INFINITELY MANY KNOTS WITH THE SAME POLYNOMIAL INVARIANT, II

TAIZO KANENOBU

ABSTRACT. We give infinitely many knots with the same HOMFLYPT and Q polynomials, which are distinguished by the Kauffman polynomial. They are symmetric unions of the trefoil knot.

1. Introduction

The author [8, 9] provided infinite knot families with the same HOMFLYPT polynomial and hence the same specializations of the HOMFLYPT polynomial, Alexander-Conway and Jones polynomials, which are symmetric unions of the figure-eight knot. The notion of symmetric union was introduced by Kinoshita and Terasaka [13] and generalized by Lamm [15]. The knots in these families are classified by the Q polynomial [6]; the Q polynomial is a specialization of the Kauffman polynomial. In this note, we provide another family of knots which share the same HOMFLYPT and Q polynomials; they are distinguished by the Kauffman polynomial. The knots in this family are symmetric unions of the trefoil knot, which are exhibited by Lamm [16].

Theorem 1. There exist infinitely many knots sharing the same HOMFLYPT and Q polynomials, which are distinguished by the Kauffman polynomial. So, they also share the same Jones and Alexander-Conway polynomials.

Notice that Miyazawa [18] discovered two 16-crossing knots with trivial Q polynomial, which have nontrivial Jones polynomials. Moreover, he constructed an infinite prime knot family having trivial Q polynomial, which are distinguished by the Jones polynomial. By connected sums we can construct infinitely many knots sharing the same Q polynomial as that of a particular knot.

This note is organized as follows. Section 2 introduces the knot or link family K(k, l, m), $k, l, m \in \mathbb{Z} \cup \{\infty\}$, whose subfamilies satisfy the properties of Theorem 1. In Sects. 3, 4, 5, we calculate the Q polynomial, HOMFLYPT and Conway polynomials, and Jones polynomial of K(k, l, m), respectively. In Sect. 6 we calculate the Kauffman polynomial of K(k, l, m) and prove Theorem 1, and also give some properties of K(k, l, m).

2. The knot/link family K(k, l, m)

The knot family for Theorem 1 is contained in the family consisting of K(k, l, m), $k, l, m \in \mathbb{Z} \cup \{\infty\}$, which are presented by any one of the diagrams in Fig. 1; a rectangle labeled n stands for a vertical n-tangle, a 2-string tangle with |n| crossings for $n \in \mathbb{Z}$, or the ∞ -tangle for $n = \infty$ as shown in Fig. 2. Note that if $k, l, m \in \mathbb{Z}$, then K(k, l, m) is always a knot.

Date: October 14, 2025.

²⁰²⁰ Mathematics Subject Classification. Primary 57K14; Secondary 57K10.

 $[\]it Key\ words\ and\ phrases.$ Knot, Q polynomial, HOMFLYPT polynomial, Kauffman polynomial, Symmetric union.

These knots are symmetric unions of the trefoil knot. In fact, the diagram Fig. 1(a) is just the second template with determinant 9 for the symmetric union diagram given in Appendix of [16]. The diagram Fig. 1(b) is obtained by deforming the diagram Fig. 1(a), which is also obtained from the diagram Fig. 1(e) by sliding the l-tangle. The diagrams (d), (e), (f) in Fig. 1 are obtained from the diagram (c) by rotating along the x, y, z coordinate axes by the angle 180° , respectively.

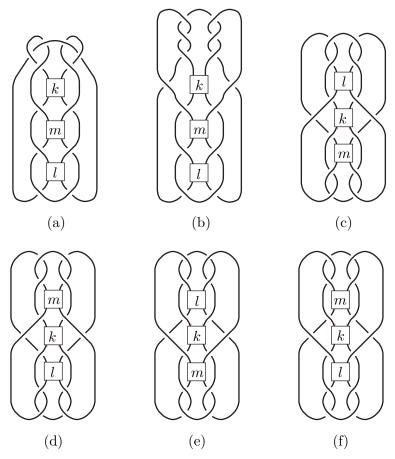


FIGURE 1. Diagrams of the knot/link K(k, l, m).

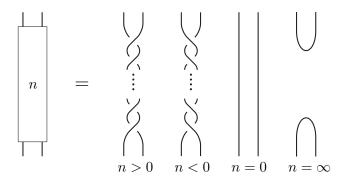


FIGURE 2. The *n*-tangles and the ∞ -tangle.

Let L and L' be links. Then $L \approx L'$ means that L and L' are isotopic. We denote the mirror image of L by L!. Comparing the diagrams (c), (d), (e) in Fig. 1 we have:

Proposition 2. For $k, l, m \in \mathbb{Z}$, we have $K(k, l, m) \approx K(k, m, l)$ and $K(k, l, m)! \approx K(-k, -m, -l)$.

We orient K(k,l,m) as shown in Fig. 3, which we denote by $\vec{K}(k,l,m)$. Then $\vec{K}(k,l,m)$ is isotopic to any one of the diagrams illustrated in Fig. 4.

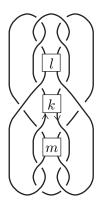


FIGURE 3. Diagram of the oriented knot/link $\vec{K}(k, l, m)$.

