INFINITELY MANY KNOTS WITH THE SAME POLYNOMIAL
INVARIANT, II

TAIZO KANENOBU

ABSTRACT. We give infinitely many knots with the same HOMFLYPT and Q polynomials,
which are distinguished by the Kauffman polynomial. They are symmetric unions of the trefoil
knot.

1. INTRODUCTION

The author [8, 9] provided infinite knot families with the same HOMFLYPT polynomial and
hence the same specializations of the HOMFLYPT polynomial, Alexander-Conway and Jones
polynomials, which are symmetric unions of the figure-eight knot. The notion of symmetric
union was introduced by Kinoshita and Terasaka [13] and generalized by Lamm [15]. The knots
in these families are classified by the Q polynomial [6]; the Q polynomial is a specialization of
the Kauffman polynomial. In this note, we provide another family of knots which share the
same HOMFLYPT and Q polynomials; they are distinguished by the Kauffman polynomial.
The knots in this family are symmetric unions of the trefoil knot, which are exhibited by Lamm
[16].

Theorem 1. There exist infinitely many knots sharing the same HOMFLYPT and @ polyno-
mials, which are distinguished by the Kauffman polynomial. So, they also share the same Jones
and Alexander-Conway polynomials.

Notice that Miyazawa [18] discovered two 16-crossing knots with trivial Q) polynomial, which
have nontrivial Jones polynomials. Moreover, he constructed an infinite prime knot family hav-
ing trivial Q polynomial, which are distinguished by the Jones polynomial. By connected sums
we can construct infinitely many knots sharing the same Q polynomial as that of a particular
knot.

This note is organized as follows. Section 2 introduces the knot or link family K(k,I, m),
k, 1, m € Z U {oo}, whose subfamilies satisfy the properties of Theorem 1. In Sects. 3, 4, 5,
we calculate the Q polynomial, HOMFLYPT and Conway polynomials, and Jones polynomial
of K(k,l,m), respectively. In Sect. 6 we calculate the Kauffman polynomial of K (k,l, m) and
prove Theorem 1, and also give some properties of K (k,l,m).

2. THE KNOT/LINK FAMILY K (k,l,m)

The knot family for Theorem 1 is contained in the family consisting of K(k,l,m), k, [,
m € Z U {oo}, which are presented by any one of the diagrams in Fig. 1; a rectangle labeled
n stands for a vertical n-tangle, a 2-string tangle with |n| crossings for n € Z, or the co-tangle
for n = oo as shown in Fig. 2. Note that if k, [, m € Z, then K(k,l,m) is always a knot.
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These knots are symmetric unions of the trefoil knot. In fact, the diagram Fig. 1(a) is just
the second template with determinant 9 for the symmetric union diagram given in Appendix
of [16]. The diagram Fig. 1(b) is obtained by deforming the diagram Fig. 1(a), which is also
obtained from the diagram Fig. 1(e) by sliding the [-tangle. The diagrams (d), (e), (f) in Fig. 1
are obtained from the diagram (c) by rotating along the x, y, z coordinate axes by the angle
180°, respectively.

FIGURE 1. Diagrams of the knot/link K (k,I,m).
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Let L and L’ be links. Then L =~ L' means that L and L’ are isotopic. We denote the mirror
image of L by L!. Comparing the diagrams (c), (d), (e) in Fig. 1 we have:

Proposition 2. Fork, 1, m € Z, we have K (k,l,m) ~ K(k,m,l) and K (k,l,m)! ~ K(—k,—m, —1).

We orient K (k,1,m) as shown in Fig. 3, which we denote by K (k,I,m). Then K (k,1,m) is
isotopic to any one of the diagrams illustrated in Fig. 4.
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FI1GURE 4. The diagrams isotopic to I?(k‘, l,m).

For n € Z, let J(n) be the knot and Lo(n) and L;(n) the 2-component links as shown in Fig 5.
Note that J(n) is the pretzel knot of type (3, —3,n), which is also regarded as a symmetric union
of the trefoil knot. Using these diagrams we obtain the following.

