of R-submodules of M with Mi/Mi−1

∼= I1 for
each 1 ⩽ i ⩽ n such that J1 is a direct summand of M . We establishes two claims.

Claim 1. Let N be an R-module. Denote by R× the set of units of R. Put Aj =
(
y −zj
0 x

)
for each j > 0.
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(1) The following are equivalent for all positive integers r and l1, . . . , lr.
(a) There exists an exact sequence 0→ Il1 ⊕ · · · ⊕ Ilr → N → I1 → 0.
(b) The module N is isomorphic to the cokernel of the R-linear map given by the matrix D(u1, . . . , ur) =Al1

O ··· O U1

O Al2
··· O U2

··· ··· ··· ··· ···
O O ··· Alr Ur

O O ··· O A1

, where Ui =
(
0 ui
0 0

)
with ui ∈ R× ∪ {0} for each 1 ⩽ i ⩽ r.

(2) Assume that condition (1b) is satisfied.
(a) If uj = 0 for some 1 ⩽ j ⩽ r, then there exist an exact sequence 0→ Il1⊕· · ·⊕Ilj−1

⊕Ilj+1
⊕· · ·⊕Ilr →

N ′ → I1 → 0 and an isomorphism N ∼= Ilj ⊕N ′.
(b) If lj ⩽ lh and uh ∈ R× for some 1 ⩽ j 6= h ⩽ r, then D(u1, . . . , ur) ∼= D(u1, . . . , uj−1, 0, uj+1, . . . , ur).
(c) If r = 1 and u1 ∈ R×, then there exists an isomorphism N ∼= Il1+1 ⊕R.
(d) The module N is isomorphic to either Il1 ⊕ · · · ⊕ Ilr ⊕ I1 or Il1 ⊕ · · · ⊕ Ils−1

⊕ Ils+1 ⊕ Ils+1
⊕ Ilr ⊕R

for some 1 ⩽ s ⩽ r.

Proof of Claim. (1) (a)⇒ (b): Applying the horseshoe lemma repeatedly gives rise to a commutative diagram
(4.2.1)

0

��

0

��

0

��

0

��

0

��
0

⊕r
i=1 Ili

oo

��

F0

⊕r
i=1( x z

li )oo

��

F1

⊕r
i=1 Alioo

� �

F2

⊕r
i=1 Blioo

��

F3

⊕r
i=1 Alioo

��
0 Noo

��

E0
oo

��

E1
Hoo

� �

E2
oo

��

E3
oo

��
0 I1oo

��

G0

( x z )oo

��

G1
A1oo

� �

G2
B1oo

��

G3
A1oo

��
0 0 0 0 0

with exact rows and columns, where Fh = R⊕2r, Gh = R⊕2, Eh = Fh ⊕ Gh = R⊕(2r+2) for 0 ⩽ h ⩽ 3,

Bj =
(
x zj

0 y

)
for j > 0, and H =

Al1
O ··· O C1

O Al2
··· O C2

··· ··· ··· ··· ···
O O ··· Alr Cr

O O ··· O A1

 with Ci =
(
ai bi
ci di

)
and ai, bi, ci, di ∈ R for 1 ⩽ i ⩽ r.

We do diagram chasing. Take any vector v ∈ G2. The vector B1v ∈ G1 comes from
(

0
B1v

)
∈ E1 = F1 ⊕G1.

Since A1B1v = 0, the map H sends
(

0
B1v

)
to

(
C1B1v

···
CrB1v

0

)
∈ E0 = F0 ⊕ G0, which comes from

(
C1B1v

···
CrB1v

)
∈ F0.

This goes to 0 ∈
⊕r

i=1 Ili by the map
⊕r

i=1 ( x z
li ) by the snake lemma, so that it belongs to the image of⊕r

i=1Ali , which coincides with the kernel of
⊕r

i=1Bli . Hence 0 =

(
Bl1 ···

Blr

)(
C1B1v

···
CrB1v

)
=

(
Bl1

C1B1v
···

BlrCrB1v

)
.

Since this holds for any vector v ∈ G2, it is observed that BliCiB1 is a zero matrix for every 1 ⩽ i ⩽ r. Thus,

(4.2.2) ( 0 0
0 0 ) =

(
x zli
0 y

) (
ai bi
ci di

)
( x z0 y ) =

(
x(xai+z

lici) z(xai+z
lici+yz

li−1di)
0 y(zci+ydi)

)
for every integer 1 ⩽ i ⩽ r.

