Local expansion properties of paracontrolled systems

I. BAILLEUL and N. MOENCH

Abstract. The concept of concrete regularity structure gives the algebraic backbone of the operations
involved in the local expansions used in the regularity structure approach to singular stochastic partial
differential equations. The spaces and the details of the structures depend on each equation. We
introduce here a parameter-dependent universal algebraic regularity structure that can host all the
regularity structures used in the study of singular stochastic partial differential equations. This is done
by using the correspondence between the notions of model on a regularity structure and the notion
of paracontrolled system. We prove that the iterated paraproducts that form the fundamental bricks
of paracontrolled systems have some local expansion properties that are governed by this universal
structure.

Contents

B Y 11T o
1.1 Local expansion properties of iterated paraproducts .............ccoiiiiiiiiieeninnanns
1.2 Regularity structures associated with iterated paraproducts .................c.coevnnnn
1.3 Local expansion properties of paracontrolled systems.............c.oovviiiiiiiiinnnnnns
2. Simplified iterated paraproducts P~ and their local expansion properties
2.1 Simplified iterated paraproducts. . ... ... e
2.2 Generalized derivative 0perator 9% .............ueeiiuuee et
2.3 Local expansion properties of the P (f1, ... f,) cooveiiiiiiiiiiiiiiiiiiiiiiiiinnn
2.4 Local expansion properties of the 8% P _ (f1, .., fn)eeereannnnnneeeaeeiaainnaaaaaaany

. The regularity structure of iterated paraproducts .............ccoiiiiiiiiriiirennnneenns

. Local expansion properties of iterated paraproducts. ...........ccovviiinniiiiiiniinnnnnnns
4.1 Building blocks for a representation of Pintermsof P ................oooiiiiant,
4.2 A representation formula ....... ... e
4.3 Proof of Theorem Dl ....ouontiriniii ittt et ettt ieaaeanes

5. Back to paracontrolled systems. ...........oiuiiiiiiiiiiiii it i i i e i
5.1 The regularity StruCture . ....oueiiei i i it i
5.2 Paracontrolled systems and modelled distributions ...................... .. ol

S Yo Yo =Y 1 T [
A.1. Basics in regularity StrUCLUFES . . ... oviiutt ittt ii i ii i
A.2. Basics on analysis and proofs of three lemmas ..............cccovviiiiiiiiiiiinnnnn.
A.3. Proofs for Section 2. . .. ..ouvt ittt it
A.4. Proof of some algebraic lemmas ... M

P

1 — Introduction

The theory of regularity structures was introduced by M. Hairer [13] as a convenient setting adapted
to give sense to, and study, a large class of stochastic partial differential equations that share a common
‘singular’ feature and involve some a priori ill-defined terms in their formulations, placing them beyond
the reach of classical stochastic calculus. Each equation in this class can be formulated as a fixed
point problem in a random space of modelled distributions over a deterministic, equation-dependent,
regularity structure. A solution to a singular stochastic partial differential equation then comes under
the form of a local expansion around each state space point in the setting of regularity structures.
One of the remarkable points of this setting is the prominent role played by some algebraic structures.
These structures have their origins in two different sides of the story. On the one hand, regularity
structures are intimately linked with the choice of representing an unknown function/distribution by
its “’jet’ in some a priori local expansion system. Some elementary consistency conditions on this
representation make appear the Hopf algebra and the comodule over this algebra that define a general
(concrete) regularity structure. (See e.g. Section 2.1 of Bailleul & Hoshino’s Tourist Guide [4].)
On the other hand, the specific needs required to deal with the singular feature of such equations via
renormalization comes under the form of another algebraic structure that needs to dovetail nicely with
the regularity structure to lead to a clear analysis of a generic singular stochastic partial differential
equation.

There is not a unique way of implementing that picture. The initial scope of the theory was mainly
about semilinear equations. An iterative fixed point formulation of such equations naturally leads
to some regularity structures indexed by some combinatorial trees. The extension by Otto and his
co-authors [20, [19] [I8] of the theory of regularity structures to the setting of scalar valued quasi-linear
equations motivated the introduction of some regularity structures indexed by some multi-indices.
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When applied to semi-linear equations, this local expansion device turns out to be greedier than the
tree-based expansion device, in the sense that the multi-index based local expansions typically involve
less terms than the tree-based expansions. We keep from that picture the fact that for a fixed equation
there is not a canonical choice of regularity structure for its study.

Another remarkable feature of the study of singular stochastic partial differential equations is
the fact that each equation can be studied/formulated by using an equation-dependent regularity
structure, so there is no universal regularity structure that works for all equations at a time. This is
in contrast with what happens in the one dimensional case of rough differential equations.

Despite this state of affair, we show in the present work that there is some universal structure
behind these different regularity structures. We use for that purpose another set of tools that was
developed for the study of singular stochastic partial differential equations: the paracontrolled calculus,
introduced first by Gubinelli, Imkeller & Perkowski in [I1], and developed in particular by Bailleul &
Bernicot [2, [B]. See e.g. [10, 12, 2I] and the reference therein for a tiny sample of some important
contributions to this setting. A dictionary between the language of regularity structures and the
language of paracontrolled calculus was given by Bailleul & Hoshino in their works [5] [6]. Models and
modelled distributions are encoded in the notion of paracontrolled system. Such systems involve some
non-local operators on functions/distributions. We prove that their pointwise expansions involve some
‘universal’ algebra that depends only on the number of reference objects in the paracontrolled system
and their regularity exponents, not on the reference objects themselves. This is the main result of this
work, stated below as Theorem [2}

We now introduce the setting needed to understand this statement. To simplify the exposition, we
work in the Euclidean space R% — all that follows has some direct counterpart in a non-isotropic setting.
The Besov-Holder spaces C** over R and their norms || - ||, are defined as usual for any «; € R from
the Littlewood-Paley projectors A; : D'(R™) — C°(R%) setting || f|la, = sup;> 1 2" [ A (f)[loor We
will also write K; for the kernel associated to the operator A;. Let

Agj= Y A,
i<j—1
and define the paraproduct P(f,g) of any two distributions f, g as
P(f.9) = Acii(f)Ailg).
i>1
For f € C** and g € C'** we have the optimal continuity estimates

IP(f, Dllas S N fllocllgllar a1 >0
and

IP(f;9)lontas S [ fllarllglla  if 1 <O
See for instance Section 2.6 in Bahouri, Chemin & Danchin’s textbook [I] for a reference.

Our main results involve some iterated paraproduct operators that we introduce in Section [I.1]
These operators are non-local and it is non-obvious to give a systematic description of their point-
wise expansion properties. We know from Section 2.1 of [4] that such expansions involve a priori
some concrete regularity structures. We describe in §1 of Section [I.2] a particular concrete regularity
structure and define in §2 of that section a pair (I, g) of maps on that regularity structure. Our first
main result, Theorem |1} states that (I1,g) is a model. Paracontrolled systems are then introduced in
Section [I.3] where we state the main result of this work, Theorem [2] Its proof in Section [5] will make
it clear that Theorem [2]is a corollary of Theorem

1.1 — Local expansion properties of iterated paraproducts. We define inductively the iterated
paraproduct operator by setting P(f) = f, for any distribution f € D’ (Rd"), and
P(f17 .. 7fn) = P(P(fh ey fnfl)a fn)

for any n > 2 and any distributions fi, ..., f, in ’D’(Rdo). If f,, € C% the above continuity estimates
on the paraproduct operator imply that the iterated paraproduct P(fi,..., f,) is in some C? space



where v < a,. Such distributions may nonetheless have some local descriptions to an accuracy strictly
larger than a, around an arbitrary point. In the case of a paraproduct P(f, g) where f € C*t, g € C*
and 0 < a; < 1/2, one has for instance

P(f,9)(y) = P(f,9)(z) = f(x)(9(y) — 9(2))| S ly — 2*, (1.1)

so one can give in that setting a local description of the behaviour of P(f,g) around an arbitrary
point z up to a precision |y — z|>**1. More generally, for ai,...,q, in the interval (0,1) and f; €
Ce ..., fn € C% define inductively on n

Sab(ﬂf,y) = P(f(uyfb)(?/) - P(faa"'vfb ZP fav"'afc) S(c+1)b(x7y)

for any 1 < a < b < n. M. Hoshino proved in Theorem 3.1 of [15] that if ag + -+, < 1
then |S1,(z,y)| < Jy — x|®1T T This gives the equivalent of the inequality for the iterated
paraproduct P(f1,..., f,) in that case.

One needs an additional ingredient to provide some expansion result at precision larger than 1. For
g € C*? with as > 0 we write

as K (y — JU)k
R (g)(y,) = g(y) = D 0"glw) ="
|k <z
for the Taylor remainder function of g at order as. We use here the convention that for z =
(z4,...,2%) € R® and k € N one sets 2* = [],_,, (¢")". M. Hoshino extended in [I7] the
expansion result for P(f,g) to any f € C*,g € C** for aj,ay > 0 by proving amongst other
things that

Sly—afmte, (1.2)

P(Lo)y) — > aP(f, )() = Y Ff@)R™(9)(y, )

|k|<ai+as |k <an

where the generalized derivative

)=o) - X (])enet)
kitko=k 1
k1| <an,|k2|>az

is indeed well-defined pointwise. The inequality provides a local description of the behaviour
of P(f,g) around an arbitrary point z to a precision |y — x|**T*2 when aj,as > 0. Hoshino was
able to prove in [I7] a local expansion result for P(f1, f2, f3) when aj,as, a3 are all three positive.
Theorem [I] below provides the most general extension of this type of result for some arbitrary iterated
paraproducts P(fi,..., fn). In the particular case where the f; € C* with ag, > 0 for all 1 < k <mn,
it implies that the function P(fi,..., f,) has a local description around an arbitrary point = up
to a precision |y — x|®1T T The statement of Theorem [I| does not require that all the oy be
positive and takes a very precise form. Not only does P(f1,..., f,) have a local expansion around
any point x, but the functions whose values at x give the coefficients of the expansion of P(f1,..., fn)
also have some local expansion, to a lower precision though. The coefficients that appear in the
latter expansion can also be expanded, to an even lower precision, and so on. A reader acquainted
with regularity structures will recognize here the verbal description of a modelled distribution over a
regularity structure. Theorem [I] states that a certain family of functions and distributions defines a
model over a particular regularity structure which we now introduce.