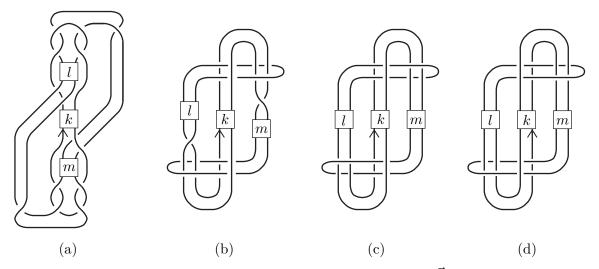


FIGURE 4. The diagrams isotopic to $\vec{K}(k, l, m)$.

For $n \in \mathbb{Z}$, let J(n) be the knot and $L_0(n)$ and $L_1(n)$ the 2-component links as shown in Fig 5. Note that J(n) is the pretzel knot of type (3, -3, n), which is also regarded as a symmetric union of the trefoil knot. Using these diagrams we obtain the following.

Proposition 3. For $k, l, m \in \mathbb{Z}$, we have the following.

- (i) $K(k, \infty, m) \approx K(k, l, \infty) \approx U^2$, where U^2 is the trivial 2-component link.

(ii)
$$K(0, l, m) \approx J(l + m)$$
.
(iii) $K(0, l, m) \approx J(l + m)$.
(iii) $K(\infty, l, m) \approx \begin{cases} L_0(l + m) & \text{if } (l, m) \equiv (0, 0), (0, 1), (1, 0) \pmod{2}, \\ L_1(l + m) & \text{if } (l, m) \equiv (1, 1) \pmod{2}. \end{cases}$

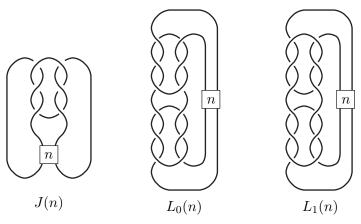


FIGURE 5. The knot J(n) and the links $L_0(n)$ and $L_1(n)$, $n \in \mathbb{Z}$.

For small k, l, m, we can identify the knots K(k, l, m) as follows:

$$K(0,0,0) \approx K(0,-1,1) \approx J(0) \approx 3_1! \# 3_1$$
 (the square knot),
 $K(0,1,0) \approx K(0,0,1) \approx J(1) \approx 6_1!$,

(1)
$$K(1,0,0) \approx 12 \text{n_}605, \qquad K(1,-1,1) \approx K(1,1,-1) \approx 12 \text{n_}268,$$

$$K(1,0,1) \approx K(1,1,0) \approx 13 \text{n_}1849!, \qquad K(1,0,-1) \approx K(1,-1,0) \approx 13 \text{n_}1357!,$$

$$K(1,-2,1) \approx 13 \text{n_}1645!, \qquad K(1,-1,2) \approx 13 \text{n_}1805,$$

$$K(2,0,0) \approx 13 \text{n_}2209, \qquad K(2,-1,1) \approx 13 \text{n_}3272,$$

where we use the knot names in [17].

3. Q POLYNOMIAL

The Q polynomial $Q(L;x) \in \mathbb{Z}[x^{\pm 1}]$ [2, 5] is an invariant of the isotopy type of an unoriented link L defined by

(2)
$$Q(U) = 1,$$

$$Q(L_{+}) + Q(L_{-}) = x \left(Q(L_{0}) + Q(L_{\infty}) \right),$$

where U is the unknot and $(L_+, L_-, L_0, L_\infty)$ is an unoriented skein quadruple, which is an ordered set of four unoriented links that are identical except near one point where they are as in Fig. 6.

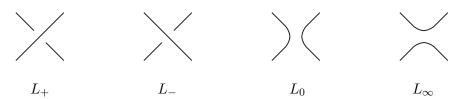


FIGURE 6. Unoriented skein quadruple.

Suppose a link L contains a tangle R. Any link obtained by rotating R about one of the three axes is called a *mutant* of L. We use the following properties of the Q polynomial; see [2, Property 1]:

Proposition 4. (i) $Q(L_1 \# L_2) = Q(L_1)Q(L_2)$, where $L_1 \# L_2$ is a connected sum of L_1 and L_2 .

- (ii) Q(L!) = Q(L).
- (iii) If L_2 is a mutant of L_1 , then $Q(L_1) = Q(L_2)$.

We denote by μ_Q the Q polynomial of the trivial 2-component link, $\mu_Q = 2x^{-1} - 1$.

We denote the Q polynomial of the knot/link K(k, l, m) by Q(k, l, m), Q(k, l, m) = Q(K(k, l, m)). Then we obtain the following theorem.