Fix 1 ⩽ i ⩽ r. We see that xai+z
lici+yz

li−1di = 0, xai+z
lici = yei and zci+ydi = xfi for some ei, fi ∈ R.

Note that the sequence R
µ=( x y z )←−−−−−−− R⊕3

ν=

(
y 0 z 0
0 x 0 z
0 0 −x −y

)
←−−−−−−−−−−− R⊕4 is exact; it is part of a minimal free resolution

of the residue field k. We have xfi+ y(−di) + z(−ci) = 0, so that

(
fi
−di
−ci

)
∈ R⊕3 belongs to the kernel of the

above map µ, which is equal to the image of the above map ν. Hence there exist elements qi, si, ti, pi ∈ R

such that

(
fi
−di
−ci

)
=
( y 0 z 0

0 x 0 z
0 0 −x −y

)( qi
si
ti
pi

)
=

(
yqi+zti
xsi+zpi
−xti−ypi

)
. We thus get ci = xti + ypi and di = −xsi − zpi. As

xai + zli(xti + ypi) = yei, we have x(ai + zliti) = y(ei − zlipi) ∈ (x) ∩ (y) = 0. Hence ai + zliti = ygi for
some gi ∈ R, so that ai = ygi − zliti. Write bi = ui + xαi + yβi + zγi with ui ∈ R× ∪ {0} and αi, βi, γi ∈ R.
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It follows that

H =

(
Al1

C1

··· ···
Alr Cr

A1

)
=


y −zl1 a1 b1
0 x c1 d1

··· ··· ···
y −zlr ar br
0 x cr dr

y −z
0 x

 =


y −zl1 yg1−zl1 t1 b1
0 x xt1+yp1 −xs1−zp1

··· ··· ···
y −zlr ygr−zlr tr br
0 x xtr+ypr −xsr−zpr

y −z
0 x


∼=


y −zl1 −zl1 t1 b1
0 x xt1+yp1 −xs1−zp1

··· ··· ···
y −zlr −zlr tr br
0 x xtr+ypr −xsr−zpr

y −z
0 x

 ∼=

y −zl1 −zl1 t1 b1
0 x xt1+yp1 −zp1

··· ··· ···
y −zlr −zlr tr br
0 x xtr+ypr −zpr

y −z
0 x


∼=


y −zl1 0 b1
0 x yp1 −zp1

··· ··· ···
y −zlr 0 br
0 x ypr −zpr

y −z
0 x

 ∼=

y −zl1 0 b1
0 x 0 0

··· ··· ···
y −zlr 0 br
0 x 0 0

y −z
0 x

 =


y −zl1 0 u1+xα1+yβ1+zγ1
0 x 0 0

··· ··· ···
y −zlr 0 ur+xαr+yβr+zγr
0 x 0 0

y −z
0 x


∼=


y −zl1 0 u1+zγ1
0 x 0 0

··· ··· ···
y −zlr 0 ur+zγr
0 x 0 0

y −z
0 x

 ∼=

y −zl1 yγ1 u1

0 x 0 0
··· ··· ···

y −zlr yγr ur

0 x 0 0
y −z
0 x

 ∼=

y −zl1 0 u1

0 x 0 0
··· ··· ···

y −zlr 0 ur

0 x 0 0
y −z
0 x

 .

(b)⇒ (a): For each integer 1 ⩽ i ⩽ r, let ai = ci = di = 0 and bi = ui ∈ R× ∪ {0}. We easily verify that
the first equality in (4.2.2) holds. This means that (4.2.1) is a commutative diagram with exact rows and

columns if we put Ci =
(
ai bi
ci di

)
=
(
0 ui
0 0

)
= Ui for every integer 1 ⩽ i ⩽ r.

(2)(a) We may assume j = 1. Then D(u1, . . . , ur) = D(0, u2, . . . , ur) = Al1 ⊕ D(u2, . . . , ur). Set N ′ =
CokD(u2, . . . , ur). We haveN ∼= Il1⊕N ′. By (1) there is an exact sequence 0→ Il2⊕· · ·⊕Ilr → N ′ → I1 → 0.

