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Abstract

We prove the Zariski density of certain set of CM points lying in self-
products of elliptic modular curves, considered by Hida. A new ingredient
in our argument is a finiteness result on irreducible components for the
inverse images in infinite coverings of self-products of modular curves.

Introduction.
The purpose of this paper is to prove the Zariski density of CM points on

products of elliptic modular curves, as formulated and announced by Hida [H1],
[H3]. (Hida considered general Hilbert modular varieties, but we only treat the
elliptic modular case in this paper.) It was one of the key result for the proof
of the non-vanishing modulo p result for special values of Hecke L-functions
twisted by anti-cyclotomic characters; [H1]-[H3]. Aside from its own interest,
Vatsal [V] applied the non-vanishing modulo p result to the study of µ-type
subgroups of the modular Jacobian variety J0(N), together with an application
to a conjecture of Stevens. The author [O], following Vatsal’s method, studied
µ-type subgroups of J1(N), and applied it to a conjecture of Sharifi.

Unfortunately, the original proof of the Zariski density was incomplete, as
pointed out by Venkatesh; cf. [H4]. Hida, in the same paper, recovered his
results under an additional assumption (also in the Hilbert modular case), but
the Zariski density in the full generality seems remained open so far. We will
supply a proof for this lacuna.

We now explain the main result. Let us fix an imaginary quadratic field K,
a prime number p which splits in K, and a prime number ` different from p.
Let Cln be the proper ideal class group of conductor `n of K and set Cl∞ :=
lim←−n Cln. Each class cl(a) ∈ Cln determines an isomorphism class of a CM

elliptic curve over Q, and then an ordinary elliptic curve over an algebraic
closure F of the prime field Z/pZ, by reduction. This determines a closed point
x(a)/F of the coarse moduli scheme Y (1)/F of elliptic curves over F. The group
Cl∞ acts on the set of x(a)/F through its projections to Cln. On the other hand,

Hida introduced a certain subgroup Clalg of Cl∞.
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Take and fix an infinite sequence of non-negative integers n := {n0 < n1 <
· · · }, and set

ξ(1;n)/F := {x(a)/F | cl(a) ∈ Ker(Clnj → Cln0), nj ∈ n} ⊂ Y (1)/F.

Then take δ1, · · · , δm ∈ Ker(Cl∞ → Cln0
) which give different classes in Cl∞/Cl

alg.
Define

Ξ(1;n)/F := {(x(δ1a)/F, · · · , x(δma)/F) | x(a)/F ∈ ξ(1;n)/F}

which is a set consisting of closed points of (Y (1)/F)
m, the self-product of m

copies of Y (1)/F over F.
Let Y (M)/F be the modular curve classifying elliptic curves with a Γ(M)-

structure (in the terminology of Katz and Mazur [KM]) over F-schemes, for M
prime to p. We set Y (p)(∞)/F := lim←−p∤M Y (M)/F and take its one irreducible

component Y (p)(∞)0/F. This determines an irreducible component Y (M)0/F of

each Y (M)/F so that Y (p)(∞)0/F = lim←−p∤M Y (M)0/F. With these terminologies,

the main result of this paper, which is equivalent to [H3, Proposition 8.28], can
be stated as follows:

Theorem 1 Let M be a positive integer prime to p (resp. M = ∞), and let
Λ(M) be a set of closed point of (Y (M)0/F)

m (resp. (Y (p)(∞)0/F)
m) mapping

surjectively onto Ξ(1;n)/F. Then Λ(M) is a Zariski dense subset of (Y (M)0/F)
m

(resp. (Y (p)(∞)0/F)
m).

As in Hida’s argument, it is necessary to use infinite coverings of (Y (1)/F)
m

like (Y (p)(∞)0/F)
m to prove the theorem. A new point of our argument is the

following finiteness result for the irreducible components, which allows us to
avoid the situation described by an example of Venkatesh:

Theorem 2 Take and fix an integer N0 ≥ 3 prime to p, and Let Z be an
irreducible closed subvariety of (Y (N0)

0
/F)

m defined over F such that:

i) The composite of Z ↪→ (Y (N0)
0
/F)

m pi→ Y (N0)
0
/F is dominant for each i

(1 ≤ i ≤ m), where pi is the projection to the i-th direct factor.
ii) Let EZ,i be the pull-back of the universal elliptic curve on Y (N0)

0
/F to Z

by the above morphism (1 ≤ i ≤ m). Then if i 6= j, the generic geometric fibres
of EZ,i and EZ,j are not isogenous.

Then the inverse image of Z to (Y (p)(∞)0/F)
m has only a finite number of

irreducible components.

Note that dimZ > 0 by the condition i).
Here is a rough sketch of the proof of Theorem 2:
• If M is a positive multiple of N0 prime to p, the étale covering Y (M)0/F

of Y (N0)
0
/F is a torsor under a subgroup of SL2(Z/MZ), described in terms of

the universal elliptic curve E on Y (N0)
0
/F. (For example, whenM = N0M

′ with
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M ′ prime to N0, Y (M)0/F is Y (N0)
0
/F-isomorphic to the SL2(Z/M ′Z)-torsor

classifying isomorphisms Z/M ′Z×Z/M ′Z ∼→ E [M ′] of prescribed determinant.)

• It follows that the inverse image of Z to (Y (M)0/F)
m is a torsor over Z

described in terms of the elliptic curves EZ,i (1 ≤ i ≤ m). The set of its
irreducible components can be then studied in terms of the Galois representation
on the M -division points of the generic fibre of EZ,1 ×Z · · · ×Z EZ,m.
• The finiteness claimed in the theorem ultimately reduces to a function

field analogue of the open image theorem proved by Serre [Se3] and extended
by Ribet [R] for products of elliptic curves over number fields.

When Z is a positive dimensional irreducible component of the Zariski clo-
sure Λ(N0) of Λ(N0) as in Theorem 1, (the condition i) is easy and) the condition
ii) in Theorem 2 is a consequence of our assumption that δ1, · · · , δm give dif-
ferent classes in Cl∞/Cl

alg. After Theorem 2, the proof of Theorem 1 basically
goes along the track as in Hida’s work, based on fundamental works of Chai
[C1], [C2]. The notion of Tate-linearlity studied by Chai is indispensable in this
part.

The organization of this paper is as follows:

Section 1 is preliminaries on modular curves. In this paper, we only consider
(open) modular curves classifying (isomorphism classes of) elliptic curves with
a Γ(M)-structure and their irreducible components, or the projective limits of
these curves, such as Y (M)/F, Y (M)0/F, Y

(p)(∞)/F or Y (p)(∞)0/F that already
appeared. After fixing basic terminologies on them, we describe at some length
the action of the adelic group, e.g. the action of GL2((lim←−p∤M Z/MZ) ⊗Z Q)

extending the natural action of GL2(lim←−p∤M Z/MZ) on Y (p)(∞)/F, following

Deligne’s moduli theoretic description [D2]. We will need such action, via Sub-
section 2.4, in the proof of the Tate-linearity in the final Subsection 4.2.

In Section 2, we study the CM points on modular curves attached to K,
p and ` as mentioned above. In Subsection 2.2, we recall Hida’s definition of
Clalg, and study its properties. Proposition (2.2.6) is a key to the proof of the
property ii) in Theorem 2 for Z ⊆ Λ(N0), to be given later in Subsection 4.1.
After this, we state our main result Theorem (2.3.4) (= Theorem 1 above).

In the course of the proof of the Tate-linearity, we will consider special points
on Y (p,`)(∞)/F := lim←−p,`∤M Y (M)/F, the modular curve of infinite prime-to-p`

level, called admissible CM points specifying the level structures on CM elliptic
curves. We study the properties of these points in detail in Subsection 2.4.

Section 3 is devoted to the proof of Theorem 2. In Subsections 3.2-3.3, we
state and prove an analogue of Serre’s open image theorem for products of two
elliptic curves over function fields of one variable over F or its finite subfield. The
method is completely due to Serre. We then use Ribet’s group theoretic lemma
to give its generalization for products of more than two elliptic curves over
general function fields; cf. Theorem (3.4.2). After preliminary consideration
on torsors attached to elliptic curves, we prove Theorem (3.6.4) (= Theorem 2
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above) as an application of the open image theorem. Another application of this
result, a consequence of Čebotarev density theorem, which will be used at the
final step of the proof of our main theorem, is given at the end of this section.

In the final Section 4, we complete the proof of the main theorem. We
prove a key result Proposition (4.2.2) on Tate-linearity (at appropriate points
for suitably chosen Λ(N0) and Z, to be precise) using results from Sections 2
and 3, and finally deduce from it the main theorem.

§1. Preliminaries on modular curves.

1.1. Modular curves Y (N). In this paper, we will exclusively consider
modular curves with respect to the “naive” Γ(N)-moduli problems. For an
elliptic curve E over a Z[1/N ]-scheme S, we thus consider its Γ(N)-structures,
i.e. isomorphisms

(1.1.1) αN : Z/NZ× Z/NZ ∼→ E[N ]

of group schemes over S, where E[N ] denotes the kernel of multiplication by
N on E, and we indicated by the underline the corresponding constant group
scheme. We denote by

(1.1.2) µµµprim
N = Spec(Z[X]/ΦN (X))

with ΦN (X) the N -th cyclotomic polynomial, the scheme of primitive N -th
roots of unity. If αN is a Γ(N)-structure on E/S, we define its determinant by:

(1.1.3) det(αN ) := eN,E(αN

(
1
0

)
, αN

(
0
1

)
) ∈ µµµprim

N (S)

using the eN -pairing on E.
There is a natural right action of the group GL2(Z/NZ) on the set of Γ(N)-

structures on E/S:

(1.1.4) αN 7→ αN ◦ g for g ∈ GL2(Z/NZ),

and we have

(1.1.5) det(αN ◦ g) = det(αN )det(g).

Definition (1.1.6) We denote by Y (N) the (coarse) moduli scheme classify-
ing the (isomorphism classes of) pairs (E,αN ) as above over Z[1/N ]-schemes.

Y (N) is an irreducible affine curve smooth over Z[1/N ], and it is in fact the
fine moduli scheme when N ≥ 3. The correspondence (E,αN ) 7→ det(αN ) gives

a morphism Y (N)→ µµµprim
N over Z[1/N ]. Let µN be the group of N -th roots of

unity in Q. Then the correspondences X 7→ ζN for ζN ∈ µµµprim
N (Q) give us an

isomorphism

Z[X]/(ΦN (X))⊗Z[1/N ] Z[1/N, µN ]
∼→

⊕
ζN

Z[1/N, ζN , µN ] =
⊕
ζN

Z[1/N, µN ]
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of Z[1/N, µN ]-algebras. Therefore if we denote by Y (N)(ζN ) the base change of

Y (N)→ µµµprim
N by the homomorphism given by X 7→ ζN , we obtain

(1.1.7) Y (N)⊗Z[1/N ] Z[1/N, µN ]
∼
=

∐
ζN

Y (N)(ζN ) → Spec(Z[1/N, µN ]).

Y (N)(ζN ) is the moduli scheme classifying (E,αN ) with det(αN ) = ζN over
Z[1/N, µN ]-schemes, and it is geometrically irreducible over Z[1/N, µN ].

If M is a positive divisor of N , αN above gives rise to a Γ(M)-structure αM
defined by the commutativity of the diagram:

(1.1.8)

Z/NZ× Z/NZ αN−−−−→
∼

E[N ]

canon.

y yN/M
Z/MZ× Z/MZ ∼−−−−→

αM

E[M ].

We have

(1.1.9) det(αM ) = det(αN )N/M

in this case. The association (E,αN ) 7→ (E,αM ) given by (1.1.8) induces natural
morphisms

(1.1.10)

{
Y (N)→ Y (M) over Z[1/N ], and

Y (N)(ζN ) → Y (M)(ζ
N/M
N ) over Z[1/N, ζN/MN ].

The action of GL2(Z/NZ) on Y (N) gives isomorphisms

(1.1.11)

{
GL2(Z/NZ)/{±1} ∼→ Aut(Y (N)/Y (1)),

SL2(Z/NZ)/{±1} ∼→ Aut(Y (N)(ζN )/(Y (1)⊗Z Z[1/N, µN ])).

1.2. Towers of modular curves. We set

(1.2.1)

{
Ẑ :=

∏
q:prime Zq, and

Af := Ẑ⊗Z Q, the ring of finite adeles of Q.

Slightly more generally, we take a finite set P of prime numbers and consider

(1.2.2)

{
Ẑ(P) :=

∏
q 6∈P Zq,

A(P)
f := Ẑ(P) ⊗Z Q.

(We will later need these symbols only when P = {p} or {p, `} with prime
numbers p and ` 6= p; but the general treatment requires no extra effort.)

We also consider the semilocal ring

(1.2.3) Z(P) := {a/b ∈ Q | a, b ∈ Z, b is not divisible by any element of P}
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(thus Z(P) = Q if P is empty). We say that a positive integer N is prime to P
if N is not divisible by primes in P; equivalently, if N is a unit in Z(P). In this
case, we can consider Y (N)/Z(P)

:= Y (N)⊗Z[1/N ] Z(P).
When E is an elliptic curve over a Z(P)-scheme S, we set

(1.2.4)

{
T̂ (P)(E) := (E[N ])N :prime toP ,

V̂ (P)(E) := T̂ (P)(E)⊗ A(P)
f .

Here, we consider T̂ (P)(E) as a projective system of finite étale group schemes

over S (with respect to E[N ]
N/M→ E[M ] whenever M divides N), and also

identify it with the associated smooth Ẑ(P)-sheaf on the étale site Sét of S; and

denote by V̂ (P)(E) the A(P)
f -sheaf on Sét associated with it: In [D2, N◦ 3],

Deligne considered Ẑ-sheaves and Af -sheaves (when P = φ), and we are using
here the similar terminology for objects without q-components for q ∈ P. When
S is the spectrum of a field k, we will identify them with the usual (“physical”)

Tate module over Ẑ(P) or A(P)
f on which the absolute Galois group of k acts

continuously.
Now we form the projective limit

(1.2.5) Y (P)(∞)/Z(P)
:= lim←−

N :prime toP
Y (N)/Z(P)

which exists because transition morphisms Y (N)/Z(P)
→ Y (M)/Z(P)

are all
finite. For any Z(P)-scheme S, the set

Y (P)(∞)/Z(P)
(S) = lim←−

N :prime toP
Y (N)/Z(P)

(S)

corresponds bijectively with the set of isomorphism classes of the pairs consisting
of an elliptic curve E/S together with an isomorphism of smooth Ẑ(P)-sheaves
on Sét

(1.2.6) α(P)
∞ : Ẑ

(P)
× Ẑ

(P) ∼→ T̂ (P)(E).

(Here the underlined Ẑ
(P)

means the constant Ẑ(P)-sheaf on Sét.) Such an

isomorphism α
(P)
∞ will be called a Γ(P)(∞)-structure on E. We can naturally

define its determinant

(1.2.7) det(α(P)
∞ ) ∈ µµµ(P)prim

∞ (Q) := lim←−
N :prim toP

µµµprim
N (Q).

