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Abstract
We prove the Zariski density of certain set of CM points lying in self-
products of elliptic modular curves, considered by Hida. A new ingredient
in our argument is a finiteness result on irreducible components for the
inverse images in infinite coverings of self-products of modular curves.

Introduction.

The purpose of this paper is to prove the Zariski density of CM points on
products of elliptic modular curves, as formulated and announced by Hida [H1],
[H3]. (Hida considered general Hilbert modular varieties, but we only treat the
elliptic modular case in this paper.) It was one of the key result for the proof
of the non-vanishing modulo p result for special values of Hecke L-functions
twisted by anti-cyclotomic characters; [H1]-[H3]. Aside from its own interest,
Vatsal [V] applied the non-vanishing modulo p result to the study of p-type
subgroups of the modular Jacobian variety Jo(IN), together with an application
to a conjecture of Stevens. The author [O], following Vatsal’s method, studied
p-type subgroups of J;(NN), and applied it to a conjecture of Sharifi.

Unfortunately, the original proof of the Zariski density was incomplete, as
pointed out by Venkatesh; cf. [H4]. Hida, in the same paper, recovered his
results under an additional assumption (also in the Hilbert modular case), but
the Zariski density in the full generality seems remained open so far. We will
supply a proof for this lacuna.

We now explain the main result. Let us fix an imaginary quadratic field K,
a prime number p which splits in K, and a prime number ¢ different from p.
Let Cl,, be the proper ideal class group of conductor £* of K and set Cl,, :=
Im Cl,. Each class cl(a) € Cl,, determines an isomorphism class of a CM
elliptic curve over Q, and then an ordinary elliptic curve over an algebraic
closure F of the prime field Z/pZ, by reduction. This determines a closed point
x(a) /r of the coarse moduli scheme Y'(1) ¢ of elliptic curves over F. The group
Cly acts on the set of z(a) r through its projections to Cl,,. On the other hand,
Hida introduced a certain subgroup C1™8 of Cla.
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Take and fix an infinite sequence of non-negative integers n := {ng < n; <
-+ }, and set

£(1;n)r = {z(a)r | cl(a) € Ker(Cl,;, = Cl,,),n; € n} CY(1)r

Then take 61, - - , 0, € Ker(Cly — Cl,,,) which give different classes in Clm/Clalg.
Define

E(Ln) e = {(z(01a) /5, -, 2(6ma) ) | w(a)r € E(150) /r}

which is a set consisting of closed points of (Y(1),z)™, the self-product of m
copies of Y (1) /r over F.

Let Y(M)p be the modular curve classifying elliptic curves with a T'(M)-
structure (in the terminology of Katz and Mazur [KM]) over F-schemes, for M
prime to p. We set Y ) (c0) 5 := @pr Y (M) r and take its one irreducible

component Y ) (0o )% This determines an irreducible component Y (M )%F of
each Y/(M) g so that Y ®) (00 /]F = lim TM /F With these terminologies,

the main result of this paper, which is equlvalent to [H3, Proposition 8.28], can
be stated as follows:

Theorem 1 Let M be a positive integer prime to p (resp. M = oo), and let
A(M) be a set of closed point of (Y(M)(/)]F)m (resp. (Y(p)(oo)%-)m) mapping
surjectively onto Z(1;n) jp. Then A(M) is a Zariski dense subset of (Y(M)(/J]F)m

(resp. (V) (00)0)™).

As in Hida’s argument, it is necessary to use infinite coverings of (Y'(1) /7)™
like (Y(p)(oo)%)m to prove the theorem. A new point of our argument is the
following finiteness result for the irreducible components, which allows us to
avoid the situation described by an example of Venkatesh:

Theorem 2 Take and fix an integer Nyg > 3 prime to p, and Let Z be an
irreducible closed subvariety of (Y (No) p)™ defined over F such that:

i) The composite of Z < (Y(NO)/F) 5 Y(No)m is dominant for each i
(1 <i<m), where p; is the projection to the i-th direct factor.

ii) Let Ez,; be the pull-back of the universal elliptic curve on Y(Ng)(/J]F to Z
by the above morphism (1 <i <m). Then if i # j, the generic geometric fibres
of Ez; and Ez ; are not isogenous.

Then the inverse image of Z to (Y(p)(oo)%)m has only a finite number of
irreducible components.

Note that dim Z > 0 by the condition i).
Here is a rough sketch of the proof of Theorem 2:
e If M is a positive multiple of Ny prime to p, the étale covering Y(M)/]F

of Y(No)/]F is a torsor under a subgroup of SLy(Z/M7Z), described in terms of
the universal elliptic curve £ on Y(NO)(/)F. (For example, when M = NoM' with



M’ prime to Np, Y(M)?F is Y(NO)(}]F—isomorphic to the SLo(Z/M'Z)-torsor
classifying isomorphisms Z/M'Z x Z/M'Z = E[M’] of prescribed determinant.)
e It follows that the inverse image of Z to (Y(M )(/)]F)m is a torsor over Z

described in terms of the elliptic curves Ez; (1 < i < m). The set of its
irreducible components can be then studied in terms of the Galois representation
on the M-division points of the generic fibre of Ez 1 Xz -+ Xz Ez .

e The finiteness claimed in the theorem ultimately reduces to a function
field analogue of the open image theorem proved by Serre [Se3] and extended
by Ribet [R] for products of elliptic curves over number fields.

When Z is a positive dimensional irreducible component of the Zariski clo-
sure A(Np) of A(Ng) as in Theorem 1, (the condition i) is easy and) the condition
ii) in Theorem 2 is a consequence of our assumption that d1,--- ,d,, give dif-
ferent classes in Cly,/ CI18. After Theorem 2, the proof of Theorem 1 basically
goes along the track as in Hida’s work, based on fundamental works of Chai
[C1], [C2]. The notion of Tate-linearlity studied by Chai is indispensable in this

part.
The organization of this paper is as follows:

Section 1 is preliminaries on modular curves. In this paper, we only consider
(open) modular curves classifying (isomorphism classes of) elliptic curves with
a I'(M)-structure and their irreducible components, or the projective limits of
these curves, such as Y (M) g, Y(M)%F, Y ®)(c0) /5 or Y(”)(oo)%F that already
appeared. After fixing basic terminologies on them, we describe at some length
the action of the adelic group, e.g. the action of GLQ((@MM Z/MZ) @z Q)

extending the natural action of GLg(l'&lMM Z/MZ) on Y P (c0) g, following

Deligne’s moduli theoretic description [D2]. We will need such action, via Sub-
section 2.4, in the proof of the Tate-linearity in the final Subsection 4.2.

In Section 2, we study the CM points on modular curves attached to K,
p and ¢ as mentioned above. In Subsection 2.2, we recall Hida’s definition of
Cl1™8, and study its properties. Proposition (2.2.6) is a key to the proof of the
property ii) in Theorem 2 for Z C A(Ny), to be given later in Subsection 4.1.
After this, we state our main result Theorem (2.3.4) (= Theorem 1 above).

In the course of the proof of the Tate-linearity, we will consider special points
on Y ®*?) (00) /F = lglp o Y (M) r, the modular curve of infinite prime-to-p¢

level, called admissible CM points specifying the level structures on CM elliptic
curves. We study the properties of these points in detail in Subsection 2.4.

Section 3 is devoted to the proof of Theorem 2. In Subsections 3.2-3.3, we
state and prove an analogue of Serre’s open image theorem for products of two
elliptic curves over function fields of one variable over F or its finite subfield. The
method is completely due to Serre. We then use Ribet’s group theoretic lemma
to give its generalization for products of more than two elliptic curves over
general function fields; cf. Theorem (3.4.2). After preliminary consideration
on torsors attached to elliptic curves, we prove Theorem (3.6.4) (= Theorem 2



above) as an application of the open image theorem. Another application of this
result, a consequence of Cebotarev density theorem, which will be used at the
final step of the proof of our main theorem, is given at the end of this section.

In the final Section 4, we complete the proof of the main theorem. We
prove a key result Proposition (4.2.2) on Tate-linearity (at appropriate points
for suitably chosen A(Ny) and Z, to be precise) using results from Sections 2
and 3, and finally deduce from it the main theorem.

81. Preliminaries on modular curves.

1.1. Modular curves Y (N). In this paper, we will exclusively consider
modular curves with respect to the “naive” I'(N)-moduli problems. For an
elliptic curve E over a Z[1/N]-scheme S, we thus consider its I'(NV)-structures,
i.e. isomorphisms

(1.1.1) an 1 Z/NZ x Z/NZ =5 E[N]

of group schemes over S, where E[N] denotes the kernel of multiplication by
N on E, and we indicated by the underline the corresponding constant group
scheme. We denote by

(1.1.2) pR™ = Spec(Z[X]/dn (X))

with @5 (X) the N-th cyclotomic polynomial, the scheme of primitive N-th
roots of unity. If oy is a I'(N)-structure on E/S, we define its determinant by:

(113 detlax) = emslan (o) ax () € a80S)

using the en-pairing on FE.
There is a natural right action of the group GL2(Z/NZ) on the set of I'(N)-
structures on E/S:

(1.1.4) any — ayog for g€ GLy(Z/NZ),
and we have

(1.1.5) det(ay o g) = det(ay )49,

Definition (1.1.6) We denote by Y (N) the (coarse) moduli scheme classify-
ing the (isomorphism classes of) pairs (F, ay) as above over Z[1/N]-schemes.

Y (N) is an irreducible affine curve smooth over Z[1/N], and it is in fact the
fine moduli scheme when N > 3. The correspondence (F, ay) — det(ay) gives
a morphism Y (N) — pB™ over Z[1/N]. Let uy be the group of N-th roots of
unity in Q. Then the correspondences X — Cy for (y € pX ™ (Q) give us an
isomorphism

ZIX)/(®n (X)) @zp1/5) Z[1/N, pn] = P Z[1/N, v, pn] = @ Z[/N, ]
N (&Y



of Z[1/N, punl-algebras. Therefore if we denote by Y (N)&~) the base change of
Y (N) — p™ by the homomorphism given by X ~ (n, we obtain

(1L17)  Y(N) S 2N, ) = [T Y0 Spec(ZI1L/N, ux]).
(@Y

Y (N)V) is the moduli scheme classifying (E,ay) with det(ay) = (y over
Z[1/N, pn]-schemes, and it is geometrically irreducible over Z[1/N, un].

If M is a positive divisor of N, ay above gives rise to a I'(M )-structure apy
defined by the commutativity of the diagram:

Z/NZ % Z/NZ —"~ E[N]
(1.1.8) canoni lN/M
Z/MZ x Z/MZ —— E[M).
We have
(1.1.9) det(ayy) = det(ay)N'M

in this case. The association (E, an) — (E, ayps) given by (1.1.8) induces natural
morphisms

(1.1.10) Y(N) = Y (M) over Z[1/N], and
B Y(N)(CN) - Y(M)(Cﬁ/M) over Z[1/N, C]]\\]]/M]_

The action of GLy(Z/NZ) on Y (N) gives isomorphisms

(1111) JCGLZ/ND)/EL) 5 Aut(Y/(N)/Y (1)),

1.2. Towers of modular curves. We set

(1.2.1) L= Hq:primc Zq7 ar%d '
A¢ := 7 ®7z Q, the ring of finite adeles of Q.

Slightly more generally, we take a finite set P of prime numbers and consider
ZP) = Y/

(1.2.2) ) H(‘;;Z)P B
A =7 27 Q.

(We will later need these symbols only when P = {p} or {p,¢} with prime
numbers p and ¢ # p; but the general treatment requires no extra effort.)
We also consider the semilocal ring

(12.3) Zpy:={a/beQ|a,beZ,bis not divisible by any element of P}



(thus Zpy = Q if P is empty). We say that a positive integer N is prime to P
if NV is not divisible by primes in P; equivalently, if N is a unit in Zp). In this
case, we can consider Y(N)/Z(P) =Y (N) ®zp/n) Zepy-

When E is an elliptic curve over a Zp)-scheme S, we set

(1.2.4) {f(P)(E) = (E[N])N:primeto'Pa

VPUE) :=TP(E) 2 A",

Here, we consider f(P)(E) as a projective system of finite étale group schemes

over S (with respect to E[N] NI E[M] whenever M divides N), and also

identify it with the associated smooth Z(P)_sheaf on the étale site S¢ of S; and
denote by V(P) (E) the AEP)—sheaf on Sg associated with it: In [D2, N° 3],
Deligne considered Z-sheaves and A¢-sheaves (when P = ¢), and we are using
here the similar terminology for objects without g-components for ¢ € P. When
S is the spectrum of a field &, we will identify them with the usual (“physical”)
Tate module over Z(P) or AEP) on which the absolute Galois group of k acts
continuously.
Now we form the projective limit

(1.2.5) YN 00) /5 = lim  Y(N)z,
N:prime to P

which exists because transition morphisms Y(N),z,, — Y(M)z,, are all
finite. For any Zp)-scheme S, the set

YP(00) 2 (S) = lim  Y(N)jzp(5)

N:primeto P

corresponds bijectively with the set of isomorphism classes of the pairs consisting
of an elliptic curve E/S together with an isomorphism of smooth Z(*)-sheaves
on Sét

(1.2.6) o .27 37 5 7P (p),

~(P ~
(Here the underlined Z( ) means the constant Z(P)-sheaf on Set.)  Such an

isomorphism aéf ) will be called a I'P)(c0)-structure on E. We can naturally
define its determinant

(12.7) det(@?)) € yPPm@) = lim  pR™ Q).
N:primtoP
(P)

~ On the other hand, if we denote by ps” the set of all N-th roots of unity in
Q with N prime to P, the set of irreducible components of Y (P) (cc)

Y (P)(00) /2,5, @2y L) [15)] corresponds bijectively , via “det”, with pllP"™ (@)

[Zepy D] T



(cf. Appendix (A.2.1)). More precisely, if ((N)N: primetoP =: Coo is in this latter
set, the corresponding component is given by

(128) YP(oo)) o) = dim (VNN @) Loy L))

P o0
Z oo
el N:primeto P

and this scheme represents the functor: (Schemes/Zp) [,u(of)]) — (Sets) associ-

ating with each S the isomorphism classes of the pairs (E, a((,f )) of determinant
(oo Over S. R
The group GLo(ZP))/{#1} acts faithfully on Y(P)(oo)/z(m by the rule

(E,agf)) — (E,ag,f) o g). The action of g € GLy(Z™)/{£1} on the set
of irreducible components of Y(P)(oo)/zw)[u(p)] then corresponds to the map:

(oo — CSS“Q), in the obvious sense, by (1.1.5). Especially, an element g €
GLy(ZP))/{#1} leaves each irreducible component stable if and only if g €

SLo(ZP)/{£1}.

