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Abstract. We consider the incompressible and stationary Stokes equations on an infinite two-
dimensional wedge with non-scaling invariant Navier-slip boundary conditions. We prove well-
posedness and higher regularity of the Stokes problem in a certain class of weighted Sobolev spaces.

The novelty of this work is the occurrence of two different scalings in the boundary condition,
which is not treated so far for the Stokes system in unbounded wedge-type domains. These difficulties
are overcome by first constructing a variational solution in a second-order weighted Sobolev space
and subsequently proving higher regularity up to the tip of the wedge by employing an iterative
scheme. We believe that this method can be used for other problems with variational structure and
multiple scales.
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1. Introduction

In this paper, we study the well-posedness and regularity of the stationary and incompressible
Stokes equations

−ν∆u +∇p = f in Ω,

div u = 0 in Ω,

u · n = 0 on ∂Ω′,

u · τ + β∂n(u · τ ) = 0 on ∂Ω′,

(1.1)

where Ω is the two-dimensional wedge-shaped domain

Ω := {(x, y) ∈ R2 : y > 0 and x > cot(θ)y} = {(r cos(ϕ), r sin(ϕ)) : r > 0 and 0 < ϕ < θ}
for some opening angle θ ∈ (0, π) and we denote ∂Ω′ := ∂Ω \ {(0, 0)}. The body force density
f : Ω → R2 is given. The unknown functions are the velocity field u : Ω → R2 and the pressure
p : Ω → R. On the boundary ∂Ω′, we denote by n the outward pointing normal vector and by τ
the counterclockwise tangent vector. The system (1.1) is subject to the no-penetration boundary
condition and the Navier-slip boundary condition. Finally, the two parameters ν > 0 and β > 0
describe the viscosity of the fluid and the slippage of the fluid on the boundary, respectively.

1.1. Motivation. The novelty of this work is the combination of an unbounded wedge-type do-
main and the Navier-slip boundary condition which is not scaling invariant1. A similar setting for
a parabolic equation is treated in [4]. Well-posedness of (1.1) is a first step towards studying free
boundary value problems arising from moving droplets. In the case of moving domains with no-slip
boundary conditions (corresponding to β = 0 in (1.1)), there is infinite energy dissipation at the mov-
ing contact line: the so-called no-slip paradox [9, 32]. As is motivated in [35, 50] one could instead
consider Navier-slip boundary conditions and this is in fact what we will consider for a static domain.

The unboundedness of the wedge domain is a major source of difficulty in our analysis, but opens
the path to an investigation of many questions in contact line dynamics. In fact, while it is pos-
sible to reduce to one leading-order scale in the case of bounded domains and to treat one scaling
coming from the Navier-slip condition as a perturbation, this would introduce another length scale
in the problem, that is, the size of the domain, which is infinite in our case. As a consequence, a
corresponding analysis on bounded domains results in estimates depending on the ratio of the slip
length β and the size of the domain Ω, so that estimates could blow up in a limiting procedure
in which the domain becomes unbounded. Typically, the length scale β (determining the crossover
between scales) is of the order of a few nanometers while droplets are several orders of magnitude
larger (i.e., at the order of say millimeters). To study problems such as the dynamics of the appar-
ent mesoscopic contact angle and its dependence on the microscopic assumptions at the tip of the
domain (see [10, 16, 24, 31, 65, 67] in case of the lubrication approximation of the Navier-Stokes
equations, the thin-film equation, and [5] for the Stokes equations), it appears essential to study
the case of unbounded domains. The additional finite length scale (domain size) is then removed
and subsequent constants estimating the solution only depend quantitatively on the opening angle
θ (and functional-analytic parameters).

The domain Ω has a conical point at the tip (0, 0) and in general regularity results for smooth
domains do not hold for non-smooth domains. Nonetheless, there is a vast literature on solving
scaling-invariant problems on domains with conical points, see e.g. [43, 44] and the monographs
[41, 42, 51, 52]. In these works weighted Sobolev spaces are considered which allow for a certain
blow-up of the solution near the conical point. For gaining higher regularity the solution is decom-
posed into a polynomial Taylor expansion which captures the singular behavior near the conical
point, and a regular remainder. For a wedge, the polynomial problem can be reduced to a system of
uncoupled ordinary differential equations (ODEs) in the angle for the coefficients in the expansion

1In polar coordinates the wedge Ω is given by (r, ϕ) ∈ (0,∞)× (0, θ). This set is invariant if we scale r by a factor
µ > 0. Let R = µr and set ū(R,ϕ) = µ2u(r, ϕ), p̄(R,ϕ) = µp(r, ϕ) and f̄(R,ϕ) = f(r, ϕ), then −ν∆ū+∇p̄ = f̄ and we
say that the Stokes system is scaling invariant. At the contrary, the Navier-slip condition becomes ū·τ+βµ∂n(ū·τ ) = 0,
which depends on the factor µ. For this reason, we say that the Navier-slip boundary conditions are not scaling
invariant.
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using a matching procedure. All these ODEs can be solved explicitly. The far-field contribution
of the polynomials is then removed by a cut off. This leads to additional terms on the right-hand
side of the regular problem, which can then be solved by reducing it to an ODE using the Mellin
transform in the radius using polar coordinates.

In principle, we pursue the same method for our model (1.1) with Navier-slip boundary conditions.
However, this boundary condition is not scaling invariant (since the normal derivative scales as r−1 in
polar coordinates) leading to additional difficulties. Namely, the system of ODEs for the coefficients
in the expansion is not uncoupled anymore and we do not derive explicit solution representations.
Instead, we iteratively solve the coupled system of ODEs and obtain additional contributions of the
polynomial problem in the regular problem.

Moreover, the Navier-slip boundary condition complicates the analysis of the regular problem.
To construct a solution to the problem, we will use (L2-type) Sobolev spaces with power weights
|x|−2α for some α ∈ R \ Z. We cannot directly apply the Lax-Milgram theorem to the bilinear
form in the variational formulation of the problem, since the bilinear form is not coercive due to
different scalings in the boundary condition. To circumvent this issue, we derive additional bilinear
forms involving second-order derivatives. We show that this higher-order variational problem has a
unique Lax-Milgram solution under the condition that the product of the opening angle θ and the
exponent of the weight α is sufficiently small. Moreover, we prove that this solution is twice weakly
differentiable in the weighted space and satisfies the original partial differential equations.

Finally, to improve the regularity of the solution we reduce problem (1.1) with Navier slip to a
problem with slip boundary condition and prescribed tangent velocity and use the strong solution
as data in the boundary condition. The problem with slip boundary condition and prescribed tan-
gent velocity is then easier to solve than the original problem with Navier slip, since this boundary
condition is scaling invariant. In fact, the problem could be solve by standard method, see [41].
However, we are interested in the quantitative dependence of the estimates on the opening angle θ
and weight exponent α. We therefore give a self-contained exposition of this problem in Section 9.

Regarding the (Navier-)Stokes equations on non-smooth domains, many results are already known.
Note that most of the previous results are concerned with the case of scaling invariant boundary
conditions. The Navier-Stokes equations on a wedge with no-slip and free-slip (corresponding to β =
∞ in (1.1)) boundary conditions have been studied in [6, 45, 46, 47, 51, 59] and [40, 48], respectively.
A treatment of the (Navier-)Stokes equations with scaling-invariant boundary conditions in domains
with corners can be found in [41, 42, 51]. Furthermore, the (Navier-)Stokes equations have been
studied on more regular domains, see e.g. [12, 30, 63] and references therein.

Results for the free-boundary problem to the Navier-Stokes equations with Laplace’s law at the
liquid-gas interface and moving contact line are limited. For π

2 wall angle, a reflection technique
significantly simplifies the problem. Well-posedness for the time-dependent Navier-Stokes equations
in two dimensions with π

2 contact angle were treated in [60] and many works on other free-boundary
problems followed [1, 13, 55, 56]. The stationary Navier-Stokes equations in three dimensions with π
angle and non-moving free boundary were analyzed in [33]. The stationary Navier-Stokes equations
with π angle and assuming a non-moving free boundary were treated in [64].

The (Navier-)Stokes equations in two dimensions with dynamic contact angle, see [57, 58], and a
moving free boundary were treated in [27, 28, 66, 68] establishing well-posedness of solutions and
stability of the equilibrium state. The methods there are based on nonlinear energy estimates using
(weighted) Sobolev spaces. However, the employed function spaces have corresponding norms that
are too weak to control the singularities expected in pressure, velocity, and shape of the profile close
to the contact line, see e.g. [9, 11, 32, 62]. In this work we are able to consider strong enough spaces
to study such singularities in future works.

The Stokes and Navier-Stokes equations with free surface and moving contact line share many
similarities with the fourth-order degenerate-parabolic thin-film equation

∂th+∇ · (M(h)∇∆h) = 0 in {h > 0}, (1.2)

describing the film height h = h(t, x) as a function of time t ≥ 0 and x ∈ Rd with d ∈ {1, 2}. In
fact, within a lubrication approximation, (1.2) with M(h) = h3 + βh2 with slip parameter β > 0,
can be derived from the (Navier-)Stokes equations with free boundary and contact line within a
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formal lubrication approximation in the regime of small contact angles [3, 7, 53] using a formal
asymptotic expansion and without contact line in [26], while the lubrication approximation in case
of Darcy dynamics in the Hele-Shaw cell was rigorously carried out in [49] without contact line
and in [19, 38, 39] with contact line. For (1.2) a well-posedness and regularity theory for zero and
nonzero contact angles has been developed in [2, 14, 15, 17, 18, 20, 21, 22, 25] and [36, 37, 38, 39] in
one spatial dimension, respectively, while the higher-dimensional case is so far limited to the works
[8, 23, 34, 61]. There it was found that, except for linear mobilities, solutions are in general not
smooth in the distance to the free boundary, even if the leading order is factored off. Our goal is to
develop a corresponding theory for the (Navier-)Stokes free boundary problem with contact line and
we expect that the methods developed in this note serve as a natural first step towards this goal.
Furthermore, a thin-film linearization with two length scales was treated in [22], where, as in our
case it was found that coercivity in the weighted setting requires using higher-order Sobolev norms,
see Section 4.

1.2. Weighted Sobolev spaces and main results. In this section, we introduce appropriate
weighted Sobolev spaces to study well-posedness and regularity for the Stokes equations and we
present the main result. Without loss of generality, by rescaling2 we assume ν = β = 1 in (1.1).
Furthermore, because of the wedge-shaped domain, it is natural to consider polar coordinates (see
also Appendix A.2). Let u = urer + uϕeϕ and f = frer + fϕeϕ, then (1.1) in polar coordinates is
given by

−r−2
[
((r∂r)

2 + ∂2
ϕ)ur − 2∂ϕuϕ − ur

]
+ ∂rp = fr for r > 0, ϕ ∈ (0, θ), (1.3a)

−r−2
[
((r∂r)

2 + ∂2
ϕ)uϕ + 2∂ϕur − uϕ

]
+ r−1∂ϕp = fϕ for r > 0, ϕ ∈ (0, θ), (1.3b)

(r∂r + 1)ur + ∂ϕuϕ = 0 for r > 0, ϕ ∈ (0, θ), (1.3c)

uϕ = 0 for r > 0, ϕ ∈ {0, θ}, (1.3d)

ur ± r−1∂ϕur = 0 for r > 0, ϕ ∈ {0, θ}, (1.3e)

where

Ω = {(r cos(ϕ), r sin(ϕ)) : r > 0 and ϕ ∈ (0, θ)}.
Moreover, recall that in (1.1) n is the outward pointing normal vector, so that ∂n becomes ±r−1∂ϕ
in polar coordinates where the notation ± in (1.3e) means + for ϕ = θ and − for ϕ = 0.

For a vector field u : Ω→ R2 such that u ∈ C∞c (Ω \ {0}) and for a function u : ∂Ω→ R such that
u ∈ C∞c (∂Ω′), we define for any α ∈ R and k ∈ N such that α+ k − 1 6= 0 the norms

‖u‖2α :=

∫ θ

0

∫ ∞
0

r−2α|u|2r dr dϕ,

JuK2
k,α :=

∑
j+`=k

∫ θ

0

∫ ∞
0

r−2α−2k
∣∣(r∂r)j∂`ϕu

∣∣2r dr dϕ

|u|2α :=
∑

ϑ∈{0,θ}

∫ ∞
0

r−2α|u(r, ϑ)|2 dr,

[u]2
k− 1

2
,α

:= inf
ū∈C∞c (Ω\{0}),ū|∂Ω′=u

JūK2
k,α.

Moreover, the norm ‖ · ‖α is induced by the weighted inner product (·, ·)α on L2(Ω, r−2αdx). Denote
by kHkα the closure of C∞c (Ω \ {0}) with respect to the norm J·Kk,α. The space jHkα denotes the

closure of C∞c (Ω \ {0}) with respect to the norm

‖u‖2jHkα :=
k∑
`=j

JuK2
`,α.

2Set R = r
β

, ũ(R, ϕ) = ν
β2u(r, ϕ), p̃(R, ϕ) = 1

β
p(r, ϕ) and f̃(R, ϕ) = f(r, ϕ). Then (u, p) is a solution to (1.1) if and

only if (ũ, p̃) is a solution to (1.1) with ν = β = 1 and f replaced with f̃ .



WELL-POSEDNESS OF STOKES EQUATIONS ON WEDGE WITH NAVIER SLIP 5

In the case j = 0 we write Hkα := 0Hkα. In a similar fashion, the space jBkα denotes the closure of
C∞c (∂Ω′) with respect to the norm

|u|2jBkα :=
k∑
`=j

[u]2
`− 1

2
,α
. (1.4)

Again, for j = 0 we write Bkα := 0Bkα.

Remark 1.1. Note that J·Kk,α with α+k−1 6= 0 is a norm on C∞c (Ω\{0}) due to Hardy’s inequality
(see Lemma 2.1), while in general it is only a semi-norm on the space of all locally integrable u such
that JuKk,α <∞. Moreover, the inclusion

kHkα −→ {u : JuKk−`,α+` <∞ for all 0 ≤ ` ≤ k} ,

where the latter space is endowed with the norm
√

JuK2
0,α+k + · · ·+ JuK2

k,α, is a bijective and con-

tinuous map. For a proof we refer to Lemma B.1.

Let C∞c,σ(Ω \ {0}) be the space of divergence-free test functions with vanishing normal component
at the boundary, i.e., we define

C∞c,σ(Ω \ {0}) :=
{
v ∈ C∞c (Ω \ {0}) : div v = 0 in Ω, vϕ = 0 on ∂Ω′

}
. (1.5)

For k ≥ 1 and α ∈ R \ Z, the space H k
α is the closure of all u ∈ C∞c,σ(Ω \ {0}) with respect to the

norm

‖u‖2H k
α

:= ‖u‖21Hkα + |ur|2α =
k∑
`=1

JuK2
`,α + |ur|2α.

This is an appropriate space for velocity fields that satisfy (1.1). Namely, the norm contains the
terms ‖u‖21H1

α
+ |ur|2α, which is a weighted energy dissipation, and ‖u‖22Hkα that gives control on

higher-order derivatives.
Then, for k ≥ 0 and α ∈ R \ Z, we introduce the space Z k

α as the closure of all f ∈ C∞c (Ω \ {0})
with respect to the norm

‖f‖Z k
α

:= ‖f‖α−1 + ‖f‖Hkα .
The term ‖f‖α−1 allows us to control the weighted energy dissipation of the solution, while ‖f‖Hkα
gives control on higher-order derivatives of the solution.

Throughout the rest of the paper, we will use a fixed smooth cut-off function ζ = ζ(r) satisfying

ζ ∈ C∞c ([0,∞)), such that 1[0,1] ≤ ζ ≤ 1[0,2]. (1.6)

Remark 1.2. The spaces Hkα, H k
α and Z k

α with α ∈ R \ Z imply a prescribed decay at the tip in
the radial direction. For example, for n ∈ N we have

ζ(r)rn ∈ Hkα if and only if n > k + α− 1. (1.7)

For a given function f ∈ C∞c (Ω), we denote by Pn
f the Taylor polynomial of order n at the tip.

For M ∈ N we have f − ζPn
f ∈ HMα if n ≥ bM + α− 1c, where for any s ∈ R we use the notation

bsc := max{` ∈ Z such that ` ≤ s}.
We write f = ζPn

f + (f − ζPn
f ), where we call ζPn

f the polynomial part and f − ζPn
f ∈ HMα the

regular part. This motivates the definition of the following spaces below. We will denote for a < b
by HM (a, b) the classical Sobolev spaces of order M on (a, b). For k,M ∈ N we define

Pk,M :=
{
p(r, ϕ) =

k∑
j=0

a(j)(ϕ)rj : a(j) ∈ HM (0, θ)
}
,

endowed with the norm

‖p‖2Pk,M :=
k∑
j=0

‖a(j)‖2HM (0,θ).

Moreover, if k < 0, we define Pk,M to consist of only the zero polynomial.
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Any solution u to (1.3) satisfies the condition div u = 0. If we rewrite u = ζPn
u + (u − ζPn

u)
with divPn

u = 0, then u− ζPn
u is in general not divergence free. To avoid this issue, we note that

Pn
u = ∇⊥Pn+1

ψ for some polynomial Pn+1
ψ , where ∇⊥ = −r−1∂ϕer + ∂reϕ. We then decompose

u = ∇⊥(ζPn+1
ψ ) + u−∇⊥(ζPn+1

ψ ). We formalize the above discussion in the following lemma.

Lemma 1.3. Let k,M ∈ N and let Pu ∈ Pk,M such that divPu = 0. Then there exists a Pψ ∈
Pk+1,M+1 with ∇⊥Pψ = Pu, given by the formula

Pψ(r, ϕ) =

k∑
j=0

(
−
∫ ϕ

0
u(j)
r (ϕ̃) dϕ̃

)
rj+1, where Pu =

k∑
j=0

u(j)(ϕ)rj . (1.8)

Moreover, if Pu · n = 0 on ∂Ω′, then ∇⊥(ζPψ) · n = 0 on ∂Ω′, where ζ is as defined in (1.6).

Proof. This follows by a direct computation. �

Given Pu ∈ Pk,M such that divPu = 0 with k,M ∈ N, we introduce the localized polynomial
velocity by

Qu(r, ϕ) = ∇⊥ (ζ(r)Pψ(r, ϕ)) , where Pψ is associated with Pu by (1.8). (1.9)

In particular, Qu = Pu for (r, ϕ) ∈ (0, 1)× (0, θ).

Let α ∈ R \ Z. For M ≥ 2, we define the space for the velocity u by

XM
α :=

{
u : Ω→ R2 : u = Qu + u1 with Pu ∈ Pn,M , n = bM + α− 1c and u1 ∈H M

α

}
,

endowed with the norm
‖u‖XM

α
:= ‖Pu‖Pn,M + ‖u1‖H M

α
.

For M ≥ 1, we define the space for the pressure p by

YM
α :=

{
p : Ω→ R : p = ζPp + p1 with Pp ∈ Pn,M , n = bM + α− 1c,Pp(0) = 0 if α > 0

and p1 ∈ 1HMα
}
,

endowed with the norm
‖p‖YMα := ‖Pp‖Pn,M + ‖p1‖1HMα .

Finally, for M ≥ 0, we define the space for the source term f by

ZMα :=
{
f : Ω→ R2 : f = ζP f + f1 with P f ∈ Pn,M , n = bM + α− 1c and f1 ∈ Z M

α

}
,

endowed with the norm
‖f‖ZMα := ‖P f‖Pn,M + ‖f1‖Z M

α
.

Loosely speaking, to prove regularity of the Stokes equations (1.3) it is required to solve the
system twice: once with a singular source term at the tip and once with a regular source term. We
will refer to those different cases as the polynomial problem and the regular problem, respectively. A
combination of the polynomial and regular problem will lead to our main result on the well-posedness
and regularity of the Stokes equations on a wedge with Navier slip.

Finally, we expect that the Stokes operator with slip boundary conditions has resonances at −π
θ +1

and π
θ − 1, as will be discussed in detail in Remark 1.6. We therefore consider the exponent of the

weight α in the interval
Iε :=

[
−(1− ε)πθ + 1, (1− ε)πθ − 1

]
, (1.10)

where the small parameter ε > 0 is a measure for the distance between α and resonances of the
Stokes operator with slip boundary conditions. To ensure that Iε is not empty we assume that
θ ∈ (0, (1− ε)π).

We now state the main result.

Theorem 1.4 (Well-posedness & regularity). Let ε ∈ (0, 1). There is a constant c > 0 such that
for any θ ∈ (0, (1 − ε)π) and α ∈ Iε \ Z satisfying |αθ| < c, for any f ∈ ZMα with M ∈ N such that
M + α+ 1 ∈ Iε \ Z, there exists a unique solution (u, p) ∈ XM+2

α × YM+1
α to (1.3) which satisfies

‖u‖XM+2
α

+ ‖p‖YM+1
α

≤ Cα,ε,M‖f‖ZMα . (1.11)

Remark 1.5.
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• The constant C in (1.11) depends on α, but not on θ. Throughout the paper, we prove
estimates independent of θ and any constant is independent of θ unless explicitly stated
otherwise.
• The pressure in Theorem 1.4 is uniquely determined as an element of YM+1

α . In fact, the
only constant in the space YM+1

α is the zero constant.
• For M + α + 1 > 0 the solution u from Theorem 1.4 is continuous at the tip of the wedge

and u(0, 0) = (0, 0). In fact, the boundary conditions u(x, 0) · n = u(x, 0) · (0,−1) = 0 and
u(cot(θ)y, y) · n = u(cot(θ)y, y) · (− sin(θ), cos(θ)) = 0 imply that u(0, 0) is orthogonal to
both vectors (0,−1) and (− sin(θ), cos(θ)).

Remark 1.6. To prove higher regularity in Theorem 1.4, we argue by finite induction. We assume
that there exists a solution u in the space nHnα and we prove that this solution is also in n+1Hn+1

α

by rewriting the Navier-slip condition for (1.3) in the form ±r−1∂ϕur = −ur. Then (1.3) can be
interpreted as a Stokes system with slip boundary conditions and prescribed tangent velocity, in
other words we consider the right hand side of ±r−1∂ϕur = −ur as given.

For the function u ∈ nHnα, taking the trace on ∂Ω, we have that u·τ ∈ nBnα. Using classical theory
from [41, 42, 51, 52], we deduce that u ∈ n+1Hn+1

α . While doing that, we have to remember that the
Navier-slip boundary condition is not scaling invariant and, in particular, we have ±∂ϕpur[λ + 1] =
−pu[λ] in Mellin variables. This implies that we gain a derivative on pu[λ+ 1] rather then on pu[λ]. To
recover the solution u, we invert the Mellin transform of pu at the line Reλ = α + n. The inversion
coincides with u only if pu is holomorphic in an open set that contains Reλ ∈ [α + n − 1, α + n].
For us a resonance is a point where pu is not holomorphic. The function pu has an explicit solution
formula via a Green’s function representation, see Corollary 9.3 and (9.4) and the points where pu is
not holomorphic are related to the points where the Green’s function G is not holomorphic. From
Lemma 9.1, we easily see that the Green’s function is not holomorphic for λ = ±π

θ ∓ 1 while it is
holomorphic in the stripe Re(λ) ∈ (−π

θ + 1, πθ − 1). This explains the choice of Iε.

1.3. Outline. In Section 2 we collect some preliminaries required throughout the paper. In Section
3 we gather the results of the regular and polynomial problem to prove the main result Theorem 1.4.
The construction of a strong solution to the regular problem is explained and carried out in Section
4 and is a consequence of three steps. These three steps are worked out in detail in Sections 6, 7
and 8, while in Section 5 we prove the necessary estimates on the Helmholtz projection. Section 9
deals with the higher regularity of the regular problem and in Section 10 the proof of Proposition 3.4
concerning the polynomial problem is given. Appendices A and B contain known results on vector
identities in polar coordinates and weighted Sobolev spaces, respectively. Appendix C contains some
auxiliary estimates required in Section 9.

2. Preliminaries

In this section, we recall some required tools for proving the main result. This includes Hardy’s
inequality, the Mellin transform and the Helmholtz projection.

2.1. Hardy’s inequality. We recall the classical Hardy inequality, see [29, Theorem 327]. A proof
of this inequality on a wedge type domain can for instance be found in [27, Appendix C].