On the other hand, if we denote by µ
(P)
∞ the set of all N -th roots of unity in

Q with N prime to P, the set of irreducible components of Y (P)(∞)
/Z(P)[µ

(P)
∞ ]

:=

Y (P)(∞)/Z(P)
⊗Z(P)

Z(P)[µ
(P)
∞ ] corresponds bijectively , via “ det”, withµµµ

(P)prim
∞ (Q)
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(cf. Appendix (A.2.1)). More precisely, if (ζN )N : prime toP =: ζ∞ is in this latter
set, the corresponding component is given by

(1.2.8) Y (P)(∞)
(ζ∞)

/Z(P)[µ
(P)
∞ ]

:= lim←−
N : prime toP

(Y (N)(ζN ) ⊗Z[1/N,µN ] Z(P)[µ
(P)
∞ ])

and this scheme represents the functor: (Schemes/Z(P)[µ
(P)
∞ ]) → (Sets) associ-

ating with each S the isomorphism classes of the pairs (E,α
(P)
∞ ) of determinant

ζ∞ over S.
The group GL2(Ẑ(P))/{±1} acts faithfully on Y (P)(∞)/Z(P)

by the rule

(E,α
(P)
∞ ) 7→ (E,α

(P)
∞ ◦ g). The action of g ∈ GL2(Ẑ(P))/{±1} on the set

of irreducible components of Y (P)(∞)
/Z(P)[µ

(P)
∞ ]

then corresponds to the map:

ζ∞ 7→ ζ
det(g)
∞ , in the obvious sense, by (1.1.5). Especially, an element g ∈

GL2(Ẑ(P))/{±1} leaves each irreducible component stable if and only if g ∈
SL2(Ẑ(P))/{±1}.

1.3. Action of GL2(A(P)
f ). Let P be as in 1.2. In this subsection we con-

sider the action of GL2(A(P)
f ) on Y (P)(∞)/Z(P)

extending that of GL2(Ẑ(P))
following Deligne [D2, N◦ 3]. The existence of such an extension is a common
feature of general Shimura varieties (cf. Shimura [Sh, 6.6] in the elliptic modular
case). The following moduli theoretic description seems to be originally due to
Shafarevich (according to [D2, loc. cit.]).

We call a morphism E → E′ of elliptic curves over S a prime-to-P isogeny
if it is an isogeny over S whose degree is (fibre-by-fibre) prime to P. In the
following, we let S be a scheme over Z(P). We consider the category of elliptic
curves up to prime-to-P isogenies over S, which for the moment will be denoted
by C′S . Thus if we denote by CS the category of elliptic curves over S, there is
a functor

(1.3.1) ⊗Z(P) : CS → C′S ; E 7→ E ⊗ Z(P)

such that: (i) if f is a prime-to-P isogeny in CS , then it is sent to an isomorphism
in C′S ; and (ii) if F : CS → D is a functor having the property (i), then it factors
uniquely through ⊗Z(P). When S is quasi-compact, we in fact have:

(1.3.2) HomC′
S
(E ⊗ Z(P), E

′ ⊗ Z(P)) = HomCS
(E,E′)⊗Z Z(P)

for E and E′ in Ob(CS). An isomorphism in C′S is often called a prime-to-P
quasi-isogeny.

The functor on CS : E 7→ V̂ (P)(E) clearly factors through C′S . Thus we can

consider, for each object F in C′S , the smooth A(P)
f -sheaf V̂ (P)(F ), and also an

isomorphism of smooth A(P)
f -sheaves on Sét, called a Γ(P)(∞)⊗ Z(P)-structure

on F :

(1.3.3) β(P)
∞ : A(P)

f × A(P)
f

∼→ V̂ (P)(F ).
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If α
(P)
∞ is a Γ(∞)(P)-structure on E ∈ Ob(CS), we can associate with it a

Γ(∞)(P) ⊗ Z(P)- structure α
(P)
∞ ⊗ Z(P) on E ⊗ Z(P) naturally.

Proposition (1.3.4) (cf. [D2, Corollaire 3.5]) Let F be the functor (Schemes/Z(P))→
(Sets) assigning to each Z(P)-scheme S the S-isomorphism classes of the pairs

(F, β
(P)
∞ ) consisting of F ∈ Ob(C′S) and a Γ(P)(∞) ⊗ Z(P)-structure β

(P)
∞ on it.

Then the association: (E,α
(P)
∞ ) 7→ (E⊗Z(P), α

(P)
∞ ⊗Z(P)) gives an isomorphism

Y (P)(∞)/Z(P)

∼→ F of functors.

Proof Deligne proved this fact when P is empty; but his proof applies to gen-
eral P as well. (We recall below the argument showing the essential surjectivity.)
□

We will identify the above two functors, which enables us to let GL2(A(P)
f )

act on Y (P)(∞)/Z(P)
as Z(P)-automorphisms by the rule (F, β

(P)
∞ ) 7→ (F, β

(P)
∞ ◦

g).

Let us now describe what the effect of the action of g ∈ GL2(A(P)
f ) on the

original pair (E,α
(P)
∞ ) is: First assume that g−1 ∈ GL2(A(P)

f )∩M2(Ẑ(P)). Then

there is a positive integer N prime to P such that (1/N) · Ẑ(P)⊕2 ⊇ g · Ẑ(P)⊕2 ⊇
Ẑ(P)⊕2. In this case, we obtain a finite étale subgroup scheme Kg of prime-to-P
order of E/S, as the image of:

(1.3.5) g·Ẑ(P)⊕2
/Ẑ(P)⊕2

↪→(1/N)·Ẑ(P)⊕2
/Ẑ(P)⊕2 α

(P)
∞→
∼

(1/N)T̂ (P)(E)/T̂ (P)(E)∼=E[N ]

which does not depend on the choice of N . Set E′ := E/Kg, and let π : E → E′

be the quotient homomorphism. Then it is easy to see that the composite of:

A(P)⊕2
f

g−→ A(P)⊕2
f

α(P)
∞ ⊗Z(P)−→ V̂ (P)(E)

V̂ (P)(π)−→ V̂ (P)(E′)

in fact arises from an isomorphism α
(P)′
∞ : Ẑ

(P)⊕2 ∼→ T̂ (P)(E′). Thus using these
symbols, we have:

(1.3.6) (E ⊗ Z(P), (α
(P)
∞ ⊗ Z(P)) ◦ g) ∼= (E′, α(P)′

∞ )⊗ Z(P).

As a special case of this, if N is a positive integer prime to P, we see that
multiplication by N on E induces an isomorphism

(1.3.7) (E ⊗ Z(P), (α
(P)
∞ ⊗ Z(P)) ◦

(
1/N 0
0 1/N

)
)

∼→ (E,α(P)
∞ )⊗ Z(P).

If we set
(1.3.8){
Q(P)×

+ := (the subgroup of Q× generated by all prime numbers prime to P),
Q(P)× := {±1} ·Q(P)×

+ ,
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this relation means that the action of scalar matrices
(
a 0
0 a

)
∈ GL2(A(P)

f ) with

a ∈ Q(P)× (embedded diagonally in A(P)×
f ) is trivial. Especially, the description

of the action of general g ∈ GL2(A(P)
f ) reduces to the first case.

We next consider the effect of the action of GL2(A(P)
f ) on the set of irre-

ducible components of Y (P)(∞)
/Z(P)[µ

(P)
∞ ]

. For this, decompose A(P)×
f as a direct

product:

(1.3.9) A(P)×
f = Ẑ(P)× ×Q(P)×

+ .

An element c ∈ A(P)×
f is then expressed as c = (c0, c1) with c0 ∈ Ẑ(P)× and

c1 ∈ Q(P)×
+ .

Proposition (1.3.10) Let g be an element of GL2(A(P)
f ). Let (E′, α

(P)′
∞ ) be

obtained from (E,α
(P)
∞ ) by (1.3.6). Then we have

det(α(P)′
∞ ) = det(α(P)

∞ )det(g)0 .

Especially, the action of g preserves each irreducible component of Y (P)(∞)
/Z(P)[µ

(P)
∞ ]

if and only if det(g) ∈ Q(P)×
+ .

Proof We may assume that g−1 ∈ M2(Ẑ(P)). Using the above symbols, we
see that the degree of the isogeny π is equal to:

| gẐ(P)⊕2 : Ẑ(P)⊕2 |= det(g−1)1.

On the other hand, it is easy to see that

det(α(P)
∞ )deg(π) = det(α(P)′

∞ )det(g
−1)

from which the first assertion follows; and the rest is clear. □

We set:

(1.3.11) G(P) := {g ∈ GL2(A(P)
f ) | det(g) ∈ Q(P)×

+ }.

Fix an irreducible component Y (P)(∞)
(ζ∞)

/Z(P)[µ
(P)
∞ ]

of Y (P)(∞)
/Z(P)[µ

(P)
∞ ]

. We have

obtained two homomorphisms

(1.3.12)

GL2(A(P)
f )→ Aut(Y (P)(∞)/Z(P)

/Z(P)),

G(P) → Aut(Y (P)(∞)
(ζ∞)

/Z(P)[µ
(P)
∞ ]

/Z(P)[µ
(P)
∞ ]).

Proposition (1.3.13) The kernels of these two homomorphisms are both equal
to:

{
(
a 0
0 a

)
| a ∈ Q(P)×}.
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Proof It is enough to show the assertion for the second homomorphism. We
need to show that an element g ∈ G(P) lying in the kernel belongs to the above
group of scalar matrices. We may assume that g−1 ∈M2(Ẑ(P)) to do this.

Let η be the generic point of Y (P)(∞)
(ζ∞)

/Z(P)[µ
(P)
∞ ]

, and κ(η) the residue field

at η. Let (E , α(P)
∞,univ) be the universal pair on Y (P)(∞)

(ζ∞)

/Z(P)[µ
(P)
∞ ]

. We are

going to apply the argument above describing the action of g to its generic

fibre (Eη, (α(P)
∞,univ)η). Then we obtain a finite subgroup scheme Kg of Eη as in

(1.3.5), and a prime-to-P isogeny Eη → Eη/Kg
∼= Eη over κ(η). However, the

endomorphism ring of Eη/κ(η) is isomorphic to Z, so that Kg = Eη[N ] with

an integer N prime to P ; and hence g = N−1g0 with g0 ∈ GL2(Ẑ(P)) ∩ G(P).

But the image of g0 in Aut(Y (P)(∞)
(ζ∞)

/Z(P)[µ
(P)
∞ ]

/Y (1)
/Z(P)[µ

(P)
∞ ]

) is trivial, and so

g0 = ±1. □

1.4. Modular curves over Z(p) and its strict localization. In the rest
of this paper, we will mainly consider modular curves in characteristic p; and
some objects obtained by “reduction modulo P” from characteristic zero. We
fix here our notation for later use, including some repetitions.

We thus fix a prime number p, and consider curves over Z(p)-algebras. We
henceforth assume that P 3 p, and consider

(1.4.1) Y (P)(∞)/Z(p)
:= lim←−

N :prime toP
Y (N)/Z(p)

.

The curve Y (P)(∞)/Z(p)
is irreducible and it is a Galois covering of Y (1)/Z(p)

with Galois group GL2(Ẑ(P))/{±1}. It is an étale Galois covering of Y (N)/Z(p)

if N is prime P and N ≥ 3 .
The case where P = {p} is the “largest” tower, and there is a natural

morphism: Y (p)(∞)/Z(p)
→ Y (P)(∞)/Z(p)

over Z(p) for general P. The action of

GL2(Ẑ(P)) on Y (P)(∞)/Z(p)
is of course compatible with the action of GL2(Ẑ(p))

on Y (p)(∞)/Z(p)
through this morphism and the projectionGL2(Ẑ(p)) ↠ GL2(Ẑ(P)).

The action of GL2(Ẑ(P)) on Y (P)(∞)/Z(p)
can be naturally extended to

the action of the bigger group GL2(A(P)
f ). Its subgroup acting trivially on

Y (P)(∞)/Z(p)
is the subgroup of diagonal matrices with entries in Q(P)×. (We

note however that the morphism Y (p)(∞)/Z(p)
→ Y (P)(∞)/Z(p)

considered above

is not compatible with the action of adelic groups via the projectionGL2(A(p)
f ) ↠

GL2(A(P)
f ). For example, if q ∈ P − {p}, the action of

(
q 0
0 q

)
∈ GL2(A(p)

f ) on

Y (p)(∞)/Z(p)
is trivial, but

(
q 0
0 q

)
∈ GL2(A(P)

f ) acts non-trivially on Y (P)(∞)/Z(p)
.

If we consider GL2(A(P)
f ) as a subgroup of GL2(A(p)

f ) whose components at all

q ∈ P−{p} are trivial, Y (p)(∞)/Z(p)
→ Y (P)(∞)/Z(p)

is GL2(A(P)
f )-equivariant.)
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From now on, we fix embeddings of Q into C and Qp once and for all. We

denote by P the prime of Q induced by this embedding, and set

(1.4.2)


K := (the fixed field of the inertia group at P) ⊆ Q,
W := (the ring of P-integers in K),
F := (the residue field of W).

Thus W is a strict Henselization of Z(p), and F is an algebraic closure of the
prime field Z/pZ. We consider the base extensions of the curves in (1.4.1) from
Z(p) to W:

(1.4.3) Y (P)(∞)/W := lim←−
N :prime toP

Y (N)/W

and similarly for the further base extensions to C and F etc. We have the group
actions as above having the same properties on such curves. But these curves are

not irreducible: According to our convention, we haveW× ⊇ µ(P)
∞ , µµµ

(P)prim
∞ (Q),

andW ⊇ Z(P)[µ
(P)
∞ ] (cf. 1.2 for notation). Irreducible components of Y (P)(∞)/W

correspond bijectively with µµµ
(P)prim
∞ (Q) and are given by

(1.4.4) Y (P)(∞)
(ζ∞)
/W := lim←−

N :prime toP
Y (N)

(ζN )
/W

for each ζ∞ = (ζN )N ∈ µµµ(P)prim
∞ (Q) with Y (N)

(ζN )
/W = Y (N)(ζN ) ⊗Z[1/N,µN ]W.

The group SL2(Ẑ(P))/{±1} acts on each irreducible component faithfully as
its Galois group over Y (1)/W . The group defined by (1.3.11):

G(P) = {g ∈ GL2(A(P)
f ) | det(g) ∈ Q(P)×

+ }

also acts on each irreducible component asW-automorphisms, and the subgroup
acting trivially is the subgroup of diagonal matrices with entries in Q(P)×.

These results stated so far for curves over W equally holds over C or over F.
(The proof of (1.3.13) also works for the base changed curves.)

§2. CM points on modular curves.

2.1. Preliminaries on imaginary quadratic fields. We hereafter fix an
imaginary quadratic field K, and denote by o its ring of integers. We also fix a
prime number ` and let on be the order of conductor `n of K,

(2.1.1) on := Z+ `no for n ≥ 0.

If a is a lattice in K, we set

(2.1.2)

{
aq := a⊗Z Zq for each prime number q,

â := a⊗Z Ẑ =
∏
q:prime aq.

11



We also set

(2.1.3) KA,f := K ⊗Q Af = (the ring of finite adeles of K),

so that KA,f is the restricted direct product of Kq := K ⊗Q Qq with respect to
oq for rational primes q.

For a lattice a and x = (xq) ∈ K×
A,f , we set

(2.1.4) xa := (the unique lattice such that (xa)q = xqaq for all q) = xâ ∩K.

When a is a proper on-ideal, i.e. a locally free on-submodule of K of rank one,
xa is also a proper on-ideal, and conversely, every proper on-ideal is of the form
xon for some x ∈ K×

A,f . Let

(2.1.5) Cln := (the group of proper on-ideal classes),

so that

(2.1.6) K×
A,f/K

×ô×n
∼= Cln by x 7→ cl(xon), the class of xon.

When m ≥ n ≥ 0, there is a natural homomorphism Clm → Cln defined by:
cl(a) 7→ cl(aon), or equivalently by cl(xom) 7→ cl(xon) (x ∈ K×

A,f). We then
obtain a profinite abelian group

(2.1.7) Cl∞ := lim←−
n≥0

Cln.

Proposition (2.1.8) Consider the homomorphism

K×
A,f → Cl∞ defined by x 7→ (cl(xon))n≥0.

Then the kernel of this homomorphism is K×ô×∞ where

ô×∞ :=
∏
q 6=`

o×q × Z×
` ,

and we obtain an isomorphism:

K×
A,f/K

×ô×∞
∼→ Cl∞.

Proof Since ∩n≥0 (Z` + `no`) = (the closure of Z` in o`) = Z`, we have

∩n≥0 ôn =
∏
q 6=`

oq × Z` = ô∞ and ∩n≥0 ô×n = ô×∞.

