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ABSTRACT. We consider the incompressible and stationary Stokes equations on an infinite two-
dimensional wedge with non-scaling invariant Navier-slip boundary conditions. We prove well-
posedness and higher regularity of the Stokes problem in a certain class of weighted Sobolev spaces.

The novelty of this work is the occurrence of two different scalings in the boundary condition,
which is not treated so far for the Stokes system in unbounded wedge-type domains. These difficulties
are overcome by first constructing a variational solution in a second-order weighted Sobolev space
and subsequently proving higher regularity up to the tip of the wedge by employing an iterative
scheme. We believe that this method can be used for other problems with variational structure and
multiple scales.
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1. INTRODUCTION

In this paper, we study the well-posedness and regularity of the stationary and incompressible
Stokes equations
—vAu+ Vp =f in Q,
diva =0 in €,
u-n=0 on 0€Y, (1.1)
u -7+ B0h(u-7)=0 on O,
where € is the two-dimensional wedge-shaped domain
Q:={(x,y) €R*:y>0and z > cot(0)y} = {(rcos(p),rsin(p)) : 7 >0and 0 < ¢ <}

for some opening angle § € (0,7) and we denote 9 := 9\ {(0,0)}. The body force density
f: Q) — R?is given. The unknown functions are the velocity field u :  — R? and the pressure
p: Q — R. On the boundary 99, we denote by n the outward pointing normal vector and by T
the counterclockwise tangent vector. The system is subject to the no-penetration boundary
condition and the Navier-slip boundary condition. Finally, the two parameters v > 0 and 8 > 0
describe the viscosity of the fluid and the slippage of the fluid on the boundary, respectively.

1.1. Motivation. The novelty of this work is the combination of an unbounded wedge-type do-
main and the Navier-slip boundary condition which is not scaling im}am’amﬂ A similar setting for
a parabolic equation is treated in [4]. Well-posedness of is a first step towards studying free
boundary value problems arising from moving droplets. In the case of moving domains with no-slip
boundary conditions (corresponding to 5 = 0 in ), there is infinite energy dissipation at the mov-
ing contact line: the so-called no-slip paradox [9, 32]. As is motivated in [35], [50] one could instead
consider Navier-slip boundary conditions and this is in fact what we will consider for a static domain.

The unboundedness of the wedge domain is a major source of difficulty in our analysis, but opens
the path to an investigation of many questions in contact line dynamics. In fact, while it is pos-
sible to reduce to one leading-order scale in the case of bounded domains and to treat one scaling
coming from the Navier-slip condition as a perturbation, this would introduce another length scale
in the problem, that is, the size of the domain, which is infinite in our case. As a consequence, a
corresponding analysis on bounded domains results in estimates depending on the ratio of the slip
length 8 and the size of the domain 2, so that estimates could blow up in a limiting procedure
in which the domain becomes unbounded. Typically, the length scale 5 (determining the crossover
between scales) is of the order of a few nanometers while droplets are several orders of magnitude
larger (i.e., at the order of say millimeters). To study problems such as the dynamics of the appar-
ent mesoscopic contact angle and its dependence on the microscopic assumptions at the tip of the
domain (see [10} [16} 24] BT, [65, [67] in case of the lubrication approximation of the Navier-Stokes
equations, the thin-film equation, and [5] for the Stokes equations), it appears essential to study
the case of unbounded domains. The additional finite length scale (domain size) is then removed
and subsequent constants estimating the solution only depend quantitatively on the opening angle
0 (and functional-analytic parameters).

The domain 2 has a conical point at the tip (0,0) and in general regularity results for smooth
domains do not hold for non-smooth domains. Nonetheless, there is a vast literature on solving
scaling-invariant problems on domains with conical points, see e.g. [43 44] and the monographs
[41l [42, 51, 52]. In these works weighted Sobolev spaces are considered which allow for a certain
blow-up of the solution near the conical point. For gaining higher regularity the solution is decom-
posed into a polynomial Taylor expansion which captures the singular behavior near the conical
point, and a regular remainder. For a wedge, the polynomial problem can be reduced to a system of
uncoupled ordinary differential equations (ODESs) in the angle for the coefficients in the expansion

n polar coordinates the wedge Q is given by (r, @) € (0,00) x (0,6). This set is invariant if we scale r by a factor
p>0. Let R = pr and set Q(R, @) = p*u(r, @), p(R, p) = up(r, p) and f(R, ) = f(r,¢), then —vAG+Vp = f and we
say that the Stokes system is scaling invariant. At the contrary, the Navier-slip condition becomes a-7+fudn(u-7) = 0,
which depends on the factor u. For this reason, we say that the Navier-slip boundary conditions are not scaling
invariant.
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using a matching procedure. All these ODEs can be solved explicitly. The far-field contribution
of the polynomials is then removed by a cut off. This leads to additional terms on the right-hand
side of the regular problem, which can then be solved by reducing it to an ODE using the Mellin
transform in the radius using polar coordinates.

In principle, we pursue the same method for our model with Navier-slip boundary conditions.
However, this boundary condition is not scaling invariant (since the normal derivative scales as r~! in
polar coordinates) leading to additional difficulties. Namely, the system of ODEs for the coefficients
in the expansion is not uncoupled anymore and we do not derive explicit solution representations.
Instead, we iteratively solve the coupled system of ODEs and obtain additional contributions of the
polynomial problem in the regular problem.

Moreover, the Navier-slip boundary condition complicates the analysis of the regular problem.
To construct a solution to the problem, we will use (L-type) Sobolev spaces with power weights
|x|72% for some o € R\ Z. We cannot directly apply the Lax-Milgram theorem to the bilinear
form in the variational formulation of the problem, since the bilinear form is not coercive due to
different scalings in the boundary condition. To circumvent this issue, we derive additional bilinear
forms involving second-order derivatives. We show that this higher-order variational problem has a
unique Lax-Milgram solution under the condition that the product of the opening angle 6 and the
exponent of the weight « is sufficiently small. Moreover, we prove that this solution is twice weakly
differentiable in the weighted space and satisfies the original partial differential equations.

Finally, to improve the regularity of the solution we reduce problem (1.1)) with Navier slip to a
problem with slip boundary condition and prescribed tangent velocity and use the strong solution
as data in the boundary condition. The problem with slip boundary condition and prescribed tan-
gent velocity is then easier to solve than the original problem with Navier slip, since this boundary
condition is scaling invariant. In fact, the problem could be solve by standard method, see [41].
However, we are interested in the quantitative dependence of the estimates on the opening angle 6
and weight exponent . We therefore give a self-contained exposition of this problem in Section [9]

Regarding the (Navier-)Stokes equations on non-smooth domains, many results are already known.
Note that most of the previous results are concerned with the case of scaling invariant boundary
conditions. The Navier-Stokes equations on a wedge with no-slip and free-slip (corresponding to =
oo in ([1.1))) boundary conditions have been studied in [6} 45} 46}, 47, 51], 59] and [40, 48], respectively.
A treatment of the (Navier-)Stokes equations with scaling-invariant boundary conditions in domains
with corners can be found in [41] 42] 51]. Furthermore, the (Navier-)Stokes equations have been
studied on more regular domains, see e.g. [12), 30, [63] and references therein.

Results for the free-boundary problem to the Navier-Stokes equations with Laplace’s law at the
liquid-gas interface and moving contact line are limited. For § wall angle, a reflection technique
significantly simplifies the problem. Well-posedness for the time-dependent Navier-Stokes equations
in two dimensions with 5 contact angle were treated in [60] and many works on other free-boundary
problems followed [1I, 13}, 55 56]. The stationary Navier-Stokes equations in three dimensions with 7
angle and non-moving free boundary were analyzed in [33]. The stationary Navier-Stokes equations
with 7 angle and assuming a non-moving free boundary were treated in [64].

The (Navier-)Stokes equations in two dimensions with dynamic contact angle, see [57, 58], and a
moving free boundary were treated in [27, 28, 66, [68] establishing well-posedness of solutions and
stability of the equilibrium state. The methods there are based on nonlinear energy estimates using
(weighted) Sobolev spaces. However, the employed function spaces have corresponding norms that
are too weak to control the singularities expected in pressure, velocity, and shape of the profile close
to the contact line, see e.g. [9] [IT], 32, 62]. In this work we are able to consider strong enough spaces
to study such singularities in future works.

The Stokes and Navier-Stokes equations with free surface and moving contact line share many
similarities with the fourth-order degenerate-parabolic thin-film equation

Oth+ V- (M(h)VAhR) =0 in {h > 0}, (1.2)
describing the film height h = h(t,z) as a function of time ¢t > 0 and 2 € R? with d € {1,2}. In

fact, within a lubrication approximation, (1.2) with M(h) = k3 + 8h? with slip parameter 3 > 0,
can be derived from the (Navier-)Stokes equations with free boundary and contact line within a
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formal lubrication approximation in the regime of small contact angles [3, [7, 53] using a formal
asymptotic expansion and without contact line in [26], while the lubrication approximation in case
of Darcy dynamics in the Hele-Shaw cell was rigorously carried out in [49] without contact line
and in [19, B8] B9] with contact line. For a well-posedness and regularity theory for zero and
nonzero contact angles has been developed in [2] 14} [15], 17, 18|, 20} 2], 22] 25] and [36], 37, 38, 39] in
one spatial dimension, respectively, while the higher-dimensional case is so far limited to the works
[8, 23, B4, [61]. There it was found that, except for linear mobilities, solutions are in general not
smooth in the distance to the free boundary, even if the leading order is factored off. Our goal is to
develop a corresponding theory for the (Navier-)Stokes free boundary problem with contact line and
we expect that the methods developed in this note serve as a natural first step towards this goal.
Furthermore, a thin-film linearization with two length scales was treated in [22], where, as in our
case it was found that coercivity in the weighted setting requires using higher-order Sobolev norms,
see Section Ml

1.2. Weighted Sobolev spaces and main results. In this section, we introduce appropriate
weighted Sobolev spaces to study well-posedness and regularity for the Stokes equations and we
present the main result. Without loss of generality, by rescalingﬂ we assume v = $ = 1 in (L.1]).
Furthermore, because of the wedge-shaped domain, it is natural to consider polar coordinates (see
also Appendix . Let u = u,e; +uge, and f = f.e, + foe,, then in polar coordinates is
given by

—p2 [((r&)2 + 337)% — 20, u, — ur] + Orp = fr forr >0, € (0,0), (1.3a)
—r2 [((T@T)Q + 83,)1@ + 205Uy — uy| + r o, = f, for r > 0,9 € (0,0), (1.3b)
(ror + 1)u, + Opuy, =0 for r > 0,9 € (0,0), (1.3¢)

u, =0 for r > 0, € {0,6}, (1.3d)

up £ 17 0pu, =0 for r > 0, € {0,6}, (1.3e)

where

Q = {(rcos(p),rsin(p)) : r >0 and ¢ € (0,0)}.
Moreover, recall that in (1.1)) n is the outward pointing normal vector, so that d, becomes ir‘18¢,
in polar coordinates where the notation + in ([1.3¢)) means + for ¢ = 6 and — for ¢ = 0.

For a vector field u : Q — R? such that u € C°(2\ {0}) and for a function u : 9Q — R such that
u € CX(0), we define for any o € R and k € N such that a + k — 1 # 0 the norms

0 00
HuHi = / / r_2“\u\2r dr do,
o Jo

0 poo
[[u]]ia = Z / / r_2a_2k}(r8r)j8éu‘2r dr de
o Jo

=k
= Y [P
vef0,0} 70
[u]z_%ya = inf [[ﬂ]]ia

a€Cee (N\{0})ul por =u

Moreover, the norm | -[|o is induced by the weighted inner product (-, -)q on L*(2,772*dz). Denote
by *HE the closure of C2°(Q2\ {0}) with respect to the norm [-] .. The space 7H¥ denotes the
closure of C2°(Q\ {0}) with respect to the norm

k

[l == > ul?,.

=j

2Set R = 7 U, 0) = gzu(r9), p(R, ) = %p(n ©) and £(R, @) = £(r, ). Then (u,p) is a solution to (L.1)) if and
only if (1, p) is a solution to (T.1)) with » = 8 =1 and f replaced with f.
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In the case j = 0 we write HX := “H%. In a similar fashion, the space /B~ denotes the closure of
C(09) with respect to the norm

k

[ul? g = Z[u]g_%va. (1.4)

(=
Again, for j = 0 we write BY := "Bk,
Remark 1.1. Note that []xo with a+k—1 # 0 is a norm on C°(2\{0}) due to Hardy’s inequality

(see Lemma , while in general it is only a semi-norm on the space of all locally integrable u such
that [uly,o < co. Moreover, the inclusion

kH’; — {u: [[U-]]kfg,ag < oo forall 0 </¢<k},

where the latter space is endowed with the norm \/ [u3 .p+ -+ [u]?,, is a bijective and con-
tinuous map. For a proof we refer to Lemma [B.1]

Let C2%(€2\ {0}) be the space of divergence-free test functions with vanishing normal component
at the boundary, i.e., we define

Coo 2\ {0}) == {v e C(Q\{0}) : divv =0 in ©Q, v, =0 on 9Q'}. (1.5)

For k > 1 and a € R\ Z, the space £ is the closure of all u € C22 (€2 {0}) with respect to the
norm

k
il = lallfy + lurl? = > [ulfq + 3.
(=1

This is an appropriate space for velocity fields that satisfy (1.1). Namely, the norm contains the
terms Hu||%},_i1 + |ur|%, which is a weighted energy dissipation, and HquHk that gives control on

higher-order derivatives. B
Then, for k > 0 and a € R\ Z, we introduce the space 2 as the closure of all f € C>(Q\ {0})
with respect to the norm

1125 := 1Ella—1 + €[l -
The term |[f[|o—1 allows us to control the weighted energy dissipation of the solution, while [/f||;

gives control on higher-order derivatives of the solution.
Throughout the rest of the paper, we will use a fixed smooth cut-off function ¢ = {(r) satisfying

C S CCOO([O, OO))7 such that ]].[071] S g S ]].[072]. (16)
Remark 1.2. The spaces Hﬁ, %ﬂak and ,,%ff with o € R\ Z imply a prescribed decay at the tip in
the radial direction. For example, for n € N we have

C(r)yrmeHr ifandonlyif n>k+a—1. (1.7)

For a given function f € CZ°(Q2), we denote by P§ the Taylor polynomial of order n at the tip.
For M € N we have f — (P} € HM if n > | M + o — 1], where for any s € R we use the notation

|s] := max{¢ € Z such that ¢ < s}.

We write f = (P} + (f — (PY), where we call (P} the polynomial part and f — (P} € HM the
regular part. This motivates the definition of the following spaces below. We will denote for a < b
by HM (a,b) the classical Sobolev spaces of order M on (a,b). For k, M € N we define

k
Prar = {p(r.¢) = Y aP (e 1 € HY(0,0)],
=0
endowed with the norm
k
Pl o, = D a9 e 0.0
§=0

Moreover, if k& < 0, we define Py ps to consist of only the zero polynomial.
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Any solution u to (1.3)) satisfies the condition divu = 0. If we rewrite u = (Py + (u — (P3)
with div P}, = 0, then u — (P, is in general not divergence free. To avoid this issue, we note that
P = VJ‘PZZH for some polynomial PZ“, where V+ = —r~19, e, + d,e,. We then decompose

u= VJ‘(CPZH) +u-— VJ‘(CP$+1). We formalize the above discussion in the following lemma.

Lemma 1.3. Let k,M € N and let Py € Py, such that divPy = 0. Then there ewists a Py €
Pry1 M1 with VLP¢ = Pu, given by the formula
i . 4 LI 4
Py(r, @) = Z ( — / ul) (p) d@)rﬂﬂ, where Py = Zum(go)rj. (1.8)
=0 0 =0
Moreover, if Pu-n =0 on 0, then V=+ (CPy) -n =0 on O, where ¢ is as defined in (1.6).
Proof. This follows by a direct computation. O

Given Py € Py such that divP, = 0 with k, M € N, we introduce the localized polynomial
velocity by
Qu(r, ) =V (C(r)Py(r,¢)), where Py is associated with Py by (L.8). (1.9)
In particular, Q,, = Py, for (r,¢) € (0,1) x (0,6).

Let a € R\ Z. For M > 2, we define the space for the velocity u by

XM ={u: Q>R :u=Qyu+u with Py € Pyar,n=|M+a—1]and u; € M},

endowed with the norm
[allxar := [Pullp, a + lanll

For M > 1, we define the space for the pressure p by

YMi={p: Q= R:p=(P,+p withPp € Ppy,n=|M+a-1],P,(0)=0ifa >0

and p; € 17{{3‘?},

endowed with the norm

pllyar == Ppllpn ar + IP2ll200-
Finally, for M > 0, we define the space for the source term f by
Z¥ ={f Q5 R?*: f=(Ps+ £ with Pr € Pyyr,n=|M+a—1] and f; € ZM},
endowed with the norm
€l zar == Pellp, ar + IE1ll 20

Loosely speaking, to prove regularity of the Stokes equations it is required to solve the
system twice: once with a singular source term at the tip and once with a regular source term. We
will refer to those different cases as the polynomial problem and the regular problem, respectively. A
combination of the polynomial and regular problem will lead to our main result on the well-posedness
and regularity of the Stokes equations on a wedge with Navier slip.

Finally, we expect that the Stokes operator with slip boundary conditions has resonances at —%+1
and 3 — 1, as will be discussed in detail in Remark We therefore consider the exponent of the
weight o in the interval

L=[-(1-¢)%+1,(1-¢)F—-1], (1.10)
where the small parameter € > 0 is a measure for the distance between o and resonances of the
Stokes operator with slip boundary conditions. To ensure that I is not empty we assume that
6 € (0,(1—¢e)nm).

We now state the main result.