1.2 - Regularity structures associated with iterated paraproducts. The reader will find in

Appendix [A.1] some basic facts about regularity structures. It suffices to mention here that they
involve some pairs of vector spaces (T,T") equipped with some algebraic structures

A:T>TeTt



and

AT TT 5 THeTT.
§1. The reqularity structure. We need some notations to introduce the structure that is involved in
Theorem [

We use some gothic letters € = (ki,. .., k) € (N%)¢ to denote some tuples of multi-indices k; € N
of arbitrary length c. Denote by |k| = k! +- -+ k% the ¢*(N)-norm of an arbitrary k = (k',... k%) €
N and set for € = (ky,...,k.) € (N%)e

€] := (|k1l,- -, ke|) € N°
€[] := |k1| + -+ [ke| € N.

For k € N% and a non-null integer ¢ we define the set P.(k) of partitions of k into ¢ sub-mutli-indices
as

Po(k) = {(kl,...,k:c) e (N©)e: |k =k, +~--+kc}.

One has
18] = [K]
for any ¢ € P.(k) where k € N%, ¢ > 1. For some integers a < b we write [a,b] for the set of integers
in the closed interval [a,b]. Let X = (X!, ..., X%) stand for an abstract do-dimensional monomial
with commutative symbol coordinates. For p = (p!,...,p%) € N we set
XP o= (X2 (X",
Denote by (g1, ...,€4,) the canonical basis of N g0 X = X1,
We fix a tuple of real numbers
a=(a1,...,0n).

The following symbols
8= {[a,0]; X"} U{X"} o
form the basis of a vector space denoted by T'. Similarly the following symbols
+ . € i
BT = {[[avbﬂj} U {XE }19910

generate freely an algebra with unit 17 that we denote by TF. One says that (a,b,t,j) satisfies
condition(a,b,£,j) if 1 <a <b<n,t=(kg,... k) € Pp_asri(k) for some k € N and j € Py_,(¢)
for some ¢ € N and we have

1<a<b<n, j€Py_q (L), £EN%0  peNYo

condition(a,b,t,j)

max([k[,[€]) < Y lay]
1<j<n

and

R (1.3)

a<j<b

We emphasize that the tuples ¢ = (kq,...,kp) € Pp_qs1(k) have b — a + 1 components while the
tuples j € Py_q(¢) have b — a components. (To have a unified picture in mind one can think of
j= (lay--.,Lp—1) as the tuple (44, ...,0,—1,0) with b — a + 1 components.) The k; in £ will represent
later some derivatives in some analytic expressions like (1.9) below. The ¢; in j will represent some
polynomial weights in some analytical expressions like (1.4) below. The symbols of B and BT index
some analytic quantities that will be described in §2. We define an a-dependent grading on 7" and
T by defining the degree of [a, b]; X? € B as

|, 05 X7, = il + D e+ o,

a<j<b

and, requiring that the degree map is multiplicative on T'", we set |¢;]o. = 1 and define the degree of
[a,0] € BT as



[, BI5 ], = 13+ D> ay — el

a<j<b
We read on the condition (1.3) that the elements of BT have a positive degree. We will see in Section
that there are some particular splitting maps A and A% that turn the pair
To = ((T,A),(TT,A"))

into a concrete regularity structure.

§2. A model on the regularity structure. We now define the analytic objects 1 and g that we associate
to the symbols of the regularity structure. We will see in Theorem [I| below that they define a model
(N, g) over a truncated version of .7, that is parametrized by some distributions (f1,..., f,), where
fi € C% for all 1 < i < n. We make the following assumption on the regularity exponents a; of the

fi-

Assumption (A) — One has ) ;05 € Z for all1 <a <b<n.

For £ € N% and i > —1, we define the modified Littlewood-Paley projector Af by setting
(ALf)(@) = f((- = 2) K- — ) (1.4)

for all f € D'(RY) and z € R?, where AV = A;, so K; stands above for the smooth kernel of the
Littlewood-Paley projector A;. For j > 0 we define

L . ¢
A<j = E Aj,
—1<5'<j-1

and set

Po(f,g) = Z (Ae<i—1f) (Aig)

i>1

for any f,g € D'(R%). For ¢ > 3, for j = (£1,...,4c_1) € (N®)Vand jc, o = (1,...,0e_2) €

(N2 we define recursively

Pj(flﬂ"'?j;) = Pec—l(Pch—2(117'"’f;_1)7j})'
With j = (g1, 2,€3), we have for instance
Pl daf) = Y A% {2, (A2, ()AL Au(f) fA: ()

i4,13,i22>1

For [a,b];X? € B we define the distribution I([a,b]; X?) by its action on a test function ¢

M([a. b;X7) () = N([a,b];) (Pe) (1.5)

with (P)(y) = yP¢(y) and
N([a,b];) == P;i(far---\ fo)- (1.6)
The definition of the character g on T requires a notation. For a tuple 8 = (51,...,8:) € R® of

regularity exponents and j = (£1,...,0._1) € (N™)*~1 we set £. = 0€ N® and define the set of
j-admissible cuts of 5 as

i — Cut(B) := {1§d§c—1;£d=0, Z (Be +1Le]) >0, Z (ﬁe+|£e)<0} (1.7)

1<e<d d+1<e<c
and for d € j — Cut(B) we set

rq = rq(3,j) := min Z (ﬂp + |€e|), — Z (ﬁe + |€e\)

1<e<d d+1<e<c
Set
BSS = (ﬁla"'7ﬁe)7 ﬁ>e = (684»17"'750)7 Bﬂa,bﬂ = (6&7"'761))



forany 1 <e<cande<c—1and 1 <a<b<c, respectively. We define recursively

PP (g1, 9e)
= Pj(gla oo agc)
m! ~g_,— 5
_ Z Z Pjggdd m(amlgl’ ey 8m”’gd) Pjﬁ;dd_;'_m/ (9d+17 cee 7gc)

m!m’!
dej—Cut(B) mePy(m)
Im|<rq m'EP._q(m)

(1.8)

where m € N% and m = (my, ..., mq) € Pa(m), and with the convention that PZ (9¢) = ge.

For any f; € R we denote by C% the closure of C*° N CP in CPi, and we assume from now on
that f; € C& for all 1 < ¢ < n. In the course of proving Theorem |I| below we will prove that
ﬁjﬁ(gl, o ge) € L®if g; € CF forall 1 < i < cand [[j|| + X y<;<,Bi > 0. We can then define for
[a,b]} € B with & = (ka, ..., k) o

g(la.b]f) =PIt ke g, L 0F ). (1.9)

1 — Theorem. The pair (M,g) is a model on the reqularity structure Z,,. It depends continuously on

(fl,...,fn) € H?:l C’glz

For g to be part of a model, we need to prove that each function g([[a, bﬂf) has a local expansion

to accuracy |y — :E||[[‘17b]];3 le around any point z, with the different terms in the expansion indexed by
the algebraic structure of the Hopf algebra (T, AT). For I to be part of a model, it also needs to
satisfy some local expansion property that involves g as well.

The strategy that we adopt to prove Theorem [1]is first to prove a statement of a similar flavor for
some distributions and functions that are built from a simplified version of the iterated paraproducts.
The algebra involved in the analysis of these operators is simpler than the algebra associated with the
true iterated paraproducts, and their analytical properties are more flexible. At the same time, we
will see in Proposition [19|of Section that the iterated paraproduct P(fi,..., fn) can be written as
a sum of simplified iterated paraproducts evaluated on some other functions/distributions built from
the f;. This fact will play a crucial role in transfering the local expansion properties of the simplified
iterated paraproducts to the true iterated paraproducts.

1.3 — Local expansion properties of paracontrolled systems. We are interested in iterated

paraproducts as they are one of the building blocks of paracontrolled calculus. Paracontrolled systems
play within paracontrolled calculus the role that modelled distributions play in the setting of regularity
structures.

Assume we are given a finite set of letters £ = {l1,...,[|z|} and a family [[] € C™ of distributions
on R% indexed by £. We denote by wgy the empty word and by w = [;, ...l;, a generic word with
letters from £. The concatenation of two words w; and ws is denoted by wiws. If w = wiwy we say
that w; the a begining of the word w. We assume that the letters come with a notion of size |l;| € R
and set |wg| = 0 and

wl = 1L, [ + -+ + L, |-
For a positive real number r we denote by W.,. the set of words of size less than r, including the empty
word. An r-paracontrolled system is a family (u,)wey., of functions/distributions on R% indexed
by a subset U, of W, that contains the empty word wp and which has the following properties.

(1) There is a finite subset Z/lir of U, made up of words of positive size and such that every word
of U, is the begining of one of the words of L[ir. (The exponent f in UﬁT stands for ‘final’.)
(2) For all w € U<, one has
o = Y P(wr, [I]) + 1, (1.10)
leL
with u, € Cr-lul,



Condition (1) ensures that the family (w)weu_, is finite even if some of the sizes |I| are non-positive.
This condition is automatically satisfied if all the |I| are positive. We talk of the [I] as the reference
functions/distributions.

Here is an example of an 7—paracontrolled system with two reference functions [I;] € Clh] | [ly] €
Cl2l with |11, |lo| positive and iy | + || < 7

Uwq) = P(uln |_l1J) + P(U’lz’ I—ZQJ) + uguw
u, = Plugys 1)) + “?1, uz = Py, [11]) + uf

l2
Uy, = u?lll, Ulyl, = “9211'
One observes that
Uuy = P(upys [ ), L)) + Puf 1)) + P (gt s L], L2]) + P(uf,, [l2]) + P(ud,)
w, =P, L)+ Pf),  w, =Pl [h])+Puf).

More generally, for an arbitrary r-paracontrolled system, it follows from that each u,, writes as
a finite sum of iterated paraproducts of the form P(uf,, [l;,],...,[l;, ]), including ul, = P(u,).

Paracontrolled systems were first introduced by Bailleul & Bernicot in [3] in their development
of paracontrolled calculus, tailored for its application to some classes of singular stochastic partial
differential equations. Under some appropriate conditions, such equations have a unique solution in
an equation-dependent space of functions/distributions with a paracontrolled structure . On
can say that paracontrolled calculus replaces the mechanics of local expansions in space that is at the
heart of regularity structures by a type of expansion in frequency (Fourier) space.