The kernel in question is ∩n≥0K
×ôn, which clearly contains K×ô×∞. Suppose

conversely that x ∈ K×
A,f lies in the kernel, so that x = εnαn with εn ∈ K× and

αn ∈ ô×n for all n ≥ 0. If m ≥ n ≥ 1, then since K× ∩ ô×m = K× ∩ ô×n = {±1},
we have ε−1

n εm ∈ {±1}, and hence ε−1
n x = (ε−1

n εm)αm ∈ ô×m. This shows that
ε−1
n x ∈ ∩m≥nô

×
m = ô×∞, and hence x ∈ K×ô×∞.

It remains to show the surjectivity of K×
A,f/K

×ô×∞ ↪→ Cl∞. It follows from
(2.1.6) that the image is dense in Cl∞, while it also follows from (2.1.6) and
the finiteness of Cln that the group K×

A,f/K
×ô×∞ is compact, which implies the

surjectivity. □

12



We hereafter denote by

i` : K
× ↪→ K×

` (↪→ K×
A,f)

the natural embedding (to distinguish i`(K
×) from the diagonal image K× ⊂

K×
A,f).

Corollary (2.1.9) The natural homomorphism sending x ∈ o×n,` ⊆ K×
A,f to

(cl(xom))m≥0 gives an isomorphism: o×n,`/Z
×
`

∼→ Ker(Cl∞ → Cln) when n ≥ 1,

while o×` /i`(o
×)Z×

`
∼→ Ker(Cl∞ → Cl0).

Similarly if m ≥ n, we have an isomorphism o×n,`/o
×
m,`

∼→ Ker(Clm → Cln)

when n ≥ 1, and o×` /i`(o
×)o×m,`

∼→ Ker(Clm → Cl0).

Proof We only give a proof for the first assertion. By (2.1.6) and (2.1.8), we
see that Ker(Cl∞ → Cln) is canonically isomorphic to

K×ô×n
K×ô×∞

∼=
ô×n

(K×ô×∞) ∩ ô×n
↞ o×n,`.

Our claim follows from this, noting that K× ∩ ô×n = {±1} when n ≥ 1. □

2.2. Subgroup Clalg of Cl∞. Hida introduced the subgroup Clalg of Cl∞
which plays a crucial role in the study of Zariski density of CM points; [H1,
2.3], [H3, 8.2.2]. We first recall its definition:

Definition (2.2.1) Let

K
(`)×
A,f := (elements of K×

A,f whose `-component is one) ⊆ K×
A,f .

We denote by Clalg the image of K
(`)×
A,f under the homomorphism defined in

(2.1.8):

Clalg := {(cl(xon))n≥0 ∈ Cl∞ | x ∈ K(`)×
A,f }.

Set o(`) := o⊗Z Z(`) in the following.

Proposition (2.2.2) The homomorphism: K×
A,f ⊇ o×` 3 x 7→ (cl(xon))n≥0 ∈

Cl∞ induces an isomorphism:

o×`
i`(o

×
(`))Z

×
`

∼→ Cl∞

Clalg
.
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Proof Consider the following commutative diagram:

0 −−−−→ K
(`)×
A,f ∩ (K×ô×∞) −−−−→ K

(`)×
A,f −−−−→ Clalg −−−−→ 0y y y

0 −−−−→ K×ô×∞ −−−−→ K×
A,f −−−−→ Cl∞ −−−−→ 0yprℓ

yprℓ

y
i`(K

×)Z×
` −−−−→ K×

` −−−−→ Cl∞/Cl
alg −−−−→ 0

where pr` is the projection to the `-factor. We obtain from this an isomorphism:

K×
`

i`(K×)Z×
`

∼→ Cl∞

Clalg
.

Since K×
` = i`(K

×)o×` , we see that the group in the left hand side is isomorphic
to o×` /i`(o

×
(`))Z

×
` . □

Proposition (2.2.3) Let a be an element of o×` . The following conditions are
equivalent:

(1) ∩n≥0aon 6= {0};
(2) a ∈ i`(o×(`))Z

×
` ;

(3) the element (cl(aon))n≥0 ∈ Cl∞ belongs to Clalg.

Proof The equivalence of (2) and (3) is clear from (2.2.2).
On the other hand, we have:

∩n≥0aon = ∩n≥0(aôn ∩K) = a(∩n≥0ôn) ∩K.

By the first remark in the proof of (2.1.8), this is equal to

aô∞ ∩K = (
∏
q 6=`

oq × a · Z`) ∩K = (
∏
q 6=`

oq × a · Z`) ∩ o.

One then checks easily that this set contains a non-zero element if and only if
a ∈ i`(o×(`))Z

×
` . □

We next interpret this result in terms of complex elliptic curves. If C/L and
C/L′ are one-dimensional complex tori, recall that an analytic homomorphism
between them is induced by multiplication by a complex number on C:

(2.2.4) Hom(C/L,C/L′) = {µ ∈ C | µL ⊆ L′}.

Lemma (2.2.5) Fix x ∈ K×
A,f and a ∈ o×` , and consider the complex elliptic

curves C/xon and C/axon for n ≥ 0.
(1) Hom(C/xon,C/axon) = aon for all n.
(2) When µ ∈ aon, the degree of the corresponding homomorphism of C/xon

to C/axon is NK/Q(µ), the norm of µ.
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Proof (1) By (2.2.4), a homomorphism C/xon → C/axon is given by multi-
plication by µ ∈ K satisfying µxon ⊆ axon. This latter condition is satisfied
if and only if (µxon)q ⊆ (axon)q, equivalently (µon)q ⊆ (aon)q for all rational
primes q; i.e. µon ⊆ aon.

(2) Let µ be a non-zero element of aon.The degree in question is equal to:∣∣∣axon
µxon

∣∣∣ = ∏
q

∣∣∣ (axon)q
(µxon)q

∣∣∣ = ∏
q 6=`

∣∣∣ oq
µoq

∣∣∣× ∣∣∣aon,`
µon,`

∣∣∣,
and hence it is enough to show that |aon,`/µon,`| = |o`/µo`|. Consider the
commutative diagram:

0 −−−−→ on,` −−−−→ o` −−−−→ o`/on,` −−−−→ 0ya−1µ

ya−1µ

ya−1µ

0 −−−−→ on,` −−−−→ o` −−−−→ o`/on,` −−−−→ 0.

Since o`/on,` is finite, the kernel and the cokernel of the right vertical homomor-
phism have the same order; and the middle vertical homomorphism is injective.
The snake lemma then implies that |on,`/a−1µon,`| = |o`/a−1µo`| = |o`/µo`|. □

Proposition (2.2.6) Let the notation be as in the previous lemma. The min-
imal value of the degrees of non-zero elements of Hom(C/xon,C/axon) is inde-
pendent of x ∈ K×

A,f . Call this value cn. If (cl(aon))n≥0 ∈ Cl∞ does not belong

to Clalg, then we have cn →∞ as n→∞.

Proof The first assertion is clear from (2.2.5).
To prove the second part, take one n. Since there are only a finite number of

elements of aon whose norm is cn, none of such elements are contained in aom
for m large, because ∩m≥0aom = {0} by (2.2.3). Again by (2.2.5), this means
that cm > cn for such m. □

Remark (2.2.7) Let the notation be as above, and assume to the contrary
that (cl(aon))n≥0 ∈ Clalg. Then it follows from (2.2.3) that the set of values cn
(n ≥ 0) is bounded. This means that the set of closed points of Y (1)/C×CY (1)/C
provided by the pairs (C/xon,C/axon) (n ≥ 0) is contained in a union of finite
number of modular correspondences.

2.3. CM points on modular curves and our main result. We henceforth
fix a prime number p (p 6= `), which splits in K.

Let a be a proper on-ideal. The complex torus C/a is isomorphic to the
complex points of an elliptic curve defined over Q whose field of moduli is the
ring class field of K of conductor `n. Therefore the complex point x(a)/C it
determines is in fact a K-rational point x(a)/K of the coarse moduli scheme
Y (1)/K. It further uniquely extends to a W-valued point x(a)/W of Y (1)/W .
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This in turn gives an F-valued point x(a)/F of Y (1)/F; cf (1.4.2) for these sym-
bols. These points actually depend only on the class cl(a) ∈ Cln. When there
is no fear of confusion, we simply write x(a) for them.

Let us take and fix an infinite increasing sequence of integers:

(2.3.1) n = {0 ≤ n0 < n1 < · · · }.

For each nj , we set

(2.3.2) Rnj
:= Ker(Clnj

→ Cln0
).

We consider the set of R-valued points of Y (1)/R defined by:

(2.3.3) ξ(1;n)/R := {x(a)/R | cl(a) ∈ Rnj for some nj ∈ n}

where R denotes one of C, K, W or F.
Our main concern is such points in characteristic p, and we will consider

ξ(1;n)/F also as a set of closed points of Y (1)/F below. To state the fol-

lowing theorem, we fix an irreducible component of Y (p)(∞)/F which we call

Y (p)(∞)0/F = lim←−p∤N Y (N)0/F (cf. (1.4.4)). For a positive integer m, we indi-

cate by the superscript m the m-fold fibre product over the base scheme under
consideration.

The following theorem had been announced by Hida, in a slightly different
formulation; cf. [H3, Proposition 8.28], [H1, Proposition 2.8] in a much more
general situation treating Hilbert modular varieties:

Theorem (2.3.4) Let the notation be as above. Take and fix δ1, · · · , δm ∈
Ker(Cl∞ → Cln0) whose classes in Cl∞/Cl

alg are all distinct, and choose αi ∈
K×

A,f satisfying δi = (cl(αion))n≥0 (cf. (2.1.8)) for 1 ≤ i ≤ m. We consider the
following set of closed points of (Y (1)/F)

m :

Ξ(1;n)/F = Ξ(1)/F := {(x(α1a), · · · , x(αma)) ∈ (Y (1)/F)
m | x(a) ∈ ξ(1;n)/F}.

Let M be a positive integer prime to p (resp. M = ∞). Let Λ(M) be a
set of closed points of (Y (M)0/F)

m (resp. (Y (p)(∞)0/F)
m) which maps surjec-

tively onto Ξ(1;n)/F via the natural morphism: (Y (M)0/F)
m → (Y (1)/F)

m (resp.

(Y (p)(∞)0/F)
m → (Y (1)/F)

m). Then Λ(M) is a Zariski dense subset of (Y (M)0/F)
m

(resp. (Y (p)(∞)0/F)
m).

Note that the set Ξ(1;n)/F of course depends on δi but not on the choice of
αi (1 ≤ i ≤ m).

Remark (2.3.5) (1) The conclusion of the theorem above for one M and one
choice of Λ(M) implies the whole theorem: This follows from (A.1.4) in the
appendix. One example is the case where M = ∞ and Λ(∞) is obtained by
choosing exactly one point in the inverse image of each point of Ξ(1;n)/F. This
is the case considered by Hida (under a suitable choice of points). Another
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extreme case is Λ(1) = Ξ(1;n)/F: Theorem (2.3.4) is equivalent to the Zariski
density of Ξ(1;n)/F in (Y (1)/F)

m.
(2) It follows from this that the validity of (2.3.4) is independent of the choice

of an irreducible component Y (p)(∞)0/F.

(3) The map which sends cl(a) to x(a)/F induces an injection
∐
j Rnj

→
Y (1)/F. This is well-known for similar maps defined over C or K. The charac-
teristic p result follows from this because (p splits in K, and hence) the elliptic
curve E(a)/W giving x(a)/W (see 2.4. below) is the canonical lifting of E(a)/F
giving x(a)/F. Especially, the set ξ(1;n)/F is infinite, and (2.3.4) obviously holds
when m = 1.

In Section 4, we will describe a proof of (2.3.4), via an argument using certain
(“admissible”) CM points on a subcover of Y (p)(∞)0/F/Y (1)/F.

2.4. Admissible CM points. If a is a lattice in K, we have canonical
isomorphisms for the complex torus C/a:

(2.4.1)

{
C/a[M ] = 1

M a/a ∼= a/Ma for positive integers M,

T̂ (P)(C/a) ∼= â(P) := a⊗Z Ẑ(P).

Here, we are using the notation as in (1.2.2) and (1.2.4) (and the remark after
it). We will identify the groups in each isomorphism in the following. Thus
providing C/a with a Γ(M)-structure (resp. a Γ(P)(∞)-structure) is just to

give an isomorphism Z/MZ× Z/MZ ∼→ a/Ma (resp. Ẑ(P) × Ẑ(P) ∼→ â(P)).
In the following, we consider Γ(P)(∞)-structures with P = {p, `}. We put

(2.4.2)

{
K

(p,`)
A,f := K ⊗Q A(p,`)

f ,

ô
(p,`)
n = on ⊗Z Ẑ(p,`) = ô(p,`).

Thus K
(p,`)×
A,f is the restricted direct product of K×

q with respect to o×q for

q 6= p, `; and we will often identify it with the subgroup of K×
A,f consisting of

elements whose p- and `-components are one. We also take and fix a Z-basis
w = {w1, w2} of o on which the following constructions depend.

For γ ∈ K×
A,f , let us denote by

γ(p,`) = γ′

its projection to K
(p,`)×
A,f . Now for any n ≥ 0, w gives a Ẑ(p,`)-basis of ô

(p,`)
n . So

we can define

(2.4.3) α∞,C(on; 1) : Ẑ(p,`)×Ẑ(p,`) ∼→ ô
(p,`)
n = T̂ (p,`)(C/on) by (s, t) 7→ sw1+tw2.

When a is a proper on-ideal, take γ ∈ K×
A,f such that a = γon. We define

(2.4.4) α∞,C(a; γ
′) : Ẑ(p,`) × Ẑ(p,`) ∼→ â(p,`) = T̂ (p,`)(C/a)

by composing α∞,C(on; 1) and T̂
(p,`)(C/on) = ô

(p,`)
n

γ′

→
∼

â(p,`) = T̂ (p,`)(C/a).
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Definition (2.4.5) Let the notation be as above. We denote by x(a; γ′)/C the

C-valued point of Y (p,`)(∞)/C determined by (the isomorphism class of) the
pair (C/a, α∞,C(a; γ

′)).

We next return to the situation of 1.4. It is known that there is an elliptic
curve E(a)/K defined over K such that E(a)/K(C) ∼= C/a, having good reduc-
tion, i.e. it extends (uniquely) to an elliptic curve E(a)/W overW; cf. Serre and
Tate [ST, Theorems 8 and 9]. Since W is strictly local, all points of E(a)/K[M ]
are K-rational, and they extend to sections of E(a)/W over W, for all positive
integers M prime to p. Especially, the model E(a)/K of C/a over K having
this good reduction property is unique up to isomorphisms. Further, any Γ(N)-
structure (p ∤ N) or Γ(p,`)(∞)-structure on C/a are defined over K (resp. over
W) for this model E(a)/K (resp. E(a)/W). We can therefore make the following

Definition (2.4.6) Let the notation be as above. The point x(a; γ′)/C is in

fact aK-rational point of Y (p,`)(∞)/K which we denote by x(a; γ′)/K. It uniquely

extends to a W-valued point x(a; γ′)/W of Y (p,`)(∞)/W . This then defines an

F-rational point x(a; γ′)/F of the closed fibre Y (p,`)(∞)/F.
Points obtained in this manner will be called admissible CM points on

Y (p,`)(∞)/R. We set

ξadm(∞;n)/R := {x(a; γ′)/R | a = γonj
, cl(a) ∈ Rnj

for some nj ∈ n, }

for R = C, K, W or F.

In the following, we list basic properties of admisible CM points. First we
have:

Lemma (2.4.7) For any a ∈ K×, we have

x(aa; (aγ)′)/R = x(a; γ′)/R,

for R = C, K, W or F.

Proof From the construction of our CM points, it is enough to prove the
assertion for the C-valued points; i.e. that

(C/aa, α∞,C(aa; (aγ)
′)) ∼= (C/a, α∞,C(a; γ

′)).