Proposition 3. For k, I, m € Z, we have the following.

(i) K(k,00,m) ~ K(k,l,00) =~ U?, where U? is the trivial 2-component link.

(ii) K(0,1,m) =~ J(l +m).

A Lo+m) i @m)

(0,0), (0,1), (1,0) (mod 2),

(iii) K (00,1, m) (1,1) (mod 2).
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FIGURE 5. The knot J(n) and the links Ly(n) and Li(n), n € Z.
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For small k, I, m, we can identify the knots K (k,l,m) as follows:

K(0,0,0) =~ K(0,—1,1) = J(0) ~ 31!#31 (the square knot),

K(0,1,0) ~ K(0,0,1) ~ J(1) ~ 61!,

K(1,0,0) ~ 12n_ 605, K(1,-1,1) ~ K(1,1,-1) ~ 12n_ 268,
() K(1,0,1) ~ K(1,1,0) ~ 13n_1849!,  K(1,0,—1) ~ K(1,-1,0) ~ 13n_1357,

K(1,-2,1) ~ 13n_ 1645, 1((1,-—1,2)f~ 13n_ 1805,

K(2,0,0) ~ 13n_ 2209, K(2,—1,1) ~ 13n_3272,

where we use the knot names in [17].

3. Q POLYNOMIAL

The Q polynomial Q(L;z) € Z[z*!] [2, 5] is an invariant of the isotopy type of an unoriented
link L defined by

Q) =
(2) Q@H+Q()=$@@M+Q())

where U is the unknot and (Ly,L_, Lo, Ls) is an unoriented skein quadruple, which is an
ordered set of four unoriented links that are identical except near one point where they are as

in Fig. 6.
Ao X ) X
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L+ L_ LO LOO
FIGURE 6. Unoriented skein quadruple.
Suppose a link L contains a tangle R. Any link obtained by rotating R about one of the

three axes is called a mutant of L. We use the following properties of the Q polynomial; see [2,
Property 1]:
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Proposition 4. (i) Q(L1#L2) = Q(L1)Q(L2), where L1#Ls is a connected sum of L1 and Ls.
(i) Q(L!) = Q(L).
(iii) If Lo is a mutant of Ly, then Q(L1) = Q(L2).

We denote by pg the Q polynomial of the trivial 2-component link, ug = 2 -1,
We denote the Q polynomial of the knot /link K (k,1,m) by Q(k,l,m), Q(k,l,m) = Q(K(k,l,m)).

Then we obtain the following theorem.
Theorem 5. For k, [, m € Z, we have:
(3) Q(k,l,m) =Q(k,0,l +m).

Proof. The proof will be divided into four steps:

) Q1 —m,m) = Q(1,0,0) (m € 7),
(5) Q(k,—m,m) = Q(k,0,0) (k,m € Z),
(6) Q(k,—m+1,m) =Q(k,0,1) (k,me€Z),
(7) Q(k,—m +n,m) =Q(k,0,n) (k,m,n € Z).
Proof of Eq. (4). Using Eq. (2) we have:
(8) Q(1,—m,m) + Q(=1,—m,m) = z (Q(0, —m, m) + Q(c0, —m,m)) .

By Proposition 2 we have K(—1,—m,m)! =~ K(1,m,—m) ~ K(1,—m,m), and so Q(—1, —m,m) =
Q(1,—m,m). Then Eq. (8) is deformed into

x

(9) Q(lv —-m, m) = 5 (Q(Oa —-m, m) + Q(OO, —-m, m)) :

By Proposition 3(ii), K (0, —m, m) is isotopic to J(0), which is the square knot, 31#31!, and so
(10) Q0,—m,m) = Q(31)* = 9 — 12z — 822 + 82> + 4.