1.3. Action of GLQ(AEP))- Let P be as in 1.2. In this subsection we con-
sider the action of GLQ(AE’P)) on Y(P)(oo)/zw) extending that of GL,(Z(™))
following Deligne [D2, N° 3]. The existence of such an extension is a common
feature of general Shimura varieties (cf. Shimura [Sh, 6.6] in the elliptic modular
case). The following moduli theoretic description seems to be originally due to
Shafarevich (according to [D2, loc. cit.]).

We call a morphism F — E’ of elliptic curves over S a prime-to-P isogeny
if it is an isogeny over S whose degree is (fibre-by-fibre) prime to P. In the
following, we let S be a scheme over Zp)y. We consider the category of elliptic
curves up to prime-to-P isogenies over S, which for the moment will be denoted
by Cg. Thus if we denote by Cg the category of elliptic curves over S, there is
a functor

(1.3.1) ®Z(7>) :Cs — Cg, EF—FE® Z(p)

such that: (i) if f is a prime-to-P isogeny in Cg, then it is sent to an isomorphism
in Cg; and (ii) if F': Cg — D is a functor having the property (i), then it factors
uniquely through ®Zpy. When S is quasi-compact, we in fact have:

(132) Homcfs (E ® Z(p), E' X Z(p)) = Homcs (E, E/) X7, Z(p)

for E and E' in Ob(Cg). An isomorphism in Cg is often called a prime-to-P
quasi-isogeny. R

The functor on Cs: E + V(P)(E) clearly factors through C%. Thus we can
consider, for each object F' in Cg, the smooth Ag))—sheaf V() (F), and also an

isomorphism of smooth Algp)—sheaves on Sg, called a I'P)(c0) ® Zpy-structure
on F'

(1.3.3) BP) AP 5 AP X VPV (),



If o) is a ['(00)P)-structure on E € Ob(Cs), we can associate with it a
['(o0)P) ® Zp)- structure oD @ Z(py on E @ Z¢py naturally.

Proposition (1.3.4) (cf. [D2, Corollaire 3.5]) Let F be the functor (Schemes/Zpy) —

(Sets) assigning to each Z(py-scheme S the S-isomorphism classes of the pairs
(F, ﬂéf)) consisting of F' € Ob(C%) and a I'P)(c0) ® Zp)-structure B on it.
Then the association: (E, ag)) = (ERZpy, o) ®Zepy) gives an isomorphism
Y(P)(oo)/z(m 5 F of functors.

Proof Deligne proved this fact when P is empty; but his proof applies to gen-
eral P as well. (We recall below the argument showing the essential surjectivity.)
O

We will identify the above two functors, which enables us to let GLg( ))
a;t on Y(P)(co 00) /2,y 38 Z(p)-automorphisms by the rule (F, ,BDQ ) = (F, Boo o
g)

Let us now describe what the effect of the action of g € GLa(A on the
original pair (E,all’) is: First assume that g~ € GLy (AN My(Z™)). Then
there is a positive integer N prime to P such that (1/N)-ZP)®2 D ¢.7(P)®2 5
Z(P)®2 Tn this case, we obtain a finite étale subgroup scheme K ¢ of prime-to-P
order of E/S, as the image of:

(7’))

(1.3.5) AR ARG W s WAL/ a%)(1/N)7A“(7’>(E)/T(P)(E)%E[N]

which does not depend on the choice of N. Set E' := E/K,, and let 7 : E — E’
be the quotient homomorphism. Then it is easy to see that the composite of:

Ag?’)eﬂ g A(P)GBQ‘X ®Z(P) /\(79) V!}W) (79)

(P)y@2 ~

in fact arises from an isomorphism D7 — f(P)(E'). Thus using these

symbols, we have:
(1.3.6) (E®Zp), (D) @ Zpy) 0 g) = (E',all)) @ Zp).

As a special case of this, if IV is a positive integer prime to P, we see that
multiplication by N on E induces an isomorphism

(1.3.7) (E® Z(p), (oes P) @ Z(p)) (1/N I/ON)) = (E,Ozéf)) X Z(p).
If we set
(1.3.8)

{Qf)x := (the subg(,‘rc;up of Q@* generated by all prime numbers prime to P),
QP* = {+1} - Q%



this relation means that the action of scalar matrices (g 2) € GLy (AEP)) with

a e QP (embedded diagonally in Agp)x) is trivial. Especially, the description
of the action of general g € GLQ(ASID)) reduces to the first case.

We next consider the effect of the action of GLs (Agp)) on the set of irre-
(P)

ducible components of Y (P) (OO)/Z<,>) W) For this, decompose A; " as a direct

product:

(1.3.9) AP — 7P 5 P,

An element ¢ € AEP)X is then expressed as ¢ = (cp,¢1) with ¢ € Z(P)* and
(P)x

c1 € Q+ .

Proposition (1.3.10) Let g be an element of GLQ(AEP)). Let (E’,ozgf)/) be
obtained from (E,ag)) by (1.3.6). Then we have

det(aP)) = det(aF))det(9)o

Especially, the action of g preserves each irreducible component of Y (P)(c0)

if and only if det(g) € QT)X.

P
[Ty [1SE]

Proof We may assume that g=! € Mg(i(p)). Using the above symbols, we
see that the degree of the isogeny w is equal to:

| G292 : 2192 | det(g ).
On the other hand, it is easy to see that
det(ag))deg(”) = det(ag)')det(g’l)

from which the first assertion follows; and the rest is clear. [

We set:
(1.3.11) G = {g € GLy(A™) | det(g) € Q7).
Fix an irreducible component Y (7) (oo)(/CZ";j)[Hg)] of Y(P) (oo)/Z(P)[#g>]. We have

obtained two homomorphisms

GLy(AP)) = Aut(YP)(00) /2, /2y,

(P) Aut(Y P (9] 7, (()f) )
g — Aut( (OO)/Z(p)[MQ:)]/ (77)[:u ])

(1.3.12)

Proposition (1.3.13) The kernels of these two homomorphisms are both equal

to:
(5 2)laca™xy.



Proof It is enough to show the assertion for the second homomorphism. We
need to show that an element g € G(P) lying in the kernel belongs to the above
group of scalar matrices. We may assume that g~ € My(Z(®)) to do this.

Let n be the generic point of Y(P)(oo)(q"") L) and r(n) the residue field

e
at n. Let (&a(oz)univ) be the universal pair on Y(P)(m)iéfg)[ug)].

going to apply the argument above describing the action of ¢ to its generic

We are

fibre (&, (agi)univ)n). Then we obtain a finite subgroup scheme K, of &, as in

(1.3.5), and a prime-to-P isogeny &, — &,/K, =2 &, over k(n). However, the

endomorphism ring of &,/k(n) is isomorphic to Z, so that K, = &,[N]| with

an integer N prime to P ; and hence g = N~ 1gg with gy € GLa(Zpy) N G,
. : (Coo) e

But the image of go in Aut(Y ?)(c0) [M(Of)]/y(l)/Zw)[#(of)}) is trivial, and so

1O /Zp)
go = .

1.4. Modular curves over Z, and its strict localization. In the rest
of this paper, we will mainly consider modular curves in characteristic p; and
some objects obtained by “reduction modulo B” from characteristic zero. We
fix here our notation for later use, including some repetitions.

We thus fix a prime number p, and consider curves over Z,)-algebras. We
henceforth assume that P > p, and consider

(1.4.1) YN 00) sz, = lim  Y(N)sg,.
N:prime to P

The curve Y(P)(oo)/z(m is irreducible and it is a Galois covering of Y'(1),z,,

with Galois group GLy(Z™))/{£1}. It is an étale Galois covering of Y(N),z,
if N is prime P and N > 3.

The case where P = {p} is the “largest” tower, and there is a natural
morphism: Y¥)(c0) 7, — YV P)(c0) 3, over Zy,) for general P. The action of

GLy(Z™)on Y™ (00) /2, is of course compatible with the action of GL» (Z®))

on Y ®) (00) /2, through this morphism and the projection GLy(Z®)) — GLy(Z™P).
The action of GLy(Z™) on Y(P)(oo)/z(p) can be naturally extended to

the action of the bigger group GLQ(A?D)). Tts subgroup acting trivially on

Y(P)(oo)/z(m is the subgroup of diagonal matrices with entries in Q™). (We

note however that the morphism Y (?) (00) /2, — y(P) (00) /2, considered above

is not compatible with the action of adelic groups via the projection GLo (Agp )) —»

GLQ(A§P)). For example, if ¢ € P — {p}, the action of (g 2) € GLQ(AIEP)) on

y(p)(oo)/z(p) is trivial, but (g 2) € GLQ(AEP)) acts non-trivially on Y(P)(oo)/z(p).

If we consider G Lo (AEP)) as a subgroup of GL, (AEP )) whose components at all
q € P—{p} are trivial, Y(p)(oo)/z(m — Y(P)(oo)/z(m is GLo (Agp))—equivariant.)

10



From now on, we fix embeddings of Q into C and @p once and for all. We
denote by B the prime of Q induced by this embedding, and set

K := (the fixed field of the inertia group at B) C Q,
(14.2) W := (the ring of P-integers in K),
F := (the residue field of W).

Thus W is a strict Henselization of Z,), and F is an algebraic closure of the
prime field Z/pZ. We consider the base extensions of the curves in (1.4.1) from
Z(p) to W:

(1.4.3) YPoo) = lim  Y(N)w

N:primeto P
and similarly for the further base extensions to C and F etc. We have the group
actions as above having the same properties on such curves. But these curves are
not irreducible: According to our convention, we have W* D uf,f ), p,((,f Jprim (Q),
and W 2 Zp) [,u((,f)] (cf. 1.2 for notation). Irreducible components of Y 7)(c0)

correspond bijectively with ,u(of Jprim (Q) and are given by

(1.4.4) YPoo)5s) = 1im Y)Y
N:prime to P

for each (oo = (CW)N € pgf)p“m(@) with Y(N);CWN) =Y(N)~) ®z(1/N,un] W-

The group S LQ(Z(P)) /{£1} acts on each irreducible component faithfully as
its Galois group over Y (1) yy. The group defined by (1.3.11):

GP) = {g € GL>(a{") | det(g) € Q7" }

also acts on each irreducible component as W-automorphisms, and the subgroup
acting trivially is the subgroup of diagonal matrices with entries in Q™).

These results stated so far for curves over W equally holds over C or over F.
(The proof of (1.3.13) also works for the base changed curves.)

§2. CM points on modular curves.

2.1. Preliminaries on imaginary quadratic fields. We hereafter fix an
imaginary quadratic field K, and denote by o its ring of integers. We also fix a
prime number ¢ and let o,, be the order of conductor " of K,

(2.1.1) 0p :=2Z+{"0 for n > 0.

If a is a lattice in K, we set

0, := a ®yz Zg for each prime number g,
(2.1.2) " L
a:=a ®Z 7= Hq:prime a‘l'

11



We also set
(2.1.3) Kyt = K ®g As = (the ring of finite adeles of K),

so that Ky ¢ is the restricted direct product of K, := K ®q Q4 with respect to
o0, for rational primes g.
For a lattice a and = = (z4) € K, we set

(2.1.4) za := (the unique lattice such that (za), = z4a, for all ¢) = zanN K.

When a is a proper o,-ideal, i.e. a locally free 0,-submodule of K of rank one,
xa is also a proper o0,-ideal, and conversely, every proper o,-ideal is of the form
zo,, for some z € K ;. Let

(2.1.5) Cl,, := (the group of proper o,-ideal classes),
so that
(2.1.6) K ¢/K*0y = Cl, by x = cl(zo,), the class of zo,,.

When m > n > 0, there is a natural homomorphism Cl,, — Cl,, defined by:
cl(a) = cl(aoy), or equivalently by cl(zo,,) — cl(zo,) (z € K, ;). We then
obtain a profinite abelian group

(2.1.7) Cls = lim Cl,.

Proposition (2.1.8) Consider the homomorphism

K¢ — Clu defined by x + (cl(z0,,))n>0-

Then the kernel of this homomorphism is K*0X where
0} = H o) X Lf,
q#L

and we obtain an isomorphism:
% o~
K/ K* 05, — Cle.

Proof Since Ny,>0 (Z¢ + ¢"0y) = (the closure of Z; in 0y) = Zy, we have

mnzo/ﬁ\n = H 0g X Zy :300 and Mp>0 ,0\;; = /0\(;

q#L

The kernel in question is N, >¢ K *0,, which clearly contains K*0X. Suppose
conversely that © € K iif lies in the kernel, so that = = ¢, «,, with e, € K* and
an €07 forall n > 0. If m > n > 1, then since K* N0}, = K* No; = {£1},
we have ¢, 'e,, € {1}, and hence ¢, 'x = (g, e, )m € 0.5. This shows that
entr € N0, = 0%, and hence v € K*0X.