Multiplication by a on C induces an isomorphism C/a ∼→ C/aa, and it is easy
to see that this isomorphism indeed carries α∞,C(a; γ

′) to α∞,C(aa; (aγ)
′). □

Next we consider a representation of K× into GL2(Q):

Definition (2.4.8) We denote by

ρ : K× → GL2(Q)
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the regular representation with respect to the basis w. Thus the following dia-
gram commutes for all b ∈ K× :

Q2 ∼−−−−→ K

ρ(b)

y y×b

Q2 ∼−−−−→ K

where the two horizontal arrows are given by (s, t) 7→ sw1 + tw2.

We may consider this ρ as a homomorphism of algebraic groups over Q
(K×(R) = (K ⊗Q R)

× for Q-algebras R), and we have:

(2.4.9)



det ◦ρ = NK/Q,

ρ(o ∩K×) ⊆ GL2(Q) ∩M2(Z),
ρ(oq ∩K×

q ) ⊆ GL2(Qq) ∩M2(Zq) for all primes q,

ρ(ô(p,`)×)) ⊆ GL2(Ẑ(p,`)),

ρ(K
(p,`)×)
A,f ) ⊆ GL2(A(p,`)

f ), and so on.

Proposition (2.4.10) Let δ′ be an element of K
(p,`)×
A,f . Then the action of

ρ(δ′) ∈ GL2(A(p,`)
f ) on Y (p,`)(∞)/R studied in 1.3 sends x(a; γ′)/R to x(δ′a; δ′γ′)/R.

Especially, the set of admissible CM points on Y (p,`)(∞)/R is stable under the

action of ρ(K
(p,`)×
A,f ). Here, as before, R = C, K, W or F.

Proof Again, it is enough to prove the assertion when R = C.
Set g := ρ(δ′). Replacing δ′ by (1/N)δ′ with a suitable positive integer N , we

may assume that δ′−1 ∈ K(p,`)×
A,f ∩ ô(p,`) so that g−1 ∈ GL2(A(p,`)

f )∩M2(Ẑ(p,`)).
The image of (C/a, α∞,C(a; γ

′)) under the action of g was explicitly described
in 1.3: The group(scheme) Kg defined in (1.3.5) in the present case is the
(genuine) finite subgroup δ′a/a of C/a, in view of the definition (2.4.8). The
target elliptic curve denoted by E′ is thus C/δ′a. The level structure denoted

by α
(p,`)′
∞ in (1.3.6) is then α∞,C(δ

′a; δ′γ′), again by (2.4.8). This proves the first
assertion, and the remaining one is clear from this. □

In the following corollary, we set on,(p,`) := on ⊗Z Z(p,`) (cf. (1.2.3) for

the symbol Z(p,`)), and use ip : K× ↪→ K×
p ↪→ K×

A,f as well as previously

defined i` : K
× ↪→ K×

` ↪→ K×
A,f . Thus, via the natural decomposition K×

A,f =

K
(p,`)×
A,f ×K×

p ×K×
` , c ∈ K× decomposes as c = (c′, ip(c), i`(c)).

Corollary (2.4.11) Let the terminology be as above, and take c ∈ o×(p,`). Then

the action of ρ(c′) ∈ GL2(A(p,`)
f ) sends x(a; γ′)/R to x(i`(c

−1)a; γ′)/R.

If c belongs to o×n,(p,`) and a is a proper on-ideal, ρ(c
′) fixes x(a; γ′)/R.

If c belongs to o×n0,(p,`)
, where n0 is as in (2.3.1), then ρ(c′) leaves ξadm(∞;n)/R

stable.
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Proof By (2.4.10) and (2.4.7), we have

ρ(c′)(x(a; γ′)/R) = x(c′a; c′γ′)/R = x(ip(c)
−1i`(c)

−1a; γ′)/R.

Since c ∈ o×(p,`), ip(c) belongs to o×p (= o×m,p for all m ≥ 0), and hence we have

ip(c)
−1a = a, which proves the first assertion. The second (resp. the third)

assertion follows from this since i`(c)
−1a = a (resp. cl(i`(c)

−1a) ∈ Rnj when
cl(a) ∈ Rnj

; cf. (2.3.2)) in the case under consideration. □

We next consider the determinant of the level structures considered above:

Proposition (2.4.12) Let

det(α∞,C(o; 1)) =: ζ∞,0 = (ζN,0)p,`∤N ∈ µµµ(p,`)prim
∞ (Q)

be the determinant of α∞,C(o; 1) defined by (1.2.7). Then we have:

(1) det(α∞,C(on; 1)) = ζ
1/`n

∞,0 := (ζ
1/`n

N,0 )p,`∤N ∈ µµµ
(p,`)prim
∞ (Q) for all n ≥ 0.

(2) If a = γ′on with γ′ ∈ K(p,`)×
A,f , we have:

det(α∞,C(a; γ
′)) = det(α∞,C(on; 1))

NK/Q(γ
′)0 ,

where NK/Q(γ
′)0 ∈ Ẑ(p,`)× is the projection of NK/Q(γ

′) ∈ A(p,`)×
f to Ẑ(p,`)× by

the decomposition (1.3.9).

Proof There is a natural (quotient) homomorphism: π : C/on → C/o whose
degree is `n. For a positive integer N prime to `, and the Γ(N)-structure
αN : Z/NZ×Z/NZ 3 (s, t) 7→ (sw1+ tw2)/N ∈ C/on[N ], the composite π ◦αN
also sends (s, t) to (sw1 + tw2)/N ∈ C/o[N ]. On the other hand, it is easy to
see that det(π ◦ αN ) = det(αN )`

n

, from which the fist assertion follows.
The second assertion follows from (1.3.10), (2.4.10) and the first relation in

(2.4.9). □

One can actually show that ζN,0 = e2πi/N for all N if Im(w2/w1) > 0; but
we will not need this fact. We also note that the action of ρ(c′) (c ∈ o×(p,`))

leaves every irreducible component of Y (p,`)(∞)/R stable by (1.3.10), because

NK/Q(c
′) ∈ Q(p,`)×

+ .

Finally, we take the irreducible component Y (p,`)(∞)0/R containing x(on0 ; 1)/R.

Thus Y (p,`)(∞)0/R = Y (p,`)(∞)
(ζ

1/ℓn0

∞,0 )

/R in the notation of (1.4.4).

Proposition (2.4.13) Set ξadm(∞;n)0/R := ξadm(∞;n)/R∩Y (p,`)(∞)0/R(R).
If all nj ∈ n (j ≥ 0) have the same parity, the natural morphism Y (p,`)(∞)0/R(R)→
Y (1)/R(R) maps ξadm(∞;n)0/R surjectively onto ξ(1;n)/R.
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Proof It is enough to show that, for each cl(a) ∈ Rnj (j ≥ 0), we can choose
a◦ = γ′onj satisfying cl(a◦) = cl(a) and det(α∞,C(a

◦; γ′)) = det(α∞,C(on0 ; 1)).

First recall that there is an ε ∈ o×n0,`
such that cl(a) = cl(εonj

) by (2.1.9).

We can take d ∈ K× in such a way that i`(d)ε ∈ o×nj ,`
and ip(d) ∈ o×p . Set

γ1 := dε. Then a1 := γ1onj
= γ1

′onj
, and γ′1 satisfies NK/Q(γ

′
1) = NK/Q(d

′) ∈
Q(p,`)×

+ in the decomposition (1.3.9). This shows that cl(a1) = cl(a), and
det(α∞,C(a1, γ

′
1)) = det(α∞,C(onj

; 1)) by (2.4.12), (2).

Now set γ := `(nj−n0)/2γ1, and a◦ := γ′onj
. The element `′ ∈ K

(p,`)×
A,f

belongs to Ẑ(p,`)× ⊂ ô
(p,`)×
nj , and hence a◦ = a1. Also since NK/Q(γ

′)0 =

`′(nj−n0) ∈ Ẑ(p,`)×, we have det(α∞,C(a
◦; γ′)) = det(α∞,C(on0

; 1)) by (2.4.12),
as desired. □

§3. Finiteness of irreducible components in projective limits.

3.1. Preliminaries on Galois representations. Throughout this section,
we fix a prime number p. In 3.1-3.4, we use the following notation:

(3.1.1)

P : a power of p,

k0 : a finite field with P elements,

k: an algebraic closure of k0,

L0: a finitely generated extension field of k0 in which k0 is algebraically closed,

L := L0 · k,
L := (a separable closure of L) = (a separable closure of L0),

GL := Gal(L/L),

GL0
:= Gal(L/L0).

We have a canonical isomorphism: GL0/GL
∼= Gal(k/k0) = 〈FP 〉top, the latter

group being the procyclic group topologically generated by the P -th power
Frobenius automorpism FP , which is isomorphic to Ẑ.

Let E be an elliptic curve over L0. For each prime number l 6= p, we have
the usual l-adic representation

(3.1.2) ρl : GL0
→ GL(Tl(E)) ∼= GL2(Zl)

whose restriction to GL has the image in SL(Tl(E)) ∼= SL2(Zl). We denote by
〈P 〉top,l the subgroup of Z×

l topologically generated by P and set

(3.1.3) GL〈P 〉(Tl(E)) := {g ∈ GL(Tl(E)) | det g ∈ 〈P 〉top,l}.

In the following, we often write Tl for Tl(E) when the reference to E is obvious.
We have the commutative diagram:
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(3.1.4)

1 −−−−→ GL −−−−→ GL0
−−−−→ 〈FP 〉top −−−−→ 1yρl yρl yFP 7→P

1 −−−−→ SL(Tl) −−−−→ GL〈P 〉(Tl) −−−−→
det

〈P 〉top,l −−−−→ 1.

We then consider these representations simultaneously: Let

T̂ (p)(E) =
∏
l 6=p

Tl(E)

be the module already defined in (1.2.4) (considered as the “physical” Tate

module), which will also be abbreviated as T̂ (p), and consider the representation

(3.1.5) ρ∞ :=
∏
l 6=p

ρl : GL0
→ GL(T̂ (p)) ∼= GL2(Ẑ(p))

which sends GL to SL(T̂ (p)) ∼= SL2(Ẑ(p)).

If we denote by 〈P 〉top the subgroup of Ẑ(p)× topologically generated by P ,
we have the following commutative diagram:

(3.1.6)

1 −−−−→ GL −−−−→ GL0
−−−−→ 〈FP 〉top −−−−→ 1yρ∞ yρ∞ yFP 7→P

1 −−−−→ SL(T̂ (p)) −−−−→ GL〈P 〉(T̂ (p)) −−−−→
det

〈P 〉top −−−−→ 1

where this time we have set

(3.1.7) GL〈P 〉(T̂ (p)) := {g ∈ GL(T̂ (p)) | det g ∈ 〈P 〉top}.

Next, we consider similar representations for a family of elliptic curves: We
assume that we are given m elliptic curves E1, · · · , Em over L0 (m ≥ 1), and
consider

(3.1.8)

{
ρl,i : GL0

→ GL〈P 〉(Tl,i) with Tl,i = Tl(Ei),

ρ∞,i : GL0
→ GL〈P 〉(T̂

(p)
i ) with T̂

(p)
i = T̂ (p)(Ei),

as in (3.1.2) (l 6= p) and (3.1.5) for 1 ≤ i ≤ m. Put
(3.1.9){
Al∞ := {(g1, · · · , gm) ∈

∏m
i=1GL(Tl,i) | det g1 = · · · = det gm ∈ 〈P 〉top,l},

A∞ := {(g1, · · · , gm) ∈
∏m
i=1GL(T̂

(p)
i ) | det g1 = · · · = det gm ∈ 〈P 〉top}.

We can then define representations
(3.1.10){

ψl∞ =
∏m
i=1 ρl,i : GL0

→ Al∞ which satisfies ψl∞(GL) ⊆
∏m
i=1 SL(Tl,i),

ψ∞ =
∏m
i=1 ρ∞,i : GL0

→ A∞ which satisfies ψ∞(GL) ⊆
∏m
i=1 SL(T̂

(p)
i ).
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Lemma (3.1.11) Let the notation be as above.
(1) ψl∞(GL0) is open in Al∞ if ψl∞(GL) is open in

∏m
i=1 SL(Tl,i).

(2) ψ∞(GL0
) is open in A∞ if and only if ψ∞(GL) is open in

∏m
i=1 SL(T̂

(p)
i ).

Proof In the second case, we have the following commutative diagram:

1 −−−−→ GL −−−−→ GL0
−−−−→ 〈FP 〉top −−−−→ 1yψ∞

yψ∞

yFP 7→P

1 −−−−→
∏m
i=1 SL(T̂

(p)
i ) −−−−→ A∞ −−−−→

det
〈P 〉top −−−−→ 1

where the lower right “ det” sends (g1, · · · , gm) ∈ A∞ to the common value
det gi. Since the right vertical map is surjective, the cokernel of the middle
vertical map is finite if the cokernel of the left vertical map is finite, which
proves the “if” part, and the same proof works for the part (1).

In the present second case, we moreover have that the right vertical map is
an isomorphism, and hence the “only if” part follows. □

3.2. Function field analogue of a theorem of Serre. In [Se3], Serre
proved his celebrated open image theorem for elliptic curves without complex
multiplication over number fields. Based on this, he extended such a result to
a product of two elliptic curves [Se3, Théorème 6]. The purpose of subsections
3.2-3.3 is to show the function field analogue of this latter result. We thus work
under the situation considered in 3.1; and in 3.2 and 3.3, we further assume
that dimk0 L0 = 1, i.e. L0 is an algebraic function field of one variable over k0.
Our result is based on the following theorem of Igusa:

Theorem (3.2.1) (cf. [I, Section 5, Theorem 3]) Let the notation and the
assumption be as above, and let E be an elliptic curve over L0 whose j-invariant
is transcendental over k0. Then ρ∞(GL) is an open subgroup of SL(T̂ (p)(E)),

and ρ∞(GL0) is an open subgroup of GL〈P 〉(T̂ (p)(E)).

Igusa in fact proved that, if L0 = Fp(j) is a rational function field over
the prime field, and E is an elliptic curve over L0 of the absolute invariant j,
then ρ∞(GL) = SL(T̂ (p)(E)) and ρ∞(GL0) = GL〈P 〉(T̂ (p)(E)). The extension
of Fp(j) corresponding to ρ∞ is the quadratic extension of the subfield corre-

sponding to {±1} ⊂ SL(T̂ (p)(E)), which is nothing other than the function field
of an irreducible component of Y (p)(∞)/F.

It is therefore natural to expect the following result for the case m = 2:

Theorem (3.2.2) Let the notation and the assumption be as above, and let
E1 and E2 be elliptic curves over L0 satisfying the following conditions:

i) The j-invariants of E1 and E2 are transcendental over k0.
ii) E1 and E2 are not isogenous over any extension field of L0.

Then ψ∞(GL) is an open subgroup of SL(T̂
(p)
1 )×SL(T̂ (p)

2 ); and hence ψ∞(GL0
)

is an open subgroup of A∞ also.

23



Here are some remarks about the assumption ii) (cf. the remarks after the
corollaries of [Se3, Théorème 6]). First we note the following (presumably well-
known)

Lemma (3.2.3) In general, let H0 be a group and H its normal subgroup.
Suppose we are given two representations

ρi : H0 → GL(Vi), i = 1, 2,

over n-dimensional vector spaces over a field F of characteristic zero. Assume:
1) the restrictions ρ1 |H and ρ2 |H to H are equivalent,
2) ρi |H as representations on Vi ⊗F F are irreducible (i = 1, 2), F being an

algebraic closure of F .
3) det ρ1 = det ρ2.
Then there is a homomorphism ε : H0/H → µµµn(F ) := (the group of n-roots

of unity in F×) such that ρ1 and ρ2 are equivalent on the subgroup Ker(ε) of
H0.

