INTERTWINING OPERATORS BETWEEN ONE-DIMENSIONAL
SPACE-HOMOGENEOUS QUANTUM WALKS

HIROKI SAKO

ABSTRACT. The subject of this paper is a kind of dynamical systems called quan-
tum walks. We study one-dimensional homogeneous analytic quantum walks U.
We explain how to identify the space of all the uniform intertwining operators
between these walks. We can also determine whether U can be realized by a (not
necessarily homogeneous) continuous-time uniform quantum walk on Z. Several
examples of quantum walks, which can not be realized by continuous-time uniform
quantum walks, are presented. The 4-state Grover walk is one of them. Before
stating the main theorems, we clarify the definition of one-dimensional quantum
walks. For the first half of this paper, we study basic properties of one-dimensional
quantum walks, which are not necessarily homogeneous. An equivalence relation
between quantum walks called similarity is also introduced. This allows us to
manipulate quantum walks in a flexible manner.

1. INTRODUCTION

Quantum walks are dynamical systems related to quantum physics. Many re-
searchers study this subject in a number of frameworks. They commonly use a pair
of a Hilbert space H and a unitary operator U on ‘H. The Hilbert space is associated
to some space X. The space H is given by fo(X), L*(X), or their amplification.

There are two families of quantum walks. One is the family of discrete-time
quantum walks. These walks give unitary representations (U');cz of the integer
group Z. We can regard the integer ¢ as the number of steps of some procedure.
The other is the family of continuous-time quantum walks. Such a walk gives a
unitary representation (exp(itH));er of the real group R. We can regard the real
number ¢ as the flow of time.

For a discrete-time quantum walk (U");cz, does there exist a good continuous-time
quantum walk (exp(itH));cr satisfying exp(iH) = U? A related open problem is
proposed in [Amb03]. For every unitary operator U, there exists a self-adjoint oper-
ator H such that exp(iH) = U. However, H is not necessarily a good operator. The
unitary operator exp(it H) ignores the base space X. Namely, there might exist unit
vectors £ and n such that the support of 1 in X is distant from that of £, and that the
transition probability |(exp(it H)E,n)|? is not small. This means that the dynamical
system by (exp(itH));cr moves unit vectors too fast. Therefore, we eliminate such a
pathological walk and concentrate on walks satisfying some regularity. In this paper,
we consider three kinds of regularity called uniformity, smoothness, or analyticity for
operators on H. Uniformity is the weakest, and analyticity is the strongest. To the
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best of the author’s knowledge, all the known examples of one-dimensional quantum
walks are analytic.

In this paper, we consider the case that the space X is the integer group Z, the
local degree of freedom of H is finite, and (U')icz is a discrete-time homogeneous
analytic quantum walk. We determine whether (U');cz is realized by a continuous-
time uniform quantum walk in Theorem 4.2. To show this theorem, in Subsection
3.5, we determine the space of uniform intertwining operator between two one-
dimensional homogeneous analytic quantum walks.

Before stating the main theorem (Theorem 4.2), we need to clarify the definition
of one-dimensional quantum walks and regularity for operators on H in Section 2
(Definitions 2.1, 2.3, 2.5). Many results in Section 2 can be applied to general one-
dimensional quantum walks, which are not necessarily of finite degree of freedom.
We also propose a new equivalence relation between one-dimensional quantum walks
called similarity. This new notion allows us to treat quantum walks in a flexible
manner. Similar walks have the same asymptotic behavior (Theorem 2.31).

For the argument in this paper, we need a structure theorem on one-dimensional
homogeneous quantum walks in [SS20]. A concise abstract of the paper [SS20]
is described in Subsection 3.3. Readers who wants to concretely understand the
contents of this paper are recommended to read examples, skipping lemmas and
propositions. Among several examples, Example 3.1 and Example 3.2 introduce the
4-state Grover walk and the 3-state Grover walk. Example 4.5 shows that the 3-state
Grover walk can be realized by a continuous-time quantum walk, while Example 4.9
shows that the 4-state Grover walk can not.

2. DEFINITIONS AND BASIC PROPERTIES OF 1-DIMENSIONAL QUANTUM WALKS

We construct a general framework for one-dimensional quantum walks as follows.

Definition 2.1. One-dimensional discrete-time quantum walk is a triplet (H, (U")iez,
D) of

e a Hilbert space H,

e a unitary representation (U')ez of Z on H,

e and a self-adjoint operator D. (In most cases, D is unbounded.)

We call U = U' the generator of the quantum walk.

Definition 2.2. One-dimensional continuous-time quantum walk is a triplet (H,
(UD)ser, D) of
e a Hilbert space H,
® q one-parameter group (U(t))teR of unitary operators on H which is contin-
uous with respect to the strong operator topology,
e and a self-adjoint operator D. (In most cases, D is unbounded.)

1

The self-adjoint operator lim;_,q % 1s called the generator of the quantum walk.

For the rest of this paper, we concentrate on one-dimensional quantum walks, so
we simply call them quantum walk.
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In most of preceding research, quantum walks are regarded as a dynamical sys-
tem on some geometric space. To fit the quantum walks defined above, we have
only to define the operator D as the observable of position on a one-dimensional
space. However, the above definition allows more flexible interpretations of quantum
walks. The self-adjoint operator D can be other observables such as the momentum
operator.

2.1. Regularity on quantum walks. By physical requirement, we often assume a
kind of regularity for operators such as uniformity, smoothness, or analyticity. Note
that for a map f from the real line or a complex domain to a Banach space B, we

can define differentiability on f using the limit lima, o %ﬂz_ﬂx) in norm.

Definition 2.3. Let D be a self-adjoint operator on H and let U be a bounded
operator on H.

e The operator U is said to be uniform with respect to D, if the map
R3S ks e*PUe™™ P ¢ B(H)

15 continuous with respect to the norm topology. This condition implies that
k— e*PUe™*P is uniformly continuous.

e The operator U is said to be smooth or in the C*®-class with respect to D, if
the map

R3S ks e*PUe ™ ¢ B(H)

15 a smooth mapping with respect to the variable k € R.

e The operator U 1is said to be analytic with respect to D, if there exists a
holomorphic extension of the map

R3S ks *PUe ™ ¢ B(H)
defined on a domain of the form {k € C| — ¢ < Im(r) < d}.

These conditions related to transition probability in quantum mechanics. Con-
sider the case that the spectrum of D stands for position of some particle and that
U corresponds to some dynamical system. Let F(-) be the spectral measure of D.
Let £ and 1 be unit vectors in H. Suppose that the support of the measure (E(-)¢, £)
is distant from that of (E(-)n,n). The conditions on regularity of U mean that the
matrix coefficient (U¢,n) is small, if the support of £ with respect to the spectral
decomposition of D is distant from that of 7. See [SS20, Definition 3.1] and [SS20,
Lemma 4.1]. See also Proposition 2.19. Among the three conditions, uniformity is
the weakest, and analyticity is the strongest. The space of all the uniform operators
forms a C*-algebra. The space of all the smooth operators forms a x-subalgebra.
The space of all the analytic operators also forms a x-subalgebra.

The main subject of this paper is uniform intertwiner between two homogeneous
discrete-time analytic quantum walks.

If the operator U is smooth with respect to D, the m-th derivative of k +—
e*PUe~*D is given by the commutator i"e*’[D, [D,---[D,U]---]le”*P. We put
the commutator [-, -] n-times here. In particular, [D,[D,---[D,U]---]] is a bounded
operator. This is a consequence of the following lemma.
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Lemma 2.4. Let V: Hy — Hy be a bounded operator. Let Dy be a self-adjoint
operator on Hi and let Dy be a self-adjoint operator on Hy. Suppose that R 3 k —
eFD2V e=kD1 ¢ B(Hy < Hy) is differentiable in the operator norm topology. Then
V' is a map from the domain of Dy to that of Do, and DV —V Dy: dom(D;) — Ho
is bounded with respect to the norm of Hi. The derivative of k s e*P2V e=kD1 g
ieikD? (DQV — VD1>€_ikD1

Proof. Denote by W the limit

eikDQ Vef’ik‘Dl _ V
W = lim

k=0 1k

in the norm topology. Let £ be an element of the domain of D;. Then we have

e““D.2 — 1Vf _ e“‘”:)ﬂ/e._“‘?[)1 — V5 _ eiszve_ikél — 15-
ik ik ik

As k tends to 0, the first term converges to W¢. The norm of e*P2 is uniformly
bounded and e**P2 converges to 1 in strong operator topology. The vector e_ik;;l_l

converges to —D£ in norm. Therefore, the vector @““j—,j*lvg converges to W¢ +
VD€ Tt follows that VE € domDy, DVE = WE + VD€, We calculate the

derivative as follows:

ei(k:-‘rAk)Dg Ve—i(k‘-i-Ak‘)Dl eik‘DQ Ve—ik‘Dl

lim
Ak—0 Ak
iAkD —iAkD
. . eE2Ve L A
ie™P2 1im e~ kD1

A0 1Ak
= jeFP2 e kD

O

Definition 2.5. A discrete-time or continuous-time quantum walk (’H, (U(t)) ,D)
is said to be analytic (smooth, or uniform), if for every t, U is analytic (smooth,
or uniform, respectively) with respect to D.

Remark 2.6. In the case of continuous-time quantum walks, the author is not so
sure about the above definition. A definition might be given by the relation between
D and the generator of the one-parameter unitary group (U®),cg, and would be
stronger than our condition. To state the main result of this paper, we choose the
weaker condition as above.

2.2. Basic examples of quantum walks. The following are examples of quantum
walks. The examples 2.7 to 2.12 are analytic. We also define several notations, which
are often used for the rest of this paper.

