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Abstract. Rate distortion dimension describes the theoretical limit of lossy data com-

pression methods as the distortion bound goes to zero. It was originally introduced in

the context of information theory, and recently it was discovered that it has an intimate

connection to Gromov’s theory of mean dimension of dynamical systems. This paper

studies the behavior of rate distortion dimension of Rd-actions under ergodic decompo-

sition. Our main theorems provide natural convexity and concavity of upper and lower

rate distortion dimensions under convex combination of invariant probability measures.

We also present examples which clarify the validity and limitations of the theorems.

1. Main results

The purpose of this paper is to investigate the behavior of rate distortion dimension

of Rd-actions under ergodic decomposition. Gromov [Gro99] initiated the study of group

actions on nonlinear infinite dimensional spaces arising from geometric analysis. Typically

such group actions have infinite topological entropy. Therefore standard entropy theory

provides no useful information for them. Gromov introduced a new topological invariant

of group actions called mean dimension for studying such objects. Mean dimension is

the averaged number of parameters for describing orbits of the given group actions. This

provides a useful information for infinite dimensional and infinite entropy group actions.

Mean dimension theory has been studied for more than 20 years and several applications

have been discovered [LW00, Lin99, GLT16, GT20, GQT19].

For developing broader applications of mean dimension, Lindenstrauss and the author

[LT18, LT19] introduced a variational principle for mean dimension. (So far, several

authors have introduced their own approaches to variational principles in mean dimension

theory; see e.g. [GŚ21, Shi22].) The theory of [LT18, LT19] connects mean dimension to a

quantity called rate distortion dimension [KD94]. This was first introduced in the context

of rate distortion theory, which is an important branch of information theory describing

the theoretical limit of lossy data compression schemes. A familiar example of lossy data

compression is JPEG algorithm for two-dimensional image compression. Given an image,
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JPEG expands it by a wavelet basis and discards small coefficients. Then the amount of

information is significantly reduced. Rate distortion theory provides a theoretical limit of

such data compression scheme.

Recently the author [Tsu25] applied the variational principle of mean dimension theory

to the study of entire holomorphic curves. He found that they satisfy an inequality

analogous to the Ruelle inequality of smooth ergodic theory. This opens an unexpected

new interaction between geometric analysis and hyperbolic dynamics. Such a research

direction is probably close to the original spirit of Gromov.

For further developing applications of the variational principle, we need to know several

basic properties of rate distortion dimension. In particular it is fundamental to investigate

its behavior under ergodic decomposition. Every invariant probability measure can be

decomposed into convex combination of ergodic measures, and it is always important

to understand the behavior of dynamical quantities under ergodic decomposition. The

purpose of the present paper is to study it for rate distortion dimension of Rd-actions.

Maybe some readers wonder why we concentrate on the group Rd. There are many other

groups. Is there any good reason to study only Rd? The reason is that this is the most

basic case for geometric applications. For example, the study of entire holomorphic curves

in the paper [Tsu25] provides an example of R2-actions. We also notice that our results

hold for Zd-actions as well (indeed, the case of Zd is a bit simpler than that of Rd), but a

generalization to noncommutative groups is out of scope of this paper1.

Throughout the paper we assume that d is a positive integer and that Rd is endowed

with the Euclidean topology and standard additive group structure. Let (X ,d) be a

compact metric space. Let T : Rd ×X → X be a continuous action of Rd on X . A Borel

probability measure µ on X is said to be T -invariant if µ (T−uA) = µ(A) for all u ∈ Rd

and all Borel subsets A ⊂ X . We denote by M T (X ) the set of all T -invariant Borel

probability measures on X . This space is endowed with the weak∗ topology. A measure

µ ∈ M T (X ) is said to be ergodic if there is no T -invariant2 Borel subset A ⊂ X with

0 < µ(A) < 1. We define M T
erg(X ) ⊂M T (X ) as the set of all ergodic measures.

Let µ ∈ M T (X ). We randomly choose a point x ∈ X according to µ and consider

its orbit {T ux}u∈Rd . For ε > 0, we define the rate distortion function R(d, µ, ε) as the

number of bits per unit volume of Rd for describing the orbit {T ux}u∈Rd within averaged

distortion (w.r.t. d) bounded by ε. We will give the precise definition of R(d, µ, ε) in

§2.3. We define the upper and lower rate distortion dimensions by

rdim(X , T,d, µ) = lim sup
ε→0

R(d, µ, ε)

log(1/ε)
, rdim(X , T,d, µ) = lim inf

ε→0

R(d, µ, ε)

log(1/ε)
.

1This is mainly because the author does not have good examples motivating a generalization to non-

commutative groups. Interested readers may pursue such a direction.
2A set A ⊂ X is said to be T -invariant if T−uA = A for all u ∈ Rd.
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These are originally introduced by Kawabata–Dembo [KD94] in the context of informa-

tion theory3. When the upper and lower limits coincide, we denote the common value

by rdim (X , T,d, µ). The subject of this paper is to study the behavior of these quan-

tities under ergodic decomposition and, more generally, convex combination of invariant

probability measures.

For explaining our main results, we need to introduce one more quantity called upper

metric mean dimension. Let (X ,d) be a compact metric space. For ε > 0 we define the

ε-covering number # (X ,d, ε) as the minimum integer n > 0 for which there exists an

open covering X = U1 ∪ U2 ∪ · · · ∪ Un with Diam (Ui,d) < ε for all 1 ≤ i ≤ n. Here

Diam (Ui,d) := supx,y∈Ui
d(x, y). Let T : Rd × X → X be a continuous action of Rd on

X . For L > 0 we define a new metric dL on X by

dL(x, y) = sup
u∈[0,L)d

d(T ux, T uy).

We define the entropy at the scale ε by

(1·1) S (X , T,d, ε) = lim
L→∞

log # (X ,dL, ε)
Ld

.

This limit always exists (and its value is finite). Finally we define the upper metric

mean dimension by

mdimM (X , T,d) = lim sup
ε→0

S (X , T,d, ε)
log(1/ε)

.

This was originally introduced by Lindenstrauss–Weiss [LW00]. It is easy to see that the

upper metric mean dimension is an upper bound on rate distortion dimension:

rdim (X , T,d, µ) ≤ rdim (X , T,d, µ) ≤ mdimM (X , T,d) (∀µ ∈M T (X )).

Now we can state our main results.

Theorem 1.1. Let T : Rd × X → X be a continuous action of Rd on a compact metric

space (X ,d). Suppose the upper metric mean dimension mdimM (X , T,d) is finite. Let λ

be a Borel probability measure on M T (X ) and define µ ∈M T (X ) by

µ =

∫
MT (X )

ν dλ(ν).

Then we have

(1·2) rdim (X , T,d, µ) ≤
∫

MT (X )

rdim (X , T,d, ν) dλ(ν).

3The motivation of Kawabata and Dembo is to study how much information is carried by a signal that

takes values in fractal sets.
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Theorem 1.2. Let T : Rd × X → X be a continuous action of Rd on a compact metric

space (X ,d). Let λ be a Borel probability measure on M T (X ) and define µ ∈ M T (X )

by

µ =

∫
MT (X )

ν dλ(ν).

Then we have

(1·3) rdim (X , T,d, µ) ≥
∫

MT (X )

rdim (X , T,d, ν) dλ(ν).

We will see later that the inequalities (1·2) and (1·3) may be strict in general. (See the

discussion after Theorem 1.4 below and §5.)

Notice that the condition mdimM (X , T,d) < ∞ is required in Theorem 1.1 whereas

it is not assumed in Theorem 1.2. The condition mdimM (X , T,d) < ∞ is not a severe

restriction. As far as the author knows, it is satisfied for all interesting geometric examples

which have been studied so far. By combining Theorems 1.1 and 1.2, we get a corollary:

Corollary 1.3. Let T : Rd × X → X be a continuous action of Rd on a compact metric

space (X ,d) with mdimM (X , T,d) <∞. Let λ be a Borel probability measure on M T (X )

and define µ ∈M T (X ) by

µ =

∫
MT (X )

ν dλ(ν).

If rdim (X , T,d, ν) exists for λ-almost every ν ∈ M T (X ), then rdim (X , T,d, µ) also

exists and satisfies

rdim (X , T,d, µ) =

∫
MT (X )

rdim (X , T,d, ν) dλ(ν).

The next result shows that we cannot remove the assumption mdimM (X , T,d) <∞ in

Theorem 1.1.

Theorem 1.4. There exist a compact metric space (X ,d) and a continuous action T : Rd×
X → X satisfying the following two conditions.

• For any ergodic measure ν ∈M T
erg (X ) we have rdim (X , T,d, ν) = 0.

• There exists µ ∈M T (X ) with rdim (X , T,d, µ) =∞.

Let µ be the measure given in the second condition of this theorem. By the ergodic

decomposition theorem, there exists a Borel probability measure λ on M T
erg (X ) for which

we have

µ =

∫
MT

erg(X )

ν dλ(ν).

Then it follows from the first condition of the theorem that∫
MT

erg(X )

rdim (X , T,d, ν) dλ(ν) = 0,
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while we have rdim (X , T,d, µ) =∞. Therefore the inequality (1·2) in Theorem 1.1 does

not hold here. (The system (X , T,d) has infinite upper metric mean dimension. So it

does not conflict with Theorem 1.1.) Hence Theorem 1.4 shows that we cannot remove

the assumption on the upper metric mean dimension in Theorem 1.1. It also shows that

the inequality (1·3) in Theorem 1.2 can be a strict inequality in general.

The main ingredient of the proofs of Theorems 1.1 and 1.2 is the formula of rate

distortion function under convex combination of measures (Theorem 3.9 in §3.2): Let

T : Rd × X → X be a continuous action on a compact metric space (X ,d). Let λ be a

Borel probability measure on M T (X ) and set µ :=
∫

MT (X )
ν dλ(ν). Then for any ε > 0

(1·4)

R(d, µ, ε) = inf


∫

MT (X )

R(d, ν, εν)dλ(ν)

∣∣∣∣∣∣
M T (X ) 3 ν 7→ εν ∈ (0,∞) with∫

MT (X )

εν dλ(ν) ≤ ε

 .

Here the infimum is taken over all measurable maps M T (X ) 3 ν 7→ εν ∈ (0,∞) satisfying∫
MT (X )

εν dλ(ν) ≤ ε. Theorems 1.1 and 1.2 follow from this formula.

The equation (1·4) is well-known for Z-actions in classical information theory literature

[GD74, Kie75, SNDL78, LDN79, ECG94]. The author cannot find a paper studying its

generalization to Rd-actions, and it is not very easy for pure mathematicians, including the

author himself, to read the papers [GD74, Kie75, SNDL78, LDN79, ECG94]. (However, it

is instructive to read them because they provide broader and more coherent perspective

about rate distortion theory for nonergodic sources4.) So we provide the full proof of

(1·4). This is a purely technical task and there is no new idea in our argument. Therefore

this paper is primally a technical paper and do not contain any innovation. However,

Theorems 1.1 and 1.2 seem to be fundamental, and it is desirable to publish the detailed

proofs.