Lemma 2.1 (Hardy’s inequality). For all α 6= 0 and u ∈ C1
c ((0,∞)) it holds∫ ∞

0
r2α|u(r)|2 dr

r
≤ 1

α2

∫ ∞
0

r2α|r∂ru(r)|2 dr

r
.

We continue with an improved Hardy type inequality for u ∈ C∞c,σ(Ω\{0}), i.e., for divergence-free
vector fields on the wedge that are tangent to the boundary, see (1.5). Recall that Ω denotes the
wedge with opening angle θ > 0.

Lemma 2.2 (Improved Hardy’s inequality for u ∈ C∞c,σ(Ω \ {0})). Let θ ∈ (0, π) and α 6= 0. Then∥∥1
ru
∥∥2

α
≤ C0(θ)θ2‖∇u‖2α for all u ∈ C∞c,σ(Ω \ {0}),

where C0 : (0, π)→ (0,∞) is an increasing function that does not depend on α.

To show the above result we take advantage on the following Poincaré estimates with optimal
constants.
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Lemma 2.3 (Optimal Poincaré’s constant [12, Section II.5], [54]). Let f ∈ C∞c ((0, θ)) or f ∈
C∞((0, θ)) such that

∫ θ
0 f dϕ = 0. Then∫ θ

0
|f |2 dϕ ≤ θ2

π2

∫ θ

0
|∂ϕf |2 dϕ.

Proof of Lemma 2.2. Note that uϕ(r, ϕ) = 0 for ϕ ∈ {0, θ}, so that by Lemma 2.3∫ θ

0
u2
ϕ dϕ ≤ θ2

π2

∫ θ

0

(
∂ϕuϕ)2 dϕ ≤ Cεθ2

∫ θ

0

(
∂ϕuϕ + ur

)2
dϕ+

(
1
π2 + ε

)
θ2

∫ θ

0
u2
r dϕ,

for some ε > 0. Therefore ∥∥∥uϕ
r

∥∥∥2

α
≤ Cεθ2 ‖∇u‖2α +

(
1
π2 + ε

)
θ2
∥∥∥ur
r

∥∥∥2

α
. (2.1)

From (1.3c) we have ∂r(rur) = −∂ϕuϕ and integrating over (0, θ) gives

∂r

∫ θ

0
rur dϕ = −

∫ θ

0
∂ϕuϕ dϕ = 0.

The function
∫ θ

0 rur dϕ is constant in r and thus
∫ θ

0 rur dϕ = 0 since u has compact support. This

implies that
∫ θ

0 rur dϕ = 0 for any r > 0. Therefore, by Lemma 2.3 we obtain∫ θ

0
|ur|2 dϕ ≤ θ2

π2

∫ θ

0
|∂ϕur|2 dϕ

≤ Cεθ2

∫ θ

0
|∂ϕur − uϕ|2 dϕ+

(
1
π2 + ε

)
θ2

∫ θ

0
|uϕ|2 dϕ.

(2.2)

Adding (2.1) and r−2(2.2) and integrating over (0,∞) yield∥∥1
ru
∥∥2

α
≤ Cεθ2‖∇u‖2α +

(
1
π2 + ε

)
θ2
∥∥1
ru
∥∥2

α
.

For θ ∈ (0, π), there exists ε > 0 such that we can absorb
(

1
π2 + ε

)
θ2
∥∥1
ru
∥∥2

α
on the left-hand side.

We deduce the result. �

2.2. The Mellin transform. We collect some properties of the Mellin transform. For more details
on the Mellin transform see e.g. [42].

Definition 2.4. For f ∈ C∞c ((0,∞)) the Mellin transform is defined as

(Mf)(λ) = pf(λ) :=
1√
2π

∫ ∞
0

r−λf(r)
dr

r
, λ ∈ C.

For γ ∈ R we define

f(r) =
1√
2π

∫
Reλ=γ

rλ pf(λ) dImλ, r ∈ (0,∞),

which is called the inverse Mellin transform.

The definition continues to make sense for f ∈ L1
loc((0,∞)), in which case the integral might fail

to converge. If, however, it converges for some λ1, λ2 ∈ C, then it converges on the strip S := {λ ∈ C
: Reλ1 < Reλ < Reλ2} and is analytic on S. Therefore, the inverse transform does not depend on
the choice of Reλ ∈ (Reλ1,Reλ2) by Cauchy’s integral theorem.

Lemma 2.5 ([41, Lemma 6.1.3]). For f, g ∈ C∞c ((0,∞)) and for any λ ∈ C, n ∈ N and α ∈ R, we
have:

(i) zr−αf(λ) = pf(λ+ α),

(ii) y∂nr f(λ) = (λ+ 1) · · · (λ+ n) pf(λ+ n),

(iii) {(r∂r)nf(λ) = λn pf(λ),
(iv) ∫ ∞

0
r−2αf(r)g(r)

dr

r
=

∫
Reλ=α

pf(λ)pg(λ) dImλ,
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(v) ∫ ∞
0

r−2α|f(r)|2 dr

r
=

∫
Reλ=α

| pf(λ)|2 dImλ.

Let pHk
α be the closure of C∞c ({λ ∈ C : Reλ = α+ k − 1} × [0, θ]) with respect to the norm

‖u‖2
pHk
α

:=
∑
j+`=k

∫ θ

0

∫
Reλ=α+k−1

|λ|2j |∂`ϕu|2 dImλ dϕ.

Lemma 2.6 ([41, Lemma 6.1.3]). There exists a natural isomorphism jHkα −→ pHk
α with u 7→ Mu

with inverse that associates to pu ∈ pHk
α the function

u(r, ϕ) =
1√
2π

∫
Reλ=α+k−1

rλpu(λ, ϕ) dImλ.

2.3. Helmholtz projection. In order to deal with the pressure p in the Stokes equations, we
consider the Helmholtz projection. For w ∈ C∞c (Ω \ {0}) we study the elliptic problem

∆Φ = div w in Ω,

∂nΦ = n ·w on ∂Ω′,
(2.3)

Note that (2.3) does not have a unique solution in general since Ω is unbounded. We will use the
Mellin transform and ODE techniques to uniquely define the Helmholtz projection in our class of
weighted spaces.

In polar coordinates (2.3) reads(
(r∂r)

2 + ∂2
ϕ

)
Φ = r

(
(r∂r + 1)wr + ∂ϕwϕ

)
in Ω,

∂ϕΦ = rwϕ on ∂Ω′.

Applying the Mellin transform (see Lemma 2.5) gives(
λ2 + ∂2

ϕ

)
pΦ(λ, ϕ) = λ pwr(λ− 1, ϕ) + ∂ϕ pwϕ(λ− 1, ϕ) =: pg(λ, ϕ) in Ω,

∂ϕpΦ(λ, ϕ) = pwϕ(λ− 1, ϕ) on ∂Ω′.
(2.4)

Proposition 2.7. Let Reλ · θ /∈ πZ. Then the unique solution to problem (2.4) is given by

pΦ(λ, ϕ) =
pwϕ(λ− 1, 0)

λ sin(λθ)
cos(λ(θ − ϕ))− pwϕ(λ− 1, θ)

λ sin(λθ)
cos(λϕ) +

∫ θ

0
G(ϕ, ϕ̃, λ)pg(λ, ϕ̃) dϕ̃, (2.5)

for ϕ ∈ (0, θ) and where the Green’s function is given by

G(ϕ, ϕ̃, λ) =

{
cos(λϕ̃) cos(λ(θ−ϕ))

λ sin(λθ) for 0 ≤ ϕ̃ < ϕ ≤ θ,
cos(λ(θ−ϕ̃)) cos(λϕ)

λ sin(λθ) for 0 ≤ ϕ < ϕ̃ ≤ θ.

Proof. Uniqueness follows by standard ODE results. Thus the formula can be verified a posteriori.
�

By properties of the Mellin transform we obtain

y∇Φ(λ, ϕ) =

(
(λ+ 1)pΦ(λ+ 1, ϕ)

∂ϕpΦ(λ+ 1, ϕ)

)
and from the representation for pΦ in Proposition 2.7 we find with integration by parts

pΦ(λ, ϕ) =

∫ θ

0

(
G(ϕ, ϕ̃, λ)λ pwr(λ− 1, ϕ̃)− ∂ϕ̃G(ϕ, ϕ̃, λ) pwϕ(λ− 1, ϕ̃)

)
dϕ̃.

From the Green’s function G(ϕ, ϕ̃, λ) in Proposition 2.7 it follows that λpΦ(λ, ϕ) and ∂ϕpΦ(λ, ϕ) only
have singularities at λ = kπ/θ for k ∈ Z \ {0}. Hence, for any λ ∈ C such that Reλ 6= kπ/θ for

k ∈ Z\{0}, we can uniquely define ∇Φ as the inverse Mellin transform of y∇Φ(λ, ϕ) if one integrates
over any vertical line such that Reλ+ 1 lies within the interval

(
− π

θ ,
π
θ

)
, i.e., we can integrate over

vertical lines Reλ ∈ (−π+θ
θ , π−θθ ). Note that as θ ↓ 0 these singularities move to ±∞.
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Definition 2.8 (Helmholtz projection). Let w ∈ C∞c (Ω \ {0}) and λ ∈ C such that Reλ ∈
(−π+θ

θ , π−θθ ). The Helmholtz projection P is defined by

Pw := w −∇Φ.

Here, ∇Φ is the inverse Mellin transform of y∇Φ(λ, ϕ) where the integral is taken over any vertical
line Reλ ∈ (−π+θ

θ , π−θθ ), i.e.,

∇Φ(r, ϕ) =
1√
2π

∫
Reλ=γ

rλy∇Φ(λ, ϕ) dImλ with γ ∈
(
− π+θ

θ , π−θθ
)
.

Furthermore, pΦ(λ, ϕ) is defined by (2.5) and Φ solves (2.3).

Lemma 2.9. The Helmholtz projection satisfies the following properties:

(i) P2 = P,
(ii) Pw = w for any w ∈ Cc,σ(Ω \ {0}),

(iii) P is symmetric (on Cc(Ω \ {0})) with respect to (·, ·)L2(Ω),

(iv) Pr∂rw = r∂rPw for w ∈ C∞c (Ω \ {0}).

Proof. It is straightforward to check that (i), (ii) and (iii) hold. For (iv) note that by (A.6) we have

r∂rPw = r∂rw −∇(r∂r − 1)Ψ and P(r∂rw) = r∂rw −∇Φ,

where {
∆Ψ = div w in Ω,

∂nΨ = n ·w on ∂Ω′,

and {
∆Φ = div(r∂rw) = (r∂r + 1) div w in Ω,

∂nΦ = n · r∂rw on ∂Ω′.

Both problems have a unique solution up to an additive constant by Definition 2.8. By using (A.6)
again, we learn that (r∂r− 1)Ψ satisfies the problem for Φ and therefore (r∂r− 1)Ψ and Φ are equal
up to an additive constant which proves the lemma. �

3. Proof of the main result

We state the results for the regular and polynomial problem in Sections 3.1 and 3.2, respectively.
In Section 3.3 these results will be combined to prove Theorem 1.4.

3.1. Well-posedness of the Stokes system with non-singular right-hand side. We state
the well-posedness result for the Stokes equations in (1.3) with a regular source term and with
inhomogeneous Navier-slip boundary conditions. We need to consider inhomogeneous Navier slip
to be able to deal with remainder terms coming from the localization of the polynomial problem in
Section 3.2. We start by introducing appropriate spaces and norms on ∂Ω′.

Let k ≥ 0 and α ∈ R \ Z. We define the space X k
α as the closure of C∞c (∂Ω′) with respect to the

norm

|g|2X k
α

:= |g|2α + |r∂rg|2α + |g|21Bkα
(1.4)
= |g|2α + |r∂rg|2α +

k∑
`=1

[g]2
`− 1

2
,α
.

The Stokes equations in (1.3) with right-hand side f ∈ Z M
α and g ∈X M+1

α are

−∆u +∇p = f in Ω,

div u = 0 in Ω,

u · n = 0 on ∂Ω′,

u · τ + ∂n(u · τ ) = g on ∂Ω′.

(3.1)

Therefore, we introduce for k ≥ 1 the space

Y k
α :=

{
1Hkα if α > 0 or k + α− 1 < 0,{
p : Ω→ R : p = ζp0 + p1 with p0 ∈ R and p1 ∈ 1Hkα

}
if α < 0 ≤ k + α− 1,

(3.2)
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where the latter space is endowed with the norm ‖p‖Y k
α

:= |p0|+‖p1‖1Hkα . The following result holds

for the regular problem.

Theorem 3.1 (Elliptic problem). Let ε ∈ (0, 1). There exists a constant c > 0 such that for any
θ ∈ (0, (1 − ε)π) and α ∈ Iε \ Z satisfying |αθ| < c, for any f ∈ Z M

α and g ∈ X M+1
α with M ∈ N

such that M + α+ 1 ∈ Iε \Z, there exists a unique solution (u, p) ∈H M+2
α ×Y M+1

α to (3.1) which
satisfies

‖u‖H M+2
α

+ ‖p‖Y M+1
α

≤ Cα,ε,M
(
‖f‖Z M

α
+ |g|X M+1

α

)
. (3.3)

This theorem is a consequence of two results: existence and uniqueness of the solution in the base
case M = 0 (Theorem 3.2) and improvement of the regularity to M ≥ 1 (Proposition 3.3).

Existence and uniqueness of the solution to the stationary Stokes problem (3.1) for M = 0 is not
shown in H 2

α × Y 1
α , but in a space with a norm that is suitably scaled in |α| and θ. We use this

space to get explicitly stronger information on the solution in the base regularity setting.
Let α ∈ R \Z and θ ∈ (0, π). We define the space X2

α,θ as the closure of all u ∈ C∞c,σ(Ω \ {0}) (see

(1.5)) with respect to the norm

‖u‖2X2
α,θ

:= |ur|2α + |α|θ3|r∂rur|2α + JuK2
1,α + |α|θ3JuK2

2,α−1. (3.4)

Moreover, Y1
α,θ is the closure of all p ∈ C∞c (Ω \ {0}) with respect to the norm

‖p‖2Y1
α,θ

:= |α|θ3JpK2
1,α−1.

Sections 4-8 will be concerned with the proof of the following theorem.

Theorem 3.2. Let ε ∈ (0, 1). There is a constant c > 0 such that for any θ ∈ (0, (1 − ε)π) and
α ∈ Iε \ Z satisfying |αθ| < c, for any f ∈ H0

α−1 and g ∈ X 0
α , there exists a unique solution

(u, p) ∈ X2
α,θ ×Y1

α,θ to (3.1) which satisfies

‖u‖X2
α,θ

+ ‖p‖Y1
α,θ
≤ Cα

(
‖f‖H0

α−1
+ |g|X 0

α

)
.

In particular, we have
‖u‖H1

α
≤ Cα

(
‖f‖H0

α−1
+ |g|X 0

α

)
. (3.5)

The second result that is required to prove Theorem 3.1 deals with improving the regularity of the
solution using a-priori estimates for the Stokes equations in a wedge with slip boundary condition
and prescribed tangent velocity. Because we have a strong solution from Theorem 3.2, we can
consider a system with a (scaling-invariant) slip boundary condition and prescribed tangent velocity
instead of the original problem with the Navier-slip condition. Consider the equations

−r−2[((r∂r)
2 + ∂2

ϕ)ur − ∂ϕuϕ − ur] + ∂rp = fr for r > 0, ϕ ∈ (0, θ),

−r−2[((r∂r)
2 + ∂2

ϕ)uϕ + 2∂ϕur − uϕ] + r−1∂ϕp = fϕ for r > 0, ϕ ∈ (0, θ),

(r∂r + 1)ur + ∂ϕuϕ = 0 for r > 0, ϕ ∈ (0, θ), (3.6)

uϕ = 0 for r > 0, ϕ ∈ {0, θ},
∂ϕur = g for r > 0, ϕ ∈ {0, θ},

for which the following result holds. The proof of this proposition is given in Section 9.

Proposition 3.3. Let ε ∈ (0, 1). There is a constant c > 0 such that for any θ ∈ (0, (1− ε)π) and
α ∈ Iε \ Z satisfying |αθ| < c we have:

(1) If f ∈ MHMα and g ∈ M+1BM+1
α+1 with M ∈ N such that M + α+ 1 ∈ Iε \ Z, then there exists

a unique solution (u, p) ∈ M+2HM+2
α ×M+1HM+1

α to (3.6) which satisfies

JuKM+2,α + JpKM+1,α ≤ Cα,ε
(
JfKM,α + [g]M+ 1

2
,α+1

)
. (3.7)

(2) If u is the solution from Theorem 3.2 and if g = ±(g− rur). Then the solution of (3.6) that
satisfies (3.7) coincides with the solution of Theorem 3.2 when M = 0.

(3) If ζ is defined in (1.6), M̃ ≥ 0 is a natural number and

M̃ + α+ 1 ∈ Iε \ Z, f ∈ HM̃α and g ∈ 1BM̃+1
α+1 .
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(i) If, in addition, M̃ + α < 0 or α > 0, then there exists a unique solution (u, p) ∈
1HM̃+2

α × 1HM̃+1
α to (3.6) that satisfies (3.7) for any 0 ≤M ≤ M̃ .

(ii) If, in addition, α < 0 < M̃ + α, then there exists a unique triple (u, p1, p0) ∈ 1HM̃+2
α ×

1HM̃+1
α × R such that (u, p) = (u, ζp0 + p1) satisfies (3.6) and (u, p1) satisfies (3.7)

(with p replaced by p1) for any 0 ≤M ≤ M̃ . Moreover,

|p0| ≤ Cα,ε,M
(
JfK

M̃,α
+ [g]

M̃+ 1
2
,α+1

)
.

With the aid of Theorem 3.2 and Proposition 3.3 we can prove Theorem 3.1.

Proof of Theorem 3.1. For M = 0, Theorem 3.2 implies the existence of a unique solution (u, p) in
X2
α,θ×Y1

α,θ of (3.1) which satisfies (3.5). After noticing that (3.1) equals (3.6) with g = ±(rg−rur),
we apply Proposition 3.3 with these values and deduce Theorem 3.1. For M ≥ 1 the proof of the
regularity estimate (3.3) goes via finite induction. Suppose that (3.3) holds for M = m and suppose
that m+ 1 + α + 1 ∈ Iε \ Z. It then remains to show that (3.3) holds for M = m+ 1. Again (3.1)
equals (3.6) with g = ±(rg − rur), which reads in Mellin variables pg(λ) = ±(pg(λ− 1)− pur(λ− 1)).
Then by definition of the norm [ · ]2m+3/2,α (see Section 1.2), we obtain

[g]2m+3/2,α+1 ≤
4

min{1, |m+ α+ 1|}2m+2

(
[ur]

2
m+3/2,α + [g]2m+3/2,α

)
≤ Cα

(
JuK2

m+2,α + [g]2m+3/2,α

)
.

(3.8)

By Proposition 3.3 with M = m+ 1 and the above estimate we find

JuKm+3,α + Jp1Km+2,α ≤Cα,ε
(
JfKm+1,α + [g]m+3/2,α+1

)
(3.8)

≤Cα,ε
(
JfKm+1,α + JuKm+2,α + [g]m+3/2,α

)
≤Cα,ε

(
JfKm+1,α + ‖f‖Hmα + |g|1Bm+1

α
+ [g]m+3/2,α

)
≤Cα,ε

(
‖f‖Hm+1

α
+ |g|1Bm+2

α

)
,

where in the last step we have used the induction hypothesis

JuKm+2,α + Jp1Km+1,α ≤ Cα,ε
(
‖f‖Hmα + |g|1Bm+1

α

)
. �

3.2. The polynomial problem. We continue with the polynomial problem, i.e., we consider the
Stokes equations (1.3) with a polynomial source term of the form

Pn
f (r, ϕ) =

n−2∑
j=0

f (j)(ϕ) rj ,

where n− 2 is associated with the degree of the polynomial. Using the ansatz

Pu(r, ϕ) =
∑
j≥0

u(j)(ϕ) rj and Pp(r, ϕ) =
∑
j≥0

p(j)(ϕ) rj

in (1.3) with source term Pn
f (r, ϕ), it is easy to see that the solution Pu is a generalized polynomial

and has infinitely many nonzero coefficients u(j) due to the Navier-slip boundary condition. In fact,
as we can see from (1.3e), the Navier-slip boundary condition implies a shift in the coefficients of the

form ∂ϕu
(j)
r (ϕ) = ∓u(j−1)

r (ϕ) for ϕ ∈ {0, θ}. This shift, which is due to the non-scaling invariance of
the Navier-slip condition, causes that the theory developed in [41, 42, 51] is not directly applicable.

We truncate Pu and Pp at order n and n− 1 respectively and define

Pn
u(r, ϕ) =

n∑
j=0

u(j)(ϕ) rj and Pnp (r, ϕ) =

n−1∑
j=0

p(j)(ϕ) rj .

The couple (Pn
u,Pnp ) satisfies the following system with non-homogeneous boundary conditions

−∆Pn
u +∇Pnp =Pn

f in Ω, (3.9a)

divPn
u = 0 in Ω, (3.9b)

Pn
u · n = 0 on ∂Ω′, (3.9c)
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Pn
u · τ + ∂n(Pn

u · τ ) = rnu(n) · τ on ∂Ω′. (3.9d)

Proposition 3.4. Let ε ∈ (0, 1), θ ∈ (0, (1− ε)π), and M,n ∈ N with 2 ≤ n ≤ (1− ε)πθ − 1. Let

Pn
f (r, ϕ) =

n−2∑
j=0

f (j)(ϕ) rj ,

be such that Pn
f (r, ϕ) ∈ Pn−2,M . Then there exists a unique solution (Pn

u,Pnp ) of (3.9) such that
Pn

u ∈ Pn,M+2, Pnp ∈ Pn−1,M+1 and Pnp (0) = 0. Moreover, it holds that

‖Pn
u‖Pn,M+2

+ ‖Pnp ‖Pn−1,M+1
≤ Cε‖Pn

f (r, ϕ)‖Pn−2,M
.

The proof of this proposition is given in Section 10.

Localization of the polynomial problem. Recall that we decomposed the source term as ζPn
f and

f − ζPn
f , in such a way that we can apply Proposition 3.4 for the polynomial part Pn

f and Theorem
3.1 for the regular part f−Pn

f . The cut-off function ζ as defined in (1.6) was introduced to ensure that
f − ζPn

f has the right behavior as r −→ ∞. Subsequently, we introduced the localized polynomial
velocity Qn

u of Pn
u in (1.9). Moreover, the localized polynomial pressure is defined as

Qnp (r, ϕ) = ζ(r)P̃np (r, ϕ).

From (3.9) and Lemma 1.3, it is straightforward to verify that

−∆Qn
u +∇Qnp = ζPn

f + Qn
f in Ω,

divQn
u = 0 in Ω,

Qn
u · n = 0 on ∂Ω′,

Qn
u · τ + ∂n(Qn

u · τ ) =Qng on ∂Ω′,

(3.10)

where

Qn
f = −2∇ζ · ∇Pn

u −Pn
u∆ζ −∆(Pnψ∇⊥ζ) + Pnp∇ζ,

Qng = ζrnu(n) · τ + Pnψ︸︷︷︸
=0

∇⊥ζ · τ + ∂n(Pnψ∇⊥ζ · τ ). (3.11)

Proposition 3.5. Let ε ∈ (0, 1), θ ∈ (0, (1 − ε)π), M,n ∈ N with 2 ≤ n ≤ (1 − ε)πθ − 1. Let
Pn

f ∈ Pn−1,M and let Qn
f and Qng be as in (3.11). Then for α ∈ R \ Z, we have

‖Qn
f ‖Z M

α
≤ Cα,ε‖Pn

f ‖Pn−2,M

and if n > M + α , we have

‖Qng‖X M+1
α

≤ Cα,ε‖Pn
f ‖Pn−2,M

.