The notion of paracontrolled system is useful even for the study of regularity structures. Bailleul
& Hoshino proved for instance in [5] that, for a model M = (1, g) on a fixed regularity structure, the
distributions/functions M(7) and g(u) can be described by some paracontrolled systems

N(r) =) P(g(r/o), [o]) + [r]"

o<T

g = > Plau/v), V) +[u®

1t<tu<ty

(1.11)

for some reference functions/distributions [7]M € CI7l [u]g € C!#! built from the model M, for some
index sets o < 7 and 17 <* v <% 1 whose precise definition does not matter here — see Section 2.2
of [] for that point. Furthermore, for any modelled distribution v = )"_v.7 of positive regularity r
the family (RM(v), (v;);) is an r-paracontrolled system

RM(v) = Z P(vr, [7]M) + [v]

|7|<r

vy = Z P(vo, [0/7]8) + [vr]

T<o,|o|<r

(1.12)

with reference functions/distributions the family of brackets [r]M,[u]8, and for some funtctions [v]
and [v;]. This is Proposition 12 and Theorem 1 in [5]. Bailleul & Hoshino further proved in The-
orem 1 of [6] that a sub-family of these ‘brackets’ [7]M, [u]® parametrizes the set of models over a
given regularity structure, providing in particular a linear parametrization of the nonlinear space
of models on that regularity structure. These results hold for any reasonable regularity structure.
For a particular class of regularity structures 7 including the BHZ regularity structures used for
the study of subcritical singular stochastic PDEs, they proved that for a given model on 7 the set
of modelled distributions with regularity r is parametrized by the family of functions/distributions
{[v] € C"} U {[v;] € C"~I"I, 7 in a linear basis of T}ITKT — this is Theorem 5 and Theorem 7 in [6].

In all these results the regularity structure is fixed. In particular, if we are given some placeholders
for [v] and the [v;] there is a unique modelled distribution over the given regularity structure that
has these functions/distributions as its brackets. We have no a priori regularity structure in the more
general situation of an arbitrary paracontrolled system. Our second main result means informally that



we can lift a paracontrolled system into a modelled distribution on some universal regularity structure
and for some system-dependent model. Recall we assume [I] € C™.

2 — Theorem. Pick r > 0. Given an r-paracontrolled system (uw)weu., as in (1.10) there is an
explicit regularity structure I that depends only on |L|, r and the regularity exponents r;, a model M
on Iz and a modelled distribution w of regularity v such that w,, = RM(w).

We call the regularity structure 9 universal as it only depends on the numbers |L£|,r,r; and not
on the reference objects [I] themselves.

Bailleul & Hoshino’s works [5] [6] established a correspondence between modelled distributions and
paracontrolled systems building on and . One associates to an equation a regularity
structure 7, to a model M on .7 the paracontrolled system and to a model distribution v
defined of M the paracontrolled system . The inverse map consists in getting back the model M
over 7 from and the modelled distribution v from . In that particular context, Theorem
2] does something of a different nature. Starting from a regularity structure .7, a model M on .7, a
modelled distribution v and their associated paracontrolled systems and , it introduces

— another regularity structure J that retains little information about the initial regularity
structure .7,
— a model and a modelled distribution on 7,

whose associated paracontrolled systems are also given by and . This situation is some-
what reminiscent of the study by Hairer & Kelly [14] of the links between the notions of geometric
and branched rough paths.

Note the important fact that Theorem [2| applies to any paracontrolled system. It does not need to
come as the system associated with a model on a regularity structure or a modelled distribution.

Organisation of the article. A simplified iterated paraproduct operator P (f1,..., f) is intro-
duced in Section 2] and we provide in Section [2.3] its local expansion properties. The latter involve
some functions OFP(fi,..., f,) that are introduced in Section These functions also have some
local expansion properties which we investigate in Section We leave aside the simplified iterated
paraproducts in Section [3| and describe in this section the regularity structure .7, that is involved in
the statement of Theorem[I} This statement is proved in Section[d] We build in Section [4.1]a number
of functions/distributions that will be used to represent an iterated paraproduct P(fi,..., f,) as a
sum of simplified P. iterated paraproducts. The representation formula itself is proved in Section
.2 We prove Theorem [I] in Section [4.3] Section [f]is dedicated to proving Theorem [2} We describe
the universal regularity structure involved in this statement in Section [5.1] and prove Theorem [2] in
Section 5.2} A number of technical lemmas are deferred to some appendices. The proof of the local
expansion property of the functions O¥P(fy,..., f,) involves in particular some algebraic results that
are proved in Appendix [A.4 We also defer to the appendices the proof of some algebraic identities
that play a crucial role in our proof of Theorem[I] Appendix [A.T]gives some background on regularity
structures and Appendix [A.2) gives some general and particular analysis results.

Notations. We collect here a number of notations that are used throughout the text.

— The letters i,j and a,b, c,d, e will exclusively be used to denote some integers.
— The letters k, £, m will denote exclusively some elements of N
— We denote by o = (a1, a,...) or B = (S1,P2,...) some finite tuples of regularity exponents

O[i,ﬁj in R.
— Forz=(z',...,2%) € R™ and k € N* we write 2% = H1<i<d0(2i)’“.
— Fork=(k',..., k%) € N we write k! = H?il k' and for m,m/, ..., m. in N we set

( m ) . m!

(mfy,...,m.) [Ticic,mit

— We write <, for an inequality that holds up to a multiplicative positive constant that only
depends on some parameter p.



— We work here in the Euclidean space R . All that follows has a direct counterpart in an
anisotropic version of R . We stick to the Buclidean setting not to distract the reader from
the main points of this work.

2 — Simplified iterated paraproducts P_ and their local expansion properties

We introduce in this section some simplified iterated paraproducts. It turns out to be convenient
to define these operators on a slightly larger class C% of spaces than the usual C® spaces (a € R).
This extended setting is described in Section [2.1) where the simplified iterated operator P. is also
introduced. The description of the local expansion properties of the simplified iterated paraproducts
involves some generalized derivative operators 9% that we introduce in Section The main result
of this section is Corollary 5] that entails the continuity of the ¥P~ operators on the space [T}_, C5’

if |k| < Z;‘L=1 a;. Generalizing Hoshino’s result ((1.2)), we state and prove the local expansion property
of the P_(fy,...,f,) in Section [2.3] for fj e Co? with a; >0 for all 1 < j < n. It takes the form

_ k (y—l’)k
Po(fi.. o f)) = Y 8*P<(f1,...,fn)(;p)T
|k|<327y o '

n—1 _ k
+3 > oL (f.. ) (@) %Anydfﬁl, o f)

=1 K<, o
+ (8P ) (Fry e ),

where each term Ay P (fei1,...,f,) is of order |y — x|2?=c+1 % for z,y € R? close enough.

2.1 — Simplified iterated paraproducts. We will work through part of this document with the
following extension of the classical Besov-Holder spaces.

Definition — For r € R we define C" as the vector space of sequences f = (f;)i>—1 of smooth

functions to which one can associate a ball B C (Rdo)' such that each f; is spectrally supported in 2'B
and

Ifll, == sup 2" || fill oo < 00
i>—1

This formula defines a norm on C". An element of
C® = (1 cr
r>0
s said to be smooth, and we set

o= Jo, =

reR r>0
We write C7, for the closure of C* in C".

For r > 0 there is a canonical continuous non-injective surjection from C" onto the classical Besov-
Hélder space C sending f = (f;)i>—1 to ) ,~_; fi- The Littlewood-Paley projectors give a continuous
injection ¢ from C into C' for any r € R, by setting t(f) := (A;(f))i>—1. We define for any distribution
fonR¥ and o € R, its Taylor polynomial Ty f of order o in the direction h € R? as the distribution

Rk
(T = 3 2 1),
lkl<o =
Its associated Taylor remainder Rj, f is defined from the relation
(h[*(RRF)C) i= F(+h) = (TR ().

The derivation operator 9%, the Taylor expansion and remainder maps T’ i, Ry can be applied to any
f = (fi)i>—1 € C" by applying the corresponding classical operators to each f;. These operations
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behave well in this context. For any » € R and k € Ndo, Bernstein inequalities ensures that the
operator 9% sends continuously C” into C"~I*I. We give the proof of the following elementary fact in

Appendix

3 — Lemma. Forr € R,f € C" with f; is spectrally supported in 2'B for all i > —1, and 0o € R, we
have

k
+m) = 32 @) = bl (RA)()
|k|<o
with
1BAfl,—o <m lIfl,
uniformly over |h| < 1.

For fy,...,f, in C™°° we define iteratively the simplified iterated paraproducts
P.(f1,...,f) = (P<(f17...,fn)i)i2_1 eC®™®
as the element of C™*° given by P.(f;) = f; and with f,, = (fni)i>—1
Po(fioofn)ii= > Pe(fioe fu1)) foie
j<i—1
We write
Pe(fiofn) = D> Pelfr,. . )i

i>—1
for its associated distribution. With f; = (A;(f1))i>—1, and similar definitions of fs, f3, f4 in terms of
some distributions fs, f3, f4, we have for instance

Po(fifofa) = > A (f1)An(f2) A (f2)

i1 <ig—1
10 <tz—1
while
P(f1, farfs) = D Aciyo1(Ai, (f1) A0, (f2) Ay (f3),
i1
and
Po(fifofa,fa) = > Ay (f1) A0 (F2) Ay (f3) A, (fa)
facio—i
13<iq4—1
while
P(fis fo S 1) = 30 At (Beiy1 (A (1) A0 (12)) iy (f)) Av ()
i1
13<tq4—1

Recall that Assumption (A) requires from a tuple o = (a1,..., o) € R" that 30 ;o5 ¢ Z
forall 1 <a <b<mn.. From now on T

all our tuples « = (a1,...,0a0),8 = (B1,...,0n) in R™ will satisfy Assumption (A).

2.2 — Generalized derivative operator 0F. We define in this section some operators 9% that

will turn out to be involved in the pointwise expansion of the simplified iterated paraproducts. They
are built from some operators Pi that we first introduce in §1. The continuity properties of these
operators are stated in §1 in Corollary [5] and proved in §2.
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§1 On the operators ﬁg — Recall that, for a tuple § = (84,. .., 8:) € R® of regularity exponents and
j=(l1,...,4e—1) € (Ndo)c_l7 we set £, =0 € N% and define the set of j-admissible cuts of 3 as

qut(B):{lgdgcl;EdO, ST (Betlte) >0, > (ﬂe+|£e)<0}.

1<e<d d+1<e<c
We define here the set of cuts of [ as

Cut(B) := 0 — Cut(p) = {dé ,n—1], Zﬂj >0 and Z B; <O}
Jj=d+1
We also define the following set of multi-cuts of

MultiCut(8) = {d - (o =dy<dy < < dpa) = n) Ve € [Ln(d) — 1], d. € Cut(ﬂ)}.