Remark 1.5. The present paper concentrates on the study of Rd-actions. Probably

Zd-actions are another important class of group actions in geometric applications. The

statements of Theorems 1.1, 1.2, 1.4 and Corollary 1.3 hold for Zd-actions as well. (We

have not found a paper containing these statements even for Z-actions.) Since the case

of Zd is technically simpler than that of Rd, we provide the full arguments for the case of

Rd-actions.

2. Mutual information and rate distortion function

The purpose of this section is to prepare basic definitions and properties of mutual

information and rate distortion function. The readers can find more details in [Tsu24,

Section 2]. Throughout the present paper, we assume that the base of logarithm is two:

log x = log2 x.

4Probably the introduction of [LDN79] is the best one for layman to understand basic ideas.
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2.1. Measure theoretic details. Here we prepare some facts on measure theory. A

pair (X ,A) is called a measurable space if X is a set and A is its σ-algebra. A

triplet (X ,A,P) is called a probability space if (X ,A) is a measurable space and P is

a probability measure on it.

We always assume that a topological space is equipped with its Borel σ-algebra (the

smallest σ-algebra containing all open sets). We also assume that a finite set is equipped

with the discrete topology and discrete σ-algebra (the set of all subsets). A topological

space X is called a Polish space if it admits a metric d compatible with its given topology

for which (X ,d) is a complete separable metric space. A measurable space (X ,A) is called

a standard Borel space if it is isomorphic (as a measurable space) to some Polish space

equipped with its Borel σ-algebra. Readers can find basic information about standard

Borel spaces in the book of [Sri98].

Let (X ,A) and (Y ,B) be measurable spaces. A map ν : X × B → [0, 1] is called a

transition probability on X × Y if it satisfies the following two conditions.

• For every x ∈ X , the map B 3 B 7→ ν(x,B) ∈ [0, 1] is a probability measure on

(Y ,B).

• For every B ∈ B, the map X 3 x 7→ ν(x,B) ∈ [0, 1] is measurable.

We often denote ν(x,B) by ν(B|x). We define the product σ-algebra A ⊗ B as the

smallest σ-algebra of X × Y containing all “rectangles” A× B (A ∈ A, B ∈ B). For any

E ∈ A ⊗ B and x ∈ X , the section Ex := {y ∈ Y | (x, y) ∈ E} belongs to B. Moreover,

if (Y ,B) is a standard Borel space, then the map X 3 x 7→ ν(Ex|x) ∈ [0, 1] is measurable

for any transition probability ν on X × Y [Sri98, Proposition 3.4.24].

Let (Ω,F ,P) be a probability space and (X ,A) a measurable space. For a measurable

map X : Ω→ X , we denote the push-forward measure X∗P by LawX and call it the law

of X or the distribution of X. Here X∗P is a probability measure on X defined by

X∗P(A) = P (X−1(A)).

The next theorem introduces the notion of regular conditional distribution. For the

details, see [IW89, p.15 Theorem 3.3 and Corollary] or [Gra09, p.182 Corollary 6.2].

Theorem 2.1. Let (Ω,F ,P) be a probability space. Let (X ,A) and (Y ,B) be standard

Borel spaces, and let X : Ω → X and Y : Ω → Y be measurable maps. Set µ = LawX.

Then there exists a transition probability ν on X × Y such that for any E ∈ A ⊗ B we

have

P ((X, Y ) ∈ E) =

∫
X
ν(Ex|x) dµ(x).

Moreover, the transition probability ν is unique in the following sense: If another tran-

sition probability ν ′ on X × Y satisfies the same property then there exists a µ-null set

N ∈ A such that ν(B|x) = ν ′(B|x) for all x ∈ X \N and B ∈ B.

The transition probability ν introduced in this theorem is called the regular condi-

tional distribution of Y given X = x. We often denote ν(B|x) by P (Y ∈ B|X = x).
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Let (X ,A), (Y ,B), (Z, C) be standard Borel spaces, and let X, Y, Z be random variables

(defined on some common probability space (Ω,F ,P)) taking values in X ,Y ,Z respec-

tively. We say that X and Z are conditionally independent given Y if there exists a

Y∗P-null set N ⊂ Y such that

P ((X,Z) ∈ A× C|Y = y) = P(X ∈ A|Y = y) · P(Z ∈ C|Y = y)

for all A ∈ A, C ∈ C and y ∈ Y \ N . Here the left-hand side is the regular conditional

distribution of (X,Z) given Y = y. In information theory literature [CT06, p.34], one

says that random variables X, Y, Z form a Markov chain in this order (denoted by

X → Y → Z) if X and Z are conditionally independent given Y . This notion will be

important in the data-processing inequality (Lemma 2.2) below.

2.2. Mutual information. Here we prepare basic definitions and properties of mutual

information. Readers can find a nice introductory exposition in [CT06]. The book of

Gray [Gra11] provides mathematically sophisticated details of the theory.

Throughout this subsection, we fix a probability space (Ω,F ,P) and assume that all

random variables are defined on it. For a random variable X that takes values in a finite

set A, we define its Shannon entropy by

H(X) = −
∑
a∈A

P(X = a) logP(X = a).

Here we assume 0 log 0 = 0.

Let X and Y be random variables that take values in measurable space (X ,A) and

(Y ,B) respectively. We would like to define the mutual information I(X;Y ) which

estimates the amount of information shared by X and Y . We need to consider the two

cases:

(1) Suppose X and Y are finite sets. Then we define

I(X;Y ) = H(X) +H(Y )−H(X, Y ).

Here H(X, Y ) is the Shannon entropy of the pair (X, Y ) : Ω→ X ×Y . We always

have I(X;Y ) ≤ min (H(X), H(Y )). If f : X → X ′ and g : Y → Y ′ are maps with

finite sets X ′ and Y ′, then we have

(2·1) I (f(X); g(Y )) ≤ I (X;Y ) .

(2) In general, we consider finite measurable partitions α = {A1, . . . , Am} and β =

{B1, . . . , Bn} of X and Y respectively. We define a random variable α ◦X : Ω →
{1, 2, . . . ,m} by α ◦ X = i ⇐⇒ X ∈ Ai. We define β ◦ Y similarly. These

random variables take only finitely many values. So we can consider their mutual

information I (α ◦X; β ◦ Y ) by the formula

I(α ◦X; β ◦ Y ) = H (α ◦X) +H (β ◦ Y )−H (α ◦X, β ◦ Y ) .
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We define the mutual information I(X;Y ) as the supremum of I(α◦X; β ◦Y ) over

all finite measurable partitions α and β of X and Y . It follows from the inequality

(2·1) that this definition is compatible with the case (1). Mutual information is

symmetric and nonnegative: I(X;Y ) = I(Y ;X) ≥ 0. If X and Y are independent

then I(X;Y ) = 0.

If (X ,A) and (Y ,B) are standard Borel spaces, then we can provide a slightly different

description of I(X;Y ). Let µ = LawX be the distribution of X, and let ν(B|x) = P(Y ∈
B|X = x) (B ∈ B, x ∈ X ) be the regular conditional distribution of Y given X = x.

The (joint) distribution of (X, Y ) is determined by µ and ν. In particular I(X;Y ) is

also determined by them. So we sometimes denote I(X;Y ) by I(µ, ν). The usefulness of

this description is that I(µ, ν) is a concave function in µ and a convex function in ν (see

Proposition 2.3 below).

In some arguments we also need to use conditional mutual information. Let X, Y, Z be

random variables taking values in standard Borel spaces (X ,A), (Y ,B), (Z, C) respectively.

We would like to define the conditional mutual information I(X;Y |Z). Let λ = Z∗P be

the distribution of Z. For each z ∈ Z we define a probability measure µz on X and a

transition probability νz on X × Y by

µz(A) = P(X ∈ A|Z = z) (A ∈ A),

νz(B|x) = P (Y ∈ B|(X,Z) = (x, z)) (x ∈ X , B ∈ B).

We define the conditional mutual information by

I(X;Y |Z) =

∫
Z
I(µz, νz) dλ(z).

We have a chain rule [Gra11, p. 214]

I (X; (Y, Z)) = I(X;Z) + I(X;Y |Z).

Here the left-hand side is the mutual information between X and (Y, Z).

If X and Y are conditionally independent given Z, then νz(B|x) = P (Y ∈ B|Z = z)

and hence we have I(µz, νz) = 0 for λ-a.e. z ∈ Z and I(X;Y |Z) = 0.

Lemma 2.2 (Data-Processing inequality). Let X, Y, Z be random variables that take

values in standard Borel spaces. If X, Y, Z form a Markov chain in this order (i.e. X and

Z are conditionally independent given Y ) then

I(X;Z) ≤ I(X;Y ).

Proof. This is a well-known inequality [CT06, Theorem 2.8.1]. Here we explain a brief

proof. By the chain rule, we have

I (X; (Y, Z)) = I(X;Y ) + I(X;Z|Y )

= I(X;Z) + I(X;Y |Z).
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Since X and Z are conditionally independent given Y , we have I(X;Z|Y ) = 0. Hence

I(X;Y ) = I(X;Z) + I(X;Z|Y ). The conditional mutual information I(X;Z|Y ) is non-

negative. Thus I(X;Y ) ≥ I(X;Z). �

Proposition 2.3 (I(µ, ν) is concave in µ and convex in ν). Let (X ,A) and (Y ,B) be

standard Borel spaces, and let (Z, C,m) be a probability space.

(1) Let ν be a transition probability on X ×Y. Suppose that we are given a probability

measure µz on X for each z ∈ Z and that µz is measurable in z (namely, the map

Z 3 z 7→ µz(A) ∈ [0, 1] is measurable for every A ∈ A). We define a probability

measure µ on (X ,A) by

µ(A) =

∫
Z
µz(A) dm(z), (A ∈ A).

Then we have

I(µ, ν) ≥
∫
Z
I(µz, ν) dm(z).

(2) Let µ be a probability measure on X . Suppose that we are given a transition

probability νz on X × Y for each z ∈ Z such that the map X × Z 3 (x, z) 7→
νz(B|x) ∈ [0, 1] is measurable with respect to A⊗ C for each B ∈ B. We define a

transition probability ν on X × Y by

ν(B|x) =

∫
Z
νz(B|x) dm(z), (x ∈ X , B ∈ B).

Then we have

I(µ, ν) ≤
∫
Z
I(µ, νz) dm(z).

Proof. See [Tsu24, Proposition 2.10]. In the present paper we will use only the statement

(1), but we have also mentioned to (2) for completeness. �

The following proposition provides a tool for obtaining a lower bound on rate distortion

function.