It remains to show the surjectivity of K /K*0% < Cly. It follows from
(2.1.6) that the image is dense in Cls, while it also follows from (2.1.6) and
the finiteness of Cl,, that the group K ;/K*0% is compact, which implies the
surjectivity. [ 7
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We hereafter denote by
i KX — K (— KAX,f)

the natural embedding (to distinguish i,(K*) from the diagonal image K* C
K-

Corollary (2.1.9) The natural homomorphism sending x € o), C K to

(cl(z0m))m>0 gives an isomorphism: o ,/Z; = Ker(Cloe — Cl,) when n > 1,
while o [ig(0™)Z, = Ker(Clo, — Cly).
Similarly if m > n, we have an isomorphism o) ,/0> , = Ker(Cl,, — Cl,)

when n > 1, and o [ig(0* )0y, , = Ker(Cl,, — Clo).

Proof We only give a proof for the first assertion. By (2.1.6) and (2.1.8), we
see that Ker(Cl,, — Cl,) is canonically isomorphic to

XX X
K>o) ~ 0, w 0¥
K*o% — (K*ok)noeg ™t

Our claim follows from this, noting that K* N0 = {+1} whenn > 1. O

2.2. Subgroup CI*® of Cl,. Hida introduced the subgroup CI*® of Cly
which plays a crucial role in the study of Zariski density of CM points; [HI,
2.3], [H3, 8.2.2]. We first recall its definition:

Definition (2.2.1) Let
KX%X := (elements of K ; whose {-component is one) C K ;.
We denote by CI*® the image of KX%X under the homomorphism defined in

(2.1.8):
CI™'® = {(cl(204))nz0 € Cloe | z € K{1°}.

Set 0(y) := 0 ®z Z(y) in the following.

Proposition (2.2.2) The homomorphism: K 2 o > x = (cl(0,))n>0 €
Cly induces an isomorphism:

0, ~ Cls
. X X - alg ”
ZZ(O(Z))ZZ Cl

13



Proof Consider the following commutative diagram:

0 —— Kl)X N(K*0%) —— KX}X — CPE 0

0 —— K*o% — Ky —— Cly ——0
| e

i(K*)2Y  ——— K —— Clo/CP® —— 0

where pr, is the projection to the ¢-factor. We obtain from this an isomorphism:

KS  ~ Cly
— .
iz(KX)Z; Clalg

Since K, = i;(K*)o,, we see that the group in the left hand side is isomorphic
to oZ/ig(o(Xe))Z;. O

Proposition (2.2.3) Let a be an element of o, . The following conditions are
equivalent:

(1) Nn>0a0, 7# {0};

(2) a€ Z'g(O(Xe))Z?,

(3) the element (cl(a0,,))n>0 € Clo belongs to CI™E.

Proof The equivalence of (2) and (3) is clear from (2.2.2).
On the other hand, we have:

ﬂnzoaon = ﬂnzo(a/o\n N K) = a(ﬂnzo/ﬂ\n) NK.
By the first remark in the proof of (2.1.8), this is equal to
o NK = Hoqxa Zo) NK = Hoqxa Zg) N
q#L q#L
One then checks easily that this set contains a non-zero element if and only if

a €iy0,)Zy . O

We next interpret this result in terms of complex elliptic curves. If C/L and
C/L’ are one-dimensional complex tori, recall that an analytic homomorphism
between them is induced by multiplication by a complex number on C:

(2.2.4) Hom(C/L,C/L') = {u € C | uL C L'}.

Lemma (2.2.5) Fizx € KAXf and a € o), and consider the complex elliptic
curves C/xo,, and C/azxo,, forn > 0.

(1) Hom(C/zo0,,, C/azo,) = ao,, for all n.

(2) When p € a0, the degree of the corresponding homomorphism of C/xo,,
to C/axoy, is Niq(p), the norm of p.

14



Proof (1) By (2.2.4), a homomorphism C/xo0,, — C/azo0,, is given by multi-
plication by p € K satisfying pxo,, C axo,. This latter condition is satisfied
if and only if (puzo,), C (az0,)q, equivalently (uno,), C (ao0y), for all rational
primes g; i.e. puo, C aoy,.

(2) Let u be a non-zero element of ao,.The degree in question is equal to:

:H‘(al’on)q :H‘Uiq
(nwon)q HOq
q q#L

and hence it is enough to show that |ao, ¢/10, ¢ = |og/poe]. Consider the
commutative diagram:

a0y ¢
HOn ¢

’axon
)

Uxoy,

d

0 Opne Oy 0@/0,17@ — 0
lailu la71u la71u
0 One Oy Og/omg — 0.

Since 04/0,, ¢ is finite, the kernel and the cokernel of the right vertical homomor-
phism have the same order; and the middle vertical homomorphism is injective.
The snake lemma then implies that |0, ¢/a™ o, | = |0¢/a" pog| = |0/ po,|. O

Proposition (2.2.6) Let the notation be as in the previous lemma. The min-
imal value of the degrees of non-zero elements of Hom(C/xo,,,C/axo,,) is inde-
pendent of x € K ;. Call this value ¢,,. If (cl(a0,))n>0 € Cls does not belong

to C1*!8 then we have ¢, — 0o as n — .

Proof The first assertion is clear from (2.2.5).

To prove the second part, take one n. Since there are only a finite number of
elements of ao,, whose norm is ¢,,, none of such elements are contained in ao,,
for m large, because Ny,>0a0,, = {0} by (2.2.3). Again by (2.2.5), this means
that ¢, > ¢, for such m. (I

Remark (2.2.7) Let the notation be as above, and assume to the contrary
that (cl(a0,))n>0 € CI™8. Then it follows from (2.2.3) that the set of values ¢,
(n > 0) is bounded. This means that the set of closed points of Y (1) ,c xcY (1) /¢
provided by the pairs (C/x0,,C/axo0,) (n > 0) is contained in a union of finite
number of modular correspondences.

2.3. CM points on modular curves and our main result. We henceforth
fix a prime number p (p # ¢), which splits in K.

Let a be a proper o,-ideal. The complex torus C/a is isomorphic to the
complex points of an elliptic curve defined over Q whose field of moduli is the
ring class field of K of conductor £". Therefore the complex point z(a),c it
determines is in fact a K-rational point x(a),c of the coarse moduli scheme
Y(1)/x. It further uniquely extends to a W-valued point x(a),y of Y (1) /.

15



This in turn gives an F-valued point z(a)/r of Y(1)r; cf (1.4.2) for these sym-
bols. These points actually depend only on the class cl(a) € Cl,. When there
is no fear of confusion, we simply write z(a) for them.

Let us take and fix an infinite increasing sequence of integers:

(2.3.1) n={0<nyg<ng <---}

For each n;, we set

(2.3.2) R, := Ker(Cl,; — Cly,).

We consider the set of R-valued points of Y'(1) % defined by:
(2.3.3) £(L;n) /= {x(a)/z | cl(a) € R, for some n; € n}

where R denotes one of C, IC, W or F.

Our main concern is such points in characteristic p, and we will consider
§(1;n)/r also as a set of closed points of Y (1),r below. To state the fol-
lowing theorem, we fix an irreducible component of Y ®)(c0) s which we call
Y(p)(oo)(/)]F = @p{N Y(N)%F (cf. (1.4.4)). For a positive integer m, we indi-
cate by the superscript m the m-fold fibre product over the base scheme under
consideration.

The following theorem had been announced by Hida, in a slightly different
formulation; cf. [H3, Proposition 8.28], [H1, Proposition 2.8] in a much more
general situation treating Hilbert modular varieties:

Theorem (2.3.4) Let the notation be as above. Take and fix 61, ,0m €
Ker(Cly, — Cl,,,) whose classes in Clo, /CI™¢ are all distinct, and choose a; €
K[, satisfying 0; = (cl(@0,))n>0 (cf. (2.1.8)) for 1 <i < m. We consider the
following set of closed points of (Y (1)m)™ :

E(Ln)r =E1)F = {(z(aa),- - x(ama)) € (Y (1)p)™ [ 2(a) € £(1;0) ¢}
Let M be a positive integer prime to p (resp. M = oo). Let A(M) be a
set of closed points of (Y(M)(/)F)m (resp. (Y(p)(oo)%)m) which maps surjec-
tively onto =(1;n) /p via the natural morphism: (Y(M)?F)m — (Y(1))™ (resp.
(Y(p)(oo)(/)F)m — (Y(1),r)™). Then A(M) is a Zariski dense subset of (Y(M)(/)]F)m
(resp. (YP)(00)05)™).

Note that the set Z(1;n)/r of course depends on §; but not on the choice of
a; (1 <i<m).

Remark (2.3.5) (1) The conclusion of the theorem above for one M and one
choice of A(M) implies the whole theorem: This follows from (A.1.4) in the
appendix. One example is the case where M = oo and A(oo) is obtained by
choosing exactly one point in the inverse image of each point of Z(1;n)/p. This
is the case considered by Hida (under a suitable choice of points). Another
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extreme case is A(1) = Z(1;n)/r: Theorem (2.3.4) is equivalent to the Zariski
density of Z(1;n)/r in (Y(1)/)™.

(2) It follows from this that the validity of (2.3.4) is independent of the choice
of an irreducible component Y(”)(oo)%.

(3) The map which sends cl(a) to z(a)/r induces an injection [[; Rn; —
Y'(1)g. This is well-known for similar maps defined over C or K. The charac-
teristic p result follows from this because (p splits in K, and hence) the elliptic
curve E(a)yy giving z(a) y (see 2.4. below) is the canonical lifting of E(a) /r
giving z(a)/r. Especially, the set £(1;n)p is infinite, and (2.3.4) obviously holds
when m = 1.

In Section 4, we will describe a proof of (2.3.4), via an argument using certain
(“admissible”) CM points on a subcover of Y(p)(oo)(/)F/Y(l)/F.

2.4. Admissible CM points. If a is a lattice in K, we have canonical
isomorphisms for the complex torus C/a:
(2.4.1) C/a[M] = $7a/a = a/Ma for positive integers M,

- TP)(C/a) 2 aP) = a®y Z™.
Here, we are using the notation as in (1.2.2) and (1.2.4) (and the remark after
it). We will identify the groups in each isomorphism in the following. Thus
providing C/a with a T'(M)-structure (resp. a I'P)(oco)-structure) is just to

give an isomorphism Z/MZ x Z/MZ = a/Ma (resp. 7P x 7,(P) 5 a?)).
In the following, we consider I'(P) (c0)-structures with P = {p,£}. We put

i Y,
(2.4.2) {ngf )= K @ A,

ol = 0, @ 20 =50,

Thus ng ;é)x is the restricted direct product of K with respect to oy for
q # p,{; and we will often identify it with the subgroup of K Ax’f consisting of
elements whose p- and f-components are one. We also take and fix a Z-basis
w = {wy,ws} of 0 on which the following constructions depend.

For v € K¢, let us denote by

,y(p,f) =

)x 500 g

its projection to Képf . Now for any n > 0, w gives a 79 basis of oY

we can define

(2.4.3) tioo 0 (00: 1) : ZPO x Z®:D Z 588 = T@O(C/o,) by (s,t) > swy +tws.

When a is a proper o,,-ideal, take v € K, such that a = yo,,. We define

~

(244)  qooc(wy) : Z0H x Ze:0 Z G0 = 7@ (C/q)

by composing ae ¢ (0,;1) and T®9(C/o,,) = G 7 Gl = T0) (C/a).
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Definition (2.4.5) Let the notation be as above. We denote by z(a; ') /¢ the
C-valued point of Y9 (c0) ¢ determined by (the isomorphism class of) the
pair (C/a, aoo,c(a;7)).

We next return to the situation of 1.4. It is known that there is an elliptic
curve F(a),x defined over K such that E(a)/c(C) = C/a, having good reduc-
tion, i.e. it extends (uniquely) to an elliptic curve E(a)  over W; cf. Serre and
Tate [ST, Theorems 8 and 9]. Since W is strictly local, all points of E(a),x[M]
are K-rational, and they extend to sections of E(a)/ over W, for all positive
integers M prime to p. Especially, the model E(a)/x of C/a over K having
this good reduction property is unique up to isomorphisms. Further, any I'(N)-
structure (p { N) or I'®4) (co)-structure on C/a are defined over K (resp. over
W) for this model E(a)/x (resp. E(a),y). We can therefore make the following

Definition (2.4.6) Let the notation be as above. The point x(a;v’),c is in
fact a KC-rational point of Y (7 (c0) sk which we denote by x(a;7") k. It uniquely
extends to a W-valued point z(a;7’) yy of Y P9 (c0) /yy. This then defines an
F-rational point 2(a;’) /r of the closed fibre Y9 (c0) /p.

Points obtained in this manner will be called admissible CM points on
Y 79 (00) /. We set

fadm(oo;@)/n = A{z(a;7")/r | a =0,,,cl(a) € Ry, for some n; € n,}
for R=C, K, WorF.

In the following, we list basic properties of admisible CM points. First we
have:

Lemma (2.4.7) For any a € K*, we have
z(ag; (a7))/r = 2(a;7) /%
forR=C, I, W orF.

Proof From the construction of our CM points, it is enough to prove the
assertion for the C-valued points; i.e. that

(C/aa, as c(ag; (a7)')) = (C/a, aoo c(a;7))-

Multiplication by a on C induces an isomorphism C/a = C/aa, and it is easy
to see that this isomorphism indeed carries aoo,c(a;7') to aeo,claa; (ay)). O

Next we consider a representation of K* into GL2(Q):

Definition (2.4.8) We denote by

p: K* = GLy(Q)
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the regular representation with respect to the basis w. Thus the following dia-
gram commutes for all b € K* :

Q2;>K

p(b)l lxb

~

@ — K
where the two horizontal arrows are given by (s,t) — swy + tws.