Proof By the assumption 1), there is an isomorphism t : V1
∼→ V2 of vector

spaces over F such that t ◦ ρ1(τ) = ρ2(τ) ◦ t for all τ ∈ H. Take and fix an
element σ ∈ H0. We have an isomorphism

uσ := ρ2(σ) ◦ t ◦ ρ1(σ)−1 : V1
∼→ V2.

For any τ ∈ H, we obtain from the relation t ◦ ρ1(σ−1τσ) = ρ2(σ
−1τσ) ◦ t that

uσ ◦ρ1(τ) = ρ2(τ)◦uσ and hence uσ is an isomorphism of H-modules. Therefore
by the assumption 2), we have: uσ ◦t−1 = (multiplication by a scalar cσ ∈ F×).
We easily see that σ 7→ cσ gives a homomorphism H0 → F×, which we call ε.
Since cσ = ρ2(σ) ◦ (t ◦ ρ1(σ) ◦ t−1)−1, we see from 3) that cnσ = 1. Since uτ = t
when τ ∈ H, we see that cτ = 1 and ε factors as:

ε : H0 → H0/H → µµµn(F ) ⊂ F×.

Finally, for any σ ∈ Ker(ε), we have uσ = t; i.e. t ◦ ρ1(σ) = ρ2(σ) ◦ t. □

We now return to the situation of (3.2.2).

Proposition (3.2.4) Let E1 and E2 be elliptic curves over L0 satisfying the
condition i) in (3.2.2), and let l be a prime number different from p. Then the
following four conditions are equivalent.

1) E1 and E2 are isogenous over some extension field of L0,
2) E1 and E2 are isogenous over some finite separable extension field of L0,
3) There is a finite separable extension L′

0 of L0 such that the representations
ρl,1 on Tl,1 ⊗Zl

Ql and ρl,2 on Tl,2 ⊗Zl
Ql of Gal(L/L′

0) are equivalent,
4) There is a finite separable extension L′ of L such that the representations

ρl,1 on Tl,1 ⊗Zl
Ql and ρl,2 on Tl,2 ⊗Zl

Ql of Gal(L/L′) are equivalent.
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Proof The equivalence of 1) and 2) are well-known, and the implications 2)⇒
3)⇒ 4) are clear.

4) ⇒ 3): Let L′ be as in 4). There is a finite separable extension L′
0 of L0

such that L′
0 · k = L′. Then apply the previous lemma to H0 = Gal(L/L′

0) and
H = Gal(L/L′).

The remaining (hardest) implication 3)⇒ 2) is a consequence of a theorem
of Zarhin who proved a conjecture of Tate for abelian varieties over function
fields in positive characteristic; cf. [Z]. □

3.3. Proof of (3.2.2). In this subsection, we prove Theorem (3.2.2) following
Serre. The method is the same as in his paper. In the following, we write E for
E1, ρl for the representation (3.1.2) for E on Tl(E) = Tl, etc.; and we write E′

for E2, and express the corresponding objects for E′ by putting a prime symbol:
ρ′l, T

′
l , etc. We will always assume i) and ii) in (3.2.2).

Lemma (3.3.1) (cf. [Se3, Lemme 7]) For any prime number l 6= p, the image
of the l-adic representation

ρl × ρ′l : GL → SL(Tl)× SL(T ′
l )

is open.

Proof (ρl × ρ′l)(GL) is an l-adic Lie subgroup of SL(Tl)× SL(T ′
l ). Let

gl := Lie((ρl × ρ′l)(GL)) ⊆ hl := sl(Vl)⊕ sl(V ′
l )
∼= sl2(Ql)⊕ sl2(Ql)

be their Lie algebras, where Vl := Tl ⊗Zl
Ql and V ′

l := T ′
l ⊗Zl

Ql. We want to
show that gl = hl.

By (3.2.1), the two projections from gl to sl(Vl) and sl(V ′
l ) are surjective.

Since sl2(Ql) is simple, if gl 6= hl, we must have that gl is a graph of a Lie
algebra isomorphism α : sl(Vl)

∼→ sl(V ′
l ). Then as in [Se3], there is a Ql-linear

isomorphism f : Vl
∼→ V ′

l such that α(u) = f ◦u◦f−1 for all u ∈ sl(Vl). It follows
that there is an open subgroup U of (ρl × ρ′l)(GL) such that f is a U -module
isomorphism. Thus if L′ is the subfield of L corresponding to U , ρl and ρ

′
l are

isomorphic on Gal(L/L′), which contradicts our assumption ii) in (3.2.2), by
(3.2.4). □

Our next purpose is to show Lemma (3.3.3) below. To do this, for a prime
number l different from p, we define{

El := E[l](L),

ϕl : GL0 → GL〈P 〉(El) := {g ∈ GL(El) | det g ∈ 〈P 〉 ⊆ (Z/lZ)×},

and also E′
l , ϕ

′
l for E

′ similarly; and consider

ψl : GL0
→ Al := {(g, g′) ∈ GL(El)×GL(E′

l) | det(g) = det(g′) ∈ 〈P 〉},

through the natural action of the Galois group. By the assumption (3.2.2), i),
ϕl and ϕ

′
l are surjective for almost all l, by (3.2.1).
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Lemma (3.3.2) (cf. [Se3, Lemme 8]) Let l(6= p) be a prime number ≥ 5 such
that:

ϕl and ϕ
′
l are surjective, but ψl is not surjective.

Then there is a continuous homomorphism εl : GL0
→ {±1} and an isomor-

phism f : El → E′
l satisfying:

f ◦ ϕl(s) = εl(s) ◦ ϕ′
l(s) ◦ f for all s ∈ GL0

.

Further, εl is unramified at every prime of L0/k0 at which E and E′ have
good reduction.

Proof Put B := GL〈P 〉(El), B
′ := GL〈P 〉(E′

l), A := Al and H := ψl(GL0) so
that H ⊆ A ⊆ B ×B′, and the projections from H to B and B′ are surjective.
Identifying B with the subgroup B×{1} of B×B′, we set N := B∩H. Thus N
is a normal subgroup of B contained in SL(El). As is well-known, PSL(El) :=
SL(El)/{±1} is a noncommutative simple group when l ≥ 5, and no proper
subgroup of SL(El) maps surjectively onto PSL(El) (cf. [Se2, IV-23, Lemmas
1 and 2]). Therefore N must be one of SL(El), {±1} or {1}. The same holds
for N ′ := B′∩H. Now by “Goursat’s lemma” (cf. Ribet [R, Lemma (3.2)]), the
image of H in B/N ×B′/N ′ is the graph of an isomorphism α : B/N

∼→ B′/N ′.
If N = SL(El), then H ⊇ SL(El) × {1} and hence H ⊇ SL(El) × SL(E′

l)
which implies that H = A, contradicting our assumption. We therefore have
N ⊆ {±1} and N ′ ⊆ {±1}, and N and N ′ have the same order since so are
B/N and B′/N ′.

On the other hand, it is clear that C := GL〈P 〉(El)∩F×
l (Fl = Z/lZ, identified

with the scalar multiplication endomorphisms) is the center of GL〈P 〉(El), and it
is easy to see that C/{±1} is the center of GL〈P 〉(El)/{±}; and the same holds
for C ′ := GL〈P 〉(E′

l) ∩ F×
l . Therefor α induces an isomorphism C/{±1} ∼→

C ′/{±1}, and whence an isomorphism α̃ : B/C
∼→ B′/C ′. The image of B/C

in PGL(El) := GL(El)/F×
l is either PSL(El) or PGL(El) because the index

of PSL(El) in PGL(El) is two; and the image of B′/C ′ in PGL(E′
l) is either

PSL(E′
l) or PGL(E′

l) accordingly. But it is known that any automorphism
of PGL2(Fl) is inner, and any automorphism of PSL2(Fl) is obtained by the
restriction of such an automorphism on PGL2(Fl) (cf. [R, Proposition (3.7)]).
We conclude that there is an isomorphism f : El

∼→ E′
l such that α̃(u) =

f ◦ u ◦ f−1 for all u ∈ B/C. Take h = (u, u′) ∈ H. It follows from the above
that u′ = ε(h)f ◦ u ◦ f−1 with ε(h) ∈ F×

l . Taking the determinants, we see
that ε(h)2 = 1. Thus ε gives a map H → {±1}, which is easily seen to be a

homomorphism. If we denote by εl the composite of GL0

ψl→ H
ε→ {±1}, we

have ϕ′
l(s) = εl(s)f ◦ϕl(s)◦f−1 for all s ∈ GL0

, which proves the first assertion.
Finally, ϕl and ϕ

′
l are unramified at every prime of L0/k0 at which E and

E′ have good reduction; and hence so is εl. □

We use this lemma to prove:

Lemma (3.3.3) (cf. [Se3, Lemme 9]) We have ψl(GL0
) = Al for almost all

prime numbers l.
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Proof Assume otherwise. Then there is an infinite set L of prime numbers
l ≥ 5 (l 6= p), such that both ϕl and ϕ′

l are surjective but ψl is not. For
such an l, the previous lemma provides us with a character εl : GL0

→ {±1}
satisfying the unramifiedness condition stated there. It follows that the set of
such characters is finite; and hence replacing L by its infinite subset, we may
assume that εl is common to all l ∈ L, which we denote by ε. Thus if we denote
by F0 the extension of L0 corresponding to Ker(ε) ([F0 : L0] ≤ 2), El and E

′
l

are isomorphic as modules over GF0 := Gal(L/F0) for all l ∈ L.
It follows that for any prime v of F0 at which E and E′ have good reduction,

the traces of the Frobenius endomorphisms tv(E) on E and tv(E
′) on E′ are

congruent modulo l for all l ∈ L. Therefore we have tv(E) = tv(E
′). Since

two representations of GF0
, ρl on Vl and ρ

′
l on V

′
l are simple, Čebotarev density

theorem (cf. Weil [W, Chapter XIII, § 12, Theorem 12]) implies that these
two representations are equivalent for any l 6= p. This again contradicts our
assumption (3.2.2), ii). □

Recall that we have the representation ψ∞ defined by (3.1.10), which in the

present case gives us ψ∞ : GL0
→ A∞ ⊆ GL(T̂ (p))×GL(T̂ (p)′), and it induces

GL → SL(T̂ (p))× SL(T̂ (p)′). Set{
G̃L := ψ∞(GL),

Hl := (SL(Tl)× SL(T ′
l )) ∩ G̃L,

for each prime number l 6= p, where we consider SL(Tl)× SL(T ′
l ) as the direct

factor of SL(T̂ (p))×SL(T̂ (p)′). Note that Hl is a normal subgroup of ψ∞(GL0
),

and that we have an exact sequence:

1→ Hl → G̃L →
∏
l′ 6=l,p

(SL(Tl′)× SL(T ′
l′)).

Lemma (3.3.4) (cf.[Se2,ChapterIV, 3.4,Lemma5]) Two projections Hl → SL(Tl)
and Hl → SL(T ′

l ) are surjections for almost all prime numbers l.

Proof We recall that, via the projections, G̃L maps surjectively onto SL(Tl)
and SL(T ′

l ) for almost all l, by (3.2.1). We only consider such l > 5 in the
following.

In general, for a profinite group Y , denote by Occ(Y ) the set of isomorphism
classes of finite noncommutative simple groups that “occur” in Y ; i.e. those
isomorphic to Y1/Y2 for suitable closed subgroups Y1 and Y2 of Y with Y2
normal in Y1. See [Se2, Chapter IV, 3.4] for basic properties of this assignment.
Especially, from the above exact sequence, we have:

Occ(G̃L/Hl) ⊆ ∪l′ 6=l,pOcc(SL(Tl′)× SL(T ′
l′)).

Consider the composite of homomorphisms:

Hl ↪→ G̃L ↠ SL(Tl) ↠ PSL(El).
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The image of Hl is a normal subgroup of the simple group PSL(El). If this is
trivial, then we have that (the isomorphism class of) PSL(El) ∼= PSL2(Fl) ∈
Occ(G̃L/Hl). It follows from the above relation that this belongs to Occ(SL2(Zl′))
for some prime l′ 6= l, p, which is impossible. We conclude that Hl maps surjec-
tively onto PSL(El), which implies that Hl → SL(Tl) is also surjective by loc.
cit. Lemmas 2 and 3; and similarly for Hl → SL(T ′

l ). □

Corollary (3.3.5) (cf. [Se3, Lemme 11]) The group Hl coincides with the

direct factor SL(Tl)× SL(T ′
l ) of SL(T̂

(p))× SL(T̂ (p)′) for almost all l.

Proof It is enough to show that Hl ⊆ SL(Tl)×SL(T ′
l ) maps surjectively onto

SL(El)×SL(E′
l) for almost all l by [Se3 , Lemme 10]. For this, we may assume

that l > 5.
Let H l be the image of Hl in SL(El)×SL(E′

l). We know that H l is a normal
subgroup of ψl(GL0) and that ψl(GL0) = Al for almost all l by (3.3.3). We
conclude from this and (3.3.4) that H l is a normal subgroup of SL(El)×SL(E′

l)
which projects to two direct factors surjectively, for almost all l. That such a
subgroup must coincide with SL(El)×SL(E′

l) follows from the argument as in
the proof of (3.3.2): Set N := H l ∩SL(El) and N ′ := H l ∩SL(E′

l). “Goursat’s

lemma” implies that H l gives the graph of an isomorphism: SL(El)/N
∼→

SL(E′
l)/N

′. If N = SL(El) or N ′ = SL(E′
l), we are done. Otherwise, N

and N ′ are both trivial, or both equal to {±1}, in which cases we easily get
contradiction from the normality of H l. □

We can now proceed to prove Theorem (3.2.2). By (3.3.5), there is a finite

set S of prime numbers (S 63 p) such that ψ∞(GL) = G̃L contains the direct

factor G̃′
S :=

∏
l 6∈S,l 6=p(SL(Tl) × SL(T ′

l )) of SL(T̂ (p)) × SL(T̂ (p)′). Therefore,

if we denote by G̃S the projection of G̃L to
∏
l∈S(SL(Tl)× SL(T ′

l )), we have a

direct product decomposition G̃L = G̃S × G̃′
S .

Lemma (3.3.6) (cf. [Se2, Chapter IV, 3.4, Lemma 4]) G̃S is an open subgroup
of

∏
l∈S(SL(Tl)× SL(T ′

l )).

Proof SL(Tl)× SL(T ′
l ) contains an open pro-l subgroup Nl (product of con-

gruence subgroups). It is thus enough to show that G̃S ∩
∏
l∈S Nl =: G̃◦

S is open

in
∏
l∈S Nl. But then G̃◦

S is a pronilpotent group and hence it is a product of

l-Sylow subgroups G̃◦
S,l contained in Nl. Lemma (3.3.1) assures us that G̃◦

S,l is
open in Nl, which completes the proof. □

This completes the proof of Theorem (3.2.2).

Question: Is it possible to give a simpler proof of (3.2.2) using the geometry
of modular curves?

3.4. Generalization via a lemma of Ribet. Ribet [R, Theorem (3.5)]
generalized Serre’s theorem for products of more than two elliptic curves over
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number fields. It was a consequence of a group theoretical lemma. We recall its
special case in the form convenient for our purpose:

Lemma (3.4.1) (cf. [R, Lemma (3.4)]) Suppose that we are given profinite
groups Si (1 ≤ i ≤ t ; t ≥ 2) such that Si ∼=

∏
l∈Pi

SL2(Zl) with a set Pi of
prime numbers for each i, and let S = S1 × · · · × St be their product. Let G be
a closed subgroup of S which projects to an open subgroup of Si × Sj for each
pair (i, j) (i 6= j). Then G is an open subgroup of S.

We now return to the general situation considered in 3.1: We let the fields
L/L0/k0 etc. be as in (3.1.1) for which we no longer assume that dimk0 L0 = 1,
and let E1, · · · , Em be elliptic curves over L0. We can then consider Galois
representation ψ∞ defined in (3.1.10).