Proposition 2.4. Let ε > 0 and a ≥ 0 be real numbers. Let X and Y be measurable

spaces with a measurable function ρ : X × Y → [0,∞). Let µ be a probability measure on

X , and let λ : X → [0,∞) be a measurable function satisfying∫
X
λ(x)2−aρ(x,y)dµ(x) ≤ 1

for all y ∈ Y. Let X and Y be random variables that take values in X and Y respectively

and satisfy

LawX = µ, Eρ(X, Y ) < ε.

Then we have

I(X;Y ) ≥ −aε+

∫
X

log λ(x) dµ(x).

Proof. See [Tsu24, Proposition 2.12]. �
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2.3. Rate distortion function. The purpose of this subsection is to introduce rate dis-

tortion function for Rd-actions. Rate distortion function was originally introduced by

Shannon [Sha48, Sha59]. Readers can find a nice introduction in the book of Cover–

Thomas [CT06, Chapter 10]. Rate distortion theory for continuous-time stochastic pro-

cesses was investigated by Pursley–Gray [PG77].

We denote by m the standard Lebesgue measure on Rd. Let (X ,d) be a compact

metric space. For L > 0, we define L1
(
[0, L)d,X

)
as the space of all measurable maps

f : [0, L)d → X , where we identify two maps if they agree m-almost everywhere. We

define a metric D on L1
(
[0, L)d,X

)
by

D(f, g) =

∫
[0,L)d

d (f(u), g(u)) dm(u),
(
f, g ∈ L1

(
[0, L)d,X

))
.

L1
(
[0, L)d,X

)
becomes a complete separable metric space with respect to this metric

[Tsu24, Lemma 2.14]. Hence it is a standard Borel space with respect to the Borel σ-

algebra.

Let T : Rd × X → X be a continuous action of Rd on X . Let µ be a T -invariant Borel

probability measure on X . Let ε > 0 and L > 0. We define RL(d, µ, ε) as the infimum

of the mutual information I(X;Y ) where X and Y are random variables defined on some

common probability space (Ω,F ,P) such that

• X takes values in X with LawX = µ.

• Y takes values in L1([0, L)d,X ) and satisfies

E
(

1

Ld

∫
[0,L)d

d (T uX, Yu) dm(u)

)
< ε,

where Yu = Yu(ω) (ω ∈ Ω) denotes the value of the function Y (ω) ∈ L1([0, L)d,X )

at u ∈ [0, L)d.

We define the rate distortion function R(d, µ, ε) by

R(d, µ, ε) = lim
L→∞

RL (d, µ, ε)

Ld
.

This limit exists and is equal to the infimum of RL(d,µ,ε)
Ld over L > 0 [Tsu24, Lemma 2.17].

The value of R(d, µ, ε) is a nonnegative real number.

It is easy to see that [Tsu24, Lemma 2.16 (1)]

(2·2) RL(d, µ, ε) ≤ log # (X ,dL, ε) ,

where the right-hand side is the logarithm of the ε-covering number (introduced in §1)

with respect to the metric dL(x, y) = supu∈[0,L)d d(T ux, T uy). In particular

(2·3) R(d, µ, ε) ≤ lim
L→∞

log # (X ,dL, ε)
Ld

= S(X , T,d, ε).

Here S(X , T,d, ε) is the entropy at the scale ε introduced in (1·1).



RATE DISTORTION DIMENSION AND ERGODIC DECOMPOSITION 11

We recall that we have defined the upper and lower rate distortion dimensions by

rdim(X , T,d, µ) = lim sup
ε→0

R(d, µ, ε)

log(1/ε)
, rdim(X , T,d, µ) = lim inf

ε→0

R(d, µ, ε)

log(1/ε)
.

These are nonnegative real numbers (possibly +∞). When they coincide, we denote the

common value by rdim (X , T,d, µ).

The following proposition is an immediate consequence of Proposition 2.4. This will be

used in the proof of Theorem 1.4.

Proposition 2.5. Let ε > 0, a ≥ 0 and L > 0 be real numbers. Suppose that a measurable

function λ : X → [0,∞) satisfies∫
X
λ(x)2−

a

Ld

∫
[0,L)d

d(Tux,yu)dm(u) dµ(x) ≤ 1

for all y ∈ L1
(
[0, L)d,X

)
. Then we have

RL (d, µ, ε) ≥ −aε+

∫
X

log λ(x) dµ(x).

Proof. Apply Proposition 2.4 to the spaces X ,Y := L1
(
[0, L)d,X

)
and the function

ρ(x, y) :=
1

Ld

∫
[0,L)d

d (T ux, yu) dm(u) (x ∈ X , y ∈ L1
(
[0, L)d,X

)
).

�

Remark 2.6. We briefly explain how to modify the definition of rate distortion function

for the case of Zd-actions. (See also the paper of Huo–Yuan [HY, §2.5].) Let T : Zd×X →
X be a continuous action of the group Zd on a compact metric space (X ,d). Let µ be a

T -invariant Borel probability measure on X . For ε > 0 and L ∈ N we define RL(d, µ, ε)

as the infimum of I(X;Y ) where X and Y are random variables defined on some common

probability space such that

• X takes values in X with LawX = µ,

• Y = (Yn)n∈{0,1,2...,L−1}d and each Yn takes values in X with

E

 1

Ld

∑
n∈{0,1,2,...,L−1}d

d (TnX, Yn)

 < ε.

We define rate distortion function by

R(d, µ, ε) = lim
L→∞

RL(d, µ, ε)

Ld
.

This limits always exists and is equal to infL∈N
RL(d,µ,ε)

Ld . Finally we define upper and lower

rate distortion dimensions by

rdim(X , T,d, µ) = lim sup
ε→0

R(d, µ, ε)

log(1/ε)
, rdim(X , T,d, µ) = lim inf

ε→0

R(d, µ, ε)

log(1/ε)
.
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3. Proofs of the main theorems

The purpose of this section is to prove Theorems 1.1 and 1.2.

3.1. Wasserstein metric and rate distortion function. Here we prepare some basic

properties of rate distortion function. As a technical device for the proofs, we need to use

a well-known fact about the Wasserstein metric.

Let (X ,d) be a compact metric space, and let M (X ) be the space of Borel probability

measures on it. For µ, ν ∈ M (X ) we define the Wasserstein metric Wd(µ, ν) as the

infimum of ∫
X×X

d(x, y) dπ(x, y)

where π runs over Borel probability measures on X ×X whose first and second marginals

are given by µ and ν respectively. In other words, Wd(µ, ν) is equal to the infimum of

Ed(X, Y )

where X and Y are random variables defined on a common probability space and taking

values in X with LawX = µ and LawY = ν. Notice that Wd(µ, ν) is always finite because

(X ,d) is compact (and hence, in particular, bounded).

A key fact for us is that the Wasserstein metric metrizes the weak∗ topology [Vil09,

Theorem 6.9]. Namely, a sequence {µn} in M (X ) converges to µ in the weak∗ topology

if and only if Wd(µn, µ)→ 0 as n→∞.

Let T : Rd × X → X be a continuous action of Rd on a compact metric space (X ,d).

For L > 0 we define a metric d̄L on X by

d̄L(x, y) =
1

Ld

∫
[0,L)d

d (T ux, T uy) dm(u).

This metric defines the same topology as the original one of (X ,d). In particular, a

sequence {µn} in M (X ) converges to µ in the weak∗ topology if and only if Wd̄L
(µn, µ)→

0 as n→∞.

Recall that, for µ ∈ M T (X ) and ε > 0, the function RL(d, µ, ε) is defined as the

infimum of I(X;Y ) where X and Y are random variables such that X takes values in X
with LawX = µ and that Y takes values in L1

(
[0, L)d,X

)
with

E
(

1

Ld

∫
[0,L)d

d (T uX, Yu) dm(u)

)
< ε.

Lemma 3.1. RL(d, µ, ε) is convex and monotone non-increasing in ε. In particular, it

is a continuous function of the variable ε.

Proof. The monotonicity is obvious. We prove that it is convex in ε. Let ε0 and ε1 be

positive numbers. Let p0, p1 ∈ [0, 1] with p0 + p1 = 1. For any δ > 0 there exist random

variables (X(i), Y (i)) (i = 0, 1) that take values in X × L1([0, L)d,X ) with the following

conditions:
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• LawX(i) = µ and E
(

1
Ld

∫
[0,L)d

d
(
T tX(i), Y

(i)
t

)
dm(t)

)
< εi,

• I
(
X(i);Y (i)

)
< RL(d, µ, εi) + δ,

• (X(0), Y (0)) and (X(1), Y (1)) are independent.

Moreover we can take a random variable Z independent of (X(0), Y (0), X(1), Y (1)) such

that

Z =

0 in probability p0

1 in probability p1

.

We set X = X(Z) and Y = Y (Z). Since X(0) and X(1) have the same distribution, X and

Z are independent. Hence I(X;Z) = 0. We have

E
(

1

Ld

∫
[0,L)d

d
(
T tX, Yt

)
dm(t)

)
=
∑
i=0,1

piE
(

1

Ld

∫
[0,L)d

d
(
T tX(i), Y

(i)
t

)
dm(t)

)
< p0ε0 + p1ε1.

We also have

I(X;Y ) ≤ I (X; (Y, Z)) = I(X;Z)︸ ︷︷ ︸
=0

+I(X;Y |Z)

= p0I
(
X(0);Y (0)

)
+ p1I

(
X(1);Y (1)

)
< p0RL(d, µ, ε0) + p1RL(d, µ, ε1) + δ.

This implies

RL(d, µ, p0ε0 + p1ε1) < p0RL(d, µ, ε0) + p1RL(d, µ, ε1) + δ.

Letting δ → 0, we get

RL(d, µ, p0ε0 + p1ε1) ≤ p0RL(d, µ, ε0) + p1RL(d, µ, ε1).

�

Lemma 3.2. RL(d, µ, ε) is continuous in (µ, ε). Namely, if εn → ε and if µn → µ in

M T (X ) with respect to the weak∗ topology, then RL(d, µn, εn)→ RL(d, µ, ε).

Proof. We first show lim supn→∞RL(d, µn, εn) ≤ RL(d, µ, ε). Let δ > 0 be arbitrary.

There exist random variables X and Y that take values in X and L1([0, L)d,X ) respec-

tively and satisfy

LawX = µ, E
(

1

Ld

∫
[0,L)d

d
(
T tX, Yt

)
dm(t)

)
< ε, I(X;Y ) < RL(d, µ, ε) + δ.

Take η > 0 satisfying

E
(

1

Ld

∫
[0,L)d

d
(
T tX, Yt

)
dm(t)

)
+ η < εn
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for all sufficiently large n. We have Wd̄L
(µn, µ) < η for large n. Hence we can assume that

(for any large n) there is a random variable Xn that takes values in X and is conditionally

independent of Y given X and satisfies

LawXn = µn, Ed̄L(Xn, X) < η.