By Proposition 3(iii), K (oo, —m,m) is isotopic to either Ly(0) or L1(0). Since Ly(0) and L;(0)
are mutant and L1 (0) is the pretzel link of type (3, —3,3,—3), Pz(3,—3,3,—3), and so

(11)
Q (o0, —m, m) = Q(Pz(3,-3,3,-3))

=227 — 14322 — 8022 — 2423 + 1322 + 2025 — 762° — 2027 + 122° + 42°.
Therefore, from Eq. (9), we obtain
Q(1,—m,m) = = (Q(31)* + Q(Px(3,-3,3,-3))
=1+ 4z + 1022 — 442% — 8z + 682° + 102° — 3827 — 102 + 6% + 2210,

which implies Eq. (4).

Proof of Eq. (5). We proceed by induction on k. Equation (5) with £ = 0 comes from Eq. (10),
and Eq. (5) with £ =1 is Eq. (4). Suppose that Eq. (5) holds for any integer m and k = k' — 1
and £’. Using Eq. (2) we have
(12) QUK +1,=m,m) + QK =1, —=m,m) =z (Q(K', =m,m) + Q(00, =m, m))
for any integer m. In particular, we have:

(13) QK +1,0,0) + Q(K —1,0,0) = z (Q(K',0,0) + Q(0,0,0)) .

M\H
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By the inductive assumption Q(k' — 1,—m,m) = Q(k' — 1,0,0) and Q(k¥', —m,m) = Q(¥',0,0),
and by Eq. (11) Q(c0, —m, m) = Q(c0,0,0), and so we obtain Q(k'+1, —m, m) = Q(k'+1,0,0).
Thus Eq. (5) holds for any integers k(> 0) and m. The case k < 0 is similar.

Proof of Eq. (6). Using Eq. (2) we have
Qlk,—m+1m—-1)+Qk,—m+1m+1)=x(Q(k,—m+1,m)+ Q(k,—m +1,00)),
Qk,—m—-1m+1)+Qk,—m+1,m+1)=x(Q(k,—m,m+1)+ Q(k,oo,m+1)).

Then, since Q(k,—m +1,m —1) = Q(k,—m —1,m+1) = Q(k,0,0) (Eq. (5)) and Q(k,—m +
1,00) = Q(k,00,m+1) = pg (Proposition 3(i)), we obtain Q(k, —m+1,m) = Q(k,—m, m+1).
This holds for any integers k, m, and so we obtain Eq. (6).

Proof of Eq. (7). The cases n = 0, 1 are Egs. (5) and (6), respectively. Using Eq. (2) we have
Qk,—m+j—-2m+1)+Qk,—m+jm+1)=z(Qk,—m+j—1m+1)+Q(k,oo,m+1)).
From Proposition 3(i) we have Q(k, —m + j, 00) = Q(k,00,m + 1) = pug. Thus, by induction on
n we obtain Eq. (7). O

4. HOMFLYPT AND CONWAY POLYNOMIALS

The Conway polynomial V(L; z) € Z[z] [3], the Jones polynomial V(L;t) € Z[t='/?] [7], and
the HOMFLYPT polynomial P(L;v, z) € Z[v*!, 2] [4, 7, 20] are invariants of the isotopy type
of an oriented link L. They are defined by

V(U;z) =1,
V(Ly;z) = V(L z) = 2V (Lo 2), V(U;t) = 1,
(14) (L st) — tV(L_st) = (t1/2 - fl/Q) V(Lo t),
PU;v,2z) =1,
(15) v P(Ly;v,2) —vP(L_;v,2) = 2P(Lo; v, 2),

where (L4, L_, L) is a skein triple, an ordered set of three oriented links that are identical
except near one point where they are as in Fig. 7. We say that the link Ly is obtained from
Ly or L_ by smoothing the crossing in Ly or L_. The Conway polynomial and the Jones
polynomial are obtained from the HOMFLYPT polynomial as follows:

V(L;z) = P(L; 1, z2),
(16) V(Lit) =P (L; t, /2 — t_1/2> :

N

FIGURE 7. Skein triple.