For € R" and fi,...,f, € COF we set

n(d)
PL(f, )= ) ()" [ Pe(far i, fa). (2.1)
deMultiCut(83) e=1

One has for instance ﬁg (F)=P<(f) =25, fiforall f = (f;);>—1 € C"*°, and
PEV(f,f) = P (f1, ),
PU(f1,f2) = Po(f1, f2) — i,
P22 (6 £y, fy, fa) = P (fi, fo, f, fa) — FiP < (Fa, Fa, fa) — P (F1, o, Fa)fs + 1P (fo, Fa)fa,
PUTI2 (1 £y, 65) = P (fy, fo, f3).

We also set for i > —1
P (... f){i}
n(d)—1

= Z n(d { H P. fdc 1+17"'7fdc)}P<(fdn(d)_1+1a~‘-7fn)i-

dEMuItiCut(,B)

One has the relation

PL(fi,... )= > Pl(fi,... f.){i},
i>—1
but beware that ﬁg (f1,...,fn){i} does not represent the Littlewood-Paley projection of the distri-
bution Pg (f1,...,f,) as Pg (f1,...,f,){¢} is not spectrally supported in a~ball. We introduce it as it
appears naturally in the algebraic manipulations involving the operators Pg.

Equationdeﬁning the ﬁg can be compared to Zimmermann’s forest formula. Here, the ’diverging
parts’ one can extract from a simplified paraproduct P.(fi,...,f,) are the tails P(f;,...,f,) such

that Z};l B < 0.
We prove below the following statement.

4 — Proposition. For any 8 € R", set

Ep = {ce[[l,n]];zc:ﬂj>0 and z": Bj>0}

j=1 j=c+1
and

mo = { maxé'g, ifgg 75 [Z),

1, otherwise.
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One has for every (fl, e ,fn) € (COF)™ the estimate

P (Frs s fu )il o S 27 00 P TT U6,
j=1

5 — Corollary. For any 8 € R" such that Z?Zl Bj > 0, the multilinear map
(fi,... fa) € (CO)" = PE(f1,...,f,) € L™

. . n PR
has a continuous extension as a map from Hj:I CEJ into L*°.

Proof — From the definition of mg, the sum Z?:mo f; is positive, then ). | 271 Xi=mo A < 40,
so that the last proposition ensures

[PE(E ) < D IPE (R f) (Ml S H Iill5,

This inequality gives the result. >

§2 Proof of Proposition[]]— The following algebraic result will be useful in the proof of Proposition
The reader can harmlessly skip its proof on a first reading In the following statement, any constant
in the open interval (1,2) could be used in place of the constant 3/2.

6 — Lemma. Given 8 € R" we define

n—1

o ::{ +1if (n — ) € Cut(B) R | [

—1 otherwise
c=1

For any f1 = (fli)iz—l, N ,fn = (fm')iz—l in C°° we have

P(finflliy=p D > I feincin

p1(iz—i1+3/2)>0 pn—1(in—in—1+3/2)>0 c=1

Proof — We prove the identity by induction on n. The result holds for 5’i (f1). Suppose now that
it holds for (n — 1) functions and consider first the case that (n — 1) ¢ Cut(f), so p1 = —1 and the
condition py (i — 41 + 3/2) > 0 reads iz < iy — 1. Then P’i (fi,...,f) {1} is equal to
n(d)—
S (- d)+1{ H Pe(faoys1,--- ,fdc)}P<(fdn(d)_lﬂ,...,fn)l.1
deMultiCut(B)
n(d)—1
= Z (1)t { H Pe(fa._yt1,- - 7fdc)}P< (fdnay at10 -5 Fam1) oy i
deMultiCut(3)
Z ﬁi* (fl7 .. 7fn—1){i2} fnil
i <i1—1
where
ﬁ* = (Bla vy B2y Bt + ﬁn)
From the induction hypothesis we have

n—1

’F;g* (flv"'ﬂfnfl){lé} =p Z Z ch'infc#»l’

p2(iz—iz+3/2)>0 Pn—1(in—in_1+3/2)>0 c=1

so we can conclude the induction in that case. If now (n — 1) € Cut(8) we have p; = 1 and the
condition pj(is — i1 + 3/2) > 0 reads ip > i; — 1. We have in that case
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PA(FL, . F){in)

n(d)—1
= > (=" T Pe(faists o fa) fuin
deMultiCut(B) c=1
(n—1)ed
n(d)—1
+ 3 0@ ] Pl fa )P (ot ),
deMultiCut(B) c=1
(n—1)¢d
n(d)—1
= > "] Pe(faiins oo fa) i
deMultiCut(8) c=1
(n—1)ed
n(d)—1
+ Z (_1)n(d)+1 H P<(fdc,1+1w'~ufdc)P<(fdn(d)_1+17'"7fn71)<i1_1fni1
deMultiCut(3) c=1
(n—1)¢d
n(d)—1

— Z n(d -‘rl{ H P fdc 1+1,...,fdc)

deMultiCut(8* )
n(d)—2

H Pe(fao_it1s- - fa )P (fap oy ntts - 7fn1)<¢1_1}fm1

Z Pi (flw-'vfn—l){i?}fniy
i9>11—2
We conclude from the induction hypothesis that

PL(fi,.. ) {in} =— D (=) > by {ﬁf*}f”

ig>i1—1 p2(iz—i2+3/2)>0  pn—1(in—in-1+3/2)>0 ~ c=1

which allows us to close the induction in that case. >

Proof of Proposition[f] — For fi,...f, € Ct* we have from Lemma [6] the bound
PL(fr, . fa){i}] S Cil H 165115, »

where

Cg(il) = Z e Z H 9~ inte—10c
p1(ia—i143/2)>0  pp_1(in—in_143/2)>0 c=1

We prove by induction that o
i) S 2772 =ma . (2.2)

Z 9= inbB1 ~, 9=in-1B1

in; Pn—1(in—in—1+3/2)>0

— If 51 < 0 we have p,—1 = —1 and

We have in that case

C(Bl,m,ﬁn)(i) = C(BlJrBzﬂzmﬁn)(i)'
~ Ifnow 8y > 0 and Y27, 8; <0, then p,_1 = +1 and we have
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—inB1 o 9—in_18

9= inB1 ~ 9=in-1 L
in; Pn—1(in—in-1+3/2)>0

so we have again

C(ﬁl,m,ﬁn)(i) = C(Bl+62763~~55n)(i)'
~ If finally 8, > 0 and -7, ; > 0, we have this time

—infB1 ~
) 9=infi o 1,
in; Pnfl(i7z_i7zfl+3/2)>0
SO

Cir..8) (1) = Cy,5....,) (1)
In all the cases the inequality (2.2)) follows by induction since Cg,)(i) = 92—, >

§3 Generalized derivative operators 0% — These operators are defined in terms of the operators E’g
as follows.

Definition — Pick some integers 1 < a < b < n and a = (ag,...,@) € R'-%*l. For ¢ =
(kay ..., k) € (NT)Yo=atL gnd £, f, in C we define

Ot P (fay. .. ) o= PO (a’%fa, N .,a’%fb).

and

k
08P (farn f) = D (E> P (fuye i),
tePy_at1(k)
As a consequence of Corollary |5 the map 9%, P is continuous from H;’,:a Co? into L™ if |k| <

Zb aj. It makes sense in that setting to simply write OF rather than 0%, as the information on a

j:a *Q?

is already recorded in the domain H?: u CS7 of the extension.

The following lemma gives a recursive definition of the Is/i (f1,...,f){i} and leads in (2.4) below
to a similar recursive formula for the operators 0,P..

7 — Lemma. For any B = (B1,...,Bn) € R" and any fy,... . f, in C° we have
PL(fr, . f) i} =P (fr, o fn).

K3

— 3 PR () PO P () Gy (29)
deCut(B)

Proof — Assumption (A) implies in particular that the numbers Zi:l B are all distinct for dif-
ferent j € [1,n — 1]. We then have the following partition of MultiCut(g)

MultiCut(8) = {(0,n)} U | | MultiCut(B)[d],

deCut(B)
with

d j
MultiCut(5)[d] := {d € MultiCut(B); d € d, ;ﬁc = rj;"leig;ﬁc}.

One can thus write
PL(fL, . (i} = Po(fr, .. fn)s

n(d)—1
+ Z Z (_1)n(d)+1 H P (fdcilJrl,...,fdc) P<(fdn(d)_1+17---afn>{i}-
deCut(B) deMultiCut(B)[d] c=1

For d € Cut(8) and 1 < j < d we have the equivalence
(Eld e MultiCut(8)[d], j € d) . (j e Cut((Br, ... ,Bd))).
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Likewise for d < j < n we have

(Hd € MultiCut(8)[d], j € d) = (j —d e Cut((Bay, .- ,m))).

This entails that we have
n(d)—1

Z (_1)n(d)+1 H P< (fdcf1+1?"'7fdc)P<(fdn(d)_1+17"'af’n){i}

deMultiCut(B)[d] e=1
— P (fy, R PR (faga, o Fa) i),
from which the statement of the lemma follows. >

n

Recall that Corollary [5|extends continuously the 5’2 maps to Hj:l ng and justifies that we remove
the index a from 9%, when it is understood that (f,....f,) € -, Co?. One can rewrite Lemma

in the context of the d,-derivatives. For any multi-indice ¥ € N9 and (fy,...,f,) € | C% we have
P (fr,... fn)

n—1

:akP<(f1u~~.7fn) - Z IZ) 8£P<(f1,...,fc) 8f_€P<(fc+1,..,,fn), (24)
1 <X, 0y
Ik_€|>2?:c+1 A

C

2.3 — Local expansion properties of the P_(f1,...f,). Recall Hoshino’s expansion result (1.2
for P(f, g), for both f and g of positive regularity. We give in Proposition 12| below a similar expansion
result for P (f1,...,f,), for any n > 2 and f; € Co’ forall1 < j <n.