Theorem 1.4 (Well-posedness & regularity). Let ¢ € (0,1). There is a constant ¢ > 0 such that
for any 0 € (0,(1 — ¢)n) and o € I. \ Z satisfying || < c, for any £ € ZM with M € N such that
M +a+1¢€1.\Z, there exists a unique solution (u,p) € XM+2 x YM*1 o (1.3)) which satisfies

[l xare2 + [[pllyrrer < Caeml|f] 22 (1.11)
Remark 1.5.
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e The constant C in depends on «, but not on #. Throughout the paper, we prove
estimates independent of # and any constant is independent of 6 unless explicitly stated
otherwise.

e The pressure in Theorem H/Iis uniquely determined as an element of Y,¥*!. In fact, the
only constant in the space Y;/*! is the zero constant.

e For M + o+ 1 > 0 the solution u from Theorem is continuous at the tip of the wedge
and u(0,0) = (0,0). In fact, the boundary conditions u(z,0) - n = u(z,0) - (0,—1) = 0 and
u(cot(d)y,y) - n = u(cot(0)y,y) - (—sin(f),cos(d)) = 0 imply that u(0,0) is orthogonal to
both vectors (0, —1) and (—sin(f), cos(h)).

Remark 1.6. To prove higher regularity in Theorem we argue by finite induction. We assume
that there exists a solution u in the space "H? and we prove that this solution is also in "T1H7+!
by rewriting the Navier-slip condition for in the form +r~'d,u, = —u,. Then can be
interpreted as a Stokes system with slip boundary conditions and prescribed tangent velocity, in
other words we consider the right hand side of :l:r_lapur = —u, as given.

For the function u € "H2, taking the trace on 0f), we have that u-7 € "B[. Using classical theory
from [41, 42}, 51, [52], we deduce that u € "TH7*!. While doing that, we have to remember that the
Navier-slip boundary condition is not scaling invariant and, in particular, we have £0,U,[A + 1] =
—u[A] in Mellin variables. This implies that we gain a derivative on u[A + 1] rather then on u[A]. To
recover the solution u, we invert the Mellin transform of U at the line ReA = a + n. The inversion
coincides with u only if u is holomorphic in an open set that contains ReX € [« +n — 1,a + n).
For us a resonance is a point where 4 is not holomorphic. The function U has an explicit solution
formula via a Green’s function representation, see Corollary and and the points where U is
not holomorphic are related to the points where the Green’s function G is not holomorphic. From
Lemma we easily see that the Green’s function is not holomorphic for A = &% F 1 while it is
holomorphic in the stripe Re(\) € (=% 4 1,% — 1). This explains the choice of ..

1.3. Outline. In Section [2] we collect some preliminaries required throughout the paper. In Section
[3|we gather the results of the regular and polynomial problem to prove the main result Theorem
The construction of a strong solution to the regular problem is explained and carried out in Section
[ and is a consequence of three steps. These three steps are worked out in detail in Sections [0} [7]
and [8] while in Section [5] we prove the necessary estimates on the Helmholtz projection. Section [J]
deals with the higher regularity of the regular problem and in Section [10|the proof of Proposition |3.4]
concerning the polynomial problem is given. Appendices [A] and [B] contain known results on vector
identities in polar coordinates and weighted Sobolev spaces, respectively. Appendix[C| contains some
auxiliary estimates required in Section [9]

2. PRELIMINARIES

In this section, we recall some required tools for proving the main result. This includes Hardy’s
inequality, the Mellin transform and the Helmholtz projection.

2.1. Hardy’s inequality. We recall the classical Hardy inequality, see [29, Theorem 327]. A proof
of this inequality on a wedge type domain can for instance be found in [27, Appendix CJ.

Lemma 2.1 (Hardy’s inequality). For all a # 0 and u € CL((0,0)) it holds

[o¢] 1 [o¢]
/ 7“2a|u(7“)|2 ﬁ < / 7‘2a|7“87«u(r)\2 g
0 r 0 r

a?

We continue with an improved Hardy type inequality for u € C5, (Q\{0}), i.e., for divergence-free
vector fields on the wedge that are tangent to the boundary, see ([1.5). Recall that 2 denotes the
wedge with opening angle 6 > 0.

Lemma 2.2 (Improved Hardy’s inequality for u € Cg% (€2 \ {0})). Let 6 € (0,7) and a # 0. Then
[ Lu]|2 < Co()6%| Va2 for allu € CX,(Q\ {0)),
where Cy : (0,m) — (0,00) is an increasing function that does not depend on c.

To show the above result we take advantage on the following Poincaré estimates with optimal
constants.
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Lemma 2.3 (Optimal Poincaré’s constant [12, Section IL5], [54]). Let f € Cg°((0,0)) or f €
C>((0,0)) such that foef dp =0. Then

0 ) 92 0 )
/U|w<2/MW|w
0 ™ Jo

Proof of Lemma[2.9 Note that u,(r, ¢) = 0 for ¢ € {0,0}, so that by Lemma

0 2 0 0
0
/Ouidapgﬂfo (Opup)® dp < C.07 8u¢,+ur) do + (& +€)02/0 u? dep,

for some € > 0. Therefore

U ||2 Uy ||2
|%| < cco? Ivul + (= +) 62|
r lla T

From (|1.3c) we have 0,(ru,) = —0,u, and integrating over (0,6) gives

0 [4
8r/ Uy d(p:—/ Opuy, dep = 0.
0 0

The function foe ru, de is constant in r and thus foe ru, dp = 0 since u has compact support. This
implies that f[f ru, dp = 0 for any r > 0. Therefore, by Lemma H we obtain

0
Ahm%¢</ﬁ%w9w

0
< 0592/ ’agour - u<,o|2 dp + (# + 5) ‘92/ |u<,0|2 dep.
0 0

Adding and r~2(2.2) and integrating over (0, c0) yield
1u]l? < CO? |Vl + (5 +2) 02 || 2u]|2

(2.1)

«

For 6 € (0, ), there exists € > 0 such that we can absorb (# + 6) 62 H%uHi on the left-hand side.
We deduce the result. O

2.2. The Mellin transform. We collect some properties of the Mellin transform. For more details
on the Mellin transform see e.g. [42].

Definition 2.4. For f € C°((0,00)) the Mellin transform is deﬁned as

MW = F) = <= [0 reC.
For v € R we define
flr)= 1/ r A) dImA, r € (0,00),
\/% Rel=v

which is called the inverse Mellin transform.

The definition continues to make sense for f € L} _((0,00)), in which case the integral might fail
to converge. If, however, it converges for some A1, Ao € C, then it converges on the strip S := {A € C
: ReA; < Rel < Re)y} and is analytic on S. Therefore, the inverse transform does not depend on
the choice of ReX € (ReA;, Rely) by Cauchy’s integral theorem.

Lemma 2.5 ([41, Lemma 6.1.3]). For f,g € C°((0,00)) and for any A € C, n € N and o € R, we

have:
(i) roF () = F(A + o), .
(i1) g ) = (A + D= )44 m),
73&8Wﬂ) "f),

~

[T = [ F0a0) i,
0 r Rel=a
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(v)
/ 2 )2 2 2 / OV dTma.
0 Rel=«a

r

Let H” be the closure of C°({A € C : ReA = ar+ k — 1} x [0, 6]) with respect to the norm

0
lulZ, = 3 /O/R AP 10Luf? dIm dg.

jl=Fk ed=a+k—1

Lemma 2.6 ([41, Lemma 6.1.3]). There exists a natural isomorphism HE — I/:\Tfj with u — Mu
with inverse that associates to 4 € HY the function

1 / A~
u(r,p) = —— r u(A, ) dlmA.
) V21 JRer=atk—1 O e)

2.3. Helmholtz projection. In order to deal with the pressure p in the Stokes equations, we
consider the Helmholtz projection. For w € C°(€2\ {0}) we study the elliptic problem
Ad =divw in Q,
Oh®=n-w on OV,
Note that does not have a unique solution in general since €2 is unbounded. We will use the

Mellin transform and ODE techniques to uniquely define the Helmholtz projection in our class of
weighted spaces.

(2.3)

In polar coordinates ([2.3)) reads

((ro,)* + 83)@ =7r((ror + Dw, + d,w,) in Q,
Dp® = rwy, on 9.
Applying the Mellin transform (see Lemma gives
(A2 + a;)%u, ©) = A (A — 1,¢) 4+ 0,0,(A — 1,0) = G(A, @) in Q, o)
0, P(N, ) = Wp(A—1,¢) on OfY.
Proposition 2.7. Let Re) -0 ¢ wZ. Then the unique solution to problem s given by
B0 = 0 con20 - 9) - B D cosng) + [ Gz N0 D a5 )

for ¢ € (0,0) and where the Green’s function is given by
cos(A@p) cos(A(0—¢))

G(S‘% &7 )‘) = { cos()\(/gs—i%()??)s()«p)
Asin(\g)

for0 <o <ep <46,
for0<p<p<4.

Proof. Uniqueness follows by standard ODE results. Thus the formula can be verified a posteriori.
O

By properties of the Mellin transform we obtain

— A+ DDA+ 1,9)
W“’”‘( 0, (A +1,¢0) >

and from the representation for ® in Proposition we find with integration by parts

~

0
B\, ) = /0 (Gl 3. NAB (A — 1,3) — 0:G (0,3 Ndu(A — 1.7)) d.

From the Green’s function G(p, ¢, \) in Proposition [2.7]it follows that )\:IS()\, ¢) and 830:15()\, ©) only
have singularities at A = kn/0 for k € Z \ {0}. Hence, for any A\ € C such that Re\ # kn/0 for

k € Z\ {0}, we can uniquely define V& as the inverse Mellin transform of ﬁ()\, ) if one integrates

over any vertical line such that ReA + 1 lies within the interval ( T %), i.e., we can integrate over

vertical lines Re\ € (—”TH’, ”TTQ). Note that as 6 | 0 these singularities move to foc.
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Definition 2.8 (Helmholtz projection). Let w € C>(Q\ {0}) and A € C such that Re\ €
(—”Tfe, ’TT_G). The Helmholtz projection P is defined by
Pw :=w — Vo.

Here, V& is the inverse Mellin transform of ﬁ)(/\, ) where the integral is taken over any vertical
line ReX € (—”Tfe, ”TTG), i.e.,
1

V2 ReA=vy

Furthermore, @()\, ©) is defined by (2.5) and ® solves ([2.3)).

Vo(r,p) r’\ﬁ)()\, ) dImA with v € (— ”TTG, “TTH).

Lemma 2.9. The Helmholtz projection satisfies the following properties:
(i) P2 =P,
(i) Pw =w for any w € C.»(2\ {0}),
(ii) P is symmetric (on Cc(2\ {0})) with respect to (-,-)12(q),
() Pro,w = rd,Pw for w € C(Q\ {0}).

Proof. 1t is straightforward to check that and hold. For note that by (A.6) we have
ro,Pw =ro,w —V(ro, — 1)¥ and P(ro,w)=rodw— VO,

where
AV = divw in Q,
{Gnllf =n-w on OV,
and
{A(ID = div(ro,w) = (ro, + 1)divw in Q,
On® =n - row on OFY.

Both problems have a unique solution up to an additive constant by Definition By using (|A.6))
again, we learn that (rd, — 1)V satisfies the problem for ® and therefore (rd, —1)¥ and ® are equal
up to an additive constant which proves the lemma. O

3. PROOF OF THE MAIN RESULT

We state the results for the regular and polynomial problem in Sections [3.1] and respectively.
In Section [3.3] these results will be combined to prove Theorem

3.1. Well-posedness of the Stokes system with non-singular right-hand side. We state
the well-posedness result for the Stokes equations in with a regular source term and with
inhomogeneous Navier-slip boundary conditions. We need to consider inhomogeneous Navier slip
to be able to deal with remainder terms coming from the localization of the polynomial problem in
Section We start by introducing appropriate spaces and norms on 9.

Let k>0 and o € R\ Z. We define the space 2.F as the closure of C2°(9€)') with respect to the
norm

k
(L.4)
%0 = lof2 + 1r0ng + Lol & 12 + Fopgl + 3002,
/=1
The Stokes equations in (T.3) with right-hand side f € 2™ and g € ZM*! are
—Au+Vp=f in Q,
divu =0 in Q,

u-n=0 on O, (3.1)
u-T+0oh(u-7)=g on 99).
Therefore, we introduce for k > 1 the space
. {mg ifa>0ork+a—1<0, (32)
« {p: Q= R:p=_po+p withpy € Rand p; € 'HE} ifa<0<k+a-—1,
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where the latter space is endowed with the norm ||pl|g = [po| +[[p1ll13;x . The following result holds
for the regular problem.

Theorem 3.1 (Elliptic problem). Let € € (0,1). There exists a constant ¢ > 0 such that for any
0 € (0,(1—e)m) and a € I\ Z satisfying |ab| < ¢, for any £ € ZM and g € ZM+ with M € N
such that M +a +1 € I.\ Z, there exists a unique solution (u,p) € SEM+2 x HM+1 1o which
satisfies

ull sz + [Py < Coeonr (€]l + g yoaren)- (3.3)

This theorem is a consequence of two results: existence and uniqueness of the solution in the base
case M = 0 (Theorem and improvement of the regularity to M > 1 (Proposition .

Existence and uniqueness of the solution to the stationary Stokes problem for M =0 is not
shown in 22 x %!, but in a space with a norm that is suitably scaled in |a| and 6. We use this
space to get explicitly stronger information on the solution in the base regularity setting.

Let o € R\ Z and 0 € (0, 7). We define the space f{iﬁ as the closure of all u € Cg% (Q2\ {0}) (see

(1.5))) with respect to the norm
2 = ful2 + Jol6lrdu, 2+ 0]} o + 06030 1. (3.4)
Moreover, Q‘j}w is the closure of all p € C2°(Q\ {0}) with respect to the norm

2 3,712
ol = 10l [plR o
Sections will be concerned with the proof of the following theorem.

Theorem 3.2. Let ¢ € (0,1). There is a constant ¢ > 0 such that for any 6 € (0,(1 — &)w) and
a € I.\ Z satisfying |af| < ¢, for any £ € HO_| and g € 20, there exists a unique solution

(u,p) € %3’9 X @(1179 to (3.1)) which satisfies
lalles , + pllys , < Calfln_, +lol2s)-

In particular, we have
lullas < Ca(IEll0 .+ lglo0): (3.5)

The second result that is required to prove Theorem [3.1] deals with improving the regularity of the
solution using a-priori estimates for the Stokes equations in a wedge with slip boundary condition
and prescribed tangent velocity. Because we have a strong solution from Theorem [3.2] we can
consider a system with a (scaling-invariant) slip boundary condition and prescribed tangent velocity
instead of the original problem with the Navier-slip condition. Consider the equations

—r2[((rdr)* + 03)ur — Do — uy] + Opp = fy for > 0, € (0,6),

_T72[((T8T)2 + 8?0)1% + 20 ur — uy] + Tﬁlawp =fy for > 0,9 € (0,0),
(ror + up + Opuy, =0 for r > 0,9 € (0,0), (3.6)

uy, =0 for r > 0, € {0, 6},

Optiy =g for r > 0, € {0, 6},

for which the following result holds. The proof of this proposition is given in Section [0

Proposition 3.3. Let ¢ € (0,1). There is a constant ¢ > 0 such that for any 6 € (0,(1 — e)7) and
a € I\ Z satisfying |af| < ¢ we have:

€ and g € wit € N such that M +a+1 € I, , then there exists
1) If £ € MHY and g € M BYLY with M € N such that M 1€ 1.\ Z, then th j
a unique solution (u,p) € MF2YM+2 5 MALyM+1 1, ([B376) which satisfies

[alariza + hrina < Coe (Il + [0larss 1) - (3.7)

(2) If u is the solution from Theorem[3.9 and if g = £(g —ru,). Then the solution of (3.6) that
satisfies (3.7)) coincides with the solution of Theorem when M = 0.