Ezample 2.7 (Constant quantum walk). Let a be a complex number whose absolute
value is 1. The triplet (H, (a');ez, D) is a discrete-time quantum walk.

Ezxample 2.8 (Discrete-time free quantum walk). Let r be a positive real number.
Let D, be the diagonal operator on ¢5(rZ) defined by D,.(0,) = x,,x € rZ. Denote
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by S, the bilateral shift 6, — d,.,,& € rZ. Then ({3(rZ),(St)iez, D,) is a one-
dimensional discrete-time quantum walk. We call (¢2(rZ), (SL)iez, D,) the discrete-
time free quantum walk. The map

R 3 k +— exp(ikD,)S, exp(—ikD,) € B({y(rZ))

is given by exp(ikD,)S, exp(—ikD,) = exp(ikr)S,. This can be extended to a
holomorphic map defined on the complex plane C.
The positive number 7 is often defined by 1.

Ezample 2.9 (Continuous-time free quantum walk). Let D be the multiplication
operator on L%*(R) given by the function x + z on R. Let H be the differential
d

operator —-% on L*(R). The one-parameter unitary group (exp(itH));cr generated

by H is the translation operator given by

lexp(itH)(¢)](x) = &(x —t), € € L*(R),z € R.
Then (L*(R), (exp(itH)):er, D1) is a continuous-time quantum walk. We call (L*(R),
(exp(itH))ier, D1) the continuous-time free quantum walk.
a, by
Cy dy
sequence of complex unitary matrices. Define a unitary operator U on {y(Z) @ C?
as follows:

Example 2.10 ((2 x 2)-matrix). Let u, = ( > ,x € Z be a two-sided infinite

Uy ®51) = ap0p_1 ® 01 + Cx0p11 ® 0o,
U(éx X (52) = bm(sm—l & 51 + d$5m+1 &® 52, x € 7L.

Let D be the diagonal operator on ¢5(Z) defined in Example 2.8. (In the present
case, 7 is 1). Then ((5(Z) @ C?, (U')sez, D ®id) is a discrete-time quantum walk.

Ezample 2.11 (Homogeneous (2 x 2)-quantum walk). In the previous example, con-

sider the case that wu, is a constant sequence u, = ( a b ) Then the unitary

d
aS;t bST! ) .
C§1 dSl’l ) The triplet ((2(Z) @ C?, (U"), D; ®id)

is a homogeneous discrete-time quantum walk.

operator U is given by U = (

FExample 2.12. Denote by T the set of all the complex numbers whose absolute values
are 1. The dual group of rZ is given by Tyr.—1 = R/(2mr~1Z) via the coupling

17 X Topp—1 3 (z,k + 277 ' Z) — exp(izk) € T.

We distinguish Ts,,—1 from T in this paper. The subscript 27r~! is equal to the

length of the torus Ts,,.-1. We denote by ¢, the character on To,,—1 defined by
x € rZ. Denote by F,: L*(Tgr—1) — lo(rZ) the Fourier transform given by ¢, +— d,.
The inverse Fourier transform D, = F D, F, of D, in Example 2.8 is
[Dr(g)] () = ;d—i (™), &€ C(Tapyr), b + 21 Z € Toppor.
We simply denote by D, the inverse Fourier transform l/)\r Here D, stands for the
differential operator Z.dik. The inverse Fourier transform F,1 S, F, of the bilateral shift
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S, in Example 2.8 is the multiplication operator M[c,]. Here M|[c,]: L*(Tgz—1) —
L*(Ty,,-1) is the multiplication operator given by ¢, the function on Toy,.-1.

The inverse Fourier transform of the discrete-time free quantum walk in Example
2.8 is (L*(Torr—1), (M|c,)")iez, D,). This is also a quantum walk.

Ezample 2.13. The inverse Fourier transform U = (F;' ® id)U(F, ® id) of U in
Example 2.11 is
b aMlc,|™' bM[ey] ™!
cMle1)  dMey] )
The triplet (LZ(’JI‘QW) ® C?, ((7t) D1 ® id) is also a quantum walk.
/

te

FEzample 2.14 (Quantum walk by a multiplication operator). Let A\: Typ-1 — T
be a Borel function. Denote by M[\]: L?(Tgz-1) — L*(Tay-1) the multiplication
operator given by A. The triplet (LQ(TQM_l), (MN ez, D = %) is a discrete-
time quantum walk. This type of quantum walks will often appear in this paper.
The walk is analytic (smooth, or uniform), if A analytic (smooth, or continuous,
respectively).

Ezxample 2.15 (Direct sum). Let (7—[1, <U1(t)) ,D1> and <7—[2, (Uz(t)> ,D2> be two

continuous-time or discrete-time quantum walks. Then (#; @ Mo, (U @ UW),
Dy @ D) is also a quantum walk. We call it the direct sum quantum walk.

Ezample 2.16 (Amplification). Let n be a natural number. Let (H, (U(t)) ,D) be

a quantum walk. Then (7—[ ® C", (U(t) ® id) ,D® id) is also a quantum walk. We
call it the amplification quantum walk.

Analyticity, smoothness, and uniformity are preserved under direct sum and am-
plification.

2.3. Intertwiners between two quantum walks and their regularity.

Definition 2.17. Let (H1, (Uf)iez, D1) and (Ha, (U)iez, D2) be two one-dimensional
discrete-time quantum walks. A bounded operator V: Hy — Hs is called an inter-
twiner between them, if it satisfies VU, = UV .

An intertwiner between (H1, (U?)iez, D) and itself is nothing other than an oper-
ator in B(H) which commutes with U.

Definition 2.18. If the mapping R > k s e*P2Ve=*D1 ¢ B(H, < H,) is contin-
uous (or smooth), the intertwiner V' is said to be uniform (or smooth) with respect
to D1 and Ds. If there exists a holomorphic extension of the map

R 3k P2y =01 ¢ B(H)
defined on a domain of the form {x € C| -0 < Im(k) <}, V is said to be analytic.
The bounded operator V: H; — Ho defines an operator

=~ 0 0
VZ(V 0)2%1@7{2—)7‘[1@%2.
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The operator V is an intertwiner between U; and Us, if and only if V commutes
with U; @ Us,. The intertwiner V' is uniform (smooth, or analytic) with respect to Dy
and Ds, if and only if V is uniform (smooth, or analytic, respectively) with respect
to D1 SY) Dg.

Let (Hs, (Ul)ez, D3) be another quantum walk. If V;: H; — Hs is an intertwiner
between U; and Us, and if V5: Ho — H3 is an intertwiner between U, and Us, then
If VoVi: Hi — Hs is an intertwiner between U; and Us. If V; is uniform with respect
to D71 and D, and if V5 is uniform with respect to Dy and D3, then V5V; is uniform
with respect to D; and D3. Smoothness and analyticity are also preserved under
this composition procedure.

To determine whether there exists a non-zero uniform intertwiner between given
two homogeneous quantum walks, we use the following as a key tool.

Proposition 2.19. Let r(1) and r(2) be positive real numbers. Let V' be a bounded
operator from lo(r(1)Z) to ly(r(2)Z). Let D,y be the diagonal operator 6, —
Yoy, y € 1(1)Z on ly(r(1)Z). Let Dy ) be the diagonal operator 0y — 20y, 2 € T(Z)Z
on ly(r(2)Z). Suppose that V is umform with respect to D,y and D). For
y € r(1)N, define a probability measure p, on R by

2

Dy = Z ’(V‘S 5> 2)Z) Oz /y;

z€r(2)Z
where 0, /, stands for the point mass at y/x € R. Then for every positive number 6,

we have
lim py((—00,1 = 0] U[1+d,00)) =0

Yy—00

Proof. For every real number k, the matrix coefficient of exp(ikD,(2))V exp(—ikD, 1))
at (z,y) is

(exp(ikD,(2))V exp(—ikDy1))dy, 0z >£ = exp(ik(z —y)) (Vy, 5$>22(r(2)Z) :
For a positive real number o, define an operator V,, by
0o k2 dk
= ——— kD D
Yo /_oo o ( 202) SPURDr )V expl=ik D) 752

Note that the operator norm of V, is no more than that of V. We also note that as o
tends to 0, V, converges to V' in the operator norm topology. The matrix coefficient
of V is

Vabys ) ooy = /_oo exp <—£> exp(ik(z — y ))\/_0 (V800,000

[e.9]

(z —y)?

Take arbitrary (small) positive real numbers § and e. There exists a (small)
positive real number ¢ such that |V — V|| < e. For such € and o, there exists a
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positive number K such that for every y € r(1)Z,
Z exp (—(z —y)?0’) <e
z€r(2)Z,|lz—y|>K
We consider the case that y € r(1)Z is larger than K/§. Then
PRA=8140) = 3 [Voduean

zer(2)Z,lx/y—1|>5

2

Since the inequality |x/y — 1| > ¢ implies |z — y| > |y|0 > K, we have

PRA=81+0) < 3 |(Vadduuen

zer(2)Z,|z—y|>K

‘ 2

We further obtain the following inequalities
py(R\ (1 =46,1+9))
Do WVedy8a) + (V= Vo)dy, b))

z€r(2)Z,|lz—y|>K

<2 ) Vet r2 Y (V= V5)by, 6.) [

z€r(2)Z,|lz—y|>K zer(2)Z,|lz—y|>K

<2 3 exp (=)0 Vo, )+ 2](V = Vo)d, 12

zer(2)Z,|lz—y|>K

IN

By the assumptions on ¢ and K, we have
PR\ (1=6,1+0)) <2[Vl[e+ 2|V = Vo|* < 2[[V]le + 2¢"
It follows that the positive measure p, tends to 0 on R\ (1 — 4,1+ 9). O

Remark 2.20. A bounded operator V' : (57 — (57 is continuous with respect to the
standard diagonal operator D;: 0, — xd,,x € Z, if and only if V' is an element of
the uniform Roe algebra C?(Z) defined in [Roe03, Subsection 4.5]. We can easily
prove it, using V, introduced in the above proof. In this paper, we regard C(Z) as
the space of operators on (5(Z) which are uniform with respect to Dj.