Theorem 5. For k, l, $m \in \mathbb{Z}$, we have:

(3)
$$Q(k, l, m) = Q(k, 0, l + m).$$

Proof. The proof will be divided into four steps:

(4)
$$Q(1, -m, m) = Q(1, 0, 0) \quad (m \in \mathbb{Z}),$$

(5)
$$Q(k, -m, m) = Q(k, 0, 0) \quad (k, m \in \mathbb{Z}),$$

(6)
$$Q(k, -m+1, m) = Q(k, 0, 1) \quad (k, m \in \mathbb{Z}),$$

(7)
$$Q(k, -m + n, m) = Q(k, 0, n) \quad (k, m, n \in \mathbb{Z}).$$

Proof of Eq. (4). Using Eq. (2) we have:

(8)
$$Q(1,-m,m) + Q(-1,-m,m) = x (Q(0,-m,m) + Q(\infty,-m,m)).$$

By Proposition 2 we have $K(-1,-m,m)! \approx K(1,m,-m) \approx K(1,-m,m)$, and so Q(-1,-m,m) = Q(1,-m,m). Then Eq. (8) is deformed into

(9)
$$Q(1,-m,m) = \frac{x}{2} \left(Q(0,-m,m) + Q(\infty,-m,m) \right).$$

By Proposition 3(ii), K(0, -m, m) is isotopic to J(0), which is the square knot, $3_1 \# 3_1!$, and so

$$(10) Q(0,-m,m) = Q(3_1)^2 = 9 - 12x - 8x^2 + 8x^3 + 4x^4.$$

By Proposition 3(iii), $K(\infty, -m, m)$ is isotopic to either $L_0(0)$ or $L_1(0)$. Since $L_0(0)$ and $L_1(0)$ are mutant and $L_1(0)$ is the pretzel link of type (3, -3, 3, -3), Pz(3, -3, 3, -3), and so

(11)

$$Q(\infty, -m, m) = Q(Pz(3, -3, 3, -3))$$

= $2x^{-1} - 1 + 32x - 80x^{2} - 24x^{3} + 132x^{4} + 20x^{5} - 76x^{6} - 20x^{7} + 12x^{8} + 4x^{9}$.

Therefore, from Eq. (9), we obtain

$$Q(1, -m, m) = \frac{x}{2} (Q(3_1)^2 + Q(Pz(3, -3, 3, -3)))$$

= 1 + 4x + 10x² - 44x³ - 8x⁴ + 68x⁵ + 10x⁶ - 38x⁷ - 10x⁸ + 6x⁹ + 2x¹⁰,

which implies Eq. (4).

Proof of Eq. (5). We proceed by induction on k. Equation (5) with k = 0 comes from Eq. (10), and Eq. (5) with k = 1 is Eq. (4). Suppose that Eq. (5) holds for any integer m and k = k' - 1 and k'. Using Eq. (2) we have

$$(12) Q(k'+1,-m,m) + Q(k'-1,-m,m) = x (Q(k',-m,m) + Q(\infty,-m,m))$$

for any integer m. In particular, we have:

(13)
$$Q(k'+1,0,0) + Q(k'-1,0,0) = x \left(Q(k',0,0) + Q(\infty,0,0) \right).$$

By the inductive assumption Q(k'-1,-m,m)=Q(k'-1,0,0) and Q(k',-m,m)=Q(k',0,0), and by Eq. (11) $Q(\infty,-m,m)=Q(\infty,0,0)$, and so we obtain Q(k'+1,-m,m)=Q(k'+1,0,0). Thus Eq. (5) holds for any integers $k(\geq 0)$ and m. The case k<0 is similar.

Proof of Eq. (6). Using Eq. (2) we have

$$Q(k, -m+1, m-1) + Q(k, -m+1, m+1) = x (Q(k, -m+1, m) + Q(k, -m+1, \infty)),$$

$$Q(k, -m-1, m+1) + Q(k, -m+1, m+1) = x (Q(k, -m, m+1) + Q(k, \infty, m+1)).$$

Then, since Q(k, -m + 1, m - 1) = Q(k, -m - 1, m + 1) = Q(k, 0, 0) (Eq. (5)) and $Q(k, -m + 1, \infty) = Q(k, \infty, m + 1) = \mu_Q$ (Proposition 3(i)), we obtain Q(k, -m + 1, m) = Q(k, -m, m + 1). This holds for any integers k, m, and so we obtain Eq. (6).

Proof of Eq. (7). The cases n = 0, 1 are Eqs. (5) and (6), respectively. Using Eq. (2) we have

$$Q(k, -m + j, m - 1) + Q(k, -m + j, m + 1) = x (Q(k, -m + j, m) + Q(k, -m + j, \infty)),$$

$$Q(k, -m + j - 2, m + 1) + Q(k, -m + j, m + 1) = x (Q(k, -m + j - 1, m + 1) + Q(k, \infty, m + 1)).$$

From Proposition 3(i) we have $Q(k, -m + j, \infty) = Q(k, \infty, m + 1) = \mu_Q$. Thus, by induction on n we obtain Eq. (7).