(3) If ¢ is defined in (T.6), M >0 is a natural number and
M+a+1€IE\Z, fE’H;YM and QGIBQA{JT.
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(i) If, in addition, M+a<0ora> 0, then there ezists a unique solution (u,p) €
Iy M+2 5 AP M+1 4o (3.6) that satisfies (3.7) for any 0 < M < M.
(i) If, in addition, a < 0 < M + «, then there exists a unique triple (u,p1,po) €

IHMAL R such that (u,p) = (u,{po + p1) satisfies ([3.6) and (u,p1) satisfies (3.7)
(with p replaced by p1) for any 0 < M < M. Moreover,

IH;;\/[+2 X

\Po’ < Ca,s,M([[fﬂ]’\}f’a + [g]ﬁ+%7a+1)'
With the aid of Theorem and Proposition we can prove Theorem

Proof of Theorem [3.1. For M = 0, Theorem implies the existence of a unique solution (u,p) in
1{379 X 2);9 of which satisfies . After noticing that equals with g = £(rg—ru,),
we apply Proposition [3.3] with these values and deduce Theorem 3.1} For M > 1 the proof of the
regularity estimate goes via finite induction. Suppose that holds for M = m and suppose
that m+ 1+ a+1 € I, \ Z. It then remains to show that holds for M = m + 1. Again (3.1)
equals with g = +(rg — ru,), which reads in Mellin variables g(\) = +(g(A — 1) — @, (A — 1)).
Then by definition of the norm [-]2, +3/2,0 (see Section , we obtain

[9]72714-3/2,11—}-1 B min{1, |m _|_4a T 1[}2mt2 ([ur]72n+3/2,a + [9]371+3/2,a) < Ca([[u]]%n—l—la + [9]377,—1—3/2,04)'
(3.8)
By Proposition with M = m + 1 and the above estimate we find
[u]m+s.e + [P1lm+2.0 < Coc,a([[f]]m-&-l,a + [g]m+3/2,a+1)
Ca,s([[f]]m+1,a + [[u]]m+2,a + [9]m+3/2,a)
< Coc,a([[f]]m+1,a + || f[[3m + ’9’13;“;“ + [g]m+3/2,a)
< Ca,a(”fHHgL“ + ‘g‘lzgglﬂ)’
where in the last step we have used the induction hypothesis
[ulm+2.a + [P1]mt1,0 < Ca@(Hf”HZ‘ + |9|1B;"+1)‘ U

3.2. The polynomial problem. We continue with the polynomial problem, i.e., we consider the
Stokes equations (|1.3)) with a polynomial source term of the form

n—2
0= 19(p)
j=0
where n — 2 is associated with the degree of the polynomial. Using the ansatz
p) = Zu(j)(go) I and Py Zp“
§>0 §>0

in ([L1.3) with source term P§ (7, ¢), it is easy to see that the solution Py, is a generalized polynomial
and has infinitely many nonzero coefficients u¥) due to the Navier-slip boundary condition. In fact,
as we can see from ([1.3¢]), the Navier-slip boundary condition implies a shift in the coefficients of the

form awuﬁj )(go) = Fu _1)(<p) for ¢ € {0,6}. This shift, which is due to the non-scaling invariance of
the Navier-slip condition, causes that the theory developed in [41], 42, [51] is not directly applicable.
We truncate Py and P, at order n and n — 1 respectively and define

Pu(r, ) Zu(J 7 and 77" (r, o) Zp(J

The couple (P, PI’}) satisfies the following system with non—homogeneous boundary conditions
—APy + VP, =P¢ in Q, (3.9a)
divP, =0 in Q, (3.9b)
P, -n=0 on O, (3.9¢)
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Pr T4 0u(PY-7)=r"u™ .+  on Q. (3.9d)

Proposition 3.4. Let ¢ € (0,1), 0 € (0,(1 —¢&)7), and M,n € N with2 <n < (1 —¢e)% — 1. Let

n—2

Pr(rp) => f9(p) 17,

Jj=0

be such that Pf(r,p) € Pnam. Then there exists a unique solution (Py,Py) of (3.9) such that
Pu € Pum+2, Py € Pno1,m+1 and 73;(0) = 0. Moreover, it holds that

H,PﬁHPn,M-»-Q + ||Pg”7)n—1,M+1 < Ca”lp?(rv (10)||7Jn—2,]\4‘
The proof of this proposition is given in Section
Localization of the polynomial problem. Recall that we decomposed the source term as (Py and
f — (P¥, in such a way that we can apply Proposition for the polynomial part P§ and Theorem
for the regular part f —PF. The cut-off function ¢ as defined in (|1.6)) was introduced to ensure that

f — (P{ has the right behavior as » — co. Subsequently, we introduced the localized polynomial
velocity Q7 of Py in (1.9). Moreover, the localized polynomial pressure is defined as

Q,(r, ) = ((r)Pp(r, »).
From (3.9) and Lemma it is straightforward to verify that
—AQy +VQ) =(Py + QFf in Q,

div@Qy =0 in Q,
Qr-n=0 on 99, (310)
Q- T+0n(Qy-T) :QZ on 0%,
where
Qp = —2V( - VP — PoAC — A(PEV() + PV,
Q' = ¢r"u™ 1 PL V¢ T+ On(PEVEC - T). (3.11)
jnry

Proposition 3.5. Let ¢ € (0,1), 0 € (0,(1 —¢)m), M,n € N with2 <n < (1 —¢e)j — 1. Let
Pt € Prno1m and let Qf and Qp be as in (3.11). Then for a € R \ Z, we have

1QF Il 22 < Cae

’P’,f’LH,Pan,]W
and if n > M + « , we have
19g 1| gar1 < Coe[PEIP, o0

Proof. From the fact that Py, Py are polynomials in r with coefficients in H M+2(0, 9), Py is a
polynomial in 7 with coefficients in HM*1(0,6) and V¢ € C(([1,2]), it is straightforward to deduce
that |QF|»n < C|PFlp, o, Regarding Qp, we can argue similarly for 8n(P$VLC) -1. To
estimate ¢r"u(™ . T we use and the restriction n > M + a. O

3.3. Proof of the main result. We conclude with the proof of Theorem

Proof of Theorem [T} Let f € ZM. If [M + a — 1] < 0, then f € ZM and Theorem already
implies the result. Assume now that |[M 4+ a — 1] > 0. Then there exists P with n = [ M +a + 1|
and Py € Pp_o a such that f = (Py + f; with f; € QZM. Proposition ensures that there exists
a solution (Py,P,) to (3.9). Following the localization procedure as in Section we obtain a
localized polynomial solution (Qy, Qp) that satisfies . A solution (u, p) to the Stokes equations
is decomposed into a localized polynomial part and a regular part:

u:Qﬁ'f'u_Qﬁ:Qﬁ‘i‘ureg and p:QZ"f_p_QZ:QZ"_prega
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where (Ureg, Preg) solves

_Aureg + vpreg =f; - Q? in Q,

div upeg =0 in €,
Upeg -1 =0 on 0%, (3.12)
Upeg " T+ On(Ureg - 7) = — Qp on 0%,

and Qf, Qg are as given in . Proposition implies QF, fi € ZM. Recall that n = | M +
a+ 1] > M + a. Therefore, by Proposition we get Qp € LML Theorem implies existence
of a unique solution (Uyeg, preg) € HMT2 x MFL to (3.12).

We verify that for the pressure it holds p = Q) + preg = (P, + Preg € YM+1 " Recall that
by the definition of ZM*! in we have preg = C(po + p1 with p; € "HMFL. Therefore, p =
C(Py +po) +p1 € VI

It remains to show uniqueness. Let (u,p) = (Qu + Ureg, Qp + Preg) as before and let (u,p) =
(Qu + e, Qp + Preg) another solution in XM +2 x yM+1 of with the same source term f. Then

—A(PL—P2)+ V(P! — Pl =R, in €, (3.13)
div(P2 — P2) =0 in 0,
(P®—P2)-n=0 on 9¢Y,
(P2 —P2) 74+ 0u(P?—P2)-7) —r"(u™ —a™) .+ =R, on 9. (3.14)

where

Ro = —f1 — Alireg + Vireg — (1 = ()(~APg — VP + Pg) — div(V( @ Pa) + A(V(Py),
(3.15)

Rb:ﬁreg'T“‘an(ﬁreg'T)_(1_C)’Pﬁ'T_,P@'VLC'T_an((l_C)’Pﬁ'T_,PJ)'VJ_C'T)'
(3.16)

Notice that —A(Py — Pg) + V(P — Pg) € Pn_2.m, we deduce from that Rs € Pp—2 -
From ([3.15) we have that Rs € HM. Using the fact that the only polynomial in Ppn—2,m which is
also in HM is the zero polynomial we deduce that Rs = 0. Similarly using (3.14) and (3.16)) we also
have Ry = 0.

For o > 0 the definition of Y *1 implies that P,(0) = P;(0) = 0, so Proposition [3.4|implies that
(Pu,Pp) = (Pa, Ps) and the uniqueness for the regular problem implies that (Ureg, Preg) = (Ureg, Preg)
as well.

For o < 0, we deduce that Py = Py while P; = P, + ¢ for some constant ¢ € R. It remains to
show that ueg = Ureg and p = p. First we notice that the solutions u,ee and Ureg only depend on the
Helmbholtz projection (see Section of the source terms and P(QF) = P(QF)+P(V(c()) = P(Q}).

We deduce that u,eg = Ureg and thus u = u. This implies that the difference preg — Preg satisfies
_A(preg - ﬁreg) = div(cV() in €2,
v(preg - T?reg) n=c¢V{(-n=0 on 89’,
which has a unique solution in 2 *! given by preg — Preg = ¢¢ € ZM 1. Therefore,
b= Qg +T)reg = C (,PZ? + C) +T)reg = C’Pg +preg =p.
Thus (u,p) = (4, p) and this concludes the proof. O

4. CONSTRUCTION OF A STRONG SOLUTION

In this section, we prove existence of a unique strong solution to the Stokes equations (|1.3)) with
a regular source term as is described in Theorem The proof can be subdivided into three steps
which will be outlined below. All the details will be given in Sections
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Step 1: Variational formulation (Section |§[) To obtain a solution to with a regular source
term in a weighted Sobolev space, we employ the Lax-Milgram theorem. After testing the equation
with a test function r~2*v with v € C2%(€2\ {0}) in the L? inner product and integration by parts,
a variational formulation of the problem is obtained. However, due to the non-scaling invariant
Navier-slip boundary condition, it is not clear if the bilinear form in this variational formulation
is coercive. To circumvent this issue, we instead test the equation with a test function containing
derivatives.

For v e C25(Q2\ {0}), we define
Viest i= V — |a]|03(r9,)?v — c3]al@®r’Av,

for some universal c3 > 0 to be chosen later. Let a # 0 and P be the Helmholtz projection from
Section Testing (3.1) in (-,-)r2(q) with the test function P(r=2%viest) leads to the variational
problem

B(u,v) := Bi(u,v) + |a|03By(u,v) + c3]a|0>Bz(u,v) = (f,P(T_2thest))L2(Q) +{g,vr)a, (4.1)
where Bi, By and Bs will be derived in Section [f] and

(g,0r)q = / r2%gy, ds + |a]93/ r2((rd, — 2a +1)g) (royvy) ds.
oY oY

is a pairing that will be derived in Section Moreover, the pressure p is the unique solution in
é,e of
Vp=Au+f —-P(Au+f). (4.2)

Step 2: Coercivity of the bilinear form (Section [7]). The bilinear form B in ([4.1)) satisfies the
conditions of the Lax-Milgram theorem using the space Z{i g as defined in (3.4). The proofs of the
two propositions below are given in Section [7}

Proposition 4.1 (Coercivity). Let € € (0,1). There exist constants c,cg > 0 such that for any
0 € (0,(1 —¢e)m) and a € I\ Z satisfying |af| < ¢, we have the coercivity estimate

B(u,u) = Bi(u,u) + |a|63By(u, u) + c3]a|0>Bs(u,u) > CHu\|§€2 , Jor allu e CZ(Q2)\ {0}),
for some universal constant C.

Proposition 4.2 (Boundedness). Let ¢ € (0,1). There exist constants c,cs > 0 such that for any
0 € (0,(1 —e)m) and o € I. \ Z satisfying |ab| < ¢, we have

|B(u,v)| < C’||u|\3€§’6\|v\|%379 Jor allu,v e C(Q\ {0}),
for some universal constant C.

Step 3: Strong solution (Section . It remains to prove that the solution to the variational
problem (|4.1]) also satisfies the original Stokes equations and is in fact a strong solution. To this
end, we need to verify that the set of test functions of the form viest is of sufficiently high resolution
in order to apply the fundamental lemma of calculus of variations, i.e., we study the surjectivity
of the mapping v — Vviest. At this point it is crucial that all the terms in vie; have the same
scaling in r and that we did not apply the non-scaling invariant Navier-slip boundary condition to
derive the third bilinear form. This will lead to a test function problem that is subject to Dirich-
let boundary conditions which is easier to solve than a problem with Navier-slip boundary conditions.

The following proposition is proved in Section

Proposition 4.3. Let € € (0,1). There exists a constant ¢ > 0 such that for any 6 € (0, (1 — &)7)
and o € I. \ 7 satisfying |af| < ¢, for cg > 0 the constant in (&1 and for any £ € H°

a—1»

g € 22, the following statement holds: (u,p) € (X2 ,,9L ,) satisfies (3.1) almost everywhere, if
and only if (u,p) € (X2 ,,2L ,) is a variational solution in the sense that they satisfy ([4.1]) for all

v e CE(Q\{0}) and ([@.2).

By combining the results from the above steps we can finish the proof of Theorem
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Proof of Theorem[3.4 For any £ € HO_| and g € 20 there exists a unique u € %2,6 such that
B(u,v) = (f,IP’(T*ZO‘vteSt))Lz(Q) + (g, vr)a for all v € C%(Q\ {0}).

This follows immediately by the Lax-Milgram theorem using Propositions density of C5, (Q\
{0}) in %3’0 (by definition), Proposition and the estimates

(B2 vie) 2] < Cllg_ IV, and (g, 00)al < llgll vz ,

Finally, Proposition ensures that the solution (u,p) € .’{i g X QJ}X ¢ (where p is the solution to
(4.2), satisfies the Stokes problem ([3.1)). O

5. ESTIMATES ON THE HELMHOLTZ PROJECTION

In this section, we prepare for proving coercivity of the bilinear forms By, By and B3 in Section
We derive estimates for the commutators [P, A] and [P,r~2%] which will appear in the bilinear
forms Bj, By and Bs in Section [l We recall that the commutator of two operators A; and A is
given by [Al, AQ] = A1A2 — A2A1.

5.1. Estimates on the commutator [P, A]. The commutator [P, A] can have singularities at 7.
Therefore, we define for € € (0,1) and 6 € (0, (1 — €)m) the interval

Jei=[-(1-¢)%,(1—¢)F]

and we show uniform estimates for Re\ € J..
We start with the following lemma in the case that v is divergence free, but v - n # 0 on 9.

Lemma 5.1. Let € € (0,1), 6 € (0, (1 —&)7) and let v € C(2\ {0}) be such that divv = 0 in Q.
Then for o € 3.\ {0}, we have
[PVl < Cel[vla-

Proof. To prove the estimate in the statement of the lemma, it suffices, by definition of P, to estimate

V|2 = / / ARIBO @)+ [0,8(M, )2 dlm dp,

where by Proposition 2.7 we have
8,0 — 1,0) 3,00 1,0)

B(N,p) = “xsnog) W@ = TE5e

cos(Ayp).

We only consider the estimates for ||0,®||2 since the estimates for ||[20,®|/2 are similar.
We start with some preliminary computations. Write A = « + it, so that by an elementary
computation we obtain for ¥ € {p,0 — ¢}

cos(\D) |2 _ cos?(ad) cosh?(t9) + sin?(ad) sinh?(tV)
sin(Ad) | cos2(af)sinh?(t6) + sin?(ab) cosh?(t)
To bound the above expression, we notice that

1
|cos?(af)| >~ if afe U (- +km, T+ kr) =: D, (5.1)

4
kEZ
while |sin?(af)| > L if af € R\ D. Moreover, for > 0 we have cosh?(tz) ~ e while sinh?(tz) ~
2t if |t > 1. We deduce that

cos(A) 2 [ Leted) C‘Qf,};j((;?;fgﬁz((’jg) S (19) < 0e=20-9)  if af € D and [t0] > 1/4,
; = Y cos?(a®) cosh?(t9)+sin?(ard) sinh?(t0) —92|t|(6—10 .
sin(A9) 5in? () cosh? (16) < Ce 209 if o e R\ D.
Therefore, if (af,t0) ¢ D x (=1, 1), we have
cos(A9) |2 e 1—e 20
de < HO=9) qp < O—— 5.2
/0 sin(\0) v= /0 ¢ v= T (5.2)
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which can be bounded by

—2|t|6 —2|t|o
Lo plalf+) g 1=y (5.3)
2] Al I
To continue, we show a trace-type estimate for divergence-free vector fields in the wedge. Let
n € CX((—1,1)) be a symmetric cut-off function such that n(0) = 1 and let ¥ € {0,0}. By the
fundamental theorem of calculus and the divergence-free condition, we have

0
B0 = = [ 2, (n(ZD) R ) d

0

- / 01 (552) 0, () dp = 2Re [ (25200, (0 )0 ) d
0 _

- / 07 (250) a0 )P — 2Re [ n(55) (3 15O 21000, 9]
0

— O 4 A+ 1)) / B )2 do. (5.4)
We now return to the bound of ||0,®||4. For af € R\ D, we bound using (5.2)), (5.3)) and (5.4))
(A —1,0) Dp(A—1,0) 2

o2 - / /
Rel=a SIH )

L+ |af0)[[vla < ClIvl3,

cos(A(8 — ¢)) — cos(Ap)| de dImA

sin(\0) (5.5)

where in the last step we have used that |«|f < 7 for o € J..

For af € D, we have to consider the cases |tf] > 1/4 and [tf| < 1/4. In the case [t0] > 1/4 we
can follow the same strategy as for af € R\ D and deduce (5.5). In the case [t§] < 1/4, we are
allowed to replace the trigonometric functions with their Taylor expansions to deduce the desired
bound. For o € 3. \ {0} it holds that

sin(3)] ~e M0, 1 con(A(@ - )| e [P
and
5,0 — 1,0) 8,0 —1,0)
~sm0d) cos(A(0 — ¢)) — () cos(Ap)
= Teld (‘A;) D (cos(A(B - ) — 1) + A= 1’;)10(;?;@ S (_A;;@) (cos(Ap) — 1)
= L1 +1x+ Is.

To bound 10-®||%, we estimate the above terms separately. The estimates of I; and I3 are trivial
using . To estimate I» note that

0 [}
Up(A—=1,0) = 0p(A = 1,0) = —/ Dplp(A—1,0) dp = / Nop (A =1, ) de,
0 0

since divv = 0. We obtain

0

0 JReA=o, [t0]<y
0

0 JReA=a, [t0]<]

<Ce

2

Vpo(A—1,0) —0,(A— 1,0
U‘P( ’0) USD( 9 ) dIm)\ng

sin(\0)

foe AU (A =1, ‘Pl) de’ 2
sin(\@)
X202 (A —

dImA de

1) 00

dIm\ < C.||v|2. O
Re/\:oc,|t9|<% ‘)“262 : “

We continue with the estimate on the commutator of the Helmholtz projection and the Laplacian.
Note that PAv for v € C2%(2\{0}) is well defined by Lemma using that div Av = 0 (see Lemma

A).



18 M. BRAVIN, M.V. GNANN, H. KNUPFER, N. MASMOUDI, F.B. ROODENBURG, AND J. SAUER

Lemma 5.2. Let e € (0,1) and 6 € (0, (1 —&)m). Then for o —1 € I\ {0} and v € CZ5(Q\ {0}),
we have

2
I[P, Alv]Z_y <C(IIVrav)lla + IVvZ + |15 17)
+ C|| 2020 (IV oV la + 1V V] + [|22]],,)
+ Q%H%asﬂ)r”a %H? © THaH?asaUTHa-
Proof. Note that Pv = v, so that [P, Alv = —V®, where ® is the potential in the definition of PAv.
It suffices to estimate
0
IVolZ = [ [ PIBO)E + 0,800 dimAdg
0 JRel=a—1
where by Proposition and Lemma (iii) we have
(Av)p(A—1,0) (Av)p(A — 1,0)
Asin(A0) Asin(A9)
Using that divv = 0 and v, = 0 on 9, we have on the boundary

(N, @) = cos(A(0 — ¢)) — cos(Ap). (5.6)

(Av), -2 [((r@r)Q + aj)% + 20,0, — vy| = —7r2(rdy — 1)0pu;.
In Mellin variables, the above expression rewrites
(Av) (A 9) = =(A+1)0,0- (A +2,9), (5.7)

where ¥ € {¢,0 — ¢}. In this proof, we only show the estimates for ||0,®|o—1, the estimates for
|20,®||a—1 are derived similarly.