Then

E
(

1

Ld

∫
[0,L)d

d
(
T tXn, Yt

)
dm(t)

)
≤ Ed̄L(Xn, X) + E

(
1

Ld

∫
[0,L)d

d
(
T tX, Yt

)
dm(t)

)
< η + E

(
1

Ld

∫
[0,L)d

d
(
T tX, Yt

)
dm(t)

)
< εn.

The random variables Y,X,Xn form a Markov chain in this order. Hence by the data-

processing inequality

I(Xn;Y ) ≤ I(X;Y ) < RL(d, µ, ε) + δ.

HenceRL(d, µn, εn) < RL(d, µ, ε)+δ for large n. In particular, lim supn→∞RL(d, µn, εn) ≤
RL(d, µ, ε)+δ. Since δ > 0 is arbitrary, this shows lim supn→∞RL(d, µn, εn) ≤ RL(d, µ, ε).

Next we prove lim infn→∞RL(d, µn, εn) ≥ RL(d, µ, ε). The argument is similar to the

above. Let δ > 0 be arbitrary. We take a sufficiently large n ≥ 1 such that εn < ε + δ

and Wd̄L
(µn, µ) < δ. For such n, we take random variables Xn and Y that take values in

X and L1([0, L)d,X ) respectively and satisfy

LawXn = µn, E
(

1

Ld

∫
[0,L)d

d
(
T tXn, Yt

)
dm(t)

)
< εn, I(Xn;Y ) < RL(d, µn, εn) + δ.

Since Wd̄L
(µn, µ) < δ, we can also assume that there is a random variable X that takes

values in X with LawX = µ and Ed̄L(X,Xn) < δ and is conditionally independent of Y

given Xn. Then we have

E
(

1

Ld

∫
[0,L)d

d
(
T tX, Yt

)
dm(t)

)
< εn + δ < ε+ 2δ.

Here we have used εn < ε+ δ. By the data-processing inequality

I(X;Y ) ≤ I(Xn;Y ) < RL(d, µn, εn) + δ.

Hence RL(d, µ, ε + 2δ) ≤ RL(d, µn, εn) + δ. Therefore we have RL(d, µ, ε + 2δ) ≤
lim infn→∞RL(d, µn, εn) + δ. By Lemma 3.1

RL(d, µ, ε) = lim
δ→0

RL(d, µ, ε+ 2δ).

Thus we conclude that RL(d, µ, ε) ≤ lim infn→∞RL(d, µn, εn). �
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Recall that the rate distortion function R(d, µ, ε) (µ ∈M T (X ), ε > 0) is defined by

R(d, µ, ε) = lim
L→∞

RL(d, µ, ε)

Ld
= inf

L>0

RL(d, µ, ε)

Ld
.

Lemma 3.3. The rate distortion function R(d, µ, ε) is upper semi-continuous in (µ, ε).

Namely, if εn → ε and if µn → µ in M T (X ) with respect to the weak∗ topology, then

lim sup
n→∞

R(d, µn, εn) ≤ R(d, µ, ε).

In particular, R(d, µ, ε) is a measurable function of (µ, ε).

Proof. Let δ > 0 be arbitrary. There is L > 0 such that R(d, µ, ε) + δ > 1
LdRL(d, µ, ε).

By Lemma 3.2, for all sufficiently large n, we have RL(d, µn, εn) < RL(d, µ, ε) + δ. Hence

R(d, µn, εn) ≤ 1

Ld
RL(d, µn, εn) < R(d, µ, ε) + δ +

δ

Ld
.

Therefore lim supn→∞R(d, µn, εn) ≤ R(d, µ, ε) + δ + δ
Ld . Since δ > 0 is arbitrary, this

shows the lemma. �

Remark 3.4. We will see below (Lemma 3.5) that R(d, µ, ε) is continuous in ε. However

it may not be continuous in µ in general. For the case of Z-actions, a simple example is

given as follows. Let X = [0, 1]Z be the infinite dimensional cube with a metric d(x, y) :=

supn∈Z 2−|n||xn− yn| and the natural shift map T : X → X . For n ≥ 1, let Kn = {x ∈ X |
T nx = x}. There is a natural homeomorphism ϕn : [0, 1]n → Kn defined by

ϕn(x0, x1, . . . , xn−1)`+mn = x` (0 ≤ ` ≤ n− 1,m ∈ Z).

We denote by mn the Lebesgue measure on [0, 1]n and set νn = (ϕn)∗mn. Define µn =
1
n

∑n−1
k=0 T

k
∗ νn ∈M T (X ). Then the sequence µn converges to µ := m⊗Z1 . On the one hand

we have

R(d, µ, ε) ∼ log(1/ε).

On the other hand, for every n ∈ Z we have

R(d, µn, ε) = 0.

Therefore the rate distortion function is not continuous in µ. A similar example can be

constructed for Rd-actions by using the method of §4.

3.2. Rate distortion function and convex combination of measures. Here we

prove the formula (1·4) in §1. As we mentioned, this formula is well-known for Z-actions

in the classical information theory literature [GD74, SNDL78, LDN79, ECG94]. The proof

consists of several intermediate lemmas. All the arguments (including the ones in §3.1)

are basic and standard. Hence it is hopefully easy for motivated readers to modify the

arguments for Zd-actions if they have interests in the case of Zd.
Throughout this subsection we assume that (X ,d) is a compact metric space with a

continuous action T : Rd ×X → X .
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Lemma 3.5. Let p0, p1 ∈ [0, 1] be real numbers with p0 + p1 = 1. Let µ0, µ1 ∈ M T (X ).

For positive numbers ε0 and ε1, we have

R(d, p0µ0 + p1µ1, p0ε0 + p1ε1) ≤ p0R(d, µ0, ε0) + p1R(d, µ1, ε1).

In particular, the rate distortion function R(d, µ, ε) is a continuous function of the variable

ε.

Proof. The proof is very close to Lemma 3.1. Let L > 0 and δ > 0. There exist random

variables (X(i), Y (i)) (i = 0, 1) that take values in X × L1([0, L)d,X ) with the following

properties:

• LawX(i) = µi and E
(

1
Ld

∫
[0,L)d

d
(
T tX(i), Y

(i)
t

)
dm(t)

)
< εi,

• I
(
X(i);Y (i)

)
< RL(d, µ, εi) + δ,

• (X(0), Y (0)) and (X(1), Y (1)) are independent.

Moreover we can take a random variable Z independent of (X(0), Y (0), X(1), Y (1)) such

that

Z =

0 in probability p0

1 in probability p1

.

We set X = X(Z) and Y = Y (Z). (So far the argument is the same with the proof of

Lemma 3.1. The difference is that X and Z are not necessarily independent here. However

this is very minor.)

We have LawX = p0µ0 + p1µ1 and

E
(

1

Ld

∫
[0,L)d

d
(
T tX, Yt

)
dm(t)

)
< p0ε0 + p1ε1.

As in the proof of Lemma 3.1 we also have

I(X;Y ) ≤ I (X; (Y, Z))

= I(X;Z)︸ ︷︷ ︸
≤H(Z)≤1

+I(X;Y |Z)

≤ 1 + p0RL(d, µ0, ε0) + p1RL(d, µ1, ε1) + δ.

Therefore

RL(d, p0µ0 + p1µ1, p0ε0 + p1ε1) ≤ 1 + p0RL(d, µ0, ε0) + p1RL(d, µ1, ε1) + δ.

Dividing this by Ld and letting L→∞, we get the conclusion. �

Let λ be a Borel probability measure on M T (X ) and define

µ =

∫
MT (X )

ν dλ(ν) ∈M T (X ).
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Lemma 3.6. For a positive number ε

R(d, µ, ε) ≥ inf


∫

MT (X )

R(d, ν, εν)dλ(ν)

∣∣∣∣∣∣
M T (X ) 3 ν 7→ εν ∈ (0,∞) with∫

MT (X )

εν dλ(ν) ≤ ε

 .

Here the infimum is taken over all measurable functions M T (X ) 3 ν 7→ εν ∈ (0,∞)

satisfying
∫

MT (X )
εν dλ(ν) ≤ ε.

Proof. Let L > 0. Suppose that random variables X and Y take values in X and

L1([0, L)d,X ) respectively and satisfy LawX = µ and E
(

1
Ld

∫
[0,L)d

d (T tX, Yt) dm(t)
)
<

ε. Take δ > 0 satisfying E
(

1
Ld

∫
[0,L)d

d (T tX, Yt) dm(t)
)

+ δ < ε.

Let p be the regular conditional distribution of Y given X. Namely

p(A|x) = P(Y ∈ A|X = x), (x ∈ X , A ⊂ L1([0, L)d,X )).

For each ν ∈M T (X ) we take random variables X(ν) and Y (ν) that take values in X and

L1([0, L)d,X ) respectively and satisfy LawX(ν) = ν and

P(Y (ν) ∈ A|X(ν) = x) = p(A|x), (x ∈ X , A ⊂ L1([0, L)d,X )).

We have I(X;Y ) = I(µ, p) = I
(∫

νdλ(ν), p
)
. By the concavity of mutual information

(Proposition 2.3 (1))

I(X;Y ) ≥
∫

MT (X )

I(ν, p) dλ(ν) =

∫
MT (X )

I
(
X(ν);Y (ν)

)
dλ(ν).

On the other hand

E
(∫

[0,L)d
d
(
T tX, Yt

)
dm(t)

)
=

∫
X×L1([0,L)d,X )

(∫
[0,L)d

d(T tx, yt) dm(t)

)
d (µ(x)p(y|x))

=

∫
MT (X )

{∫
X×L1([0,L)d,X )

(∫
[0,L)d

d(T tx, yt) dm(t)

)
d (ν(x)p(y|x))

}
dλ(ν)

=

∫
MT (X )

E
(∫

[0,L)d
d
(
T tX(ν), Y

(ν)
t

)
dm(t)

)
dλ(ν).

We set

εν = E
(

1

Ld

∫
[0,L)d

d
(
T tX(ν), Y

(ν)
t

)
dm(t)

)
+ δ.

We have ∫
MT (X )

εν dλ(ν) = E
(

1

Ld

∫
[0,L)d

d
(
T tX, Yt

)
dm(t)

)
+ δ < ε.

From the definition of rate distortion function,

1

Ld
I
(
X(ν);Y (ν)

)
≥ 1

Ld
RL (d, ν, εν) ≥ R (d, ν, εν) .
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Therefore

1

Ld
I(X;Y ) ≥ 1

Ld

∫
MT (X )

I
(
X(ν);Y (ν)

)
dλ(ν) ≥

∫
MT (X )

R (d, ν, εν) dλ(ν).

This proves the claim. �

Lemma 3.7. Let ε > 0 and let M T (X ) 3 ν 7→ εν ∈ (0,∞) be a measurable function with∫
MT (X )

εν dλ(ν) ≤ ε. We suppose that there is a positive number c satisfying εν ≥ c for

all ν ∈M T (X ). Then

R(d, µ, ε) ≤
∫

MT (X )

R(d, ν, εν) dλ(ν).