We calculate the HOMFLYPT polynomial of the oriented knot K (k,l,m), k, I, m € Z as
shown in Fig. 8(a), which we can deform into Figs. 8(b) and 8(c). Let P(k,l,m) be the HOM-
FLYPT polynomial of K(k,l,m).
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FIGURE 8. The oriented knot K (k,1,m).

Proposition 6. For k, I, m € Z, we have:
v (P(K,0,0) = 1)+ 1 if (I,m)
P(k,l,m) = { o'~ (P(k,0,1) = 1) + 1 if (Im)
v (P(k,—1,1) = 1) + 1 if (I,m)

(0,0) (mod 2),
(0,1),(1,0) (mod 2),
(1,1), (mod 2)

Proof. The two arcs of the I[-tangle in K (k,l,m) has anti-parallel orientation. So smoothing
a crossing in this tangle, we obtain K (k, 0o, m) with proper orientation, which is a trivial 2-
component link U? by Proposition 3(i). Thus, we obtain a skein triple:

(K(k;,z —2,m), K (k,1,m), U2) .
Similarly, we obtain a skein triple:
(I?(k, l,m —2), K (k,1,m), U2> .

Since the HOMFLYPT polynomial of the trivial 2-component link is (v~ —v)z~!, using Eq. (15)
we have
v P(k,1 —2,m) —vP(k,l,m) =v1 -,
v P(k,l,m —2) —vP(k,l,m) =v1 — v,
which imply
P(k,l,m) —1=v"2(P(k,l —2,m) — 1) =v 2 (P(k,l,m —2) — 1).
Then, since K(k,l,m) ~ K(k,m,1), we obtain the result. O

The diagram Fig. 1(a) of the knot K (k,l,m), k, I, m € Z, shows it is a symmetric union of the
trefoil; cf. [16, Appendix]. So, we can calculate the Alexander polynomial by applying Lamm’s
theorem in [15]. Since the Alexander polynomial and the Conway polynomial are essentially the
same [19, Theorem 6.2.1], we obtain the following.
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Proposition 7. For k, I, m € Z, we have:

142224 24 if (k,1,m) = (0,0,0), (0,1,1) (mod 2),
V(k.Lm) 1— 222 if (k,l,m) = (0,0,1), (0,1,0), (1,1,1) (mod 2),
Y 14222+ 524 + 26 if (k,l,m) = (1,1,0), (1,0,1) (mod 2),
1—222 —824—625-28 if (k,[,m)=(1,0,0) (mod 2).

Proof. 1t (k,1,m) = (K',I',m’) (mod 2), then by Theorem 2.4 in [15], the two knots K (k,l,m)

and K(k',1',m’) share the same Alexander polynomial, which yields V(k,l,m) = V(k',I',m’).

From Eq. (1), looking at [17], we obtain the result. O
5. JONES POLYNOMIAL

Given a skein triple (L, L_, Ly), we consider another oriented link Lo, which is one of the
diagrams of Fig. 9, the choice being (i) if ¢(Ly) < ¢(Lo) and (ii) if ¢(L4) > ¢(Lg), where ¢(L) is
the number of components of a link L. We call the ordered set (L, L_, Lo, Lo) an oriented skein
quadruple, for which we have the following relations of the Jones polynomials [1, Theorem 2:
For the case (i) ¢(Ly) < ¢(Lg), we have

(17) V(Ly;t) — tV(L_;t) + 3Nt — 1)V (Loo; t) = 0,

where A is the linking number of the right-hand component of Ly with the remainder of Lg, and
for the case (ii) ¢(L+) > ¢(Lop), we have

V(Lyit) —tV(L_;t) + 362 (¢t — 1)V (Loo;t) = 0,

where p is the linking number of the bottom-right and top-left component of L, with the
remainder of L.

NS
N N
() ()

FIGURE 9. Oriented link L.

For the case (i), using Eqs. (14) and (17), we have:
(18) V(List) = ~t2V(Loit) = 7V (Loit),
(19) V(L_it) = =tV (Lost) — 271V (Loos t),

which we will use in the proof of the following proposition.
Let V(k,1,m) be the Jones polynomial of K (k,l, m).