To show the result we use the following trace type estimate. Let n € C°((—1,1)) be a symmetric
cut-off function such that 7(0) = 1 and let ¥ € {0,60}. By the fundamental theorem of calculus and
the Cauchy-Schwarz inequality we have the following estimate

0
0,000 = = [0, (n(=2)10,0.F 0 )) i
6
= / 0~ 177'( )|8 o2 (N, )dcp—QRe/ (“0_19)82A( ©)0,0r (A, ) dp (5.8)

<5 [ 0ok s ([ ozaoera) ([ aaoer )’

We now go back to the bound of ||0,®||o—1. Write A = o — 1 + it with ¢ € R. Let D be as in
(5.1)), then for o — 1|6 € R\ D (5.2)) holds. Using (5.6) and (5.7)), we estimate

A, 0 (A +1,0) A0 (A +1,6) 2
10,®]2_, —/ /Re)\ - Sn(A0) cos(A(0 — ¢)) (M) cos(Ap)| dImAdy
() 1— e 20
5/ AP (10,8, (h+ 1,0)[2 +10,8:(A + 1,0)[2) -5 " dIma
ReA=a—1 2|t]
©3).63)

0
< <1+\a\e>[ [ [ oriaaos 16 deam
Rel=a—1J0
0 % 0 %
e[ ([rmaaasnera) ([ o0 e a) am]
Rel=a—1 0 0

? a). (5.9)

When |a— 1|0 € D, we have to consider two cases |6t| > 1/4 and |0t| < 1/4. In the first case we can
follow the strategy above and deduce the bound (j5.9). For |0t < 1/4, we replace the trigonometric
functions with their Taylor expansions to deduce the desired bound. For o — 1 € 3.\ {0} we have

[sin(A@)| ~- (N8| and  |cos(A(f — ¢))| ~e 1.

v 2
S IVEOVIE+IVVIE + 22|+ 1202vHa (19 o) o + Vvl
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Hence
0 ~ ~ 2
A0 (A + 1,0 AL O (A + 1,0
/ / @v.( +1,0) cos(A(0 — ¢)) — (pv-( +1,9) cos(Ap)| dImA dp
0 JRer=a—1,[to]<} sin(A0) sin(A\0)
o ['] PPO O+ LOP | NP0 A+ LOE
- 0 JRer=a—1,[to)<1 RUE RUE
)
< Cegr|lz0pvrl|, + 31170500 ][ 7000r 0

5.2. Estimates on the commutator [P,7~2%]. In view of the fact that P is symmetric on un-
weighted spaces (Lemma [2.9)), we will encounter the commutator [P, 2*]v with a # 0 and v €
Ce%(Q2\ {0}) in Section 6l Note that [P,r~2*]v = —V® where ® (in the sense of Definition
satisfies

AP = divr2%v = —2ar 2071y, in Q,
On® =n-r"2%v =0 on 0¢Y,
which can be written more conveniently in polar coordinates as
((ro,)? + 83) b= —2ar 2y, =g in Q, (5.10a)
0,® =0 on 9. (5.10b)

We will derive estimates on ® using the Fourier expansion of d in the angle. The Fourier expansions
are in this case easier to work with than the Green’s function representation from Proposition
For k € N we define the orthonormal systems

L k=20
 RY ? ~ L 2 . )
= d =4/ == k>1, 5.11
ex(p) \/%cos (k,ew) k> an er(yp) g sin ( g ) = ( )

which satisfy
1 ifk=¢,
0 else.

0 0
/ en(@)ed(y) dp = / S(0)3e(0) dp :{
0 0

Moreover, an L2-function g : (0,0) — R admits Fourier expansions of the form

0o 0
o) = S gren(e) in 20,0),  where g = [ g(F)en() 45
k=0 0

o 0
o) =S gi@ile) i LX0.0). where g = [ (F)8n(7) 47
k=0 0
In addition, for the coefficients g in both Fourier expansions we have Bessel’s identity given by

%0 0
gel* = [ 19(p)|? deo. (5.12)
; 9k /0 9(@)? dy

Lemma 5.3. Let v € C%(Q\ {0}). The Mellin transform of the solution ® of problem (5.10)) has
the form

oo

- BN +2a — 1)

= a2 (b

er(y) for ¢ €10,0],

and its derivative is given by

~ kT DA+ 20— 1) -
T A2 Usie)  foreclog), (513)
Az = (%)

9, (N, ) = 2a
k=1

with Re\ € ( -7 g) and \ # —2a.
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Proof. Taking the Mellin transform of (5.10) gives
N2 +02)2(\ ) =G\ )  nQ, (5.14a)
9,®(A, ) =0 on 9, (5.14b)

which is a non-homogeneous second-order ODE with homogeneous Neumann boundary conditions.
The function g(\, ¢) admits a Fourier expansion in the angle ¢ of the form

G @) = G(Nex(y) in L*(0,0),
k=0
where the Fourier coefficients are given by

Ix(A) = =2a0, (A + 2 — 1) (5.15)
with

(% 0
Be(\) = /0 5\ Per(@ dF  and 8, (Ahe) =3 Bu(Nerly) in LX(0,0).
k=0

The condition divv = 0 reads in Mellin variables (X 4+ 1)0,(A, ¢) + 0,0,(A, ¢) = 0. Integrating this
expression over the angle yields

O+ 1)/ B0\, ) dip = / 9,9, () — 5,(\0) = B,(\,8) = 0, (5.16)

by the boundary condition v, = 0 on 9.
Problem (j5.14)) has a series solution of the form

x
O\ ) = Z ‘/ng()\)ek(cp) almost everywhere,

and inserting this into (5.14a)) and using the orthogonality of the cosines gives that the coefficients
satisfy

2\ 2 ~
(X = (5)%) 00 = 3.
By (5.15)) and (5.16)) this leads to the following series representation

_ o Zvrk )\+2a71)
k=1 - (%)°
oo
> IE (V) < o0
k=1
and therefore the series converges in H?(0, ) which embeds into C''([0,6]). This implies that the

series converges pointwise and the series can be differentiated to obtain (5.13]) which again converges
in H'(0,0) and therefore 9,® also converges pointwise. O

ex ().

Note that

The commutator [P,r~2%] may have singularities at —% + 1 and 3 — 1. Therefore, recall from

(1.10]) that for € € (0,1) and 6 € (0, (1 — ¢)7) we defined the 1nterval
L=[-(1-¢§+1,0-eF—1]
The following lemma provides estimates on the commutator [P, r~2%] required in Section

Lemma 5.4. Let € € (0,1) and 6 € (0,(1 —e)w). Assume that a € I. \ {0}. Then we have the
estimates
|20,V < Celelf Iv]

VP, =]y, < Celal[lv]]

a+1>

a+1 "
Moreover, we have
(P,r2*v), =0 on 09 (5.17)
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Proof. First of all note that for any A=a+it withte R, we have
(R =20+ 1) = (%) )2 = (24 (5)° = (1 - 0)?)* + 4t2(a — 1)2
If ReA = a € I, then
o —1] < (1—8)% and |a| < (1—5)%, (5.18)
and therefore using , we deduce that
(7 + (])" ~ (1= )’
> (2 +(1-(1-¢)?) (I%T)? )2 (5.19)
> (2 +e(1-2) (5)°)" 2 (5"
Using again in the previous estimate yields

| \/

(3 =20+ 1)2 = (%) ‘

’(X—2o¢+1)2— (%”)2\2 > (12 +e(l—e) (br)")? (5.20)
2

and similarly
~ 2 ~
‘(A —2a+1)% - (%ﬂ)?‘ > (2 +2a2)” > e A" (5.21)
Recall that [P,r72%v = —V®, where ® is defined in Lemma By properties of the Mellin
transform, (5.12)) and Lemma we obtain

2
o, = ool —ta? [ SR DR gy
Red=—a+1 1 ))\2 (kw) )

~ 2 -
:4042/ A =20+1P Z 2,V S dIm)
Re=a (X =204+ 1)2 - ()]

< Cea®?||v[a 41,

where we have used (5.19)) and (5.21). Similarly, we deduce that

2
Hl([]}p77;2a H _H P (I)H —4a/ ’k‘ﬂ'2|'0rk‘ A+ 2 — 2)‘ dTmA
" R/\—fa+1 A2 (kx
x)”
:4a2/ i(’”)Z [rk (V)] dIm\
N — 2
Rex=a 5 0 ‘(A—Qa—i—l)?—(%ﬂ)z‘

< Cea®?||v[a 41

Therefore, [|[P,r~2*]v||%, < C:a?6?|v||2,;. The estimates for the first order derivatives are similar,
for example

A+ 20+ 1))
Ha,,([}P’,rQQ]V)rHiaZHav%q’Hza:mQ/ |)\+1,2|>\+2\2Z O+ 20+ DI o
ReA=—a—1 k=1 ’(A+ 2)2 - (') }
N L
Red=a

1 ‘()\—204—1—1)2 - (’%)2’
<CA?|vV)E,

where we have used (5.20) and (5.21)) in the last step. The bounds on 8,([P, r=2%]v),, L9, ([P, r2*]v),
and 20, ([P, r~2*]v),, follow similarly. Using (A-3) and the estimates on ||2[P,r~2*]v|? , we deduce
the result. Finally, (5.17) is a consequence of V® -n =0 on 9. O
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Corollary 5.5. Let € € (0,1) and 6 € (0,(1 —e)m). Assume that o € I, \ {0}. Then we have the

estimates
|£[P, 72|, < Cclal@? (Vv

V[P, r—2v|_, < Clald Vv,
Proof. The proof is a consequence of Lemmata [2.2] and O
6. VARIATIONAL FORMULATION FOR THE STOKES EQUATIONS WITH NAVIER SLIP

In this section, we derive a variational formulation for the Stokes equations (3.1]) as is described
in Section {4 Step 1. After applying the Helmholtz projection to (3.1) and noting that PVp = 0 by
definition of the Helmholtz projection, we deduce the projected stationary Stokes problem

—PAu =Pf in Q, (6.1a)
u, =0 on O, (6.1b)
Up + Oty = g on 9Q)'. (6.1c)

Let v € C (2 {0}), where we recall the definition of this space in (L.5). As motivated in Section
we test (6.1a)) in (+,)r2(q) with
2% et i= 120 (v — ||03(r0,) PV — 3032 Av) for some c3 > 0, (6.2)

to obtain a variational formulation of (6.1). The corresponding bilinear forms Bj, By and Bz will
be derived in subsequent sections.

6.1. Bilinear form B;. Equation tested against v with v € C29(Q\ {0}) in the inner
product (-,)r2(q) reads

(—PAw, r2v) 120y = (PF,r7>*V) 12(q)- (6.3)
Using that the projection P is symmetric with respect to (-,-)12(q) (Lemma [2.9), we compute

(—]P’Au, T‘_2aV)L2 Q) = (—Au, PT_QQV)LQ(Q)
= /(—Au) S(r%v) dx + / (—Au) - [P, 72 v dz
Q Q

=1 4 1Y

)

With the divergence theorem I {1) becomes

Iil) _ _/ (r72°v) - Oquds + / (Vr—2%v) : Vudz.
oY Q

By the product rule for vector fields (see Appendix |Al
V(r—2*v):Vu=r"2Vv: Vu - 2ar 2*"v.du, (6.4)
and using the boundary conditions in (1.5)) and (6.1c)), we obtain

I%l) = —/ r2%,gds + / r—2%,u, ds + / r72Vv : Vudzs — 2a/ r2e-ly . gude.
! Y Q Q
Again using the divergence theorem, the second integral Iél) becomes

V= — [ ogu-[P,r2vds+ / (VIP, 7" %*lv) : Vudz
o’ Q

610 / Ontr ([P, r72Yv), ds —i—/ (V[P,r2*]v) : Vuda.
oY Q
By combining the expressions for I 1(1) and Iél), we rewrite (6.3)) in the form
/ 2%, ds + / r2Vv : Vudz — 2a/ r20ly . gudr — / (Onur) ([P, 7~ 2%v), ds
oY Q Q oY

+/ (VIP,r2*]v) : Vudz = / r2oPf vd:c+/ r2%,.g ds.
Q Q oY
(6.5)
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Remark 6.1. For coercivity take u = v in (6.5, then we have control on |u,|% and [[Vul|2. The
fourth term on the left-hand side of is difficult to deal with, since there is no control of
derivatives on the boundary. A natural approach would be to apply the Navier-slip condition .
However, this changes the scaling, which we want to avoid.

For obtaining a coercivity estimate, we apply the fundamental theorem of calculus to
6 roo
—2a —2a dr
/ (Onur)([P,r V), ds = / / 0o ((Opur)([B,772]v),) — dop.
o o Jo r

This requires control on the second-order derivative Bf,ur in €, but there is only control on the

first derivatives by |[Vul|2. Control on all second-order derivatives is obtained by introducing two
additional bilinear forms as detailed in Sections [6.2] and [6.3] below.
We define the bilinear form

Bi(u,v) :/ 2%, ds + / r72°Vv: Vudzr — 2a/ r720~ly . gude
oY Q

’ 5 (6.6)
— /91"_2@0((8@%«)([1[”,7“_2a]v)r) dz + /Q (V[P, 1“_20‘]v) : Vudzx =: ZlTj(l)
j=
6.2. Bilinear form Bs;. We test with
P20y = =0, v, v e O (20 {0)), (6.7)
to obtain
( — PAu, r_QO‘VQ)LQ(Q) = (Pf, T_QaVQ)LZ(Q). (6.8)
We rewrite

(—]PAU, T_2av2)L2(Q) = (—Au, P’I"_ZQVQ)LQ(Q)
= / (—Au) - (r72%vy) dx + / (—Au) - [P, 772 vy da
Q 0
=: I}Q) + I2(2).
With the divergence theorem and (6.4)), I {2) becomes

If) = —/ (7’720‘V2) - Opuds —i—/ r 29Vv, : Vudz — 204/ r=20"lyy . gude
oY Q Q

= —/ T_QO‘(TOTUT)((TOT — 20+ 1)0pu,) ds —I—/ r=2%(Vropv) 1 (Vroyu) dz
o Q

- 2a/ r2%(Vrd,v) : Vudz + Qa/ r=207Y((rd,)?*v) - (Opu) dz,
Q Q

where in the last step we have used the commutation relations (A.6)) and applied integration by
parts. Using the Navier-slip boundary condition (6.1c)) and again (A.6]) gives

1{2) = — / r_zo‘(rarvr)((rar — 20 + l)g) ds +/ r_Qa(rarvr)((r&, —2a 4+ 1)u,~) ds
o oY

+ / r2(Tr0,v) - (Vrdyu) dz — 20 / r2(Vrd,v) : Vude
Q Q
+20 / r=2071((19,)%v) - (9,u) da
Q

Again by the divergence theorem and fundamental theorem of calculus, the second integral becomes
152) = /(—Au) [P, 772 vy da -
Q

= — / r_28<p((agour)([[?,T—QCV]VQ)T) dx—|—/ (V[P,T_QQ]VQ) . Vu de
@ Q

(Ontr) ([P, 772 va), ds + / (VIP,7?*]vs) : Vudz

oY Q

:/ P20, ((Dpur) ([B, 72 (r,)?v),) da — / (V=2 (r;)?v) : Vuda.
Q Q
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By combining the expressions for I fz) and IéQ) and by excluding the term involving g, we obtain the
bilinear form

Bs(u,v) = / r 2 (ropv,) ((rdy — 20+ 1)u,) ds —|—/ r2(Vropv) : (Vroyu) do
oY Q

- 204/ r2%(Vro.v) : Vudz + 2a/ r2271((r9,)%v) - (Ou) dx
Q Q
6.9
—|—/ T_Qﬁw((8¢ur)([P,T_Qa](rar)Qv)r) dx —/ (V[P, 2 (rd,)? v) : Vudz (6.9)
Q Q

Hence, can be rewritten in the form
Bs(u,v) = (Pf, r_ZO‘vQ)Lz(Q) —|—/ 2% (rd,v,) ((r@r — 2+ l)g) ds.
o

From Bz(u,u) we get control on ||[Vrd,ul|, i.e., the second-order derivatives in r and the mixed
derivatives. By using the divergence-free condition we also gain control on (‘)?au(p. However, control

on Qaur is still missing and, even worse, By gives an extra 83,%« term. The third bilinear form will
give control on the last so far uncontrolled terms.

6.3. Bilinear form Bs. For the third bilinear form we test (6.1a)) with
P2y = 22 Ay, v e O () {0}). (6.10)
We calculate

(—IP’Au,r*QO‘V;g)LQ(Q) = (—Au,'r’f2 + (=[P, Alu, P2

*v3) L2() v3) L2()

/ r20t2Au . Avdr + / T_2a+2[Pa AJu- Avdz.
Q Q

The third bilinear form is

2
Bs(u,v) = /Q 22 Au - Av dz + /QTQO‘H[IP’, Alu-Avdx =: Z Tj(3). (6.11)
j=1

6.4. The variational problem. Combining the computations of the preceding three sections, we
define for an appropriate constant cg > 0 the bilinear form

B(u,v) := Bi(u,v) + |a|6>By(u,v) + c3]a|0>Bs(u, v), (6.12)

which thus arises from testing the equation —PAu = Pf in (-, -) 12(Q) with the test function 7~ 2%vi ey
as defined in (6.2). Define the pairing

(g, V) = / r 2% gu, ds + ]a!&g/ 2 ((r0, — 2a +1)g) (royv,) ds.
oY oY

Then the variational problem associated to (6.1]) is

B(ua V) = (Pfa T_2avtest)L2(Q) + <ga UT’>O¢7 v E COO (Q \ {0} (6]‘3)
where B is defined in , and By, By and B3 are defined in . and (6.11} , respectively.
We conclude this sectlon by noticing that any solution u € % o0 of the system l ) satisfies the

variational formulation (6.13)).