2.4. Similarity between discrete-time quantum walks.

Definition 2.21. Discrete-time quantum walks (Hy, (Uf)iez, D1) and (Ha, (Ud)iez,
Dy) are said to be similar, if there exists a unitary operator V: Hy — Ha which is a
smooth intertwiner between (Hy, (U})iez, D1) and (Hz, (Ud)iez, D2). If V. maps the
domain of Dy to that of Dy and DoV =V Dy holds, or equivalently, if the mapping
k +— exp(ikD9)V exp(—ikDy) is constant, then these walks are said to be unitary
equivalent.

If (Hy, (U})iez, D1) and (Ha, (US)iez, Do) are similar, and if one of them is smooth,
then the other is also smooth. Similarity is an equivalence relation on smooth
quantum walks.
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FExample 2.22. Example 2.8 and Example 2.12 are unitary equivalent. Example 2.11
and Example 2.13 are also unitary equivalent. The Fourier transform is a smooth
intertwining operator.

Ezample 2.23. Let (H, (U")ez, D1) be a smooth quantum walk. Let Dy be a self-
adjoint operator on #H. If the mapping R > k ~— e*P2¢=*D1 i5 smooth, then
the quantum walks (H, (U")iez, D1) and (H, (U")iez, D2) are similar. Indeed, the
identity operator gives a smooth intertwining operator between them.

Example 2.24. Let (H,(U')ez, D) be a smooth quantum walk. Let V' be a uni-
tary operator on H. If V is smooth with respect to D, then quantum walks
(H, (U sez, D) and (H,(VU'V 1)z, D) are similar. Indeed, the unitary opera-
tor V' gives a smooth intertwining operator between them.

Similarity is compatible with direct sum and with amplification.

2.5. Asymptotic behavior of quantum walks. Let (H, (U')icz, D) be a discrete-
time smooth quantum walk. Fix a unit vector £ in ‘H. We often call £ an initial
unit vector of the quantum walk. Let F(-) be the spectral projection of D. Recall
that E maps Borel subsets of R to orthogonal projection in B(#). For every t € N,
we have a probability measure on R defined by (E(-)U'¢,U'¢). We pay attention
on the push-forward p; of the measure under the mapping R 5 x — z/t € R. The
measure p; is given by

pe(Q) = (E(tQU',U'¢), a Borel subset 2 C R.

The vector £ € H is said to be smooth with respect to D, if £ € (), oy dom(D™).
We often assume that the quantum walk (H, (U');ez, D) is smooth and that the
initial unit vector £ is smooth. It is not hard to see that for every integer ¢, U¢ is
also smooth with respect to D.

Lemma 2.25. The m-th moment of p; is /
vER

1
o™ - py(dv) = <%DmUt§, Ut§> .
Proof. For every t € N, we calculate the m-th moment of p; as follows:
| omna) = [ o vs)
veER veER
1
= [ e (EnU V)
z€R tm
This is nothing other than the right hand side of the lemma. ([l

Definition 2.26. If the weak limit of p; exists, it is called the limit distribution of
the quantum walk (H, (U")sez, D) with respect to the vector &.

Lemma 2.27. Let (H,(U') ez, D) be a discrete-time smooth quantum walk. Let
& € H be a unit vector. Assume that & is smooth with respect to D. Then we have

/ )| < DU

lim sup
t
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Proof. For a while, we fix m and consider the case that ¢ is large. By Lemma 2.4,
we can define a sequence of bounded operators ug, uy, us, - - - as follows:

uy=U, wu =[D,ug), us=I[D,ul,---.
By smoothness of £, we can also define a sequence of vectors &y, &1, &, -+ € H by
& =D teN.
For smooth operators and smooth vectors, the following Leibniz rule holds:
DAn = A'n+ An', where A" =D, A], = Dn,
[D,AB] = A'B+ AB', where A'=[D, A],B' =D, B].
By the Leibniz rule, the vector D™U'¢ can be expressed as follows:
(1) DU =) ugemrUpsi(e-1) U (0610
sel
In this formula,
e s is an element of the index set
I'={s:{1,2,--- ,m} - {0,1,--- ,t} | a map},
e s7(j) is the inverse image of {j} C {0,1,--- ,¢} under the mapping s.
e #s71(4) is the number of elements of the inverse image.
Define a subset Iy of I as follows:
Ip={s:{1,2,--- ,m} = {0,1,--- ,t} € I | s7(0) = 0, s is injective} .

It is not hard to see that if ¢ is large, almost all the elements of I are in I,. More
precisely, lim;_, #/o/f] is 1. For s € I, the norm of the term w1y Ugs-—1(-1) - - -
Ugs—1(1) §gs-1(0) in the equation (1) is bounded by

max{1 = [luol|, [[urll, -+, [uml|}™ max{1 = [[]], €]l -+, (1€mll}-
It follows that

lim sup
t

1
DU

1
‘ < 1imtsupu—l E Huﬁgfl(t)uﬁsfl(t—l)--.Uﬁsfl(l)fﬁs*l(O)”
sel

_ 1
= limsup — > [Jugertiser 1) - U1 €10 |
t Jj] scly
I
< limsup 20y 7
t

gl
= |, u]"

Combining with the equation in Lemma 2.25, for every positive integer m, we have

1
[ o (worvteve)| <o)l

= lim sup
t

lim sup
t
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Proposition 2.28. Let (H,(U")cz, D) be a discrete-time smooth quantum walk.
Let £ € H be a smooth unit vector. For every L € R larger than ||[D,Ul||, we have

lim p;((—o0, —L]U[L,00)) = 0.

t—o00

Proof. By Lemma 2.27, for every positive integer m, we obtain the following:

lim sup p;((—00, =L] U [L,00)) < limsup —— ™ - py(dv)
n t L=m vE(—o0,—L]U[L,00)
: 1 m
< hmtsup Tom v*™ - py(dv)
vER
I[D, U||>™
— [2m :
Since the positive integer m is arbitrary, the conclusion follows. 0

Corollary 2.29. Let (H,(U")ez, D) be a discrete-time smooth quantum walk. Let
& € H be a smooth unit vector. If the limit distribution exists, then its support is
compact.

Proposition 2.30. Let (H,(U")cz, D) be a discrete-time smooth quantum walk.
Let £ € H be a smooth unit vector. Let po, be a Borel measure on R. The sequence
of the measures p; weakly converges to P, if and only if their moments converge to
those of Do .

‘If part’ of this proposition is a consequence of the general theory like [Chu68,
Theorem 4.5.5]. We give a proof to make the argument self-contained.

Proof. 1f all the moments of p; converge to those of p,,, then the support of p. is
included in [—|[[D,U]||, ||[D,U]||], by Lemma 2.27. If p; weakly converges to peo,
then the support of py is included in [—||[D, U]||, ||[D, U]||], by Proposition 2.28.

Let € be an arbitrary positive real number less than 1. Take a real number L larger
than [|[D,U]|]. For a bounded continuous function f on R, and for a polynomial
function g on R satisfying

(2) lg(v) = f(v)| <€, wvel-L L]

< €.

/U  FWpela) = / ()

Since the function f is bounded and g is polynomial, there exists a positive integer
m such that

o for v € (=00, —L] U[L,00), | f(v) — g(v)| < (E)Qm, and

D, U\ g
(1)
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For such a natural number m, we have

£ (0)pr(dv) / _swp(ar)

veER

/ () = g(0)pe(dv) + /e( o, ) = gnta)

—L

< €+/veR (%>2mpt(dv)-

By Lemma 2.27, if ¢ is large enough, then we have

(dv) — /UERg(v)pt(dv) <et (M)zm be< e

Suppose that all the moments of p, converge to those of p,,. Take an arbitrary
bounded continuous function f on R. There exists a polynomial function g satisfying
the inequality (2), by the approximation theorem of Weierstrass. The inequality (3)
follows. If ¢ is large enough, we obtain the inequality (4). By the definition of
convergence in moments, if ¢ is large enough,

IN

) / somldn) — [ gpu(an) <e
veER veER
The inequalities (3), (4), and (5) implies that if ¢ is large enough,
(dv) / f(0)poo(dv)| < Be.

We conclude that p; weakly converges t0 Puo.

Conversely suppose that p; weakly converges to p.,. Take an arbitrary polynomial
function g. Then there exists a bounded continuous function f on R satisfying the
inequality (2). Then we have the inequality (3). If ¢ is large enough, we obtain the
inequality (4). By the definition of weak convergence, if ¢ is large enough,

(6) (dv) - / IRCINCOIEE

The inequalities (3), (4), and (6) implies that if ¢ is large enough,

/U o) - / _op (@)

We conclude that all the moments of p, converge to those of p... 0

< be.

When we discuss the limit distribution, we can freely replace the original quantum
walk with similar one.

Theorem 2.31. Assume that two smooth quantum walks (Hy, (Uf)iez, D1) and
(Ha, (Ub)iez, Do) are similar. Let V: Hy — Ho be a unitary operator which gives
simalarity between the quantum walks. Let & be a unit vector in Hy which is smooth
with respect to Dy. Then the vector V& is smooth with respect to Dy. The quan-
tum walk (Ha, (Ud)iez, D2) has limit distribution with respect to V&, if and only if
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(H1, (U})tez, D1) has limit distribution with respect to &. In this case, these limit
distributions coincide.