Proof. From the fact that Pn
u, Pnψ are polynomials in r with coefficients in HM+2(0, θ), Pnp is a

polynomial in r with coefficients in HM+1(0, θ) and ∇ζ ∈ C∞c ([1, 2]), it is straightforward to deduce
that ‖Qn

f ‖Z M
α
≤ C‖Pn

f ‖Pn−2,M
. Regarding Qng , we can argue similarly for ∂n(Pnψ∇⊥ζ) · τ . To

estimate ζrnu(n) · τ we use (1.7) and the restriction n > M + α. �

3.3. Proof of the main result. We conclude with the proof of Theorem 1.4.

Proof of Theorem 1.4. Let f ∈ ZMα . If bM + α − 1c < 0, then f ∈ Z M
α and Theorem 3.1 already

implies the result. Assume now that bM +α− 1c ≥ 0. Then there exists Pn
f with n = bM +α+ 1c

and Pn
f ∈ Pn−2,M such that f = ζPn

f + f1 with f1 ∈ Z M
α . Proposition 3.4 ensures that there exists

a solution (Pn
u,Pnp ) to (3.9). Following the localization procedure as in Section 3.2, we obtain a

localized polynomial solution (Qn
u,Qnp ) that satisfies (3.10). A solution (u, p) to the Stokes equations

(1.3) is decomposed into a localized polynomial part and a regular part:

u = Qn
u + u−Qn

u = Qn
u + ureg and p = Qnp + p−Qnp = Qnp + preg,
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where (ureg, preg) solves

−∆ureg +∇preg = f1 −Qn
f in Ω,

div ureg = 0 in Ω,

ureg · n = 0 on ∂Ω′,

ureg · τ + ∂n(ureg · τ ) = −Qng on ∂Ω′,

(3.12)

and Qn
f ,Qng are as given in (3.11). Proposition 3.5 implies Qn

f , f1 ∈ Z M
α . Recall that n = bM +

α+ 1c > M +α. Therefore, by Proposition 3.5 we get Qng ∈X M+1
α . Theorem 3.1 implies existence

of a unique solution (ureg, preg) ∈H M+2
α × Y M+1

α to (3.12).
We verify that for the pressure it holds p = Qnp + preg = ζPnp + preg ∈ YM+1

α . Recall that

by the definition of Y M+1
α in (3.2) we have preg = ζp0 + p1 with p1 ∈ 1HM+1

α . Therefore, p =
ζ(Pnp + p0) + p1 ∈ YM+1

α .
It remains to show uniqueness. Let (u, p) = (Qu + ureg,Qp + preg) as before and let (ū, p̄) =

(Qū+ ūreg,Qp̄+ p̄reg) another solution in XM+2
α ×YM+1

α of (1.3) with the same source term f . Then

−∆(Pn
u −Pn

ū) +∇(Pnp − Pnp̄ ) =Rs in Ω, (3.13)

div(Pn
u −Pn

ū) = 0 in Ω,

(Pn
u −Pn

ū) · n = 0 on ∂Ω′,

(Pn
u −Pn

ū) · τ + ∂n((Pn
u −Pn

ū) · τ )− rn(u(n) − ū(n)) · τ =Rb on ∂Ω′. (3.14)

where

Rs = − f1 −∆ūreg +∇p̄reg − (1− ζ)(−∆P ū −∇Pp̄ + P f )− div(∇⊥ζ ⊗P ū) + ∆(∇⊥ζPψ̄),

(3.15)

Rb = ūreg · τ + ∂n(ūreg · τ )− (1− ζ)P ū · τ − Pψ̄ · ∇⊥ζ · τ − ∂n((1− ζ)P ū · τ − Pψ̄ · ∇⊥ζ · τ ).

(3.16)

Notice that −∆(Pn
u − Pn

ū) + ∇(Pnp − Pnp̄ ) ∈ Pn−2,M , we deduce from (3.13) that Rs ∈ Pn−2,M .

From (3.15) we have that Rs ∈ HMα . Using the fact that the only polynomial in Pn−2,M which is

also in HMα is the zero polynomial we deduce that Rs = 0. Similarly using (3.14) and (3.16) we also
have Rb = 0.

For α > 0 the definition of YM+1
α implies that Pp(0) = Pp̄(0) = 0, so Proposition 3.4 implies that

(Pu,Pp) = (P ū,Pp̄) and the uniqueness for the regular problem implies that (ureg, preg) = (ūreg, p̄reg)
as well.

For α < 0, we deduce that Pu = P ū while Pp̄ = Pp + c for some constant c ∈ R. It remains to
show that ureg = ūreg and p = p̄. First we notice that the solutions ureg and ureg only depend on the

Helmholtz projection (see Section 2.3) of the source terms and P(Qn
f ) = P(Qn

f )+P(∇(cζ)) = P(Qn
f ).

We deduce that ureg = ureg and thus u = u. This implies that the difference preg − preg satisfies{
−∆(preg − preg) = div(c∇ζ) in Ω,

∇(preg − preg) · n = c∇ζ · n = 0 on ∂Ω′,

which has a unique solution in Y M+1
α given by preg − preg = cζ ∈ Y M+1

α . Therefore,

p = Qnp̄ + preg = ζ
(
Pnp + c

)
+ preg = ζPnp + preg = p.

Thus (u, p) = (u, p) and this concludes the proof. �

4. Construction of a strong solution

In this section, we prove existence of a unique strong solution to the Stokes equations (1.3) with
a regular source term as is described in Theorem 3.2. The proof can be subdivided into three steps
which will be outlined below. All the details will be given in Sections 6-8.
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Step 1: Variational formulation (Section 6). To obtain a solution to (3.1) with a regular source
term in a weighted Sobolev space, we employ the Lax-Milgram theorem. After testing the equation
with a test function r−2αv with v ∈ C∞c,σ(Ω \ {0}) in the L2 inner product and integration by parts,
a variational formulation of the problem is obtained. However, due to the non-scaling invariant
Navier-slip boundary condition, it is not clear if the bilinear form in this variational formulation
is coercive. To circumvent this issue, we instead test the equation with a test function containing
derivatives.

For v ∈ C∞c,σ(Ω \ {0}), we define

vtest := v − |α|θ3(r∂r)
2v − c3|α|θ3r2∆v,

for some universal c3 > 0 to be chosen later. Let α 6= 0 and P be the Helmholtz projection from
Section 2.3. Testing (3.1) in (·, ·)L2(Ω) with the test function P(r−2αvtest) leads to the variational
problem

B(u,v) := B1(u,v) + |α|θ3B2(u,v) + c3|α|θ3B3(u,v) = (f ,P(r−2αvtest))L2(Ω) + 〈g, vr〉α, (4.1)

where B1, B2 and B3 will be derived in Section 6 and

〈g, vr〉α :=

∫
∂Ω′

r−2αgvr ds+ |α|θ3

∫
∂Ω′

r−2α
(
(r∂r − 2α+ 1)g

)
(r∂rvr) ds.

is a pairing that will be derived in Section 6.4. Moreover, the pressure p is the unique solution in
Y1
α,θ of

∇p = ∆u + f − P(∆u + f). (4.2)

Step 2: Coercivity of the bilinear form (Section 7). The bilinear form B in (4.1) satisfies the
conditions of the Lax-Milgram theorem using the space X2

α,θ as defined in (3.4). The proofs of the
two propositions below are given in Section 7.

Proposition 4.1 (Coercivity). Let ε ∈ (0, 1). There exist constants c, c3 > 0 such that for any
θ ∈ (0, (1− ε)π) and α ∈ Iε \ Z satisfying |αθ| < c, we have the coercivity estimate

B(u,u) = B1(u,u) + |α|θ3B2(u,u) + c3|α|θ3B3(u,u) ≥ C‖u‖2X2
α,θ

for all u ∈ C∞c,σ(Ω \ {0}),

for some universal constant C.

Proposition 4.2 (Boundedness). Let ε ∈ (0, 1). There exist constants c, c3 > 0 such that for any
θ ∈ (0, (1− ε)π) and α ∈ Iε \ Z satisfying |αθ| < c, we have

|B(u,v)| ≤ C‖u‖X2
α,θ
‖v‖X2

α,θ
for all u,v ∈ C∞c,σ(Ω \ {0}),

for some universal constant C.

Step 3: Strong solution (Section 8). It remains to prove that the solution to the variational
problem (4.1) also satisfies the original Stokes equations (3.1) and is in fact a strong solution. To this
end, we need to verify that the set of test functions of the form vtest is of sufficiently high resolution
in order to apply the fundamental lemma of calculus of variations, i.e., we study the surjectivity
of the mapping v 7→ vtest. At this point it is crucial that all the terms in vtest have the same
scaling in r and that we did not apply the non-scaling invariant Navier-slip boundary condition to
derive the third bilinear form. This will lead to a test function problem that is subject to Dirich-
let boundary conditions which is easier to solve than a problem with Navier-slip boundary conditions.

The following proposition is proved in Section 8.

Proposition 4.3. Let ε ∈ (0, 1). There exists a constant c > 0 such that for any θ ∈ (0, (1 − ε)π)
and α ∈ Iε \ Z satisfying |αθ| < c, for c3 > 0 the constant in (4.1) and for any f ∈ H0

α−1,

g ∈ X 0
α , the following statement holds: (u, p) ∈ (X2

α,θ,Y
1
α,θ) satisfies (3.1) almost everywhere, if

and only if (u, p) ∈ (X2
α,θ,Y

1
α,θ) is a variational solution in the sense that they satisfy (4.1) for all

v ∈ C∞c,σ(Ω \ {0}) and (4.2).

By combining the results from the above steps we can finish the proof of Theorem 3.2.
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Proof of Theorem 3.2. For any f ∈ H0
α−1 and g ∈X 0

α there exists a unique u ∈ X2
α,θ such that

B(u,v) = (f ,P(r−2αvtest))L2(Ω) + 〈g, vr〉α for all v ∈ C∞c,σ(Ω \ {0}).

This follows immediately by the Lax-Milgram theorem using Propositions 4.1, 4.2, density of C∞c,σ(Ω\
{0}) in X2

α,θ (by definition), Proposition B.4 and the estimates

|(f ,P(r−2αvtest))L2(Ω)| ≤ C‖f‖H0
α−1
‖v‖X2

α,θ
and |〈g, vr〉α| ≤ ‖g‖X 0

α
‖v‖X2

α,θ
.

Finally, Proposition 4.3 ensures that the solution (u, p) ∈ X2
α,θ × Y1

α,θ (where p is the solution to

(4.2)), satisfies the Stokes problem (3.1). �

5. Estimates on the Helmholtz projection

In this section, we prepare for proving coercivity of the bilinear forms B1, B2 and B3 in Section
7. We derive estimates for the commutators [P,∆] and [P, r−2α] which will appear in the bilinear
forms B1, B2 and B3 in Section 6. We recall that the commutator of two operators A1 and A2 is
given by [A1, A2] = A1A2 −A2A1.

5.1. Estimates on the commutator [P,∆]. The commutator [P,∆] can have singularities at ±π
θ .

Therefore, we define for ε ∈ (0, 1) and θ ∈ (0, (1− ε)π) the interval

Iε :=
[
−(1− ε)πθ , (1− ε)

π
θ

]
and we show uniform estimates for Reλ ∈ Iε.

We start with the following lemma in the case that v is divergence free, but v · n 6= 0 on ∂Ω′.

Lemma 5.1. Let ε ∈ (0, 1), θ ∈ (0, (1− ε)π) and let v ∈ C∞c (Ω \ {0}) be such that div v = 0 in Ω.
Then for α ∈ Iε \ {0}, we have

‖Pv‖α ≤ Cε‖v‖α.

Proof. To prove the estimate in the statement of the lemma, it suffices, by definition of P, to estimate

‖∇Φ‖2α =

∫ θ

0

∫
Reλ=α

|λ|2|pΦ(λ, ϕ)|2 + |∂ϕpΦ(λ, ϕ)|2 dImλ dϕ,

where by Proposition 2.7 we have

pΦ(λ, ϕ) =
pvϕ(λ− 1, 0)

λ sin(λθ)
cos(λ(θ − ϕ))− pvϕ(λ− 1, θ)

λ sin(λθ)
cos(λϕ).

We only consider the estimates for ‖∂rΦ‖2α since the estimates for ‖1
r∂ϕΦ‖2α are similar.

We start with some preliminary computations. Write λ = α + it, so that by an elementary
computation we obtain for ϑ ∈ {ϕ, θ − ϕ}∣∣∣∣cos(λϑ)

sin(λθ)

∣∣∣∣2 =
cos2(αϑ) cosh2(tϑ) + sin2(αϑ) sinh2(tϑ)

cos2(αθ) sinh2(tθ) + sin2(αθ) cosh2(tθ)
.

To bound the above expression, we notice that

| cos2(αθ)| ≥ 1

4
if αθ ∈

⋃
k∈Z

(
−π

4 + kπ, π4 + kπ
)

=: D, (5.1)

while | sin2(αθ)| ≥ 1
4 if αθ ∈ R\D. Moreover, for x > 0 we have cosh2(tx) ∼ e2|t|x, while sinh2(tx) ∼

e2|t|x if |tx| ≥ 1
4 . We deduce that∣∣∣∣cos(λϑ)

sin(λθ)

∣∣∣∣2 ≤


cos2(αϑ) cosh2(tϑ)+sin2(αϑ) sinh2(tϑ)

cos2(αθ) sinh2(tθ)
≤ Ce−2|t|(θ−ϑ) if αθ ∈ D and |tθ| ≥ 1/4,

cos2(αϑ) cosh2(tϑ)+sin2(αϑ) sinh2(tϑ)

sin2(αθ) cosh2(tθ)
≤ Ce−2|t|(θ−ϑ) if αθ ∈ R \D.

Therefore, if (αθ, tθ) /∈ D × (−1
4 ,

1
4), we have∫ θ

0

∣∣∣∣cos(λϑ)

sin(λθ)

∣∣∣∣2 dϕ ≤
∫ θ

0
e−2|t|(θ−ϑ) dϕ ≤ C 1− e−2|t|θ

|t|
, (5.2)
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which can be bounded by

1− e−2|t|θ

|t|
≤ C (|α|θ + 1)

|λ|
and

1− e−2|t|θ

|t|
≤ Cθ. (5.3)

To continue, we show a trace-type estimate for divergence-free vector fields in the wedge. Let
η ∈ C∞c ((−1, 1)) be a symmetric cut-off function such that η(0) = 1 and let ϑ ∈ {0, θ}. By the
fundamental theorem of calculus and the divergence-free condition, we have

|pvϕ(λ, ϑ)|2 = −
∫ θ

0
∂ϕ

(
η
(ϕ−ϑ

θ

)
|pvϕ(λ, ϕ)|2

)
dϕ

= −
∫ θ

0
θ−1η′

(ϕ−ϑ
θ

)
|pvϕ(λ, ϕ)|2 dϕ− 2Re

∫ θ

0
η
(ϕ−ϑ

θ

)
∂ϕpvϕ(λ, ϕ)pvϕ(λ, ϕ) dϕ

= −
∫ θ

0
θ−1η′

(ϕ−ϑ
θ

)
|pvϕ(λ, ϕ)|2 dϕ− 2Re

∫ θ

0
η
(ϕ−ϑ

θ

)
(λ+ 1)pvr(λ, ϕ)pv(λ, ϕ) dϕ

= (θ−1 + |λ+ 1|)
∫ θ

0
|pv(λ, ϕ)|2 dϕ. (5.4)

We now return to the bound of ‖∂rΦ‖α. For αθ ∈ R \D, we bound using (5.2), (5.3) and (5.4)

‖∂rΦ‖2α =

∫ θ

0

∫
Reλ=α

∣∣∣∣pvϕ(λ− 1, 0)

sin(λθ)
cos(λ(θ − ϕ))− pvϕ(λ− 1, θ)

sin(λθ)
cos(λϕ)

∣∣∣∣2 dϕ dImλ

≤ C(1 + |α|θ)‖v‖2α ≤ C‖v‖2α,
(5.5)

where in the last step we have used that |α|θ ≤ π for α ∈ Jε.
For αθ ∈ D, we have to consider the cases |tθ| ≥ 1/4 and |tθ| < 1/4. In the case |tθ| ≥ 1/4 we

can follow the same strategy as for αθ ∈ R \ D and deduce (5.5). In the case |tθ| < 1/4, we are
allowed to replace the trigonometric functions with their Taylor expansions to deduce the desired
bound. For α ∈ Iε \ {0} it holds that

| sin(λθ)| ∼ε |λθ|, |1− cos(λ(θ − ϕ))| ∼ε
∣∣∣(λ(θ − ϕ))2

2

∣∣∣,
and

pvϕ(λ− 1, 0)

sin(λθ)
cos(λ(θ − ϕ))− pvϕ(λ− 1, θ)

sin(λθ)
cos(λϕ)

=
pvϕ(λ− 1, 0)

sin(λθ)
(cos(λ(θ − ϕ))− 1) +

pvϕ(λ− 1, 0)− pvϕ(λ− 1, θ)

sin(λθ)
− pvϕ(λ− 1, θ)

sin(λθ)
(cos(λϕ)− 1)

=: I1 + I2 + I3.

To bound ‖∂rΦ‖2α, we estimate the above terms separately. The estimates of I1 and I3 are trivial
using (5.4). To estimate I2 note that

pvϕ(λ− 1, 0)− pvϕ(λ− 1, θ) = −
∫ θ

0
∂ϕpvϕ(λ− 1, ϕ) dϕ =

∫ θ

0
λpvr(λ− 1, ϕ) dϕ,

since div v = 0. We obtain∫ θ

0

∫
Reλ=α, |tθ|<1

4

∣∣∣∣pvϕ(λ− 1, 0)− pvϕ(λ− 1, θ)

sin(λθ)

∣∣∣∣2 dImλ dϕ

=

∫ θ

0

∫
Reλ=α, |tθ|<1

4

∣∣∣∣
∫ θ

0 λpvr(λ− 1, ϕ′) dϕ′

sin(λθ)

∣∣∣∣2 dImλ dϕ

≤ Cε
∫

Reλ=α, |tθ|<1
4

|λ|2θ2‖pv(λ− 1, ·)‖2L2(0,θ)

|λ|2θ2
dImλ ≤ Cε‖v‖2α. �

We continue with the estimate on the commutator of the Helmholtz projection and the Laplacian.
Note that P∆v for v ∈ C∞c,σ(Ω\{0}) is well defined by Lemma 5.1 using that div ∆v = 0 (see Lemma
A.1).
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Lemma 5.2. Let ε ∈ (0, 1) and θ ∈ (0, (1− ε)π). Then for α− 1 ∈ Iε \ {0} and v ∈ C∞c,σ(Ω \ {0}),
we have

‖[P,∆]v‖2α−1 ≤Cε
(
‖∇(r∂rv)‖2α + ‖∇v‖2α +

∥∥vϕ
r

∥∥2

α

)
+ Cε‖1

r∂
2
ϕv‖α

(
‖∇(r∂rv)‖α + ‖∇v‖α +

∥∥vϕ
r

∥∥
α

)
+ C

θ2 ‖1
r∂ϕvr‖

2
α + C

θ ‖
1
r∂

2
ϕvr‖α‖1

r∂ϕvr‖α.

Proof. Note that Pv = v, so that [P,∆]v = −∇Φ, where Φ is the potential in the definition of P∆v.
It suffices to estimate

‖∇Φ‖2α−1 =

∫ θ

0

∫
Reλ=α−1

|λ|2|pΦ(λ, ϕ)|2 + |∂ϕpΦ(λ, ϕ)|2 dImλ dϕ

where by Proposition 2.7 and Lemma A.1(iii) we have

pΦ(λ, ϕ) =
{(∆v)ϕ(λ− 1, 0)

λ sin(λθ)
cos(λ(θ − ϕ))−

{(∆v)ϕ(λ− 1, θ)

λ sin(λθ)
cos(λϕ). (5.6)

Using that div v = 0 and vϕ = 0 on ∂Ω′, we have on the boundary

(∆v)ϕ
(A.4)
= r−2

[
((r∂r)

2 + ∂2
ϕ)vϕ + 2∂ϕvr − vϕ

]
= −r−2(r∂r − 1)∂ϕvr.

In Mellin variables, the above expression rewrites

{(∆v)ϕ(λ, ϑ) = −(λ+ 1)∂ϕpvr(λ+ 2, ϑ), (5.7)

where ϑ ∈ {ϕ, θ − ϕ}. In this proof, we only show the estimates for ‖∂rΦ‖α−1, the estimates for
‖1
r∂ϕΦ‖α−1 are derived similarly.
To show the result we use the following trace type estimate. Let η ∈ C∞c ((−1, 1)) be a symmetric

cut-off function such that η(0) = 1 and let ϑ ∈ {0, θ}. By the fundamental theorem of calculus and
the Cauchy-Schwarz inequality we have the following estimate

|∂ϕpvr(λ, ϑ)|2 = −
∫ θ

0
∂ϕ

(
η
(ϕ−ϑ

θ

)
|∂ϕpvr|2(λ, ϕ)

)
dϕ

= −
∫ θ

0
θ−1η′

(ϕ−ϑ
θ

)
|∂ϕpvr|2(λ, ϕ) dϕ− 2Re

∫ θ

0
η
(ϕ−ϑ

θ

)
∂2
ϕpvr(λ, ϕ)∂ϕpvr(λ, ϕ) dϕ (5.8)

.
1

θ

∫ θ

0
|∂ϕpvr(λ, ϕ)|2 dϕ+

(∫ θ

0
|∂2
ϕpvr(λ, ϕ)|2 dϕ

) 1
2
(∫ θ

0
|∂ϕpvr(λ, ϕ)|2 dϕ

) 1
2
.

We now go back to the bound of ‖∂rΦ‖α−1. Write λ = α − 1 + it with t ∈ R. Let D be as in
(5.1), then for |α− 1|θ ∈ R \D (5.2) holds. Using (5.6) and (5.7), we estimate

‖∂rΦ‖2α−1 =

∫ θ

0

∫
Reλ=α−1

∣∣∣∣λ∂ϕpvr(λ+ 1, 0)

sin(λθ)
cos(λ(θ − ϕ))− λ∂ϕpvr(λ+ 1, θ)

sin(λθ)
cos(λϕ)

∣∣∣∣2 dImλ dϕ

(5.2)

.
∫

Reλ=α−1
|λ|2

(
|∂ϕpvr(λ+ 1, 0)|2 + |∂ϕpvr(λ+ 1, θ)|2

) 1− e−2|t|θ

2|t|
dImλ

(5.3),(5.8)

. (1 + |α|θ)
[ ∫

Reλ=α−1

∫ θ

0
|λ|2|∂ϕpvr(λ+ 1, ϕ)|2 dϕ dImλ

+

∫
Reλ=α−1

(∫ θ

0
|λ|2|∂ϕpvr(λ+ 1, ϕ)|2 dϕ

) 1
2
(∫ θ

0
|∂2
ϕpvr(λ+ 1, ϕ)|2 dϕ

) 1
2

dImλ

]
. ‖∇(r∂rv)‖2α + ‖∇v‖2α +

∥∥∥vϕ
r

∥∥∥2

α
+ ‖1

r∂
2
ϕv‖α

(
‖∇(r∂rv)‖α + ‖∇v‖α +

∥∥∥vϕ
r

∥∥∥
α

)
. (5.9)

When |α− 1|θ ∈ D, we have to consider two cases |θt| ≥ 1/4 and |θt| < 1/4. In the first case we can
follow the strategy above and deduce the bound (5.9). For |θt| < 1/4, we replace the trigonometric
functions with their Taylor expansions to deduce the desired bound. For α− 1 ∈ Iε \ {0} we have

| sin(λθ)| ∼ε |λθ| and | cos(λ(θ − ϕ))| ∼ε 1.
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Hence∫ θ

0

∫
Reλ=α−1, |tθ|< 1

4

∣∣∣∣λ∂ϕpvr(λ+ 1, 0)

sin(λθ)
cos(λ(θ − ϕ))− λ∂ϕpvr(λ+ 1, θ)

sin(λθ)
cos(λϕ)

∣∣∣∣2 dImλ dϕ

≤ Cε
∫ θ

0

∫
Reλ=α−1, |tθ|< 1

4

|λ|2∂ϕpvr(λ+ 1, 0)|2

|λθ|2
+
|λ|2|∂ϕpvr(λ+ 1, θ)|2

|λθ|2
dImλ dϕ

(5.8)

≤ Cε
1
θ2

∥∥1
r∂ϕvr

∥∥2

α
+ 1

θ

∥∥1
r∂

2
ϕvr
∥∥
α

∥∥1
r∂ϕvr

∥∥
α
. �

5.2. Estimates on the commutator [P, r−2α]. In view of the fact that P is symmetric on un-
weighted spaces (Lemma 2.9), we will encounter the commutator [P, r−2α]v with α 6= 0 and v ∈
C∞c,σ(Ω \ {0}) in Section 6. Note that [P, r−2α]v = −∇Φ where Φ (in the sense of Definition 2.8)
satisfies

∆Φ = div r−2αv = −2αr−2α−1vr in Ω,

∂nΦ = n · r−2αv = 0 on ∂Ω′,

which can be written more conveniently in polar coordinates as(
(r∂r)

2 + ∂2
ϕ

)
Φ = −2αr−2α+1vr =: g in Ω, (5.10a)

∂ϕΦ = 0 on ∂Ω′. (5.10b)

We will derive estimates on Φ using the Fourier expansion of pΦ in the angle. The Fourier expansions
are in this case easier to work with than the Green’s function representation from Proposition 2.7.