Lemma 6.2. Let 0 € (0,7), ¢ € (0,1 — %) and o € I. \ Z. Suppose that £ € HO and g € Z0. If
ue€ %379 satisfies (6.1)) almost everywhere in Q, then u satisfies the variational formulation (6.13)).

Proof. This is a consequence of the fact that any almost everywhere solution u of (6.1]) satisfies
(=PAu, r*2avtest)Lz(Q) = (Pf, T*QO‘Vtest)Lz(Q), which equals (6.13) after integration by parts. O
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7. COERCIVITY AND BOUNDEDNESS OF THE BILINEAR FORM

This section is devoted to the proof of the coercivity and boundedness estimate as stated in
Propositions [£.1] and [£.2] from Section [ Step 2.
Throughout this section we fix € € (0,1) and assume that

0c(0,(1-¢)r)and € l.\Z, where I.=[-(1-¢)F+1,(1-¢)F—1]. (7.1)

Moreover, let u € Cg% (€2 \ {0}) be as defined in and we will use the expressions in polar
coordinates as given in Appendix [A:2] In Sections [7.1] [7.2] and [7.3] we focus on the coercivity
estimates of the bilinear forms B;, By and Bj separately. Finally, in Section we combine all
estimates to prove Propositions [4.1] and

7.1. Estimates for B;. Consider the first bilinear form as derived in Section After
integration by parts, it reads

Bu(w, 1) = |ur[2 + [Vl — 202 / =202y 2 4y / 20, [(B,ur) ([P, r>|u),] de
Q Q

5
—i—/ (V[P, r*2a]u) :Vudr =: ZT]@
Q =

Proposition 7.1. There exist C1,Cy € (0,00) such that for all o and 0 subject to ([7.1) and all
c3 > 0, we have

(7.2)

Bu(u,) > fur 2+ (1 = 1ol — 2200y w2 = S o2 12 or aitw e ez @) fop.

This incomplete coercivity estimate for By is a consequence of Lemmata below in which
we estimate the term Tél)—Tél) from ([7.2]).

Lemma 7.2 (Estimate of T3(1)). There exists a C1 € (0,00) such that for all o and 0 subject to

(7.1), we have
< C1lalf||Vul|2 Jor allu e CZ5,(Q2\ {0}).

2042/ 2072 u)? da
Q
Proof. By the Cauchy-Schwarz inequality, Young’s inequality and Lemma we obtain

2a2/ r=22|u? dx
Q

Lemma 7.3 (Estimate of T4(1)). There exist Ca,C3 € (0,00) such that for all o and 6 subject to
(7.1) and all c3 > 0, we have

/ 720, [(Opur) ([P, T*QO‘]u)T] dx
o0

< Cya20?|Vul2 < Cyalf]|Vull2. O

c3|al@ o >~ (O
< LHT O2u,|)? + (22 1 Cslal0) Va2 for allu e CZ(Q\ {0}).
Proof. Note that
T = / r2(02u) ([P, 77**u), dz + / 72 (dpur) Oy ([P, 7~ 2*), da. (7.3)
Q Q

For the first integral in ([7.3]), applying the Cauchy-Schwarz inequality, Young’s inequality, and
Corollary we obtain

/S)rQ(aiur)([P,rza]u)r dz

03](1\93/ —20(,,—192 / 2a(,.—1 —2a 2
< Sl Ddr 4+ — P, .
< Qr (r qu) dz PRPTE r(r= ([P, r~**u),)” dzx
3 Csla|6
63’04 H H2 2|a| [Vull2.

r%OT
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Similarly, for the second integral in (|7.3])

/ r2 (Opur) 0 ([P, 7"_2a]u)r dz
Q

< lolf / P2 (119, u,)2 da:+2ki\9/ 2 (r= 1 (0,[P, *2“] u),)? do

=5 ),
< —2a[(,.—1 _ —1,,2 7" / 2a —1 —2a 2
<lolo [ 127 @ =)+ 2] g+ o P,r~2 ), )? da

< Cslal0||Vull3,
where we have used Lemma [2.2) and Corollary 5.5 in the last step. O

Lemma 7.4 (Estimate of T5( )). There exists a Cy € (0,00) such that for all a and 6 subject to

, we have

/Q (V[P,r2%u) : Vudz

Proof. By the Cauchy-Schwarz inequality and Corollary we have
1

/Q(V[]P’, r?*u) : Vudz| < /Qrm V[P, r*2o‘]u‘2 dz|’

7.2. Estimates for B;. Consider the second bilinear form as derived in Section

By(u,u) = / 2 (rdy) (10, — 20+ 1)uy) ds + |Vro,ul2
oY

< C4\0¢\9\|VuHi forallueC (Q \ {0}).

IVulla < lalfl|Val. O

—2a [ r72(Vrdyu) : Vadz + 2a [ 77227 Y((rd,) ) - (0yu) dz
20 [ 72(Tr0w) s Vade + 20 [ 271 (10, P0) - () d )
—/rz&p[(@,ur)([ﬁ”, 2% (rd,)%u),] dx—/ (VIP,r2*|(r0,)*u) : Vudz (74)
Q Q

; (2)
2
J=1
We have the following partial coercivity estimate for Bs.

Proposition 7.5. There exist D1, Do, D3 € (0,00) such that for all o« and 0 subject to (7.1]) and all
c3 > 0, we have

2
Bsy(u,u) > [rou|2 — 2(a — %)%T@ + (1= Dilafg — 2220 | vro,u)2

D3|0é|

|Vl — HT 2 u TH for allu € C(Q\ {0}).

This proposition is a consequence of Lemmata below, in which we estimate the terms T 1(2)
and T\2-1? from (74).
Lemma 7.6 (Reformulation of T1(2)). For a and 0 subject to (7.1) we have
T = [ropu, 2 — 200 = 22w, 2 for allu e C5,(Q\ {0}).

Proof. This is immediate with integration by parts

1-2
(1-2a) / 2 (rOpuy Juy ds = a / r20M19, (u?) ds = —2(a — %)2/ r2y2ds. O
o 2 Jow GloY

Lemma 7.7 (Estimate of T§2) +T4(2)). There exist D1, Dy € (0,00) such that for all o and 0 subject
to (7.1)), we have

D _
T3 | + | 747 | < Dafald|Vropul? + ﬁ“‘uwni for all u € C,(Q\ {0}).

Proof. The estimate is a direct consequence of the Cauchy-Schwarz inequality and Young’s inequality.
O



WELL-POSEDNESS OF STOKES EQUATIONS ON WEDGE WITH NAVIER SLIP 27

(2)

To estimate T~ we follow the same strategy as in Lemma

Lemma 7.8 (Estimate of TEEQ)). There exist D3, Dy, D5 € (0,00) such that for all o and 0 subject
to (7.1) and all c3 > 0, we have

' / 120, (B, ([P, r~22](rd,)?),) da

D o > ()
w2+ 2alel 4|0" IVl + alo (222 4 D) [V Graw)2 for allu e C5(@\ {0}).

C:
3Hr @Ur

Proof. Recall that

T5(2) = /QrZ(QZuT)([IP’,TM](r(‘)T)Zu)T da;tp%—/ﬂr2(8¢,u,«)8¢([P,r20‘](T8T)2u),~ dz. (7.5)

For the first integral in (7.5, applying the Cauchy-Schwarz inequality, Young’s inequality, and
Lemma [5.4] gives

[ 2@ o0,y de) < 2 [ 06 o o
Q Q
+ 2 7“20‘(7“*1([]?,7"*2“](7“(9T)2u)r)2 dz
C3 JO
Dsa%0?
< 22022 + = lla, (ro,w)2.

Similarly, for the second integral in ((7.5)

/ T*Q(awur)ﬁw([]?, T*QO‘](T&)Qu)T dz

o [ v o o [ a0, 0P, P o
20 2al Jo,
0
<l / P[0 @y )P+ 0] do g [ PG00, ), )
Q
Di4la
< 2oy gu)2 + Dfalglon (ronw) 2,
where we have used Lemmata [2.2) and [5.4] in the last step. O

Lemma 7.9 (Estimate of TéZ)). There exists a Dg € (0,00) such that for all o and 6 subject to

(7.1), we have

/Q (V[P,r2%)(rd,)%u) : Vuda o]

< Dolol0|V(ro,w)s + IVuls,  for allue CZ (R {0}).

Proof. The Cauchy-Schwarz inequality, Young’s inequality and Lemma [5.4] give

/ (VIP,72%(r0,)*u) : Vudz| < MHVuHi + v /rQO‘ }V[P,T_QQ](TGT)Qu‘Q dz
Q Q

- |

o
< Oyl + Delalolon (o, w2 -

7.3. Estimates for Bs. Consider the third bilinear form (6.11]) as derived in Section

2

% 3

Bs(u,u) = HrAuHi—i—/Qr 2202 Alu- Audz =: E TJ( )
i=1

We obtain the following final estimate required for proving coercivity in the next section.

Proposition 7.10. There exist Ey, Ey € (0,00) such that for all a and 0 subject to (7.1]), we have

Bi(u,u) > L|jrAu|? - HVuH2 Eo|Vromu|2  for allu € O (2 {0}).

sl 05wl -
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Proof. From Lemmata [2.2] and [5.2] we deduce that
I[P, A2 < 42020, + 22| Vu2 + 2B Vroul?.

Therefore, we have

/ﬂrzaﬁ[]p’ AJu-Audz| < %HrAuHi + %H[R Alul?_,

< LrAu|? + &1L aQUTH + L1Vl + B»| Vo2, O

7.4. Coercivity and boundedness of the bilinear form B. We are now in the position to prove
the coercivity and boundedness estimate in Propositions [4.1] and [£.2] by combining Propositions [7.1}
[Z.5] and [Z.101

Proof of Proposition [{.1. Recall that we need to prove the coercivity estimate
B(u,u) = By(w,w) + [0]6*Ba(u, u) + cslalf®By(u,w) > Clulfs  for all u € O {0}),

where %279 is as defined in (3.4]) and ¢3 > 0 is a constant independent of o and 6. The strategy is
to absorb the terms with 02 o Ur into B3 using the estimate

2 @& |r(Au), — 0, (rdruy) + 2(Opuy + ur) —urHi
< HTAuHi +[[Vropull? + Cs|[Vull3,

where in the last step we have used Lemma and the constant C3 is independent of o and 6.
Combining the estimate from (7.6 with those from Propositions and gives

Bl(u7 u) + |a|0332(u7 u) + C3|a|03B3(u7u)

o -

> Koluy |3 + [o]0°[r0pu, | + K1 Vul|Z, + |al6® K2 Vroullf + éC3|a|93||7"AuH§,
where
Ko=1-2[a|*(a - 3$)?,
Ky =1-C|alf — @\a\ﬁ — D3|ab|? — c3|ad|Ey — c3C3]al63,
Kz =1-Dilalg — 222%° _¢y(p, 4 1),

For coercivity we need Ky, K1, K3 > 0. To thls end, choose c3 > 0 small enough so that the condition
c3(E2 4+ 1) < 1 is satisfied.

If we choose |af| < ¢ with c sufficiently small, we obtain Ky, K1, Ko > % The result follows upon
noting that for & € R\ Z we have the equivalence

i~ furl? + 60y 2+ [Vl + 0% Vrd,ul2 + 6% r A2, 0

Proof of Proposition[{.9. We prove the boundedness of the bilinear form B, i.e.,
|B(w,v)| < Cllullyz [[V]xz,  forallu,ve Cé’f?f(ﬁ\ {0})-

First consider the terms in the bilinear form B; as defined in . It is immediate that T(l) T, (1)
and T3( Jcan be bounded by applylng the Cauchy—Schwarz 1nequahty and in addition by Hardy’s

inequality for T( ). From , Lemma Corollary H and Lemma it follows

(7] < 1305wl 15 (.2 H_Q+H;0sourHaH;5so [P v)e|_,

< cuuuxgﬁuvuxi,g
For the last term T1", using the Cauchy-Schwarz inequality and Coroll ives
5 ¢ the Cauchy-Schwarz inequality and Corollary [5.5( gives

1
) < ( /Q”"‘W[ R ON| /Q’"‘Q‘WWIQW < Cllullaz , IVllez

We continue with boundedness of the terms in the bilinear form By as defined in . Again,
boundedness of T, 1(2), T2(2), T 352) and T, 4(2) follow immediately from the Cauchy-Schwarz inequality.
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The terms TESQ) and T6(2) can be bounded in a similar way as T4(1) and Tél), respectively. Finally, the
bound of Bs is a consequence of the Cauchy-Schwarz inequality and Lemma [5.1 U

8. EQUIVALENCE OF STRONG AND VARIATIONAL SOLUTIONS

In this section, we prove Proposition from Section {4, Step 3. We start with some technical
lemmata. Recall that *H¥ is the closure of C2°(Q\ {0}) with respect to [-]x.« as defined in Section
1w

Lemma 8.1. Let € € (0,1). There is a constant ¢ > 0 such that for any 8 € (0,(1 — e)m) and
a € I\ Z satisfying |af] < ¢, for c3 > 0 the constant in and for any w € C%(Q\ {0}), there
exists a sequence (Vi)g>1 such that

(i) vi € {v € CZ(Q\ {0}) : v.=0 on 09} for all k > 1,

(ii) P [r=2% (vi, + |03 vi 2 + cs|a|@Pvig)] — w in OH)_, as k — oo,

where Vi 9 = —(r0,)?vi and vy 3 = —r2Avy (cf. (6.7) and (6.10)).

Lemma [3.1]is a consequence of the following two steps. Firstly, in Lemma we prove that for
any w € C25 (2 {0}) there exists a solution v to the test function problem
r72 (v — |0 (rd,)*v — es3lal*r?Av) + Vp =w in ,
divv =0 in Q, (8.1)
v=0 on 0.
Note that this problem has a scaling invariant boundary condition. Secondly, this solution v can

be approximated by a sequence (vi)i>1 in CS% (€2 \ {0}) such that vi = 0 on 9’ and that the
convergence in Lemma [8.1] holds.

Lemma 8.2. Let ¢ € (0,1). There is a constant ¢ > 0 such that for any 0 € (0,(1 — e)w) and
a € I, \ Z satisfying |af| < ¢, for cs > 0 the constant in (4.1)), there exists a unique solution
(v,p) € *H2_| x "M}, to 81). Furthermore

[Vl2,a—1 + [Pl1,1-a < Cap ([W]o1—a + [OpW]o,1-a) -

Proof. For notational convenience we write v, := 9,(}, ) and U, = Uy(A, ) or we omit the ¢-
dependence from the notation. For I C R\ {—1} an open interval, let
S:={(\¢) €Cx(0,0):Re) € I}. (8.2)

Problem (B.1)) reads in Mellin variables (see (A.4]))

—c3]a 0P (N + 02)0, — 20,0, — Br) — |a]0° N0 + 0y + (A — 20+ 1)p =B (A — 20) in S, (8.3a)
—c3]a|0° (A + 02)0, + 20,0, — D) — |@|0° XDy + Ty + 0P = Wp(A — 20) in S, (8.3b)
A+ 1)V, 4+ 0,0, =0 inS, (8.3c)
U =0, =0 on {0,6}.

(8.3d)

Then using in (A+1)[0,(8.3a) — (A — 2a + 1)({8.3b)] gives for v, the equation
alﬁé% + agag,?)(p + agly = (A + 1)[0,0,(A — 2a) — (A — 2a 4+ 1)@y (A — 2a)] in S, (8.4a)
Uy = 0,0, = 0 on 9§, (8.4b)

where

a1 = c3lal@?,  az:=c3lal@®(A+ 1)+ (A= 1)(A—2a+1)) +|a|0?X* =1 and
az = (A —2a+ 1)(A + 1) (c3]al@>(A* — 1) + |a0°\* — 1).
To solve , set A = a +is, with s € R. Then we obtain
Rea; = c3lalf® > 0,
Re ag = (4o — 25?)c3|al0® + (o — s%)|a|0® — 1,

Reaz = (s* — o + 2a% — 45%|a|)cs|a|0® + (s — ot — 52 + o — 45°%|a))|a|0® + s* + (a® — 1).
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Thus, for any fixed ¢3 and § > 0, there exists ¢(c3, d) > 0 sufficiently small such that for any |af] < ¢,
we have

Reas < —c3lal@®s> — (1 —6) and Reaz >

3
C?’|‘;‘|954— (1+6).

Let ¢ € C2°((0,6);C). Multiply (8.4a) by 1, integrate over (0,6) and after integration by parts we
obtain the variational formulation

0 0 0
a / 20,020 dp — ay / 0,00, dp + ag / Dyt dep
0 0 0
0
. / A+ 1)@ (A — 20)9,8 + (A + 1)(A — 20+ D, (r — 20)7 de.
0
The left-hand side of the above equation is a bounded, coercive bilinear map on the closure of
C>((0,0);C) in H?(0,6). The coercivity follows from
6 0 6
Re a; / \83,17”2 de — Re az / 0,0,|* dp + Re a3 / 5, dep
0 0

0 3
6
ZC3yaya3/ 1025,2 dp + (cslal6®s? + (1 /ya ol dp+ (LA (14) /\%\2@0
0

2
0 03
> cilold” | |@35¢|2d¢+C3|a|0382/0 |a¢a¢|2d¢+cf”02“s4/o 5,2 do,

where the last inequality holds by Poincaré’s inequality from Lemma for 6 < (1 — ) and
a sufficiently small §. Application of the Lax-Milgram theorem implies the existence of a unique
solution. Moreover,

0 0 0 0
/ 020, do [ PO g+ [ dp < Ca [ 181200 dy.