We may consider this p as a homomorphism of algebraic groups over Q
(K*(R) = (K ®qg R)* for Q-algebras R), and we have:

det op = Nk q,
ploNK*) C GLy(Q) N M(Z),
(24.9) plog NKJ) C GLQ/(\Qq) N My(Z,) for all primes g,
p(8@HX)) C GLy(ZPD),
p(KXf’-e)X)) c GLQ(A?”’Z)), and so on.

Proposition (2.4.10) Let &' be an element of Kg}@x. Then the action of

p(d') € GLQ(A?”E)) on Y ®(c0)  studied in 1.3 sends z(a;7') /. to x(6'a;6'Y') /.-
Especially, the set of admissible CM points on Y(P’Z)(oo)/R is stable under the
action of p(Kxge)X). Here, as before, R=C, K, W orF.

Proof Again, it is enough to prove the assertion when R = C.

Set g := p(¢’). Replacing §’ by (1/N)d’ with a suitable positive integer N, we
may assume that 6’71 € Kf&pgz)x No®Y so that g~' € GLQ(AEP"Z)) N My (ZP0),
The image of (C/a, aso.c(a;7')) under the action of g was explicitly described
in 1.3: The group(scheme) K, defined in (1.3.5) in the present case is the
(genuine) finite subgroup ¢’a/a of C/a, in view of the definition (2.4.8). The
target elliptic curve denoted by E’ is thus C/§’a. The level structure denoted
by a2 in (1.3.6) is then aeo,c(6'a;8’y'), again by (2.4.8). This proves the first
assertion, and the remaining one is clear from this. O

In the following corollary, we set 0, (p¢) = 0, ®z Z(pey (cf. (1.2.3) for
the symbol Z, (), and use i, : K* — K < Kgﬁf as well as previously
defined i, : K* — K, < K ;. Thus, via the natural decomposition K, ; =

Kg}z)x x KX x K, c € K* decomposes as ¢ = (¢, iy(c), i¢(c)).

Corollary (2.4.11) Let the terminology be as above, and take ¢ € U(Xp 0 Then

the action of p(c') € GLQ(A?’K)) sends z(a;7')/r to z(ig(cHa;y) .

If ¢ belongs to o° (p,p) @nd a is a proper o, -ideal, p(c') fives x(a;7") /R
X

If ¢ belongs to 00, (pot

stable.

), whereng is as in (2.3.1), then p(c) leaves &> (o0; 1) /%
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Proof By (2.4.10) and (2.4.7), we have
p(c)(@(w9")r) = 2(da;cy) r = 2(ip(c) ie(0) " a;) m-

Since ¢ € o(xpﬁe), ip(c) belongs to o, (= o,,, for all m > 0), and hence we have
ip(c)"'a = a, which proves the first assertion. The second (resp. the third)
assertion follows from this since ig(c) 'a = a (resp. cl(i¢(c) 'a) € Ry, when

cl(a) € Ry,;; cf. (2.3.2)) in the case under consideration. [J

We next consider the determinant of the level structures considered above:
Proposition (2.4.12) Let

det(aoo,c(0;1)) =: (o0 = (CN,0)p,aan € M (@)

be the determinant of aso c(0;1) defined by (1.2.7). Then we have:
(1) det(ane,c(on; 1) = L5 = (Vo Jpan € u&LPM(@) for alln > 0.

(2) If a =70, with ' € K}(&@)X, we have:
det(aoo,c(a; ’}/)) = det(aw7c(on; 1))NK/@('Y,)O7

where N jg(7')o € Z®:0% is the projection of Ngo(y') € Agp’é)x to ZPOx by
the decomposition (1.3.9).

Proof There is a natural (quotient) homomorphism: = : C/o,, — C/o0 whose
degree is ¢™. For a positive integer N prime to ¢, and the I'(N)-structure
an :Z/NZXZ/NZ > (s,t) — (swy +twz)/N € C/0,[N], the composite moay
also sends (s,t) to (swy + twy)/N € C/o[N]. On the other hand, it is easy to
see that det(m o ay) = det(ay)’", from which the fist assertion follows.

The second assertion follows from (1.3.10), (2.4.10) and the first relation in
(2.4.9). O

One can actually show that (y o = e2mi/N for all N if Im(wy/wy) > 0; but
we will not need this fact. We also note that the action of p(¢’) (¢ € o(xpz))

leaves every irreducible component of Y 7)(c0) % stable by (1.3.10), because
Ni () € Q9.

Finally, we take the irreducible component Y (7:¢) (oo)?R containing (0,5 1) /=
1/em0

(S

Thus Y(p’e)(oo)(/)R = Y(”’Z)(oo)/72 in the notation of (1.4.4).

Proposition (2.4.13) Set fadm(oo;@)%a = &M (005 n) /R ﬂY(PI)(oo)?R(R).

Ifalln; € n (j > 0) have the same parity, the natural morphism Y(p’z)(oo)(}R(’R) —
Y(1)/=(R) maps fadm(oo;@)9R surjectively onto £(1;n) /% .
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Proof It is enough to show that, for each cl(a) € Ry, (j > 0), we can choose
a® = 7oy, satisfying cl(a®) = cl(a) and det(aeo,c(a®;7")) = det(qoo,c(0n,;1))-

First recall that there is an ¢ € o,; , such that cl(a) = cl(co,,;) by (2.1.9).
We can take d € K* in such a way that i,(d)e € U:M and iy(d) € o;. Set
71 := de. Then ay := v10,, = 71'0p,, and 7] satisfies N ,g(71) = Nk g(d) €
Qf’z)x in the decomposition (1.3.9). This shows that cl(a;) = cl(a), and
det(aoo,c(a1,71)) = det(aso,c(on,;1)) by (2.4.12), (2).

Now set v = £(%i—"0)/24, and a° := Y'0n,;. The element ¢’ € Kxgé)x

belongs to ZPHO* C Eﬁfi’e)x, and hence a®° = a;. Also since Ng/g(v)o =

¢(ni=no) ¢ 7% we have det(aoo,c(a°;7")) = det(aoo,c(0ny; 1)) by (2.4.12),
as desired. [

83. Finiteness of irreducible components in projective limits.

3.1. Preliminaries on Galois representations. Throughout this section,
we fix a prime number p. In 3.1-3.4, we use the following notation:

(3.1.1)
P: a power of p,

ko : a finite field with P elements,

k: an algebraic closure of kg,

L:=1Ly-k,

L := (a separable closure of L) = (a separable closure of L),
G = Gal(L/L),

G, := Gal(L/Ly).

We have a canonical isomorphism: Gp,/Gr = Gal(k/ko) = (Fp)top, the latter
group being the procyclic group topologically generated by the P-th power
Frobenius automorpism F'p, which is isomorphic to Z.

Let E be an elliptic curve over Ly. For each prime number [ # p, we have
the usual l-adic representation

(3.1.2) pr: Gr, = GL(TI(E)) = GLo(Z)

whose restriction to G, has the image in SL(T;(FE)) & SLy(Z;). We denote by
(P)top,i the subgroup of Z; topologically generated by P and set

(813)  GLP(T(E)) = {g € GL(T(E)) | detg € (Popi}-

In the following, we often write T} for T;(E) when the reference to F is obvious.
We have the commutative diagram:
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l1—— G, —— G, —— (Fp)top —— 1

51t |- |- e

1 —— SL(T})) —— GLPN(Ty) —o Plops —— L.

We then consider these representations simultaneously: Let
TW(E) =] Tu(E)
l#p

be the module already defined in (1.2.4) (considered as the “physical” Tate
module), which will also be abbreviated as T®) and consider the representation

(3.1.5) poo = [[ P11 G, = GL(T®W) 2 GLy(Z™)
l#p

which sends G, to SL(T®)) = SLy(Z®)).
If we denote by (P)iop the subgroup of ZP)* topologically generated by P,
we have the following commutative diagram:

1 —— G, — Gr, — (Fp)top — 1

510 |-~ |- Jerr

1 —— SL(T®) —— GLPNT®)) —— (P)yypy — 1

det
where this time we have set
(3.1.7) GLIPNTW®)Y = {g € GL(T®) | det g € (P)top}-

Next, we consider similar representations for a family of elliptic curves: We
assume that we are given m elliptic curves Ey,--- , Fy,, over Lo (m > 1), and
consider
(3.1.8) pri: Gro = GLPN(Ty;) with Ty, = Ty(E;),

o Poo,i - GLU — GL<P> (i(p)) with ﬁ(p) = T\(p)(Ez),
as in (3.1.2) (I # p) and (3.1.5) for 1 <i < m. Put
(3.1.9)

Al°° = {(gla te agm) € Hgl GL(CTZ,Z) ‘ detgl == detgm € <P>top,l}7

Ao = {(g1,-+ . gm) € [T2) GL(T{) | det gy = -+ = det g € (P)uop}.
We can then define representations
(3.1.10)

1/)100 = H:il Pl,i * GLO — Aloo which satisfies 1,/}100 (GL) Q H:il SL(Tl,l)
oo = [T poci : Gy — Ase Which satisfies oo (G1) C [T, SL(TP).

K2
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Lemma (3.1.11) Let the notation be as above.
(1) 1= (G1r,) is open in Aj= if 1 (Gr) is open in [~ SL(T};).
(2) Yoo (GL,) is open in Ao if and only if Yoo (G1) is open in [[;~, SL(ﬁ(p)).

Proof In the second case, we have the following commutative diagram:

1 —— G, GLO <Fp>t0p — 1
L —— I, SLT") Ase = (Prop — 1
et
where the lower right “det” sends (g1, -+ ,9m) € As to the common value

det g;. Since the right vertical map is surjective, the cokernel of the middle
vertical map is finite if the cokernel of the left vertical map is finite, which
proves the “if” part, and the same proof works for the part (1).

In the present second case, we moreover have that the right vertical map is
an isomorphism, and hence the “only if” part follows. [

3.2. Function field analogue of a theorem of Serre. In [Se3], Serre
proved his celebrated open image theorem for elliptic curves without complex
multiplication over number fields. Based on this, he extended such a result to
a product of two elliptic curves [Se3, Théoreme 6]. The purpose of subsections
3.2-3.3 is to show the function field analogue of this latter result. We thus work
under the situation considered in 3.1; and in 3.2 and 3.3, we further assume
that dimyg, Lo = 1, i.e. Lo s an algebraic function field of one variable over k.
Our result is based on the following theorem of Igusa:

Theorem (3.2.1) (cf. [I, Section 5, Theorem 3|) Let the notation and the
assumption be as above, and let E' be an elliptic curve over Lo whose j-invariant
is transcendental over ky. Then poo(GL) is an open subgroup of SL(TP)(E)),
and peo(Gyr,) is an open subgroup of GLP)(T®)(E)).

Igusa in fact proved that, if Ly = Fp(j) is a rational function field over
the prime field, and F is an elliptic curve over Lo of the absolute invariant j,
then poo(Gr) = SL(T®(E)) and pso(Gr,) = GLP)(T®W)(E)). The extension
of F,(j) corresponding to p is the quadratic extension of the subfield corre-
sponding to {+1} ¢ SL(T®(E)), which is nothing other than the function field
of an irreducible component of Y (?)(c0) /.

It is therefore natural to expect the following result for the case m = 2:

Theorem (3.2.2) Let the notation and the assumption be as above, and let
Ey and E5 be elliptic curves over Lg satisfying the following conditions:

i) The j-invariants of E1 and Ey are transcendental over ky.

il) By and Ey are not isogenous over any extension field of Lg.

Then oo (GL) is an open subgroup ofSL(fl(p)) xSL(fQ(p)); and hence Yoo (Gr,)
is an open subgroup of A also.

23



Here are some remarks about the assumption ii) (cf. the remarks after the
corollaries of [Se3, Théoréme 6]). First we note the following (presumably well-
known)

Lemma (3.2.3) In general, let Hy be a group and H its normal subgroup.
Suppose we are given two representations

pi t Hy— GL(V;), i = 1,2,

over n-dimensional vector spaces over a field F of characteristic zero. Assume:

1) the restrictions p1 |g and pa |g to H are equivalent,

2) pi | as representations on V; @ F are irreducible (i = 1,2), F being an
algebraic closure of F'.

3) det p; = det po.

Then there is a homomorphism e : Hy/H — u,,(F) := (the group of n-roots
of unity in F*) such that p1 and py are equivalent on the subgroup Ker(e) of
H,.

Proof By the assumption 1), there is an isomorphism ¢ : V; = Vi of vector
spaces over F' such that t o p;(7) = pa(7) ot for all 7 € H. Take and fix an
element o0 € Hy. We have an isomorphism

Uy = pa(o)otopi (o)™t : V) S Vs,
For any 7 € H, we obtain from the relation t o p; (0 ~170) = pa(c7170) ot that
g 0p1(7) = p2(7)ou, and hence u, is an isomorphism of H-modules. Therefore
by the assumption 2), we have: u,ot~! = (multiplication by a scalar ¢, € F*).
We easily see that o — ¢, gives a homomorphism Hy — F*, which we call ¢.
Since ¢, = p2(0) o (topi(c) ot™1)~L we see from 3) that ¢? = 1. Since u, =t
when 7 € H, we see that ¢, = 1 and ¢ factors as:

e:Hy— Hy/H — p, (F) C F*.
Finally, for any o € Ker(e), we have u, =t; i.e. topi(o) = pa(o)ot. O

We now return to the situation of (3.2.2).