Proof. We assume that the space M T (X ) is endowed with the Wasserstein metric Wd.

(Indeed any metric will do the same work.) For a finite partition α = {A1, . . . , An} of

M T (X ), we denote by mesh(α) the maximum of the diameter diam(Ai,Wd) (1 ≤ i ≤ n).

For two finite partitions α = {A1, . . . , An} and β = {B1, . . . , Bm} of M T (X ), we say that

β is a refinement of α (denoted by α ≺ β) if every Bj (1 ≤ j ≤ m) is contained in some

Ai (1 ≤ i ≤ n).

From (2·3) in §2.3 we have R(d, θ, εν) ≤ S(X , T,d, c) < ∞ for all ν, θ ∈M T (X ). We

divide the proof into two steps.

Step 1: We suppose that the function M T (X ) 3 ν 7→ εν is a simple function. Namely,

we suppose that there is a finite measurable partition α = {A1, . . . , An} of M T (X ) such

that εν is constant on each Ai.

We take a sequence of finite measurable partitions α ≺ β1 ≺ β2 ≺ . . . of M T (X ) such

that mesh(βk) → 0 as k → ∞. We define a map βk : M T (X ) →M T (X ) as follows. Let

B ∈ βk.
• If λ(B) > 0 then for any ν ∈ B we set

βk(ν) =
1

λ(B)

∫
B

θ dλ(θ).

• If λ(B) = 0 then we pick θB ∈ B and set βk(ν) = θB for all ν ∈ B.

We have

µ =

∫
MT (X )

ν dλ(ν) =
∑
B∈βk
λ(B)>0

λ(B)

(
1

λ(B)

∫
B

ν dλ(ν)

)
=

∫
MT (X )

βk(ν) dλ(ν).

The function εν is constant on each B ∈ βk. Therefore by Lemma 3.5

R(d, µ, ε) ≤ R

(
d, µ,

∫
ενdλ(ν)

)
≤
∫

MT (X )

R (d, βk(ν), εν) dλ(ν).

For each ν ∈ M T (X ), the sequence {βk(ν)}∞k=1 converges to ν in the weak∗ topology

since we have assumed mesh(βk) → 0. By the upper semi-continuity of rate distortion

function (Lemma 3.3), we have lim supk→∞R (d, βk(ν), εν) ≤ R(d, ν, εν). Recall that we
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have the uniform bound R (d, βk(ν), εν) ≤ S(X , T,d, c) < ∞. Therefore we can use

Fatou’s lemma and get

lim sup
k→∞

∫
MT (X )

R (d, βk(ν), εν) dλ(ν) ≤
∫

MT (X )

lim sup
k→∞

R (d, βk(ν), εν) dλ(ν)

≤
∫

MT (X )

R(d, ν, εν) dλ(ν).

Thus R(d, µ, ε) ≤
∫

MT (X )
R(d, ν, εν) dλ(ν).

Step 2: We consider the general case. (Namely εν is not necessarily a simple function.)

We can choose a sequence of simple functions c ≤ ε
(1)
ν ≤ ε

(2)
ν ≤ ε

(3)
ν ≤ . . . such that we

have pointwise convergence ε
(n)
ν → εν as n→∞ at each ν ∈M T (X ).

We have ∫
MT (X )

ε(n)
ν dλ(ν) ≤

∫
MT (X )

ενdλ(ν) ≤ ε.

We apply the result of Step 1 to ε
(n)
ν and get

R(d, µ, ε) ≤
∫

MT (X )

R
(
d, ν, ε(n)

ν

)
dλ(ν).

By Lemma 3.5, R
(
d, ν, ε

(n)
ν

)
→ R(d, ν, εν) as n→∞ at each ν ∈M T (X ). Since we have

the uniform bound R
(
d, ν, ε

(n)
ν

)
≤ S(X , T,d, c) <∞, we can use Lebesgue’s dominated

convergence theorem and get

lim
n→∞

∫
MT (X )

R
(
d, ν, ε(n)

ν

)
dλ(ν) =

∫
MT (X )

R(d, ν, εν) dλ(ν).

Therefore we conclude

R(d, µ, ε) ≤
∫

MT (X )

R(d, ν, εν) dλ(ν).

�

Lemma 3.8. Let ε > 0 and let M T (X ) 3 ν 7→ εν ∈ (0,∞) be a measurable function with∫
MT (X )

εν dλ(ν) ≤ ε. Then we have

R(d, µ, ε) ≤
∫

MT (X )

R(d, ν, εν) dλ(ν).

Proof. We can assume that R(d, ν, εν) is a λ-integralable function of ν. (Otherwise the

statement is obvious.) Let n ≥ 1. We apply Lemma 3.7 to the measurable function

M T (X ) 3 ν 7→ εν + 1
n
∈ (0,∞). Notice that this function is bounded from below by 1

n
.

Then we have

R

(
d, µ, ε+

1

n

)
≤
∫

MT (X )

R

(
d, ν, εν +

1

n

)
dλ(ν).

By Lemma 3.5

R(d, µ, ε) = lim
n→∞

R

(
d, µ, ε+

1

n

)
.
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For each ν ∈M T (X ) we also have

R (d, ν, εν) = lim
n→∞

R

(
d, ν, εν +

1

n

)
.

We notice that R
(
d, ν, εν + 1

n

)
≤ R (d, ν, εν) and that the right-hand side is assumed to

be λ-integrable. Therefore we can use Lebesgue’s dominated convergence theorem and

get

lim
n→∞

∫
MT (X )

R

(
d, ν, εν +

1

n

)
dλ(ν) =

∫
MT (X )

R (d, ν, εν) dλ(ν).

Thus we conclude that

R(d, µ, ε) ≤
∫

MT (X )

R (d, ν, εν) dλ(ν).

�

By combining Lemmas 3.6 and 3.8, we get the conclusion of this subsection.

Theorem 3.9. Let λ be a Borel probability measure on M T (X ) and define a measure

µ ∈M T (X ) by µ =
∫

MT (X )
ν dλ(ν). For any positive number ε, we have

R(d, µ, ε)

= inf


∫

MT (X )

R(d, ν, εν)dλ(ν)

∣∣∣∣∣∣
M T (X ) 3 ν 7→ εν ∈ (0,∞) is a measurable

function with

∫
MT (X )

εν dλ(ν) ≤ ε

 .

Remark 3.10. So far we have considered only Rd-actions. However we notice that the

statement of Theorem 3.9 holds for Zd-actions as well. This might be useful in a future

study of geometric applications of rate distortion theory.

3.3. Proofs of Theorems 1.1 and 1.2. Let (X ,d) be a compact metric space with a

continuous action T : Rd×X → X . Let λ be a Borel probability measure on M T (X ) and

define a measure µ ∈ M T (X ) by µ =
∫

MT (X )
ν dλ(ν). We prove Theorems 1.1 and 1.2

below.

Theorem 3.11 (= Theorem 1.1). If the upper metric mean dimension mdimM(X , T,d)

is finite then

rdim(X , T,d, µ) ≤
∫

MT (X )

rdim(X , T,d, ν) dλ(ν).

Proof. Recall that

mdimM(X , T,d) = lim sup
ε→0

S(X , T,d, ε)
log(1/ε)

.

By Theorem 3.9, for any ε > 0 we have

R(d, µ, ε) ≤
∫

MT (X )

R(d, ν, ε) dλ(ν).
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Hence
R(d, µ, ε)

log(1/ε)
≤
∫

MT (X )

R(d, ν, ε)

log(1/ε)
dλ(ν).

From (2·3) in §2.3,
R(d, ν, ε)

log(1/ε)
≤ S(X , T,d, ε)

log(1/ε)
.

From mdimM(X , T,d) <∞, we have

sup
ε>0

R(d, ν, ε)

log(1/ε)
≤ sup

ε>0

S(X , T,d, ε)
log(1/ε)

<∞.

Namely, R(d,ν,ε)
log(1/ε)

is a bounded function of ν and ε. Then we can use Fatou’s lemma and

conclude

lim sup
ε→0

R(d, µ, ε)

log(1/ε)
≤ lim sup

ε→0

∫
MT (X )

R(d, ν, ε)

log(1/ε)
dλ(ν) ≤

∫
MT (X )

lim sup
ε→0

R(d, ν, ε)

log(1/ε)
dλ(ν).

Thus we have rdim(X , T,d, µ) ≤
∫

MT (X )
rdim(X , T,d, ν) dλ(ν). �

Theorem 3.12 (= Theorem 1.2). We have

rdim(X , T,d, µ) ≥
∫

MT (X )

rdim(X , T,d, ν) dλ(ν).

Proof. We take a decreasing sequence of positive numbers ε1 > ε2 > ε3 > . . . such that

εn ≤ 2−n, rdim(X , T,d, µ) = lim
n→∞

R(d, µ, εn)

log(1/εn)
.

By Theorem 3.9, for each n ≥ 1, we can find a measurable function M T (X ) 3 ν 7→ εn,ν ∈
(0,∞) such that

∫
MT (X )

εn,ν dλ(ν) ≤ εn and

(3·1) R(d, µ, εn) ≥
∫

MT (X )

R (d, ν, εn,ν) dλ(ν)− 1.

Take 0 < c < 1 and let An = {ν ∈M T (X ) | εn,ν < εcn}. We have λ
(
M T (X ) \ An

)
≤

ε1−c
n ≤ 2−n(1−c). Hence the sum of λ

(
M T (X ) \ An

)
over n ≥ 1 converges. By the first

Borel–Cantelli lemma,

λ

(
∞⋂
n=1

⋃
k≥n

(
M T (X ) \ Ak

))
= 0.

Set B =
⋃∞
n=1

⋂
k≥nAk. We have λ(B) = 1. For any ν ∈ B, we have εn,ν < εcn for all but

finitely many n.

By (3·1)

R(d, µ, εn)

log(1/εn)
≥
∫

MT (X )

R(d, ν, εn,ν)

log(1/εn)
dλ(ν)− 1

log(1/εn)

=

∫
B

R(d, ν, εn,ν)

log(1/εn)
dλ(ν)− 1

log(1/εn)
(by λ(B) = 1).
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We notice that rate distortion function is always non-negative. Hence we can use Fatou’s

lemma and get

rdim(X , T,d, µ) = lim
n→∞

R(d, µ, εn)

log(1/εn)
≥
∫
B

lim inf
n→∞

R(d, ν, εn,ν)

log(1/εn)
dλ(ν).

For ν ∈ B we have

R(d, ν, εn,ν)

log(1/εn)
≥ R(d, ν, εcn)

log(1/εn)
= c

R(d, ν, εcn)

log(1/εcn)
for all but finitely many n ≥ 1.