Proof. By Lemma 2.4, V maps £ in dom(D7") to an element of dom(D%").

Let p1; be the t-th probability measure of (Hy, (U})iez, D1) with respect to &.
Let pos be the t-th probability measure of (Ha, (US)iez, Do) with respect to VE. By
Lemma 2.25, the m-th moment of p; ; is given by

1
(woruis.vte).
The m-th moment of py, is given by
1 1
(moroveuve) = Lopvuie vute).

By Proposition 2.30, it suffices to show that for every m, as ¢ tends to infinity, the
difference of these moments converges to 0.
Define sequences of bounded operators {v;: H1 — H2} and {u;: Hy; — Hi} by

vy =V, vy = D2Uj71 - Ujlela
Ug = Ul, U; = D1Uj_1 - uj—lDl-
By Lemma 2.4, these operators are bounded. Define vectors {¢;} € H; by
§o=2¢& & =D
By the Leibniz rule, the vector DF*VU{¢ can be expressed as follows:
DYVULE = D U1ttt (s 1)~ Ugs 1 (1635 0)
seJ

In the formula,

e s is an element of the index set
J={s:{1,2,--- ,m} = {0,1,--- ;t,t+ 1} | a map},

e s !(j) is the inverse image of {j} C {0,1,--- ,¢,¢+ 1} under the mapping s.
e #s71(j) is the number of elements of the inverse image.

Define a subset Jy of J as follows:
Jo={s:{1,2,--- ,m} = {0,1,--- ;t,t+1} e J|s'(t+1)=0}.

If ¢ is large, the number of elements in the coset J \ Jy is much smaller than ¢™.
That is limy o (§J — £Jo)/t"™ = 1. For s € J, the norm of the term

Ugs=1 (14+1) Ugs—1 (1) Ugs =1 (t-1) ** Ugs=1 (1) €351 (0)

in DIV U is bounded by

m
s ol (s ol ) oo 1
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It follows that

1o 1
VOIS - = D Ve ey e (et o) U g 0| = 0.

s€Jy

lim
t—o0

The second term in the limit is nothing other than the following vector:

1 L om
VD stz e U (€t o) = 7V DTULE

s€Jo

1
It follows that the m-th moment <t—mD§”VUf§, VU{§> of pas is asymptotically
identical to
1 myrt t 1 myrt t
t_mVDl U1, VULE ) = t_le U1, UL€ ) .
This is nothing other than the m-th moment of p; ;. 0

2.6. Homogeneous quantum walks. We propose the following axiom on one-
dimensional homogeneous quantum walks.

Definition 2.32. The quadruple U = (H,(U')ez, D, S) is called a discrete-time
homogeneous quantum walk, if the following conditions hold:

o The triple (H,(U");, D) is a quantum walk.

e S is a unitary operator on H.

e US=5U.

e S preserves the domain of D.

e S7'DS — D is a positive constant operator r -id.

e The spectral projection of D corresponding to [0,7) C R has finite rank.

An operator on H is said to be homogeneous, if it commutes with S. It is said
to be essentially homogeneous, if there exists a natural number N such that the
operator commutes with SY. Regularity (uniformity, smoothness, or analyticity) for
an operator on H is determined by D as in Definition 2.3.

Two discrete-time homogeneous quantum walks are said to be similar, if two
triplets of quantum walks are similar, and if the forth entries are unitary equivalent
via the intertwiner which gives similarity. If we need to consider continuous-time
homogeneous quantum walk, replace (U?)ez with (U®),cp.

Let H, denote the spectral subspace of D corresponding to [0,7) C R. Denote by
n the dimension of Hy. The natural number n is called the degree of freedom. The
Hilbert space H is decomposed as follows:

H:"'@S_lHo@Ho@S%o@"'.

Identifying Ho with C", we can easily show that (H, (U"), D) is similar to a quantum
walk ((2(Z) ® C™, (U"), D1 ® id) and that S is identified with the bilateral shift
S1 ®id. We may fix the original homogeneous quantum walk U as U = ({5(Z) ®
C", (U":, Dy ®id, S; ®id). For the rest of this paper, we always assume that U is
of the form

(lo(Z) @ C", (U ez, D1 ®id, S; @ id)
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and that the generator U is analytic with respect to D; ® id.

3. STRUCTURE THEOREMS ON INTERTWINERS AND COMMUTANT

In this section, we demonstrate the way to determine the space of uniform inter-
twining operators between discrete-time homogeneous analytic quantum walks. As
a corollary, the algebra of uniform operators which commute with a given walk is
determined. For the first half, we review the structure theorem in [SS20]. We need
to fix the notations related to Fourier analysis.

3.1. Fourier analysis. We consider the group rZ generated by a positive real num-
ber r and its dual. All the characters of rZ are of the form

2
Xk(z) = exp(ikx), k€ [O, —W) , X €T
r

We identify the dual group {x; | 0 < k < 27r~!} with R/(27rr~'Z). We often denote
by Torp—1 the dual group R/(2xr=1Z). The subscript 27r~! is equal to the length

r
of the torus. We introduce the counting measure on rZ. The scalar multiple —dk

T
of the Lebesgue measure dk defines the Haar measure on Ty,,—1. For x € rZ, the
character ¢, on Ts,.,.—1 is defined as

c.(k) = exp(ikx), Kk € Topp1.

The Fourier transform F,: L*(Tyr—1) — £2(rZ) maps ¢, to the definition function
d, of {zx} CrZ.

3.2. Model quantum walk. Let A\: Ty,.—-1 — T = {2z € C | |z| = 1} be an analytic
function. The function A defines the multiplication operator M[A]: L*(Tyr-1) —
L*(Tyzp—1). The triplet (¢3(rZ), (UL)iez, D) of

e The Hilbert space ¢5(rZ) of the square summable functions on rZ,
e The Fourier transform U{ = F,M[N'Ft: lo(rZ) — Ly(rZ),
e The diagonal operator D, given by D, (d,) = x0,,x € rZ.

is called a model quantum walk. Here we note that the inverse Fourier transform
(FY(r2), (FYULF, ) iez, Fo P DF,) of the model quantum walk is identical to

(22, (MDY 757 )-

The model quantum walk was first introduced in [SS20]. The formulation in [SS20]
is different from that in this paper. However, the difference is not crucial. In [SS20],
the parameter r was a reciprocal r = d~! of a natural number d. A quantum walk

((2) & C, (Far MIN'FL) oy D1 @)

tez’

was called a model quantum walk in [SS20]. The Hilbert space ¢(Z) ® C? can be
identified with fo(d~1Z) by

6S®6k'_>5kd_1+57 SEZ,k€{1,2,,d}
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As explained in Example 2.23, the self-adjoint operator D; ®id can be replaced with
Dgy-1. It turns out that the model quantum walk in [SS20] is similar to

(G(a7'2), (Fer MIN'F L),y Dat)
This is a special case of model quantum walks defined in this paper.

3.3. Review of a structure theorem in [SS20]. We have already obtained a
structure theorem for discrete-time homogeneous analytic quantum walks. We re-
view here the main result in [SS20] and adjust the notations for the argument of
this paper.

Let U = ((5(Z) @ C*,(U')4ez, D1 ® id, S; ® id) be an arbitrary homogeneous
analytic quantum walk. The inverse Fourier transform of U is

N d
U= (LQ(TQ,,) ® C", (FL ®id) 'UY(F1 ®id))iez, —® id) :

The generator U is a unitary element of C(Ty,) ® M,(C), the space of (n x n)-
matrices whose entries are multiplication operators given by analytic functions on
Ty, For every k € Tay, U gives an (n x n)-unitary matrix U (k). The unitary matrix
provides a decomposition of C" into eigenspaces. By analyticity of the entries of U ,
we obtain not only analytic functions A(k) of eigenvalues of U(k), but also analytic
sections of eigenvectors whose fibers make orthonormal bases of C". We need to
keep in mind that the eigenvalue functions A\(k) are not necessarily single-valued.

To describe the multi-valued eigenvalue functions, we make use of the torus To,q =
R/(27dZ), and define a covering map pg: Torg — Tor = R/(277Z) by the standard
quotient. We obtain

e natural numbers d(1),d(2),--- ,d(v) whose sum is n,
e analytic maps A, : Torq) = T, (0 =1,2,--- ,v)

such that for every k € Tyy, the set of the eigenvalues of U (k) is

O {’\L @) ‘ ke Tara), P (%) = k} :
1

L=

Corresponding to this description of eigenvalues, an analytic sections v, (E) of eigen-
vectors do exist. These sections naturally define a unitary operator

Vi @ LA(Tanay) = LA(Tar — €)= L*(Tar) @ C"

by the formula

VEl® = Y &(F)vi(k), & €L (Tora),k € Tar.

k, p.(k)=k
By analyticity of the sections of eigenvectors, V' is analytic with respect to
d d

d d
@@ﬂ@ @%(U tlmes)and%ébld
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The analytic unitary operator V' gives similarity between U and the direct sum
é L2 (TQTI'd(L))7 (M[)\L]t>t€Z) i .
et 1dk
Applying Fourier transform, we conclude that U is similar to a direct sum of model
quantum walks.