For k ∈ N we define the orthonormal systems

ek(ϕ) :=


1√
θ

k = 0,√
2
θ cos

(
kπϕ
θ

)
k ≥ 1,

and ẽk(ϕ) :=
√

2
θ sin

(
kπϕ
θ

)
k ≥ 1, (5.11)

which satisfy ∫ θ

0
ek(ϕ)e`(ϕ) dϕ =

∫ θ

0
ẽk(ϕ)ẽ`(ϕ) dϕ =

{
1 if k = `,

0 else.

Moreover, an L2-function g : (0, θ)→ R admits Fourier expansions of the form

g(ϕ) =

∞∑
k=0

gkek(ϕ) in L2(0, θ), where gk =

∫ θ

0
g(ϕ̃)ek(ϕ̃) dϕ̃,

g(ϕ) =

∞∑
k=0

gkẽk(ϕ) in L2(0, θ), where gk =

∫ θ

0
g(ϕ̃)ẽk(ϕ̃) dϕ̃.

In addition, for the coefficients gk in both Fourier expansions we have Bessel’s identity given by

∞∑
k=1

|gk|2 =

∫ θ

0
|g(ϕ)|2 dϕ. (5.12)

Lemma 5.3. Let v ∈ C∞c,σ(Ω \ {0}). The Mellin transform of the solution Φ of problem (5.10) has
the form

pΦ(λ, ϕ) = −2α

∞∑
k=1

pvrk(λ+ 2α− 1)

λ2 −
(
kπ
θ

)2 ek(ϕ) for ϕ ∈ [0, θ],

and its derivative is given by

∂ϕpΦ(λ, ϕ) = 2α

∞∑
k=1

kπ

θ
· pvrk(λ+ 2α− 1)

λ2 −
(
kπ
θ

)2 ẽk(ϕ) for ϕ ∈ [0, θ], (5.13)

with Reλ ∈
(
− π

θ ,
π
θ

)
and λ 6= −2α.
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Proof. Taking the Mellin transform of (5.10) gives

(λ2 + ∂2
ϕ)pΦ(λ, ϕ) = pg(λ, ϕ) in Ω, (5.14a)

∂ϕpΦ(λ, ϕ) = 0 on ∂Ω′, (5.14b)

which is a non-homogeneous second-order ODE with homogeneous Neumann boundary conditions.
The function pg(λ, ϕ) admits a Fourier expansion in the angle ϕ of the form

pg(λ, ϕ) =
∞∑
k=0

pgk(λ)ek(ϕ) in L2(0, θ),

where the Fourier coefficients are given by

pgk(λ) = −2αpvrk(λ+ 2α− 1) (5.15)

with

pvrk(λ) =

∫ θ

0
pvr(λ, ϕ̃)ek(ϕ̃) dϕ̃ and pvr(λ, ϕ) =

∞∑
k=0

pvrk(λ)ek(ϕ) in L2(0, θ).

The condition div v = 0 reads in Mellin variables (λ+ 1)pvr(λ, ϕ) + ∂ϕpvϕ(λ, ϕ) = 0. Integrating this
expression over the angle yields

(λ+ 1)

∫ θ

0
pvr(λ, ϕ) dϕ = −

∫ θ

0
∂ϕpvϕ(λ, ϕ) dϕ = pvϕ(λ, 0)− pvϕ(λ, θ) = 0, (5.16)

by the boundary condition vϕ = 0 on ∂Ω′.
Problem (5.14) has a series solution of the form

pΦ(λ, ϕ) =
∞∑
k=0

pΦk(λ)ek(ϕ) almost everywhere,

and inserting this into (5.14a) and using the orthogonality of the cosines gives that the coefficients
satisfy (

λ2 −
(
kπ
θ

)2)
pΦk(λ) = pgk(λ).

By (5.15) and (5.16) this leads to the following series representation

pΦ(λ, ϕ) = −2α

∞∑
k=1

pvrk(λ+ 2α− 1)

λ2 −
(
kπ
θ

)2 ek(ϕ).

Note that
∞∑
k=1

|k2
pΦk(λ)|2 <∞

and therefore the series converges in H2(0, θ) which embeds into C1([0, θ]). This implies that the
series converges pointwise and the series can be differentiated to obtain (5.13) which again converges

in H1(0, θ) and therefore ∂ϕpΦ also converges pointwise. �

The commutator [P, r−2α] may have singularities at −π
θ + 1 and π

θ − 1. Therefore, recall from
(1.10) that for ε ∈ (0, 1) and θ ∈ (0, (1− ε)π) we defined the interval

Iε = [−(1− ε)πθ + 1, (1− ε)πθ − 1].

The following lemma provides estimates on the commutator [P, r−2α] required in Section 7.

Lemma 5.4. Let ε ∈ (0, 1) and θ ∈ (0, (1 − ε)π). Assume that α ∈ Iε \ {0}. Then we have the
estimates ∥∥1

r [P, r−2α]v
∥∥
−α ≤ Cε|α|θ ‖v‖α+1 ,∥∥∇[P, r−2α]v
∥∥
−α ≤ Cε|α| ‖v‖α+1 .

Moreover, we have

([P, r−2α]v)ϕ = 0 on ∂Ω′. (5.17)
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Proof. First of all note that for any λ̃ = α+ it with t ∈ R, we have∣∣∣(λ̃− 2α+ 1)2 −
(
kπ
θ

)2 ∣∣∣2 =
(
t2 +

(
kπ
θ

)2 − (1− α)2
)2

+ 4t2(α− 1)2.

If Reλ̃ = α ∈ Iε, then

|α− 1| ≤ (1− ε)π
θ

and |α| ≤ (1− ε)π
θ
, (5.18)

and therefore using (5.18), we deduce that∣∣∣(λ̃− 2α+ 1)2 −
(
kπ
θ

)2∣∣∣2 ≥ (t2 +
(
kπ
θ

)2 − (1− α)2
)2

≥
(
t2 + (1− (1− ε)2)

(
kπ
θ

)2 )2
≥
(
t2 + ε(1− ε)

(
kπ
θ

)2 )2 ≥ cε(kπθ )4.

(5.19)

Using again (5.18) in the previous estimate yields∣∣∣(λ̃− 2α+ 1)2 −
(
kπ
θ

)2∣∣∣2 ≥ (t2 + ε(1− ε)
(
kπ
θ

)2 )2
≥
(
t2 + ε (α− 1)2 )2 ≥ cε|λ̃− 1|4,

(5.20)

and similarly ∣∣∣(λ̃− 2α+ 1)2 −
(
kπ
θ

)2∣∣∣2 ≥ (t2 + εα2
)2 ≥ cε|λ̃|4. (5.21)

Recall that [P, r−2α]v = −∇Φ, where Φ is defined in Lemma 5.3. By properties of the Mellin
transform, (5.12) and Lemma 5.3, we obtain∥∥1

r ([P, r−2α]v)r
∥∥2

−α =
∥∥1
r∂rΦ

∥∥2

−α = 4α2

∫
Reλ=−α+1

|λ|2
∞∑
k=1

|pvrk(λ+ 2α− 1)|2∣∣∣λ2 −
(
kπ
θ

)2∣∣∣2 dImλ

= 4α2

∫
Reλ̃=α

|λ̃− 2α+ 1|2
∞∑
k=1

|pvrk(λ̃)|2∣∣∣(λ̃− 2α+ 1)2 −
(
kπ
θ

)2∣∣∣2 dImλ̃

≤Cεα2θ2‖v‖2α+1,

where we have used (5.19) and (5.21). Similarly, we deduce that∥∥1
r ([P, r−2α]v)ϕ

∥∥2

−α =
∥∥ 1
r2∂ϕΦ

∥∥2

−α = 4α2

∫
Reλ=−α+1

∞∑
k=1

∣∣∣kπ
θ

∣∣∣2 |pvrk(λ+ 2α− 1)|2∣∣∣λ2 −
(
kπ
θ

)2∣∣∣2 dImλ

= 4α2

∫
Reλ̃=α

∞∑
k=1

(kπ
θ

)2 |pvrk(λ̃)|2∣∣∣(λ̃− 2α+ 1)2 −
(
kπ
θ

)2∣∣∣2 dImλ̃

≤Cεα2θ2‖v‖2α+1.

Therefore, ‖[P, r−2α]v‖2−α ≤ Cεα2θ2‖v‖2α+1. The estimates for the first order derivatives are similar,
for example∥∥∂r([P, r−2α]v)r

∥∥2

−α = ‖∂2
rΦ‖2−α = 4α2

∫
Reλ=−α−1

|λ+ 1|2|λ+ 2|2
∞∑
k=1

|pvrk(λ+ 2α+ 1)|2∣∣∣(λ+ 2)2 −
(
kπ
θ

)2∣∣∣2 dImλ

= 4α2

∫
Reλ̃=α

|λ̃− 2α|2|λ̃− 2α+ 1|2
∞∑
k=1

|pvrk(λ̃)|2∣∣∣(λ̃− 2α+ 1)2 −
(
kπ
θ

)2∣∣∣2 dImλ̃

≤Cεα2‖v‖2α+1,

where we have used (5.20) and (5.21) in the last step. The bounds on ∂r([P, r−2α]v)ϕ, 1
r∂ϕ([P, r−2α]v)r

and 1
r∂ϕ([P, r−2α]v)ϕ follow similarly. Using (A.3) and the estimates on ‖1

r [P, r−2α]v‖2−α we deduce
the result. Finally, (5.17) is a consequence of ∇Φ · n = 0 on ∂Ω′. �
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Corollary 5.5. Let ε ∈ (0, 1) and θ ∈ (0, (1 − ε)π). Assume that α ∈ Iε \ {0}. Then we have the
estimates ∥∥1

r [P, r−2α]v
∥∥
−α ≤ Cε|α|θ

2 ‖∇v‖α ,∥∥∇[P, r−2α]v
∥∥
−α ≤ Cε|α|θ ‖∇v‖α .

Proof. The proof is a consequence of Lemmata 2.2 and 5.4. �

6. Variational formulation for the Stokes equations with Navier slip

In this section, we derive a variational formulation for the Stokes equations (3.1) as is described
in Section 4, Step 1. After applying the Helmholtz projection to (3.1) and noting that P∇p = 0 by
definition of the Helmholtz projection, we deduce the projected stationary Stokes problem

−P∆u = Pf in Ω, (6.1a)

uϕ = 0 on ∂Ω′, (6.1b)

ur + ∂nur = g on ∂Ω′. (6.1c)

Let v ∈ C∞c,σ(Ω \ {0}), where we recall the definition of this space in (1.5). As motivated in Section
4, we test (6.1a) in (·, ·)L2(Ω) with

r−2αvtest := r−2α(v − |α|θ3(r∂r)
2v − c3|α|θ3r2∆v) for some c3 > 0, (6.2)

to obtain a variational formulation of (6.1). The corresponding bilinear forms B1, B2 and B3 will
be derived in subsequent sections.

6.1. Bilinear form B1. Equation (6.1a) tested against r−2αv with v ∈ C∞c,σ(Ω \ {0}) in the inner
product (·, ·)L2(Ω) reads

(−P∆u, r−2αv)L2(Ω) = (Pf , r−2αv)L2(Ω). (6.3)

Using that the projection P is symmetric with respect to (·, ·)L2(Ω) (Lemma 2.9), we compute

(−P∆u, r−2αv)L2(Ω) = (−∆u,Pr−2αv)L2(Ω)

=

∫
Ω

(−∆u) · (r−2αv) dx+

∫
Ω

(−∆u) · [P, r−2α]v dx

=: I
(1)
1 + I

(1)
2 ,

With the divergence theorem I
(1)
1 becomes

I
(1)
1 = −

∫
∂Ω′

(r−2αv) · ∂nu ds+

∫
Ω

(∇r−2αv) : ∇u dx.

By the product rule for vector fields (see Appendix A)

∇(r−2αv) : ∇u = r−2α∇v : ∇u− 2αr−2α−1v · ∂ru, (6.4)

and using the boundary conditions in (1.5) and (6.1c), we obtain

I
(1)
1 = −

∫
∂Ω′

r−2αvrg ds+

∫
∂Ω′

r−2αvrur ds+

∫
Ω
r−2α∇v : ∇u dx− 2α

∫
Ω
r−2α−1v · ∂ru dx.

Again using the divergence theorem, the second integral I
(1)
2 becomes

I
(1)
2 = −

∫
∂Ω′

∂nu · [P, r−2α]v ds+

∫
Ω

(
∇[P, r−2α]v

)
: ∇u dx

(5.17)
= −

∫
∂Ω′

∂nur([P, r−2α]v)r ds+

∫
Ω

(
∇[P, r−2α]v) : ∇u dx.

By combining the expressions for I
(1)
1 and I

(1)
2 , we rewrite (6.3) in the form∫

∂Ω′
r−2αvrur ds+

∫
Ω
r−2α∇v : ∇u dx− 2α

∫
Ω
r−2α−1v · ∂ru dx−

∫
∂Ω′

(∂nur)([P, r−2α]v)r ds

+

∫
Ω

(
∇[P, r−2α]v

)
: ∇u dx =

∫
Ω
r−2αPf · v dx+

∫
∂Ω′

r−2αvrg ds.

(6.5)
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Remark 6.1. For coercivity take u = v in (6.5), then we have control on |ur|2α and ‖∇u‖2α. The
fourth term on the left-hand side of (6.5) is difficult to deal with, since there is no control of
derivatives on the boundary. A natural approach would be to apply the Navier-slip condition (6.1c).
However, this changes the scaling, which we want to avoid.

For obtaining a coercivity estimate, we apply the fundamental theorem of calculus to∫
∂Ω′

(∂nur)([P, r−2α]v)r ds =

∫ θ

0

∫ ∞
0

∂ϕ((∂ϕur)([P, r−2α]v)r)
dr

r
dϕ.

This requires control on the second-order derivative ∂2
ϕur in Ω, but there is only control on the

first derivatives by ‖∇u‖2α. Control on all second-order derivatives is obtained by introducing two
additional bilinear forms as detailed in Sections 6.2 and 6.3 below.

We define the bilinear form

B1(u,v) =

∫
∂Ω′

r−2αvrur ds+

∫
Ω
r−2α∇v : ∇u dx− 2α

∫
Ω
r−2α−1v · ∂ru dx

−
∫

Ω
r−2∂ϕ((∂ϕur)([P, r−2α]v)r) dx+

∫
Ω

(
∇[P, r−2α]v

)
: ∇u dx =:

5∑
j=1

T
(1)
j .

(6.6)

6.2. Bilinear form B2. We test (6.1a) with

r−2αv2 := −r−2α(r∂r)
2v, v ∈ C∞c,σ(Ω \ {0}), (6.7)

to obtain (
− P∆u, r−2αv2

)
L2(Ω)

= (Pf , r−2αv2)L2(Ω). (6.8)

We rewrite

(−P∆u, r−2αv2)L2(Ω) = (−∆u,Pr−2αv2)L2(Ω)

=

∫
Ω

(−∆u) · (r−2αv2) dx+

∫
Ω

(−∆u) · [P, r−2α]v2 dx

=: I
(2)
1 + I

(2)
2 .

With the divergence theorem and (6.4), I
(2)
1 becomes

I
(2)
1 = −

∫
∂Ω′

(r−2αv2) · ∂nu ds+

∫
Ω
r−2α∇v2 : ∇u dx− 2α

∫
Ω
r−2α−1v2 · ∂ru dx

= −
∫
∂Ω′

r−2α(r∂rvr)
(
(r∂r − 2α+ 1)∂nur

)
ds+

∫
Ω
r−2α(∇r∂rv) : (∇r∂ru) dx

− 2α

∫
Ω
r−2α(∇r∂rv) : ∇u dx+ 2α

∫
Ω
r−2α−1((r∂r)

2v) · (∂ru) dx,

where in the last step we have used the commutation relations (A.6) and applied integration by
parts. Using the Navier-slip boundary condition (6.1c) and again (A.6) gives

I
(2)
1 = −

∫
∂Ω′

r−2α(r∂rvr)
(
(r∂r − 2α+ 1)g

)
ds+

∫
∂Ω′

r−2α(r∂rvr)
(
(r∂r − 2α+ 1)ur

)
ds

+

∫
Ω
r−2α(∇r∂rv) : (∇r∂ru) dx− 2α

∫
Ω
r−2α(∇r∂rv) : ∇u dx

+ 2α

∫
Ω
r−2α−1((r∂r)

2v) · (∂ru) dx.

Again by the divergence theorem and fundamental theorem of calculus, the second integral becomes

I
(2)
2 =

∫
Ω

(−∆u) · [P, r−2α]v2 dx
(5.17)

= −
∫
∂Ω′

(∂nur)([P, r−2α]v2)r ds+

∫
Ω

(
∇[P, r−2α]v2

)
: ∇u dx

= −
∫

Ω
r−2∂ϕ

(
(∂ϕur)([P, r−2α]v2)r

)
dx+

∫
Ω

(
∇[P, r−2α]v2

)
: ∇u dx

=

∫
Ω
r−2∂ϕ

(
(∂ϕur)([P, r−2α](r∂r)

2v)r
)

dx−
∫

Ω

(
∇[P, r−2α](r∂r)

2v
)

: ∇u dx.
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By combining the expressions for I
(2)
1 and I

(2)
2 and by excluding the term involving g, we obtain the

bilinear form

B2(u,v) =

∫
∂Ω′

r−2α(r∂rvr)
(
(r∂r − 2α+ 1)ur

)
ds+

∫
Ω
r−2α(∇r∂rv) : (∇r∂ru) dx

− 2α

∫
Ω
r−2α(∇r∂rv) : ∇u dx+ 2α

∫
Ω
r−2α−1((r∂r)

2v) · (∂ru) dx

+

∫
Ω
r−2∂ϕ

(
(∂ϕur)([P, r−2α](r∂r)

2v)r
)

dx−
∫

Ω

(
∇[P, r−2α](r∂r)

2v
)

: ∇u dx

= :
6∑
j=1

T
(2)
j ,

(6.9)

Hence, (6.8) can be rewritten in the form

B2(u,v) = (Pf , r−2αv2)L2(Ω) +

∫
∂Ω′

r−2α(r∂rvr)
(
(r∂r − 2α+ 1)g

)
ds.

From B2(u,u) we get control on ‖∇r∂ru‖2α, i.e., the second-order derivatives in r and the mixed
derivatives. By using the divergence-free condition we also gain control on ∂2

ϕuϕ. However, control

on ∂2
ϕur is still missing and, even worse, B2 gives an extra ∂2

ϕur term. The third bilinear form will
give control on the last so far uncontrolled terms.

6.3. Bilinear form B3. For the third bilinear form we test (6.1a) with

r−2αv3 := −r−2α+2∆v, v ∈ C∞c,σ(Ω \ {0}). (6.10)

We calculate(
−P∆u, r−2αv3

)
L2(Ω)

=
(
−∆u, r−2αv3

)
L2(Ω)

+
(
−[P,∆]u, r−2αv3

)
L2(Ω)∫

Ω
r−2α+2∆u ·∆v dx+

∫
Ω
r−2α+2[P,∆]u ·∆v dx.

The third bilinear form is

B3(u,v) =

∫
Ω
r−2α+2∆u ·∆v dx+

∫
Ω
r−2α+2[P,∆]u ·∆v dx =:

2∑
j=1

T
(3)
j . (6.11)

6.4. The variational problem. Combining the computations of the preceding three sections, we
define for an appropriate constant c3 > 0 the bilinear form

B(u,v) := B1(u,v) + |α|θ3B2(u,v) + c3|α|θ3B3(u,v), (6.12)

which thus arises from testing the equation −P∆u = Pf in (·, ·)L2(Ω) with the test function r−2αvtest

as defined in (6.2). Define the pairing

〈g, vr〉α :=

∫
∂Ω′

r−2αgvr ds+ |α|θ3

∫
∂Ω′

r−2α
(
(r∂r − 2α+ 1)g

)
(r∂rvr) ds.

Then the variational problem associated to (6.1) is

B(u,v) = (Pf , r−2αvtest)L2(Ω) + 〈g, vr〉α, v ∈ C∞c,σ(Ω \ {0}), (6.13)

where B is defined in (6.12), and B1, B2 and B3 are defined in (6.6), (6.9) and (6.11), respectively.
We conclude this section by noticing that any solution u ∈ X2

α,θ of the system (6.1) satisfies the

variational formulation (6.13).

Lemma 6.2. Let θ ∈ (0, π), ε ∈ (0, 1 − θ
π ) and α ∈ Iε \ Z. Suppose that f ∈ H0

α and g ∈ X 0
α . If

u ∈ X2
α,θ satisfies (6.1) almost everywhere in Ω, then u satisfies the variational formulation (6.13).

Proof. This is a consequence of the fact that any almost everywhere solution u of (6.1) satisfies
(−P∆u, r−2αvtest)L2(Ω) = (Pf , r−2αvtest)L2(Ω), which equals (6.13) after integration by parts. �
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7. Coercivity and boundedness of the bilinear form

This section is devoted to the proof of the coercivity and boundedness estimate as stated in
Propositions 4.1 and 4.2 from Section 4, Step 2.

Throughout this section we fix ε ∈ (0, 1) and assume that

θ ∈ (0, (1− ε)π) and α ∈ Iε \ Z, where Iε = [−(1− ε)πθ + 1, (1− ε)πθ − 1]. (7.1)

Moreover, let u ∈ C∞c,σ(Ω \ {0}) be as defined in (1.5) and we will use the expressions in polar
coordinates as given in Appendix A.2. In Sections 7.1, 7.2 and 7.3 we focus on the coercivity
estimates of the bilinear forms B1, B2 and B3 separately. Finally, in Section 7.4 we combine all
estimates to prove Propositions 4.1 and 4.2.

7.1. Estimates for B1. Consider the first bilinear form (6.6) as derived in Section 6.1. After
integration by parts, it reads

B1(u,u) = |ur|2α + ‖∇u‖2α − 2α2

∫
Ω
r−2α−2|u|2 dx−

∫
Ω
r−2∂ϕ

[
(∂ϕur)([P, r−2α]u)r

]
dx

+

∫
Ω

(
∇[P, r−2α]u

)
: ∇u dx =:

5∑
j=1

T
(1)
j .

(7.2)

Proposition 7.1. There exist C1, C2 ∈ (0,∞) such that for all α and θ subject to (7.1) and all
c3 > 0, we have

B1(u,u) ≥ |ur|2α +
(
1− C1|α|θ − C2|α|θ

c3

)
‖∇u‖2α −

c3|α|θ3

8

∥∥1
r∂

2
ϕur
∥∥2

α
for all u ∈ C∞c,σ(Ω \ {0}).

This incomplete coercivity estimate for B1 is a consequence of Lemmata 7.2-7.4 below in which

we estimate the term T
(1)
3 -T

(1)
5 from (7.2).

Lemma 7.2 (Estimate of T
(1)
3 ). There exists a C1 ∈ (0,∞) such that for all α and θ subject to

(7.1), we have ∣∣∣∣2α2

∫
Ω
r−2α−2|u|2 dx

∣∣∣∣ ≤ C1|α|θ‖∇u‖2α for all u ∈ C∞c,σ(Ω \ {0}).