Therefore ∫
B

lim inf
n→∞

R(d, µ, εn,ν)

log(1/εn)
dλ(ν) ≥ c

∫
B

lim inf
n→∞

R(d, ν, εcn)

log(1/εcn)
dλ(ν)

≥ c

∫
B

rdim(X , T,d, ν) dλ(ν)

= c

∫
MT (X )

rdim(X , T,d, ν) dλ(ν).

In the last line we have used λ(B) = 1. Thus we have

rdim(X , T,d, µ) ≥ c

∫
MT (X )

rdim(X , T,d, ν) dλ(ν).

Letting c→ 1, we get the conclusion. �

4. Construction of an example: Proof of Theorem 1.4

The purpose of this section is to prove Theorem 1.4. Let (V, ‖·‖) be an infinite

dimensional Banach space. For example, V = `2(N) or `∞(N) will work well. Let

B = {v ∈ V | ‖v‖ ≤ 1} be the unit ball of V . Let C(Rd, B) be the space of all

continuous maps x : Rd → B. We define a metric d on C(Rd, B) by

d(x, y) = sup
n≥1

(
2−n sup

|t|∞≤n
‖x(t)− y(t)‖

)
.

Here |t|∞ := max(|t1|, |t2|, . . . , |td|) denotes the max-norm of t = (t1, . . . , td) ∈ Rd. The

group Rd continuously acts on C(Rd, B) by

T : Rd × C(Rd, B)→ C(Rd, B), (s, x(·)) 7→ x(·+ s).

Namely (T sx)(t) = x(t+ s).

We take a triangulation (simplicial complex structure) Γ of Rd such that

• the vertex sets of Γ is the standard lattice Zd,
• Γ is invariant under the natural action of Zd on Rd, namely u + Γ = Γ for all

u ∈ Zd.
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Figure 1. A Z2-invariant triangulation of the plane. The vertexes are

points of the standard lattice Z2.

Figure 1 shows an example of such Γ for the case of d = 2.

A continuous map x : Rd → B is said to be Γ-piecewisely linear if, for every simplex

∆ of Γ, we have

x

(
k∑
i=0

tiei

)
=

k∑
i=0

tix(ei) for ti ≥ 0 with
k∑
i=0

ti = 1,

where e0, . . . , ek are the vertices of ∆. A Γ-picewisely linear map x is uniquely determined

by its values on the vertex set Zd.

Lemma 4.1. (1) There is C > 0 such that every Γ-piecewisely linear map x : Rd → B

is C-Lipschitz:

‖x(t)− x(u)‖ ≤ C|t− u|∞.

(2) For L > 0, s, t ∈ Rd and Γ-piecewisely linear map x : Rd → B we have

dL(T sx, T tx) ≤ C

2
|s− t|∞.

Proof. (1) Since the triangulation Γ is Zd-invariant, we can find C > 0 such that, for

every simplex ∆ of Γ of vertices e0, . . . , ek, we have

k∑
i=0

|ti − ui| ≤ C

∣∣∣∣∣
k∑
i=0

tiei −
k∑
i=0

uiei

∣∣∣∣∣
∞
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where ti, ui are any non-negative numbers with
∑k

i=0 ti =
∑k

i=0 ui = 1. Then for any two

points t =
∑k

i=0 tiei and u =
∑k

i=0 uiei of ∆ we have

‖x(t)− x(u)‖ ≤
k∑
i=0

|ti − ui| ≤ C

∣∣∣∣∣
k∑
i=0

tiei −
k∑
i=0

uiei

∣∣∣∣∣
∞

= C|t− u|∞,

where we have used ‖x(ei)‖ ≤ 1 in the first inequality.

In general, let t and u be any two points of Rd. We consider the line segment p(s) :=

(1− s)t+ su (0 ≤ s ≤ 1) between t and u. We can find 0 = s0 < s1 < s2 < · · · < sn = 1

such that each pair p(sj), p(sj+1) (0 ≤ j ≤ n−1) belong to a common simplex of Γ. Then

‖x(t)− x(u)‖ ≤
n−1∑
j=0

‖x (p(sj))− x (p(sj+1)‖

≤ C
n−1∑
j=0

|p(sj)− p(sj+1)|∞

= C
n−1∑
j=0

(sj+1 − sj)|t− u|∞

= C|t− u|∞.

(2) is a direct consequence of (1) and the definitions. �

For natural numbers m ≥ 1 we take finite subsets Am ⊂ B satisfying the following

conditions.

(1) ‖v − w‖ = 1
m

for all distinct v, w ∈ Am.

(2) 0 6∈ Am and maxv∈Am ‖a‖ → 0 as m→∞.

(3) Am ∩ Am′ = ∅ for m 6= m′, and
⋃∞
m=1 Am is a linearly independent subset of V .

(4) |Am| = 23m , where |Am| denotes the cardinality of Am.

We can find such Am if V = `2(N) or `∞(N).

We define a subset Ym ⊂ C(Rd, B) as the set of all Γ-piecewisely linear maps x : Rd → B

satisfying x(n) ∈ Am for all n ∈ Zd. This is a compact subset and invariant under T |Zd

(the restriction of T to Zd). We define Xm ⊂ C(Rd, B) by

Xm =
⋃

s∈[0,1)d

T sYm.

This is a compact T -invariant subset of C(Rd, B). We also set X0 = {0} where 0 denotes

the zero function in C(Rd, B). We have Xm ∩ Xm′ = ∅ for m 6= m′ by the condition (3)

above. Finally we define X ⊂ C(Rd, B) by

X =
∞⋃
m=0

Xm.
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X is a compact T -invariant subset of C(Rd, B). Here the compactness follows from the

condition that maxv∈Am ‖v‖ → 0 (m → ∞). We will show that (X , T,d) satisfies the

statement of Theorem 1.4.

Lemma 4.2. For every m ≥ 0, the topological entropy of (Xm, T ) is finite and hence we

have mdimM (Xm, T,d) = 0.

Proof. For m = 0, this is obvious because X0 = {0} is a single point. So we assume

m ≥ 1. Let ε > 0 and L > 0. From Lemma 4.1 (2)

# (Xm,dL, ε) ≤
∑

s∈[0,1)d∩( ε
2C

Zd)

#
(
T sYm,dL,

ε

2

)
≤

∑
s∈[0,1)d∩( ε

2C
Zd)

#
(
Ym,dL+1,

ε

2

)

≤
(

1 +
2C

ε

)d
#
(
Ym,dL+1,

ε

2

)
.

Choose ` = `(ε) > 0 satisfying 2−` < ε/2. Then

#
(
Ym,dL+1,

ε

2

)
≤ |Am|(L+2`+1)d .

Hence

S(Xm, T,d, ε) = lim
L→∞

log # (Xm,dL, ε)
Ld

≤ log |Am|.

Thus

htop (Xm, T ) = lim
ε→0

S(Xm, T,d, ε) ≤ log |Am| <∞,

mdimM (Xm, T,d) = lim sup
ε→0

S(Xm, T,d, ε)
log(1/ε)

= 0.

�

Lemma 4.3. We have rdim (X , T,d, ν) = 0 for every ergodic probability measure ν of

(X , T ) .

Proof. We have a decomposition X =
⋃∞
m=0Xm. The sets Xm are mutually disjoint,

compact and T -invariant subsets. We have

1 = ν(X ) =
∞∑
m=0

ν(Xm).

Then ν(Xm) = 1 for some m ≥ 0 because ν is ergodic. From Lemma 4.2

rdim (X , T,d, ν) = rdim (Xm, T,d, ν) ≤ mdimM (Xm, T,d) = 0.

�
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For m ≥ 1, let Φm : AZd

m → Ym be the “natural” map. Namely, for a = (an)n∈Zd ∈
AZd

m , we define Φm(a) to be the (unique) Γ-piecewisely linear map x : Rd → B satisfying

x(n) = an for all n ∈ Zd. Let pm be the uniform probability measure on Am. Let p⊗Z
d

m be

the product measure on AZd

m and set

νm = (Φm)∗

(
p⊗Z

d

m

)
.

This is a T |Zd-invariant probability measure on Ym. We define a T -invariant probability

measure µm on Xm by

µm =

∫
[0,1)d

T s∗ νm dm(s).

Finally we define µ ∈M T (X ) by

µ =
∞∑
m=1

2−mµm.

We will prove that rdim (X , T,d, µ) = ∞. The strategy is to relate R(d, µ, ε) to

a convex combination of R(d, µn, ε) (Theorem 3.9) and establish an appropriate lower

bound on R(d, µm, ε) by using Proposition 2.5. For applying that proposition, we need

to estimate the integral∫
X

2−
a

Ld

∫
[0,L)d

d(T tx,yt)dm(t)dµm(x) =

∫
[0,1)d

(∫
T sYm

2−
a

Ld

∫
[0,L)d

d(T tx,yt)dm(t)d (T s∗ νm(x))

)
ds

for L > 0, y ∈ L1
(
[0, L)d,X

)
and an appropriately chosen positive number a. (We will

see below that the choice a := 4mLd3m will work.) Here is a remark on the notation: For

y ∈ L1([0, L)d,X ) and t ∈ [0, L)d, we denote the value of y at t by yt. So yt is a continuous

map from Rd to B. For u ∈ Rd, we denote the value of yt at the point u by yt(u).

Lemma 4.4. Let L ∈ N, s ∈ [0, 1)d, x ∈ X and y ∈ L1
(
[0, L)d,X

)
. We have∫

[0,L)d
d
(
T tx, yt

)
dm(t) ≥ 1

2

∑
n∈Zd∩[0,L)d

∥∥∥∥x(s+ n)−
∫
n+[0,1)d

yt(s+ n− t) dm(t)

∥∥∥∥ .
Proof. We have

d(T tx, yt) = sup
n≥1

(
2−n sup

|u|∞≤n

∥∥T tx(u)− yt(u)
∥∥) ≥ 1

2
max
|u|∞≤1

‖x(u+ t)− yt(u)‖ .

For n ∈ [0, L)d ∩ Zd and t ∈ n + [0, 1)d, letting u = s+ n− t ∈ [−1, 1]d, we get

d(T tx, yt) ≥
1

2
‖x(s+ n)− yt(s+ n− t)‖ .
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Integrating this over t ∈ n + [0, 1)d,∫
n+[0,1]d

d(T tx, yt)dm(t) ≥ 1

2

∫
n+[0,1)d

‖x(s+ n)− yt(s+ n− t)‖ dm(t)

≥ 1

2

∥∥∥∥x(s+ n)−
∫
n+[0,1)d

yt(s+ n− t) dm(t)

∥∥∥∥ .
Summing this over n ∈ [0, L)d ∩ Zd, we get the claim of the lemma. �

Let L ∈ N, s ∈ [0, 1)d and y ∈ L1
(
[0, L)d,X

)
. We set

zs(n) =

∫
n+[0,1)d

yt(s+ n− t) dm(t) ∈ B (n ∈ Zd ∩ [0, L)d).