Proposition 8. For k, [, m € Z, we have:

V(k,l,m) = (—=t)"""™(V(k,0,0) — 1) + 1.
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Proof. _’We have an oriented skein quadruple (I?(k, 0,—1), K (k,0, 1), I?(k, 0,00), [?(k, 0,0)). Then,
since K (k,0,00) ~ U? (Proposition 3(i)), by Eq. (19) we have
V(k,0,1) = —t~Y2py —t7'V(k,0,0)
= (=) " (V(k,0,0) — 1) + 1,
where py = —t~1/2 — t1/2 is the Jones polynomial of the trivial 2-component link. Similarly,

from an oriented skein quadruple ([?(k, -1,1), K(k,1,1), K(k,00,1), K (k,0, 1)), by Eq. (18) we
have

Vik,—1,1) = —t'2py —tV(k,0,1) = (—t)(V(k,0,1) —1) + 1

= V(k,0,0).
Then using Eq. (16), Proposition 6 yields the result. O
Lemma 9.
(20)
32—t 3t 12— 13, if k=0,
70 2 43t a3t 2 24t 22 23 — 20 + 0, ifk=1,
V(k,0,0) = -7 —6 -5 3 4 45 :
—tTT 4370 =5t 4 4P — 3t 445, if k=2,
(=) 4 3(—t) 4 —6(—t) K3 4. 4 513 — 3¢t 117, if k> 3.

Proof. First, from Eq. (1) we have V(0,0,0) = V(31)V(31!) and V(1,0,0) = V(12n_605), and
so we obtain Eq. (20) with & = 0, 1 from [17]. Suppose k > 1. Using Eq. (19) at a negative
crossing in the k-tangle in the diagram Fig. 1(a), we obtain

(21) V(k,0,0) = —t"2V(K(c0,0,0)) —t "'V (k —1,0,0).
Note that the Jones polynomial V(K (o0,0,0)) does not change depending on the value k. In
fact, K(00,0,0) ~ Lo(0) (Proposition 3(iii)) and the linking number of Ly(0) is zero. So, we
obtain
72V (K(0,0,0)) = V(1,0,0) + ¢'V(0,0,0)
=t 0 27 o™t 3t 2 12t - 32 4 263 — 26 15
Then by Eq. (21), we obtain Eq. (20) for £ > 2 inductively. O

Proposition 10. Fork, I, m, k', ', m' € Z, V(k,l,m) =V (K',I",m') if and only if k = k' and
I+m=1+m'

Proof. The “if” part is trivial. To prove the “only if” part, assume that V' (k,l,m) = V(K', 1, m’).
Then by Proposition 8 we have (—t)~=" (V(k,0,0) — 1) = (=t)~"~™ (V(k¥’,0,0) — 1). Note
that the Jones polynomial V(—k,0,0) is given by substitution of t~* for ¢ in V(k,0,0). Then
considering the difference of the maximal degree and minimal degree of V(k,0,0) in Lemma 9,
we have k = +k'. If k = K/, then [ +m = ' + m/. By Eq. (20) the case k = —k’ does not
happen. O

6. KAUFFMAN POLYNOMIAL

Let us review the Kauffman polynomial [11, 12]. Let L be an oriented link and D its diagram.
The square bracket polynomial [D] € Z[a*!, 2%!] defined by the following formulas is a regular
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isotopy invariant:

22 | XA == (O LX)

Then the Kauffman polynomial of L, F(L;a,z) € Z[a™!, z*!], is given by:

F(L;a,z) = a *")[D],

where w(D) is the writhe of D; the writhe is the algebraic sum of the crossings of D, counting
+1 for a positive crossing, and —1 for a negative crossing. The Q polynomial is obtained from
the Kauffman polynomial:

Q(L;x) = F(L; 1, z).
In what follows, we use the polynomials o,, € Z[z] and 7, € Z[a™", ], n € Z, defined by:
(23) Op—1+ Ont1l = X0y,

Tn—1+ Tny1 = o7 + a” "z,

0'0:’7'0:’7'1:0, 0'1:]_.