Proposition (3.2.4) Let Ey and Es be elliptic curves over Lg satisfying the
condition 1) in (3.2.2), and let | be a prime number different from p. Then the
following four conditions are equivalent.

1) E1 and Ey are isogenous over some extension field of Lo,

2) Ey and Es are isogenous over some finite separable extension field of Ly,

3) There is a finite separable extension L{, of Lo such that the representations
pi.1 on T @z, Q and pr o on Ti o ®z, Q; of Gal(L/L}) are equivalent,

4) There is a finite separable extension L' of L such that the representations
pr1 on T 1 ®z, Qp and p12 on Ty2 ®z, Q, of Gal(L/L') are equivalent.
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Proof The equivalence of 1) and 2) are well-known, and the implications 2) =
3) = 4) are clear.

4) = 3): Let L' be as in 4). There is a finite separable extension L{, of Ly
such that L{ -k = L. Then apply the previous lemma to Ho = Gal(L/Lj) and
H = Gal(L/L").

The remaining (hardest) implication 3) = 2) is a consequence of a theorem
of Zarhin who proved a conjecture of Tate for abelian varieties over function
fields in positive characteristic; cf. [Z]. O

3.3. Proof of (3.2.2). In this subsection, we prove Theorem (3.2.2) following
Serre. The method is the same as in his paper. In the following, we write E for
E,, p; for the representation (3.1.2) for E on T;(F) = T}, etc.; and we write E’
for F5, and express the corresponding objects for £/ by putting a prime symbol:
pp, T], etc. We will always assume i) and ii) in (3.2.2).

Lemma (3.3.1) (cf. [Se3, Lemme 7]) For any prime number 1 # p, the image
of the l-adic representation

p % py: G — SL(T;) x SL(T})
1S open.
Proof (p; x p})(Gyr) is an l-adic Lie subgroup of SL(T}) x SL(T}). Let

g = Lie((pr x p1)(GL)) € by == sl(V) @ sl(V) = slo(Qr) © sl2(Q1)

be their Lie algebras, where V; := T} ®z, Q; and V] := T} ®z, Q;. We want to
show that g; = b;.

By (3.2.1), the two projections from g; to sl(V;) and sl(V}) are surjective.
Since slo(Qy) is simple, if g; # h;, we must have that g; is a graph of a Lie
algebra isomorphism « : sl(V;) = sl(V/). Then as in [Se3], there is a Q;-linear
isomorphism f : V; = V/ such that a(u) = fouo f~1 for all u € sl(V}). It follows
that there is an open subgroup U of (p; x p})(Gr) such that f is a U-module
isomorphism. Thus if L’ is the subfield of L corresponding to U, p; and p] are
isomorphic on Gal(L/L’), which contradicts our assumption ii) in (3.2.2), by
(3.24). O

Our next purpose is to show Lemma (3.3.3) below. To do this, for a prime
number [ different from p, we define

E, == E[I|(L),
p1: Gr, = GLP/(Ey) == {g € GL(E) | det g € (P) C (Z/IZ)*},

and also E], ¢j for E’ similarly; and consider

G, — A ={(9,9") € GL(E)) x GL(E]) | det(g) = det(g") € (P)},
through the natural action of the Galois group. By the assumption (3.2.2), i),
¢; and ] are surjective for almost all I, by (3.2.1).
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Lemma (3.3.2) (cf. [Se3, Lemme 8]) Let [(# p) be a prime number > 5 such
that:
@1 and @) are surjective, but 1, is not surjective.

Then there is a continuous homomorphism ¢; : Gr, — {£1} and an isomor-
phism f : E; — E] satisfying:

fopi(s) =c¢i(s)opy(s)o f forall s € Gp,.

Further, ; is unramified at every prime of Lo/ko at which E and E' have
good reduction.

Proof Put B :=GL")/(E), B := GL'")(E]), A= A; and H := ¢y(Gr,) so
that H C A C B x B’, and the projections from H to B and B’ are surjective.
Identifying B with the subgroup B x {1} of B x B’, we set N := BN H. Thus N
is a normal subgroup of B contained in SL(E;). As is well-known, PSL(E;) :=
SL(E;)/{£1} is a noncommutative simple group when [ > 5, and no proper
subgroup of SL(E;) maps surjectively onto PSL(E;) (cf. [Se2, IV-23, Lemmas
1 and 2]). Therefore N must be one of SL(E;), {£1} or {1}. The same holds
for N' := B'NH. Now by “Goursat’s lemma” (cf. Ribet [R, Lemma (3.2)]), the
image of H in B/N x B’/N’ is the graph of an isomorphism o : B/N = B’/N’.
If N = SL(E;), then H O SL(E;) x {1} and hence H D SL(E;) x SL(E])
which implies that H = A, contradicting our assumption. We therefore have
N C {£1} and N’ C {£1}, and N and N’ have the same order since so are
B/N and B'/N’.

On the other hand, it is clear that C' := GL{") (E))NF)* (F; = Z/IZ, identified
with the scalar multiplication endomorphisms) is the center of GL{P) (E}), and it
is easy to see that C'/{£1} is the center of GL'")(FE;)/{£}; and the same holds
for C' := GLP)(E]) N F). Therefor a induces an isomorphism C/{+1} =
C'/{#1}, and whence an isomorphism & : B/C = B’/C’. The image of B/C
in PGL(E;) := GL(E;)/F) is either PSL(E;) or PGL(E;) because the index
of PSL(E;) in PGL(E;) is two; and the image of B’/C’" in PGL(E]) is either
PSL(E]) or PGL(E]) accordingly. But it is known that any automorphism
of PGLy(F;) is inner, and any automorphism of PSLy(F;) is obtained by the
restriction of such an automorphism on PGLs(F;) (cf. [R, Proposition (3.7)]).
We conclude that there is an isomorphism f : E; = EJ such that a(u) =
fouo f~tforall u € B/C. Take h = (u,u’) € H. It follows from the above
that v/ = e(h)f ouo f~! with e(h) € F). Taking the determinants, we see
that e(h)? = 1. Thus e gives a map H — {£1}, which is easily seen to be a

homomorphism. If we denote by ¢; the composite of Gy, Yoo {£1}, we
have ¢)(s) = ;(s) fogi(s)o f~1 for all s € Gf,,, which proves the first assertion.

Finally, ¢; and ] are unramified at every prime of Lo/ko at which E and
E’ have good reduction; and hence so is ;. [

We use this lemma to prove:

Lemma (3.3.3) (cf. [Se3, Lemme 9]) We have ¢;(Gr,) = A; for almost all
prime numbers [.
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Proof Assume otherwise. Then there is an infinite set £ of prime numbers
Il > 5 (I # p), such that both ¢; and ¢ are surjective but ¢, is not. For
such an I, the previous lemma provides us with a character ¢; : G, — {£1}
satisfying the unramifiedness condition stated there. It follows that the set of
such characters is finite; and hence replacing £ by its infinite subset, we may
assume that ¢; is common to all [ € £, which we denote by €. Thus if we denote
by Fy the extension of Ly corresponding to Ker(e) ([Fy : Lo] < 2), E; and E|
are isomorphic as modules over G, := Gal(L/Fp) for all | € L.

It follows that for any prime v of Fy at which E and E’ have good reduction,
the traces of the Frobenius endomorphisms ¢,(E) on E and t,(E’) on E’ are
congruent modulo [ for all [ € £. Therefore we have ¢,(E) = t,(E’). Since
two representations of Gg,, p; on V; and p; on V/ are simple, Cebotarev density
theorem (cf. Weil [W, Chapter XIII, § 12, Theorem 12]) implies that these
two representations are equivalent for any [ # p. This again contradicts our
assumption (3.2.2), ii). O

Recall that we have the representation ¥, defined by (3.1.10), which in the
present case gives us 1o, : Gr, = Aoe € GL(T®) x GL(T®)), and it induces
Gp — SL(T®) x SL(T®)). Set

GL = 1 (GL),
Hy = (SL(Th) x SL(T})) N G,

for each prime number [ # p, where we consider SL(T;) x SL(T]) as the direct

factor of SL(T®) x SL(T®)). Note that H; is a normal subgroup of ¥so (G, ),
and that we have an exact sequence:

1= H — G, — [ (SL(Ty) x SL(T})).
U#lp

Lemma (3.3.4) (cf.[Se2, ChapterIV, 3.4, Lemmab]) Two projections Hy — SL(T;)
and H; — SL(T)]) are surjections for almost all prime numbers .

Proof We recall that, via the projections, C~¥L maps surjectively onto SL(T})
and SL(T]) for almost all I, by (3.2.1). We only consider such [ > 5 in the
following.

In general, for a profinite group Y, denote by Occ(Y") the set of isomorphism
classes of finite noncommutative simple groups that “occur” in Y i.e. those
isomorphic to Y;/Y, for suitable closed subgroups Y; and Ys of YV with Y3
normal in Y;. See [Se2, Chapter IV, 3.4] for basic properties of this assignment.
Especially, from the above exact sequence, we have:

Occ(Gr/Hy) C Up s pOce(SL(Ty) x SL(T})).
Consider the composite of homomorphisms:

H; < G — SL(T}) - PSL(E)).
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The image of H; is a normal subgroup of the simple group PSL(E;). If this is
trivial, then we have that (the isomorphism class of) PSL(E;) = PSLy(F;) €
Occ(Gr,/H,). It follows from the above relation that this belongs to Occ(S Ly (Zy))
for some prime [’ # [, p, which is impossible. We conclude that H; maps surjec-
tively onto PSL(E;), which implies that H; — SL(T}) is also surjective by loc.
cit. Lemmas 2 and 3; and similarly for H; — SL(T}). O

Corollary (3.3.5) (cf. [Se3, Lemme 11]) The group H; coincides with the
direct factor SL(T}) x SL(T}) of SL(T®) x SL(T®) for almost all I.

Proof It is enough to show that H; C SL(T;) x SL(T]) maps surjectively onto
SL(E;) x SL(E}) for almost all I by [Se3 , Lemme 10]. For this, we may assume
that [ > 5.

Let H; be the image of H; in SL(E;) x SL(E]). We know that H, is a normal
subgroup of ¥;(Gr,) and that ¢;(Gr,) = A; for almost all I by (3.3.3). We
conclude from this and (3.3.4) that H, is a normal subgroup of SL(E;) x SL(E])
which projects to two direct factors surjectively, for almost all [. That such a
subgroup must coincide with SL(E;) x SL(E]) follows from the argument as in
the proof of (3.3.2): Set N := H;NSL(E;) and N' := H;NSL(E]). “Goursat’s
lemma” implies that H; gives the graph of an isomorphism: SL(E;)/N =
SL(E])/N'. If N = SL(E;) or N' = SL(E]), we are done. Otherwise, N
and N’ are both trivial, or both equal to {£1}, in which cases we easily get
contradiction from the normality of H;. O

We can now proceed to prove Theorem (3.2.2). By (3.3.5), there is a finite
set S of prime numbers (S # p) such that ¢ (GL) = G contains the direct
factor G’y := ngsvl;ép(SL(Tl) X SL(@’)) of SL(TW) x SL(T®)). Therefore,
if we denote by G's the projection of G to [[,c4(SL(T;) x SL(T})), we have a

direct product decomposition G = Gg x G.

Lemma (3.3.6) (cf. [Se2, Chapter IV, 3.4, Lemma 4]) Gg is an open subgroup
of [T1es(SL(Ti) x SL(T})).

Proof SL(T;) x SL(T}]) contains an open pro-l subgroup N; (product of con-
gruence subgroups). It is thus enough to show that GsN[];c g Vi =: G% is open
in [[,cg Ni. But then G is a pronilpotent group and hence it is a product of

[-Sylow subgroups égl contained in N;. Lemma (3.3.1) assures us that éosz is
open in N;, which completes the proof. [

This completes the proof of Theorem (3.2.2).

Question: Is it possible to give a simpler proof of (3.2.2) using the geometry
of modular curves?

3.4. Generalization via a lemma of Ribet. Ribet [R, Theorem (3.5)]
generalized Serre’s theorem for products of more than two elliptic curves over
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number fields. It was a consequence of a group theoretical lemma. We recall its
special case in the form convenient for our purpose:

Lemma (3.4.1) (cf. [R, Lemma (3.4)]) Suppose that we are given profinite
groups S; (1 < i <t ;t>2) such that S; = HleP,- SLo(Zy) with a set P; of
prime numbers for each i, and let S = &1 X - -+ x S be their product. Let G be
a closed subgroup of S which projects to an open subgroup of S; x S; for each
pair (i,7) (i # j). Then G is an open subgroup of S.

We now return to the general situation considered in 3.1: We let the fields
L/Lgy/ko etc. be as in (3.1.1) for which we no longer assume that dimg, Lo = 1,
and let Fy,---, E,, be elliptic curves over Ly. We can then consider Galois
representation 1., defined in (3.1.10).

Theorem (3.4.2) The notation being as above, assume that:

i) The j-invariants of E; are transcendental over ko for 1 <i < m.

ii) E; and E; are not isogenous over any extension field of Lo for1 <i,j <m
(i # 7).

Then oo (GL,) is an open subgroup of Aso, and VYoo (GL) is an open subgroup
of T2y SLT®(E,)).

Proof First note that it suffices to prove the second assertion by (3.1.11).
When m = 1 the claim follows easily from (3.2.1), and hence we assume that
m > 2. Then for any pair (7, ) as above, the representation ¢, of G, followed
by the projection

W) G — SLTW/(E,)) x SLTW(E;))

is of course the representation attached to two elliptic curves E; and E; over Lg.
Therefore by Ribet’s lemma (3.4.1), to prove (3.4.2), it enough to prove it for
m = 2. Namely we need to prove (3.2.2) without assuming that dimy, Lo = 1.