Theorem (3.4.2) The notation being as above, assume that:
i) The j-invariants of Ei are transcendental over k0 for 1 ≤ i ≤ m.
ii) Ei and Ej are not isogenous over any extension field of L0 for 1 ≤ i, j ≤ m

(i 6= j).
Then ψ∞(GL0) is an open subgroup of A∞, and ψ∞(GL) is an open subgroup

of
∏m
i=1 SL(T̂

(p)(Ei)).

Proof First note that it suffices to prove the second assertion by (3.1.11).
When m = 1 the claim follows easily from (3.2.1), and hence we assume that
m ≥ 2. Then for any pair (i, j) as above, the representation ψ∞ of GL followed
by the projection

ψ(i,j)
∞ : GL → SL(T̂ (p)(Ei))× SL(T̂ (p)(Ej))

is of course the representation attached to two elliptic curves Ei and Ej over L0.
Therefore by Ribet’s lemma (3.4.1), to prove (3.4.2), it enough to prove it for
m = 2. Namely we need to prove (3.2.2) without assuming that dimk0 L0 = 1.

So we consider E1 and E2 over general L0 satisfying i) and ii). Fix a positive
integer N0 ≥ 3 prime to p and a primitive N0-th root of unity ζN0 ∈ k. Re-
placing L0 by a finite separable extension if necessary, we may assume from the
beginning that E1[N0] and E2[N0] are constant over L0 (and hence ζN0

belongs
to k0). We fix a Γ(N0)-structure of determinant ζN0

on each Ei in the following.

These data define morphisms ηi : Spec(L0) → Y (N0)
(ζN )
/k0

=: Y to the moduli

scheme Y classifying elliptic curves with a Γ(N0)-structure of determinant ζN0

over k0-schemes, so that Ei is the pullback by ηi of the universal elliptic curve
on Y . Let η : Spec(L0) → Y ×k0 Y be the morphism corresponding to η1 and
η2.

Y is an affine scheme, and we denote by A its coordinate ring. Therefore
η defines a ring homomorphism L0 ← A ⊗k0 A. Let p be its kernel. By our
assumption i), p is a non-maximal prime ideal. If the height of p is one, the
quotient field F0 of (A ⊗k0 A)/p is a function field over k0 of one variable,
and Ei are obtained from elliptic curves Ei,0 over F0 satisfying i) and ii) by
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base extension to L0. Since L0 is a finitely generated extension of F0, Theorem
(3.2.2) for Ei,0 over F0 implies Theorem (3.4.2) for Ei over L0. In the remaining
case where p = (0), it is clear that (3.4.2) holds for two elliptic curves over
the quotient field of A ⊗k0 A obtained from the universal curve on Y via two
projections Y ×k0 Y ⇒ Y , and hence (3.4.2) is also true in this case. This
completes the proof of (3.4.2). □

3.5. Torsors defined by elliptic curves. For a positive integer N , a Z[1/N ]-
scheme S, and an elliptic curve E over S, we consider the S-scheme

(3.5.1) IN (E/S) := IsomS-gp(Z/NZ× Z/NZ, E[N ])

which represents the functor (Schemes/S)3 T 7→ (the set of Γ(N)-structures on
ET := E ×S T ) (cf. (1.1.1)). It is therefore the S-scheme denoted [Γ(N)]E/S
(with P = [Γ(N)]) in [KM, (4.2), (4.6)], and is a GL2(Z/NZ)-torsor over S with
respect to the right action (1.1.4). (Cf. [SGA 1, V, Section 2] for basic facts
about torsors under a finite group G, where the terminology “principal coverings
of Galois group G” is used.) Clearly, its formation commutes with base changes:

(3.5.2) IN (E/S)×S T ∼= IN (ET /T ) for any S-scheme T ,

and when M is a positive divisor of N , there is a natural S-morphism

(3.5.3) IN (E/S)→ IM (E/S),

defined by the correspondence αN 7→ αM (1.1.8).

There is a natural S-morphism IN (E/S) → µµµprim
N/S = µµµprim

N ×Z S given by

αN 7→ det(αN ) (cf. (1.1.2) and (1.1.3) for notation). Assume that S is a
Z[1/N, µN ]-scheme, µN being the group of N -th roots of unity in Q. Also take

and fix ζN ∈ µµµprim
N (Q). This determines a section S → µµµprim

N/S corresponding to

the ring homomorphism Z[X]/(ΦN (X)) → Γ(S,OS) given by X 7→ ζN . Then
via the base change by this morphism, we obtain

(3.5.4) IN (E/S)(ζN ) := IN (E/S)×µµµprim
N/S

S.

This S-scheme classifies Γ(N)-structures of determinant ζN on ET for S-schemes
T . It is an SL2(Z/NZ)-torsor over S by (1.1.5).

We keep the assumption that S is a Z[1/N, µN ]-scheme. Assume that we are

given a positive divisor N0 of N , and let ζN0
= ζ

N/N0

N . Then (3.5.3) induces an
S-morphism IN (E/S)(ζN ) → IN0

(E/S)(ζN0
), “(αN of determinant ζN ) 7→ (αN0

of determinant ζN0
)”; cf. (1.1.9). We further assume that we are given αN0

∈
IN0

(E/S)(ζN0
)(S), a section of IN0

(E/S)(ζN0
) over S. We then form the fibre

product:

(3.5.5) IN (E/S)(ζN ) |αN0
:= IN (E/S)(ζN ) ×

IN0
(E/S)

(ζN0
) S,
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the inverse image of αN0 . Thus if we set

(3.5.6) SL2(Z/NZ;N0) := {g ∈ SL2(Z/NZ) | g ≡ 1 (mod N0)},

IN (E/S)(ζN ) |αN0
is an SL2(Z/NZ;N0)-torsor over S, because IN (E/S)(ζN ) is

an SL2(Z/NZ;N0)-torsor over IN0(E/S)
(ζN0

). Using these terminologies, we
have the following rather tautological

Lemma (3.5.7) Assume that N0 ≥ 3, and let (E , αuniv
N0

) be the universal el-

liptic curve with Γ(N0)-structure over Y (N0)
(ζN0

)

/R , where R = Z[1/N, µN ] for

simplicity. Then we have a canonical isomorphism over R:

IN (E/Y (N0)
(ζN0

)

/R )(ζN ) |αuniv
N0

∼= Y (N)
(ζN )
/R .

If M is anther positive divisor of N divisible by N0 and ζM = ζ
N/M
N , the above

defined isomorphisms for N and M are compatible with natural morphisms{
Y (N)

(ζN )
/R → Y (M)

(ζM )
/R ,

IN (E/Y (N0)
(ζN0

)

/R )(ζN ) |αuniv
N0
→ IM (E/Y (N0)

(ζN0
)

/R )(ζM ) |αuniv
N0

.

Proof For any R-scheme T , we have a canonical identification of

IN (E/Y (N0)
(ζN0

)

/R )(ζN ) |αuniv
N0

(T )

= IN (E/Y (N0)
(ζN0

)

/R )(ζN )(T )×
IN0

(E/Y (N0)
(ζN0

)

/R
)
(ζN0

)
(T )

Y (N0)
(ζN0

)

/R (T )

with the set of T -isomorphism classes of the pairs (ET , αN ) consisting of an
elliptic curve and a Γ(N)-structure of determinant ζN over T , because the pair
consisting of ET and a Γ(N0)-structure has no non-trivial automorphism. This
proves the first assertion, and the second one is also clear. □

We next want to study the set of irreducible components of the torsors
considered above, when S is the spectrum of a field. In the rest of this section,
we assume that S = Spec(F ) with a field F . We let F be a separable closure of
F , and GF the Galois group of F over F .

For the moment, Let X = Spec(A) be a G-torsor over S, G being a finite
group. Thus A is a finite étale F -algebra:

A = ⊕ni=1Ai with finite separable field extensions Ai of F.

We have X =
∐n
i=1 Ci with Ci := Spec(Ai), and {C1, · · · , Cn} is the set of

irreducible components of X, which we denote by Irr(X). Set

Gi := {g ∈ G | Cgi = Ci}.

This group acts on Ci (resp. Ai) from the right (resp. left). Since G acts simply
transitively on X(F ), it also acts transitively on the set Irr(X).
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Lemma (3.5.8) Let the notation be as above. We have a bijection

Gi\G
∼→ Irr(X) by the correspondence G 3 g : Ci → Cgi for each i.

Ai is a Galois extension of F , and we have

Gi
∼→ Aut(Ci/S) ∼= Gal(Ai/F ).

Proof It follows from the remark above that the first map is bijective. It also
follows that the homomorphism Gi → Aut(Ci/S) is injective for each i; and
since the action of Gi on Ci(F ) is transitive, the order of Gi satisfies #Gi ≥
#Ci(F ) = [Ai : F ], which completes the proof. □

The Galois group GF acts on X(F ) =
∐n
i=1 Ci(F ) from the left, and pre-

serves each Ci(F ).

Lemma (3.5.9) Fix a point Q ∈ X(F ), belonging to Ci(F ). For each σ ∈ GF ,
there is a unique g(σ) ∈ G such that σQ = Qg(σ). We obtain a map GF → Gi
by σ 7→ g(σ), and this is a surjective homomorphism.

Proof Since the Galois action preserves Ci(F ), g(σ) belongs to Gi, and it is
easy to see that the above map is a homomorphism of GF to Gi. Since the action
of GF on Ci(F ) = HomF (Ai, F ) is transitive, the number of the elements of the
image is #Ci(F ) =

#Gi by the previous lemma. □

Summing up, we obtain the following

Proposition (3.5.10) Fix Q ∈ X(F ) and let CQ ∈ Irr(X) be the irreducible
component containing Q. We have a homomorphism GF → G by the corre-
spondence: σ 7→ g(σ) defined by σQ = Qg(σ). Let HQ be the image of this
homomorphism. Then we have a bijection

HQ\G
∼→ Irr(X) by g 7→ CgQ.

□

We now turn our attention to the torsors attached to elliptic curves over
S = Spec(F ). Take an elliptic curve E over S and a positive integer N prime
to the characteristic of F . In this case, an element Q of IN (E/S)(F ) is nothing
but a Γ(N)-structure on E/F = E ⊗F F . Take and fix one such Q = αN .

Via the canonical isomorphism E[N ] ⊗F F ∼= E[N ](F ) × Spec(F ), giving αN
is equivalent to giving a group isomorphism Z/NZ× Z/NZ ∼→ E[N ](F ), which
we call α′

N . From such an α′
N , we obtain the Galois representation

ρN,Q : GF → GL2(Z/NZ)

32



in the usual manner by the commutativity of

(3.5.11)

Z/NZ× Z/NZ
α′

N−−−−→
∼

E[N ](F )

ρN,Q(σ)

y yaction of σ

Z/NZ× Z/NZ ∼−−−−→
α′

N

E[N ](F )

for σ ∈ GF .

Proposition (3.5.12) Let the notation be as above, and fix a point Q = αN ∈
IN (E/S)(F ). Let CQ be the irreducible component of IN (E/S) containing Q.
Then we have a bijection

ρN,Q(GF )\GL2(Z/NZ) ∼→ Irr(IN (E/S)) by g 7→ CgQ.

Proof For σ ∈ GF , σQ = σαN is obtained from αN by base change by the
action of σ on Spec(F ):

Z/NZ× Z/NZ σαN−−−−→ E[N ]⊗F F
∼−−−−→ E[N ](F )× Spec(F )

id×
ySpec(σ) id⊗

ySpec(σ) σ−1×
ySpec(σ)

Z/NZ× Z/NZ αN−−−−→ E[N ]⊗F F
∼−−−−→ E[N ](F )× Spec(F )

for the schemes obtained by base extension from F to F . The commutativity of
this diagram means that (σαN )′ = α′

N ◦ρN,Q(σ) and hence σαN = αN ◦ρN,Q(σ);
i.e. the element denoted above by g(σ) ∈ GL2(Z/NZ) is ρN,Q(σ). Our claim
follows from the previous proposition. □

Clearly the same argument can be used to describe the sets Irr(IN (E/S)(ζN ))
and Irr(IN (E/S)(ζN ) |αN0

). We include the result for the latter set in the
following

Variant (3.5.13) Assume that F contains a primitive N -th root of unity ζN .

Let N0 be a positive divisor of N and set ζN0 = ζ
N/N0

N . Let E1, · · · , Em be
elliptic curves over F , given with a Γ(N0)-structure αN0,i of determinant ζN0

on each Ei over F . Then the S-scheme

X := IN (E1/S)
(ζN ) |αN0,1

×S · · · ×S IN (Em/S)
(ζN ) |αN0,m

is a torsor under G := SL2(Z/NZ;N0)
m, the product ofm copies of SL2(Z/NZ;N0).

Take and fix a point Q = (αN,1, · · · , αN,m) ∈ X(F ). Then we obtain rep-
resentations ρN,i : GF → GL2(Z/NZ) as in (3.5.11) which factor through
SL2(Z/NZ;N0) ↪→ GL2(Z/NZ) for 1 ≤ i ≤ m, giving rise to

ρN,Q := ρN,1 × · · · × ρN,m : GF → SL2(Z/NZ;N0)
m.
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Let CQ be the irreducible component of X containing Q. Then we have the
following bijection:

ρN,Q(GF )\SL2(Z/NZ;N0)
m ∼→ Irr(X) by g 7→ CgQ.

3.6. A result on the finiteness of irreducible components. In this
subsection, we consider modular curves over fields of characteristic p > 0.We for
the moment work over an algebraic closure F of the prime field Fp. Throughout
we fix a compatible system of primitive N -th roots of unity ζ∞ = (ζN ) ∈
µµµ
(p)prim
∞ (F) = lim←−p∤N µµµ

prim
N (F) and consider irreducible modular curves

(3.6.1)

{
Y (N)0/F := Y (N)

(ζN )
/F ,

Y (p)(∞)0/F := Y (p)(∞)
(ζ∞)
/F = lim←−p∤N Y (N)0/F

(cf. 1.4).
We also fix N0 ≥ 3 prime to p. Y (p)(∞)0/F is a Galois covering of Y (1)/F

with group SL2(Ẑ(p))/{±1}; and is an étale Galois covering of Y (N0)
0
/F with

group

(3.6.2) SL2(Ẑ(p);N0) := lim←−
p∤N,N0|N

SL2(Z/NZ;N0) = Ker(SL2(Ẑ(p))→ SL2(Z/N0Z)).

For a positive integer m, as in 2.3, we set

(3.6.3)


((Y (N)0/F)

m := the m-fold fibre product of Y (N)0/F over F,
((Y (p)(∞)0/F)

m := the m-fold fibre product of Y (p)(∞)0/F over F,
fmN : (Y (p)(∞)0/F)

m → (Y (N)0/F)
m : the natural morphism.

The following is the main result of this section:

Theorem (3.6.4) Let Z be an irreducible closed subvariety of (Y (N0)
0
/F)

m

defined over F. Assume the following two conditions:
i) Let pi be the composite of the closed immersion Z ↪→ (Y (N0)

0
/F)

m and

the projection pi : (Y (N0)
0
/F)

m → Y (N0)
0
/F to the i-th direct factor. Then pi is

dominant for each 1 ≤ i ≤ m;
ii) Let EZ,i be the pull-back to Z of the universal elliptic curve on Y (N0)

0
/F

by pi. Then for each pair (i, j) ⊆ {1, · · · ,m} (i 6= j), the generic fibres of EZ,i
and EZ,j are not isogenous over any extension field.