Then we have

(24) O_p = —0Op,

(25) On_10mi1 =02 — 1,
(26) ATpi1 = Tn + xop,
(27) Ti—n(a,z) = ailTn(afl,m),

where 71_y(a,z) = 71, and 7,(a~!, z) is obtained from 7,, by substituting a into a~!. Moreover,
the polynomial g, n > 0, has the following forms:

(28) o9; = (—1) iz + agj 37 + agjsr® + - + ojojsr T — (25 — 2)a 3 4 2%
(29) o941 = (=1) + Oézj+1,2w2 + 042j+1,4$4 + 4 0¢2j+1,2j74352j_4 — (2§ — 1)a¥ 2 + 2%,
where o, € Z.

For n € Z U {oo}, let [n] be the square bracket polynomial of a link diagram containing an
n-tangle as shown in Fig. 2. Then we have the following [10, Proposition 2.2]:

(30) [n] = op[l] — 0p—1[0] + 7 [00].

Since 01 = —1, 09 = —x, 7_1 = x, the case n = —1 coincides with Eq. (22). This formula
yields the next formula.

Let D(k,l,m) be the diagram Fig. 1(a) and [k,[,m] denote its square bracket polynomial.
Let F(k,l,m) be the Kauffman polynomial of K(k, l,m).

Lemma 11. The mazimal degree of [1,—m,m] in x is 10 if m =0, 1, 2, and 2m +5 if m > 3.
Furthermore, comparing the Kauffman polynomials F(1,—m,m) for m =0, 1, 2, it holds that
F(1,—m,m) = F(1,—m/,m) if and only if m = +m/.
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Proof. For k, I, m € Z using Eq. (30), we have
[k,l,m| = o[k, 1,m| — o;_1[k,0,m] + 7 [k, 00, m]
= oy(omlk,1,1] — -1k, 1,0] + T [k, 1, 00])
—oi—1(omk,0,1] — 0pm—1[k,0,0] + 7 [k, 0, 00]) + 7 [k, 00, m].

Since K (k, 00, m) ~ K(k,1,00) ~ U? and the writhes of the diagrams D(k, oo, m) and D(k, 1, o0)

with any orientation are —k—m and —k—I, respectively, we have a* [k, 0o, m| = a**![k, 1, 00] =

pr, where pup is the Kauffman polynomial of the trivial 2-component link, pup = (¢~ —a)z ™' —1.

Also, since K(k,1,0) ~ K(k,0,1) and the writhes of D(k,0,1) and D(k,1,0) are —k — 1, we
have [k, 1,0] = [k, 0, 1].
Then we have
[k,l,m| = ook, 1,1] — (010m—1 + 01—10m) [k, 1,0] + 01_10m—1[k, 0, 0]
+a  (a  oym — 011 + a7 ) pp
If | = —m, then using Eqgs. (23), (24) and (25), we have
[kv _mam] == U?n[kv 1, 1] + .I'O‘?n[k‘, L, 0] - (G’r?n - 1)[k7 0, O]

_k 1 _
+a " (—a T omTm + Omg1Tm + @ T ) p

By Eq. (22) we have [k, 1,1] = —[k, 1, —1] + z[k, 1,0] + za=* "1 up, and so
[k, —m, m] =07, ([k, 1, 1] — [k, 0,0]) + [k, 0,0]
+ a_k(—agza:a_l —a o T + O Tm + a” """ T ) F

Let maxdeg f denote the maximal degree of f € Z[a™!, zT!]

max deg[l, —m, m| = 2m + 5. In fact, we have the following:

in x. Then we see for m > 3

(31) maxdego, =m—1 (m>1),
(32) maXdeg([L 17 _1] - [1,0,0]) = 77
(33) max deg|[1, 0, 0] = 10,

m—1 ifm>2
34 deg 7, = -7
(34) faxaee {—m ifm < -—1.