So we consider E; and Fs over general L satisfying i) and ii). Fix a positive
integer Ny > 3 prime to p and a primitive Np-th root of unity (n, € k. Re-
placing Lg by a finite separable extension if necessary, we may assume from the
beginning that F4[Ng] and E3[Np] are constant over Ly (and hence (y, belongs
to ko). We fix a I'(Np)-structure of determinant (y, on each E; in the following.

These data define morphisms 7; : Spec(Lg) — Y(No)ﬁzz) =: Y to the moduli
scheme Y classifying elliptic curves with a I'(Np)-structure of determinant (y,
over kg-schemes, so that F; is the pullback by 7; of the universal elliptic curve
on Y. Let n: Spec(Lg) — Y X, Y be the morphism corresponding to 7; and
n2-

Y is an affine scheme, and we denote by A its coordinate ring. Therefore
7 defines a ring homomorphism Ly < A ®k, A. Let p be its kernel. By our
assumption i), p is a non-maximal prime ideal. If the height of p is one, the
quotient field Fy of (A ®k, A)/p is a function field over ko of one variable,
and E; are obtained from elliptic curves E; o over Fy satisfying i) and ii) by
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base extension to Lg. Since Lg is a finitely generated extension of Fy, Theorem
(3.2.2) for E; ¢ over Fy implies Theorem (3.4.2) for E; over Ly. In the remaining
case where p = (0), it is clear that (3.4.2) holds for two elliptic curves over
the quotient field of A ®y, A obtained from the universal curve on Y via two
projections Y X3, ¥ =2 Y, and hence (3.4.2) is also true in this case. This
completes the proof of (3.4.2). O

3.5. Torsors defined by elliptic curves. For a positive integer N, a Z[1/N]-
scheme S, and an elliptic curve E over S, we consider the S-scheme

(3.5.1) IN(E/S) := Isomg.gp(Z/NZ x Z/NZ, E[N))

which represents the functor (Schemes/S)> T — (the set of I'(IV)-structures on
Er = E xgT) (cf. (1.1.1)). It is therefore the S-scheme denoted [I'(N)]g,s
(with P = [I(NV)]) in [KM, (4.2), (4.6)], and is a GLy(Z/NZ)-torsor over S with
respect to the right action (1.1.4). (Cf. [SGA 1, V, Section 2] for basic facts
about torsors under a finite group G, where the terminology “principal coverings
of Galois group G” is used.) Clearly, its formation commutes with base changes:

(3.5.2) IN(E/S) xs T = In(E7/T) for any S-scheme T,
and when M is a positive divisor of IV, there is a natural S-morphism

defined by the correspondence ay +— aps (1.1.8).

There is a natural S-morphism Iy (E/S) — /,L‘I’\;}rg = 2™ x5 S given by
ay — det(ay) (cf. (1.1.2) and (1.1.3) for notation). Assume that S is a
Z[1/N, uy]-scheme, iy being the group of N-th roots of unity in Q. Also take
and fix (y € /f]’\;im(@). This determines a section S — /J,I]’Vr;gl corresponding to
the ring homomorphism Z[X]/(Pn (X)) — T'(S, Og) given by X — (n. Then
via the base change by this morphism, we obtain

N) «— .
(3.5.4) In(E/S)) .= In(E/S) X i S.
This S-scheme classifies I'(IV)-structures of determinant (x on Ey for S-schemes
T. It is an SLo(Z/NZ)-torsor over S by (1.1.5).

We keep the assumption that S is a Z[1/N, un]-scheme. Assume that we are
given a positive divisor Ny of N, and let (n, = ]I\\,//N”. Then (3.5.3) induces an
S-morphism In(E/S)¥) — Iy, (E/S)¢~) “(an of determinant () +— (an,
of determinant (n,)”; cf. (1.1.9). We further assume that we are given ay, €
In,(E/S)No)(8S), a section of Iy, (E/S)(¢N) over S. We then form the fibre
product:

(3.5.5) IN(E/S)Y) |q = In(E/S)N) X 1o (B/8) €800
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the inverse image of ay,. Thus if we set
(3.5.6) SLy(Z/NZ; Ny) :={g € SL2(Z/NZ) | g =1 (mod Np)},

In(E/S)€w) lan, 18 an SLa(Z/NZ; No)-torsor over S, because In(E/S)N) is
an SLy(Z/NZ; Ny)-torsor over In,(E/S)o). Using these terminologies, we
have the following rather tautological

Lemma (3.5.7) Assume that No > 3, and let (€,a) be the universal el-
liptic curve with T'(No)-structure over Y(NO)(/%VD), where R = Z[1/N, un] for

simplicity. Then we have a canonical isomorphism over R:

(Cng) ~
In(E/Y (No) 5 ) ) [y = ¥ (N) Y.

If M is anther positive divisor of N divisible by Ny and (pp = Cﬁ/M, the above
defined isomorphisms for N and M are compatible with natural morphisms

i - a0 -
N N
IN(E]Y (No))p") ™) g = I (E/Y (No)  2° ) (€ar) g -

Proof For any R-scheme T', we have a canonical identification of

In(E/Y (No)y ) ¥ | s (T)

No

= Iy (E/Y (No)j2*) ) (T) Y (No) 5o (1)

INO(E/Y(NO)(/(RNU))(CN(J)(T)
with the set of T-isomorphism classes of the pairs (Er,ay) consisting of an
elliptic curve and a I'(N)-structure of determinant (n over T', because the pair
consisting of Er and a I'(Np)-structure has no non-trivial automorphism. This
proves the first assertion, and the second one is also clear. [

We next want to study the set of irreducible components of the torsors
considered above, when S is the spectrum of a field. In the rest of this section,
we assume that S = Spec(F) with a field F. We let F be a separable closure of
F, and G the Galois group of F over F.

For the moment, Let X = Spec(A) be a G-torsor over S, G being a finite
group. Thus A is a finite étale F-algebra:

A = @], A; with finite separable field extensions A; of F'.

We have X = [[;_, C; with C; := Spec(4;), and {Ci,---,C,} is the set of
irreducible components of X, which we denote by Irr(X). Set

Gi:={geg|C!=0C}

This group acts on C; (resp. A;) from the right (resp. left). Since G acts simply

transitively on X (F), it also acts transitively on the set Irr(X).
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Lemma (3.5.8) Let the notation be as above. We have a bijection
Gi\G = Irr(X) by the correspondence G > g : C; — C? for each i.
A; is a Galois extension of F', and we have
Gi = Aut(C;/S) = Gal(A;/F).

Proof It follows from the remark above that the first map is bijective. It also
follows that the homomorphism G; — Aut(C;/S) is injective for each 4; and
since the action of G; on C’i(F) is transitive, the order of G; satisfies #G; >
#C;(F) = [A; : F], which completes the proof. (]

The Galois group G acts on X (F) = [[;_; Ci(F) from the left, and pre-
serves each C;(F).

Lemma (3.5.9) Fiz a point Q € X(F), belonging to C;(F). For each o € G,
there is a unique g(o) € G such that cQ = Q99). We obtain a map Gp — G;
by o — g(0), and this is a surjective homomorphism.

Proof Since the Galois action preserves C;(F), g(o) belongs to G;, and it is
easy to see that the above map is a homomorphism of G to G;. Since the action
of Gr on C;(F) = Homp(A;, F) is transitive, the number of the elements of the
image is #C;(F) = #G; by the previous lemma. [J

Summing up, we obtain the following

Proposition (3.5.10) Fiz Q € X(F) and let Cg € Irr(X) be the irreducible
component containing Q. We have a homomorphism Grp — G by the corre-
spondence: o — g(o) defined by 0Q = QI°). Let Hg be the image of this
homomorphism. Then we have a bijection

Ho\G = Irr(X) by g — .
(]

We now turn our attention to the torsors attached to elliptic curves over
S = Spec(F'). Take an elliptic curve E over S and a positive integer N prime
to the characteristic of F. In this case, an element Q of Ix(E/S)(F) is nothing
but a T'(N)-structure on E 7 = E @p F. Take and fix one such Q = ay.
Via the canonical isomorphism E[N] ®r F = E[N](F) x Spec(F), giving ay
is equivalent to giving a group isomorphism Z/NZ x Z/NZ = E[N](F), which
we call oy. From such an oy, we obtain the Galois representation

PN,Q : GF — GLQ(Z/NZ)
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in the usual manner by the commutativity of

Z/NZ x ZJNZ —~— E[N](F)
(3511) pN,Q(U)l J{action of o
Z/NZ x ZJNZ —— E[N|(F)
AN

for o € GF.

Proposition (8.5.12) Let the notation be as above, and fir a point Q = ay €
In(E/S)(F). Let Cq be the irreducible component of In(E/S) containing Q.
Then we have a bijection

Proof For 0 € Gp, 0@ = oay is obtained from ay by base change by the

action of o on Spec(F):

Z/NZ x ZJNZ —2*» E[N]®r F ——— E[N](F) x Spec(F)
idx J,SPeC(U) id®lSpec(o) o 1x lSpec(a)
Z/NZ x Z/NZ —*— E[N]®pr F —=— E[N](F) x Spec(F)

for the schemes obtained by base extension from F to F. The commutativity of
this diagram means that (cay)’ = a/yopn,g(0) and hence can = anopn,g(0);
i.e. the element denoted above by g(o) € GL2(Z/NZ) is pn,g(c). Our claim
follows from the previous proposition. [

Clearly the same argument can be used to describe the sets Irr(Iy (E/S)¢~))
and Trr(Iy(E/S)¢~) lan,). We include the result for the latter set in the
following

Variant (3.5.13) Assume that F' contains a primitive N-th root of unity (y.
Let Ny be a positive divisor of N and set (n, = x/NO. Let Eq,---,E,, be
elliptic curves over F, given with a I'(Np)-structure ay, ; of determinant (n;,

on each E; over F'. Then the S-scheme
X = IN(El/S)(CN) |aNO,1 Xg-+Xg IN(Em/S)(<N) ‘OCNOJn

is a torsor under G := SLa(Z/NZ; Ny)™, the product of m copies of SLa(Z/NZ; No).
Take and fix a point @ = (an1, - ,anm) € X(F). Then we obtain rep-
resentations pn; : Gp — GL2(Z/NZ) as in (3.5.11) which factor through

SLy(Z/NZ;Ny) — GLo(Z/NZ) for 1 < i < m, giving rise to

PN,Q ‘= PN,1 X+ X PNm * GF — SLQ(Z/NZ,NQ)m
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Let Cg be the irreducible component of X containing ). Then we have the
following bijection:

on,0(Gr)\SL2(Z/NZ;No)™ = Irr(X) by g+ ng.

3.6. A result on the finiteness of irreducible components. In this
subsection, we consider modular curves over fields of characteristic p > 0. We for
the moment work over an algebraic closure [F of the prime field IF,. Throughout
we fix a compatible system of primitive N-th roots of unity (. = ((n) €

pBPrim gy = l'&npw P (F) and consider irreducible modular curves

0 ._ (CN)
5.6.1) {Y(N)m =YOEY, O
V) (00)9p := Y P (00) 1) = lim Y (V)
(cf. 1.4).

We also fix Ny > 3 prime to p. Y(p)(oo)(/)]F is a Galois covering of Y (1) /¢

with group SLy(Z®)/{+1}; and is an étale Galois covering of Y(No)% with
group

(3.6.2) SLo(Z");No):= lim  SLy(Z/NZ; No) = Kex(SLo(Z") — SLa(Z/NoZ)).
PtN,No|N

For a positive integer m, as in 2.3, we set

((Y(N)?F)m := the m-fold fibre product of Y(N)(/)]F over I,
(3.6.3) ((Y(p)(oo)%)m := the m-fold fibre product of Y(”)(oo)%F over I,
e (Y(p)(oo)(/)F)m — (Y(N)?F)m : the natural morphism.

The following is the main result of this section:

Theorem (3.6.4) Let Z be an irreducible closed subvariety of (Y(No)%?)m
defined over F. Assume the following two conditions:

i) Let p; be the composite of the closed immersion Z — (Y(NO)%F)’” and
the projection p; : (Y(NO)%F)’” — Y(NO)%F to the i-th direct factor. Then P, is
dominant for each 1 <i < m;

ii) Let Ez; be the pull-back to Z of the universal elliptic curve on Y(NO)(/)]F
by p;. Then for each pair (i,7) € {1,---,m} (i # j), the generic fibres of Ez;
and Ez ; are not isogenous over any extension field.