Proof. By the Cauchy-Schwarz inequality, Young’s inequality and Lemma 2.2, we obtain∣∣∣∣2α2

∫
Ω
r−2α−2|u|2 dx

∣∣∣∣ ≤ C0α
2θ2‖∇u‖2α ≤ C1|α|θ‖∇u‖2α. �

Lemma 7.3 (Estimate of T
(1)
4 ). There exist C2, C3 ∈ (0,∞) such that for all α and θ subject to

(7.1) and all c3 > 0, we have∣∣∣∣∫
∂Ω
r−2∂ϕ

[
(∂ϕur)([P, r−2α]u)r

]
dx

∣∣∣∣
≤ c3|α|θ3

8

∥∥1
r∂

2
ϕur
∥∥2

α
+
(C2|α|θ

c3
+ C3|α|θ

)
‖∇u‖2α for all u ∈ C∞c,σ(Ω \ {0}).

Proof. Note that

T
(1)
4 =

∫
Ω
r−2(∂2

ϕur)([P, r−2α]u)r dx+

∫
Ω
r−2(∂ϕur)∂ϕ([P, r−2α]u)r dx. (7.3)

For the first integral in (7.3), applying the Cauchy-Schwarz inequality, Young’s inequality, and
Corollary 5.5, we obtain∣∣∣∣∫

Ω
r−2(∂2

ϕur)([P, r−2α]u)r dx

∣∣∣∣
≤ c3|α|θ3

8

∫
Ω
r−2α(r−1∂2

ϕur)
2 dx+

2

c3|α|θ3

∫
Ω
r2α(r−1([P, r−2α]u)r)

2 dx

≤ c3|α|θ3

8

∥∥1
r∂

2
ϕur
∥∥2

α
+
C2|α|θ
c3
‖∇u‖2α.
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Similarly, for the second integral in (7.3)∣∣∣∣∫
Ω
r−2(∂ϕur)∂ϕ([P, r−2α]u)r dx

∣∣∣∣
≤ |α|θ

2

∫
Ω
r−2α(r−1∂ϕur)

2 dx+
1

2|α|θ

∫
Ω
r2α(r−1(∂ϕ[P, r−2α]u)r)

2 dx

≤ |α|θ
∫

Ω
r−2α

[
(r−1(∂ϕur − uϕ))2 + r−1u2

ϕ

] dr

r
dϕ+

1

2|α|θ

∫
Ω
r2α(r−1(∂ϕ[P, r−2α]u)r)

2 dx

≤ C3|α|θ‖∇u‖2α,
where we have used Lemma 2.2 and Corollary 5.5 in the last step. �

Lemma 7.4 (Estimate of T
(1)
5 ). There exists a C4 ∈ (0,∞) such that for all α and θ subject to

(7.1), we have∣∣∣∣∫
Ω

(
∇[P, r−2α]u

)
: ∇u dx

∣∣∣∣ ≤ C4|α|θ‖∇u‖2α for all u ∈ C∞c,σ(Ω \ {0}).

Proof. By the Cauchy-Schwarz inequality and Corollary 5.5, we have∣∣∣∣∫
Ω

(
∇[P, r−2α]u

)
: ∇u dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω
r2α
∣∣∇[P, r−2α]u

∣∣2 dx

∣∣∣∣ 1
2

‖∇u‖α . |α|θ‖∇u‖2α. �

7.2. Estimates for B2. Consider the second bilinear form (6.9) as derived in Section 6.2

B2(u,u) =

∫
∂Ω′

r−2α(r∂rur)
(
(r∂r − 2α+ 1)ur

)
ds+ ‖∇r∂ru‖2α

− 2α

∫
Ω
r−2α(∇r∂ru) : ∇u dx+ 2α

∫
Ω
r−2α−1((r∂r)

2u) · (∂ru) dx

−
∫

Ω
r−2∂ϕ[(∂ϕur)([P, r−2α](r∂r)

2u)r] dx−
∫

Ω

(
∇[P, r−2α](r∂r)

2u
)

: ∇u dx

= :

6∑
j=1

T
(2)
j .

(7.4)

We have the following partial coercivity estimate for B2.

Proposition 7.5. There exist D1, D2, D3 ∈ (0,∞) such that for all α and θ subject to (7.1) and all
c3 > 0, we have

B2(u,u) ≥ |r∂rur|2α − 2(α− 1
2)2|ur|2α +

(
1−D1|α|θ − D2|αθ|2

c3

)
‖∇r∂ru‖2α

− D3|α|
θ
‖∇u‖2α −

c3

8

∥∥1
r∂

2
ϕur
∥∥2

α
for all u ∈ C∞c,σ(Ω \ {0}).

This proposition is a consequence of Lemmata 7.6-7.9 below, in which we estimate the terms T
(2)
1

and T
(2)
3 -T

(2)
6 from (7.4).

Lemma 7.6 (Reformulation of T
(2)
1 ). For α and θ subject to (7.1) we have

T
(2)
1 = |r∂rur|2α − 2(α− 1

2)2|ur|2α for all u ∈ C∞c,σ(Ω \ {0}).

Proof. This is immediate with integration by parts

(1− 2α)

∫
∂Ω′

r−2α(r∂rur)ur ds =
1− 2α

2

∫
∂Ω′

r−2α+1∂r(u
2
r) ds = −2(α− 1

2)2

∫
∂Ω′

r−2αu2
r ds. �

Lemma 7.7 (Estimate of T
(2)
3 +T

(2)
4 ). There exist D1, D2 ∈ (0,∞) such that for all α and θ subject

to (7.1), we have∣∣T (2)
3

∣∣+
∣∣T (2)

4

∣∣ ≤ D1|α|θ‖∇r∂ru‖2α +
D2|α|
θ
‖∇u‖2α for all u ∈ C∞c,σ(Ω \ {0}).

Proof. The estimate is a direct consequence of the Cauchy-Schwarz inequality and Young’s inequality.
�
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To estimate T
(2)
5 we follow the same strategy as in Lemma 7.3.

Lemma 7.8 (Estimate of T
(2)
5 ). There exist D3, D4, D5 ∈ (0,∞) such that for all α and θ subject

to (7.1) and all c3 > 0, we have∣∣∣∣∫
Ω
r−2∂ϕ

(
(∂ϕur)([P, r−2α](r∂r)

2u)r
)

dx

∣∣∣∣
≤ c3

8

∥∥1
r∂

2
ϕur
∥∥2

α
+
D4|α|
θ
‖∇u‖2α + |α|θ

(D3|α|θ
c3

+D5

)
‖∇(r∂ru)‖2α for all u ∈ C∞c,σ(Ω \ {0}).

Proof. Recall that

T
(2)
5 =

∫
Ω
r−2(∂2

ϕur)([P, r−2α](r∂r)
2u)r dxϕ+

∫
Ω
r−2(∂ϕur)∂ϕ([P, r−2α](r∂r)

2u)r dx. (7.5)

For the first integral in (7.5), applying the Cauchy-Schwarz inequality, Young’s inequality, and
Lemma 5.4 gives∣∣∣∣∫

Ω
r−2(∂2

ϕur)([P, r−2α](r∂r)
2u)r dx

∣∣∣∣ ≤ c3

8

∫
Ω
r−2α(r−1∂2

ϕur)
2 dx

+
2

c3

∫
Ω
r2α(r−1([P, r−2α](r∂r)

2u)r)
2 dx

≤ c3

8

∥∥1
r∂

2
ϕur
∥∥2

α
+
D3α

2θ2

c3
‖∂r(r∂ru)‖2α.

Similarly, for the second integral in (7.5)∣∣∣∣∫
ω
r−2(∂ϕur)∂ϕ([P, r−2α](r∂r)

2u)r dx

∣∣∣∣
≤ |α|

2θ

∫
Ω
r−2α(r−1∂ϕur)

2 dx+
θ

2|α|

∫
Ω
r2α(r−1∂ϕ([P, r−2α](r∂r)

2u)r)
2 dx

≤ |α|
θ

∫
Ω
r−2α

[
(r−1(∂ϕur − uϕ))2 + u2

ϕ

]
dx+

θ

2|α|

∫
Ω
r2α(r−1∂ϕ([P, r−2α](r∂r)

2u)r)
2 dx

≤ D4|α|
θ
‖∇u‖2α +D5|α|θ‖∂r(r∂ru)‖2α,

where we have used Lemmata 2.2 and 5.4 in the last step. �

Lemma 7.9 (Estimate of T
(2)
6 ). There exists a D6 ∈ (0,∞) such that for all α and θ subject to

(7.1), we have∣∣∣∣∫
Ω

(
∇[P, r−2α](r∂r)

2u
)

: ∇u dx

∣∣∣∣ ≤ D6|α|θ‖∇(r∂ru)‖2α +
|α|
θ
‖∇u‖2α for all u ∈ C∞c,σ(Ω \ {0}).

Proof. The Cauchy-Schwarz inequality, Young’s inequality and Lemma 5.4 give∣∣∣∣∫
Ω

(
∇[P, r−2α](r∂r)

2u
)

: ∇u dx

∣∣∣∣ ≤ |α|θ ‖∇u‖2α +
θ

|α|

∣∣∣∣∫
Ω
r2α
∣∣∇[P, r−2α](r∂r)

2u
∣∣2 dx

∣∣∣∣
≤ |α|

θ
‖∇u‖2α +D6|α|θ‖∂r(r∂ru)‖2α. �

7.3. Estimates for B3. Consider the third bilinear form (6.11) as derived in Section 6.3

B3(u,u) = ‖r∆u‖2α +

∫
Ω
r−2α+2[P,∆]u ·∆u dx =:

2∑
j=1

T
(3)
j .

We obtain the following final estimate required for proving coercivity in the next section.

Proposition 7.10. There exist E1, E2 ∈ (0,∞) such that for all α and θ subject to (7.1), we have

B3(u,u) ≥ 1
2‖r∆u‖2α − 1

8

∥∥1
r∂

2
ϕur
∥∥2

α
− E1

θ2 ‖∇u‖2α − E2‖∇r∂ru‖2α for all u ∈ C∞c,σ(Ω \ {0}).
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Proof. From Lemmata 2.2 and 5.2 we deduce that

‖[P,∆]u‖2α−1 ≤ 1
4

∥∥1
r∂

2
ϕur
∥∥2

α
+ 2E1

θ2 ‖∇u‖2α + 2E2‖∇r∂ru‖2α.
Therefore, we have∣∣∣∣∫

Ω
r−2α+2[P,∆]u ·∆u dx

∣∣∣∣ ≤ 1
2‖r∆u‖2α + 1

2‖[P,∆]u‖2α−1

≤ 1
2‖r∆u‖2α + 1

8

∥∥1
r∂

2
ϕur
∥∥2

α
+ E1

θ2 ‖∇u‖2α + E2‖∇r∂ru‖2α. �

7.4. Coercivity and boundedness of the bilinear form B. We are now in the position to prove
the coercivity and boundedness estimate in Propositions 4.1 and 4.2 by combining Propositions 7.1,
7.5 and 7.10.

Proof of Proposition 4.1. Recall that we need to prove the coercivity estimate

B(u,u)
(6.12)

= B1(u,u) + |α|θ3B2(u,u) + c3|α|θ3B3(u,u) ≥ C‖u‖2X2
α,θ

for all u ∈ C∞c,σ(Ω \ {0}),

where X2
α,θ is as defined in (3.4) and c3 > 0 is a constant independent of α and θ. The strategy is

to absorb the terms with ∂2
ϕur into B3 using the estimate∥∥1

r∂
2
ϕur
∥∥2

α

(A.4)
=

∥∥r(∆u)r − ∂r(r∂rur) + 2(∂ϕuϕ + ur)− ur
∥∥2

α

≤ ‖r∆u‖2α + ‖∇r∂ru‖2α + C3‖∇u‖2α,
(7.6)

where in the last step we have used Lemma 2.2 and the constant C3 is independent of α and θ.
Combining the estimate from (7.6) with those from Propositions 7.1, 7.5 and 7.10 gives

B1(u,u) + |α|θ3B2(u,u) + c3|α|θ3B3(u,u)

≥ K0|ur|2α + |α|θ3|r∂rur|2α +K1‖∇u‖2α + |α|θ3K2‖∇r∂ru‖2α +
1

8
c3|α|θ3‖r∆u‖2α,

where

K0 = 1− 2|α|θ3(α− 1
2)2,

K1 = 1− C1|α|θ − C2
c3
|α|θ −D3|αθ|2 − c3|αθ|E1 − c3C3|α|θ3,

K2 = 1−D1|α|θ − D2|αθ|2
c3

− c3(E2 + 1).

For coercivity we need K0,K1,K2 > 0. To this end, choose c3 > 0 small enough so that the condition
c3(E2 + 1) < 1

4 is satisfied.

If we choose |αθ| < c with c sufficiently small, we obtain K0,K1, K2 ≥ 1
2 . The result follows upon

noting that for α ∈ R \ Z we have the equivalence

‖u‖2X2
α,θ
∼α |ur|2α + θ3|r∂rur|2α + ‖∇u‖2α + θ3‖∇r∂ru‖2α + θ3‖r∆u‖2α. �

Proof of Proposition 4.2. We prove the boundedness of the bilinear form B, i.e.,

|B(u,v)| ≤ C‖u‖X2
α,θ
‖v‖X2

α,θ
for all u,v ∈ C∞c,σ(Ω \ {0}).

First consider the terms in the bilinear form B1 as defined in (6.6). It is immediate that T
(1)
1 , T

(1)
2

and T
(1)
3 can be bounded by applying the Cauchy-Schwarz inequality and in addition by Hardy’s

inequality for T
(1)
3 . From (7.3), (7.6), Lemma 5.4, Corollary 5.5 and Lemma 2.2 it follows∣∣T (1)

4

∣∣ ≤ ∥∥1
r∂

2
ϕur
∥∥
α

∥∥1
r ([P, r−2α]v)r

∥∥
−α +

∥∥1
r∂ϕur

∥∥
α

∥∥1
r∂ϕ([P, r−2α]v)r

∥∥
−α ≤ C‖u‖X2

α,θ
‖v‖X2

α,θ
.

For the last term T
(1)
5 , using the Cauchy-Schwarz inequality and Corollary 5.5 gives∣∣T (1)

5

∣∣ ≤ (∫
Ω
r2α|(∇[P, r−2α]v)|2 dx

) 1
2
(∫

Ω
r−2α|∇u|2 dx

) 1
2 ≤ C‖u‖X2

α,θ
‖v‖X2

α,θ
.

We continue with boundedness of the terms in the bilinear form B2 as defined in (6.9). Again,

boundedness of T
(2)
1 , T

(2)
2 , T

(2)
3 and T

(2)
4 follow immediately from the Cauchy-Schwarz inequality.
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The terms T
(2)
5 and T

(2)
6 can be bounded in a similar way as T

(1)
4 and T

(1)
5 , respectively. Finally, the

bound of B3 is a consequence of the Cauchy-Schwarz inequality and Lemma 5.1. �

8. Equivalence of strong and variational solutions

In this section, we prove Proposition 4.3 from Section 4, Step 3. We start with some technical
lemmata. Recall that kHkα is the closure of C∞c (Ω \ {0}) with respect to J·Kk,α as defined in Section
1.2.

Lemma 8.1. Let ε ∈ (0, 1). There is a constant c > 0 such that for any θ ∈ (0, (1 − ε)π) and
α ∈ Iε \ Z satisfying |αθ| < c, for c3 > 0 the constant in (4.1) and for any w ∈ C∞c,σ(Ω \ {0}), there
exists a sequence (vk)k≥1 such that

(i) vk ∈ {v ∈ C∞c,σ(Ω \ {0}) : v = 0 on ∂Ω′} for all k ≥ 1,

(ii) P
[
r−2α

(
vk + |α|θ3vk,2 + c3|α|θ3vk,3

)]
−→ w in 0H0

1−α as k −→∞,

where vk,2 = −(r∂r)
2vk and vk,3 = −r2∆vk (cf. (6.7) and (6.10)).

Lemma 8.1 is a consequence of the following two steps. Firstly, in Lemma 8.2 we prove that for
any w ∈ C∞c,σ(Ω \ {0}) there exists a solution v to the test function problem

r−2α
(
v − |α|θ3(r∂r)

2v − c3|α|θ3r2∆v
)

+∇p = w in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω.

(8.1)

Note that this problem has a scaling invariant boundary condition. Secondly, this solution v can
be approximated by a sequence (vk)k≥1 in C∞c,σ(Ω \ {0}) such that vk = 0 on ∂Ω′ and that the
convergence in Lemma 8.1 holds.

Lemma 8.2. Let ε ∈ (0, 1). There is a constant c > 0 such that for any θ ∈ (0, (1 − ε)π) and
α ∈ Iε \ Z satisfying |αθ| < c, for c3 > 0 the constant in (4.1), there exists a unique solution
(v, p) ∈ 2H2

α−1 × 1H1
1−α to (8.1). Furthermore

JvK2,α−1 + JpK1,1−α ≤ Cα,θ (JwK0,1−α + J∂ϕwK0,1−α) .

Proof. For notational convenience we write pvr := pvr(λ, ϕ) and pvϕ := pvϕ(λ, ϕ) or we omit the ϕ-
dependence from the notation. For I ⊆ R \ {−1} an open interval, let

S := {(λ, ϕ) ∈ C× (0, θ) : Reλ ∈ I}. (8.2)

Problem (8.1) reads in Mellin variables (see (A.4))

−c3|α|θ3((λ2 + ∂2
ϕ)pvr − 2∂ϕpvϕ − pvr)− |α|θ3λ2

pvr + pvr + (λ− 2α+ 1)pp = pwr(λ− 2α) in S, (8.3a)

−c3|α|θ3((λ2 + ∂2
ϕ)pvϕ + 2∂ϕpvr − pvϕ)− |α|θ3λ2

pvϕ + pvϕ + ∂ϕpp = pwϕ(λ− 2α) in S, (8.3b)

(λ+ 1)pvr + ∂ϕpvϕ = 0 in S, (8.3c)

pvr = pvϕ = 0 on {0, θ}.
(8.3d)

Then using (8.3c) in (λ+ 1)[∂ϕ(8.3a)− (λ− 2α+ 1)(8.3b)] gives for pvϕ the equation

a1∂
4
ϕpvϕ + a2∂

2
ϕpvϕ + a3pvϕ = (λ+ 1)

[
∂ϕ pwr(λ− 2α)− (λ− 2α+ 1) pwϕ(λ− 2α)

]
in S, (8.4a)

pvϕ = ∂ϕpvϕ = 0 on ∂S, (8.4b)

where

a1 := c3|α|θ3, a2 := c3|α|θ3
(
(λ+ 1)2 + (λ− 1)(λ− 2α+ 1)

)
+ |α|θ3λ2 − 1 and

a3 := (λ− 2α+ 1)(λ+ 1)
(
c3|α|θ3(λ2 − 1) + |α|θ3λ2 − 1

)
.

To solve (8.4), set λ = α+ is, with s ∈ R. Then we obtain

Re a1 = c3|α|θ3 > 0,

Re a2 = (4α− 2s2)c3|α|θ3 + (α2 − s2)|α|θ3 − 1,

Re a3 = (s4 − α4 + 2α2 − 4s2|α|)c3|α|θ3 + (s4 − α4 − s2 + α2 − 4s2|α|)|α|θ3 + s2 + (α2 − 1).
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Thus, for any fixed c3 and δ > 0, there exists c(c3, δ) > 0 sufficiently small such that for any |αθ| < c,
we have

Re a2 < −c3|α|θ3s2 − (1− δ) and Re a3 >
c3|α|θ3

2
s4 − (1 + δ).

Let ψ ∈ C∞c ((0, θ);C). Multiply (8.4a) by ψ, integrate over (0, θ) and after integration by parts we
obtain the variational formulation

a1

∫ θ

0
∂2
ϕpvϕ∂

2
ϕψ dϕ− a2

∫ θ

0
∂ϕpvϕ∂ϕψ dϕ+ a3

∫ θ

0
pvϕψ dϕ

= −
∫ θ

0
(λ+ 1) pwr(λ− 2α)∂ϕψ + (λ+ 1)(λ− 2α+ 1) pwϕ(λ− 2α)ψ dϕ.

The left-hand side of the above equation is a bounded, coercive bilinear map on the closure of
C∞c ((0, θ);C) in H2(0, θ). The coercivity follows from

Re a1

∫ θ

0
|∂2
ϕpvϕ|2 dϕ− Re a2

∫ θ

0
|∂ϕpvϕ|2 dϕ+ Re a3

∫ θ

0
|pvϕ|2 dϕ

≥ c3|α|θ3

∫ θ

0
|∂2
ϕpvϕ|2 dϕ+

(
c3|α|θ3s2 + (1− δ)

) ∫ θ

0
|∂ϕpvϕ|2 dϕ+

(c3|α|θ3

2
s4 − (1 + δ)

)∫ θ

0
|pvϕ|2 dϕ

≥ c3|α|θ3

∫ θ

0
|∂2
ϕpvϕ|2 dϕ+ c3|α|θ3s2

∫ θ

0
|∂ϕpvϕ|2 dϕ+

c3|α|θ3

2
s4

∫ θ

0
|pvϕ|2 dϕ,

where the last inequality holds by Poincaré’s inequality from Lemma 2.3, for θ < (1 − ε)π and
a sufficiently small δ. Application of the Lax-Milgram theorem implies the existence of a unique
solution. Moreover,∫ θ

0
|∂2
ϕpvϕ|2 dϕ+

∫ θ

0
|λ|2|∂ϕpvϕ|2 dϕ+

∫ θ

0
|λ|4|pvϕ|2 dϕ ≤ Cα,θ

∫ θ

0
|pw(λ− 2α)|2 dϕ.

Using (8.4a) and the fact that
∣∣ a2
λ2

∣∣+
∣∣ a3
λ4

∣∣ ≤ Cα,θ, we also deduce that

‖∂4
ϕpvϕ‖2

L2(0,θ)

|λ|4 ≤ Cα,θ
(
‖pw(λ− 2α)‖2L2(0,θ) + ‖∂ϕ pw(λ− 2α)‖2L2(0,θ)

)
. (8.5)

Moreover, by interpolation, it follows

‖∂3
ϕpvϕ‖2

L2(0,θ)

|λ|2 ≤Cα,θ
(‖∂4

ϕpvϕ‖2
L2(0,θ)

|λ|4 + ‖∂2
ϕpvϕ‖2L2(0,θ)

)
≤Cα,θ

(
‖pw(λ− 2α)‖2L2(0,θ) + ‖∂ϕ pw(λ− 2α)‖2L2(0,θ)

)
. (8.6)

We recover vr from (8.3c) and from (8.5) and (8.6) we deduce the desired estimates. The pressure
p is defined via (8.3a), and the proof of the estimate is straight-forward. �

Proof Lemma 8.1. Let w ∈ C∞c,σ(Ω \ {0}), then Lemma 8.2 ensures the existence of a solution

v ∈ 2H2
α−1 to (8.1) such that div v = 0 in Ω and v = 0 on ∂Ω′. Proposition B.3 ensures that

there exists a sequence (vk)k≥1 such that vk ∈ C∞c,σ(Ω \ {0}) with vk = 0 on ∂Ω′ for all k ≥ 1 and

vk −→ v in 2H2
α−1 as k −→∞. By definition of 2H2

α−1 (Section 1.2), this convergence implies that

for 0 ≤ j + ` ≤ 2, j, ` ≥ 0 we have (r∂r)
j∂`ϕvk ∈ 0H0

1+α. Since v2 and v3 are linear combinations of
r∂r and ∂ϕ derivatives of vr and vϕ, we deduce that

r−2α
(
vk + |α|θ3vk,2 + c3|α|θ3vk,3

)
−→ r−2α

(
v + |α|θ3v2 + c3|α|θ3v3

)
in 0H0

1−α,

as k −→∞. Continuity of the projection P in 0H0
2−α by Lemma 5.1 implies that

P
[
r−2α

(
vk + |α|θ3vk,2 + c3|α|θ3vk,3

)]
−→ P

[
r−2α

(
v + |α|θ3v2 + c3|α|θ3v3

)]
= w,

in 0H0
1−α as k −→∞. �

We can now finish the proof of Proposition 4.3.
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Proof of Proposition 4.3. It is enough to show that u is a strong solution to the projected Stokes
equations (6.1) if and only if u is a solution to the variational problem (6.13). In fact, if u satisfies
(6.1), then the pressure p is the unique solution in Y 1

α of

∇p = ∆u + f − P(∆u + f),

which is exactly (4.2).
In Lemma 6.2 we have already proved that an almost everywhere solution u to (6.1) satisfies the

variational problem

B(u,v) = (Pf , r−2αvtest)L2(Ω) + 〈g, vr〉α for any v ∈ C∞c,σ(Ω \ {0}), (8.7)

where vtest is defined in (6.2).
It remains to verify that a solution u to (8.7) is also an almost everywhere solution to the Stokes

problem (6.1) with Navier slip. Let w ∈ C∞c,σ(Ω \ {0}). Then there exists a sequence (vk)k≥1 that
satisfies the assumptions of Lemma 8.1. From (8.7) we deduce that

0 =

∫
Ω

(−P∆u− Pf) · P
[
r−2α

(
vk + |α|θ3vk,2 + c3|α|θ3vk,3

)]
dx −→

∫
Ω

(−P∆u− Pf) ·w dx.