Example 3.1 (4-state Grover walk). Consider the following unitary operator on
EQ(Z) X (C4 = 62(Z>4I

S0 0 0 -1 1 1 1
goLlf 0 st oo o0 1 -1 1 1
21 0o 0 S 0 1 1 -1 1
o 0 0 S 1 1 1 -1

We concretely calculate the eigenvalue function of U and identify the decomposition
into model quantum walks. The inverse Fourier transform of U is

ek 0 0 0 -1 1 1 1

~ 1 0 e%* 0 0 1 -1 1 1

Uk =51 o o e* o 1 01 -1 1 | ke
0 0 0 e 1 1 1 =1

The characteristic polynomial is
det ()\ - ﬁ(k))

63ik_|_€ik_|_€—ik+e—3ik 5 eSik+€ik+6—ik+e—3ik

= M A° — A—1
* 2 2
= (A=1)(A+1){N\* + (cos3k + cosk)A + 1} .
We obtain two constant eigenvalue functions A (k) = 1 and Ag(k) = —1. We focus

on the roots of the last factor. The roots are given by

k 3k
As(k) = —M—isink\/1+4cos4k,

2
k k
(k) = —w +isinkv'1+ 4costk.

Thus we obtain four single-valued analytic eigenvalue functions A\ (k) = 1, A (k) =
—1, A3(k), \(k), satisfying

det <)\ - ﬁ(k)) - ﬁ(A — (k).

J=1

By the structure theorem, it turns out that the 4-state Grover walk (¢3(Z) @ C*, (U"), D; ® id)
is similar to the direct sum:

(L"’(Tzﬂ) @CH (1@ (=1)' @ M\s]' @ M[M\]Y ez, (%) )
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Similarity is given by a composite of the inverse Fourier transform and a unitary
operator V = (V(k)) acting on L2(Ts;) ® C*. The unitary V (k) € My(C)
keT

27
is given by an analytic decomposition into eigenvectors and therefore analytic with
respect to (%)694
Ezxample 3.2 (3-state Grover walk). Consider the following unitary operator on
EQ(Z) X (C3 = 62(Z>32

L[ Sih 0o -1 2 2
U=-| 0 1 0 2 -1 2
0 0 S 2 2 —1

We concretely calculate the eigenvalue function of U and identify the decomposition
into model quantum walks. The inverse Fourier transform of U is
R L [e™ 00 -1 2 2
U(k):§ 0 1 0 2 -1 2 , ke Ty
0 0 ek 2 2 -1
The characteristic polynomial is

det (A - ﬁ(k))

3 3
44 2cosk
— (A-1) <A2+—+ - >\+1).

Here we obtain an eigenvalue function A;(k) = 1. We focus on the roots of the last
factor. For k € [0, 27), the roots are given by

2bcosk 1.k
(k) = —%—gismg\/lomcosk

and Aa(k + 2m) = Ao(k). Thus we obtain one single-valued analytic eigenvalue
function A\;(k) = 1 and one multi-valued analytic eigenvalue function

ke {a(k), Ao(k + 2) 1.

= N4+ Al

By the structure theorem, it turns out that the direct sum

2 2 t d d
(L (T27r) ® L (T47r>7 (]- D M[/\2] )tEZ7 m S W)
is similar to the 3-state Grover walk (¢(Z) ® C3,(U"), D; ® id). Inui, Konno, and
Segawa in [IKSO05] observed that the limit distribution of the 3-state Grover walk
is localized around 0 € R. The above decomposition gives another proof of their
result, since the walk contains a constant quantum walk as a direct summand.
Similarity is given by a composite of a unitary operator

Vi L*(Tay) @ L*(Tar) — L*(Tay) @ C?
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and the Fourier transform
Fi®id: L*(Tyy) ® C* — £5(Z) ® C*.

The unitary XA/(k) is given by an analytic decomposition into eigenvectors of U (k)

corresponding to the eigenvalues {1, A2(k), Aa(k + 2m)}. The unitary V is analytic
with respect to %.

Here we propose a problem. When is a homogeneous analytic quantum walk
U realized by a continuous-time uniform quantum walk which is not necessarily
homogeneous? Theorem 4.2 gives an answer.

Some model quantum walk can be decomposed into a direct sum of model quan-
tum walks. To analyze such a case, we need to decompose U further.

3.4. Prime model quantum walks. Let A be a periodic analytic map A\: R — T
on R which is not constant. For a positive period 277~ of A, A gives an analytic
map A: Tor—1 — T. We can construct model quantum walks from A. Since the
period 27r~! of A is not unique, the model quantum walk ({3(rZ), (U})iez, D) is
not uniquely determined by A. But the possible model quantum walks are closely
related to that of the minimal period.

We note that the dual group of (r/m)Z is Tamp—1 = R/(2rmr='Z). The length
of Torpmr—1 is m-times longer than that of To,,-1.

Proposition 3.3. Let \ be a periodic analytic map \: R — T on R which is not a
constant. Let 2rr~t be the minimal period of X. Let m be a natural number. The

model quantum walk (EQ <LZ> (U ez, DT/m> 1s similar to the direct sum
m

m

(62 (TZ) ; (Ui)tEZa Dr)e9
of the model quantum walks given by the minimal period.

Remark 3.4. For the definition of similarity, see Definition 2.21. Similarity as ho-
mogeneous quantum walks defined in Definition 2.32 does not necessarily hold.

Proof. 1t suffices to show that

<L2 (R/(@mmr'Z)) , (M')scz, %>
is similar to
(L? (R/(27r™'2)) , (M[A)sez %)

Recall that for € (r/m)Z, c.(k) = exp(ikx) defines a character of Ty -1 =
R/(27rmr~17Z) and that {c, | z € (r/m)Z} is an orthonormal basis of L*(Typ-1).
Since the minimal period of A is 27r~!, we can express the analytic map A by

Ak) = Z yCy.

zerZ
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Since A is analytic, as |x| — 00, |a,| rapidly decreases. Therefore the infinite sum

Z azMlcy] € B(L*(Tommr—1))

xErZ
converges in the operator norm topology. By the relation Mlc,](c,) = cy4y, for
every z € {0,7/m,2r/m,--- ,(m — 1)r/m},

H, :=span{c,., | x € rZ}

is invariant under the action of M[A] and under exp(ik%). The action of M[A] on
‘H. is unitary equivalent to that on Ho. The operator C‘llk on H, corresponds to the

sum of a constant operator and -% on H,. The Hilbert space Ho = Span{c, | = € rZ}
is naturally identified with L?(Tgy.-1). It follows that

D (H (M )rez %)

z

and
(22 @/ 2)) (M 5

are similar. The former walk is unitary equivalent to the original quantum walk. [J

Example 3.5. Consider the quantum walk (¢5(Z) @ C3, (U')ez, D1 ®id) generated by

08 0 ~ 0 et 0
U= 0 0 S; |.Theinverse Fourier transformisU(k) = | 0 0 e* | ke
1 0 0 1 0 0

Ty.. The characteristic polynomial is A\* — e?*_ The eigenvalue function is a multi-
valued function
k= {\(k), \(k+2m), A\ (k +4m)}
given by
co/3(k) = exp(2ik/3), k+67Z € R/677Z.

By the structure theorem in [SS20], the original quantum walk is similar to

(LQ(TGF)’ (Mleass]'), ez %) '

The function A;: Ty, — T has a non-trivial period 37. As in Proposition 3.3, This
is similar to the following direct sum:

(22020, Ol 57 ) B

This is unitary equivalent to the direct sum of two prime model quantum walks

(22 ((2/3)Z), (Mcays]') o 192/3)692 .

Note that the original quantum walk U and this direct sum are similar in the category
of quantum walks, but not similar in the category of homogeneous quantum walks
(Subsection 2.6).
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Definition 3.6. A model quantum walk (Us (rZ),(Ut)iez, D) is said to be prime, if
the analytic map \: Tor,—1 — T has no period other than 0.

Thus we have the following structure theorem.

Theorem 3.7. Let U = ((5(Z)RC", (U')1ez, D1®id) be an arbitrary one-dimensional
discrete-time homogeneous analytic quantum walk. Then there exist

non-negative integers l, m,
rational numbers v(j), (7 € {1,---,1}),

e prime model quantum walks (Zg(r(j)Z), <U§‘(j)>tez’Dr(j)>7 (je{l,---,1}),

e complex numbers a(k), (k € {1,--- ,m}) whose absolute values are 1,

satisfying

e that the given analytic walk U is similar to the direct sum

ela (52(7"(]')2% (Uf\(j))tez ; Dr(j)> ® é (EQ(Z), (a(k)),ey s D1>

j=1

(The integers I and m can be zero. In the case that | = 0, erase the first half.
In the case that m = 0, erase the second half.)

e and that the degree of freedom n is equal to m + 22:1 r(j)~t

Proof. As we explained in Subsection 3.3, U is similar to the direct sum of model
quantum walks

D (eZW)Z), (U)o DT(L)> .
=1
The positive numbers 7(¢) are reciprocals of natural numbers d(¢).

Consider the case that the analytic function A(¢): Torgi) — T is not constant. If
it is not prime, we can further decompose the the model quantum walk into prime
model quantum walks. In such a case, r(¢) becomes larger, but the sum of reciprocals
is preserved (see Proposition 3.3). Each prime model quantum walk becomes a direct
summand of the first half.

If the analytic function A(¢): Torgy — T is a constant function a(c), then the
corresponding model quantum walk is decomposed as follows:

(EQ(T(L)Z), (oz(L)t)th , DT(L)) = (EQ(Z), (O‘(L)t)tez , Dl)

These direct summands becomes direct summands of the second half. O

er(~!

Examples 3.1 and 3.2 give decompositions into constant quantum walks and prime
model quantum walks.