Let us make a first naive try at expanding P.(f1,...f,)(- + h) as a function of h € R%. For any
o > 0 we have

P<(f17~-~7fn)('+h) = P<(f1(+h)7afn(+h))

hkl o (o]
_P<< Z ﬁ8k1f1+|h| Rhfla f2(+h/),>

|k1|<o
hk1 hF2 _
_ k1 ko o—|k1 o |k1‘
= Z P<(3 le, Z ga f2+|h| IRh f2;...)
|k1|<o |ka|<o—|k1|
+ P (B Rsf, fal- 4 B), ) = () (2.5)

L [k " "
-y ¥ k!(e)P<(a o 0

k| <o teP,, (k)

- hE ||~ I¥ k k o—|k|
+ % TP<(a 0%y RO f (4 ), )
=1 |k|<o '
teP._1(k)

— TP (f1,...,fn)

n hk|h‘o—\k| ky koon o— k|
Y P<(8 fiy 0 b RO £ (4 R, )
=1 |kl<o
teP._1(k)
This formula does not give us the kind of expansion we are looking for as the last paraproducts
in the right hand side of the equality contain some distributions with negative regularities so these
paraproducts have no reason to define some functions. This would be the case if we had instead
of some P terms some Pg terms, for some appropriate tuples § depending on the arguments. We
will get our local expansion for P (fy,...f,)(- + k) by introducing the appropriate terms to force the
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appearance of these 5@ operators. We proceed gradually and first introduce the quantity that will be
the remainder term in this expansion.
Forl1<a<b<n-—1keN™ andt= (Kat1s---skp—1) € Po—a—1(k) set

aa(é70) = (anrl - |ka+1|7 sy Op1 — |kb71|7 ap —o+ |k|7 QApgly-eey an)

and
n

(08 P, f)i= > > L ﬁ“a“"’)(a’%ﬂf k-1
h,o! < atls---5n) — ] < a+l---> b—1,

b=a+1|k|<o
EE'beafl(k) (26)

By M, fpa (-4 B, Fa B

and for i > —1

o , - WA S o) (o !
(85,0P<) arrs o )i} = Y D o — P (a e RN LT A
b=a+1|k|<o ’ (2 7)
t€EPy_a—1(k) :

By M6y, fpa (), fal 4 B)) i

We denote by dg the distance from Z to the set of all Za<j<b o ¢ Zwhere 1 < a < b < n; it is positive
from Assumption (A). Proposition 4| and Corollary give us some uniform continuity estimates on
(A7 P (Fatrs -, fu){i} and (AF ;P<)(fat1,- .., fn) in the form of the following Lemma.

8 — Lemma. Ifo > Z;‘l:a-i-l a; — 0, one has

n

(AR oP<) (Fatts- o ) {i}] S [R|7 27 imesr 2= T I, (2.8)
Jj=a+1

and foro <370, a;

n

(A7 oP<) (Fasrs- o F) S 10 TT Il - (2.9)
j=a+1
Proof — We prove here estimate [2.8] the other one is proven along the same lines. From the assump-
tion on o, for any k < |o| and € € Py_,_1(k), the sum of the entries of the uplet o, (¥, 0) is positive,
and then Proposition [4] ensures that
pae(te) <3k“+1fa+1 NG L (R RZ_‘klfb, for1 (- +h), . fu(c + h)){i}‘
b—1 n

< 27 a1 =) H ||6kcfc|o¢c—\kc\ ‘sz\k\fbnab_lowk‘ H [fa(-+ B, -
c=a-+1 d=b+1

Using Lemma |[3| for estimating HRZ_|k|fbHab—|o\+|k|

H@kacHa e e obtain for this last twisted paraproduct the bound 27 (Zi=a+1 @ =°) H?:a+1 IIf; ||a]
Summing these inequalities over b and ¢ gives the estimate 2.8 >

and the Bernstein inequalities for estimating

9 — Proposition. Pickfy,... f, in C>. Assume all the a;j are positive and o > Z;-L:l aj —6o. Then
we have

(Ag70P<)(f1, s afn){l}
=P (.. ), +h) = TP (fr,. . ),

n hk .
—Z Z 8fa§aP<(f17...,fa)E(A§’07|k|P<)(fa+1,...,fn){z}.

a=1[k|<X?_, a;

(2.10)
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Proof — We use in the proof the shorthand notation
Oz(f) = OL()(E,O) = (051 — |I€1|, ey ozj_l — |]€j_1|, 04]' — o0+ |]€|, aj+17 e ,Oén).
As all the a; are positve we have Cut(a(t)) C [1,5 — 1], so (2.3) writes here
53(3) (aklfl, .. ’ak?jflfjilv Rz_lklfj7 fip1(-+h),.. ){z}
=P (0", 05 Ry (e m), )

_ decuzt(;(m Ptz (6k1f17 . 7akdfd)

%

x PO (R fyp, M oy, By M, (4 m), ) (i)
= P< (lefl, ce ,8’”*11‘]-_1, Rz_lklfj, fj+1(' + h), .. )

= > AP (fi )

deCut(a(t))

%

x PO (R by, 08, By (), ) )

Note that as 0 > > ", a; — dy we have

d
Cut(a()) = {d e 1,n]; Z a(t); > 0};

we will use this fact to invert the sums over m and j below. Summing over j, k and € gives

) n hk: h o—|k| . _
(O P (e F) I} =Y S #P<<8klf1,...,akrlfj_1,RZ ‘k'fj,fj+1(~+h),...)

Jj=1 |k|<o ¢ ‘
teP;_1(k)
n hk|h|of|k\ ¢
S
j=1  |k|<o deCut(a(t))

teP;_1(k)
X ﬁi(é)w (8kd+1fd+1, AN T RZ"k'fj, fir1(-+h),.. ){@}

y s - he|pjo=IkI=14
=Y Y O Pelf) Y ||]'

d=1|k|<T, j=d+1 |¢|<o—|k|
€€EP4_1(k) JEPj—a—1(£)

y |sid<j,o—\k|)(ae1fd+l, L9ty ROTWIEE (), ..){i}
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n hk N ‘
= ¥ T Ok P<(Fiy o ) (A ooy P<) Fagr, -, ) {i}-
d=1|k|<>% o

The identity (2.10) then follows from (2.5]). >

The terms A of\k\P<(fd+17 ..., fp) for which o — |k| > Z?:dH aj, in (2.10), are still problematic
as one cannot use Corollary [f] for them.

10 — Lemma. Assume all the o positive. For 1 <a <n and Z;L:a aj — dp < 01 < 02, we have

k
(A 0, P<) (Far - ) i} = (A5 0 P<) (Far - )i = > %af%m(fa,...,fn){i}.

01<|k‘<02

Proof — We prove this identity by induction over n — a with the help of Proposition [J] and the
inductive relation satisfied by the star derivatives.

The result is true for @ = n as in this case the operator AAp, ,P< coincides with the Taylor remainder the
operator |h|"R},. To run the induction step we use Proposition|§|to see that (Azm P<) (fa, . ,fn) {i}—

(A%,01P<) (fas ., fn){i} is equal to

=T2P(far..,fn), =T P (fa, ... fn)

n—1 hP
_Z Z afaﬂaﬁjHP<(fa,...7fj)—

J=a|p|<3i_, o

(B ospP) (41, )i} = (B 0y—pP) (a1, )i} -

From the induction hypothesis the above quantity is equal to

k .Ek_n_l P , h?
> 0P (fas - )i o o> R Pelfar )

I« - p!
01<|k|<02 Jj=a |p|<zé=a Qs

NG
XY By g Pe(fi ) T

o1 <|l|+]|p|<o2

We conclude using (2.4). >

For 0 <c¢<n-—1welet
ANyaPo(foqrs- o ) = ( 2—172?:C+1o¢jp<)(fc+1) ) (),
and for i > —1
AyoPo(forr, .. Fa){i} = ( Y-z, Po) (fest, - ) {id ().

j=c+1 Xj

From Lemma [10] we know that for any o € (3°7_ ., a; — 8o, 2.7 4 @;j + o) one has the equality

ANyaPo(foqr, ... )i} = (A;‘,I’UP<) (ch7 . 7fn){i}(gc).
Then, for any o in a neighborhood of Z?:C 41 @, the following estimate

n

[AyeP<(fesre o )} Sy —al® T 6], 27 e o) (2.11)
Jj=c+1

holds as a consequence of (2.8).

The following elementary fact was already used in Hoshino’s work [16] and enables us to get the
optimal bound on |Ay;P<(fet1,. .., ). We reproduce its proof in Appendix
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11 — Lemma. Assume we are given an (Rd X Rd)—indexed family of absolutely convergent series
(Xyz = Zz’Z—l Xlllz)z,yeRd’ such that there exists some positive constants C > 0 and some exponent
v > 0 such that the uniform bound

X, < 02770 |y — o)
holds for any 6 in a neighborhood of v. Then we have
| Xya| S Cly — 7,
uniformly over z,y € R? such that ly — x| < 1.

From ([2.11)) and Lemma [11] one has then for |y — z| <1

|Asz<(fc+17 s 7fn)‘ g { H ||fj||aj }|y - ‘IE|Z?:C+1 i

Jj=c+1

12 — Proposition. Pick o= (o, ..., ay) € (0,4+00)". For all (f; € ng)1<j<n we have
(y— )"

Pefi o f)@) = Y. O5P<(f ... fo)(2) i

kl<T7_, oy
n—1 i
+> Y 6faSCP<(f1,...,fc)(x)%AWPAQH,...JTL)
=1 k|<X5_, a
+ (DyaPo)(Fry o ),
where

}(Aymp<)(fc+h )

S{ I 6, o= ol (212)

j=c+1
for all z,y € RY with ly — x| < 1.

Proof — First, for fy,...,f, in C> we have from the propositions [J] and

(Auwp<)(f1a afn) = P< (fla"' 7fn>(y) - Z cg;gi'x)kakp<(fl7 7f7l)(x)
|k|<0 ’

Y Y o (e )@Y (AP ) (e )

|
=1 |p|<SE_, p

_i 3 (y =) (y —2)*
! 4
=1 |pl<Sia; L
[€1>327 cpq @y

x PP (f, - ) (2)OLP < (Fosr, -+, ) (2).