Then the inverse image of Z to (Y(p)(oo)(/)F)m:

)y 2=z X(Y (No)g)™ (Y(p)(oo)%)m

has only a finite number of irreducible components.
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Proof For the moment fix a positive multiple N of Ny prime to p, and let
(Y(N )/]F) be the base change to (Y (Vi )/IF) of (N )/IF — Y(NO)/IF by p;. Then
(Y(N)/]F)m is (Y (No)/F) -isomorphic to the fibre product of these (Y(N)(/’F)i
(1 <i<m)over (Y (N )/]F) Denoting by (€;, pjay’V) the base extension by
pi of the universal pair (£,a4) on Y(NO)/F, we see from (3.5.7) and (3.5.2)

that:
(Y (N))p)i = In(E/ (Y (No)ye)™)°

as SLo(Z/NZ; No)-torsors over (Y(NO)/F) where we wrote Iy (—)° for Iy (—)€~),

Letting (Ez,i, n,,z,:) be the pull-back of (£,a%") by p;, it follows from
this that

univ

«
Pi %Ny

ZX(Y(NO)%)“(Y(N)(/)]F)W = IN(Ez1/2)° lang 21 %2 X 2IN(BEzm/Z)° lang 5.m

as SLy(Z/NZ; No)™-torsors over Z. These are étale coverings of Z, and so, the
irreducible components of these schemes correspond bijectively with those of the
generic fibre over Z. So letting L be the function field of Z, and (E;, an, ) :=
(Ez,i, 0Ny, z.i) Xz Spec(L) the generic fibre of (Ez;,an,,z,:)/Z (1 <i<m), we
obtain a canonical bijection:

(2 X (v (g9, (Y(N))p)™) = Ir(Zy)
where
Iy = In(E1/S)° langa X5 Xs IN(En/S)° lang,m With S = Spec(L).
It therefore follows that we have bijections

Br(() 2D 2 I (2 X gyn (V%)™ S m Te(Zy)

PtN,No|N PtN,No|N
(cf. Appendix (A.2.1)). Take and fix Qoo = (QN)pin,No|N € Qian(NN lNIN)(f) =

(Y&lpw N lN(IN (L)) with each Qn € Zx(L). This provides with us, via (3.5.13),
»4V0
a Galois representation

Poo.Qe = WM pnqy:GL = SLy(ZP); No)™
ptN,No|N

and a bijection

lim  Ir(Zy) 2 poo@u (GL)\SLa(ZP); No)™
ptN,No|N

Here, poo,q.. is exactly the Galois representation denoted by ¢ in (3.1.10)
attached to elliptic curves Ey,---, Ey, over L, transformed in the above form
by the isomorphism (“coordinate system”) : (Z®) x Z®P))™ 5 T@)(Ey) x - -+ x
T®)(E,,) given by Qu. Finally, we remark that, although we started with a
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closed subvariety Z of (Y(No)%)m defined over F, it comes by base extension
to IF from a closed subvariety Zy < (Y(No)%o)m defined over some finite ex-

tension ko of the prime field F,. We conclude by Theorem (3.4.2) that the set
Irr((f,) "1 (2)) is finite. O

The essential point of the proof of (3.6.4) was the open image result (3.4.2).
We give below another application of this result. For this, in general, let E be
an ordinary elliptic curve over a finite field with p™ elements, and Fg the p™-th
power Frobenius endomorphism of E. Let fg(X) = X2 — trace(Fg)X +p" €
Z[X] be the characteristic polynomial of F. By the ordinariness assumption,
this polynomial has the unique unit root in Q,, which we call a(E). Thus we
have trace(Fg) = a(E)+p"a(E)~L. If E’ is another ordinary elliptic curve over
the same field, then obviously a(E) = +«(FE’) implies trace(Fg) = ttrace(Fg/).

Now let Z C (Y(No)(/]m)m be as in (3.6.4). As we observed above, it is
obtained by base extension to F from a closed subvariety Z, C (Y(NO)()ko)m
defined over a finite subfield ky of F. Accordingly, we have elliptic curves Ez, ;
over Zy (1 < i < m) defined as (3.6.4) ii) (which were implicitly used in the
proof of (3.6.4)).

Proposition (3.6.5) Let the notation and the assumption be as above. For a
closed point x of Zy, we let Ez, ;/, be the fibre of Ez,; at x.

Then there are infinitely many closed points x of Zy satisfying the following
conditions:

1) Ez, /e are ordinary (1 <i<m).

2) If i # j, we have a(Ey, i/p) # *a(Ez, /o) for the unit roots of the
Frobenius endomorphism.

Moreover, when a proper Zariski closed subset C of Zy is given, we can take
these points x from Zy — C.

Proof Let Ly be the function field of Zy, and Ey,, ; the generic fibre of Ez, ;/Zy.
Setting T; ; := T;(EL, ;) for prime numbers [ # p, we obtain representations of
Galois groups

G — [I%, SL(Th: /1M Ty ;)

incl. J{ J/incl.

Gr, — [ GL(T1: /1M Thy)

for any positive integer M. Theorem (3.4.2) guarantees that the upper horizon-
tal arrows are surjective for any M for all but a finite number of I (11 Ny). Fix
such [ and M > 0, and let Ly (resp. L1) be the extension of Ly correspond-
ing to the kernel of the lower horizontal arrow (resp. the maximal constant
field subextension of Lo/Lg). Thus Gal(Lgs/L;) is canonically isomorphic to
I, SL(T;;/IMT; ;). We then obtain étale Galois coverings Xo — Yy — Zp
whose generic points give the field extensions Lo/L1/Lo; Xo/Yo being obtained
from an étale covering of a product of modular curves by base change. Via the
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canonical isomorphism Gal(Xo/Yy) = [[/~, SL(T,;/IMT, ;) = SLo(Z/IMZ)™,
we may identify

R:={(g1, - ,gm) € SLo(Z/IMZ)™ | +trace(g1),- - - , Ftrace(g,,) are all different}

with a subset of Gal(X(/Yp). Let us take M so large that this set is non-empty.
Then Cebotarev density theorem, as formulated in Serre [Sel, Theorem 7],
applies to assure that the set of closed points of Yy whose Frobenius conjugacy
class belongs to R is of positive density.

If a proper Zariski closed subset C' C Zj is given, the set of such closed
points of Yy not in the inverse image of C' still have positive density. Especially
we may exclude points corresponding to supersingular elliptic curves to obtain
the same result. If y is such a closed point of Y, the elliptic curves Ez, ;/,, the
fibres at y of Ez,; Xz, Yo, satisfy the properties 1) and 2), by the preceding
remark. The image of these points to Z; satisfy the same properties. O

84. Zariski density of CM points.

4.1. “Independence” of elliptic curves. In this final section, we will prove
the main theorem (2.3.4).

We thus return to the situation considered in 2.3: We fix an imaginary
quadratic field K in which p splits, and a prime number ¢ # p. We take a
sequence n = {0 < my < my < ---} of integers, 01, - ,d, € Ker(Cly —
Cl,,,) which give distinct classes in Cly/ C1*'2, and define a set of closed points
E(1;n)r of (Y(1)/5)™; cf. (2.3.1)-(2.3.4).

In what follows, when we are given a subset T" of a scheme X, we will always
consider the Zariski closure of T in X as a reduced closed subscheme of X.
When the reference to X is obvious, we denote this scheme T.

Proposition (4.1.1) Let the notation be as above. Let Ny be an integer >
3, and A(Ny) a set of closed points of (Y(No)(/JF)m mapping surjectively onto
E(1;n)/p. Take an irreducible component Z of the Zariski closure of A(Ny) in
(Y(No)%)m. If dim Z > 0, Z satisfies the conditions 1) and ii) in (3.6.4).

Proof Z N A(Ny) is an infinite set. So the image of the composite Z —
(Y(NO)%)’” LS Y(NO)(/)]F contains infinitely many distinct points as seen from
the definition of Z(1;n)/r. The condition (3.6.4), i) is therefore satisfied.

To show the second condition, we fix indices ¢ and j (1 < i,5 < m,i # j).

Let L be the field of rational functions of Z, and consider the situation similar
to the proof of (3.4.2):

Spec(L) = Z = (Y (No)%)™ “5 ¥ (No)%s xx ¥ (No) -

These schemes are all affine. Set Y(No)9IF = Spec(A) and Z = Spec(B) so that
we have ring homomorphisms:

L+ B+ A®rA.

37



The kernel p of the right homomorphism is a non-maximal prime ideal. Let &/
and &} be the elliptic curves over C' := Spec((A ®r A)/p) obtained by pulling
back the universal elliptic curve via C — Y(No)9IF X Y(NO)‘}F followed by two
projections to Y(NO)(/)]F. We want to show that the generic fibres of & and &}
over any finite extension of the quotient field £ of (A®p A)/p are non-isogenous.

If p = (0), this is obvious. We henceforth assume that p is of height one,
and hence C is an irreducible reduced curve over F. Let £’ be a finite extension
of £, and " the normalization of C' in L. Set & := & x¢ €' and & =
& xc¢ C'. Assume that there were an isogeny over L’ between the generic
fibres of these curves. It then extends uniquely to an isogeny A : & :— &
over C’ by the Néron property. Since Z N A(Np) is infinite, the image of Z to
C = Y(No)Jp x# Y (No))p contains closed points lying above the points of the
form x, := (z(asa,),z(aja,)) € Y(1)p xp Y(1)r for infinitely many values
r € n, where cl(a,) € R, (cf. (2.3.2)) and a4, are as in (2.3.4). Let E(a),/x
be the elliptic curve over K whose complex points are isomorphic to C/a as
described in 2.4, and let E(a)/y (resp. E(a)/p) be its extension to W (resp.
the reduction to F). Then taking the fibre at an inverse image in C’ of each x.,
we obtain from A an isogeny A., : E(asa,)r — E(aja,)/p. This then lifts to
an isogeny Ay, E(asar) w — E(ajar) over W because E(aza,)y (resp.
E(aja,) ) is the canonical lifting of E(a;a,)/r (resp. E(aja,)/r); cf Messing
[M, Chapter V, Corollary (3.4)]. This in turn gives us an isogeny of complex
tori C/aja, — C/aja, of the same degree as A for each . We may assume that
a, is of the form a, = ¢,0, with ¢, € 0/, and also that a;,a; € o) by (2.1.9).
We have obtained isogenies

(C/(Cf'ai)or — (C/(Cf'ai)(ai_lo‘j)m'

of degree independent of r for infinitely many values r € n. But our assumption
implies that (cl(ai_lajan)nzo) € Cly does not belong to C1*8. We have seen in
(2.2.6) that this condition rules out the possibility of the existence of such an
infinite family of isogenies. [

Therefore Z C (Y(No)%,)m obtained in the above manner, and its model

Zy over a finite subfield of F, satisfy the conclusions of (3.6.4) and (3.6.5),
respectively.

4.2. Tate-linearity. In this section, we prove (2.3.4). To do this, aside from
the notation already used in 4.1, we need to recall the constructions in 2.4:
We first recall that we defined the set of admissible CM points £*¥™(c0; n) /r
in V("9 (00) p in (2.4.6), which will be considered as a set consisting of closed
points of Y79 (c0) /z. We take the irreducible component Y (79 (00) of Y ®:9(00) /p

containing the point z(0,,; 1) /» and set £&*4™ (o0; @)% = &M (005 ) pNY (P (OO)%F

as in (2.4.13). We hereafter always assume that all elements in the infinite set
n have the same parity, as it is enough to prove (2.3.4) under this condition.
This assures that fadm(oogﬂ)% maps surjectively onto (1;n)/r by (2.4.13).
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Definition (4.2.1) We take and fix 01, -+ ,0,, € Ker(Clos — Cl,,) giving
distinct elements in Cl,/CI*8, and choose o; € K[ ; asin (2.3.4) so that §; =
(cl(@;0,))n>0. We let 229 (00;n)° be the set of closed points of (V79 (0o )/]F)m
defined by

{(z(c1a; (a1y1) ) jms -+ s w(ama; (am¥m) ) jw) | 2(a57) /5 € M (00 n)e (1<i<m)}.

adm( 0

For M > 1 prime to p and ¢, we define Z24™(M;n)? as the image of = oo;n)

by the morphism (Y(pve)(oo)(/)F)m N (Y(M)(/)F)m

The sets Z29™ (00;n)? and Z29™ (M; n)° therefore depend on §; (1 < i < m),
but in view of (2.1.8) and (2.4.7), do not depend on the choice of a; (1 <14 < m).

We fix an integer Ny > 3 prime to p and ¢. Our goal will be to show that
Z2dm(Ny:n)0 is Zariski dense in (Y(NO)(/)]F)’”. Remember that this statement
is equivalent to Theorem (2.3.4); cf. (2.3.5), (1). The theorem is obvious for
m = 1. We hereafter assume that m > 1, and assume that (2.3.4) is true up to
(m —1)-fold self-products of Y(No)(/)]F, but false for the m-fold self-product, until
we arrive at a contradiction at the end of this section.

Let us take any partial direct product factor (Y (N )0 )m*1 of (Y(NO)(/)F)m,
and let pr be the projection to this factor. Then pr("adm( ;n)?) is a set defined
exactly in the same manner as 2™ (Ng; n)° for (Y (No)? IF)m 1. By the above as-

A

sumption, this is a Zariski dense subset of (Y (Ny) /IF) . Therefore, pr induces

a dominant morphism of the Zariski closure Z2d™(Ny:n)0 to (Y(NO)/]F)’” L

Since we are assuming that (2.3.4) does not hold for (Y(No)(/)lF)m, it follows that

there is an irreducible component of dimension m — 1 in Z2dm(Ny;n)0. Take
and fix such an irreducible component, and call it Z.

In general, for a scheme X and its closed subscheme W, denote by X/"W the
formal completion of X along W. Let x be a closed point of (Y (Np) /F) which
is ordinary in the sense that it corresponds to an m-tuple of ordinary elliptic
curves. Then it is known from the theory of Serre and Tate that (Y(N())/F)m/w
canonically has a structure of a formal torus over F. If V is a closed subvariety
of (Y(NO)%F)m and z € V is as above, V is said to be Tuate-linear at x if V/*
is a formal subtorus of the Serre-Tate formal torus (Y(NO)(/)F)m/ *. This notion
was introduced and studied in detail by Chai [C1] in connection with the Hecke

orbit problem. Its importance in the arithmetic, for example the study of the
special values of Hecke L-functions, was found by Hida.

Proposition (4.2.2) Let the notation be as above. Z is Tate-linear at every
ordinary normal closed point of Z.

Although we stated the result for Z lying in the product of modular curves
of finite level, it is indispensable to go up to infinite level, as observed by Hida.
We will describe a proof of this proposition in several steps below.