This implies that for all w ∈ C∞c,σ(Ω \ {0})∫
Ω

(−P∆u− Pf) ·w dx = 0.

By the fundamental lemma of calculus of variations we obtain −P∆u = Pf almost everywhere in Ω.
We next verify that the Navier-slip condition holds. For any v ∈ C∞c,σ(Ω \ {0}), u satisfies the

equation

T
(1)
1 + |α|θ3T

(2)
1 +

5∑
j=2

T
(1)
j + |α|θ3

6∑
j=2

T
(2)
j + c3|α|θ3

2∑
j=1

T
(3)
j

= (f , r−2α(v + |α|θ3v2 + c3|α|θ3v3))L2(Ω) + 〈g, vr〉α.

(8.8)

Recall from the derivation of the bilinear forms in Section 6 that we only applied the Navier-slip

boundary condition to get T
(1)
1 and T

(2)
1 . Using the smoothness of the test function v, we undo the

integration by parts for B1, B2 and B3 as in Section 6.1, but in the opposite direction. This gives

5∑
j=2

T
(1)
j + |α|θ3

6∑
j=2

T
(2)
j + c3|α|θ3

4∑
j=1

T
(3)
j =

(
− P∆u, r−2α(v + |α|θ3v2 + c3|α|θ3v3)

)
L2(Ω)

− |α|θ3

∫
∂Ω′

r−2α((r∂r)
2vr)(∂nur) ds

+

∫
∂Ω′

r−2αvr∂nur ds.

Substituting this into (8.8) and using that −P∆u = Pf is satisfied almost everywhere in Ω gives∫
∂Ω′

r−2α
(
vr(ur + ∂nur − g)− |α|θ3((r∂r)

2vr)(ur + ∂nur − g)
)

ds = 0.

We obtain that ur + ∂nur = g on ∂Ω′ almost everywhere if enough test functions are generated. To
this end, it suffices to show that for w ∈ C∞c ((0,∞)) there exist a vr ∈ C∞((0,∞)) with vr(0) = 0
and decay to zero at infinity, which is a solution to

r−2α
(
1− |α|θ3(r∂r)

2
)
vr = w.

In Mellin variables this equation has the solution

pvr(λ) =
1

1− |α|θ3λ2
pw(λ− 2α).

For |αθ| small enough, we have
1

1− |α|θ3(Reλ)2
≤ C,
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so that the inverse Mellin transform can be used to obtain the desired solution vr. Hence, with the
fundamental lemma of calculus of variations we conclude that ur + ∂nur = g almost everywhere on
∂Ω′. �

9. The Stokes equations with slip boundary condition and prescribed tangent
velocity

In this section, we study the Stokes equations in a wedge with with slip boundary condition and
prescribed tangent velocity, i.e.,

−r−2[((r∂r)
2 + ∂2

ϕ)ur − 2∂ϕuϕ − ur] + ∂rp = fr for r > 0, ϕ ∈ (0, θ), (9.1a)

−r−2[((r∂r)
2 + ∂2

ϕ)uϕ + 2∂ϕur − uϕ] + r−1∂ϕp = fϕ for r > 0, ϕ ∈ (0, θ), (9.1b)

(r∂r + 1)ur + ∂ϕuϕ = 0 for r > 0, ϕ ∈ (0, θ), (9.1c)

uϕ = 0 for r > 0, ϕ ∈ {0, θ}, (9.1d)

∂ϕur = g for r > 0, ϕ ∈ {0, θ}, (9.1e)

where fr, fϕ and g are given data. The boundary conditions in (9.1) are scaling invariant and
existence of solution for the system falls in the classical theory of Kozlov, Maz’ya and Rossmann,
see the monograph [41]. In this section, we investigate how the norms of the solution depend
quantitatively on the opening angle θ and the weight exponent α.

Studying system (9.1) is required to gain higher regularity for the regular problem as was dis-
cussed in Section 3.1. As mentioned before, to our knowledge a closed solution representation in
Mellin variables for the original system with Navier slip is not available and cannot be expected.
Therefore, we study the system above and consider as data g = ±(g − rur), where ur is the strong
solution determined in Theorem 3.2.

Again, for notational convenience we write ph := ph(λ, ϕ) or we omit the ϕ-dependence from the
notation. In Section 9.1, we derive a representation formula for solutions to the above system in
Mellin variables and in Sections 9.2 and 9.3 we study the regularity of these solution and complete
the proof of Proposition 3.3 in Section 9.4.

9.1. A representation formula. We rewrite the above system in Mellin variables, that is

(λ2 + ∂2
ϕ)pur(λ)− 2∂ϕpuϕ(λ)− pur(λ)− (λ− 1)pp(λ− 1) = − pfr(λ− 2) in S, (9.2a)

(λ2 + ∂2
ϕ)puϕ(λ) + 2∂ϕpur(λ)− puϕ(λ)− ∂ϕpp(λ− 1) = − pfϕ(λ− 2) in S, (9.2b)

(λ+ 1)pur(λ) + ∂ϕpuϕ(λ) = 0 in S, (9.2c)

puϕ(λ) = 0 on ∂S, (9.2d)

∂ϕpur(λ) = pg(λ) on {0, θ}, (9.2e)

where S is defined in (8.2). Then using (9.2c) in −(λ+1)[∂ϕ(9.2a)−(λ−1)(9.2b)] gives the equation
for puϕ(λ, ϕ)

∂4
ϕpuϕ + 2(λ2 + 1)∂2

ϕpuϕ + (λ2 − 1)2
puϕ = (λ2 − 1) pfϕ(λ− 2)− (λ+ 1)∂ϕ pfr(λ− 2) in S,

puϕ = ∂2
ϕpuϕ + (λ+ 1)pg = 0 on ∂S.

(9.3)

With a solution puϕ it is straightforward to recover pur and pp via (9.2c) and (9.2a), respectively.
We determine a Green’s function that allows us to write the solution puϕ of (9.3) in terms of the

source terms and boundary conditions.

Lemma 9.1. There exists a Green’s function G(λ, ϕ, ϕ′) : C× (0, θ)2 → R, symmetric in ϕ and ϕ′,
such that

∂4
ϕG+ 2(λ2 + 1)∂2

ϕG+ (λ2 − 1)2G = δϕ in S,
G = 0 and ∂2

ϕG = 0 for ϕ ∈ {0, θ}.
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Specifically,

G(λ, ϕ, ϕ′) =


sin((λ−1)(θ−ϕ)) sin((λ−1)ϕ′)

4(λ−1)λ sin((λ−1)θ) − sin((λ+1)(θ−ϕ)) sin((λ+1)ϕ′)
4(λ+1)λ sin((λ+1)θ) for ϕ′ ≤ ϕ,

sin((λ−1)(θ−ϕ′)) sin((λ−1)ϕ)
4(λ−1)λ sin((λ−1)θ) − sin((λ+1)(θ−ϕ′)) sin((λ+1)ϕ)

4(λ+1)λ sin((λ+1)θ) for ϕ′ ≥ ϕ.

Proof. The uniqueness follows from standard ODE theory. Thus the formula can be verified a
posteriori. �

The Green’s function satisfies the following property.

Lemma 9.2. Let G be the Green’s function from Lemma 9.1. For any fixed ϕ,ϕ′ ∈ [0, θ], the
functions

G(λ, ϕ, ϕ′), ∂ϕ′G(λ, ϕ, ϕ′) and ∂ϕ∂ϕ′G(λ, ϕ, ϕ′)

are holomorphic in
Σ := {λ = β + is : (|β|+ 1)θ < π, s ∈ R}.

Proof. For ϕ′ ≤ ϕ, the function G from Lemma 9.1 is a sum and product of holomorphic functions
as long as λ ∈ Σ \ {−1, 0, 1}.

Recall that 2
π |x| ≤ | sin(x)| ≤ |x| for |x| ≤ π/2. For |λ+ 1| < 1

2 we deduce that∣∣∣∣sin((λ+ 1)(θ − ϕ)) sin((λ+ 1)ϕ′)

4(λ+ 1)λ sin((λ+ 1)θ)

∣∣∣∣ ≤ C |λ+ 1|2|θ − ϕ||ϕ′|
|λ+ 1|2θ

≤ C |θ − ϕ||ϕ
′|

θ
,

and therefore G is holomorphic at λ = −1. For λ = 1 one can argue analogously. For λ = 0 note

that G(λ, ϕ, ϕ′) = λ−1G̃(λ, ϕ, ϕ′) where

G̃(λ, ϕ, ϕ′) =
sin((λ− 1)(θ − ϕ)) sin((λ− 1)ϕ′)

4(λ− 1) sin((λ− 1)θ)
− sin((λ+ 1)(θ − ϕ)) sin((λ+ 1)ϕ′)

4(λ+ 1) sin((λ+ 1)θ)
.

Then G̃ is holomorphic at λ = 0 and G̃(λ, ϕ, ϕ′)|λ=0 = 0. This implies that G is holomorphic
in a neighbourhood of λ = 0. To show that ∂ϕ′G and ∂ϕ∂ϕ′G are holomorphic on Σ we argue
similarly. �

Using the Green’s function from Lemma 9.1 we obtain an expression for the solution of (9.3).

Corollary 9.3. The unique classical solution to (9.3) is

puϕ(λ, ϕ) =

∫ θ

0
(λ+ 1)∂ϕ′G(λ, ϕ, ϕ′) pfr(λ− 2, ϕ′) + (λ2 − 1)G(λ, ϕ, ϕ′) pfϕ(λ− 2, ϕ′) dϕ′

+ (λ+ 1)pg(λ, θ)∂ϕ′G(λ, ϕ, θ)− (λ+ 1)pg(λ, 0)∂ϕ′G(λ, ϕ, 0),

where

∂ϕ′G(λ, ϕ, θ) =
sin((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
− sin((λ− 1)ϕ)

4λ sin((λ− 1)θ)

and

∂ϕ′G(λ, ϕ, 0) =
− sin((λ+ 1)(θ − ϕ))

4λ sin((λ+ 1)θ)
+

sin((λ− 1)(θ − ϕ))

4λ sin((λ− 1)θ)
.

From the above representation of puϕ and the divergence-free condition (9.2c), we also obtain a
representation for pur:

pur(λ, ϕ) =

∫ θ

0
∂ϕ∂ϕ′G(λ, ϕ, ϕ′) pfr(λ− 2, ϕ′) + (λ− 1)∂ϕG(λ, ϕ, ϕ′) pfϕ(λ− 2, ϕ′) dϕ′

+ pg(λ, θ)∂ϕ∂ϕ′G(λ, ϕ, θ)− pg(λ, 0)∂ϕ∂ϕ′G(λ, ϕ, 0).

(9.4)

In the subsequent two sections we derive estimates on the solution to (9.2) and (9.3). For this we
decompose u = ub + us, where ub only has nonzero boundary data g (and f = 0) and us only has
a nonzero source term f (and g = 0). Estimates for ub and us are derived in Section 9.2 and 9.3,
respectively.

We show uniform estimates for Reλ in the interval

Iε =
[
−(1− ε)πθ + 1, (1− ε)πθ − 1

]
, ε ∈ (0, 1− θ

π ) and θ ∈ (0, π),
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which avoids the singularities of the Green’s function at π
θ − 1 and −π

θ + 1.

9.2. Regularity of (9.2) and (9.3) with f = 0. First, we use the Green’s function representation
formula to study the regularity of solutions of system (9.3) in the case the source term is zero, i.e.,

∂4
ϕpuϕ + 2(λ2 + 1)∂2

ϕpuϕ + (λ2 − 1)2
puϕ = 0 in S,

puϕ = ∂2
ϕpuϕ + (λ+ 1)pg = 0 on ∂S.

(9.5)

In particular, we derive estimates of the M+2HM+2
α -norm of u with respect of the M+1BM+1

α+1 -norm

of g. Recall that the M+1BM+1
α+1 -norm is defined as the infimum of all the M+1HM+1

α+1 extension of g.
So let us denote by gext such a possible extension.

Lemma 9.4. Let θ ∈ (0, π), ε ∈ (0, 1− θ
π ), Reλ = α ∈ Iε \Z and ` ∈ N. The solution puϕ of problem

(9.5) satisfies the estimate

‖∂`ϕpuϕ(λ, ϕ)‖L2(0,θ) ≤ Cε
1

min{1, |α|}`
1

|λ|2−`
(‖λygext‖L2(0,θ) + ‖∂ϕygext‖L2(0,θ)), Reλ ∈ Iε. (9.6)

Moreover, pur = −∂ϕpuϕ
λ+1 satisfies the estimate

‖∂`ϕpur(λ, ϕ)‖L2(0,θ) ≤ Cε
1

min{1, |α|}`
1

|λ|2−`
(‖λygext‖L2(0,θ) + ‖∂ϕygext‖L2(0,θ)), Reλ ∈ Iε. (9.7)

From the divergence-free condition pur =
∂ϕpuϕ
λ+1 we can deduce bounds on pur from the one of puϕ.

Corollary 9.5. Let θ ∈ (0, π), ε ∈ (0, 1− θ
π ), Reλ = α ∈ R\Z and M ∈ N be such that M+α+1 ∈ Iε.

Let ub the solution of system (9.2) with f = 0. Then, we have the estimate

JubKM+2,α ≤
Cε,M

min{1, |α+M + 1|}M+2
[g]M+ 1

2
,α+1

Proof. Let gext ∈ M+1HM+1
α such that gext|∂Ω′ = g. Using Lemma 9.4 we have

JubK2
M+2,α =

∑
j+`=M+2

∫ θ

0

∫
Reλ=M+α+1

|λ|2j |∂`ϕxub|2 dImλ dϕ

=

∫
Reλ=M+α+1

∑
j+`=M+2

|λ|2j‖∂`ϕxub‖2L2(0,θ) dImλ

≤
∫

Reλ=M+α+1

∑
j+`=M+2

C2
ε

min{1, |α+M + 1|}2M+4

· |λ|2j+2`−4
(
‖λygext‖2L2(0,θ) + ‖∂ϕygext‖2L2(0,θ)

)
dImλ

≤
C2
ε,M

min{1, |α+M + 1|}2M+4

∫
Reλ=M+1+α+1−1

|λ|2M
(
‖λygext‖2L2(0,θ) + ‖∂ϕygext‖2L2(0,θ)

)
dImλ

≤
C2
ε,M

min{1, |α+M + 1|}2M+4
JgextK2

M+1,α+1.

Taking the infimum over all the possible extensions gext gives the result. �

It remains to prove Lemma 9.4.

Proof of Lemma 9.4. We start by proving the estimate for puϕ. Then we explain how to adapt the

estimates to pur = − puϕ
λ+1 .

We divide the proof in two cases: ` even and ` odd. For ` even, we recall that in the same spirit of
(5.8), the fundamental theorem of calculus and the Cauchy-Schwarz inequality imply the following
trace estimate for ϑ ∈ {0, θ}

|λ||ygext(λ, ϑ)|2 . 1

|θλ|
‖λygext(λ, ·)|‖2L2(0,θ) + ‖∂ϕygext(λ, ·)‖L2(0,θ)‖λygext(λ, ·)‖L2(0,θ). (9.8)
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For notational convenience we omit in the sequel the λ-dependence from the notation. By the
Green’s function representation (Corollary 9.3) we have

∂`ϕpuϕ = (λ+ 1)ygext(θ)∂
`
ϕ∂ϕ′G(ϕ, θ)− (λ+ 1)ygext(0)∂`ϕ∂ϕ′G(ϕ, 0).

Using Hölder’s inequality and that |λ+ 1|2 ≤ (|λ|+ 1
|λ|)|λ|, we deduce

‖∂`ϕpuϕ‖2L2(0,θ) ≤ 2
((
|λ|+ 1

|λ|
)
‖∂`ϕ∂ϕ′G(ϕ, θ)‖2L2(0,θ) +

(
|λ|+ 1

|λ|
)
‖∂`ϕ∂ϕ′G(ϕ, 0)‖2L2(0,θ)

)
·
( 1

|λθ|
‖λygext‖2L2(0,θ) + ‖∂ϕygext‖L2(0,θ)‖λygext‖L2(0,θ)

)
.

Let λ = α+ it. Note that if |tθ| ≥ 1
2 , then 1

|λθ| ≤ 2. It is then enough to show that for ϑ ∈ {0, θ}(
|λ|+ 1

|λ|
)
‖∂`ϕ∂ϕ′G(λ, ·, ϑ)‖2L2(0,θ) ≤

C`
|λ|4−2`

, ` even and |tθ| ≥ 1

2
(9.9)

(
|λ|+ 1

|λ|
)
‖∂`ϕ∂ϕ′G(λ, ·, ϑ)‖2L2(0,θ) ≤

C`
min{1, |α|}2`

|λθ|
|λ|4−2`

, ` even and |tθ| ≤ 1

2
. (9.10)

To prove (9.9) for ` = 0, we notice that by Lemma 9.1

∂ϕ′G(λ, ϕ, θ) =
sin((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
− sin((λ− 1)ϕ)

4λ sin((λ− 1)θ)

=
sin(λ(θ − ϕ)) sin(θ + ϕ)− sin(λ(θ + ϕ) sin(θ − ϕ)

4λ sin((λ+ 1)θ) sin((λ− 1)θ)

(9.11)

We start by showing a lower bound of the denominator. For all ε > 0 there are constants cε, Cε ∈
(0,∞) such that for all z ∈ C with |Rez| ≤ (1− ε

2)π and |Imz| ≥ 1 we have

cεe
2|Imz| ≤ | sin(Re(z)) cosh(Imz)|2 + | cos(Re(z)) sinh(Imz)|2 = | sin(z)|2 ≤ Cεe2|Imz|, (9.12)

and similarly, for |Rez| ≤
(
1− ε

2

)
π, it holds

cεe
2|Imz| ≤ | cos(Re(z)) cosh(Imz)|2 + | sin(Re(z)) sinh(Imz)|2 = | cos(z)|2 ≤ Cεe2|Imz|. (9.13)

For αθ = Reλθ ∈ Iε and |tθ| = |Imλθ| ≥ 1
2 , this yields

|λ sin((λ+ 1)θ) sin((λ− 1)θ)| ≥ cε|λ|e2|t|θ,

and further ∣∣∂ϕ′G(λ, ϕ, θ)
∣∣ ≤ | sin(λ(θ − ϕ))| sin(θ + ϕ) + | sin(λ(θ + ϕ))| sin(θ − ϕ)

4|λ sin((λ+ 1)θ) sin((λ− 1)θ)|

≤Cε
e|t|(θ−ϕ) sin(θ + ϕ) + e|t|(θ+ϕ) sin(θ − ϕ)

|λ|e2|t|θ

≤ Cε
|λ|

(
e−|t|(θ+ϕ) sin(θ + ϕ) + e−|t|(θ−ϕ) sin(θ − ϕ)

)
Using that also e−|t|(θ±ϕ) ≤ e−|λ|(θ±ϕ)eα(θ±ϕ) ≤ Ce−|λ|(θ±ϕ) because α ∈ Iε ⊆

(
−π
θ ,

π
θ

)
, we have∥∥∂ϕ′G(λ, ·, θ)

∥∥2

L2(0,θ)
≤ Cε
|λ|2

(∫ θ

0
e−2|λ|(θ+ϕ) sin2(θ + ϕ) dϕ+

∫ θ

0
e−2|λ|(θ−ϕ) sin2(θ − ϕ) dϕ

)
.

(9.14)

After integration by parts twice, we obtain∫ θ

0
e−2|λ|(θ±ϕ) sin2(θ ± ϕ) dϕ ≤

∫ θ

0
e−2|λ|(θ±ϕ)(θ ± ϕ)2 dϕ

=
[
∓ e−2|λ|(θ±ϕ)

2|λ|
(θ ± ϕ)2

]θ
0

+
[
∓ e−2|λ|(θ±ϕ)

2|λ|2
(θ ± ϕ)

]θ
0

+
[
∓ e−2|λ|(θ±ϕ)

4|λ|3
]θ

0
≤ C 1

|λ|3
, (9.15)

where we have used that |λθ|ke−2|λ|θ is bounded for |λ|θ ≥ 1
2 and k ∈ {0, 1, 2}. Inequality (9.14)

together with (9.15) implies ∥∥∂ϕ′G(λ, ·, θ)
∥∥2

L2(0,θ)
≤ Cε
|λ|5

. (9.16)
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If we apply | sin2(θ ± ϕ)| ≤ 1 in (9.14), then∥∥∂ϕ′G(λ, ·, θ)
∥∥2

L2(0,θ)
≤ Cε
|λ|2

(∫ θ

0
e−2|λ|(θ+ϕ) dϕ+

∫ θ

0
e−2|λ|(θ−ϕ) dϕ

)
≤ Cε
|λ|3

. (9.17)

Using (9.16) and (9.17), we deduce that(
|λ|+ 1

|λ|
) ∥∥∂ϕ′G(λ, ·, θ)

∥∥2

L2(0,θ)
≤ Cε

1

|λ|4
.

This proves (9.9) with ` = 0. We continue with the proof of (9.9) for all ` ≥ 0 even. To estimate
higher derivatives, we notice that for ` even

∂`ϕ∂ϕ′G(λ, ϕ, θ)

= (−1)
`
2

(
λ` +

(
`

2

)
λ`−2 + · · ·+

(
`

`

)
1
)sin(λ(θ − ϕ)) sin(θ + ϕ)− sin(λ(θ + ϕ) sin(θ − ϕ)

4λ sin((λ+ 1)θ) sin((λ− 1)θ)

− (−1)
`
2

(
`λ`−1 +

(
`

3

)
λ`−3 + · · ·+ `λ

)cos(λ(θ + ϕ)) cos(θ − ϕ)− cos(λ(θ − ϕ)) cos(θ + ϕ)

4λ sin((λ+ 1)θ) sin((λ− 1)θ)
.

Using (9.12) and the fact that 1
2 ≤ |tθ| ≤ |λθ|, we have

|∂`ϕ∂ϕ′G(λ, ϕ, θ)| ≤Cε|λ|`−1
(
e−|t|(θ+ϕ) sin(θ + ϕ) + e−|t|(θ−ϕ) sin(θ − ϕ)

)
(9.18)

+ Cε|λ|`−2
(
e−|t|(θ+ϕ) cos(θ + ϕ) + e−|t|(θ−ϕ) cos(θ − ϕ)

)
Using (9.15) and ∫ θ

0
e−2|λ|(θ±ϕ) cos2(θ ± ϕ) dϕ ≤

∫ θ

0
e−2|λ|(θ±ϕ) dϕ ≤ C 1

|λ|
, (9.19)

we arrive at(
|λ|+ 1

|λ|
)∥∥∂`ϕ∂ϕ′G(λ, ·, θ)

∥∥2

L2(0,θ)
≤
(
|λ|+ |λ|θ2

) (
|λ|2`−2 C

|λ|3
+ |λ|2`−4 C

|λ|

)
≤ Cε|λ|2`−4. (9.20)

This finishes the proof of (9.9).
For the proof of (9.10) note that

cε|z| ≤ | sin(z)| ≤ Cε|z|, when |Rez| ≤
(

1− ε

2

)
π and |Imz| ≤ 1

2
. (9.21)

We use the above inequality to obtain the lower bound

|λ sin((λ+ 1)θ) sin((λ− 1)θ)| ≥ c2
ε|λ(λ2 − 1)θ2|

for any λ such that Reλ ∈ Iε and |θImλ| ≤ 1
2 .