(b) Replacing Al1 , . . . , Alr if necessary, we may assume j = 1 and h = 2, so l2 − l1 ⩾ 0. We have

D(u1, u2, . . . , ur) =

 y −zl1 0 0 ··· 0 u1

0 x 0 0 ··· 0 0
0 0 y −zl2 ··· 0 u2

0 0 0 x ··· 0 0
··· ··· ··· ··· ··· ··· ···

 ∼=
 y −zl1 −u−1

2 u1y u
−1
2 u1z

l2 ··· 0 0
0 x 0 0 ··· 0 0
0 0 y −zl2 ··· 0 u2

0 0 0 x ··· 0 0
··· ··· ··· ··· ··· ··· ···


∼=

 y −zl1 0 u−1
2 u1z

l2 ··· 0 0
0 x 0 0 ··· 0 0
0 0 y −zl2 ··· 0 u2

0 0 0 x ··· 0 0
··· ··· ··· ··· ··· ··· ···

 ∼=
 y −zl1 0 0 ··· 0 0

0 x 0 u−1
2 u1z

l2−l1x ··· 0 0

0 0 y −zl2 ··· 0 u2

0 0 0 x ··· 0 0
··· ··· ··· ··· ··· ··· ···


∼=

 y −zl1 0 0 ··· 0 0
0 x 0 0 ··· 0 0
0 0 y −zl2 ··· 0 u2

0 0 0 x ··· 0 0
··· ··· ··· ··· ··· ··· ···

 = D(0, u2, . . . , ur).

(c) Put p = l1 and h = u1. Since h is a unit of R, we have

D(u1) = D(h) =

(
y −zp 0 h
0 x 0 0
0 0 y −z
0 0 0 x

)
∼=

(
0 0 0 h
0 x 0 0

h−1yz −h−1zp+1 y −z
0 h−1xzp 0 x

)
∼=

(
0 0 0 1
0 x 0 0

h−1yz −h−1zp+1 y 0

0 h−1xzp 0 0

)
∼=
( 0 0 0 1

0 x 0 0
0 −h−1zp+1 y 0
0 0 0 0

)
∼=
(
y −zp+1 0 0
0 x 0 0
0 0 0 0
0 0 0 1

)
.

Therefore, we obtain a desired isomorphism N ∼= Ip+1 ⊕R.
(d) The assertion follows from iterated application of (a), (b), (c) and (1). □

Claim 2. For every integer 1 ⩽ q ⩽ n one has Mq
∼= Il1 ⊕ · · · ⊕ Ilq , where 0 ⩽ l1, . . . , lq ⩽ q and I0 := R.

Proof of Claim. We use induction on q. There is an isomorphism M1
∼= I1, so we are done by putting l1 = 1

when q = 1. We consider the case q ⩾ 2. There exists an exact sequence 0 → Mq−1 → Mq → I1 → 0. The
induction hypothesis impliesMq−1

∼= R⊕e⊕Il1⊕· · ·⊕Ilr with e ⩾ 0, r = q−1−e and 1 ⩽ l1, . . . , lr ⩽ q−1. The
same argument as in the proof of Lemma 2.12(3) shows that there is an exact sequence 0→ L→ K → I1 → 0
such that L = Il1 ⊕ · · · ⊕ Ilr and R⊕e ⊕K ∼=Mq. It is observed from Claim 2(2d) that K ∼= Ih1 ⊕ · · · ⊕ Ihr+1

for some 0 ⩽ h1, . . . , hr+1 ⩽ q. Now the assertion follows. □

Claim 2 yields an isomorphism M =Mn
∼= Il1 ⊕ · · · ⊕ Iln with 0 ⩽ l1, . . . , ln ⩽ n. This is a contrariction,

since J1 is not a direct summand of this direct sum; note that J1, R, Il1 , . . . , Iln are all indecomposable R-
modules. This contradiction shows that J1 is not in ext I1, and now the proof of the theorem is completed. ■
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Theorem 4.3. Let R = k[[x, y]]/(x2y) be the D1
∞-singularity. Put A = R/(y) and B = R/(x2). Moreover,

set Mj = Cok
(
x yj

0 −x

)
and Nj = Cok

(
xy yj+1

0 −xy

)
for each integer j ⩾ 0. Then the Hasse diagram of E0(R) is:

CM0(R)