Then the inverse image of Z to (Y (p)(∞)0/F)
m:

(fmN0
)−1(Z) = Z ×(Y (N0)0/F)

m (Y (p)(∞)0/F)
m

has only a finite number of irreducible components.
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Proof For the moment fix a positive multiple N of N0 prime to p, and let
(Y (N)0/F)i be the base change to (Y (N0)

0
/F)

m of Y (N)0/F → Y (N0)
0
/F by pi. Then

(Y (N)0/F)
m is (Y (N0)

0
/F)

m-isomorphic to the fibre product of these (Y (N)0/F)i

(1 ≤ i ≤ m) over (Y (N0)
0
/F)

m. Denoting by (Ei, p∗iαuniv
N0

) the base extension by

pi of the universal pair (E , αuniv
N0

) on Y (N0)
0
/F, we see from (3.5.7) and (3.5.2)

that:
(Y (N)0/F)i

∼= IN (Ei/(Y (N0)
0
/F)

m)0 |p∗iαuniv
N0

as SL2(Z/NZ;N0)-torsors over (Y (N0)
0
/F)

m, where we wrote IN (−)0 for IN (−)(ζN ).

Letting (EZ,i, αN0,Z,i) be the pull-back of (E , αuniv
N0

) by pi, it follows from
this that

Z×(Y (N0)0/F)
m(Y (N)0/F)

m ∼= IN (EZ,1/Z)
0 |αN0,Z,1

×Z · · ·×ZIN (EZ,m/Z)
0 |αN0,Z,m

as SL2(Z/NZ;N0)
m-torsors over Z. These are étale coverings of Z, and so, the

irreducible components of these schemes correspond bijectively with those of the
generic fibre over Z. So letting L be the function field of Z, and (Ei, αN0,i) :=
(EZ,i, αN0,Z,i)×Z Spec(L) the generic fibre of (EZ,i, αN0,Z,i)/Z (1 ≤ i ≤ m), we
obtain a canonical bijection:

Irr(Z ×(Y (N0)0/F)
m (Y (N)0/F)

m) ∼= Irr(IN )

where

IN := IN (E1/S)
0 |αN0,1

×S · · · ×S IN (Em/S)
0 |αN0,m

with S = Spec(L).

It therefore follows that we have bijections

Irr((fmN0
)−1(Z)) ∼= lim←−

p∤N,N0|N
Irr(Z ×(Y (N0)0/F)

m (Y (N)0/F)
m) ∼= lim←−

p∤N,N0|N
Irr(IN )

(cf. Appendix (A.2.1)). Take and fixQ∞ = (QN )p∤N,N0|N ∈ (lim←−p∤N,N0|N
IN )(L) =

(lim←−p∤N,N0|N
(IN (L)) with each QN ∈ IN (L). This provides with us, via (3.5.13),

a Galois representation

ρ∞,Q∞ := lim←−
p∤N,N0|N

ρN,QN
: GL → SL2(Ẑ(p);N0)

m,

and a bijection

lim←−
p∤N,N0|N

Irr(IN ) ∼= ρ∞,Q∞(GL)\SL2(Ẑ(p);N0)
m.

Here, ρ∞,Q∞ is exactly the Galois representation denoted by ψ∞ in (3.1.10)
attached to elliptic curves E1, · · · , Em over L, transformed in the above form
by the isomorphism (“coordinate system”) : (Ẑ(p) × Ẑ(p))m

∼→ T̂ (p)(E1)× · · · ×
T̂ (p)(Em) given by Q∞. Finally, we remark that, although we started with a

35



closed subvariety Z of (Y (N0)
0
/F)

m defined over F, it comes by base extension

to F from a closed subvariety Z0 ↪→ (Y (N0)
0
/k0

)m defined over some finite ex-

tension k0 of the prime field Fp. We conclude by Theorem (3.4.2) that the set
Irr((fmN0

)−1(Z)) is finite. □

The essential point of the proof of (3.6.4) was the open image result (3.4.2).
We give below another application of this result. For this, in general, let E be
an ordinary elliptic curve over a finite field with pn elements, and FE the pn-th
power Frobenius endomorphism of E. Let fE(X) = X2 − trace(FE)X + pn ∈
Z[X] be the characteristic polynomial of FE . By the ordinariness assumption,
this polynomial has the unique unit root in Qp, which we call α(E). Thus we
have trace(FE) = α(E)+pnα(E)−1. If E′ is another ordinary elliptic curve over
the same field, then obviously α(E) = ±α(E′) implies trace(FE) = ±trace(FE′).

Now let Z ⊂ (Y (N0)
0
/F)

m be as in (3.6.4). As we observed above, it is

obtained by base extension to F from a closed subvariety Z0 ⊂ (Y (N0)
0
/k0

)m

defined over a finite subfield k0 of F. Accordingly, we have elliptic curves EZ0,i

over Z0 (1 ≤ i ≤ m) defined as (3.6.4) ii) (which were implicitly used in the
proof of (3.6.4)).

Proposition (3.6.5) Let the notation and the assumption be as above. For a
closed point x of Z0, we let EZ0,i/x be the fibre of EZ0,i at x.

Then there are infinitely many closed points x of Z0 satisfying the following
conditions:

1) EZ0,i/x are ordinary (1 ≤ i ≤ m).
2) If i 6= j, we have α(EZ0,i/x) 6= ±α(EZ0,j/x) for the unit roots of the

Frobenius endomorphism.
Moreover, when a proper Zariski closed subset C of Z0 is given, we can take

these points x from Z0 − C.

Proof Let L0 be the function field of Z0, and EL0,i the generic fibre of EZ0,i/Z0.
Setting Tl,i := Tl(EL0,i) for prime numbers l 6= p, we obtain representations of
Galois groups

GL −−−−→
∏m
i=1 SL(Tl,i/l

MTl,i)

incl.

y yincl.

GL0
−−−−→

∏m
i=1GL(Tl,i/l

MTl,i)

for any positive integer M . Theorem (3.4.2) guarantees that the upper horizon-
tal arrows are surjective for any M for all but a finite number of l (l ∤ N0). Fix
such l and M � 0, and let L2 (resp. L1) be the extension of L0 correspond-
ing to the kernel of the lower horizontal arrow (resp. the maximal constant
field subextension of L2/L0). Thus Gal(L2/L1) is canonically isomorphic to∏m
i=1 SL(Tl,i/l

MTl,i). We then obtain étale Galois coverings X0 → Y0 → Z0

whose generic points give the field extensions L2/L1/L0; X0/Y0 being obtained
from an étale covering of a product of modular curves by base change. Via the
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canonical isomorphism Gal(X0/Y0) ∼=
∏m
i=1 SL(Tl,i/l

MTl,i) ∼= SL2(Z/lMZ)m,
we may identify

R := {(g1, · · · , gm) ∈ SL2(Z/lMZ)m | ±trace(g1), · · · ,±trace(gm) are all different}

with a subset of Gal(X0/Y0). Let us take M so large that this set is non-empty.
Then Čebotarev density theorem, as formulated in Serre [Se1, Theorem 7],
applies to assure that the set of closed points of Y0 whose Frobenius conjugacy
class belongs to R is of positive density.

If a proper Zariski closed subset C ⊂ Z0 is given, the set of such closed
points of Y0 not in the inverse image of C still have positive density. Especially
we may exclude points corresponding to supersingular elliptic curves to obtain
the same result. If y is such a closed point of Y0, the elliptic curves EZ0,i/y, the
fibres at y of EZ0,i ×Z0 Y0, satisfy the properties 1) and 2), by the preceding
remark. The image of these points to Z0 satisfy the same properties. □

§4. Zariski density of CM points.

4.1. “““Independence” of elliptic curves. In this final section, we will prove
the main theorem (2.3.4).

We thus return to the situation considered in 2.3: We fix an imaginary
quadratic field K in which p splits, and a prime number ` 6= p. We take a
sequence n = {0 ≤ n0 < n1 < · · · } of integers, δ1, · · · , δm ∈ Ker(Cl∞ →
Cln0

) which give distinct classes in Cl∞/Cl
alg, and define a set of closed points

Ξ(1;n)/F of (Y (1)/F)
m; cf. (2.3.1)-(2.3.4).

In what follows, when we are given a subset T of a scheme X, we will always
consider the Zariski closure of T in X as a reduced closed subscheme of X.
When the reference to X is obvious, we denote this scheme T .

Proposition (4.1.1) Let the notation be as above. Let N0 be an integer ≥
3, and Λ(N0) a set of closed points of (Y (N0)

0
/F)

m mapping surjectively onto

Ξ(1;n)/F. Take an irreducible component Z of the Zariski closure of Λ(N0) in
(Y (N0)

0
/F)

m. If dimZ > 0, Z satisfies the conditions i) and ii) in (3.6.4).

Proof Z ∩ Λ(N0) is an infinite set. So the image of the composite Z ↪→
(Y (N0)

0
/F)

m pi→ Y (N0)
0
/F contains infinitely many distinct points as seen from

the definition of Ξ(1;n)/F. The condition (3.6.4), i) is therefore satisfied.
To show the second condition, we fix indices i and j (1 ≤ i, j ≤ m, i 6= j).

Let L be the field of rational functions of Z, and consider the situation similar
to the proof of (3.4.2):

Spec(L)→ Z ↪→ (Y (N0)
0
/F)

m (pi,pj)−→ Y (N0)
0
/F ×F Y (N0)

0
/F.

These schemes are all affine. Set Y (N0)
0
/F = Spec(A) and Z = Spec(B) so that

we have ring homomorphisms:

L←↩ B ← A⊗F A.
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The kernel p of the right homomorphism is a non-maximal prime ideal. Let E ′i
and E ′j be the elliptic curves over C := Spec((A ⊗F A)/p) obtained by pulling

back the universal elliptic curve via C → Y (N0)
0
/F ×F Y (N0)

0
/F followed by two

projections to Y (N0)
0
/F. We want to show that the generic fibres of E ′i and E ′j

over any finite extension of the quotient field L of (A⊗FA)/p are non-isogenous.
If p = (0), this is obvious. We henceforth assume that p is of height one,

and hence C is an irreducible reduced curve over F. Let L′ be a finite extension
of L, and C ′ the normalization of C in L′. Set E ′′i := E ′i ×C C ′ and E ′′j =
E ′j ×C C ′. Assume that there were an isogeny over L′ between the generic
fibres of these curves. It then extends uniquely to an isogeny λ : E ′′i :→ E ′′j
over C ′ by the Néron property. Since Z ∩ Λ(N0) is infinite, the image of Z to
C ↪→ Y (N0)

0
/F ×F Y (N0)

0
/F contains closed points lying above the points of the

form xr := (x(αiar), x(αjar)) ∈ Y (1)/F ×F Y (1)/F for infinitely many values
r ∈ n, where cl(ar) ∈ Rr (cf. (2.3.2)) and αi, αj are as in (2.3.4). Let E(a)/K
be the elliptic curve over K whose complex points are isomorphic to C/a as
described in 2.4, and let E(a)/W (resp. E(a)/F) be its extension to W (resp.
the reduction to F). Then taking the fibre at an inverse image in C ′ of each xr,
we obtain from λ an isogeny λxr : E(αiar)/F → E(αjar)/F. This then lifts to

an isogeny λ̃xr
: E(αiar)/W → E(αjar)/W over W because E(αiar)/W (resp.

E(αjar)/W) is the canonical lifting of E(αiar)/F (resp. E(αjar)/F); cf Messing
[M, Chapter V, Corollary (3.4)]. This in turn gives us an isogeny of complex
tori C/αiar → C/αjar of the same degree as λ for each r. We may assume that
ar is of the form ar = cror with cr ∈ o×` , and also that αi, αj ∈ o×` by (2.1.9).
We have obtained isogenies

C/(crαi)or → C/(crαi)(α−1
i αj)or

of degree independent of r for infinitely many values r ∈ n. But our assumption
implies that (cl(α−1

i αjon)n≥0) ∈ Cl∞ does not belong to Clalg. We have seen in
(2.2.6) that this condition rules out the possibility of the existence of such an
infinite family of isogenies. □

Therefore Z ⊆ (Y (N0)
0
/F)

m obtained in the above manner, and its model

Z0 over a finite subfield of F, satisfy the conclusions of (3.6.4) and (3.6.5),
respectively.

4.2. Tate-linearity. In this section, we prove (2.3.4). To do this, aside from
the notation already used in 4.1, we need to recall the constructions in 2.4:
We first recall that we defined the set of admissible CM points ξadm(∞;n)/F
in Y (p,`)(∞)/F in (2.4.6), which will be considered as a set consisting of closed

points of Y (p,`)(∞)/F. We take the irreducible component Y (p,`)(∞)0/F of Y
(p,`)(∞)/F

containing the point x(on0
; 1)/F and set ξadm(∞;n)0/F = ξadm(∞;n)/F∩Y (p,`)(∞)0/F

as in (2.4.13). We hereafter always assume that all elements in the infinite set
n have the same parity, as it is enough to prove (2.3.4) under this condition.
This assures that ξadm(∞;n)0/F maps surjectively onto ξ(1;n)/F by (2.4.13).
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Definition (4.2.1) We take and fix δ1, · · · , δm ∈ Ker(Cl∞ → Cln0) giving
distinct elements in Cl∞/Cl

alg, and choose αi ∈ K×
A,f as in (2.3.4) so that δi =

(cl(αion))n≥0. We let Ξadm(∞;n)0 be the set of closed points of (Y (p,`)(∞)0/F)
m

defined by

{(x(α1a; (α1γ1)
′)/F, · · · , x(αma; (αmγm)′)/F) | x(a; γ′i)/F ∈ ξadm(∞;n)0/F (1 ≤ i ≤ m)}.

ForM ≥ 1 prime to p and `, we define Ξadm(M ;n)0 as the image of Ξadm(∞;n)0

by the morphism (Y (p,`)(∞)0/F)
m → (Y (M)0/F)

m.

The sets Ξadm(∞;n)0 and Ξadm(M ;n)0 therefore depend on δi (1 ≤ i ≤ m),
but in view of (2.1.8) and (2.4.7), do not depend on the choice of αi (1 ≤ i ≤ m).

We fix an integer N0 ≥ 3 prime to p and `. Our goal will be to show that
Ξadm(N0;n)

0 is Zariski dense in (Y (N0)
0
/F)

m. Remember that this statement

is equivalent to Theorem (2.3.4); cf. (2.3.5), (1). The theorem is obvious for
m = 1. We hereafter assume that m > 1, and assume that (2.3.4) is true up to
(m−1)-fold self-products of Y (N0)

0
/F, but false for the m-fold self-product, until

we arrive at a contradiction at the end of this section.
Let us take any partial direct product factor (Y (N0)

0
/F)

m−1 of (Y (N0)
0
/F)

m,

and let pr be the projection to this factor. Then pr(Ξadm(N0;n)
0) is a set defined

exactly in the same manner as Ξadm(N0;n)
0 for (Y (N0)

0
/F)

m−1. By the above as-

sumption, this is a Zariski dense subset of (Y (N0)
0
/F)

m−1. Therefore, pr induces

a dominant morphism of the Zariski closure Ξadm(N0;n)0 to (Y (N0)
0
/F)

m−1.

Since we are assuming that (2.3.4) does not hold for (Y (N0)
0
/F)

m, it follows that

there is an irreducible component of dimension m − 1 in Ξadm(N0;n)0. Take
and fix such an irreducible component, and call it Z.

In general, for a scheme X and its closed subscheme W , denote by X/W the
formal completion of X along W . Let x be a closed point of (Y (N0)

0
/F)

m which
is ordinary in the sense that it corresponds to an m-tuple of ordinary elliptic
curves. Then it is known from the theory of Serre and Tate that (Y (N0)

0
/F)

m/x

canonically has a structure of a formal torus over F. If V is a closed subvariety
of (Y (N0)

0
/F)

m and x ∈ V is as above, V is said to be Tate-linear at x if V /x

is a formal subtorus of the Serre-Tate formal torus (Y (N0)
0
/F)

m/x. This notion

was introduced and studied in detail by Chai [C1] in connection with the Hecke
orbit problem. Its importance in the arithmetic, for example the study of the
special values of Hecke L-functions, was found by Hida.

Proposition (4.2.2) Let the notation be as above. Z is Tate-linear at every
ordinary normal closed point of Z.

Although we stated the result for Z lying in the product of modular curves
of finite level, it is indispensable to go up to infinite level, as observed by Hida.
We will describe a proof of this proposition in several steps below.