Using (8 and the fact that ‘ ‘ + ’ ’ < Cq,9, we also deduce that

1920,112 ~ ~
TR0 < O o (IR — 20) [3agn) + 10,8 (A — 20) [2a0)). (8.5)

Moreover, by interpolation, it follows

1030112 5 1039017 5 ~
RO < C o (L + 11025113
[Al ’ BY pPllL2(0,0)

< Cao(IW0A = 20)]20.0) + 19,5 — 20)[22 0 0))- (8.6)
We recover v, from (8.3¢) and from (8.5 and we deduce the desired estimates. The pressure
p is defined via (8.3a)), and the proof of the estimate is straight-forward. O

Proof Lemma[81 Let w € C%(Q\ {0}), then Lemma ensures the existence of a solution
v e ?H2 | to such that divv = 0 in Q and v = 0 on 9. Proposition ensures that
there exists a sequence (vi)x>1 such that vy € C2%(2\ {0}) with v = 0 on 9Q' for all k£ > 1 and
vy — vin 27—[2 _; as k — oo. By definition of 27—[ 1 (Section , this convergence implies that
for 0 < j+¢<2,4,¢>0 we have (10, )Jaﬁ Vi € O"HHQ Since vo and vz are linear combinations of
r0, and 0, derivatives of v, and v,, we deduce that

2a (v + |Oé|03V2 + 03|a|03V3) in 0’H1 o

P2 (vk + ]a\93vk72 + 63|oz]93vk,3) —
as k — oo. Continuity of the projection P in OHg_a by Lemma implies that

P [7"_20‘ (Vk + ]alﬁgvhg + 03]04]6?3vk73)] — P [r_2°‘ (v + \a\@‘ng + 03\(1\93V3)] =w,
in “H9__ as k — oo. O

We can now finish the proof of Proposition
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Proof of Proposition[4.3 It is enough to show that u is a strong solution to the projected Stokes
equations (6.1]) if and only if u is a solution to the variational problem ([6.13)). In fact, if u satisfies
(6.1)), then the pressure p is the unique solution in %! of

Vp=Au+f—-P(Au+f),

which is exactly (4.2]).
In Lemma we have already proved that an almost everywhere solution u to (6.1]) satisfies the

variational problem
B(u,v) = (Pf,r_2thest)L2(Q) + (9, vr)a for any v € Cg?,(ﬁ\ {0}), (8.7)

where Vst is defined in (6.2)).
It remains to verify that a solution u to is also an almost everywhere solution to the Stokes
problem ((6.1)) with Navier slip. Let w € CZo(2\ {0}). Then there exists a sequence (vi)r>1 that

(e

satisfies the assumptions of Lemma From we deduce that
0= /Q(—IP)AU —Pf) P [r 2 (vi + |0|0Pvio + cs|al0Pvys)] dz — /Q(—IP’Au — Pf) - wdz.
This implies that for all w € C2%(Q\ {0})
/Q(—IP’AU —Pf)-w dz =0.

By the fundamental lemma of calculus of variations we obtain —PAu = Pf almost everywhere in 2.
We next verify that the Navier-slip condition holds. For any v € C22(Q\ {0}), u satisfies the
equation

5 6 2
T+ T + 3T +1a6* S TP + esla)® Y T
j=2 j=2 j=1
= (F,r72%(v + |a|f®vy + 63’06’93V3))L2(Q) + (g, Ur)a-
Recall from the derivation of the bilinear forms in Section [6] that we only applied the Navier-slip
boundary condition to get T 1(1) and T: 1(2). Using the smoothness of the test function v, we undo the
integration by parts for By, By and Bs as in Section but in the opposite direction. This gives

(8.8)

5 6 4
ST 410l ST 4 e3al6® YT = (— PAW, 2 (v + |a]6Pva + cslalfPvs))

Jj=2 Jj=2 J=1

()

— ]0463/ r2%((ro,)%v, ) (Oqu,) ds
oY

2
—|—/ 7 %0, Opu, ds.
oY

Substituting this into (8.8) and using that —PAu = Pf is satisfied almost everywhere in 2 gives
/ P2 (0, (wy + Oty — ) — [l ((r0,)200) (tr + Bty — g)) ds = 0.
o/

We obtain that u, + Ohu, = g on 9§ almost everywhere if enough test functions are generated. To
this end, it suffices to show that for w € C$°((0,00)) there exist a v, € C*°((0,00)) with v,(0) = 0
and decay to zero at infinity, which is a solution to

r=2(1 — |al63(ro,)?) v, = w.
In Mellin variables this equation has the solution

1

o) =1z a|6372

WA — 2a).

For |af| small enough, we have

1
<
1 — |a]03(ReX)? — ¢
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so that the inverse Mellin transform can be used to obtain the desired solution v,. Hence, with the
fundamental lemma of calculus of variations we conclude that u, + Opu, = g almost everywhere on
o, O

9. THE STOKES EQUATIONS WITH SLIP BOUNDARY CONDITION AND PRESCRIBED TANGENT
VELOCITY

In this section, we study the Stokes equations in a wedge with with slip boundary condition and
prescribed tangent velocity, i.e.,

—r2[((ro,)? + ai)u,, —20,up —up| +Orp=fr, forr>0,¢€(0,0), (9.1a)
—r2[((r0,)? + 8%)1@ + 20,1y —uy] + 1 0p =f, forr>0,0¢€(0,0), (9.1b)
(ror + 1)u, + 0pu, =0 for r > 0,9 € (0,0), (9.1c)

u, =0  forr>0,¢ € {0,0}, (9.1d)

Opur =g  forr>0,¢ € {0,0}, (9.1e)

where f., f, and g are given data. The boundary conditions in are scaling invariant and
existence of solution for the system falls in the classical theory of Kozlov, Maz’ya and Rossmann,
see the monograph [41]. In this section, we investigate how the norms of the solution depend
quantitatively on the opening angle 6 and the weight exponent «.

Studying system is required to gain higher regularity for the regular problem as was dis-
cussed in Section As mentioned before, to our knowledge a closed solution representation in
Mellin variables for the original system with Navier slip is not available and cannot be expected.
Therefore, we study the system above and consider as data g = +(g — ru,), where u, is the strong
solution determined in Theorem [3.2]

Again, for notational convenience we write h o= lAz()\, ¢) or we omit the p-dependence from the
notation. In Section [9.1] we derive a representation formula for solutions to the above system in
Mellin variables and in Sections [9.2] and we study the regularity of these solution and complete
the proof of Proposition in Section

9.1. A representation formula. We rewrite the above system in Mellin variables, that is

(N2 +02)a:(\) — 20,00,(\) — Gr(A) — (A= 1)pA—1) = — fr(A—2) i S, (9.2a)
(A2 + 02)0p(N) + 20,01, (N) — Gp(A) — Opp(A — 1) = — fo(A—=2) in S, (9.2b)
A+ )8 (A) + 0,1,(N) =0 in S, (9.2¢)

Up(A) =0 on 98§, (9.2d)

d,tr(A) =8(\) on {0, 6}, (9.2¢)

where S is defined in (8.2). Then using (9.2c) in —(A+1)[0,(9.2a) — (A —1)(9.2b)] gives the equation
for u, (A, )
Obhp + 2007 + 1)020, + (A2 = 1)%0p = (X = 1) fo(A—2) = A+ 1) fr(A—2) in S,

R o A (9.3)
Uy = O,y + (A +1)g =0 on 0S.

With a solution u,, it is straightforward to recover u, and p via (9.2c)) and (9.2al), respectively.
We determine a Green’s function that allows us to write the solution , of (9.3) in terms of the
source terms and boundary conditions.

Lemma 9.1. There exists a Green’s function G(\, p,¢") : C x (0,0)? — R, symmetric in ¢ and ¢,
such that
3G +2(N + 1)I2G + (V= 1)°G =4, in S,
G=0 and 826’20 for ¢ € {0,0}.
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Specifically,

sin((A—1)(6—¢)) sin((A—1)¢’ sin((A+1)(0—)) sin((A+1)¢’
((4(A—)(1)A§21)((A£(1)9) 2 - ((4(A+)(1)A£L)((AJ(F(1)9) 2 forgl <o,

G\ @, ¢') =
sin((A—=1)(0—¢")) sin((A—1 sin((A+1)(0—¢")) sin((A+1
((4@_)(1»53()@—(1()9) ) _ ((4(»2(1»33()(»51()9) 2 for ' > o,

Proof. The uniqueness follows from standard ODE theory. Thus the formula can be verified a
posteriori. O

The Green’s function satisfies the following property.

Lemma 9.2. Let G be the Green’s function from Lemma[9.1 For any fizxed ¢,¢ € [0,6], the
functions
G\, ¢), 0yG\p, ) and  0,0,G(\ ¢, ¢")
are holomorphic in
Y={A=p+is: (|| +1)08 <7, s eR}
Proof. For ¢’ < ¢, the function G from Lemma is a sum and product of holomorphic functions
as long as A € ¥\ {—1,0,1}.
Recall that 2|z| < [sin(z)| < |z| for [z| < 7/2. For |A + 1| < 1 we deduce that
sin(A+ 1)(0 = ¢) sin(A+ V)| _ LA+ 1P = olle'] _ 10 = ll¢]
4N+ D) Asin((A +1)0) - A+ 1260 - 0 ’
and therefore G is holomorphic at A = —1. For A = 1 one can argue analogously. For A = 0 note
that G(\, ¢, ¢') = A"1G(\, ¢, ¢') where
GOr o o) = sin((A —1)(6 — ¢)) sin((A —1)¢")  sin((A+1)(6 — ¢)) sin((A + 1))
o 4(N —1)sin((A —1)0) 4N+ 1)sin((A+ 1)0) '
Then G is holomorphic at A = 0 and é()\, 0, ¢ )|a=0 = 0. This implies that G is holomorphic

in a neighbourhood of A = 0. To show that J,G and 0,0,G are holomorphic on ¥ we argue
similarly. O

Using the Green’s function from Lemma we obtain an expression for the solution of (9.3).
Corollary 9.3. The unique classical solution to (9.3)) is

9 ~ -~
Up(N, ) = /0 A+ 1)y G(N, 0, @) fr(A=2,¢") + (N = 1DG(A, 0,9 ) fo(A = 2,¢) d¢’
+ A+ 1)aN, 0)0,G (A, ¢, 0) — (A +1)g(A,0)0,,G(N, ¢, 0),

where

sin((A + 1)) sin((A — 1))

~ Arsin((A+ 1)F)  4rsin((A — 1)0)

890'G<)‘7 2 6)

and
—sin((A+1)(0 —¢)) | sin((A—1)(6 —¢))

AN sin((A +1)0) A sin((A—1)0)

From the above representation of 4, and the divergence-free condition (9.2c)), we also obtain a
representation for .

[
Uy (A, ) = /0 905 G, 0, &) [r(A=2,¢0") + (A =1)0,G(X, 0, ") fio(A = 2,¢") Ay’
+ /g\(>‘7 0)84,08<P'G(>‘7 Qov 0) - a()‘v O)aﬂﬁalplG()‘a ()07 0)

In the subsequent two sections we derive estimates on the solution to (9.2) and (9.3)). For this we
decompose u = u® + u®, where u’ only has nonzero boundary data g (and f = 0) and u® only has
a nonzero source term f (and g = 0). Estimates for u’ and u® are derived in Section and

respectively.
We show uniform estimates for Re) in the interval

L=[-(1-95+1,(1-9F-1], e€(0,1-%)and 0 e (0,7),

aiP/G(Aa ®, O) -

(9.4)
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which avoids the singularities of the Green’s function at 5 — 1 and —4 + 1.

9.2. Regularity of (9.2) and (9.3) with f = 0. First, we use the Green’s function representation

formula to study the regularity of solutions of system (9.3)) in the case the source term is zero, i.e.,
Oty +2(N* + 1)0%0, + (A — 1)%1, =0 in S, 05)
i, =02, + (A+1)g=0 ondS. '

M+2HM+2 M+IBM+1
(6% [e%

In particular, we derive estimates of the -norm of u with respect of the /1 -norm

of g. Recall that the M HBOJ\L{:El—norm is defined as the infimum of all the H?-lé\ﬁil extension of g.

So let us denote by gext sSuch a possible extension.

Lemma 9.4. Let 0 € (0,7), e € (0,1— %), Rel = a € I.\Z and ¢ € N. The solution t, of problem
(9.5) satisfies the estimate

~ 1 1 — —
Hafouﬂﬁ()‘v SO)HL2(O,9) < CE Hlln{l |Oé|}é |A|2_g(HAgextHL2(0,9) + HawgextHL2(0,9))7 Rel € IE' (96)
Moreover, U, = —?{”ff satisfies the estimate

~ 1 1
1057 (X, @)l 12(0,0) < C

Emin{l |Oé|}£ ’A|2_[(HA9/9;EHL2(O,9) + H&Pg/e\XtHLz(O,Q))a ReA € I.. (97)

. NN A0
From the divergence-free condition u, = /\“‘ff

we can deduce bounds on #, from the one of .

Corollary 9.5. Let6 € (0,7), € € (0, 1—%), ReA = a € R\Z and M € N be such that M+a+1 € I..
Let u® the solution of system (19.2) with £ = 0. Then, we have the estimate

CE,M [ ] N
min{1, o + M + 1|}M+2 8045 041

Proof. Let gext € M ‘H’Hé\[/[ 1 such that Gext |0y = 9. Using Lemma we have

[[ub]] M+2,« <

0 o~
[WBrpa= 3 /0 /R /2052 dTm) dp

Jl=M+2 eA=M+a+1

N / > OS2 6y dTmA
ReA=M+a+1 ., (T30

02
< - <
B /Re,\:M+a+1 j+Z§4+2 min{1, [a + M + 1|}2M+4
AP 4(HAgextH%Q(079) + Hasogext\\%%o,e)) dImA
02
<— M / Y (NG 22(00) + 1058011 220,9)) dTmA
mln{l, ‘04+ M + 1|}2M+4 ReA=M+1+a+1—1 ( extIL2(0.6) 7oe LQ(O’O))
C2

< 2 .
B min{l, |a + M + 1|}2M+4 [[gextﬂMH,aH

Taking the infimum over all the possible extensions gext gives the result. U
It remains to prove Lemma

Proof of Lemma . We start by proving the estimate for ﬁw' Then we explain how to adapt the
estimates to U, = —;—fl.

We divide the proof in two cases: £ even and ¢ odd. For £ even, we recall that in the same spirit of
(5.8), the fundamental theorem of calculus and the Cauchy-Schwarz inequality imply the following
trace estimate for ¥ € {0, 0}

o 1 _— _— _—
A[|Gext (X, 9)[* S WH)‘gext(A7 ')\’\%2(0,9) + [|0p Gext (A )| £2(0,0) I AGext (As )l £2(0,0) (9.8)



WELL-POSEDNESS OF STOKES EQUATIONS ON WEDGE WITH NAVIER SLIP 35

For notational convenience we omit in the sequel the A-dependence from the notation. By the
Green’s function representation (Corollary [9.3)) we have

0yip = (A + 1)8ext(0)950,G(0,0) — (A + 1)8ext(0)9,05 G (0, 0).
Using Holder’s inequality and that [\ + 1% < (|]A] + ﬁ)\)\], we deduce

1058013210, <2( (M + 157) 1050, Gl 0) )+ (M + 157) 1950, Glo.0) )

A
- (Wuman%m,e) + 10,805 £2(0.0) IAGexil 209 )-

Let A = a + it. Note that if [tf] > I, then < 2. It is then enough to show that for ¥ € {0, 6}

Cy

W

1
€ 2
(‘)\‘ -+ ’)\’)”8 /G()\, ',19)”112(0’9) S W’ £ even and |t9’ Z 5 (99)
C | A0 1
4 J4
< —. .
(|/\| + W)HG OpG(A, - ,19)HL2 0.0) min{l, a2 A2 leven and |tO] < 5 (9.10)
To prove . ) for £ = 0, we notice that by Lemma
_sin((A+ 1)) sin((A — 1))
g G, 0,0) = 13 sin((A+1)8)  4Asin((A — 1)6) 0.11)

_ sin(A(0 — p)) sin(0 + @) — sin(A(0 + ) sin( — p)

AN sin((A + 1)0) sin((A — 1)60)
We start by showing a lower bound of the denominator. For all € > 0 there are constants c., C. €
(0,00) such that for all z € C with [Rez| < (1 — §)m and |Imz| > 1 we have

cce?™2 < |sin(Re(2)) cosh(Imz)|? + | cos(Re(z)) sinh(Imz)|? = | sin(z)[? < CLe?™, (9.12)
and similarly, for |Rez| < (1 — §) m, it holds
c.e2™2 < | cos(Re(z)) cosh(Imz)|? + | sin(Re(z)) sinh(Imz)|? = | cos(z)[?> < C.e?Mm2l, (9.13)

For af = ReAd € I. and [tf| = [ImAf| > 3, this yields
|Asin((A + 1)8) sin((A — 1)0)| > c-|A|e2!1?,

and further
| sin(A (0 — ¢))|sin(0 + o) + |sin(A(8 + ¢))|sin(0 — ¢)

4| Asin((A + 1)8) sin((A — 1)6)]
eltl0=¢) sin(0 + @) + €l10+2) sin(9 — )

|\| 211

C

< ﬁ <6—|t|(0+<p) sin(f + @) + e~ 1t(O=¢) sin(f — 90))

|0, G(A, @,0)] <

<C¢

Using that also e 1t0£¢) < o= M(0£¢) galbE9) < Ce=IM0E9) hecause a € 1. C (—%, %), we have

C v ) o o)
H(?SO/G()\,‘,@)H;(O,@) < = (/ e 2MO+) gin% (9 + ) d<p+/ e 2MNO=) gin%(9 — ) dgo).