WWWWW
WWWWW

WWW

add{R,A,N1, N2, . . . } add{R,B,M1,M2, . . . }
WWWWW

WWWWW
W

add{R,A}

XXXXX
XXXXX

XXXXX
X add{R,B}

XXXXX
XXXXX

XXXXX
add{B,M1,M2, . . . }

addA

XXXXXX
XXXXXX

XXXXXX
XX addR addB

fffff
fffff

fffff
ffff

0

Proof. The proof goes along the same lines as in the proof of Theorem 3.5(1). By Lemmas 2.16 and 2.17, we
get the subdiagram of the Hasse diagram of E0(R):

add{R,A}

UUUU
UUUU

UU
add{R,B}

TTTT
TTTT

T

addA

VVVV
VVVV

VVVV
VV addR addB

iiii
iiii

iiii

0

Put Xj = Cok
(
x yj

0 −xy

)
and Yj = Cok

(
xy yj

0 −x

)
for each integer j ⩾ 0. By [8, (6.1)] and Lemma 2.20, we

have that indCM0(R) = {R,A,B,Xj , Yj ,Mj , Nj | j ∈ Z>0} and there exist exact sequences

0→ Yj+1 →Mj+1 ⊕Nj → Xj+1 → 0, 0→Mj → Xj ⊕ Yj+1 → Nj → 0,
0→ Xj+1 → Nj+1 ⊕Mj → Yj+1 → 0, σj : 0→ Nj → Yj ⊕Xj+1 →Mj → 0

(j ∈ N),

where the maps F → G with F,G ∈ indCM0(R) are all the same, and isomorphisms M0
∼= B, N0

∼= A⊕R,
X0
∼= Y0 ∼= R, ΩA ∼= B, ΩXj

∼= Yj ∼= (x, yj)R and ΩNj ∼= Mj
∼= (xy, yj+1)R for all j ∈ Z>0. For each

j ∈ Z>0 there are exact squares in the left below, which produce exact sequences in the right below.

Mj
//

��

Xj
//

��

Mj−1
//

��

Xj−1

��

0→Mj →Mj+1 ⊕Mj−1 →Mj → 0,

Yj+1
//

��

Nj //

��

Yj //

��

Nj−1
//

��

Yj−1

��

0→ Xj → Xj+1 ⊕Xj−1 → Xj → 0,

Mj+1
// Xj+1

//

��

Mj
//

��

Xj
//

��

Mj−1

��

0→ Nj → Nj+1 ⊕Nj−1 → Nj → 0,

Nj+1
// Yj+1

// Nj // Yj 0→ Yj → Yj+1 ⊕ Yj−1 → Yj → 0.

These four exact sequences show that

B =M0 ∈ extM1 = extM2 = extM3 = · · · , extX1 = extX2 = extX3 = · · · ,
A⊕R = N0 ∈ extN1 = extN2 = extN3 = · · · , extY1 = extY2 = extY3 = · · · .

Since Y1 is isomorphic to the maximal ideal (x, y)R, we have extY1 = CM0(R) by [9, Corollary 2.6]. Lemma
2.15(2) implies that extX1 = CM0(R). Thus for all j ∈ Z>0 there are inclusions and equalities

extMj ⊇ add{B,M1,M2, . . . }, extNj ⊇ add{R,A,N1, N2, . . . }, extXj = extYj = CM0(R).

Put p = (y) ∈ SpecR. It is clear that (M0)p = Bp = 0 6= Ap. For each j ∈ Z>0, as Mj
∼= (xy, yj+1)R and

Yj ∼= (x, yj)R, we have (Mj)p ⊆ pRp = 0 and (Yj)p ∼= Rp. There is an exact sequence 0 → Xj → R⊕2 →
Yj → 0, which shows that (Xj)p ∼= Rp. The exact sequence σj shows (Nj)p 6= 0. Hence there is an equality

{E ∈ indCM0(R) | Ep = 0} = {B,Mj | j ∈ Z>0}.
Since every E ∈ extMj is such that Ep = 0, we see that extMj = add{B,M1,M2, . . . }. Lemma 2.15(1) yields
that extNj = add{R,A,N1, N2, . . . } for every j ∈ Z>0. Lemma 2.12(3) gives rise to an equality ext{R,Mj} =
add{R,B,M1,M2, . . . } for every j ∈ Z>0. The exact sequence σ1 shows that X2 ∈ ext{M1, N1}, which
implies that ext{M1, N1} = CM0(R). Therefore, ext{Mj , Nh} = CM0(R) for all j, h ∈ Z>0. From σ0 and
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the proof of Lemma 2.12(3) we get an exact sequence 0→ A→ X1 → B → 0, which implies X1 ∈ ext{A,B},
and ext{A,B} = CM0(R). Now we obtain the Hasse diagram as in the theorem. ■

We close the section by stating a remark about Question 2.10.