4. HOMFLYPT AND CONWAY POLYNOMIALS

The Conway polynomial $\nabla(L;z) \in \mathbb{Z}[z]$ [3], the Jones polynomial $V(L;t) \in \mathbb{Z}[t^{\pm 1/2}]$ [7], and the HOMFLYPT polynomial $P(L;v,z) \in \mathbb{Z}[v^{\pm 1},z^{\pm 1}]$ [4, 7, 20] are invariants of the isotopy type of an oriented link L. They are defined by

$$\nabla(U;z) = 1,$$

$$\nabla(L_{+};z) - \nabla(L_{-};z) = z\nabla(L_{0};z), V(U;t) = 1,$$

$$(14) \qquad t^{-1}V(L_{+};t) - tV(L_{-};t) = \left(t^{1/2} - t^{-1/2}\right)V(L_{0};t),$$

$$P(U;v,z) = 1,$$

$$(15) \qquad v^{-1}P(L_{+};v,z) - vP(L_{-};v,z) = zP(L_{0};v,z),$$

where (L_+, L_-, L_0) is a *skein triple*, an ordered set of three oriented links that are identical except near one point where they are as in Fig. 7. We say that the link L_0 is obtained from L_+ or L_- by *smoothing* the crossing in L_+ or L_- . The Conway polynomial and the Jones polynomial are obtained from the HOMFLYPT polynomial as follows:

FIGURE 7. Skein triple.

We calculate the HOMFLYPT polynomial of the oriented knot $\vec{K}(k,l,m)$, $k, l, m \in \mathbb{Z}$ as shown in Fig. 8(a), which we can deform into Figs. 8(b) and 8(c). Let P(k,l,m) be the HOMFLYPT polynomial of $\vec{K}(k,l,m)$.

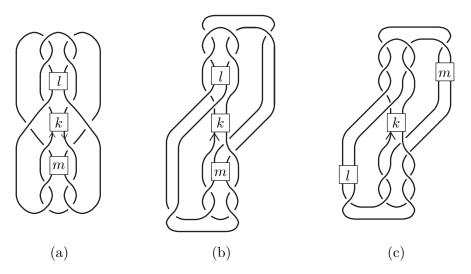


FIGURE 8. The oriented knot $\vec{K}(k, l, m)$.

Proposition 6. For $k, l, m \in \mathbb{Z}$, we have:

$$P(k,l,m) = \begin{cases} v^{-l-m} \left(P(k,0,0) - 1 \right) + 1 & \text{ if } (l,m) \equiv (0,0) \pmod{2}, \\ v^{1-l-m} \left(P(k,0,1) - 1 \right) + 1 & \text{ if } (l,m) \equiv (0,1), (1,0) \pmod{2}, \\ v^{-l-m} \left(P(k,-1,1) - 1 \right) + 1 & \text{ if } (l,m) \equiv (1,1), \pmod{2} \end{cases}$$

Proof. The two arcs of the *l*-tangle in $\vec{K}(k,l,m)$ has anti-parallel orientation. So smoothing a crossing in this tangle, we obtain $K(k,\infty,m)$ with proper orientation, which is a trivial 2-component link U^2 by Proposition 3(i). Thus, we obtain a skein triple:

$$\left(\vec{K}(k,l-2,m),\vec{K}(k,l,m),U^2\right)$$
.

Similarly, we obtain a skein triple:

$$\left(\vec{K}(k,l,m-2),\vec{K}(k,l,m),U^2\right)$$
.

Since the HOMFLYPT polynomial of the trivial 2-component link is $(v^{-1}-v)z^{-1}$, using Eq. (15) we have

$$v^{-1}P(k, l-2, m) - vP(k, l, m) = v^{-1} - v,$$

$$v^{-1}P(k, l, m-2) - vP(k, l, m) = v^{-1} - v,$$

which imply

$$P(k, l, m) - 1 = v^{-2} (P(k, l - 2, m) - 1) = v^{-2} (P(k, l, m - 2) - 1).$$

Then, since $K(k, l, m) \approx K(k, m, l)$, we obtain the result.

The diagram Fig. 1(a) of the knot K(k, l, m), $k, l, m \in \mathbb{Z}$, shows it is a symmetric union of the trefoil; cf. [16, Appendix]. So, we can calculate the Alexander polynomial by applying Lamm's theorem in [15]. Since the Alexander polynomial and the Conway polynomial are essentially the same [19, Theorem 6.2.1], we obtain the following.

Proposition 7. For $k, l, m \in \mathbb{Z}$, we have:

$$\nabla(k,l,m) = \begin{cases} 1 + 2z^2 + z^4 & \text{if } (k,l,m) \equiv (0,0,0), \ (0,1,1) \pmod 2, \\ 1 - 2z^2 & \text{if } (k,l,m) \equiv (0,0,1), \ (0,1,0), \ (1,1,1) \pmod 2, \\ 1 + 2z^2 + 5z^4 + z^6 & \text{if } (k,l,m) \equiv (1,1,0), \ (1,0,1) \pmod 2, \\ 1 - 2z^2 - 8z^4 - 6z^6 - z^8 & \text{if } (k,l,m) \equiv (1,0,0) \pmod 2. \end{cases}$$

Proof. If $(k, l, m) \equiv (k', l', m') \pmod{2}$, then by Theorem 2.4 in [15], the two knots K(k, l, m) and K(k', l', m') share the same Alexander polynomial, which yields $\nabla(k, l, m) = \nabla(k', l', m')$. From Eq. (1), looking at [17], we obtain the result.