First, we note that it is enough to prove the Tate-linearity for one (ordinary
normal) point of Z, for then a result of Chai assures us that the whole statement
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is valid. Chai in fact proved a stronger result in [C1, Proposition 5.3]; the
result of the above form follows from [C1, Proposition 5.2], either by the same
reasoning as loc. cit. or from the fact that (Y(NO)(/)F)m is closely immersed in
a Siegel modular variety.

We now consider the infinite covering

g, (Y P9 (00))p)™ = Tim (Y(M)p)™ = (Y (No) )™
.M

Since the projective limit is taken with respect to finite surjective morphisms,
this is a closed morphism (cf. Appendix (A.1.2)), and hence g3 induces a

surjective morphism: Z2dm(00; n)0 — Zadm(Ny: n)0. Thus there is an irreducible
component Z of Z24m (00; n)0 such that g (Z) = Z, and since Z is integral over
Z,dimZ =m — 1.

Lemma (4.2.3) We have

7 = Zadm(o0:n)0 N Z,
and this is an irreducible component of (g3} )~ (E24™(No; n)?).

Proof Write Z2dm(Ny;n)0 = U;’;Blli with I; the union of all irreducible com-
ponents of dimension i of Z24m(Ny;n)?, and hence (g7, )~ " (E24™ (No;n)) =
U Z; with Z; = (g%,) (i) We have:

Hadm(66:n)0 = Uizgl Zadm(60:n)0 N 7.
Since Z is its irreducible component, Z must be contained in one of the members
in the right hand side; and since Z maps to Z, we have Z C Z24m (c0; n)0 N Z,, .
Now by (4.1.1) and (3.6.4), Z,,—1 is a union of finite number of irreducible
components: Z,,—1 = Uj_;D; with irreducible components D;. We therefore
have

ZC Uj_q E2dm(00;n)0 N D;.

Again the irreducibility of Z implies that there is an index j such that

Z Q Eadm(oo;@)o N Dj Q Dj.

Since dim D; < m, we conclude that 7= D;. O

Let Z° be the intersection of Z with the smooth locus of Z2d™(Ny: n)0. This
is a non-empty open subscheme of Z, and for any closed point z of Z°, Z is the
only irreducible component of Z2d™(Ny: n)0 containing z. By the lemma above,
g}(}o(Eadm(oo;Q)O N Z) is dense in Z, and hence we can take a closed point
2 € 229m (00; n)0 N Z such that z := g, (') € Z°. Since (gf,) ™ (E29™(No; n)0)
is a pro-étale covering of Zadm(Ny:n)0, 7 is the only irreducible component of

40



(9%) " (E24m(Np; 2)°) containing 2’. Fix such choice of 2’ and z. The morphism

Z — Z is pro-étale at 2/, and we have the commutative diagram with two vertical
isomorphisms:

>/ incl. ’
z/7 e (Y(p,i)(oo)%)ﬂﬁz

(4.2.4) zl lz

70— (Y (N)%)" .

incl.

Recall that we have an action of Kg’lée)x on Y(p’e)(oo)/]p via the representa-

tion p (2.4.8). We then let Kgéé)x act on (Y79 (c0) p)™ diagonally. We see

from (2.4.11) (cf. also a remark after (2.4.12)) that the action of o (:0)?

c— p(c'), leaves Z24m(00; )0 stable. Moreover, if 2’ = (z(cqa; (@171)") /gy - - -
z(m@; (mYm)") /p) With a a proper o,-ideal, then o* (p,0) fixes 2'. We conclude

via

that 0:,(17} 0 acts as automorphisms of VA fixing 2/, and hence induces automor-
phisms of Z/?" and (Y(p’é)(oo)(/)F)’”/zl = (Y(p’e)(oo)/lp)m/zl.

To show that this induces a p-adically continuous action of o) on the above
formal schemes, we need some preliminaries. In general, let a be a proper o,
ideal in K, and let z = z(a;7') /p be an admissible CM point on Y ®9)(c0) . It
therefore consists of (the isomorphism class of) an elliptic curve E(a) /r together
with a I'®%(c0)-structure. For an element ¢ € K* C KAXJ, express it as
c = (c,ip(c),ie(c)) with ¢ € ngléé)x, ip(c) € K and ig(c) € K as in 2.4.
The action of o0, on E(a)/r naturally extends to the action of o, ®z Z, =
0, on the p-divisible group E(a)r[p>]; and hence we have the action of o)
on the deformation space Def(E(a)/r[p>]/F); cf. Chai and Oort [CO, 2.14,
Remark]. On the other hand, when ¢ € 0:7(1)7@, p(c’) fixes & and hence induces

an automorphism of (Y(p’z)(oo)/m)/$~

Lemma (4.2.5) (cf. [CO, page 508]) Let the notation be as above, and let ¢
be an element of 0: (0 Then via the canonical isomorphisms:

Serre—Tate

Def (E(a)/z[p™]/F) = 2 Def(E(a) s /F) = (Y "9 (c0)x)/*,

the action of i,(c) on the left hand side and the action of p(c’)™! on the right
hand side commute.

Proof See the proof of the “local stabilizer principle” given there. [J

Let E(a)/p[p™]e. (resp. E(a)/r[p™]mus) be the maximal étale quotient (resp.
the multiplicative part) of the p-divisible group E(a) /g[p>]. We recall that there
is a canonical isomorphism:

(4.2.6)

(VP9 (00) p)/" = Homy, (T,(E(a) 5[p™]at) ®2z, Xu(E(a) /5[0 lmut)”, Gm)
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where X, (resp. V) means the cocharacter group (resp. the Z,-dual); cf. [CO,
Theorem 2.19]. The action of i,,(c) on the cocharacter group of this formal torus,
ie. (T,(E(a)/p[p™]et)" @z, X«(E(a)/g[p™]mult), is then given by the non-trivial
character ¢ — ¢/c*, where * denotes the nontrivial automorphism of K/Q, if we
embed K into Q, via its action on X, (E(a)/r[p™|mut) @z, Qp.

Proof of (4.2.2) We return to the situation after (4.2.3), and use the notation
there. In view of the commutative diagram (4.2.4), it is enough to show that
Z/7 is a formal subtorus of the Serre-Tate formal torus (Y(p’é)(oo)/F)m/Z/.

We can embed o) into the product [[;; Aut(E(a;a),r[p>]) diagonally, and
hence we may let this group act on (Y (P9 (oo)/]p)m/z' (2" = (oo (ivi)) ey o)
asin (4.2.1)). This action is continuous on the (discrete) set Y (7+) (oo)/F)m/zl(R)
for each artinian local F-algebra R. ~

On the other hand, we have seen that, via ¢ — p(c’), 0:,(])’6) acts on Z/%. We

see from this and (4.2.5) that Z/%" is stable under the action of 0, . With this,
together with the remark made above, we can apply Chai’s rigidity theorem [C1,
Theorem 6.6] to conclude that Z/#is a formal subtorus of (Y(p’é)(oo)/]p)m/zl. O

We now prove (2.3.4). First recall that Z C (Y(NO)%F)’” is obtained from
Zy C (Y(No)%o)m defined over a finite subfield ko of F by base extension.
Let p; : (Y(NO)(/)ko)m — Y(NO)(/),CO be the projection to the i-th direct factor
(1<i<m):

(4.2.7) Zo = (Y (No)Jj )™ 2 Y (No) Y, -

Take an ordinary and smooth closed point = of Zy, and let z; = p;(z). We have
the morphisms of formal schemes over kg:

25" = (Y (No) i, )™ 22 (Y (No) iy )™ X X (Y (No) ey )/ = (Y (No) i, ).

Here, by (4.2.2), Zéz is a formal subtorus of the Serre-Tate formal torus (Y(No)(/)ko)m/m
defined over k(z), the residue field at x. Therefore, if we denote by &/, the

fibre at z; of the universal elliptic curve on Y(NO)(}kO, we obtain a non-trivial
homomorphism of cocharacter groups

Xo(Z5") = X (Y (No)y, )/ ™) =
Homy (T(E/z, [p™]et) @z, Xu (&), P™Jmute) ', Gn)

which commutes with the natural action of Gal(F/k(z)). If we denote by
Fr, € Gal(F/k(z)) the Frobenius automorphism, the eigenvalue of Fr, acting
on Tp,(E/4,[p™]st) is the unit root a(Ez, ; /,) of the Frobenius endomorphism
considered in (3.6.5); and hence cy(EZO’Z-7/gc)*2 appears as an eigenvalue of Fr,
acting on X, (Z.") ®z, Qp (1 < i < m). But we have seen in (3.6.5) that
we can choose z in such a way that a(Ey, ; /,)”2 (1 < i < m) are all differ-

ent. We conclude that dim X*(Zéw) ®z, Qp = m, which in turn implies that
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dim (520,1 = dim Oy, , = m. This means that dim Z, = m, contradicting our
starting hypothesis that dim Z = m — 1. This completes the proof of Theorem
(2.3.4).

Appendix: Some properties of projective limits of schemes. In this ap-
pendix, we give elementary topological properties of projective limits of schemes.
As for general treatment of projective limits of schemes, see [EGA TV, §8].

A.1. Zariski closures. Throughout, we work under the following situation:
We let (Xa, fa,3) be a projective system of schemes having a directed set I as
the index set. Thus fn g : Xg = X, for a, 8 € I with a < 5. We assume:

(A11) {fmg is finite and surjective for each pair o < g in I;

I has a minimum element «.

Thus all X, are X,,-schemes, and the conditions in [EGA IV, (8.2.2)] are
satisfied. Especially the projective limit

X = 1&1 X
acl

in the category of schemes exists [EGA IV, (8.2.3)]; and as (underlying) topo-
logical spaces, X is also the projective limit of X, [EGA IV, (8.2.9)]. Let

fa: X = X,

be the natural morphism. This is surjective by [EGA IV, (8.3.8), (i)]; and it
also follows from the argument of (A.1.2) below.

Lemma (A.1.2) For each a € I, f, is a closed morphism.

Proof Let A be a non-empty closed subset of X, and set A, := fo(A). We

have A = I.LmaelAi"‘ (cf. Bourbaki [B, Chapitre 1, §4, n°4, Corollaire]). Fix
o € I and take a point a € A,. We see from (A.1.1) that f, 3(Ag) = A, for
all B > a. Therefore Sg :={b € Ag | fa,5(b) = a} is a non-empty finite subset
of Ag. Therefore A D 1'&15>a Sz # ¢. It follows that fo(A) > a, and we have

fa(4) =4a. O

We also note that if all f, g are flat, then f, are also flat; and in this case,
fa,p and f, are open morphisms as well.

Proposition (A.1.3) Let A be a subset of X and set A, = fo(A) for each
a € 1. Then A is Zariski dense in X if and only if A, is Zariski dense in X,
for every a € I.

Proof We have fa(A) C fu(A) = A, in general. If A = X, then we have
Aa:fa(X):XOé‘ _ —

Coan"sely, assume that A, = X, for all « € I. Then we have A =
l&nael A, = @ae[ Xo = X by [B, loc. cit.]. O
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Proposition (A.1.4) Let the notation be as in (A.1.3). Assume that (Xy, fo.8)
1s a projective system of schemes of finite type over a field, and moreover assume

that all X, are irreducible. Then A is Zariski dense in X if and only if Aa,

is Zariski dense in Xq,. Also, a subset B of Xg is Zariski dense if and only if
fao,8(B) is Zariski dense in X,,.

Proof We only give a proof for the first assertion, since the same argument
settles the second.

The “only if” part is clear.

Assume that A, is Zariski dense in X,,. For 8 € I, fg,q, : X3 = X, and
also the induced Ag — A,, are finite and surjective. It follows that dim(Az) =
dim(Xg). Irreducibility of Xs then implies that A = Xj, and hence A is
Zariski dense in X by (A.1.3). O

Corollary (A.1.5) Under the same situation as in (A.1.4), A is Zariski dense
in X if and only if fojol (Aay) is Zariski dense in X.

A.2. Irreducible components. For a topological space T, let Irr(T) be the
set of irreducible components of T'.

Proposition (A.2.1) Let (X, fag) satisfy (A.1.1) and let X and f, be de-
fined as before. Assume in addition that fo g are flat for all oo < 8 in I. Then
we have a natural bijection:

Irr(X) = lim Irr(X,).

Proof In general, if g : S — T is a faithfully flat closed morphism of schemes,
it induces a surjection Irr(S) — Irr(T). Indeed, if C' is an irreducible component
of S, g(C) belongs to Irr(T') by the closedness of g and [EGA TV, (2.3.5), (ii)].
On the other hand, take an irreducible component of T', and let ¢ be its generic
point. Then there is an s € S such that g(s) = ¢; and hence g({s}) = {t}. If {s}
is not an irreducible component, there is an irreducible component containing
{s}. Let s’ be its generic point. Then we must have g({s’}) = {¢}. This shows
the surjectivity of the above map.

Now the morphisms f, g and f, are faithfully flat and closed by (A.1.2).
Thus each f, induces a surjection Irr(X) —» Irr(X,) from which we obtain
fTIm(X) — fm Irr(X,,). This map is injective: If {z} and {2’} are different
elements of Irr(X), then clearly there is an index « € I such that f,(z) # fo(2)
and hence {f,(x)} and {f,(z’)} are different elements of Irr(X,,). Finally let us
show the surjectivity of f: Let ({Za })aes be an element of fm Irr(X,). Since
fa,3 maps @ surjectively onto @ for each a < # in I, it must preserve
generic points: f, g(zg) = . Therefore the element © = (z4)aer belongs to
Im _ X, =X, and we have fa({z}) = {z4} for each a € I. If {x} were not

an element of Irr(X), we can take a generalization ' of z, as in the first step
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of this proof, satisfying {2’} € Irr(X) and fo({2'}) = {zo} for all @ € I. This
completes the proof. [
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