First, we note that it is enough to prove the Tate-linearity for one (ordinary
normal) point of Z, for then a result of Chai assures us that the whole statement
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is valid. Chai in fact proved a stronger result in [C1, Proposition 5.3]; the
result of the above form follows from [C1, Proposition 5.2], either by the same
reasoning as loc. cit. or from the fact that (Y (N0)

0
/F)

m is closely immersed in
a Siegel modular variety.

We now consider the infinite covering

gmN0
: (Y (p,`)(∞)0/F)

m = lim←−
p,`∤M

(Y (M)0/F)
m → (Y (N0)

0
/F)

m.

Since the projective limit is taken with respect to finite surjective morphisms,
this is a closed morphism (cf. Appendix (A.1.2)), and hence gmN0

induces a

surjective morphism: Ξadm(∞;n)0 ↠ Ξadm(N0;n)0. Thus there is an irreducible

component Z̃ of Ξadm(∞;n)0 such that gmN0
(Z̃) = Z, and since Z̃ is integral over

Z, dim Z̃ = m− 1.

Lemma (4.2.3) We have

Z̃ = Ξadm(∞;n)0 ∩ Z̃,

and this is an irreducible component of (gmN0
)−1(Ξadm(N0;n)0).

Proof Write Ξadm(N0;n)0 = ∪m−1
i=0 Ii with Ii the union of all irreducible com-

ponents of dimension i of Ξadm(N0;n)0, and hence (gmN0
)−1(Ξadm(N0;n)0) =

∪m−1
i=0 Ii with Ii = (gmN0

)−1(Ii). We have:

Ξadm(∞;n)0 = ∪m−1
i=0 Ξadm(∞;n)0 ∩ Ii.

Since Z̃ is its irreducible component, Z̃ must be contained in one of the members
in the right hand side; and since Z̃ maps to Z, we have Z̃ ⊆ Ξadm(∞;n)0 ∩ Im−1.
Now by (4.1.1) and (3.6.4), Im−1 is a union of finite number of irreducible
components: Im−1 = ∪sj=1Dj with irreducible components Dj . We therefore
have

Z̃ ⊆ ∪sj=1 Ξ
adm(∞;n)0 ∩Dj .

Again the irreducibility of Z̃ implies that there is an index j such that

Z̃ ⊆ Ξadm(∞;n)0 ∩Dj ⊆ Dj .

Since dimDj < m, we conclude that Z̃ = Dj . □

Let Z◦ be the intersection of Z with the smooth locus of Ξadm(N0;n)0. This
is a non-empty open subscheme of Z, and for any closed point z of Z◦, Z is the
only irreducible component of Ξadm(N0;n)0 containing z. By the lemma above,

gmN0
(Ξadm(∞;n)0 ∩ Z̃) is dense in Z, and hence we can take a closed point

z′ ∈ Ξadm(∞;n)0∩ Z̃ such that z := gmN0
(z′) ∈ Z◦. Since (gmN0

)−1(Ξadm(N0;n)0)

is a pro-étale covering of Ξadm(N0;n)0, Z̃ is the only irreducible component of
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(gmN0
)−1(Ξadm(N0;n)0) containing z

′. Fix such choice of z′ and z. The morphism

Z̃ → Z is pro-étale at z′, and we have the commutative diagram with two vertical
isomorphisms:

(4.2.4)

Z̃/z
′ incl.−−−−→ (Y (p,`)(∞)0/F)

m/z′

o
y yo

Z/z −−−−→
incl.

(Y (N0)
0
/F)

m/z.

Recall that we have an action of K
(p,`)×
A,f on Y (p,`)(∞)/F via the representa-

tion ρ (2.4.8). We then let K
(p,`)×
A,f act on (Y (p,`)(∞)/F)

m diagonally. We see

from (2.4.11) (cf. also a remark after (2.4.12)) that the action of o×n0,(p,`)
, via

c 7→ ρ(c′), leaves Ξadm(∞;n)0 stable. Moreover, if z′ = (x(α1a; (α1γ1)
′)/F, · · · ,

x(αma; (αmγm)′)/F) with a a proper on-ideal, then o×n,(p,`) fixes z
′. We conclude

that o×n,(p,`) acts as automorphisms of Z̃ fixing z′, and hence induces automor-

phisms of Z̃/z
′
and (Y (p,`)(∞)0/F)

m/z′ = (Y (p,`)(∞)/F)
m/z′ .

To show that this induces a p-adically continuous action of o×p on the above
formal schemes, we need some preliminaries. In general, let a be a proper on
ideal in K, and let x = x(a; γ′)/F be an admissible CM point on Y (p,`)(∞)/F. It
therefore consists of (the isomorphism class of) an elliptic curve E(a)/F together

with a Γ(p,`)(∞)-structure. For an element c ∈ K× ⊆ K×
A,f , express it as

c = (c′, ip(c), i`(c)) with c′ ∈ K
(p,`)×
A,f , ip(c) ∈ K×

p and i`(c) ∈ K×
` as in 2.4.

The action of on on E(a)/F naturally extends to the action of on ⊗Z Zp =
op on the p-divisible group E(a)/F[p

∞]; and hence we have the action of o×p
on the deformation space Def(E(a)/F[p

∞]/F); cf. Chai and Oort [CO, 2.14,

Remark]. On the other hand, when c ∈ o×n,(p,`), ρ(c
′) fixes x and hence induces

an automorphism of (Y (p,`)(∞)/F)
/x.

Lemma (4.2.5) (cf. [CO, page 508]) Let the notation be as above, and let c
be an element of o×n,(p,`). Then via the canonical isomorphisms:

Def(E(a)/F[p
∞]/F)

Serre−Tate∼= Def(E(a)/F/F) ∼= (Y (p,`)(∞)/F)
/x,

the action of ip(c) on the left hand side and the action of ρ(c′)−1 on the right
hand side commute.

Proof See the proof of the “local stabilizer principle” given there. □

Let E(a)/F[p
∞]ét (resp. E(a)/F[p

∞]mult) be the maximal étale quotient (resp.
the multiplicative part) of the p-divisible group E(a)/F[p

∞]. We recall that there
is a canonical isomorphism:
(4.2.6)

(Y (p,`)(∞)/F)
/x ∼= HomZp

(Tp(E(a)/F[p
∞]ét)⊗Zp

X∗(E(a)/F[p
∞]mult)

∨, Ĝm)
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where X∗ (resp. ∨) means the cocharacter group (resp. the Zp-dual); cf. [CO,
Theorem 2.19]. The action of ip(c) on the cocharacter group of this formal torus,
i.e. (Tp(E(a)/F[p

∞]ét)
∨⊗Zp

X∗(E(a)/F[p
∞]mult), is then given by the non-trivial

character c 7→ c/c∗, where ∗ denotes the nontrivial automorphism of K/Q, if we
embed K into Qp via its action on X∗(E(a)/F[p

∞]mult)⊗Zp
Qp.

Proof of (4.2.2) We return to the situation after (4.2.3), and use the notation
there. In view of the commutative diagram (4.2.4), it is enough to show that

Z̃/z
′
is a formal subtorus of the Serre-Tate formal torus (Y (p,`)(∞)/F)

m/z′ .
We can embed o×p into the product

∏m
i=1 Aut(E(αia)/F[p

∞]) diagonally, and

hence we may let this group act on (Y (p,`)(∞)/F)
m/z′ (z′ = (· · · , x(αia; (αiγi)′)/F, · · · )

as in (4.2.1)). This action is continuous on the (discrete) set Y (p,`)(∞)/F)
m/z′(R)

for each artinian local F-algebra R.
On the other hand, we have seen that, via c 7→ ρ(c′), o×n,(p,`) acts on Z̃

/z′ . We

see from this and (4.2.5) that Z̃/z
′
is stable under the action of o×p . With this,

together with the remark made above, we can apply Chai’s rigidity theorem [C1,

Theorem 6.6] to conclude that Z̃/z
′
is a formal subtorus of (Y (p,`)(∞)/F)

m/z′ . □

We now prove (2.3.4). First recall that Z ⊂ (Y (N0)
0
/F)

m is obtained from

Z0 ⊂ (Y (N0)
0
/k0

)m defined over a finite subfield k0 of F by base extension.

Let pi : (Y (N0)
0
/k0

)m → Y (N0)
0
/k0

be the projection to the i-th direct factor

(1 ≤ i ≤ m):

(4.2.7) Z0 ↪→ (Y (N0)
0
/k0

)m
pi→ Y (N0)

0
/k0
.

Take an ordinary and smooth closed point x of Z0, and let xi = pi(x). We have
the morphisms of formal schemes over k0:

Z
/x
0 ↪→ (Y (N0)

0
/k0

)m/x ∼= (Y (N0)
0
/k0

)/x1×k0 · · ·×k0(Y (N0)
0
/k0

)/xm
pi→ (Y (N0)

0
/k0

)/xi .

Here, by (4.2.2), Z
/x
0 is a formal subtorus of the Serre-Tate formal torus (Y (N0)

0
/k0

)m/x

defined over k(x), the residue field at x. Therefore, if we denote by E/xi
the

fibre at xi of the universal elliptic curve on Y (N0)
0
/k0

, we obtain a non-trivial
homomorphism of cocharacter groups

X∗(Z
/x
0 )→ X∗((Y (N0)

0
/k0

)/xi) ∼=
HomZp

(Tp(E/xi
[p∞]ét)⊗Zp

X∗(E/xi
[p∞]mult)

∨, Ĝm)

which commutes with the natural action of Gal(F/k(x)). If we denote by
Frx ∈ Gal(F/k(x)) the Frobenius automorphism, the eigenvalue of Frx acting
on Tp(E/xi

[p∞]ét) is the unit root α(EZ0,i,/x) of the Frobenius endomorphism
considered in (3.6.5); and hence α(EZ0,i,/x)

−2 appears as an eigenvalue of Frx

acting on X∗(Z
/x
0 ) ⊗Zp

Qp (1 ≤ i ≤ m). But we have seen in (3.6.5) that
we can choose x in such a way that α(EZ0,i,/x)

−2 (1 ≤ i ≤ m) are all differ-

ent. We conclude that dimX∗(Z
/x
0 ) ⊗Zp

Qp = m, which in turn implies that
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dim ÔZ0,x = dimOZ0,x = m. This means that dimZ0 = m, contradicting our
starting hypothesis that dimZ = m− 1. This completes the proof of Theorem
(2.3.4).

Appendix: Some properties of projective limits of schemes. In this ap-
pendix, we give elementary topological properties of projective limits of schemes.
As for general treatment of projective limits of schemes, see [EGA IV, §8].

A.1. Zariski closures. Throughout, we work under the following situation:
We let (Xα, fα,β) be a projective system of schemes having a directed set I as
the index set. Thus fα,β : Xβ → Xα for α, β ∈ I with α ≤ β. We assume:

(A.1.1)

{
fα,β is finite and surjective for each pair α ≤ β in I;

I has a minimum element α0.

Thus all Xα are Xα0-schemes, and the conditions in [EGA IV, (8.2.2)] are
satisfied. Especially the projective limit

X := lim←−
α∈I

Xα

in the category of schemes exists [EGA IV, (8.2.3)]; and as (underlying) topo-
logical spaces, X is also the projective limit of Xα [EGA IV, (8.2.9)]. Let

fα : X → Xα

be the natural morphism. This is surjective by [EGA IV, (8.3.8), (i)]; and it
also follows from the argument of (A.1.2) below.

Lemma (A.1.2) For each α ∈ I, fα is a closed morphism.

Proof Let A be a non-empty closed subset of X, and set Aα := fα(A). We
have A = lim←−α∈I Aα (cf. Bourbaki [B, Chapitre 1, §4, n◦4, Corollaire]). Fix

α ∈ I and take a point a ∈ Aα. We see from (A.1.1) that fα,β(Aβ) = Aα for
all β ≥ α. Therefore Sβ := {b ∈ Aβ | fα,β(b) = a} is a non-empty finite subset
of Aβ . Therefore A ⊇ lim←−β≥α Sβ 6= φ. It follows that fα(A) 3 a, and we have

fα(A) = Aα. □

We also note that if all fα,β are flat, then fα are also flat; and in this case,
fα,β and fα are open morphisms as well.

Proposition (A.1.3) Let A be a subset of X and set Aα = fα(A) for each
α ∈ I. Then A is Zariski dense in X if and only if Aα is Zariski dense in Xα

for every α ∈ I.

Proof We have fα(A) ⊆ fα(A) = Aα in general. If A = X, then we have
Aα = fα(X) = Xα.

Conversely, assume that Aα = Xα for all α ∈ I. Then we have A =
lim←−α∈I Aα = lim←−α∈I Xα = X by [B, loc. cit.]. □
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Proposition (A.1.4) Let the notation be as in (A.1.3). Assume that (Xα, fα,β)
is a projective system of schemes of finite type over a field, and moreover assume
that all Xα are irreducible. Then A is Zariski dense in X if and only if Aα0

is Zariski dense in Xα0
. Also, a subset B of Xβ is Zariski dense if and only if

fα0,β(B) is Zariski dense in Xα0
.

Proof We only give a proof for the first assertion, since the same argument
settles the second.

The “only if” part is clear.
Assume that Aα0

is Zariski dense in Xα0
. For β ∈ I, fβ,α0

: Xβ → Xα0
and

also the induced Aβ → Aα0
are finite and surjective. It follows that dim(Aβ) =

dim(Xβ). Irreducibility of Xβ then implies that Aβ = Xβ , and hence A is
Zariski dense in X by (A.1.3). □

Corollary (A.1.5) Under the same situation as in (A.1.4), A is Zariski dense
in X if and only if f−1

α0
(Aα0

) is Zariski dense in X.

A.2. Irreducible components. For a topological space T , let Irr(T ) be the
set of irreducible components of T .

Proposition (A.2.1) Let (Xα, fα,β) satisfy (A.1.1) and let X and fα be de-
fined as before. Assume in addition that fα,β are flat for all α ≤ β in I. Then
we have a natural bijection:

Irr(X)
∼→ lim←−

α∈I
Irr(Xα).

Proof In general, if g : S → T is a faithfully flat closed morphism of schemes,
it induces a surjection Irr(S) ↠ Irr(T ). Indeed, if C is an irreducible component
of S, g(C) belongs to Irr(T ) by the closedness of g and [EGA IV, (2.3.5), (ii)].
On the other hand, take an irreducible component of T , and let t be its generic
point. Then there is an s ∈ S such that g(s) = t; and hence g({s}) = {t}. If {s}
is not an irreducible component, there is an irreducible component containing
{s}. Let s′ be its generic point. Then we must have g({s′}) = {t}. This shows
the surjectivity of the above map.

Now the morphisms fα,β and fα are faithfully flat and closed by (A.1.2).
Thus each fα induces a surjection Irr(X) ↠ Irr(Xα) from which we obtain

f̃ : Irr(X)→ lim←−α∈I Irr(Xα). This map is injective: If {x} and {x′} are different
elements of Irr(X), then clearly there is an index α ∈ I such that fα(x) 6= fα(x

′)
and hence {fα(x)} and {fα(x′)} are different elements of Irr(Xα). Finally let us

show the surjectivity of f̃ : Let ({xα})α∈I be an element of lim←−α∈I Irr(Xα). Since

fα,β maps {xβ} surjectively onto {xα} for each α ≤ β in I, it must preserve
generic points: fα,β(xβ) = xα. Therefore the element x = (xα)α∈I belongs to

lim←−α∈I Xα = X, and we have fα({x}) = {xα} for each α ∈ I. If {x} were not

an element of Irr(X), we can take a generalization x′ of x, as in the first step
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of this proof, satisfying {x′} ∈ Irr(X) and fα({x′}) = {xα} for all α ∈ I. This
completes the proof. □
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tiques, In: Modular functions of one variable II, Lecture Notes in Math.,
349, Springer, 1973, 143-316.
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