5. Jones Polynomial

Given a skein triple (L_+, L_-, L_0) , we consider another oriented link L_{∞} which is one of the diagrams of Fig. 9, the choice being (i) if $c(L_+) < c(L_0)$ and (ii) if $c(L_+) > c(L_0)$, where c(L) is the number of components of a link L. We call the ordered set $(L_+, L_-, L_0, L_{\infty})$ an *oriented skein quadruple*, for which we have the following relations of the Jones polynomials [1, Theorem 2]: For the case (i) $c(L_+) < c(L_0)$, we have

(17)
$$V(L_{+};t) - tV(L_{-};t) + t^{3\lambda}(t-1)V(L_{\infty};t) = 0,$$

where λ is the linking number of the right-hand component of L_0 with the remainder of L_0 , and for the case (ii) $c(L_+) > c(L_0)$, we have

$$V(L_+;t) - tV(L_-;t) + t^{3(\mu - \frac{1}{2})}(t-1)V(L_\infty;t) = 0,$$

where μ is the linking number of the bottom-right and top-left component of L_+ with the remainder of L_+ .

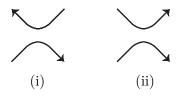


FIGURE 9. Oriented link L_{∞} .

For the case (i), using Eqs. (14) and (17), we have:

(18)
$$V(L_+;t) = -t^{1/2}V(L_0;t) - t^{3\lambda+1}V(L_\infty;t),$$

(19)
$$V(L_{-};t) = -t^{-1/2}V(L_{0};t) - t^{3\lambda-1}V(L_{\infty};t),$$

which we will use in the proof of the following proposition.

Let V(k, l, m) be the Jones polynomial of K(k, l, m).

Proposition 8. For $k, l, m \in \mathbb{Z}$, we have:

$$V(k, l, m) = (-t)^{-l-m} (V(k, 0, 0) - 1) + 1.$$

Proof. We have an oriented skein quadruple $(\vec{K}(k,0,-1),\vec{K}(k,0,1),\vec{K}(k,0,\infty),\vec{K}(k,0,0))$. Then, since $\vec{K}(k,0,\infty) \approx U^2$ (Proposition 3(i)), by Eq. (19) we have

$$V(k, 0, 1) = -t^{-1/2}\mu_V - t^{-1}V(k, 0, 0)$$

= $(-t)^{-1}(V(k, 0, 0) - 1) + 1$,

where $\mu_V = -t^{-1/2} - t^{1/2}$ is the Jones polynomial of the trivial 2-component link. Similarly, from an oriented skein quadruple $(\vec{K}(k,-1,1),\vec{K}(k,1,1),\vec{K}(k,\infty,1),\vec{K}(k,0,1))$, by Eq. (18) we have

$$V(k, -1, 1) = -t^{1/2}\mu_V - tV(k, 0, 1) = (-t)(V(k, 0, 1) - 1) + 1$$

= $V(k, 0, 0)$.

Then using Eq. (16), Proposition 6 yields the result.

Lemma 9.

(20)

$$V(k,0,0) = \begin{cases} -t^{-3} + t^{-2} - t^{-1} + 3 - t + t^2 - t^3, & \text{if } k = 0, \\ t^{-6} - 2t^{-5} + 3t^{-4} - 4t^{-3} + 3t^{-2} - 2t^{-1} + 2 + t - 2t^2 + 2t^3 - 2t^4 + t^5, & \text{if } k = 1, \\ -t^{-7} + 3t^{-6} - 5t^{-5} + \dots + 4t^3 - 3t^4 + t^5, & \text{if } k = 2, \\ (-t)^{-k-5} + 3(-t)^{-k-4} - 6(-t)^{-k-3} + \dots + 5t^3 - 3t^4 + t^5, & \text{if } k \ge 3. \end{cases}$$

Proof. First, from Eq. (1) we have $V(0,0,0) = V(3_1)V(3_1!)$ and $V(1,0,0) = V(12n_605)$, and so we obtain Eq. (20) with k = 0, 1 from [17]. Suppose $k \ge 1$. Using Eq. (19) at a negative crossing in the k-tangle in the diagram Fig. 1(a), we obtain

(21)
$$V(k,0,0) = -t^{-1/2}V(K(\infty,0,0)) - t^{-1}V(k-1,0,0).$$

Note that the Jones polynomial $V(K(\infty,0,0))$ does not change depending on the value k. In fact, $K(\infty,0,0) \approx L_0(0)$ (Proposition 3(iii)) and the linking number of $L_0(0)$ is zero. So, we obtain

$$-t^{-1/2}V(K(\infty,0,0)) = V(1,0,0) + t^{-1}V(0,0,0)$$

= $t^{-6} - 2t^{-5} + 2t^{-4} - 3t^{-3} + 2t^{-2} + t^{-1} + 1 + 2t - 3t^{2} + 2t^{3} - 2t^{4} + t^{5}$.

Then by Eq. (21), we obtain Eq. (20) for $k \geq 2$ inductively.

Proposition 10. For k, l, m, k', l', $m' \in \mathbb{Z}$, V(k, l, m) = V(k', l', m') if and only if k = k' and l + m = l' + m'.