Using the recursive relation for the O operators gives the statement of the proposition.
We obtain the fact that one can work with f; € Co7 rather than with f; € C* from the inequality
(2.12) by an elementary continuity reasoning. >

2.4 — Local expansion properties of the 0*P_(f1, ..., f,,). The quantities 8?P(f,...,f.), with

Ip| < >i_, a;, appear in Proposition (12| as some coefficients in the local expansion of the simplified
paraproduct P.(fy,...,f,). These coefficients also have a local expansion property, described in the
proposition below. We state it and defer its proof to Appendix [A.3] as it is similar to the proof of
Proposition [12]
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13 — Proposition. Assume |p| < > ¢_, a; for some p € N% and (on,...,0n) € R". Take f; € Co’
for 1 <j<mn. Forall0<c<n-—1 there are some functions Ny, (OP<)(fes1,...,fn) such that

n

S { H ||f.7||a] } |y - ZE|Z;L:C+1 Qi

Jj=c+1

‘(Aym(afP<)(fc+1, )

for all z,y € RY with ly — x| <1, and we have

AP (f1,... ) (y) = PP (fr, ... ) () Y=
* <(17"'7n)(y)_ Z * <(1,...,n)($) k'
k<S5 a5l '

n—1
+3 3 OFPP_(fy,.. . £ (x) % Aya(0°P ) (Furr, .. )

e=1 [k|<X5-, aj—|pl
+ Dy (TP (1, ).
(2.13)

3 — The regularity structure of iterated paraproducts

We fix @ € R™ in this section. We introduced in Section the spaces T' and T of symbols of
the regularity structure that we will associate to some iterated paraproducts. The vector space T is
spanned by the basis symbols

= {[a. ] x7}

and the algebra is generated by the basis symbols

= ,b?} uf{xsd
{[[a b condition(a,b,,}) { }ISzSd

where one says that (a, b, ¢, j) satisfies condition(a, b, ¢,j)) if 1 <a <b<n,t = (ka,..., k) € Pp—at1(k)
for some k € N®, and j € Py_q(¢) for some £ € N and we have

max([k], [¢)) < Y oy

1<j<n

U {Xp}peNdO

1<a<b<n, j€Py_q (L), £EN%  peNYo

and
|[a, ]}, > 0.
Note that Bt generates T as an algebra. A linear basis of the vector space T+ is given by the
monomials X?(p € N%) and the [a, b]; X? for [a,b]} € B and p € N . We call below this basis the
canonical linear basis of T. We use below the notation
M((Jl X 02), (Xml X sz)) = (O’lel) X (O—Qsz).

We introduce in this section some splitting maps A : T — T ® T and AT : TT — T ® T" and
prove in Proposition [14|that ((T, A), (T, AT)) is indeed a concrete regularity structure. We refer the
reader to Appendix for some basics on the subject.

For 7 = [[a,b]; € B, with j = ({g, ..., ), we define a subset of T" setting

o(r) = {la. e} € B 10 <c<bl=0,p € Pegia(p), p NP U7,

we recall that j<. = (4g,...,0c—1). For 7 =[a,b]; € B and 0 = [[a,c]]ic € ®(7) we define (7\117) =7
and if ¢ < b—1 we set

T\J = Z Z p |p| [[C+1 b]]]>r a+1+P1Xp27
P=P1+P2 p1 EPy_c(p1)

and for ¢ = b we set (7\0) := ﬁ XP. For p € N we set
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AXP) = AH(XP) = Y (;)X’”@XW.

pP1+p2=p
We define the map A on T by setting

A([a,0];X7) = M (A([a,b];) . AXT))
and for 7 = [a,b]; € B
A(T) = Z (1\o) ® 0.

UE@(T)
For pu = [a,b]} € BT we set

o) = {lo, ;=P € BT ia << bl =0,p € Peia(p) p € N fU {14},

For pi = [a,b]} € BY and v = [[a,c]]ffj_”“’ler € ®(u) with p € Pe_a11(p), we define for c < b —1

Esc—at1 o
(p\v) :== Z Z 7}0 |p|[[ cH 1B X, (3.1)

P=p1+P2 p1EPy_c(

and for ¢ = b set (7\o) := %X”. All the terms in this sum have the same homogeneity |[c +
1, b]]f;c‘““ lo + |p|- We define the map A" on T'" by setting

AT ([a, 0]} XP) = M (AT ([a,0]}), AT(XP))
and for p = [a,b]} € BT
At = > (wv)ev

vED(1)
((1\P))a>0

With the notation of (.I), the condition ((p\v))a > 0 means that we only consider here those
v € ®(u) such that |[c+ 1 b]]B>r “*')4 > 0. The regularity structures introduced by Bruned, Hairer
& Zambotti in [§] are also bullt from some deformations of some simple combinatorial structure —
the Connes-Kreimer structure on trees therein, the deconcatenation splitting here. This picture of a
deformed structure was investigated systematically in Bruned & Manchon’s work [9].

14 — Proposition. The space ((T7 A), (T, A"’)) is a concrete reqularity structure.

In the proof of this proposition we use the following generalisation of the Vandermonde identity,
which states that for any integer i > 1, for any p, q,r in N% such that p+ ¢ = r, and any t € Pi(r),

one has | |

t! r!

DR ik 2
pEP;(p),q€P;i(

p+aq=t
Proof — We prove here that we have the comodule identity
(A®I)A = (Id® AT)A.
The proof of the coassociativity identity
(AT ®Id)AT = (Id® AT)AT
is almost identical and left to the reader. We also let the reader check the other conditions involved
in the definition of a concrete regularity structure spelled out in Definition 23] in Appendix [AT}

It suffices to prove the comodule identity for 7 = [a,b]; € B with j = ({,,...,0). To lighten the
computations we use the convention [c + 1, ] = 1) for any a < ¢ < b. We have

Math) = Y e (e 1 X*) @ (ladf.)

¢ty ko b/
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where the sum runs over the a < ¢ < b such that /. = 0 and the multi-indices k = k1 + ko such that
|[a, c]]f«‘a > 0, over &) € Py_.(k1) and ¥ € P._,41(k). Then (A @ Id)A(7) is equal to

k!p! k21+p.
Z E1E kot kool p/p1! po! [d+1, bﬂj>d+(tl)>b—d+P1X e
¢t ko b

d,p1,p2,p’
® [+ 1,d]" Xx*2 @ [a, ]t

ife+1,a—17+ 1) <b—a j<e®
where the sum runs over 1 < ¢ < d < b such that £. and ¢4 + (k1)4—. are null, and the multi-indices

k = ki + ko, ko = ka1 + koo, p = p1 + p2 such that

H[a, cﬂf@ >0

«

and

p/
H[C-i— 17dﬂj[[c+1,d—1]]+(el)§d7c >0

and p1 € Py_q(p1), p' € Py_c(p). On the other hand (Id ® AT)A(7) is equal to

k! p! k oot e +p!
. e—a P <e—a+11P
2 FTE Tl pTpy T pgt 0T 1 et X2 @ e Loe 500y X7 @ ase] )
c,b1 kot
d,p1,p2,p’
where the sum runs over a < e < ¢ < b such that /. = £, = 0 and multi-indices p = p; + ps such that
p' € Pe_ayr1(p) and

Bce_ap1tp’
|[[a,6]]ji +1TP . >0

and

H[e—l—l,c]]E” > 0.

ile+1,e—1]+P1 ‘oz
Both sums take the form

£ ko, . '
Z Cpiﬁl?;g'[[d + 1, b]]i>d+31 Xk ® [[C +1; d]]]q[[c+1,d—1]]+P1Xp2 ® [[CL, C]]iq<c’

c,t1,ka2,q
d,p1,p2,q’

where the sum runs over a < ¢ < d < b such that ¢.,¢; # 0, over multi-indices and tuples of
multi-indices €1, k2, q, p1,p2,q such that the first two terms in each tensor products are in 7 and
q+q =ki+ky+p+p2and ¢ < ki + ko

We check that the constants Cﬁifé:g, coincide in both expressions using the Vandermonde identity
(13.2). Both are equal to

€ ,ka,q 1 k'qll

PP gkl pIpolalg! gl
which concludes the proof of the statement. >
An iterated paraproduct P;(fi,..., f,) can be represented pictorially by a linear tree where each

vertex corresponds to a distribution f; and the entries of j appear as decorations on the edges, idem
for generalized corrector ﬁf(f 1,--., fn) with an additional decoration on the vertices corresponding to
the entries of €. The coproduct defined here bears resemblance with to the one in regularity structures
on decorated trees, which is also constructed via admissible cuts. While both frameworks involve
extracting branches of positive homogeneity, the role of decorations differs. In regularity structures
derivations are attached to edges and polynomials to vertices, in our setting derivations corresponds to
the £ and are attached to vertices, whereas polynomials are encoded in the edge decorations through

j.

We note that Hoshino was the first to investigate in [I5] the algebraic structure behind the iterated
paraproducts, in a restricted setting compared to the present general setting.
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For 7 € T one can re-index the sum defining A(7) by its different components 71 on the canonical
basis B of the T factor in T ® T" and write

Zﬁ (7/71)- (3.3)

(This identity defines the notations 74 < 7 and (7/71).) Below we write 71 < 7 to mean that 7
appears in this decomposition and 7, # 7. Similarly we can rewrite

Z [ (,u/+,u1).

i<ty

(This identity defines the notations 1 <* p and (/" p1).) Below we write 3 <™ p to mean that p;
appears in this decomposition and g # p.

4 — Local expansion properties of iterated paraproducts

We prove Theorem [I] in this section. This proof involves the local expansion properties of the
operators P and the regularity structure from Proposition [[4 The core of the proof relates these
two ingredients and rests on a representation

Pi(fas- -+ fo) = Z Z P<(T/n Il

of the P; operators in terms of the simpliﬁed iterated paraproduct operators P and some functions
[0]" that we build from the tuple f = (fs,..., f5). The symbol 7 is here equal to [a,b]; € B and the
notation 7/7; is the notation from . Once proved such a representation formula, one can infer
the local expansion properties of Pj(fa,..., fp) from the local expansion properties of the operators
P obtained in Section [2] and Section [2.4]

We describe in Section [4.1] E the generic construction of some bracket maps [o] from some a priori
given pair of maps (I, g) of a particular type. We construct such a pair of maps in Section |4.2) E 2[ from
a fixed tuple f = (f1,..., fn) of distributions. The actual proof of Theorem I 1| occupies all of Section
[M.3] The inductive mechanics of this proof is detailed at the begining of this section.