3.5. Uniform intertwiner between two walks. For a while, we make use of two
pairs of dual groups (r(1)Z, Tyq)) and (r(2)Z, Ty2)). As explained in Subsection 3.1,
for . = 1,2, the length I(:) of the torus Tj, is equal to 27mr(s) "

The following lemma is the most important technical ingredient of this paper.
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Lemma 3.8. Let ¢: Tyoy — Ty be a diffeomorphism. Let f be a bounded Borel
function T2y whose support is not null. Let V' be the composite M|f] o ¥* of

o the pull back *: L*(Tyq)) — L*(Ty2)) of ¥ and

e the multiplication operator M|[f]: L*(Tyq)) — L*(Ty)).
If Ve B(L2(Tl(2)) < L*(Tyy)) is uniform with respect to the differential operators

% on Tyqy and 7 Z.d on Tyg), then on every interval contained in suppf, ¥(k) —k is
constant.

Proof. For y € r(1)Z, let ¢, denote the function on Ty = R/(r(1)Z) given by
¢y(k) = exp(iky). For x € r(2)Z, let ¢, denote the functlon on Ty = R/(r(2)Z)
given by ¢, (k) = exp(ikz). For x € r(2)Z and y € r(1)Z, the matrix coefﬁcient Vi
of the Fourier transform of V is given by

Define a function W: Tyo) — T = {2 € C| |2| = 1} by ¥ (k) = exp(i)(k
above quantity is equal to

(7) Vey = (M w07, Cw>L2(Tl<z>)'

Motivated by the above formula, we consider the homogeneous smooth quantum
walk (L*(Ty2)), (M[¥" ™)) e,1)z, -%) and the initial vector f € L?(Ty)). For the
rest of this proof, consider the case that y € r(1)Z is large, and we regard the
integer y/r(1) as time. Define an integer t(y) by y/r(1). The Fourier coefficients
(Viy)z € la(r(2)Z) of M[W'W)]f € L?(Ty)) gives a measure on r(2)Z. Denote by p,
the push-forward measure along the mapping r(2)Z > z — x/y € R. More precisely,
py is the sum 3° oy |Vz,y?04)y of point masses at {z/y | x € r(2)Z}.

We first consider the case that f: T2y — C is smooth. Denote by D = de the
differential operator acting on L?*(Tys)). By Lemma 2.25, the m-th moment of p, is

identical to
< ) (W) £, M [0 f>
L2(T(2))

< W] =M )] ) m A f>L2(Tz<z>)
(foons] 217,
(

M{ } +§)mf’f>m(qum)'

The function ¥'/(ir(1)¥) is equal to ¢'. As y — oo, the moment of p, tends to

dk
@.

<
-
<
<

IS Py = [ F O



INTERTWINERS BETWEEN 1-DIM QWS 23

This implies that p, converges in moments to the push-forward of the measure

dk
|f(k )|2U along the mapping v': Ty) — R. It follows that p, weakly converges

to the push-forward measure (Proposition 2.30). The vector f is not a unit vector,
but the argument in Proposition 2.30 is valid.
Let us go back to the general case. Suppose that g: T;) — Cis a general bounded

Borel function. Denote by W the operator M [g] o )*. The matrix coefficients
Wy = </V[70y, cz> . of the Fourier transform of W are given by

Wey = (M[W] g’cx>L2(Tz<z))'

Let g, be the probability measure ZxET 22 |W$,y|25x/y. Define a constant C' by
191l 2 (I, For an arbitrary positive number €, there exist a smooth function
£ Tuzy — C satistying I|f = gll2n,,)) < & | Fllz2ry) < €. We denote by || [l
the norm of linear functionals on the Banach space of bounded continuous functions
on R. By the Cauchy—Schwarz inequality, we have

Iy = tllae < [ (IVaal®), = (Wenl?), 1,
< N Va)a + W) [l | (Vai)e = (Way), I, -

By the Plancherel theorem, and by the equation |¥(k)| = 1, we have

Iy — QyHCb*
< |[M W]+ MO gl (M O] - MO g
1+ gl 1 — 9l
< 2Ce.

By the Cauchy—Schwarz inequality, we have

o (1 ) = ot (Lot 55

, dk , dk
sHu@nmg—mnnﬁg

cb*

cb* (Ty(2))
= ||l = |9|2HL1(T1(2>)

1 + gl I = 912y
2C.

ININ

dk
[(2)

By Proposition 2.19, since the Fourier transform W of W is uniform with respect
to the diagonal operators D,y and D2, the weak limit of ¢, has to be concentrated
on 1. It follows that ¢ is the constant function 1 on the support of g. O

) , ¢y weakly converges to ¢} (|g(k:) 2 ﬁ) '

Because p, weakly converges to ¢, (|f( )|2 1(2)
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Lemma 3.9. Let V be a bounded operator from L*(Tyy) to L*(Tyy). Let I(1) be
an open interval of Tyqy and let 1(2) be an open interval of Tyq). Let: I(2) — I(1)
be a diffeomorphism. Suppose that the derivatives ' and (') are bounded. Let
f:1(2) — C be a bounded Borel non-zero function. Suppose that the restriction
V2 is identical to the composition operator M[f] o™ of

o the pull back *: L*(I(1)) — L*(1(2)) of ¢ and

e the multiplication operator M[f]: L*(1(2)) — L2(I(2)) C L*(T).
[fV 1s uniform with respect to the differential opemtors on L*(Tyq) and idik on
L*(Tys)), then on every interval contained in suppf N ](2) (k) — k is constant.

Proof. Let g be an arbitrary smooth function on T;(y such that the support supp(g)
is a compact subset of I(1). The multiplication operator Mg ] maps L*(Tymy) to
L*(supp(g)) C L2( (1)). Since M[g ] is uniform with respect to -%, V M[g] is uniform

with respect to -2-. The operator VM [g] expressed as follows:

VMg = M[f] 09" o M(g].

Choose a diffeomorphism ¢: Ty — Tj1) which is identical to ¢ on ¢! (supp(g)).
Then we have

dk’

VMlg] = M[f]o¢" o Mgl = M[f - (g0 ¢)] 0 6"

By Lemma 3.8, ¢ is rotation on every interval included in supp f Nsupp(g o ¢), and
therefore, v is rotation on every interval included in supp f Nsupp(go ). It follows
that for every interval included in suppf N I(2), the map v is rotation. O

Proposition 3.10. Let A\y: Tyq) — T and Ay: Tyo) — T be analytic maps. Assume
that A1 and Xy do not have period. Let ({5 (r(1)Z), (U{)iez, Drry) and (€ (r(2)Z),
(Us)tez, Dr(z)) be the prime model quantum walks given by Ay and \y. Assume that
there exists a non-zero uniform intertwiner between them. Then I(1) is equal to
1 :=1(2), and therefore r(1) is equal to v := r(2). There ezists (unique) o € T} such
that

Xk)=MEk+a), keT,.
The set of all the uniform intertwiners
{V:ly(rZ) — by (rZ) | VU, = UV, k= e*PrVe ™*Pr is continuous }
is equal to { F.M|p]F,!

T

oexp(iaD,) | p: T, — C continuous}.

In the proof, for a Borel subset B C T;(,), we denote by 1p the definition function
of B. Note that the multiplication operator M[lg] is the orthogonal projection

LQ(TZ(L)) — LQ(B)
Proof. Let V: L2 (Ty1)) — L*(Ty2)) be a non-zero uniform intertwiner between

(2T, ) (BT (a0l ).
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For a Borel subset J C T, the spectral projection Ey(J) of M[)\;] is the orthogonal
projection

Ei(J): L*(Tyny) — L*(A\ 1)) C LP(Tyy).
The spectral projection Fa(J) of M[)s] is the orthogonal projection

Ey(J): L*(Tyz)) — L*(Ay'(J)) € L*(Tyz).

The equation VM[A;] = M[X]V implies VE,(J) = Ey(J)V.

Since A; and A\, are not constant function, by the identity theorem of analytic
functions, the inverse images of a singleton in T with respect to A\; and A, is at most
finite. Therefore, the operators M[\;] and M [A2] do not have point spectrum. We
also note that the number of critical values of A\; and A, is finite. It follows that
there exists an open interval J C T satisfying the following:

e The interval J does not contain the critical values of A\; nor those of \,.
e The operator V E(J) is not zero. (Therefore Fy(J)V is not zero.)

For « = 1,2, A\, '(J) consists of finitely many open intervals. Note that the restriction
of A\, on each connected component of A\ '(J) is diffeomorphism onto .J. Choose

connected components I(:) C A\;'(J) such that M[1q ]VM[lI )] # 0. There exist
smooth functions g, on T;(,y such that the support of g, is 1ncluded in I(¢) and

M go]V M(g1] = M{ga] M[112)]V M[17(1)] M [g1] # 0.

The operator M (g2]V M [91] is also a uniform intertwiner between M[A;] and M|[Ay].

Replace V with M[g,]V M[gi]. Thus we have a non-zero uniform intertwiner V
between M| and M[X;] and intervals I(¢) C Ty, J C T satisfying the following

o )\, 1) are diffeomorphisms onto J,
e There exist closed intervals K () C I(¢) such that V = M1k ]VM[lK(l)]

e V is uniform with respect to the differential operators on Ty and Ty).

d
idk
Denote by ¢ the diffeomorphism (Ai]7¢1)) ™ 0 Aa|7(2): 1(2) — I(1). Note that ¢’ and
(¢p=1)" are bounded on K(2) and on K(1).

Using a bounded Borel function g on J, we can express an arbitrary bounded

Borel function on /(1) as (g o A\1)1;a). The image of (g o A1)1;4) through V is
‘7((9 o A)lrw)) = Vo Mg o M](1ry)-

Since the operator Mg o A1] is equal to the functional calculus [, _. g(t)E1(dt) of
M)\ ], we have

V(oMo = Vo ([ a0Een) (o)
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Define f € L*(Tyz)) by 17(11(1)). Because V is an intertwiner between M[\;] and
M)\s], we have

Piomtn) = ([ _awEin) o Pii)

- ([ stozian) 0

Mg o X5 (f)
= M[f]((g° M)li)-

The function (go2)1y() is equal to ((goA1)1say) o). It follows that V = M[f]oy".