Equation (31) follows from Egs. (28) and (29). Equation (32) follows from
a([1,1,—1] — [1,0,0]) = F(12n_268) — F(12n_605)
= 4+3a724+2-2d> 32— a5 + -+ (—a! +a®)2";

see [17]. Also for Eq. (33) see [17]. Equation (34) follows from Egs. (26)—(29).

Now, we see the three Kauffman polynomials F'(1, —m,m) (m = 0, 1, 2) are mutually distinct.
In fact, the coefficient polynomials of 22 of F(1,—m,m) are mutually distinct as shown in
Table 1, where we calculated F(1,—2,2) using the program of Kodama [14].

TABLE 1. Coefficient polynomials of 2

K(1,0,0) =12n_605 | —5a=*+a 2+ 10+ 4a8
K(1,-1,1) =12n_268 | —5a=* — 8a~2 4 1 4+ 9a® + 9a* + 44"
K(1,-2,2) —4a=* +4a72 4+ 12 — 2a® — 3a* + 3a8




12 TAIZO KANENOBU

Proof of Theorem 1. The sets of knots { K(1, —2n,2n) |n € N} and {K(1,1-2n,2n—1)|n € N}
satisfy the conditions. In fact, Q(1, —2n,2n) = Q(1,1 — 2n,2n — 1) = Q(1,0,0) by Theorem 5,
and P(1,—2n,2n) = P(1,0,0), P(1,1—2n,2n—1) = P(1,—1,1) by Proposition 6. These knots
are classified by the Kauffman polynomial by Lemma 11. O

We give some properties of K (k,l,m) using the above results.

Proposition 12. The knot K(k,l,m), k, I, m € Z, has the following properties.
(i) K(k,l,m) is a ribbon knot.
(ii) The determinant of K(k,l,m) is 9.

(iii)
31!#31 z'fk:l+m:0,
ifk=0,1 =-1
Kk lm) ~ 01 k=0, I+m=—-1,
61! ifk=0,14+m=1,

(a hyperbolic 3-bridge knot) otherwise.

Proof. (i) The knot K (k,l,m) is presented as a symmetric union of the trefoil knot, and so it is
a ribbon knot [15, Theorem 5.1].

(ii) Since K (k,l,m) is a symmetric union of the trefoil knot, applying the formula of Lamm
[15, Theorem 2.6], we obtain the result.

(iii) The number of local maxima of the diagrams in Fig. 1 of K (k, [, m) is 3, and so the bridge
number of K (k,l,m) is at most 3; cf. [19, Sect. 4.3]. If K(k,l,m) is a 2-bridge knot, then since
its determinant is 9, K(k,l,m) =~ 61, 61!, 91, or 91! by the classification of the 2-bridge knots;
cf. [19, Theorem 9.3.3]. Since V(91) = 141022 + 1524 + 720 + 28 [17], K (k,I,m) % 91 nor 91! by
Proposition 7. Suppose K (k,l,m) =~ 6; or 6;!. From Eq. (1) we have V(6;) = V(K(0,—-1,0))
and V(6,!) = V(K(0,1,0)), and so by Proposition 10 if K(k,l,m) =~ 6;, then k¥ = 0 and
l+m=—1and if K(k,I,m)~ 61!, then k=0 and [ +m = 1.

Next, if K(k,l,m) is a composite knot, then it is a connected sum of two 2-bridge knots.
Since the determinant is 9 and it is a ribbon knot, it should be the square knot 31!#3;. From
Eq. (1) we have V(31!#31) = V(K (0,0,0)) and so by Proposition 10 K (k, I, m) =~ 31!#3; if and
only if k=1+m =0.

Lastly, we show K (k,l,m) is not a torus knot. Since the knot 6; is hyperbolic, we consider
K (k,l, m) with bridge number 3. If it is a torus knot, then it should be one of type (3, q), |q| > 4,
T'(3,q). The determinant of 7'(3,¢q) is 1 (if ¢ is odd) or 3 (if ¢ is even), so it is not the case. [
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