4.1 — Building blocks for a representation of P in terms of P.. Recall from Appendix

the basic notions and notations on regularity structures. We work in this section with the concrete
regularity structure of Proposition Let M be a linear map from T into D’ (Rdo) and g be a map from
R% into the set of characters on the algebra T". For any x € R% we denote by g, ! the convolution
inverse of the character g,, uniquely characterized by the property (g, ® g; ')A*T =1/, 1., where 1/,
stands for the dual vector of the vector 1, in the canonical linear basis of T. We define

M. = (N®g A
for any 2 € R, We have

that is

Iterating we obtain the formula

Mo(r) =N(7) =Y (=17 > galr/m) - gulrg—1/7e) N(re), (4.1)

e>1 Te<l-<T1<T
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where the sum over e is finite as the sets A and A" that index the homogeneities of the regularity
structure ((T,A), (T, AT)) are locally finite and bounded from below. Likewise for 7/p € T

8= (7/p) =8y (7/p) — &2(7/p)
- Z(_l)e_l Z 8x (T/Tl) "'gw(Te—l/Te) (gy(Te/Tl) — 8z (Te/p)>' (42)

Recall the A; stand for the Littlewood-Paley projectors and A.;_1 = Z—1§j<z’—1 Aj. For 7 €T we
define an element [7] = ([7];)i>—1 of C™>° setting

o= ANE) =) Y A (g(r/m)) - At (g1 /7)) Au(N(7).

e>1 Te<-<T1<T

Likewise, for 7/p € T, we define an element [7/p] = ([7/pli)i>—1 of C™* setting

[/l = Ai(g(/p))

=2 DT Y Acia(e(r/n) o Acima (8(me-1/7) ) Ai(g(7e/ )
e>1 P<Te<--<T1<T

We now introduce an appropriate notion of size of the pair (1, g) to quantify the regularity of the [7]
and [7/p]. For any integer ng define F,, as the set of C™ functions ¢ supported in the unit ball of
R% and such that |[¢[|ome < 1. For a real-valued function ¢ on R, z € R% and & > 0 we define

Po(y) = Pp(eHy — ).
To define the size (M, g)) of (M,g) we first for 7 € T}, and v € Tr

vl

I7]l(n,g) == sup sup sup 5_|T‘|<I_Im7'7api>,
z€R%0 pEFn, e€(0,1]
8ya (V)
[Vlng = sup —=

vyerdo [y — x|V

and recursively for 7 € B and p € Bt
I7lling = max (I17lling)> max 7/l g ol ing))

Iilling) = max (il gy, ma la/vl g [¥]ing) )
We then set

n,g):= ( I )
g = s, (Irling) - Il

15 — Proposition. For any T € Ty and 7/p € T‘J;/p‘ we have

7l + W7/ oMl < (1, 8D,
so [r] € CI"l and [r/p] € CI7/Plif (N, g) < oo.

The proof of this statement uses the following result stated in Proposition 8 of Bailleul & Hoshino’s
work [5]. We denote below by Kj(x — y) the translation-invariant kernel of the Littlewood-Paley
projector A; and set

16 — Lemma. Let F = (Fy),cpio be a family of distributions on R™ indexed by R™. Set

(QF)) = [ Keimae =) Fu (Kl = )da

and assume that '
[QiF||c < Cp27"
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for some positive constant Cr and r1 € R. Let G be a function on (Rdo)2 such that we have
[F(z,9)| < Caly —=[™

for all z,y, for some exponent ro > 0 and some positive constant Cq. Set
(Q;"F) (2) := fj Kei1(z—2)Kei—1(z — y)F(x,y) dedy.
Then QF = (Q;F);>_1 € C"™ and QTG = (QF G)i>_1 € C™ with
1QF|,, + !’Q+G|’T2 SCr+Ce.

Proof of Proposition [I5 — We proceed by induction. For 7 € Ti; and 7/p € Tli/Pl we set Fr, =
N,7 and G;/,(z,y) = gy2(7/p), for all z,y € R%. Writing
Mo =T,7+ Z g.x(7/0) N0

o<T

we see that

(QZFT)(Z) = /K<i—1(z - 'T)(HZT) (KZ(Z - ))dl‘ + Z /K<i—1(z — ) gzw(T/U) (HZU) (KZ(Z B ))d‘r

o<T
with 4
|(M.7) (Ki(z = )| S 27117l (ng

uniformly in z, with a similar estimate with ¢ in place of 7, and

/ K i1(2 — ) gen(r/0) | dz < 2077170 (-

It follows that _
1QiFrlloe S 271 max {||7/0|(ng; 0 < 7},

~

so we get from Lemmathat QF, € CI"l with |QF-I;;| < max {||7/0|/(ng); o < 7}. Note that
QF =AM =Y (-1 3 A (glr/on) - g(0e1/0.)) AilTlo).
e>1 < <01<T

On the other hand one has directly from Lemma |16that QTG ,, € Cl7/7! with norm bounded above
by a constant multiple of ||7/pl|(nq). We actually have from (4.2) the following formula for

(QFG,),), = Acica(g(r/0))

vt Y {acn(s(r/o) - gloe/00)) Acina(glon/o)

e>1 0<0<<01<T

—Acii(g(r/on) - gloe1 /o) 8o /0) ) |

It follows from induction that ((Q*G, /p)i[p}i)i>_1 defines an element of C/™! with norm bounded by

a constant multiple of (M, g). The conclusion of Proposition [15| follows after we check that
[7)i = QiFr + > (QF Gr/o)lol:. (4.3)

o<T
To see that one has this identity we notice that for any ¢ < 7 one has

QFGro)loli= > DA (g /) W1 /e) Acioa gV /o)

e1,e2>0
Oey < <Oy <o <T

X A<z‘—1(g(0/0‘1)) cee A<i—1(g(UeQ—l/UeQ)Ai(n(UeQ))
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- Z (_1)el+62A<i71 (g(T/Vl) T g(Velfl/Vel)g(Vel/U))

e1,e2>0
Oy < <OV <<

x Aci—1(g(o/o1)) - Aciz1(g(0e,—1/0¢,)) A (M(0e,)),

so summing over o < T one recognizes a telescopic sum which simplifies indeed to (4.3)). >
4.2 — A representation formula. We fix here a tuple §f = (fi,..., f,) of smooth functions and

a = (a,...,a,) € R". In §1 we associate to f and « a pair (7, g’) of maps as in Section with
associated bracket functions [-]'. Proposition [19|in §2 is the main result of this section. In its simplest
form, with 7 = [a, b]);, it tells us that

Pé(faa“-afb)zz Z P<([T/O'1]f,...,[0'e]f)
e>00e<<01<T

can be represented as a sum of simplified iterated paraproducts. It also provides a similar represen-
tation formula for Flsj[[a’b]]flel (OFafou,..., 0% f).

To make everything plain recall from Section the following notational point. For hy,... h. in
the sequence space C™°° we first define P (hy,...,he); by induction, for all ¢ > —1, and then set
Po(hi,....he) =Y ;5 1 P<(h1,... he)i. The term P ([7/o1], ..., [0.]') above has that meaning.

§1. A pair of maps (N, g") associated to §. We associate to f the pair of maps
Mhe = Mf = (nf’gf)
on T and T, respectively, where

MV ([, 1, X7) () := 47 P (far -, o) ()
and B
g ([a. ]S X7) (y) ==y P11 @Fe gy 0P 1) ().
(We do not record the dependence of these quantities on « in the notation.) We denote by []' the
bracket maps associated to the pair of maps (MNF,g) as in Section Recall from the definition
of the operators AY, for p € N%. For each [a,b]; XP € B we define an element

Wf([[av bHiXp) = (ﬂ-f([[ch bﬂiXp)i)

i>—1
of C by setting
o ([a,0];X7); := AL (Pi(far . fo)-
Likewise, for [a,b]fX? € B* with € = (kq,..., k)€ (N90)b=at1 e define an element
gf([[a’ b]]JEXq) = (gf([[a7 b]]jEXq)i)iZ,1
of C° by setting
Saqg py— €
N O N G Gy AT S) B
For j > 0 we set
j—1
gf([[a,bﬂqu)q‘ = Z gf(ﬂavbﬂqu)i~
i=—1
The statement of Proposition [19] below, and the next two preparatory results, require a notation that
we now introduce. For 7 = [a, b]; X? € B we write

o<1ifo<7Tand o= [[c,b]]j/Xp/ with ¢ > a.

We also write
o< 7if o <7 but not o < 7.
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For a descending sequence o, < -+ < 01 £ 7 we have 0; = [a,b]; X? with 0 < p. < --- < p1 <p,
and 0;/0j41 = (ppil)XpJ Pitt. For p = [a,b]f X7 € BY we write
J
v<pifv<pandv= [[c,b]]j,Xq with ¢ > a.

The next statement relates 7 € C°F to the maps M and gf on the one hand, and ¢' to gf on the other
hand.

17 — Lemma. We have for Te€T andi>1
()= 0T () =3 (-1 Y Acisi(gf(r/01)) - Acica (8 (0e-1/0e)) Ai (M (0e))  (4.4)
e21 oeSSo1ST
and for 7)o € T witho < 7
gf(T/U)<if1 =

A<i71( (T/O' Z Z A<¢ 1 T/Ul>> e A<i71 (gf ((7671/0'6)) A<'£71 (gf(UE/U))' (45)

0<0¢

Proof — 1) We consider first the identity (£.4). Denote by (x);(-) the function on R? defined by the
right hand side of (4.4)). It suffices to treat the case of 7 = [1,n];XP. One has 7/01 = (If’l)Xp*p1 and

0j/0j41 = (p +1)XPJ —Pi+1 for 1 < j < e — 1; moreover for k € N% we have A_;_ 1(g7(X7)) () = 2*
for all ¢ > 1. Tt follows that (x);(x) is equal to

@@ - Y Y (P e m )

e>1 0<pe<-<p1<pj=1

_ Ai(ﬂf([[l’n]]jXp))(x) -5 Gy xp—*Ai(nf([[l,n]]jxr)) ()

r<p
where
Cpr = > (1) > H( >
e>1 r<pe—1<-<p1<p j=0 Pi+1

We note that the constants C), satisfy the inductive relation

_ (r p
C;DT - (7“) + T<82<p (S> Csrv

)

r

SO

One then has

(#)ifw) = A: (M ([0 X7) ) (@) + > (=1)" " (f) A ([, i X7) ) (2)

= [ = S (P Pt £ dy = 7))

R0 r=0

2) One uses a similar reasoning to prove identity (4.5). It suffices to treat the case 7 = [[1,a];X? and
o =[n+1,afj.,+sX? One has in that case

T/UZZW( )ﬂl nf;L, X"

81,7

where the sum runs over the multi-indices s1, r such that p = ¢+ ||s||+7 —s1 and such that [1;n]? €
T* and r > 0. We write D, , for the set of such s1,r. Writing (xx);(-) for the right hand side of ([4.5)),
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we have this time

(x)ile) = Y S (f) Acio (gf([[l, n]}le’”)) (z)

| _ |
(1D sl(s1 —|s])!