Proof. The "if" part is trivial. To prove the "only if" part, assume that V(k,l,m) = V(k',l',m'). Then by Proposition 8 we have $(-t)^{-l-m}(V(k,0,0)-1) = (-t)^{-l'-m'}(V(k',0,0)-1)$. Note that the Jones polynomial V(-k,0,0) is given by substitution of t^{-1} for t in V(k,0,0). Then considering the difference of the maximal degree and minimal degree of V(k,0,0) in Lemma 9, we have $k = \pm k'$. If k = k', then l + m = l' + m'. By Eq. (20) the case k = -k' does not happen.

6. Kauffman Polynomial

Let us review the Kauffman polynomial [11, 12]. Let L be an oriented link and D its diagram. The square bracket polynomial $[D] \in \mathbb{Z}[a^{\pm 1}, x^{\pm 1}]$ defined by the following formulas is a regular

isotopy invariant:

$$\begin{bmatrix}
\bigcirc \\
\end{bmatrix} = 1;$$

$$a^{-1} \begin{bmatrix}
\bigcirc \\
\end{bmatrix} = a \begin{bmatrix}
\bigcirc \\
\end{bmatrix} = \begin{bmatrix}
\bigcirc \\
\end{bmatrix};$$

$$\begin{bmatrix}
\\
\end{aligned} \end{bmatrix} + \begin{bmatrix}
\\
\end{aligned} \end{bmatrix} = x (\begin{bmatrix}
\\
\end{aligned}) (\boxed{}) + \begin{bmatrix}
\\
\end{aligned} \end{bmatrix}.$$

Then the Kauffman polynomial of L, $F(L; a, x) \in \mathbb{Z}[a^{\pm 1}, x^{\pm 1}]$, is given by:

$$F(L; a, x) = a^{-w(D)}[D],$$

where w(D) is the writhe of D; the writhe is the algebraic sum of the crossings of D, counting +1 for a positive crossing, and -1 for a negative crossing. The Q polynomial is obtained from the Kauffman polynomial:

$$Q(L;x) = F(L;1,x).$$

In what follows, we use the polynomials $\sigma_n \in \mathbb{Z}[x]$ and $\tau_n \in \mathbb{Z}[a^{\pm 1}, x], n \in \mathbb{Z}$, defined by:

(23)
$$\sigma_{n-1} + \sigma_{n+1} = x\sigma_n,$$
$$\tau_{n-1} + \tau_{n+1} = x\tau_n + a^{-n}x,$$
$$\sigma_0 = \tau_0 = \tau_1 = 0, \quad \sigma_1 = 1.$$

Then we have

$$\sigma_{-n} = -\sigma_n,$$

$$\sigma_{n-1}\sigma_{n+1} = \sigma_n^2 - 1,$$

$$(26) a\tau_{n+1} = \tau_n + x\sigma_n,$$

(27)
$$\tau_{1-n}(a,x) = a^{-1}\tau_n(a^{-1},x),$$

where $\tau_{1-n}(a,x) = \tau_{1-n}$ and $\tau_n(a^{-1},x)$ is obtained from τ_n by substituting a into a^{-1} . Moreover, the polynomial σ_n , n > 0, has the following forms:

(28)
$$\sigma_{2j} = (-1)^{j-1} jx + \alpha_{2j,3} x^3 + \alpha_{2j,5} x^5 + \dots + \alpha_{2j,2j-5} x^{2j-5} - (2j-2) x^{2j-3} + x^{2j-1},$$

(29)
$$\sigma_{2j+1} = (-1)^j + \alpha_{2j+1,2}x^2 + \alpha_{2j+1,4}x^4 + \dots + \alpha_{2j+1,2j-4}x^{2j-4} - (2j-1)x^{2j-2} + x^{2j},$$

where $\alpha_{n,k} \in \mathbb{Z}$.

For $n \in \mathbb{Z} \cup \{\infty\}$, let [n] be the square bracket polynomial of a link diagram containing an n-tangle as shown in Fig. 2. Then we have the following [10, Proposition 2.2]:

(30)
$$[n] = \sigma_n[1] - \sigma_{n-1}[0] + \tau_n[\infty].$$

Since $\sigma_{-1} = -1$, $\sigma_{-2} = -x$, $\tau_{-1} = x$, the case n = -1 coincides with Eq. (22). This formula yields the next formula.

Let D(k, l, m) be the diagram Fig. 1(a) and [k, l, m] denote its square bracket polynomial. Let F(k, l, m) be the Kauffman polynomial of $\vec{K}(k, l, m)$.

Lemma 11. The maximal degree of [1, -m, m] in x is 10 if m = 0, 1, 2, and 2m + 5 if $m \ge 3$. Furthermore, comparing the Kauffman polynomials F(1, -m, m) for m = 0, 1, 2, it holds that F(1, -m, m) = F(1, -m', m') if and only if $m = \pm m'$.