From Lemma 4.4, for any positive number a∫
T sYm

2−
a

Ld

∫
[0,L)d

d(T tx,yt)dm(t)d (T s∗ νm(x)) ≤
∫
T sYm

2−
a

2Ld

∑
n∈[0,L)d∩Zd‖x(s+n)−zs(n)‖d (T s∗ νm(x))

=

∫
T sYm

∏
n∈[0,L)d∩Zd

2−
a

2Ld ‖x(s+n)−zs(n)‖d (T s∗ νm(x)) .

When x ∈ T sYm is distributed according to T s∗ νm, the point (x(s+ n))n∈[0,L)d∩Zd is dis-

tributed according to the product measure
∏

n∈[0,L)d∩Zd pm. (Recall that pm is the uniform

measure on the finite set Am.) Hence∫
T sYm

∏
n∈[0,L)d∩Zd

2−
a

2Ld ‖x(s+n)−zs(n)‖d (T s∗ νm(x)) =
∏

n∈[0,L)d∩Zd

∫
Am

2−
a

2Ld ‖v−zs(n)‖dpm(v).

Therefore∫
T sYm

2−
a

Ld

∫
[0,L)d

d(T tx,yt)dm(t)d (T s∗ νm(x)) ≤
∏

n∈[0,L)d∩Zd

∫
Am

2−
a

2Ld ‖v−zs(n)‖dpm(v).

Recall that we assumed ‖v − w‖ = 1
m

for all distinct v, w ∈ Am. It follows that

‖v − zs(n)‖ ≥ 1
2m

for all but one v ∈ Am. Therefore∫
Am

2−
a

2Ld ‖v−zs(n)‖dpm(v) ≤ 1

|Am|

{
1 + (|Am| − 1)2−

a

4mLd

}
≤ 1

|Am|
+ 2−

a

4mLd .

We recall that |Am| = 23m . Then the right-most hand is equal to 2−3m + 2−
a

4mLd . Hence∫
T sYm

2−
a

Ld

∫
[0,L)d

d(T tx,yt)dm(t)d (T s∗ νm(x)) ≤
(

2−3m + 2−
a

4mLd

)Ld

.

Integrating this over s ∈ [0, 1)d, we have∫
X

2−
a

Ld

∫
[0,L)d

d(T tx,yt)dm(t)dµm(x) ≤
(

2−3m + 2−
a

4mLd

)Ld

.
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Now we choose a := 4mLd3m. Then the right-hand side is (2−3m + 2−3m)L
d

= 2(1−3m)Ld
.

Namely ∫
X

2−4m·3m
∫
[0,L)d

d(T tx,yt)dm(t)dµm(x) ≤ 2(1−3m)Ld

.

In other words, for a = 4mLd3m and λ := 2(3m−1)Ld
, we have∫

X
λ2−

a

Ld

∫
[0,L)d

d(T tx,yt)dm(t)dµm(x) ≤ 1

for all y ∈ L1
(
[0, L)d,X

)
. Then we can use Proposition 2.5 and get

RL(d, µm, ε) ≥ −aε+ log λ = −4mεLd3m + (3m − 1)Ld (ε > 0).

Dividing this by Ld and letting L→∞,

R(d, µm, ε) ≥ −4mε3m + 3m − 1.

For 0 < ε < 3−m, the right-hand side is greater than 3m− 4m− 1. Therefore we conclude

Proposition 4.5. For 0 < ε < 3−m we have R(d, µm, ε) ≥ 3m − 4m− 1.

Now we apply Theorem 3.9 to µ =
∑∞

m=1 2−mµm:

R(d, µ, ε) = inf

{
∞∑
m=1

2−mR(d, µm, εm)

∣∣∣∣∣ εm > 0 (m ∈ N) with
∞∑
m=1

2−mεm ≤ ε

}
.

Let n be a natural number and assume 0 < ε < 6−n. If a sequence of positive numbers

εm satisfies
∑∞

m=1 2−mεm ≤ ε, then 2−nεn ≤ ε < 6−n and hence εn < 3−n. By Proposition

4.5

2−nR(d, µn, εn) ≥
(

3

2

)n
− n22−n − 2−n.

Therefore

R(d, µ, ε) ≥
(

3

2

)n
− n22−n − 2−n (0 < ε < 6−n).

Proposition 4.6. rdim (X , T,d, µ) =∞.

Proof. Let 0 < ε < 1/6. We choose a natural number n with 6−n−1 ≤ ε < 6−n. Then we

have

R(d, µ, ε) ≥
(

3

2

)n
− n22−n − 2−n, log(1/ε) ≤ (n+ 1) log 6.

Hence
R(d, µ, ε)

log(1/ε)
≥
(

3
2

)n − n22−n − 2−n

(n+ 1) log 6
.

We have n→∞ as ε→ 0. Therefore

rdim (X , T,d, µ) = lim
ε→0

R(d, µ, ε)

log(1/ε)
=∞.

�

By combining Lemmas 4.3 and 4.6, we have shown that (X , T,d) satisfies
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• every ergodic measure ν on (X , T ) has zero rate distortion dimension,

• there exists an invariant probability measure µ on (X , T ) of infinite rate distortion

dimension.

This proves Theorem 1.4.

Remark 4.7. By modifying the above construction, we can also prove the following

statement: Let c be an arbitrary nonnegative real number (including c = ∞). There

exists a compact metric space (X ,d) with a continuous action T : Rd×X → X satisfying

the following two conditions.

(1) Every ergodic measure ν ∈M T
erg(X ) satisfies rdim (X , T,d, ν) = 0.

(2) There exists µ ∈M T (X ) satisfying rdim (X , T,d, µ) = c.

5. Another example

One of our main theorems, Theorem 1.1, claims that if a continuous action T : Rd×X →
X on a compact metric space (X ,d) has a finite upper metric mean dimension and if λ

is a Borel probability measure on M T (X ), then we have

(5·1) rdim

(
X , T,d,

∫
MT (X )

ν dλ(ν)

)
≤
∫

MT (X )

rdim (X , T,d, ν) dλ(ν).

The purpose of this section is to show that this inequality may be a strict inequality in

general. Indeed we will prove the following statement.

Proposition 5.1. There exists a continuous action T : Rd×X → X on a compact metric

space (X ,d) with invariant probability measures ν1, ν2 ∈M T (X ) satisfying

• the upper metric mean dimension mdimM (X , T,d) is finite,

• rdim (X , T,d, ν1) = rdim (X , T,d, ν2) = 1,

• rdim
(
X , T,d, 1

2
ν1 + 1

2
ν2

)
≤ 1

2
.

This shows that the inequality (5·1) may be strict in general. (Consider (5·1) for

λ := 1
2
δν1 + 1

2
δν2 .)

Proposition 5.1 follows from

Proposition 5.2. Let a1 < b1 < a2 < b2 < a3 < b3 < . . . be an increasing sequence

of natural numbers with bk > k2ak for all k ≥ 1. There exists a continuous action

T : Rd ×X → X on a compact metric space (X ,d) with an invariant probability measure

ν ∈M T (X ) satisfying

• the upper metric mean dimension mdimM (X , T,d) is finite,

• rdim (X , T,d, ν) = 1,

• lim
t∈

⋃
k[bk,ak+1)
t→∞

R(d, ν, 2−t)

t
= 0, where the real parameter t goes to infinity while it

satisfies t ∈
⋃∞
k=1[bk, ak+1).
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We first prove Proposition 5.1, assuming Proposition 5.2.

Proof of Proposition 5.1. We take an increasing sequence of natural numbers a1 < b1 <

a2 < b2 < . . . with bk > k2ak and ak+1 > k2bk. We set

a
(1)
k = ak, b

(1)
k = bk, a

(2)
k = bk, b

(2)
k = ak+1 (k ≥ 1).

We have b
(i)
k > k2a

(i)
k for both i = 1, 2. For i = 1, 2, by applying Proposition 5.2 to the

sequence a
(i)
1 < b

(i)
1 < a

(i)
2 < b

(i)
2 < . . . , we find a continuous action Ti : Rd × Xi → Xi

on a compact metric space (Xi,d(i)) with an invariant probability measure νi ∈M Ti(Xi)
satisfying

• the upper metric mean dimension mdimM

(
Xi, Ti,d(i)

)
is finite,

• rdim
(
Xi, Ti,d(i), νi

)
= 1,

• lim
t∈

⋃
k[b

(i)
k ,a

(i)
k+1)

t→∞

R(d(i), νi, 2
−t)

t
= 0.

We set X = X1 ∪ X2 (the disjoint union). We define a metric d on it by

d(x, y) =


d(1)(x, y) (x, y ∈ X1)

d(2)(x, y) (x, y ∈ X2)

max
{

Diam(X1,d
(1)),Diam(X2,d

(2))
}

(otherwise)

.

We define T : Rd × X → X as T ux = T ui x for x ∈ X (i) and u ∈ Rd. We can naturally

think νi as invariant probability measures on X . It is immediate to see that

• the upper metric mean dimension mdimM (X , T,d) is finite,

• rdim (X , T,d, νi) = rdim
(
Xi, Ti,d(i), νi

)
= 1.

Therefore we only need to check that rdim
(
X , T,d, 1

2
ν1 + 1

2
ν2

)
≤ 1

2
. Set µ = 1

2
ν1 + 1

2
ν2.

Let t be a large real number. By Theorem 3.9

R(d, µ, 2−t) ≤ 1

2
R(d(1), ν1, 2

−t) +
1

2
R(d(2), ν2, 2

−t).

Here R(d(i), νi, 2
−t) denotes the rate distortion function of (Xi, Ti,d(i), νi). It follows from

rdim
(
Xi, Ti,d(i), νi

)
= 1 that R(d(i), νi, 2

−t) = t + o(t) for both i = 1, 2, where the error

term satisfies limt→∞ o(t)/t = 0.

If t ∈ [bk, ak+1) = [b
(1)
k , a

(1)
k+1) for some k ≥ 1, then R(d(1), ν1, 2

−t) = o(t). If t ∈
[ak+1, bk+1) = [b

(2)
k , a

(2)
k+1) for some k ≥ 1, then R(d(2), ν2, 2

−t) = o(t). Therefore, in both

cases, we have

R(d, µ, 2−t) ≤ 1

2
(t+ o(t)) +

1

2
o(t) =

t

2
+ o(t).

Thus we conclude

rdim (X , T,d, µ) = lim sup
t→∞

R(d, µ, 2−t)

t
≤ 1

2
.

�
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The rest of this section is devoted to the proof of Proposition 5.2. Our construction is

similar to that of §4, and we use the terminology “Γ-piecewisely linear map” introduced

there.