The function f = ‘7(1 1(1)) is continuous. Indeed, we can express f as ‘7(93>, using
a continuous function gz on (1) such that supp(gs) is included in I(1) and that
g3(k) = 1 for k € K(1). Since V is uniform and g; is continuous, f = ‘7(11(1)) is
continuous on 7).

Since V = M][f] o ©* is not zero, suppf has to contain an open interval. By
Lemma 3.9, the mapping |s,pps s given by rotation on the open interval. By the
identity theorem of analytic functions, [(1) = (2) and there exists o € R such that
Xo(k) = M (k + «) for every k € T,. Note that « is uniquely determined only by A\
and A2, because Ay does not have period. Define [ by (1) and r by 27/1.

To identify the set of all the uniform intertwiners, take an arbitrary uniform
intertwiner V' between M[A;], M [A\z]. There exists finite open intervals

J(1),J(2),--- , J(v) C T,

such that the union U,.J(o) is the complement of the set of critical values of A\;. It
follows that the union U, (J(¢) — «) is the complement of the set of critical values

of X\y. We note that if 7 # o, then the intertwiner M[lj(f)_a]\/}M[lJ(a)] is zero.
Indeed, there exist no open intervals I(2) C J(7) — « and I(1) C J(o) such that
Y= (M)t o Xelr@): 1(2) — I(1) is well-defined and that ¢ is rotation. By the

contrapositive of the last paragraph, the intertwiner M|1 J(T)_a]‘/}M [1(0)] is zero.
Thus we can express V' as follows:

ZVM Ly(o) ZM 1y(o)—al VM [1y).

For the corner M1 (,)- ]VM[L] ] of V, there exists a Borel function f,: (J(o) —
a) — C such that

M(Lyo)-al VM[Ly(o)]) = M[fs] © 6.

where ¢, is the rotation by o € T27mn71. Define a Borel function f on T;, combining
fo- We obtain that
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Because V is uniform, f: T; — C has to be continuous. Therefore the set of uniform
intertwiners is included in

{M|[flo¢: | f: T; — C continuous.}

We can easily show the converse inclusion by direct computation. The set of Fourier
transforms of these operators is nothing other than the set in the proposition. [

Now we are ready to identify the set of uniform intertwiners between given two
homogeneous analytic quantum walks. Theorem 3.7 means that every homogeneous
analytic quantum walk is a direct sum of finitely many prime model quantum walks
and constant quantum walks. It suffices to identify the set of uniform intertwiners
between these building blocks Uy, Us, - - -

Case 1. First consider the case that U; is a constant quantum walk (¢5(Z), ()¢, Dy).
and that Us is a prime model quantum walk (¢2(rZ), (U%);, D,). Let V be an inter-
twiner between U; and U,. then we have

UV =Va=aV.

Because U, has no eigenvector other than the zero vector, V' has to be 0.
Case 2. Consider the case that U; and U, are constant quantum walks. We express
them as follows

U = (EQ(Z), (Oét)t,Dl) , U= (EQ(Z), (8, Dl) .
If @ # [, then there exists no non-zero intertwiner between them. If a = f,
then every operator is an intertwiner between them. The collection of the uniform
operators is the uniform Roe algebra C(Z). See Remark 2.20.

Case 3. Consider the case that U; and U are prime model quantum walks. We
express the quantum walks as follows

U = (b(r(1)Z), (U3)e, Drry) , Uz = (ba(r(2)Z), (US,)e, D))

By Proposition 3.10, if 7 := (1) = r(2), and if there exists a € [0, 27r~!) such that
Ao(k) = A (k + «), then the set of intertwiners is

{F.M[p]F,  exp(iaD,) | p: Tarr—1+ — C continuous} .

By Proposition 3.10, if (1) # r(2), or if there does not exist o € To,,.-1 such that
Xa(k) = Ai(k + «), then there exists no non-zero uniform intertwiner between U;

and Us,.
Example 3.11. Consider the quantum walk generated by

1L/ -S}-5 S-S
Wi (G0 5 ) estmec

The characteristic polynomial of the inverse Fourier transform W(k) is
A+ (cos 3k + cos k)X + 1.
The roots are given by A3(k) and \y(k) defined in Example 3.1. The quantum walk

is similar to

d d
L*(Ty. )2, M\ MN], — B — | .
< (27r)7 [3]@ [4]72'dk:@z’dk:)
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Let Vi be the intertwining unitary operator from the 4-state Grover walk U to
1@ (—1) ® M[As] & M[Ay] € B(L*(T2x)").
Let Vi be the intertwining unitary operator from W to
M [Xs] & M[Ay] € B(L*(Tar)?).

Because )4 is not obtained by translation of A3, the space of uniform operators
intertwining U and W is

{00 CTy) 0
VW(O 0 0 Oy )V

where C(Ts,) is the space of multiplication operators given by continuous functions
on the torus. The operators in the middle map (L?*(Tz,))* to (L?(Ta,))?. To identify
Vi and Vi, we only have to identify the eigenspace decomposition of U (k) and W(k)
The calculation is possible, but complicated. We omit identifying them.

Example 3.12. Consider the quantum walk generated by

1 —2-8  V2i(S{t-1)
"3 ( V2i(S; 1)  —2-57!

The characteristic polynomial of the inverse Fourier transform /W(k‘) is

442
2+ %OS]{A +1.
The roots are given by A2(k) and Aq(k + 27) defined in Example 3.2. The quantum

walk is similar to

W ) € B(ly(Z) ® C?).

d
(22w 010, ).
Let Viy be the intertwining unitary operator from the 3-state Grover walk U to
1® M[Xy] € B(L*(Tyr) ® L*(Tyr)).

Let Vi be the intertwining unitary operator from W to

M[\y] € B(L*(Tyz)).
The space of uniform operators intertwining U and W is

Vir' (0 M(C(Tux))) Vo

The operators in the middle map L*(Ta,) @& L*(Tyy) to L*(Tyy).

In the above two examples, we see the cases that there exist non-zero intertwiners.
However, in many cases, there exists no non-zero uniform intertwiner. For example,
there exists no non-zero uniform intertwiner between the walk in Example 3.11
and that in Example 3.12. To show absence of a non-zero intertwiner, we need
some systematic way of proof like the contrapositive of Proposition 3.10, while for
existence of non-zero intertwiner, we might find intertwiners by some chance.
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FExample 3.13. Let p be a positive real number less than 1. Consider the quantum

—1 /1 _ 2q—1
walks U, on l5(Z) ® C* generated by U, = < P31 L=r5 > The

v1-— p*S1 pS1
eigenvalue functions of the inverse Fourier transform U, are
Ap+ = pcosk +iy/1 —p*cos’k, A,y =pcosk —iy/1—p*cos?k.

If p(1),p(2) € (0,1) and if p(1) # p(2), then there exists no o € Ty, satisfying
A2, (k) = Ap1),+ (k+a). It follows that there exists no uniform intertwiner between
Up(r) and Up(z).

3.6. Uniform commutant of a homogeneous analytic quantum walk. For a
quantum walk (#H, (U"),ez, D), we call the algebra

{VeB(H)|VU =UV,k +— exp(ikD)V exp(—ikD) is continuous }
the uniform commutant of U. The following are conclusions of Proposition 3.10.

Corollary 3.14. The uniform commutant of a prime model quantum walk ({3(rZ),
(Ub)iez, Dy) is identical to

{F.M[p]F, " ‘ p: Torp—1 — C continuous} .

Proof. By the definition of a prime model quantum walk, A has no rotational sym-
metry. 0

The following is the motivation of the definition of prime model quantum walk.

Corollary 3.15. No prime model quantum walk is similar to a direct sum of two
(not necessarily homogeneous) one-dimensional uniform quantum walks.

Proof. For every prime model quantum walk, the uniform commutant is
{F-M[p)F, " | p: Tonr—1 — C continuous} C B(la(rZ)).

The set of all the orthogonal projections in this algebra is {0,id}. If the walk were a
direct sum of two quantum walks, the set would contain a non-trivial projection. [

Remark 3.16. In [SS20], the notion of indecomposable quantum walk is defined. The
condition of indecomposable model quantum walk is weaker than that of primeness.
Primeness means that the walk can not be decomposable in the category of quantum
walks, while indecomposability means that the walk can not be decomposable in the
category of homogeneous quantum walks.

Using Theorem 3.7, we identify the structure of the uniform commutant of the
discrete-time homogeneous analytic quantum walk (¢5(Z) @ C", (U")iez, D ® id).

Proposition 3.17. Let ((5(Z)RC™, (U") ez, D1®id) be an arbitrary one-dimensional
discrete-time homogeneous analytic quantum walk. The uniform commutant

{V:ilb(Z)®C" = 6(Z) @ C" | VU = UV, k — *PVe *” is continuous}
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15 1somorphic to the algebra of the following form

EB (C(T,) ® ) @ @ (CA(Z) ® M,4(C)).

(The integers I and m can be zero. In such a case, erase the corresponding direct
summand.) The operator U itself is located at the element of the form

l m
P (MN] @idu) & 6P (ak) @idyg) -
j=1 k=1
The structure of smoothness and analyticity is given by the self-adjoint operator
!

d . T .
D (@ ® ldu(j)) &P (D1 @ idu)
=1 k=1

Remark 3.18. The non-negative integers [ and m in Proposition 3.17 can be different
from those in Theorem 3.7.