First, assume that |λ− 1| ≤ 1
4 or |λ+ 1| ≤ 1

4 . Using that |tϕ| ≤ |tθ| ≤ 1
2 , Reλ ∈ Iε and (9.21), we

have ∣∣∂ϕ′G(λ, ϕ, θ)
∣∣ =

∣∣∣∣ sin((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
− sin((λ− 1)ϕ)

4λ sin((λ− 1)θ)

∣∣∣∣
=

∣∣∣∣sin((λ+ 1)ϕ) sin((λ− 1)θ)− sin((λ− 1)ϕ) sin((λ+ 1)θ)

4λ sin((λ+ 1)θ) sin((λ− 1)θ)

∣∣∣∣
≤C |λ+ 1||λ− 1|ϕθ
|λ||λ+ 1||λ− 1|

≤ Cϕθ
|λ|
≤ C π

2

|λ|
≤ C 1

|λ|2
,

where in the last step we have used that 1
|λ| ≥ C for |λ−1| ≤ 1

4 or |λ+ 1| ≤ 1
4 . Since |λ|+ 1

|λ| ≤ 4|λ|,
we deduce (

|λ|+ 1
|λ|

)1
2 ‖∂ϕ′G(λ, ·, θ)‖L2(0,θ) ≤ C

(∫ θ

0

1

|λ|3
dϕ
) 1

2 ≤ C |λθ|
1
2

|λ|4
.

Now assume that Reλ ∈ Iε, |tθ| ≤ 1
2 , |λ− 1| ≥ 1

4 and |λ+ 1| ≥ 1
4 . It follows that

1

|λ− 1|
≤ C 1

|λ|
,

1

|λ+ 1|
≤ C 1

|λ|
and

1

|λ− 1|
∼ 1

|λ+ 1|
.
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Moreover, from Appendix C we have∣∣∣∣ sin((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
− sin((λ− 1)ϕ)

4λ sin((λ− 1)θ)

∣∣∣∣ ≤ Cε 1

|λ|2
,

The previous two inequalities imply that

|λ|
1
2 ‖∂ϕ′G(λ, ·, θ)‖L2(0,θ) ≤ C

(∫ θ

0

1

|λ|3
dϕ
) 1

2 ≤ C |λθ|
1
2

|λ|2
.

To estimate |λ|−
1
2 ‖∂ϕ′G(λ, ·, θ)‖L2(0,θ), use (C.2) to obtain∣∣∂ϕ′G(λ, ϕ, θ)

∣∣ =

∣∣∣∣ sin((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
− sin((λ− 1)ϕ)

4λ sin((λ− 1)θ)

∣∣∣∣ ≤ Cε
|λ|
.

By combining all the estimates above, we find

|λ|−
1
2 ‖∂ϕ′G(λ, ·, θ)‖L2(0,θ) ≤ Cε

(∫ θ

0

1

|λ|3
dϕ
) 1

2 ≤ C |λθ|
1
2

|λ|2
,

which proves (9.10) for ` = 0. We continue with the proof of (9.10) for all ` ≥ 0 even. To estimate
higher derivatives, we notice that for ` even

∂`ϕ∂ϕ′G(λ, ϕ, θ)

= (−1)
`
2

(
λ` +

(
`

2

)
λ`−2 + · · ·+

(
`

`

)
1
)( sin((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
− sin((λ− 1)ϕ)

4λ sin((λ− 1)θ)

)
+ (−1)

`
2

(
`λ`−1 +

(
`

3

)
λ`−3 + · · ·+ `λ

)( sin((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
+

sin((λ− 1)ϕ)

4λ sin((λ− 1)θ)

)
.

Using (C.1) we deduce

|∂`ϕ∂ϕ′G(λ, ϕ, θ)| ≤ Cε
|λ|`−2

min{1, |α|}`
+ Cε

|λ|`−2

min{1, |α|}`−2
.

This implies

|λ|
1
2 ‖∂`ϕ∂ϕ′G(λ, ·, θ)‖L2(0,θ) ≤ Cε

1

min{1, |α|}`
(∫ θ

0

1

|λ|3−2`
dϕ
) 1

2 ≤ Cε
1

min{1, |α|}`
|λθ|

1
2

|λ|2−`
,

and similarly

|λ|−
1
2 ‖∂`ϕ∂ϕ′G(λ, ·, θ)‖L2(0,θ) ≤ Cε

1

min{1, |α|}`
(∫ θ

0

1

|λ|3−2`
dϕ
) 1

2 ≤ Cε
1

min{1, |α|}`
|λθ|

1
2

|λ|2−`
.

For ` odd, the estimate follows from interpolation.
We now show the bounds (9.7) for pur. If Reλ ∈ Iε \

(
−3

2 ,−
1
2

)
, then (9.7) is a direct consequence

of (9.6) and pur =
∂ϕuϕ
λ+1 . Noting that we have 1

|1+λ| ≤ C
1
|λ| yields the estimate

‖∂`ϕpur(λ, ·)‖L2(0,θ) ≤
1

|1 + λ|
‖∂`+1

ϕ puϕ(λ, ·)‖L2(0,θ)

≤Cε
1

min{1, |α|}`+1

1

|λ|2−`
(
‖λygext‖L2(0,θ) + ‖∂ϕygext‖L2(0,θ)

)
.

For Reλ ∈
(
−3

2 ,−
1
2

)
we mimic the proof of (9.6). Recall that (see (9.4))

pur(λ, ϕ) = ygext(λ, θ)∂ϕ∂ϕ′G(ϕ, θ)−ygext(λ, 0)∂ϕ∂ϕ′G(ϕ, 0).

With Hölder’s inequality and (9.8) we have

‖∂`ϕpur(λ, ·)‖2L2(0,θ) ≤ 2
( 1

|λ|
‖∂`+1

ϕ ∂ϕ′G(·, 0)‖2L2(0,θ) +
1

|λ|
‖∂`+1

ϕ ∂ϕ′G(·, θ)‖2L2(0,θ)

)
(9.22)

·
( 1

|λθ|
‖λygext‖2L2(0,θ) + ‖∂ϕygext‖L2(0,θ)‖λygext‖L2(0,θ)

)
.
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For ` odd we can use the bounds for (9.9), (9.10) and show (9.7) for any ` odd. An interpolation
argument implies the result for any ` ≥ 1. We are left with the case ` = 0. To address this case, we
start by assuming |tθ| ≥ 1

2 . In this case, we have (see (9.11))

∂ϕ∂ϕ′G(λ, ϕ, θ) = − λcos(λ(θ − ϕ)) sin(θ + ϕ) + cos(λ(θ + ϕ) sin(θ − ϕ)

4λ sin((λ+ 1)θ) sin((λ− 1)θ)

+
sin(λ(θ + ϕ)) cos(θ − ϕ) + sin(λ(θ − ϕ)) cos(θ + ϕ)

4λ sin((λ+ 1)θ) sin((λ− 1)θ)
.

Using (9.13) and the fact that 1
2 ≤ |tθ| ≤ |λθ|, we have (9.18). This together with (9.15) and (9.19)

implies that (9.20) holds also for ` = 0. The estimate reads

1

|λ|
∥∥∂ϕ∂ϕ′G(λ, ·, θ)

∥∥2

L2(0,θ)
≤ C 1

|λ|4
,

and together with (9.22), this implies the corollary if ` = 0 and |tθ| ≥ 1
2 . Let us now move to the

case |tθ| ≤ 1
2 . As in the proof of (9.6) the case |λ− 1| ≤ 1

4 is easy so let us assume that |tθ| ≤ 1
2 and

|λ− 1| ≥ 1
4 . We rewrite

pur(λ, ϕ) =
((λ+ 1)(cos((λ+ 1)ϕ))

4λ sin((λ+ 1)θ)
− (λ− 1)(cos((λ− 1)ϕ))

4λ sin((λ− 1)θ)

)
ygext(λ, θ)

−
((λ+ 1)(cos((λ+ 1)(θ − ϕ)))

4λ sin((λ+ 1)θ)
− (λ− 1)(cos((λ− 1)(θ − ϕ)))

4λ sin((λ− 1)θ)

)
ygext(λ, 0).

From (C.3), i.e., ∣∣∣∣(λ+ 1)(cos((λ+ 1)ϕ))

4λ sin((λ+ 1)θ)
− (λ− 1)(cos((λ− 1)ϕ))

4λ sin((λ− 1)θ)

∣∣∣∣ ≤ Cεθ,
we deduce

‖pur‖2L2(0,θ) ≤
∫ θ

0
C2
ε

θ2

|λ|
(|λ||ygext(λ, θ)|2 + |λ||ygext(λ, 0)|2) dϕ

≤C2
ε

θ3

|λ|
(|λ||ygext(λ, θ)|2 + |λ||ygext(λ, 0)|2)

(9.8)

≤C2
ε

λ3θ3

|λ|4
( 1

|λθ|
‖λygext‖2L2(0,θ) + ‖∂ϕygext‖L2(0,θ)‖λygext‖L2(0,θ)

)
. �

9.3. Regularity of (9.2) and (9.3) with g = 0. As for the Helmholtz projection, we introduce a
Fourier-Mellin representation formula for solutions of (9.3) in the case pg = 0, i.e., for the system

∂4
ϕpuϕ + 2(λ2 + 1)∂2

ϕpuϕ + (λ2 − 1)2
puϕ = (λ2 − 1) pfϕ(λ− 2)− (λ+ 1)∂ϕ pfr(λ− 2) in S, (9.23a)

puϕ = ∂2
ϕpuϕ = 0 on {0, θ}.

(9.23b)

To simplify notation, let us denote the source term by

pf(λ, ϕ) = (λ2 − 1) pfϕ(λ− 2, ϕ)− (λ+ 1)∂ϕ pfr(λ− 2, ϕ). (9.24)

Recall the orthonormal systems {ek}k∈N and {ẽk}k∈N from (5.11). The Fourier-Mellin represent-
ation formula for solutions of (9.23) reads as follows.

Lemma 9.6. Let f ∈ C∞c (Ω \ {0}). The solution puϕ of problem (9.23) can be written as

puϕ(λ, ϕ) =

∞∑
k=1

pfk(λ)(
λ2 −

(
kπ
θ

)2 − 1
)2 ẽk(ϕ) for ϕ ∈ [0, θ] and Reλ ∈

(
−π
θ + 1, πθ − 1

)
, (9.25)

where f is associated with f by (9.24). Moreover, the function pur = −∂ϕpuϕ
λ+1 can be written as

pur(λ, ϕ) =
∞∑
k=1

phk(λ)(
λ2 −

(
kπ
θ

)2 − 1
)2 ek(ϕ) for ϕ ∈ [0, θ] and Reλ ∈

(
−π
θ + 1, πθ − 1

)
,

where ph(λ, ϕ) = −(λ− 1)∂ϕ pfϕ(λ− 2, ϕ) + ∂2
ϕ

pfr(λ− 2, ϕ).
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We deduce the following estimates.

Lemma 9.7. Let f ∈ C∞c (Ω \ {0}), θ ∈ (0, π), ε ∈ (0, 1 − θ
π ) and Reλ = α ∈ Iε \ Z. Then the

function puϕ defined in (9.25) satisfies for M ≥ 0 the bound∑
j+`=M+2

|λ|2j‖∂`ϕpuϕ(λ, ·)‖2L2(0,θ) ≤ C
2
ε,M

1

min{1, |α|}4
∑

j+`=M

|λ− 2|2j

min{1, |α− 2|}2j
‖∂`ϕpf(λ− 2, ·)‖2L2(0,θ),

(9.26)

where C is independent of θ. Moreover, the function pur = −∂ϕpuϕ
λ+1 satisfies for M ≥ 0∑

j+`=M+2

|λ|2j‖∂`ϕpur(λ, ·)‖2L2(0,θ) ≤ C
2
ε,M

1

min{1, |α|}4
∑

j+`=M

|λ− 2|2j

min{1, |α− 2|}2j
‖∂`ϕpf(λ− 2, ·)‖2L2(0,θ),

for any Reλ ∈ Iε and C independent of θ.

Proof. For ` ≤ 2, Bessel’s identity (5.12) implies

‖∂`ϕpuϕ(λ, ·)‖2L2(0,θ) =
∞∑
k=1

(
kπ
θ

)2`|pfk(λ)|2∣∣λ2 −
(
kπ
θ

)2 − 1
∣∣4 .

First, we derive a lower-bound for the denominator. Rewrite, using λ = α+ it, with α, t ∈ R,∣∣∣λ2 −
(
kπ
θ

)2 − 1
∣∣∣2 =

∣∣∣α2 − t2 −
(
kπ
θ

)2 − 1 + 2iαt
∣∣∣2

=
(
t2 +

(
kπ
θ

)2
+ 1− α2

)2
+ 4α2t2.

For k ≥ 1, we have (
kπ
θ

)2
+ 1− α2 ≥ (ε− ε2)

(
π
θ

)2 ≥ (ε− ε2)α2 =
α2

√
Cε
,

which implies(
t2 +

(
kπ
θ

)2
+ 1− α2

)2
+ 4α2t2 ≥

(
t2 +

α2

√
Cε

)2
+ 4α2t2 ≥ 1

Cε
(t2 + α2)2 =

|λ|4

Cε
(9.27)

and (
t2 +

(
kπ
θ

)2
+ 1− α2

)2
+ 4α2t2 ≥

(
t2 +

1√
Cε

(
kπ
θ

)2 )2
+ 4α2t2 ≥ 1

Cε

(
kπ
θ

)4
. (9.28)

Estimates (9.27) and (9.28) imply∣∣λ2 −
(
kπ
θ

)2 − 1
∣∣ ≥ |λ|2√

Cε
and

∣∣λ2 −
(
kπ
θ

)2 − 1
∣∣ ≥ 1√

Cε

(
kπ
θ

)2
.

For ` ≤ 2

‖∂`ϕpuϕ(λ, ·)‖2L2(0,θ) =
∞∑
k=1

(
kπ
θ

)2`|pfk(λ)|2∣∣λ2 −
(
kπ
θ

)2 − 1
∣∣4

≤ 2

min{1, |α|}2
∞∑
k=1

(
kπ
θ

)2`|λ|4|yfϕ,k|2 +
(
kπ
θ

)2`+2|λ|2|yfr,k|2∣∣λ2 −
(
kπ
θ

)2 − 1
∣∣4

≤Cε
2

min{1, |α|}2
1

|λ|4−2`
‖f(λ− 2, ·)‖2L2(0,θ). (9.29)

This proves (9.26) for M = 0. For M = 1, (9.29) implies∑
j+`=3,`≤2

|λ|2j‖∂`ϕpuϕ(λ, ·)‖2L2(0,θ) ≤ C
2
ε

1

min{1, |α|}4
1

min{1, |α− 2|}2
|λ− 2|2‖pf(λ− 2, ·)‖2L2(0,θ).

It remains to estimate

‖∂3
ϕpuϕ‖2L2(0,θ)

(9.23b)
= −

∫ θ

0
∂2
ϕpuϕ∂

4
ϕpuϕ dϕ

(9.23)
= 2(λ2 + 1)‖∂2

ϕpuϕ‖2L2(0,θ) − (λ2 − 1)2‖∂ϕpuϕ‖2L2(0,θ)
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−
∫ θ

0
∂2
ϕpuϕ(λ2 − 1) pfϕ(λ− 2) dϕ+

∫ θ

0
∂3
ϕpuϕ(λ+ 1) pfr(λ− 2) dϕ

≤C2
ε

1

min{1, |α|}4
1

min{1, |α− 2|}2
|λ− 2|2‖pf(λ− 2, ·)‖2L2(0,θ) + 1

2‖∂
3
ϕpuϕ‖2L2(0,θ).

After absorbing the last term on the left-hand side, we deduce (9.26) for M = 1. For M ≥ 2, we
argue by induction. Suppose that (9.26) holds for M = n ≥ 1, then we show that (9.26) holds for
M = n+ 1. First of all, notice that (9.26) with M = n implies∑

j+`=n+3,`≤n+2

|λ|2j‖∂`ϕpuϕ(λ, ·)‖2L2(0,θ)

≤ C2
ε

1

min{1, |α|}4
∑

j+`=n+1,`≤n

|λ− 2|2j

min{1, |α− 2|}2j
‖∂`ϕpf(λ− 2, ·)‖2L2(0,θ).

It remains to estimate ‖∂n+3
ϕ puϕ(λ, ·)‖2L2(0,θ). Using the equation (9.23a), we obtain

∂n+3
ϕ puϕ = − 2(λ2 + 1)∂n+1

ϕ puϕ − (λ2 − 1)2∂n−1
ϕ puϕ

+ (λ2 − 1)∂n−1
ϕ

pfϕ(λ− 2)− (λ+ 1)∂nϕ
pfr(λ− 2)

and thus

‖∂n+3
ϕ puϕ(λ, ·)‖2L2(0,θ) ≤ C

2
ε

1

min{1, |α|}4
∑

j+`=n+1,`≤n

|λ− 2|2j

min{1, |α− 2|}2j
‖∂`ϕpf(λ− 2, ·)‖2L2(0,θ).

To show the bound of ‖∂`ϕpur‖L2(0,θ) it is enough to mimic the proof of the estimates for ‖∂`ϕpuϕ‖L2(0,θ).
�

Using the above lemma we prove an estimate for the solution of (9.2).

Corollary 9.8. Let θ ∈ (0, π), ε ∈ (0, 1 − θ
π ), α ∈ R \ Z and M ∈ N be such that M + α + 1 ∈ Iε.

Let us the solution of system (9.2) with g = 0. Then we have the estimate

JusKM+2,α ≤
Cε,M

min{1, |α+M + 1|}2
1

min{1, |α+M − 1|}M
JfKM,α.

Proof. Using Lemma 9.7, we deduce for M ≥ 0 that

JusK2
M+2,α =

∑
j+`=M+2

∫ θ

0

∫
Reλ=M+α+1

|λ|2j |∂`ϕxus|2 dImλ dθ

=

∫
Reλ=M+α+1

∑
j+`=M+2

|λ|2j‖∂`ϕxus‖2L2(0,θ) dImλ

≤C2
ε,M

1

min{1, |α+M − 1|}4
∑

j+`=M

∫
Reλ=M+α+1

|λ− 2|2j

min{1, |α− 2|}2j
‖∂`ϕpf(λ− 2, ·)‖2L2(0,θ)

≤
C2
ε,M

min{1, |α+M + 1|}4
1

min{1, |α+M − 1|}2M
JfK2

M,α. �

9.4. The proof of Proposition 3.3. We prove Proposition 3.3 from Section 3.1 concerning higher
regularity.

Proof of Proposition 3.3. Define puϕ as in Corollary 9.3 and pur as in (9.4). Motivated by (9.2a) we
define

pp(λ, ϕ) =
1

λ

[(
(λ+ 1)2 + ∂2

ϕ

)
pur(λ+ 1, ϕ)− 2∂ϕpuϕ(λ+ 1, ϕ)− pur(λ+ 1, ϕ) + pfr(λ− 1, ϕ)

]
. (9.30)

Note that by definition puϕ, pur and pp are candidate solutions to (9.2) rather than being the Mellin
transform of some uϕ, ur and p solving a problem in polar coordinates. In fact, below uϕ, ur and p
will be recovered as the inverse Mellin transform of puϕ, pur and pp.

Under the hypothesis that puϕ and pur satisfy the regularity estimate (3.7), we first show that (9.2)
is satisfied. Since (9.2a), (9.2c), (9.2d) and (9.2e) hold by construction, it remains to show that puϕ,
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pur and pp solve (9.2b). Multiply (9.2b) by φ ∈ C∞c ((0, θ)) and integrate over (0, θ). Integration by
parts on the term involving the pressure gives∫ θ

0
(∂ϕpp)φ dϕ = −

∫ θ

0
pp∂ϕφ dϕ.

Then using the definition of pp, integration by parts and using the definition of pur, we learn that puϕ,
pur and pp satisfy (9.2b) if and only if puϕ is a weak solution to (9.3). The latter condition is satisfied
by the definition of puϕ.

To recover u and p it is enough to notice that under the regularity estimate (3.7), we can invert

the Mellin transform for any fixed M . We now show that for M̃ ∈ N such that M̃ + 1 + α ∈ Iε, if

f ∈ HM̃α and g ∈ 1BM̃+1
α+1 we recover a unique solution. We know that pu ∈ pHM+2

α for any 0 ≤M ≤ M̃
and therefore by Lemma 2.6 there exists uM ∈ M+2HM+2

α such that puM = pu|{λ=M+α+1+is}×(0,θ) for

any M ∈ [0, M̃ ]. It remains to verify that u0 = · · · = u
M̃

. Recall that

uM (r, ϕ) =
1√
2π

∫
Reλ=M+α+1

rλpu(λ, ϕ) dImλ.

and that pu is defined via the integral representation in Corollary 9.3 and (9.4). By using that G,
∂ϕ′G and ∂2

ϕ′G are holomorphic on the strip Σ := {λ = α+ is : (|α|+ 1)θ < π, s ∈ R} (Lemma 9.2)
and employing a standard density argument, we can move the line of integration. In particular, for

any M ∈ [0, M̃ ], we have

uM (r, ϕ) =
1√
2π

∫
Reλ=M+α+1

rλpu(λ, ϕ) dImλ

=
1√
2π

∫
Reλ=α+1

rλpu(λ, ϕ) dImλ = u0(r, ϕ) =: u(r, ϕ).

To recover p from (9.30), we again use the properties of pu and the Green’s function G to see that
we can move the line of integration except across zero due to the presence of the singular term
1/λ. By the residue theorem this singularity corresponds to a constant. More precisely, if α > 0 or

M̃ + α < 0, then we can define

p(r, ϕ) :=
1√
2π

∫
Reλ=`+α

rλpp(λ, ϕ) dImλ with ` ∈ [0, M̃ ].

In this way we find p ∈ 1HM̃+1
α . If α < 0 and M̃+α > 0, there exists a natural number `∗ ∈ [0, M̃−1]

such that α+ `∗ < 0 < α+ `∗ + 1. For ` ∈ [0, `∗] and k ∈ [`∗ + 1, M̃ ], we define

p(r, ϕ) :=
1√
2π

∫
Reλ=`+α

rλpp(λ, ϕ) dImλ

=
1√
2π

∫
Reλ=k+α

rλpp(λ, ϕ) dImλ− Cres.

We have that p ∈ 1H`∗+1
α , while p + Cres ∈ `∗+2HM̃+1

α . After noticing that ζCres ∈ 1H`∗+1
α and

(1− ζ)Cres ∈ `∗+2HM̃+1
α , we decompose p = ζp0 + p1, where

p1 := p+ ζCres and p0 := −Cres.

With this choice p1 ∈ 1HM̃+1
α , in fact p1 = p+ ζCres is the sum of p and ζCres that are elements of

1H`∗+1
α . At the same time, p1 = p+Cres− (1− ζ)Cres and both p+Cres and (1− ζ)Cres are elements

of `∗+2HM̃+1
α .

We continue with the regularity of puϕ and pur. By the linearity of the equation u = ub+us, where

ub satisfies (9.2) with source term f = 0 while us satisfies (9.2) with zero boundary conditions g = 0.
Then using this decomposition, Corollary 9.5 and 9.8, we deduce

JuK2
M+2,α ≤ JubK2

M+2,α + JusK2
M+2,α

≤
Cε,M

min{1, |α+M + 1|}M+2
[g]M+ 1

2
,α+1
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+
Cε,M

min{1, |α+M + 1|}2
1

min{1, |α+M − 1|}M
JfKM,α.

We finish the proof by showing that if g = ±(g − rur) with u from Theorem 3.2, then the
solution defined via the Green’s function coincides with u. Note that u satisfies (1.3), in particular
g = ±(g − rur) = ±(g + ∂ϕur). Using this last expression in the estimates for the solution defined
via the Green’s functions, we deduce that the solution given by the Green’s function is in 1H2

α as
the solution u from Theorem 3.2. Uniqueness of 1H2

α solutions for the system (9.1) implies that u
coincides with the solution given by the Green’s function representation with g = ±(g − rur). �

10. Proof of Proposition 3.4

In this section, we prove Proposition 3.4 from Section 3.2 concerning the polynomial problem.