A2\ o 0
(9.14)
After integration by parts twice, we obtain
0 0
/0 e 2NOER) 6in2(9 + ) dy S/o e 2NOER) (9 + )2 do
e~ 2IAl(0%p) 0 e~ 21X (0%¢) 0 e 2A(0x0) 10 1
= (0 +p)? — (0 * —| < C— 1
= o EP) Jot [ TV ek e Jo s A

where we have used that [A\0|*e=2N? is bounded for [A|§ > 1 and k € {0,1,2}. Inequality (9.14)
together with (9.15)) implies

104G -0 < (9.16)

AP
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If we apply |sin?(0 + )| < 1 in (9.14), then

0
Hé? /G(A, -, 0) HL2 ’§|2 (/ —2|A[(0+) dg0+/ e 2IA(0—w) d‘P) < ‘f‘z (9.17)
0
Using and , we deduce that
(‘)‘H_ |/\|) Ha G )" 9) HL2(09 < Ce |)\‘4

This proves with £ = 0. We continue with the proof of . for all £ > 0 even. To estimate
higher derivatives, we notice that for £ even

050, G(X, ¢,0)
B L IANYE O\ \ sin(A(0 — ¢)) sin(f + ¢) — sin(A(0 + ¢) sin(f — ¢)
= (-2 (X + <2> N7t @ 1) Ixsin((A+ 1)8)sin((r — 1)0)

L _ ANYE cos(A(0 4 ¢)) cos(f — @) — cos(A(0 — p)) cos(f + )
(e (3) Nt 0) Dsin((h + D@ sin((A — 1)9) ‘

Using and the fact that 3 < [td] < |\], we have
050G\, 0, 0)] < CN! (e_|t|(6+‘p) sin(6 + @) + e 1H0=9) gin(g — @) (9.18)
+ C A2 (e*“‘(eﬂ”) cos(0 + @) + e 109 cog(f — gp))
Using and

0 0
1
/ e 2A0E2) cos?(9 £ ) dyp < / e M9 qp < 0,
0 0

3 (9.19)

we arrive at

(IA]+ ¢

[A]B

C

+ |A‘2£ 4 |>\|

) |0osGx.-0) W20 < (M +1X6%) (m% 2 ) < AP (9.20)

A

This finishes the proof of .
For the proof of (9.10) note that

colz| < |sin(z)| < Cel2|, when [Rez| < (1 - g) 7 and [Imz| < (9.21)

1
5
We use the above inequality to obtain the lower bound
IAsin((A + 1)) sin(A — 1)8)] > ZA(\2 —1)6?|
for any A such that ReX € I, and |fImA| < 1.
First, assume that [A — 1| < 1 or [\+1| < ;. Using that [tp| < [t0] < L, ReX € I, and (9.21), we
have

_ | sin((A+1)p) sin((A — 1))
0G0 9, 0)] = Axsin((A+1)8)  4xsin((A — 1)0)
_ sin((A + 1)) sin((A — 1)0) — sin((A — 1)) sin((A + 1)8)
A sin((A+1)0 )sm(()\ 1))
A+ 1||A —1|pf b 1
ERYESTReTETE CW e

where in the last step we have used that |/1\| > Cfor A—1] < L or [A+1] < . Since |A|+ ﬁ < 4|\,
we deduce

\3 o1 VL
(1N + %) * 102G - D)l 200 < € / np 40)" < e

Now assume that Re € I, [t0] < 2, |]A — 1| > 1 and [A+ 1| > 1. It follows that

1 1 1 1 1 1
and

— < (-, ——<(C— ~ .
A=1] = A" I +1 T A A—1] [A+1]
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Moreover, from Appendix [C| we have

sin((A+ 1))  sin((A—1)p)
AAsin((A+1)0)  4Asin((A — 1))

The previous two inequalities imply that

1 0 ! 0|z
B0, GO Ol < O [ i o) <O

To estimate |)\\7%H8¢/G(A, 5O 22(0,6), use (C.2) to obtain

sin((A+ 1)) sin((A — 1)) C:
/ = — < —.
0G0 0 = | ST 18~ s = D)@Y | = T
By combining all the estimates above, we find
1 o1 3 I\0|2
T2 ' . < — < (C—%
NZ 102G O Oll 20 < C( [ 13 de)” = Co5

which proves (9.10) for £ = 0. We continue with the proof of (9.10]) for all £ > 0 even. To estimate
higher derivatives, we notice that for ¢ even

050G\, ¢,0)

= (-1)2 (A(Z * (5) Aot <§> 1) (4?21(15()\(; 31?9) 4?:111 ?9))
+ (—1)%(6%*1 + (g) A3 +..,+”>( sin((A+1)g) Sm((A 1)e) )).

AAsin((A+1)0)  4Asin((A—1)0
Using (C.1]) we deduce

|8389 G()\ © 9)’ < CE ‘)\| / € ’)\| i—3
' T min{l, |Oé|} min{l, ]a\} '
Chis implies

1 1 1 3
21080, : < d <C
NAIL0.GO. O ion < Ceors e () pem 49) = Coy e e

and similarly
1
1y 1 1 3 1 I\|2
G\, - <C. dp)? < C.— :
00 GO llon < oo e () 3 %) < G o

For ¢ odd, the estimate follows from interpolation.
We now show the bounds 9.7) for u,. If Re)\ e\ ( 3 - 1) then ( is a direct consequence

of and U, = A +1 Notlng that we have

\1+>\| < CIM ylelds the estlmate

~ 1 ~
105N\ )l 22(0.0) < Y 105 (A, )l 22(0.0)

1 1

= Cgmin{l, |a’}£+1 ’)\’2_5 (H)‘g/e;:HLQ(O,G) + Hatpg/e;:HLQ(O,G)) .

For ReA € (=2, —1) we mimic the proof of (9.6). Recall that (see (9.4))
a’r‘()V 30) = g/e\Xt()‘a 0)890890'6;(907 0) - g/e;t()\, O)atﬂasﬁ/G(Qoa 0)
With Holder’s inequality and (| we have

1052 (A E2(0) < (Wna“la G(0) 2200

A

1
+ WH@&H@,/G(.’9)”%2(0’9)) (9.22)

~ (M\M@H%ma) + 105805t 2200 N8l z2(00) )
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For ¢ odd we can use the bounds for (9.9), (9.10) and show (9.7)) for any ¢ odd. An interpolation
argument implies the result for any ¢ > 1. We are left with the case £ = 0. To address this case, we
start by assuming [t] > 5. In this case, we have (see (0.11]))

cos(A(0 — ¢)) sin(0 + ¢) 4 cos(A(0 + ¢) sin(0 — ¢)
AXsin((A + 1)) sin((A — 1)0)

n sin(A(0 + ¢)) cos(0 — @) + sin(A(6 — ¢)) cos(8 + ¢)

A sin((A + 1)9) sin((A —1)0) '

Using (9 and the fact that 3 < [t6] < |\0|, we have (9.18)). This together with (9.15) and (9.19)
implies that - holds also for ¢ = 0. The estimate reads

0,0, G\, ,0) = — A

1

9,05 GO O)[10) < Oy

W |
and together with (9.22), this implies the corollary if ¢ = 0 and |¢6)| > 5. Let us now move to the
case [t0] < 3. As in the proof of (9.6) the case [\ —1| < 1 is easy so let us assume that [td] < 3 and
AN—=1] >3 L’ . We rewrite

- _ (A +D(cos((A+1)g)) (A= 1)(cos((A = 1))\ ~
r(A ) = ( Dsin(A+1)0)  4xsin((A—1)0) )9"““’ )
N ((A + 1)(cos(A+1)(0 —¢))) (A= 1)(cos((A = 1)(# — so))))g/\(A 0)
AXsin((A + 1)8) AXsin((A — 1)6) ext '

From (C.3)), i.e.,

‘ (A+1)(cos((A+1)p)) (A =1)(cos((A = 1)p))
Axsin((\ + 1)0) rsin((\ — 1)0)

- ’ S OEG)

we deduce

62 — —
HUTHL2 (0,6) / 02 |>\| ’)‘ngxt()‘ae”z + ’)‘||gext()‘70)|2) dQO

<O2<Mmmu0W+Mmmu0M>

Al
- G A303 1
C ’)\|4 <|)\‘9‘ H)‘gext”L2(09 + ”agogext”Lz(O G)H)‘QextHL2 0,0 > O

9.3. Regularity of (9.2) and (9.3) with g = 0. As for the Helmholtz projection, we introduce a
Fourier-Mellin representation formula for solutions of ([9.3)) in the case g = 0, i.e., for the system

Ok + 200 + 120, + (V2 = 1?0, = (V= 1) (A= 2) = A+ 1)0pfr(A—2) inS, (9.23a)
Uy, = 83)17@ =0 on {0,60}.
(9.23b)
To simplify notation, let us denote the source term by
@) = (¥ = Dfe(A = 2,0) = A+ DIpfr(A — 2,0). (924)

Recall the orthonormal systems {ef}ren and {€y}ren from (5.11). The Fourier-Mellin represent-
ation formula for solutions of (9.23]) reads as follows.

Lemma 9.6. Let £ € C°(Q\ {0}). The solution Uy, of problem (9.23) can be written as

Up(N, @) = Z () 5€k () for ¢ €10,0] and ReX € (—% +1,7 — 1) . (9.25)

k)2
S (=) 1)
. . . L By .
where § is associated with £ by (9.24). Moreover, the function u, = — o can be written as
-
ot (

where h( yp)=—(A— 1)

j) pele)  Jre el andRex€ (51,5 -1),
0
foA=2,0) + 2 fr(A —2,0).
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We deduce the following estimates.

Lemma 9.7. Let f € C°(Q\ {0}), 6 € (0,7), ¢ € (0,1 — £) and ReX = « € I. \ Z. Then the
function @, defined in (9.25) satisfies for M > 0 the bound

o 1 A —2|% A
2 2 2 2 2 2
| Z |>\| JHa‘Pu%"()\?')”LQ(O,O) < C€7M4min{1’|a’}4 Z min{1’|a_2|}2j||a[pf(>\—2,~)||L2(0’9)7
jHe=M+2 Jj+H=M
(9.26)

where C is independent of 6. Moreover, the function @, = —B)fff satisfies for M >0

. 1 A — 2% 5
Z 2511 ¢ 2 2 14 2
| |)\| ]||a¢>u7"()‘")||L2(0,0) S Og’Mmin{l,]Oz]}‘l Z min{L‘a_2‘}2j||a@f(>\—2,-)||L2(0’9)7
JHe=M+2 JH=M

for any ReX € I. and C independent of 6.
Proof. For ¢ < 2, Bessel’s identity ({5.12)) implies

R < () R0
105T,(N, ) |12 0.0) = E :
: OO TS e - (k) )

First, we derive a lower-bound for the denominator. Rewrite, using A = a + it, with o, t € R,

e R e,
- (t2 + (B 41— 042)2 +4a%t?,

For k£ > 1, we have

2
s s «
(5) #1022 (=) (5)" 2 (e~ = T
which implies
(B + ()" +1- 02" + 4022 > (£ + i ) 402 > (Pt a?) = A (9.27)
0 h \/@ 13 &
and ) )
2 km\2 22 2,2 2 km 2,2 1+ (kr\4
(2 + (k) +1 oz)+4ozt2<t+\/d(9))+4at2 -(9) (9.28)
Estimates (9.27]) and ((9.28)) imply
T\ 2 |)“2 \2 1 N2
() 1= G and - ()12 ()
For ¢ <2
_ X (B 0P
10580 (A M 20.0) = D
’ =}
SR ) AT+ (B)* NP
~ min{l, [a[}? £ A2 — (Bmy2 —q)*
2 1 )
= e i1, Jal )2 A2 A =2, )lT20,6)- (9.29)

This proves (9.26]) for M = 0. For M =1, (9.29) implies

j 1 1 ~
AP0 (0 ) 7200 < C2 A= 2P\ = 2, 0.
2 PP i0 < O T e gy 2 IO = 2900
JHE=3,0<
It remains to estimate
-~ b i~
Haiucp"%%o,e) = - ; 3%u¢8éu(p de

©:23) ~ ~
= 2\ + 1)”83“@“%2(0,0) - (¥ - 1)2”8@7%”%2(0,0)
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0
- [ @0 - 0f0- Dt [0 DRG0 -2 0
, 1 1
“min{1, |a|}* min{1, oo —
After absorbing the last term on the left-hand side, we deduce (9.26)) for M = 1. For M > 2, we

argue by induction. Suppose that (9.26) holds for M = n > 1, then we show that (9.26) holds for
M = n+ 1. First of all, notice that (9.26)) with M = n implies

ST LA ) 20

jHl=n+3,<n+2

e A= 2P E(X = 2, )1 72(09) + 319580117209

1 (A =2
< O L} - I06F O~ 2,) (0.0
® min{1, [a[}* j+£:%:1,£<n min{1, |a — 2|} L2(0,0)

It remains to estimate ||8”+3u¢( , ~)||%2(079). Using the equation (9.23a)), we obtain
P, = — 2N + 1)a a, — (N - 1)%00 1,
+ (A2 =1 o= 2) — A+ 1)ILfr (A - 2)
and thus

1 N —2]% ~
n+3 2 <% - E A ff —92. 2 )
”6@ uap()\a )HL2(O,9) = Cg min{l, ’CV’}4 e e min{l, ‘a — 2’}2] Hacp ()\ ) )||L2(079)

To show the bound of ||8foﬁr [ 22(0,9) it is enough to mimic the proof of the estimates for ||8£,a@||L2(O’9).
(]

Using the above lemma we prove an estimate for the solution of (9.2]).

Corollary 9.8. Let 0 € (0,7), e € (0,1 —£), a € R\ Z and M € N be such that M + o+ 1 € I..
Let u® the solution of system (9.2)) with g = 0. Then we have the estimate
Cem 1
. 2 . M [[f:[lM,CM‘
min{1, |a + M + 1|}2 min{1, |a + M — 1|}
Proof. Using Lemma [9.7, we deduce for M > 0 that

300 = > / /R N[04 0% dTmA df

GAl=M+2 eA=M+a+1

- /R ST POLE 2 dlm

[[us]]M+2,a <

A—2|
<2 | _119¢ — 2|2
_C mln{l ‘Oc—i—M— 1‘}4 +£ZM/Re>\ Maatl min{1,|a—2|}23||8"" (>\ ) )||L2(0,0)

< Con : 13
min{1, |a + M + 1]} min{1, |a + M — 1]}2M M

9.4. The proof of Proposition We prove Proposition [3.3] from Section [3.1] concerning higher
regularity.

Proof of Proposition[3.3. Define @, as in Corollary and u, as in (9.4). Motivated by (9.2a) we

define
PN @) = %[((A +1)2 4+ 02) @ (A +1,0) = 20,0, (A +1,0) — @r(A+1,0) + fr(A = 1,¢)]. (9.30)

Note that by definition %, @, and p are candidate solutions to rather than being the Mellin
transform of some u,, u, and p solving a problem in polar coordinates. In fact, below u,,u, and p
will be recovered as the inverse Mellin transform of 4, u, and p.

Under the hypothesis that %, and #, satisfy the regularity estimate , we first show that
is satisfied. Since (9.2a)), (9.2¢)), (9.2d) and hold by construction, it remains to show that i,

g




WELL-POSEDNESS OF STOKES EQUATIONS ON WEDGE WITH NAVIER SLIP 41

U, and p solve (9.2bf). Multiply (9.2b) by ¢ € C°((0,6)) and integrate over (0,6). Integration by
parts on the term involving the pressure gives

0 0
/ (9,5)6 dip = — / 50,6 do.
0 0

Then using the definition of p, integration by parts and using the definition of u,, we learn that i,
i, and p satisfy if and only if 4, is a weak solution to . The latter condition is satisfied
by the definition of .

To recover u and p it is enough to notice that under the regElarity estimate , we can invert
the Mellin transform for any fixed M. We now show that for M € N such that M + 1+« € I, if
fe ’H;M and g € 18%:51 we recover a unique solution. We know that u € Iflé‘f[” for any 0 < M < M
and therefore by Lemmathere exists up; € MT2HM+2 guch that iy = U|{ A= M+a+1+is}x(0,0) TOT

any M € [0, M]. It remains to verify that up = --- = ug;. Recall that

1 A
uy(r,e) = — r u(A, @) dim.
0D = T fora” 5O

and that 1 is defined via the integral representation in Corollary and . By using that G,
0y G and 83,(; are holomorphic on the strip ¥ :={A=a+1is: (Ja|+1)0 < 7,s € R} (Lemma D
and employing a standard density argument, we can move the line of integration. In particular, for
any M € [0, M], we have

1 An
upy(r, @) =— ru(A, @) dimA
m(r ) V2r /Re)\:MJraJrl (*-¢)

1 / A~
=— r u(A, @) dimA = ug(r, @) =: u(r, ).
V21 JRer=a+1 ( ) ) (r:¢)

To recover p from (9.30)), we again use the properties of U and the Green’s function G to see that
we can move the line of integration except across zero due to the presence of the singular term
1/A. By the residue theorem this singularity corresponds to a constant. More precisely, if & > 0 or

M+a< 0, then we can define

1 A~ .
Q)= —— r*p(A, ) dImA ith £ € [0, M].
wre)= = [ Pig) with £ € [0, 37

In this way we find p € 17—[?“. If @ < 0 and M+a > 0, there exists a natural number £, € [0, M— 1]

such that a + 4, <0< a+ ¢, + 1. For £ € [0,¢,] and k € [¢, + 1, M], we define

1 AA
Q) = —— r*p(A, @) dImA
plr:¢) V21 /Re,\=£+a P2, ¢)

1 A~
=— r P\, p) dImA — Ches.
V2T JReA=k+a '
We have that p € "H5 T, while p + Cres € Z*”Hé‘?“. After noticing that (Cres € "H%T! and
(1 = {)Cres € “F2HMH1 we decompose p = (py + p1, where

p1:=p+ <Cres and Do ‘= —Ches.