Proof. For $k, l, m \in \mathbb{Z}$ using Eq. (30), we have

$$\begin{aligned} [k,l,m] &= \sigma_{l}[k,1,m] - \sigma_{l-1}[k,0,m] + \tau_{l}[k,\infty,m] \\ &= \sigma_{l}(\sigma_{m}[k,1,1] - \sigma_{m-1}[k,1,0] + \tau_{m}[k,1,\infty]) \\ &- \sigma_{l-1}(\sigma_{m}[k,0,1] - \sigma_{m-1}[k,0,0] + \tau_{m}[k,0,\infty]) + \tau_{l}[k,\infty,m]. \end{aligned}$$

Since $K(k,\infty,m)\approx K(k,l,\infty)\approx U^2$ and the writhes of the diagrams $D(k,\infty,m)$ and $D(k,l,\infty)$ with any orientation are -k-m and -k-l, respectively, we have $a^{k+m}[k,\infty,m]=a^{k+l}[k,l,\infty]=\mu_F$, where μ_F is the Kauffman polynomial of the trivial 2-component link, $\mu_F=(a^{-1}-a)x^{-1}-1$. Also, since $K(k,1,0)\approx K(k,0,1)$ and the writhes of D(k,0,1) and D(k,1,0) are -k-1, we have [k,1,0]=[k,0,1].

Then we have

$$[k, l, m] = \sigma_l \sigma_m[k, 1, 1] - (\sigma_l \sigma_{m-1} + \sigma_{l-1} \sigma_m)[k, 1, 0] + \sigma_{l-1} \sigma_{m-1}[k, 0, 0] + a^{-k} (a^{-1} \sigma_l \tau_m - \sigma_{l-1} \tau_m + a^{-m} \tau_l) \mu_F.$$

If l = -m, then using Eqs. (23), (24) and (25), we have

$$[k, -m, m] = -\sigma_m^2[k, 1, 1] + x\sigma_m^2[k, 1, 0] - (\sigma_m^2 - 1)[k, 0, 0] + a^{-k}(-a^{-1}\sigma_m\tau_m + \sigma_{m+1}\tau_m + a^{-m}\tau_{-m})\mu_F.$$

By Eq. (22) we have $[k, 1, 1] = -[k, 1, -1] + x[k, 1, 0] + xa^{-k-1}\mu_F$, and so

$$[k, -m, m] = \sigma_m^2([k, 1, -1] - [k, 0, 0]) + [k, 0, 0] + a^{-k}(-\sigma_m^2 x a^{-1} - a^{-1}\sigma_m \tau_m + \sigma_{m+1}\tau_m + a^{-m}\tau_{-m})\mu_F.$$

Let max deg f denote the maximal degree of $f \in \mathbb{Z}[a^{\pm 1}, x^{\pm 1}]$ in x. Then we see for $m \geq 3$ max deg [1, -m, m] = 2m + 5. In fact, we have the following:

(31)
$$\max \deg \sigma_m = m - 1 \quad (m \ge 1),$$

$$\max \deg([1, 1, -1] - [1, 0, 0]) = 7,$$

(33)
$$\max \deg[1, 0, 0] = 10,$$

(34)
$$\max \deg \tau_m = \begin{cases} m-1 & \text{if } m \ge 2, \\ -m & \text{if } m \le -1. \end{cases}$$

Equation (31) follows from Eqs. (28) and (29). Equation (32) follows from

$$a([1,1,-1] - [1,0,0]) = F(12n_268) - F(12n_605)$$

= $(a^{-4} + 3a^{-2} + 2 - 2a^2 - 3a^4 - a^6) + \dots + (-a^{-1} + a^3)x^7;$

see [17]. Also for Eq. (33) see [17]. Equation (34) follows from Eqs. (26)–(29).

Now, we see the three Kauffman polynomials F(1, -m, m) (m = 0, 1, 2) are mutually distinct. In fact, the coefficient polynomials of x^2 of F(1, -m, m) are mutually distinct as shown in Table 1, where we calculated F(1, -2, 2) using the program of Kodama [14].

Table 1. Coefficient polynomials of x^2

$K(1,0,0) = 12$ n_605	$-5a^{-4} + a^{-2} + 10 + 4a^6$
$K(1, -1, 1) = 12n_268$	$-5a^{-4} - 8a^{-2} + 1 + 9a^2 + 9a^4 + 4a^6$
K(1, -2, 2)	$-4a^{-4} + 4a^{-2} + 12 - 2a^2 - 3a^4 + 3a^6$

Proof of Theorem 1. The sets of knots $\{K(1,-2n,2n) \mid n \in \mathbb{N}\}$ and $\{K(1,1-2n,2n-1) \mid n \in \mathbb{N}\}$ satisfy the conditions. In fact, Q(1,-2n,2n) = Q(1,1-2n,2n-1) = Q(1,0,0) by Theorem 5, and P(1,-2n,2n) = P(1,0,0), P(1,1-2n,2n-1) = P(1,-1,1) by Proposition 6. These knots are classified by the Kauffman polynomial by Lemma 11.

We give some properties of K(k, l, m) using the above results.

Proposition 12. The knot K(k, l, m), $k, l, m \in \mathbb{Z}$, has the following properties.

- (i) K(k, l, m) is a ribbon knot.
- (ii) The determinant of K(k, l, m) is 9.