Proof of Proposition 3.4. Insert in (3.9) the polynomial expansions

Pn
u(r, ϕ) =

n∑
j=0

u(j)(ϕ) rj , Pnp (r, ϕ) =
n−1∑
j=0

p(j)(ϕ) rj and Pn
f (r, ϕ) =

n−2∑
j=0

f (j)(ϕ) rj ,

to obtain for j ∈ N
(j2 + ∂2

ϕ)u(j)
r − 2∂ϕu

(j)
ϕ − u(j)

r − (j − 1)p(j−1) = − f (j−2)
r in (0, θ), (10.1a)

(j2 + ∂2
ϕ)u(j)

ϕ + 2∂ϕu
(j)
r − u(j)

ϕ − ∂ϕp(j−1) = − f (j−2)
ϕ in (0, θ), (10.1b)

(j + 1)u(j)
r + ∂ϕu

(j)
ϕ = 0 in (0, θ), (10.1c)

u(j)
ϕ = 0 on {0, θ}, (10.1d)

∂ϕu
(j)
r = ∓ u(j−1)

r ± δn,j−1u
(n)
r on {0, θ}, (10.1e)

where δn,j−1 = 1 if j = n + 1 and 0 else. Note that this system is the same as (9.2) with λ ∈ C
replaced by j ∈ N. Hence, for j ≤ n, as in Corollary 9.3 and in Lemma 9.6, we get the solution
formula

u(j)
ϕ (ϕ) =

∞∑
k=1

pf
(j)
k(

j2 −
(
kπ
θ

)2 − 1
)2 ẽk(ϕ) + (j + 1)(1− δn,j−1)u(j−1)

r (θ)∂ϕ′G(j, ϕ, θ) (10.2)

− (j + 1)(1− δn,j−1)u(j−1)
r (0)∂ϕ′G(j, ϕ, 0),

where G is defined as in Lemma 9.1 (replacing λ by j) and (cf. (9.24))

pf(j) = (j2 − 1) pf (j−2)
ϕ (ϕ)− (j + 1)∂ϕ pf (j−2)

r (ϕ).

For j = 0, we have f (−2) = 0 and u(−1) = 0 by assumption. By (10.1c) and (10.1d) we obtain

u(0) = 0 and by (10.1a) we also obtain p(−1) = 0. For j = 1, we have f (−1) = 0 and u(0) = 0. By

(10.2), we deduce u(1) = 0. Rewriting (10.1b) gives

∂ϕp
(0) = (1 + ∂2

ϕ)u(1)
ϕ + 2∂ϕu

(1)
r − u(1)

ϕ + f (−1)
ϕ = 0.

We deduce that p(0) is a constant.
Notice that for j ≥ 2, the integral of (10.1a) over (0, θ) rewrites in the form∫ θ

0
p(j−1) dϕ =

∫ θ

0

f
(j−2)
r

j − 1
dϕ+

1

j − 1

[
∓u(j−1)

r ± δn,j−1u
(n)
r

]θ
0
, (10.3)

after integration by parts and using (10.1c) and (10.1e).

For 2 ≤ j ≤ n we argue by induction. Suppose that we have already found u(j−1) and p(j−2), then

formula (10.2) defines u
(j)
ϕ . By Lemmata 9.4 and 9.7, we have u

(j)
ϕ ∈ HM+2(0, θ) with the desired

bound. With (10.1c) we define u
(j)
r = ∂ϕu

(j)
ϕ /(j + 1) ∈ HM+1(0, θ). From (10.1b) we deduce the

pressure p(j−1) ∈ HM+1(0, θ) up to a constant. Equation (10.3) defines uniquely such a constant.

We deduce from (10.1a) that u
(j)
r ∈ HM+2(0, θ).

For j = n+ 1 the right-hand side of (10.1) is identically zero since by assumption f (n−1) = 0 and

∓u(n)
r ± u(n)

r = 0. Therefore, the unique solution is u(n+1) = 0, p(n) = 0. Similarly, for j ≥ n + 2 ,

the right-hand side of (10.1) is identically zero because f (j) = 0 and u
(j−1)
r = 0 by induction.
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Finally, the estimates on Pn
u and Pnp are a consequence of (10.2) and Lemmata 9.4 and 9.7. �

Appendix A. Vector identities and polar coordinates

A.1. Vector identities. For sufficiently smooth u,v : R2 ⊇ Ω → R2 in Cartesian coordinates
(x1, x2) we recall the notation

∇u : ∇v =
2∑

i,j=1

∂xiuj∂xivj , u⊗ v ∈ R2×2 with (u⊗ v)ij := uivj for 1 ≤ i, j ≤ 2.

Moreover, recall that in two dimensions the curl is defined as ωu := curl u = ∂x1u2 − ∂x2u1.

Lemma A.1. For a sufficiently smooth vector field u : R2 ⊇ Ω → R2 and a sufficiently smooth
scalar field φ we have the following properties:

(i) curl∇φ = 0,
(ii) div curl u = 0,

(iii) div ∆u = ∆ div u,
(iv) curl ∆u = ∆ curl u if div u = 0.

Moreover, we have

2∑
j=1

div(vj∇uj) = v ·∆u +∇v : ∇u, ∇(φu) = φ∇u + u⊗∇φ.

For a vector a = (a1, a2) the rotated vector is a⊥ := (−a2, a1). It holds that a⊥ · a = 0 and
a⊥ · b = −a · b⊥. For the rotated gradient ∇⊥ we have the properties

∇⊥ · u = curl u, ∆u = ∇⊥ curl u if div u = 0.

A.2. Polar coordinates. In polar coordinates (r, ϕ) the unit vectors at (r, ϕ) are given by er =
(cosϕ, sinϕ) and eϕ = (− sinϕ, cosϕ) and we write u(r, ϕ) = ur(r, ϕ)er +uϕ(r, ϕ)eϕ as u = (ur, uϕ).
The gradient and Laplace operator are in polar coordinates given by

∇ = (∂r)er +
(
r−1∂ϕ

)
eϕ and ∆ = ∂2

r + r−1∂r + r−2∂2
ϕ = r−2

(
(r∂r)

2 + ∂2
ϕ

)
.

Therefore, for a sufficiently smooth vector field u : R2 ⊇ Ω → R2 and a sufficiently smooth scalar
field φ we have

div u = ∇ · u = r−1
(
(r∂r + 1)ur + ∂ϕuϕ

)
, (A.1)

curl u = ∇⊥ · u = r−1
(
(r∂r + 1)uϕ − ∂ϕur

)
, (A.2)

∇u = r−1

(
r∂rur ∂ϕur − uϕ
r∂ruϕ ∂ϕuϕ + ur

)
, (A.3)

∆u = r−2

((
(r∂r)

2 + ∂2
ϕ

)
ur − 2∂ϕuϕ − ur(

(r∂r)
2 + ∂2

ϕ

)
uϕ + 2∂ϕur − uϕ

)
, (A.4)

∇⊗∇φ =

(
∂2
rφ r−1∂ϕ∂rφ− r−2∂ϕφ

r−1∂ϕ∂rφ− r−2∂ϕφ r−2∂2
ϕφ+ r−1∂rφ

)
. (A.5)

Finally, we also have the commutation relations

rγ(r∂r) = (r∂r − γ)rγ and r∂rr
γ = rγ(r∂r + γ) for γ ∈ R. (A.6)

Appendix B. Some results on weighted Sobolev spaces

B.1. Proof of the claim in Remark 1.1. As an application of Hardy’s inequality we prove the
claim in Remark 1.1. Recall that kHkα is the closure of C∞c (Ω \ {0}) with respect to J·Kk,α as defined
in Section 1.2.

Lemma B.1. Let k ∈ N and α ∈ R such that α+ k − 1 6= 0 and let

Hkα := {u : JuKk−`,α+` <∞ for all 0 ≤ ` ≤ k} ,

endowed with the norm ‖u‖2
Hkα

= JuK2
0,α+k + · · ·+ JuK2

k,α. Then the inclusion kHkα −→ Hkα is a linear

and continuous bijection.
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Proof. The inclusion being linear and continuous is a direct consequence of Hardy’s inequality. To
show that it is surjective it suffices to prove that for any u ∈ Hkα there exists a sequence un ∈
C∞c (Ω \ {0}) such that Jun − uKk,α −→ 0. Define the cut-off function

η ∈ C∞c (R) satisfying η
∣∣
[−1,1]

= 1 and η
∣∣
R\(−2,2)

= 0.

Furthermore, define for n ∈ N
ηn(r) := η

(
log(r)
n

)
, r > 0. (B.1)

Then supp(ηn) = [e−2n, e2n] and ηn(r) −→ 1 pointwise as n −→∞ for all r > 0. Moreover,

(r∂r)
jηn(r) = n−jη(j)

(
log r
n

)
.

For u ∈ Hkα it holds that ηnu −→ u in Hkα and for any n ∈ N the vector field ηnu is compactly
supported on Ω \ {0}. Therefore, by mollification there exists un ∈ C∞c (Ω \ {0}) such that Jun −
ηnuKk,α ≤ ‖ηnu− u‖Hkα . This sequence un satisfies the desired properties. �

B.2. Trace theorems. Recall from Section 3.1 that for s ∈ R and α ∈ R such that s+ α − 1
2 6= 0

the space H̃s
α is the closure of C∞c (∂Ω′) with respect to the norm

‖g‖2
H̃s
α

=
∑

ϕ∈{0,θ}

∫
Reλ=s+α− 1

2

|λ|2s|pg(λ, ϕ)|2 dImλ.

Proposition B.2 (Trace operators and extensions). For k ∈ N and α ∈ R \Z, there exists a linear
continuous trace operator

T : kHkα −→
k−1∏
`=0

H̃
k−`− 1

2
α

such that Tu = (∂`ϕu|∂Ω′)
k−1
`=0 for any u ∈ C∞c (Ω \ {0}). Moreover, T admits a linear and continuous

right inverse, that we call extension

L :
k−1∏
`=0

H̃
k−`− 1

2
α −→ kHkα.

Proof. The existence of T is a direct consequence of Hölder’s inequality. In fact for ϑ ∈ {0, θ} and
` ∈ {0, 1, . . . , k − 1} it holds

|λ||∂`ϕpu(·, ϑ)|2 ≤ |λ|θ ‖∂
`
ϕpu‖2L2(0,θ) + ‖λ∂`ϕpu‖2L2(0,θ) + ‖∂`+1

ϕ pu‖2L2(0,θ)

≤ ( 1
θα + 1)‖λ∂`ϕpu‖2L2(0,θ) + ‖∂`+1

ϕ pu‖2L2(0,θ).

This implies that

‖∂`ϕu‖
H̃
k−`− 1

2
α

≤ Cα,θ‖u‖kHkα .

The existence of the right inverse is a consequence of the following explicit formula: for the vector

(u1, . . . , uk−1)∈
∏k−1
`=0 H̃

k−`− 1
2

α , define the extension U in Mellin variables as

pU(λ, ϕ) =
k−1∑
`=0

ϕ`

`!
pu`(λ, 0)h

(ϕ(1+|λ|)
θ

)
+

k−1∑
`=0

(−1)`
(θ − ϕ)`

`!
pu`(λ, θ)h

( (θ−ϕ)(1+|λ|)
θ

)
, (B.2)

where h ∈ C∞c ([0, 1)) satisfies 0 ≤ h ≤ 1 and h = 1 in an open neighbourhood of 0. Upon noting
that ∫ θ

0
h
(ϕ(1+|λ|)

θ

)
dϕ .

θ

|λ|
,

it is straightforward to see that (B.2) indeed defines a linear and continuous right inverse L to the
trace operator T . �
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B.3. Density results. Recall that

C∞c,σ(Ω \ {0}) :=
{
v ∈ C∞c (Ω \ {0}) : div v = 0 in Ω and vϕ = 0 on ∂Ω′

}
.

Proposition B.3. Let α ∈ R \ Z, then the inclusions

I1 : C∞c,σ(Ω \ {0})
2H2

α −→
{
u ∈ 2H2

α : div u = 0 in Ω and uϕ = 0 on ∂Ω′
}

and

I2 : {v ∈ C∞c,σ(Ω \ {0}) : v = 0 on ∂Ω′}
2H2

α −→
{
u ∈ 2H2

α : div u = 0 in Ω and u = 0 on ∂Ω′
}

are linear and bijective.

Proof. We prove the statement for I1 as the proof for I2 is similar. Let v ∈ 2H2
α satisfy div v = 0 in

Ω and vϕ = 0 on ∂Ω′. Then it suffices to show that there exists a sequence (vk)k≥1 ∈ C∞c,σ(Ω \ {0})
such that vk −→ v in 2H2

α as k −→∞. The stream function is given by

ψ(r, ϕ) =

∫ ϕ

0
rvr(r, ϕ̃) dϕ̃

and satisfies r∂rψ = ruϕ and ∂ϕψ = −rur. Moreover, we have ψ = 0 on ∂Ω′. Indeed, by definition
it is clear that ψ(r, 0) = 0. Using that vϕ(r, θ) = 0 gives r∂rψ(r, θ) = 0, i.e., ψ(r, θ) is constant. By

applying the trace operator T to ψ we obtain ψ|∂Ω′ ∈ H̃
3
2
α , which implies that the constant is zero.

In addition, we have ψ ∈ 3H3
α since by Lemma B.1

‖ψ‖23H3
α
∼ ‖ψ‖2H3

α
=

∑
0≤j+`≤3

∫ θ

0

∫ ∞
0

r−2α−6|(r∂r)j∂`ϕψ|2r dr dϕ

.
∑

0≤j+`≤2

∫ θ

0

∫ ∞
0

r−2α−4|(r∂r)j∂`ϕv|2r dr dϕ . JvK2
2,α.

By definition of 3H3
α, there exists a sequence (ψk)k≥1 of smooth compactly supported functions

such that ψk −→ ψ in 3H3
α as k −→ ∞. With the extension operator L from Proposition B.2, we

define ṽk ∈ C∞(Ω) such that div ṽk = 0, (ṽk)ϕ = 0 on ∂Ω′ and

ṽk := ∇⊥(ψk − L(ψk, 0, . . . , 0)) −→ v in 2H2
α as k −→∞. (B.3)

However, ṽk is not compactly supported in Ω \ {0}. To solve this, consider the cut-off functions ηk
as defined in (B.1) and let g(k) be an increasing sequence such that

‖∇⊥
(
ηg(k)(ψk − L(ψk, 0, . . . , 0))

)
− ṽk‖2H2

α
≤ ‖ṽk − v‖2H2

α
for all k ≥ 1.

Then, the sequence (vk)k≥1 defined by

vk := ∇⊥
(
ηg(k)(ψk − L(ψk, 0, . . . , 0))

)
has all the desired properties. �

Proposition B.4. For α ∈ R \ Z and θ ∈ (0, π2 ) the inclusions

I1 : C∞c,σ(Ω \ {0})
H 2
α −→

{
u : div u = 0 in Ω, uϕ = 0 on ∂Ω′ and ‖u‖H 2

α
<∞

}
and

I2 : C∞c,σ(Ω \ {0})
X2
α,θ −→

{
u : div u = 0 in Ω, uϕ = 0 on ∂Ω′ and ‖u‖X2

α,θ
<∞

}
are linear and bijective.

Proof. We prove the statement for I1 and the proof for I2 is similar. We follow the proof of Propos-

ition B.3. In particular, we have that the stream function satisfies ψ ∈ 2H3
α and ∂ϕψ|∂Ω′ ∈ H̃0

α−1.
This leads to the extra difficulty of finding a smooth, compactly supported approximation of ψ in

the norm 2H3
α and ∂ϕψ|∂Ω′ in H̃0

α−1. Let ηn again be the cut-off function as defined in (B.1). Note

that ηnψ converges to ψ in 2H3
α and ∂ϕ(ηnψ) to ∂ϕψ in H̃0

α−1 as n −→ ∞. Then ηnψ is com-

pactly supported away from 0, so we can find an approximating sequence ψkn ∈ C∞c (Ω2n) such that
ψkn −→ ηnψ in 3H3

α as k −→∞, where

Ω2n = {(r, ϕ) ∈ Ω : r ∈ (e−4n, e4n)}.
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By the trace theorem (Proposition B.2) and the fact that the weights rβ for any β ∈ R are equivalent
on compact subsets of Ω\{0}, it follows that ‖f‖2H2

α
+‖∂ϕf‖H̃0

α−1
≤ C2n‖f‖3H3

α
for any f ∈ C∞c (Ωn).

Therefore, ψkn and ∂ϕψ
k
n converge, respectively, to ηnψ and ∂ϕ(ηnψ) in 2H2

α and H̃0
α−1 as k −→ ∞.

We can now conclude by defining the approximate velocity field as in (B.3) and proceed from
there. �

Appendix C. Auxiliary estimates

In this appendix we prove some auxiliary estimates which are required in Section 9. Recall that
we defined the interval

Iε =
[
−(1− ε)πθ + 1, (1− ε)πθ − 1

]
.

Lemma C.1. Let λ ∈ C. If Reλ ∈ Iε, |Imλ|θ < 1
4 , |λ− 1| ≥ 1

4 , |λ+ 1| ≥ 1
4 and ϕ ∈ (0, θ), then we

have the estimates ∣∣∣∣ sin((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
± sin((λ− 1)ϕ)

4λ sin((λ− 1)θ)

∣∣∣∣ ≤ Cε 1

|λ|
, (C.1)∣∣∣∣ sin((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
− sin((λ− 1)ϕ)

4λ sin((λ− 1)θ)

∣∣∣∣ ≤ Cε |λ|θ|λ|2 , (C.2)∣∣∣∣(λ+ 1) cos((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
− (λ− 1) cos((λ− 1)ϕ)

4λ sin((λ− 1)θ)

∣∣∣∣ ≤ Cεθ. (C.3)

Proof. Note that in any compact subset of C we have | sin z| ≤ C|z|, so (C.1) follows easily.
For (C.2) note that

sin((λ+ 1)ϕ)

4λ sin((λ+ 1)θ)
− sin((λ− 1)ϕ)

4λ sin((λ− 1)θ)
(C.4)

=
sin((λ+ 1)ϕ) sin((λ− 1)θ)− sin((λ− 1)ϕ) sin((λ+ 1)θ)

4λ sin((λ+ 1)θ) sin((λ− 1)θ)
.

To estimate the numerator, we rewrite using the Taylor expansion theorem with Lagrange remain-
ders:

sin(x) = x−
∫ x

0
(x− s) sin(s) ds.

Using this formula, we deduce

sin((λ+ 1)ϕ) sin((λ− 1)θ)− sin((λ− 1)ϕ) sin((λ+ 1)θ)

= − (λ+ 1)ϕ

∫ (λ−1)θ

0
((λ− 1)θ − s) sin(s) ds+ (λ− 1)ϕ

∫ (λ+1)θ

0
((λ+ 1)θ − s) sin(s) ds (C.5)

− (λ− 1)θ

∫ (λ+1)ϕ

0
((λ+ 1)ϕ− s) sin(s) ds+ (λ+ 1)θ

∫ (λ−1)ϕ

0
((λ− 1)ϕ− s) sin(s) ds (C.6)

+

∫ (λ+1)ϕ

0
((λ+ 1)ϕ− s) sin(s) ds

∫ (λ−1)θ

0
((λ− 1)θ − s) sin(s) ds (C.7)

−
∫ (λ−1)ϕ

0
((λ− 1)ϕ− s) sin(s) ds

∫ (λ+1)θ

0
((λ+ 1)θ − s) sin(s) ds. (C.8)

We bound (C.5), (C.6) and (C.7)+(C.8) separately. We start by rewriting the first term

(C.5) = (λ2 − 1)ϕθ

∫ (λ+1)θ

(λ−1)θ
sin(s) ds− λϕ

∫ (λ−1)θ

(λ+1)θ
s sin(s) ds+ ϕ

∫ (λ−1)θ

0
s sin(s) ds

+ ϕ

∫ (λ+1)θ

0
s sin(s) ds.

We then deduce
|(C.5)| ≤ C(|λ2 − 1|+ |λ|+ |λ− 1|3 + |λ+ 1|3)θ4 ≤ Cθ, (C.9)

where in the last inequality we have used that |λ|θ ≤ |Reλ|θ+ |Imλ|θ ≤ π + 1 and θ ≤ 1. The same
estimates holds for (C.6). We are left with

(C.7) + (C.8) =
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(λ2 − 1)ϕθ
(∫ (λ+1)ϕ

0
sin s ds

∫ (λ−1)θ

0
sin s ds−

∫ (λ−1)ϕ

0
sin s ds

∫ (λ+1)θ

0
sin s ds

)
− λθ

(∫ (λ+1)ϕ

0
s sin s ds

∫ (λ−1)θ

0
sin s ds−

∫ (λ−1)ϕ

0
s sin s ds

∫ (λ+1)θ

0
sin s ds

)
− λϕ

(∫ (λ+1)ϕ

0
sin s ds

∫ (λ−1)θ

0
s sin s ds−

∫ (λ−1)ϕ

0
sin s ds

∫ (λ+1)θ

0
s sin s ds

)
+ θ
(∫ (λ+1)ϕ

0
s sin s ds

∫ (λ−1)θ

0
sin s ds+

∫ (λ−1)ϕ

0
s sin s ds

∫ (λ+1)θ

0
sin s ds

)
+ ϕ

(∫ (λ+1)ϕ

0
sin s ds

∫ (λ−1)θ

0
s sin s ds+

∫ (λ−1)ϕ

0
sin s ds

∫ (λ+1)θ

0
s sin s ds

)
+
(∫ (λ+1)ϕ

0
s sin s ds

∫ (λ−1)θ

0
s sin s ds−

∫ (λ−1)ϕ

0
s sin s ds

∫ (λ+1)θ

0
s sin s ds

)
Note ∣∣∣ ∫ (λ+1)ϕ

0
sin s ds

∫ (λ−1)θ

0
sin s ds−

∫ (λ−1)ϕ

0
sin s ds

∫ (λ+1)θ

0
sin s ds

∣∣∣ ≤ C|λ− 1|2θ4

and ∣∣∣ ∫ (λ+1)ϕ

0
sin s ds

∫ (λ−1)θ

0
s sin s ds+

∫ (λ−1)ϕ

0
sin s ds

∫ (λ+1)θ

0
s sin s ds

∣∣∣
≤ C(|λ+ 1|+ |λ− 1|)|λ2 − 1|2θ5,

which implies

|(C.7) + (C.8)| ≤C(|λ2 − 1||λ− 1|2 + |λ||λ− 1|3 + (|λ+ 1|+ |λ− 1|)|λ2 − 1|2 + |λ− 1|3)θ6

≤Cθ, (C.10)

where in the last inequality we have used that |λ|θ ≤ |α|θ + |Imλ|θ ≤ π + 1 and θ ≤ 1. Inequality
(C.9) implies the result (C.10).

By using (C.9) and (C.10) to estimate the numerator of (C.4) and the fact that

|λ sin((λ− 1)θ) sin((λ+ 1)θ)| ≥ c2
ε|λ||λ2 − 1|θ2,

we deduce (C.2). A similar strategy proves (C.3). �
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[39] H. Knüpfer and N. Masmoudi. Darcy’s flow with prescribed contact angle: well-posedness and lubrication ap-

proximation. Arch. Rational Mech. Anal., 218(2):589–646, 2015.
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Basler Lehrbücher. Birkhäuser/Springer, 2nd edition, 2001.
[64] V.A. Solonnikov. On some free boundary problems for the navier-stokes equations with moving contact points

and lines. Math. Ann., 302(1):743–772, 1995.
[65] L.H. Tanner. The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys., 12(9):1473–1484,

1979.
[66] I. Tice and L. Wu. Dynamics and stability of sessile drops with contact points. J. Differ. Equ., 272:648–731, 2021.
[67] O.V. Voinov. Inclination angles of the boundary in moving liquid layers. J. Appl. Mech. Tech. Phys., 18(2):216–222,

1977.
[68] Y. Zheng and I. Tice. Local well posedness of the near-equilibrium contact line problem in 2-dimensional stokes

flow. SIAM J. Math. Anal., 49(2):899–953, 2017.
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