Remark 4.4. As a consequence of Theorems 3.1, 3.2, 3.3, 3.7 and 4.1, Question 2.10 has an affirmative
answer provided that R is a P -singularity over an algebraically closed uncountable field of characteristic
zero, where P ∈ {An,A∞,Dn,D∞,E6,E7,E8}. We should also mention that there are many examples of a
hypersurface domain R of dimension bigger than two where E0(R) is not trivial, e.g., an E7-singularity of
dimension 3. This is a direct consequence of Theorem 1.1, whose proof will be given in the next section.

5. Proofs of the main theorems

Now we have reached the stage to prove Theorem 1.1, which contains the main results of this paper.

Proofs of Theorem 1.1. Since R has finite or countable CM-representation type, it is isomorphic to one of
the following hypersurfaces; see [6, Theorems 9.8 and 14.16].

Adn : k[[x0, x1, . . . , xd]]/(x
n+1
0 + x21 + x22 + · · ·+ x2d) (n ⩾ 1),

Ad∞ : k[[x0, x1, . . . , xd]]/(x
2
1 + x22 + · · ·+ x2d),

Ddn : k[[x0, x1, . . . , xd]]/(x
n−1
0 + x0x

2
1 + x22 + · · ·+ x2d) (n ⩾ 4),

Dd∞ : k[[x0, x1, . . . , xd]]/(x0x
2
1 + x22 + · · ·+ x2d),

Ed6 : k[[x0, x1, . . . , xd]]/(x
4
0 + x31 + x22 + · · ·+ x2d),

Ed7 : k[[x0, x1, . . . , xd]]/(x
3
0x1 + x31 + x22 + · · ·+ x2d),

Ed8 : k[[x0, x1, . . . , xd]]/(x
5
0 + x31 + x22 + · · ·+ x2d).

Thus Theorem 1.1(2) is a direct consequence of Theorems 3.1, 3.2, 3.3, 3.4, 3.5, 3.7, 4.1, 4.2 and 4.3. To prove
Theorem 1.1(1), Knörrer’s periodicity theorem [13, Theorem (12.10)] reduces to the case where dimR ⩽ 2.
The triangle equivalence CM(R) ∼= Dsg(R) induces a triangle equivalence CM0(R)

∼= Dsg
0 (R). Hence the

Hasse diagram of the extension-closed subcategories of Dsg
0 (R) are the same as the Hasse diagram of the

extension-closed subcategories of CM0(R), which is obtained from the Hasse diagrams given in Theorems
3.1, 3.2, 3.3, 3.4, 3.5, 3.7, 4.1, 4.2 and 4.3 by removing the vertices containing R and the edges from/to
them. ■
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Différ. Catég. 60 (2019), no. 2, 117–193.

[8] F.-O. Schreyer, Finite and countable CM-representation type, Singularities, representation of algebras, and vector bundles

(Lambrecht, 1985), 9–34, Lecture Notes in Math. 1273, Springer–Verlag, Berlin, 1987.
[9] R. Takahashi, Classifying thick subcategories of the stable category of Cohen–Macaulay modules, Adv. Math. 225 (2010),

no. 4, 2076–2116.
[10] R. Takahashi, When is there a nontrivial extension-closed subcategory?, J. Algebra 331 (2011), 388–399.
[11] R. Takahashi, Thick subcategories over Gorenstein local rings that are locally hypersurfaces on the punctured spectra, J.

Math. Soc. Japan 65 (2013), no. 2, 357–374.



20 KEI-ICHIRO IIMA AND RYO TAKAHASHI

[12] R. Takahashi, On the transitivity of degeneration of modules, Manuscripta Math. 159 (2019), no. 3-4, 431–444.
[13] Y. Yoshino, Cohen–Macaulay modules over Cohen–Macaulay rings, London Math. Soc. Lecture Note Ser. 146, Cambridge

University Press, Cambridge, 1990.

Department of Liberal Studies, National Institute of Technology, Nara College, 22 Yata-cho, Yamatoko-
riyama, Nara 639-1080, Japan

Email address: iima@libe.nara-k.ac.jp

Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan
Email address: takahashi@math.nagoya-u.ac.jp

URL: https://www.math.nagoya-u.ac.jp/~takahashi/


	1. Introduction
	2. Basic definitions and fundamental lemmas
	3. On the An,Dn,E6,E7,E8-singularities with dimension at most two
	4. On the A,D-singularities with dimension at most two
	5. Proofs of the main theorems
	References