(iii)

$$K(k,l,m) \approx \begin{cases} 3_1! \# 3_1 & \text{if } k = l+m = 0, \\ 6_1 & \text{if } k = 0, \ l+m = -1, \\ 6_1! & \text{if } k = 0, \ l+m = 1, \\ (a \ hyperbolic \ 3\text{-bridge knot}) & \text{otherwise.} \end{cases}$$

Proof. (i) The knot K(k, l, m) is presented as a symmetric union of the trefoil knot, and so it is a ribbon knot [15, Theorem 5.1].

- (ii) Since K(k, l, m) is a symmetric union of the trefoil knot, applying the formula of Lamm [15, Theorem 2.6], we obtain the result.
- (iii) The number of local maxima of the diagrams in Fig. 1 of K(k, l, m) is 3, and so the bridge number of K(k, l, m) is at most 3; cf. [19, Sect. 4.3]. If K(k, l, m) is a 2-bridge knot, then since its determinant is 9, $K(k, l, m) \approx 6_1$, 6_1 !, 9_1 , or 9_1 ! by the classification of the 2-bridge knots; cf. [19, Theorem 9.3.3]. Since $\nabla(9_1) = 1 + 10z^2 + 15z^4 + 7z^6 + z^8$ [17], $K(k, l, m) \not\approx 9_1$ nor 9_1 ! by Proposition 7. Suppose $K(k, l, m) \approx 6_1$ or 6_1 !. From Eq. (1) we have $V(6_1) = V(K(0, -1, 0))$ and $V(6_1) = V(K(0, 1, 0))$, and so by Proposition 10 if $K(k, l, m) \approx 6_1$, then k = 0 and l + m = -1 and if $K(k, l, m) \approx 6_1$!, then k = 0 and l + m = 1.

Next, if K(k, l, m) is a composite knot, then it is a connected sum of two 2-bridge knots. Since the determinant is 9 and it is a ribbon knot, it should be the square knot $3_1!\#3_1$. From Eq. (1) we have $V(3_1!\#3_1) = V(K(0,0,0))$ and so by Proposition 10 $K(k,l,m) \approx 3_1!\#3_1$ if and only if k = l + m = 0.

Lastly, we show K(k, l, m) is not a torus knot. Since the knot 6_1 is hyperbolic, we consider K(k, l, m) with bridge number 3. If it is a torus knot, then it should be one of type (3, q), $|q| \ge 4$, T(3, q). The determinant of T(3, q) is 1 (if q is odd) or 3 (if q is even), so it is not the case. \square

ACKNOWLEDGMENTS

The author was partially supported by JSPS KAKENHI, Grant Number JS21K03251 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0723833165.

References

- [1] J. S. Birman and T. Kanenobu, Jones' braid-plat formula and a new surgery triple, Proc. Amer. Math. Soc. 102 (1988), 687–695.
- [2] R. D. Brandt, W. B. R. Lickorish, and K. C. Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986), 563–573.
- [3] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), Pergamon, Oxford, 1970, pp. 329–358.
- [4] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239–246.
- [5] C. F. Ho, A polynomial invariant for knots and links—preliminary report, Abstracts Amer. Math. Soc. 6 (1985), 300.

- [6] Z. Iwase and H. Kiyoshi, Classification of Kanenobu's knots, Kobe J. Math. 4 (1988), 187–191.
- [7] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), 335–388.
- [8] T. Kanenobu, Infinitely many knots with the same polynomial invariant, Proc. Amer. Math. Soc. 97 (1986), 158–162.
- [9] T. Kanenobu, Examples on polynomial invariants of knots and links, Math. Ann. 275 (1986), 555–572.
- [10] T. Kanenobu, Examples on polynomial invariants of knots and links. II, Osaka J. Math. 26 (1989), 465–482.
- [11] L. H. Kauffman, On knots, Annals of Mathematics Studies, vol. 115, Princeton University Press, Princeton, NJ, 1987.
- [12] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471.
- [13] S. Kinoshita and H. Terasaka, On unions of knots, Osaka Math. J. 9 (1957), 131–153.
- [14] K. Kodama, "KNOT program", software, URL: http://www.math.kobe-u.ac.jp/HOME/kodama/knot.html., 2007.
- [15] C. Lamm, Symmetric unions and ribbon knots, Osaka J. Math. 37 (2000), 537–550.
- [16] C. Lamm, The search for nonsymmetric ribbon knots, Experimental Mathematics 30 (2021), 349–363.
- [17] C. Livingston and A. H. Moore, Knotinfo: Table of knot invariants, URL: knotinfo.math.indiana.edu, March 2025.
- [18] Y. Miyazawa, Links with trivial Q-polynomial, J. Math. Soc. Japan 71 (2019), 19–42.
- [19] K. Murasugi, Knot theory and its applications, Birkhäuser Boston Inc., Boston, MA, 1996, Translated from the 1993 Japanese original by B. Kurpita.
- [20] J. H. Przytycki and P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988), 115–139.

OSAKA CENTRAL ADVANCED MATHEMATICAL INSTITUTE, OSAKA METROPOLITAN UNIVERSITY, 3-3-138, SUGIMOTO, SUMIYOSHI-KU, OSAKA, 558-8585, JAPAN

Email address: kanenobu@omu.ac.jp