Suppose that we are given an increasing sequence of natural numbers a1 < b1 < a2 <

b2 < a3 < b3 < . . . satisfying bk > k2ak. Set ck = kak. We have ak ≤ ck ≤ bk. We define

a function h : N→ N by

h(n) =

n (n ≤ a1 or n ∈
⋃∞
k=1[ak, ck])

ak+1 (n ∈ (ck, ak+1] for k ≥ 1)
.

Figure 2 shows a schematic picture of the graph of the function h. Notice that h is

monotone non-decreasing and satisfies h(n) ≥ n for all n.

Figure 2. The graph of the function h. We have ck = kak and kck < bk < ak+1.

Let (V, ‖·‖) = (`∞(N), ‖·‖`∞) be the Banach space of bounded sequences (indexed by

natural numbers). Let B = {v ∈ V | ‖v‖ ≤ 1} be the unit ball. We define C(Rd, B) as

the space of all continuous maps x : Rd → B. We define a metric d on it by

d(x, x′) = sup
n≥1

(
2−n sup

|u|∞≤n
‖x(u)− x′(u)‖

)
.

Let T : Rd × C(Rd, B)→ C(Rd, B) be the natural shift action (T ux(t) = x(t+ u)).

Let Λ = {0, 1}N. We define a metric ρ on it by

ρ(v, w) = 2−h(min{m≥1|vm 6=wm}).

Since h(n) ≥ n, we have ρ(v, w) ≤ 2−min{m≥1|vm 6=wm} where the right-hand side is a more

standard metric on Λ. We define a map ϕ : Λ→ B by

ϕ(v) =
(
2−h(m)vm

)∞
m=1

.

Set Λ′ = ϕ(Λ). The metric spaces (Λ, ρ) and (Λ′, ‖·‖) are isometric, namely

‖ϕ(v)− ϕ(w)‖ = ρ(v, w).

In particular, Diam (Λ′, ‖·‖) = Diam (Λ, ρ) = 1
2
.
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As in §4 we fix a Zd-invariant triangulation Γ of Rd such that its vertex set is equal to

Zd. We define Y ⊂ C(Rd, B) as the space of all Γ-piecewisely linear maps x : Rd → B

satisfying x(n) ∈ Λ′ for all n ∈ Zd. We define X ⊂ C(Rd, B) by

X =
⋃

s∈[0,1)d

T sY .

This is a compact T -invariant subset of C(Rd, B).

Let p =
(

1
2
δ0 + 1

2
δ1

)⊗N
be the (unbiased) Bernoulli measure on Λ = {0, 1}N. Let

p⊗Z
d

be the product measure on ΛZd
, and let Φ: ΛZd → Y be the natural map. We set

µ = Φ∗

(
p⊗Z

d
)

. This is a probability measure on Y . We define ν ∈M T (X ) by

ν =

∫
[0,1)d

T s∗µ dm(s).

We will prove that (X , T,d, ν) satisfies the claim of Proposition 5.2.

Lemma 5.3. (1) mdimM (X , T,d) ≤ 1. In particular, rdim (X , T,d, ν) ≤ 1.

(2) lim
t∈

⋃
k[bk,ak+1)
t→∞

R(d, ν, 2−t)

t
= 0.

Proof. As in Lemma 4.1, we can find C > 0 such that every x ∈ X is C-Lipschitz. In

particular, for any L > 0 and s, t ∈ Rd

dL(T sx, T tx) ≤ C

2
|s− t|∞.

(1) For L > 0 and ε > 0

# (X ,dL, ε) ≤
∑

s∈[0,1)d∩( ε
2C

Zd)

#
(
T sY ,dL,

ε

2

)
≤
(

1 +
2C

ε

)d
#
(
Y ,dL+1,

ε

2

)
.

Choose ` = `(ε) > 0 satisfying 2−` < ε
2
. Then

#
(
Y ,dL+1,

ε

2

)
≤ # (Λ, ρ, ε)(L+2`+1)d .

Hence

S(X , T,d, ε) = lim
L→∞

log # (X ,dL, ε)
Ld

≤ log # (Λ, ρ, ε) .

Therefore

mdimM (X , T,d) = lim sup
ε→0

S(X , T,d, ε)
log(1/ε)

≤ lim sup
ε→0

log # (Λ, ρ, ε)

log(1/ε)
.

The right-most side is the upper Minkowski dimension of (Λ, ρ). Noting h(n) ≥ n, it is

easy to see that the upper Minkowski dimension is less than or equal to one.

(2) We again use the inequality S(X , T,d, ε) ≤ log # (Λ, ρ, ε). Let ε = 2−t with bk ≤
t < ak+1. Consider the natural projection Λ → {0, 1}ck to the first ck coordinates. It
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follows from the definition of the metric ρ that its fibers have diameter 2−ak+1 < ε. Hence

we have

log # (Λ, ρ, ε) ≤ ck <
bk
k
≤ t

k
.

Namely
R(d, ν, 2−t)

t
≤ S(X , T,d, 2−t)

t
≤ 1

k
(bk ≤ t < ak+1).

We have k →∞ as t→∞. So this shows the claim. �

Now we only need to show that rdim(X , T,d, ν) = 1. In fact, we will prove that

limk→∞
R(d,ν,2−ck )

ck
= 1. Then rdim(X , T,d, ν) = 1 follows from Lemma 5.3 (1).

As in §4, we would like to use Proposition 2.5. For that purpose we need to estimate∫
X

2−
a

Ld

∫
[0,L)d

d(T tx,yt)dm(t)dν(x) =

∫
[0,1)d

(∫
T sY

2−
a

Ld

∫
[0,L)d

d(T tx,yt)dm(t)dT s∗µ(x)

)
dm(s)

for L > 0, y ∈ L1([0, L)d,X ) and appropriately chosen a > 0. (The choice a = 2ck+2Ld

will work.)

Let L ∈ N, s ∈ [0, 1)d and y ∈ L1([0, L)d,X ). By the same argument as in Lemma 4.4,

for every x ∈ X we have∫
[0,L)d

d(T tx, yt) dm(t) ≥ 1

2

∑
n∈Zd∩[0,L)d

∥∥∥∥x(s+ n)−
∫
n+[0,1)d

yt(s+ n− t) dm(t)

∥∥∥∥ .
Let

zs(n) =

∫
n+[0,1)d

yt(s+ n− t) dm(t) ∈ B (n ∈ Zd ∩ [0, L)d).

For any a > 0∫
T sY

2−
a

Ld

∫
[0,L)d

d(T tx,yt)dm(t)dT s∗µ(x) ≤
∫
T sY

2−
a

2Ld

∑
n∈Zd∩[0,L)d

‖x(s+n)−zs(n)‖dT s∗µ(x)

=

∫
T sY

∏
n∈Zd∩[0,L)d

2−
a

2Ld ‖x(s+n)−zs(n)‖dT s∗µ(x)

=
∏

n∈Zd∩[0,L)d

∫
Λ

2−
a

2Ld ‖ϕ(v)−zs(n)‖dp(v).

(5·2)

We would like to use this for a = 2ck+2Ld.

Lemma 5.4. There exists a universal positive constant K such that for any z ∈ V and

sufficiently large k (independent of z) we have∫
Λ

2−2ck+1‖ϕ(v)−z‖dp(v) ≤ K2−ck .

Proof. Take z ∈ V . Consider a function Λ 3 v 7→ ‖ϕ(v)− z‖ ∈ R, and let w = (wn)∞n=1 ∈
Λ be a point attaining the minimum of this function. Then for any point v ∈ Λ we have

ρ(v, w) = ‖ϕ(v)− ϕ(w)‖ ≤ ‖ϕ(v)− z‖+ ‖z − ϕ(w)‖ ≤ 2 ‖ϕ(v)− z‖ .
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Hence
∫

Λ
2−2ck+1‖ϕ(v)−z‖dp(v) ≤

∫
Λ

2−2ckρ(v,w)dp(v).

We define subsets Λi (i = 1, . . . , ck) of Λ by Λ1 = {v | v1 6= w1},Λ2 = {v | v1 =

w1, v2 6= w2},Λ3 = {v | v1 = w1, v2 = w2, v3 6= w2}, . . . ,Λck = {v | v1 = w1, . . . , vck−1 =

wck−1, vck 6= wck}. We also set

Λ′ = Λ \ (Λ1 ∪ . . . ,∪Λck) = {v | v1 = w1, . . . , vck = wck}.

Then ∫
Λ

2−2ckρ(v,w)dp(v)

=

∫
⋃ak

i=1 Λi

2−2ckρ(v,w)dp(v) +

ck∑
i=ak+1

∫
Λi

2−2ckρ(v,w)dp(v) +

∫
Λ′

2−2ckρ(v,w)dp(v).

We have ρ(v, w) ≥ 2−ak over
⋃ak
i=1 Λi. On Λi (ak + 1 ≤ i ≤ ck) we have ρ(v, w) = 2−i. We

also have p(Λ′) = 2−ck . Hence∫
Λ

2−2ckρ(v,w)dp(v) ≤ 2−2ck−ak +

ck∑
i=ak+1

2−i2−2ck−i

+ 2−ck .

Since ck = kak, we have 2−2ck−ak < 2−ck for large k. For estimating the second term, we

introduce a change of variable j = ck − i:
ck∑

i=ak+1

2−i2−2ck−i

=

ck−ak−1∑
j=0

2−ck+j2−2j < 2−ck
∞∑
j=0

2j2−2j .

Then ∫
Λ

2−2ckρ(v,w)dp(v) ≤

(
2 +

∞∑
j=0

2j2−2j

)
2−ck .

Now the claim holds for K := 2 +
∑∞

j=0 2j2−2j <∞. �

We assume k is large. By applying Lemma 5.4 to (5·2) with a = 2ck+2Ld∫
T sY

2−2ck+2
∫
[0,L)d

d(T tx,yt)dm(t)dT s∗µ(x) ≤ KLd

2−ckL
d

.

By integrating this over s ∈ [0, 1)d,∫
X

2−2ck+2
∫
[0,L)d

d(T tx,yt)dm(t)dν(x) ≤ KLd

2−ckL
d

.

Now we use Proposition 2.5 with the parameters ε = 2−ck , a = 2ck+2Ld and λ =

K−L
d
2ckL

d
. Then

RL(d, ν, 2−ck) ≥ −aε+ log λ = −4Ld − Ld logK + ckL
d.

Dividing this by Ld and letting L→∞, we get

R(d, ν, 2−ck) ≥ −4− logK + ck.
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Lemma 5.5. limk→∞
R(d,ν,2−ck )

ck
= rdim(X , T,d, ν) = 1.

Proof. Assume k is large. From R(d, ν, 2−ck) ≥ −4− logK + ck

1 ≤ lim inf
k→∞

R(d, ν, 2−ck)

ck
≤ lim sup

k→∞

R(d, ν, 2−ck)

ck
≤ rdim(X , T,d, ν) ≤ 1.

The last inequality is given by Lemma 5.3 (1). �

By combining Lemmas 5.3 and 5.5, we have proved Proposition 5.2.
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