Proof. Recall that U can be decomposed into prime model quantum walks and
constant quantum walks. Let U; and Us; be two direct summand of U. By the
argument in Cases 1, 2, 3 in the previous subsection, if there exists a non-zero
uniform intertwiner between U; and U, , then there exists a uniform unitary operator
which intertwines them. Therefore, existence of non-zero uniform intertwiner defines
an equivalence relation between direct summand of U. Let {Uy,Us, - -- ,U,} be such
an equivalence class. By the above argument, they are all constant quantum walks,
or they are all prime model quantum walks.

Consider the case that Uy, Us,--- ,U, are the constant walks. By Case 2 in
the previous subsection, these are identical. Express them as ((2(Z), (o), D1).
Combining the set of uniform intertwiners, we obtain the algebra C*(Z) @ M, (C).

Consider the case that Uy, Us,--- ,U, are prime quantum walks. By Case 3 in
the previous subsection, corresponding analytic functions

)\17"' 7/\1/: Torp—1 — T

are mutually translations of each other. There exist aq,--- ,a, € Tyr,—1 such that
Aj(k) = M(k + «;). Then we have X\;(k) = \(k + o; — ay). By Case 3 in the
previous subsection, the set of uniform intertwiners from U; to Uj is

{.FTM plF. exp(i(ay; — o) D, ‘ p: Topp1 — C continuous} .

In the case of | = k, U, is located at F,M[N]F,!. The inverse Fourier transform is

o (e s ()

Note that the operator exp (aj i) € B(L?(Tar-1)) is the translation operator by

a; € Ty and that it is a normalizer of the space of multiplication operators
C(Tyy—1). Also note that exp ( ) commutes with the differential operator -5

p: Torp1 — C continuous} .

Q5 9k dk
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Combining all the intertwiners, we conclude that the set of uniform intertwiners
between Uy @ - -+ @ U, and itself is isomorphic to C(Ta,,-1) ® M, (C). O

4. REALIZATION BY A CONTINUOUS-TIME UNIFORM QUANTUM WALK

Lemma 4.1. Let v be a natural number. Let r be a positive real number. Let
A: Torp1 — T be a continuous map. There exists a one-parameter group (U®),cr
of unitary operators in C(Tyr-1) @ M,(C) satisfying

UW = M\ ®id,,
if and only if the winding number of X is zero.

Proof. Suppose that the winding number of \ is zero. Then there exists a continuous
function h: Ts,,—1 — R such that exp(ih) = A. The one-parameter unitary group

U = Mlexp(ith)] ® id, € C(Tyr—1) @ M, (C)

satisfies UV = M[)\| ® id,.

Conversely suppose that there exists a one-parameter unitary group U® € C(Tyy-1)®
M, (C) which satisfies UV = M[\] ® id,. We make use of C(Ty,-1)-valued deter-
minant

det: C(Tgﬂ-r—l) ® MV(C) — C(Tgﬂ-r—l).

Since the map det is multiplicative, det U® is a unitary element of C'(Tyy,-1). The
winding numbers {w(det UY)};cr define a group homomorphism from R to Z. It
follows that w(det U®) = 0 for every ¢ € R. Therefore we have

vw(\) = w(\) = w(det UY) =0
and w(A) = 0. O

Theorem 4.2. Let (((Z) @ C", (U') ez, D1 ® id) be an arbitrary one-dimensional
discrete-time homogeneous analytic quantum walk. Let Ay, Ao, --- be the eigenvalue
functions of U introduced in Subsection 3.3. Then the following conditions are equiv-
alent

(1) There exists a one-dimensional continuous-time uniform quantum walk ((2(Z)®
C", (UD)yer, Dy ®1d) such that UV = U.

(2) There exists a one-dimensional continuous-time homogeneous and analytic
quantum walk ((3(Z) @ C*, (UD),er, D ® id) such that UM = U.

(8) All the winding numbers of A\, Ag,- -+ are zero.

The first item looks much weaker than the second item, but the following proof
will show that both are equivalent to the third item.

Remark 4.3. We may further weaken the first condition. We can eliminate the
assumption that (U®),cp is continuous with respect to the strong operator topology.

Proof. The easier half of Theorem 5.14 in [SS20] shows that the third condition
implies the second one. It suffices to show that the first condition implies the third
one.
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Suppose that there exists a one-parameter group U ) of uniform unitary operator
on f5(Z) ® C" such that UY) = U. Note that for every ¢, U") commutes with U.
We use the algebra

GB ) ® My J) @ GB ) ® My (x) (C))

k=1

in Proposition 3.17. Existence of U® means that

l
@ ®1d ]) @@ ®id,,(k)).

can be realized by a one—parameter group of unitary operators in the algebra.
The winding numbers of constant functions a(k) are 0, so the latter summand
does not have to do with our problem. We can concentrate on the operator

M[Aj] ®idyg) € C(Tr) @ My (C).
By Lemma 4.1, if this is realized by a one-parameter unitary group inside C(T, ;) ®
M,,;)(C), then the winding number of A; is 0. O

Example 4.4. Let r be a real number greater than 0 and less than 1. Let us consider

the quantum walk
- ( rS7t /1 —r28-1 )
“\vices s
acting on ¢5(Z) ® C?. The weak limit theorem for this walk has been shown in
[Kon05]. The characteristic polynomial of the inverse Fourier transform U (k) is

flkiz) =X —r(e*+e ™) A+ 1.
We express z by €. The roots are

M(k) = rcosk+iv1—r2cos?k,

Xa(k) = rcosk —iv1—r2cos?k.

They are single-valued functions. The winding numbers are both zero. By Theorem
4.2, This can be realized by a continuous-time quantum walk. 0]

Ezxample 4.5. The 3-state Grover walk in Example 3.2 can be realized by a continuous-
time analytic quantum walk. We have obtained the constant eigenvalue function
A1(k) = 1 and a multi-valued analytic eigenvalue function Ap. The winding number
of Ao: R/(47Z) — T is zero. For the same reason, the quantum walk in Example
3.12 can be realized by a continuous-time quantum walk.

Even if a homogeneous analytic quantum walk (U*');cz is realized by a continuous-
time quantum walk (U®);cr, the walk (U®),cg is not necessarily homogeneous.

Ezample 4.6. Let 8 be an element of Ty, = R/(27Z). Assume that for every integer
x € Z, xf € Ty, is not zero. Let A: Ty, — T be an analytic map without period.
Assume that the winding number of X is zero. Choose an analytic map ¢: Tor — R
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satisfying exp(ig) = A. Define p: Ty, — T and h: Ty, — R by p(k) = Mk + ) and
h(k) = g(k + /8). Consider the direct sum of model quantum walks
(£2(Z), (FUMN'F ez, D) © (£o(Z), (FAM [p)' Fi ez, Dy).

This is realized by the continuous-time homogeneous quantum walk

g _ ( FiMlexplitg)lFy 0 ).
0 FiM exp(ith)|F{
We also consider the one-parameter family of unitary
v cos 2t — sin 27t - exp(—if D)
~\ sin2nt - exp(i8Dy) cos 2mt '

Because the inverse Fourier transform exp (6 %) of the operator exp(i5D;) is the
translation operator on L?(Ty;) by —f3 € Tar, V¥ commutes with U®. It follows
that VOU® is also a one-parameter group of unitary operators and realizes the
given quantum walk Fy M[N'F; ' & FiM[p]' F{ ', If ¢ is not an element of 1Z, then
V®U® is not homogeneous. Moreover, it is not even essentially homogeneous in
the sense of Definition 2.32.

Theorem 4.2 provides a powerful way to show that given quantum walk is not
a restriction of continuous-time quantum walk. If one wants to show that given
quantum walk can be realized by a continuous-time quantum walk, ad hoc way
might be useful, because we might be able to find concrete description. However, if
one wants to show that it can not be realized by a continuous-time quantum walk, ad
hoc way can not be useful, and we need some systematic procedure. The following
Corollary gives a sufficient condition for such non-existence.

Corollary 4.7. Let ({5(Z) @ C", (U") ez, D1 ®id) be an arbitrary one-dimensional
discrete-time homogeneous analytic quantum walk. Denote by U € C(Ty,) @ M, (C)
the inverse Fourier transform of U. If the winding number of det U: To, — T is not

zero, then there exists no one-dimensional continuous-time uniform quantum walk
(lo(Z) @ C™, (UD)yeg, Dy ®id) such that UV = U.

Proof. Let Ay, ---, )\ be eigenvalue functions of U introduced in Subsection 3.3.
Whichever the eigenvalue functions are single-valued or multi-valued, the winding
number of det U is the sum of the winding numbers of Ay, --- , ;. If the winding
number of det U : Ty, — T is not zero, there exists an eigenvalue function whose
winding number is not zero. 0

FExample 4.8. we consider a quantum walk defined by

U:(Tg1 _351 ) reRbeCr’+ b =1.

acting on f5(Z) ® C%. Determinant of the Fourier dual is

N ik 7 ik .
detU(k):det(T% lf >:e“€.
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The winding number of det U: Ty, — T is one. By Corollary 4.7, U can not be
realized by a continuous-time uniform quantum walk.

The converse of Corollary 4.7 does not hold true.

Example 4.9. We prove that the 4-state Grover walk in Example 3.1 can not be
realized by a continuous-time uniform quantum walk. Determinant of the Fourier
dual U is a constant function, so we can not use Corollary 4.7. We obtain four
single-valued analytic eigenvalue functions

)\1(1{) = 17 )‘Q(k) = _17 )\3(k>7 >‘4(k)
in Example 3.1. The winding numbers are
wA) =0, wlh) =0, wr3)=1, w(l)=-L1.

By Theorem 4.2, the quantum walk given by U can not be realized by a continuous-
time analytic (not necessarily homogeneous) quantum walk.

By the same reason, the quantum walk in Example 3.11 can not be realized by a
continuous-time quantum walk.
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