With this choice p; € 17—[? 1 in fact p1 = p + (Ches is the sum of p and (Cies that are elements of
1gltl, {th the same time, p; = p+ Cres — (1 — () Cres and both p+ Cies and (1 — () Ces are elements
of Oy +27_[M+1
PR
We continue with the regularity of 4, and u,. By the linearity of the equation u = u’ +u®, where
u® satisfies (9.2)) with source term f = 0 while u® satisfies (9.2)) with zero boundary conditions g = 0.
Then using this decomposition, Corollary and we deduce

b
[[u]]%W—I—Z,a < [[ll ]]?\/[+2,a + [[us]]%W—l—Q,a
< Gt [0 rs 2
= min{l, o + M + 1[}M+2 M F5.0+
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Ce M 1 ¢
* min{1, | + M + 1|}2 min{1, |a + M — 1]}M[[ It
We finish the proof by showing that if g = +(¢ — ru,) with u from Theorem then the
solution defined via the Green’s function coincides with u. Note that u satisfies , in particular
g = *+(9 — ru;) = £(g9 + 0, u,). Using this last expression in the estimates for the solution defined
via the Green’s functions, we deduce that the solution given by the Green’s function is in 'H2 as
the solution u from Theorem Uniqueness of 17—[2 solutions for the system implies that u
coincides with the solution given by the Green’s function representation with g = +£(g —ru,). O

10. PROOF OF PROPOSITION [3.4]
In this section, we prove Proposition [3-4] from Section [3.2] concerning the polynomial problem.

Proof of Proposition[3.4 Insert in ) the polynomial expansions

n n—2
=Y ull(g)r?, Pp(re) Zp” ' and  PR(re) =) f9(p)
7=0 7=0
to obtain for j € N

(72 + 02)u) — 20,0 —ul) — (j — 1)pi = = — fU=2) in (0,6), (10.1a)
(7% + 92)uld) + 28¢u£j) —ul) — Ut = — fi=2 in (0,6), (10.1b)
G+ Dul? +ould) =0 in (0,6), (10.1c)
ud) =0 on {0,6}, (10.1d)
dpu?) = Fu9=Y +4,; 1u™  on {0,60}, (10.1e)

where d,, ;1 = 1if j = n+ 1 and 0 else. Note that this system is the same as (9.2) with A € C
replaced by j € N. Hence, for j < n, as in Corollary and in Lemma we get the solution
formula

5€1(0) + (j + 1)(1 = 8pj-1)ul "V (0)0,G(j, 0, 0) (10.2)

— (G + 1)(1 = 8n-1)ud " D(0)0p G (), ¢, 0),
where G is defined as in Lemma (replacing A by j) and (cf. (9.24))
9 = (7 = DI 20p) = (G + D7V ().
For j = 0, we have f(-2) = 0 and u(-") = 0 by assumption. By (10.1d) and (10.1d)) we obtain
u® = 0 and by (10.1a)) we also obtain p(~1) = 0. For j = 1, we have f(-1) = 0 and u(® = 0. By
(10.2)), we deduce ul) = 0. Rewriting (10.1b)) gives

d,p¥ = (1 + 83,)118) +20,ull) — ug) + fé,_l) =0.

We deduce that p(© is a constant.
Notice that for j > 2, the integral of (10.1a)) over (0,8) rewrites in the form

’ G=1 gy = ef(J_Q) 1 (-1 DIk
J— — r j— . n
/0 P de /0 - dga—f—j ] [:Fur £ 0p j—1Uy }0, (10.3)

after integration by parts and using ((10.1c) and ( m
For 2 < j < n we argue by induction. Sose that we have already found u—b and pU=2), then

formula deﬁnes ufp). By Lemmata (9.4 and n, we have ufp) c HM +2(O 9) with the de51red
bound. With we define u/) = &pu(g)/( +1) € HM+1(0,6). From we deduce the
pressure p(jfl) eH M“(O, f) up to a constant. Equation defines uniquely such a constant.
We deduce from that vt € HM+2(0,0).

For j = n + 1 the right-hand side of is identically zero since by assumption f(*~1) = 0 and
$u( " 4 u( " — . Therefore the unique solution is u™*tY = 0, p(®) = 0. Similarly, for j > n + 2,
the right-hand side of (| is identically zero because £U) = 0 and u(J V_o by induction.
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Finally, the estimates on Py, and P are a consequence of (10.2)) and Lemmata and O

APPENDIX A. VECTOR IDENTITIES AND POLAR COORDINATES

A.1. Vector identities. For sufficiently smooth u,v : R? O Q — R? in Cartesian coordinates
(1, x2) we recall the notation

2
Vu:Vv = Z O, uj0p,vj, U@V ER¥? with (u®v);; 1= wwj for 1 <i,5 < 2.
ij=1

Moreover, recall that in two dimensions the curl is defined as wy := curlu = 0y, ug — Oz, u1.

Lemma A.l. For a sufficiently smooth vector field u : R? O Q — R? and a sufficiently smooth
scalar field ¢ we have the following properties:

(i) curl Vo =0, (#i) div Au = Adivu,

(#) div curlu = 0, (iv) curl Au = Acurlu if divu = 0.
Moreover, we have

2
Zdiv(vjVuj) =v-Au+Vv:Vu, V(¢u)=¢Vu+ux V.

j=1
For a vector a = (a1, az) the rotated vector is a’ := (—ag2,a1). It holds that a* -a = 0 and
a'l-b = —a-b'. For the rotated gradient V1 we have the properties
V!t .u=curlu, Au = V* curlu if divu = 0.

A.2. Polar coordinates. In polar coordinates (7, ) the unit vectors at (r, ) are given by e, =
(cos p,sin p) and e, = (—sinp, cos ¢) and we write u(r, ) = u,(r, p)er +uy(r, p)e, as u = (uy, uy).
The gradient and Laplace operator are in polar coordinates given by

V= (0)er + (7‘_1090) e, and A=0*+r"19,+ 7‘_283, = r_2((7“8r)2 + 82,).

Therefore, for a sufficiently smooth vector field u : R? O Q — R? and a sufficiently smooth scalar
field ¢ we have

divu=V-u=r"1((rd, + )u, + d,uy), (A.1)

curlu = V+-u=r"1((rd, + 1)uy, — d,u,), (A.2)
1 (rOuy Opur — uy

Vu=r (r&nuw Optip +ur )’ (A.3)

L ((7"(97«)2 + ag)ur — 20Uy — Uy
Au=r <((r8r)2 + 05)% +20pur —uy )

_ 02¢ 7'*16@87«75 — 7"*2899(;5
Veves= <r‘18¢,8¢¢ — 20,6 12020+ 1710,6 ) ' (4.5)

Finally, we also have the commutation relations

r7(roy) = (ro, —v)r?  and 70" =r7(ro, +v) foryeR. (A.6)

APPENDIX B. SOME RESULTS ON WEIGHTED SOBOLEV SPACES

B.1. Proof of the claim in Remark As an application of Hardy’s inequality we prove the
claim in Remark Recall that *H% is the closure of C2°(€2\ {0}) with respect to [-J5.o as defined
in Section [L2

Lemma B.1. Let k € N and o € R such that a +k — 1 # 0 and let
9 = {u: [u)p_rare < oo forall0 <€ <k},

endowed with the norm HuH%k = [[u]](z)’a_Fk +eee [[u]]i’a. Then the inclusion *HE — $E is a linear
and continuous bijection.
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Proof. The inclusion being linear and continuous is a direct consequence of Hardy’s inequality. To
show that it is surjective it suffices to prove that for any u € HE there exists a sequence u,, €
C(Q2\ {0}) such that [u, —u]s, — 0. Define the cut-off function

n e CP(R) satisfying 77‘[_1,1] =1 and 77|R\(_2,2) =0.
Furthermore, define for n € N
N(r) = n(%), r > 0. (B.1)
e?"] and 1,(r) — 1 pointwise as n — oo for all r > 0. Moreover,

(r0,) mu(r) = n~in) (1255

For u € Y)’oi it holds that n,u — u in .6’; and for any n € N the vector field n,u is compactly
supported on © \ {0}. Therefore, by mollification there exists u, € C°(2\ {0}) such that [u, —
M Wka < [[Mnu —ullge. This sequence uy, satisfies the desired properties. O

Then supp(n,) = [e~*",

B.2. Trace theorems. Recall from Section 3.1 that for s € R and « € R such that s+ a — 5 7é 0
the space HJ is the closure of CZ°(0€Y) with respect to the norm

loly, = 3 / AP[GA ) dIma.
<p6{00} Rel= s+o¢—f

Proposition B.2 (Trace operators and extensions). For k € N and a € R\ Z, there exists a linear
continuous trace operator

1

~k —1
ka H 2
£=0

such that Tu = (aéu]m/)’;;(} for any u € C*(Q\ {0}). Moreover, T admits a linear and continuous
right inverse, that we call extension

Proof. The existence of T is a direct consequence of Holder’s inequality. In fact for ¢ € {0,6} and
¢e€{0,1,...,k—1} it holds

PN Ay ala 0~ ITEPN
IA|o5a(,9)[* < %Hagau”%Q(Oﬁ) + HAagouH%Q(O,G) + 1051817200
< (g5 + DI 209y + 1057117 2(0.0)-

This implies that

Y4
||5@U||ﬁk_z_% <C s

The existence of the right i inverse is a consequence of the following explicit formula: for the vector

(U1, ..., up_1)€ H k 3 , define the extension U in Mellin variables as
N k=1
O(ng) = > Sriie(n, 0)h(2452L)
14
(=0
k—1 . ¢
I G0k Tg(A, )b (E=2 LAY (B.2)

IN

1 and h = 1 in an open neighbourhood of 0. Upon noting

ERRER) 0
h(€ do< 2
/0 ( 0 ) |)\|

it is straightforward to see that (B.2)) indeed defines a linear and continuous right inverse L to the
trace operator T U

¢
where h € C$°([0,1)) satisfies 0 < h
that
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B.3. Density results. Recall that
Coo @\ {0}) :={v e \{0}):divv="0in Q and v, = 0 on 9Q'}.

Proposition B.3. Let a € R\ Z, then the inclusions

—2H2
I - O (2\ {0}) —>{u€27-[i:divu:0 in Q and u, =0 on O} and
2942

— M2
Ir: {veCx(Q2\{0}):v=0o0n0} — {ue?H2 :divu=0inQ and u=0 on 09’}

are linear and bijective.

Proof. We prove the statement for I; as the proof for I is similar. Let v € 2H2 satisfy div v=0in
Q and v, = 0 on 9. Then it suffices to show that there exists a sequence (vi)r>1 € Co% (2 \ {0})

such that v, — v in ?H2 as k — oco. The stream function is given by

©
virg) = [ ron(np)dp
0
and satisfies 70,1 = ru, and 9,9 = —ru,. Moreover, we have 1) = 0 on 9€'. Indeed, by definition
it is clear that +(r,0) = 0. Using that v, (r,60) = 0 gives 70,4 (r,8) = 0, i.e., ¢(r,0) is constant. By
3

applying the trace operator 1" to ¥ we obtain |5 € H? , which implies that the constant is zero.
In addition, we have ¢ € 43 since by Lemma

0 roo
[l ~ W0l = X [ [T tleoalut ardg

0<j+£<3
0 0o

s > [ [ rertieoyioler arde S M.

0<jte<2”/0 70

By definition of 37—[3, there exists a sequence (¢;)r>1 of smooth compactly supported functions
such that ¢, — ¢ in 343 as k — oo. With the extension operator L from Proposition we

define v, € C*°(Q) such that divvy =0, (Vx), =0 on 0 and
Vi = V(W — L, 0,...,0) — v in H2 as k —> oo. (B.3)

However, v}, is not compactly supported in 2\ {0}. To solve this, consider the cut-off functions 7,
as defined in (B.1) and let g(k) be an increasing sequence such that

HVJ' (ng(k)(wk — L(T/Jk, 0, NP ,O))) — $k||27_[% < H% - VH2H3 for all k£ > 1.
Then, the sequence (vi)g>1 defined by

Vg = vl (ng(k) (Q/Jk - L(?/)k, 0,..., O)))
has all the desired properties. O

Proposition B.4. For a € R\ Z and 0 € (0, 5) the inclusions

L:C(Q\{0}) " — {u:divu=0inQ,u, =0 on 9 and ||ul| 2 < oo} and
}:2
)

I : Cg5,(Q2\ {0} p— {u:divu=0in Qu, =0 on 9 and ||ul|4 , < 0o}

are linear and bijective.

Proof. We prove the statement for I; and the proof for I5 is similar. We follow the proof of Propos-
ition E In particular, we have that the stream function satisfies i € 27—(2 and 0,v|sqr € H 2_1.
This leads to the extra difficulty of finding a smooth, compactly supported approximation of ¥ in
the norm 2H3 and Oyt |aqy in H 0 . Let 1, again be the cut-off function as defined in . Note
that 1,0 converges to v in *H3 and Op(Mnt)) to O in ﬁgq as n — oo. Then 7,y is com-
pactly supported away from 0, so we can find an approximating sequence /¥ € C°(€y,) such that
YF — nap in 3H3 as k — oo, where

Qon ={(r,0) € Q:r e (e, &™)},
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By the trace theorem (Proposition B.2) and the fact that the weights 77 for any 3 € R are equivalent
on compact subsets of 2\ {0}, it follows that || f||242 +[|0pf g0 = < Conl| fllsys for any f € C(€2y,).
o a—1 o

Therefore, ¥ and (‘Lﬂbﬁ converge, respectively, to 7,1 and d,(n,v) in 242 and H 0 ask — oo.
We can now conclude by defining the approximate velocity field as in (B.3) and proceed from
there. (]

APPENDIX C. AUXILIARY ESTIMATES

In this appendix we prove some auxiliary estimates which are required in Section [9] Recall that
we defined the interval
L=[-1-9%+1,(1-¢)F—-1].

Lemma C.1. Let \€ C. IfReA € L, ImA[§ < 1, [A—1| > 1, A+ 1| > 1 and ¢ € (0,0), then we
have the estimates

sin((A + 1)) sin((A — 1)) 1
AXsin((A +1)0) £ sin((A — 1)) ‘ = Caw (C.1)
sin((A +1)¢) sin((A — 1)) 1Al
xsin(A+1)0)  4Asin((A —1)0) ’ < CEW, (C2)
’ A+ 1)cos((A+1)p)  (A—=1)cos((A—1)yp) ’ <. ©3)

AAsin((A +1)0) A sin((A —1)0)
Proof. Note that in any compact subset of C we have |sin z| < C|z|, so (C.1) follows easily.
For (C.2) note that
sin((A+1)p)  sin((A—1)¢) (C.4)
AAsin((A+1)0)  4Xsin((A —1)0) ’

_sin((A + 1)) sin((A — 1)0) — sin((A — 1)) sin((A + 1)0)

N 4Xsin((A + 1)8) sin((A — 1)0) ‘
To estimate the numerator, we rewrite using the Taylor expansion theorem with Lagrange remain-
ders:

sin(z) =z — /Ox(x — s)sin(s) ds.
Using this formula, we deduce
sin((A 4+ 1)) sin((A — 1)8) — sin((A — 1)) sin((A + 1)0)

(A—1) (A1)
— O+ 1)¢/ (A= 1)0 — ) sin(s) ds + (\ — 1)@/ (A4 1)0 — s)sin(s)ds  (C.5)
0 0
(A1) (A=De
- (A= 1)(9/0 (A+1)p —s)sin(s) ds + (A + 1)9/0 (A=1)p —s)sin(s)ds (C.6)
V) | (-8 _
+ /0 (A+ 1) — 5) sin(s) ds/o (A= 1) — 5 sin(s) ds 1)

(A-De (A+1)0
— / ((A=1)p — s)sin(s) ds/ ((A+1)0 — s)sin(s) ds. (C.8)
0 0
We bound (C.5)), (C.6) and (C.7)+(C.8) separately. We start by rewriting the first term

(A+1)0 (A-1)6 (A-1)8
(CH) =(\2 — 1)@0/ sin(s) ds — )\cp/ ssin(s) ds + 90/ ssin(s) ds
(A-1)8 (A+1)0 0

(A+1)0
+ <,0/ ssin(s) ds.
0

We then deduce

@3] < CON =1+ A+ A= 1 + A+ 1[)0° < o, (C.9)
where in the last inequality we have used that [A\|6 < |ReA|f + [ImA|§ < 7+ 1 and 6 < 1. The same
estimates holds for (C.6). We are left with

(C.7) +(C.8) =
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(A1) (A—1)8 (-1 (A+1)0
(N2 — 1)g00(/ sinsds/ sinsds—/ sinsds/ sinsds)
0 0 0 0

(A1) (A-1)6 (A1) (A+1)6
—)\9(/ ssinsds/ Sinsds—/ ssinsds/ sinsds)
0 0 0 0
(A+1)p (A—1)0 (A1) (A+1)0
—Ago(/ sinsds/ ssinsds—/ sinsds/ ssinsds)
0 0 0 0
(A1 (A-1)0 (A1) (A+1)6
—l—@(/ ssinsds/ sinsds+/ ssinsds/ sinsds)
0 0 0 0

(A+1)p (A—1)0 (A—1)p (A+1)0
+<,0</ sinsds/ ssinsd8+/ sinsds/ ssinsds)
0 0 0 0

(A1) (A-1)6 (A=1)e (A+1)6
—l—(/ ssinsds/ ssinsds—/ ssinsds/ ssinsds)
0 0 0 0

(ADe (A-1)6 (A-Dyp (A+1)8
‘/ sinsds/ sinsds—/ sinsds/ sinsds‘ < CIA—1%6*
0 0 0 0

Note

and

(A+1)p (A—1)0 (A—1)p (A+1)0
’/ sinsds/ ssinsds+/ sinsds/ ssinsds‘
0 0 0 0

S CAN+ 14 XA = 1DIA% = 1]%6°,
which implies
(€7 + CI) <CUN = UA =17+ AN =17+ (A + 1+ A= 1DA2 = 12+ A = 1%)¢°
<, (C.10)

where in the last inequality we have used that |A|f < |a|0 + |[ImA|f < 7+ 1 and 6 < 1. Inequality

(C.9) implies the result (C.10]).
By using (C.9) and (C.10)) to estimate the numerator of (C.4)) and the fact that

[Asin((A — 1)8) sin((A + 1)0)] > c2|A||A* — 1|62,

we deduce (C.2). A similar strategy proves (C.3]). O
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