Yy cpp,xw’@)ﬂ(lA<i_1(gf([[1,n]]flxr’))(x>

— |
p’<p (Slel)er/yq 81 |S|)

- 5, e

(s1,7)€Dp q

_ 1 PN e = [T ) f s1 v
( )ZED ; 3!(51—|3|)!<7‘)( D (r’)AQl(g ([l X ))(x)'
81,7 pq T'<T

where we used that, for any fixed s1, if (s1,7") € Dy 4 and (s1,7) € Dy 4 then p —p’ = r — /. This
gives indeed equal to ¢'(7/0)<;_1(x). >

18 — Corollary. For any T € B and i > 1 we have the relation
Fl=al(r)i =Y (0" > g(r/o)_, -8 (oe/oer)_, 7 (oe),
e>1 Oe=<-<01<T
Likewise for /o € BT we have

[’r/a]lf :gf(’r/a)i _Z(_1)671 Z gf(7/01)<i_1 "'gf(ae/06*1)<i_1 gf(ge/g)i.

e>1 0<0e=<<01<T

Proof — Plugging the identities of Lemma (17| giving M¥ and g into the right hand of the identity
to prove, developing the products, one recovers the definition of [T]Zf and [T/ U]if by noting that any
descending sequence 7, < --- < 11 < 7 takes the form

S T30 R TR, S S TR0 < Tle, S STIIST

)

The conclusion follows. >

§2. A representation formula of Py in terms of the P. operators. We are now ready to state
and prove the main result of this section. Each bracket [-]7 that appears below is an element of the
extended function space C°* so the quantities P-(...); in and is not the i-th term in a
Lilttewood-Paley decomposition but rather the i-th element that defines the corresponding sequence

Po(...).
19 — Proposition. For any T = [a,b]; X? € T we have
Af(Pj(faa"' 7fb)) :Z Z P<([T/O-1]f7~-'a[0-€]f)i (46)
e>0 0e<<o1 <7
and for o <7 with 7/o = [c,d];; X? € T* we have

N (ﬁ;{uc,dnﬂﬂ(akcfm e 7akdfd)) — Z Z p<([7./01]f7 el [ge/o]f)i (4.7)

e>0 0<0e<<01<T

Proof — We prove (4.6) and let the reader prove (4.7)) as its proof is almost identical. We proceed

by developing the sum
Z Z P< ([T/Ul]fv"' 7[0—6]f)i

e>0 oe<-<01<T
and use the identities of Corollary [18|to see that a number of cancellations give in the end 7/ (7);.
A non-increasing map a : [0,e] — N is said to be admissible if it is such that a(e) = 0,a(e —1) =1
and a(j) —a(j+1) € {0;1} for every 0 < j < e — 1. For any such a and any integer 0 < m < a(0) we
define j,(m) as the smallest integer j such that a(j) = m.
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We associate to any ¢ > —1, to any descending chain v : v, < -+ < 1y = 7, and to any admissible a
the element of C™°
e—1

Qﬂ-(T/Z/l,...,Ve_l/lle7l/e)ie = Z Hgf(Vj/l/.j"‘l)ij Wf(Ve)ie,
(35)o<j<e—1€Dai, J=0
where
Da,ie = {(ij)Ogjge—l S [[—1, -i-OO[[e7 Vj S [[0,6 — 1ﬂ, ij < ija(a(j)fl) — 1}
For every descending chain o : s < --- < 7, from the identity of Lemma (17| giving [0;/0;+1] and
[o./] in terms of gf and M7, developing the products gives the identity

P<([7'/01], A [Ue/])i = Z)\Z’aQa (7'/u17 . ye)i
v,a
where the sum runs over the set of descending sequences v, < --- < 1y = 7 and the set of admissible
maps a, and where A%? = 0 except if o is a subsequence of v of size e’ such that a(0) — e’ € {0,1}
and oe/_m = Vj,(m) for every 0 < m < ¢, in which case we have \J* = (=1)¢=¢". Then

Z Z Po([r/o1],- ,loe]), :Z Z Z)\U’aQa(T/Vl,--- JVe)

e'>0 oy =<0 =T e>0 ve<--<r1<T a

where \¥@ = >~ _AY2, for a sum over the set of finite descending sequences o : oo < -+ < 7. We

o ‘o

actually have A\¥»® = 0 for every non-empty sequence v. Indeed for any given v # () of size e and any
admissible a there are only two descending sequences such that A% # 0. These sequences o' and o2
are of size a(0) and a(0) — 1, respectively, and
T = Vi, (a(0)—m)
and
T = Vis(a(0)~1-m)-
The two coeflicient A\%'? for these two o are of opposite sign, which implies indeed that A\¥*»* =0. >

4.3 — Proof of Theorem Theorem [1|states that (M, gf) is a model on the regularity structure
from Section |3} To put our proof strategy in context, we recall a variation on Lemma 6.6 of Gubinelli,
Imkeller & Perkowski’s work [I1].

Lemma — Let be a linear map from T to D’(Rdo) and g be a map from RY into the set of characters
of the algebra T™. The pair (N, g) is a model if and only if one has both

\<ﬂﬂ, K<i,ac>‘ < o=l (V1€ B) (4.8)
uniformly over i > —1 and x € Rdo, and
gy (| Sy — =¥ (VpeBY) (4.9)

uniformly on (x,y) in any compact subset of R%.

For 7,0 € T and a descending sequence o (e) = (0. < -+ < 01) we write

oc=<o(e) <7if (¢ <ocand g1 < 7)
and set
T/ (€)la = (I7/o1la; - |oc/ola) € R

Strategy. We prove by induction on n the following three facts at a time.

(a), For any tuple o = (a;)1<j<n € R" such that 377, aj > 0 the map

(917' .. 7gn) = P]a(gh . >gn)

. . Q.
has a continuous extension from H?Zl C57 into L.

For any a = (aq,...,ap,) € R™ and any tuple § = (f1,..., fn) of smooth functions one has
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(b),, for any homogeneous T = [a,b]; X? € T" we have
(Mir K<) S Malla, = 1 folla, 2771,
uniformly over x € R% and i > 0;
(c), for any homogeneous T = [a,b]} XP € Tt we have

8o (D S Wfalla, - 1ol v =/,

uniformly over x,y € R,

Theorem [I] follows as a consequence.

e The result holds true for n = 1.
e We will use in the induction the following two algebraic identities proved in Appendix
20 — Lemma. We fiz a tuple § = (f1,..., fn) of smooth functions.

(i) Pick k € N with ¢ € P,(k). Set 8 := (0¥ f1,...,0% f,). We work in this item in the
regularity structure J,_¢ with the pair of maps (I'Iakf, gakf) and its associated bracket maps
[19"1. For + = [1,n];X™ € T with |k| < |[1,n]j]a we have

Sit/o(e)|a— k k ~a—
SN PO (o) = LB 5 ).
e>0 oe<-<o1<T

(i) We work in this item in the regularity structure J, with the pair of maps (M, gl) and its
associated bracket maps [-]7. For /o = ﬂl,nﬂme €T and |p| < |7/0|a we have the identity

Z Z Z (1;) ﬁlg/a(e)lafhﬂl(am [r/o)f, - 7apqﬂ[ae/a]f)

e>0 o<o(e)<T pEPet1(p)

:lm—O{ Y % (>(> po— \Hp\(aklﬂnf ’3kn+pnfn>}.

tePn (k) pEPn(p)

We proceed with the induction step

((a)nfla (b)nfla (C)nfl) - (((1)7“ (b)nv (C)n)

~ We begin by proving (a),. Pick 8 = (1,...,8,) € R" with > | 8; > 0. We work with the
regularity structure .75. For j = (¢1,...,0,_1) € (R®)" L set j~ := (£1,...,4,_2) and
7(j) = [1,n — 1];- X
Write [n] for [n,n] € T and [n]9 for its associated bracket map. From the continuity result of
Proposition [5| for the PL it suffices to prove that

Pogreegn) =S S BT () o, 09, [0)) (4.10)

e>0 oo <--<7r(j)
where

)/t |5 1= (1) /oals, |o1/o2la, - |oels, Ba).

The symbol + meaning that we added 3, at the end of the uplet |7,,(j)/o|s. Indeed, if one has (4.10)),
the induction hypothesis and Proposition [15| ensure that any term [v]9 appearing in the right hand

side of ([#.10) is an element of CI¥ that depends continuously on g € H[ Cf 7. Since

70 (3)/0115 + lo1/o2ls + -+ |oe|p + B = ZBJ>0

we can use Proposition [5| to conclude that (a),, holds true.
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The remaining of this paragraph is dedicated to proving (4.10) by induction. The recursive defini-
tion (2.3)) of the P2 given in Lemma ﬁ writes here

SN RO (6 o, o9, [n))

e>0 o.<-<7n(j)

=Y X Pl ol )
_ Z Z ﬁlgn(j)/a‘ﬁ([Tn(j)/Ul]gy---,[061/0']9) (4.11)

0=Tn(j) 0=0c; =-=<Tn(j)
lo|g+Bn<0

~lo /vt
xS P (ofn)e, . ve)9, [0)9).
Vey <=0

From Proposition [19| one has

Yo > Pe(lmli)/or],. . o2, 1)) = Pi(g1.- - gn)-

e>0 g.<--<7,(j)
Since any o < 7,(j) has the form o = [m + 1,n — 1]j1,, X?2*°2, one has 7,(j)/o = [1,m]} X",
with £,_1 = s1 + s9 and p = p; + pa. If 57 = 0, item (i) of Lemma ensures that the sum over
the descending sequences o < g¢, < +++ < 7T,,(j) is null. The terms o < 7,(j) that may give some

non-trivial contributions to the sum (4.11)) are thus of the form o = [m + 1,n — 1]j4,, XP2 -1 for
which 7,,(j) /o = [1, m]]f with p; + p2 = p. For such o, item (i) of Lemma [20| gives

Z ﬁlgn(i)/a\ﬁ([m(j)/o.l]y,.__’[Uel/g]y>: Z <p>|§]{i<<;:z—é(aplgl’n_’apmgm)

0=0cq ==<Tn(j) PEPm(p) p
and we have from the induction hypothesis

S B (o), v, )9, 0]9) = P (gmsts -2 gn)

P1,P2 (j>m)
Vey <" =0

where

. k
Tprpa (>m) = Z (12) (p ) (b1 +ar, o b o+ anm2,ln1 + p2).

1
a€Pn—m—2(p1)

We recognize then in (4.11]) the recursive relation satisfied by the ﬁ]ﬁ , which proves (4.10]).

— We now turn to (b),,. We would like to implement the same strategy as in point (a),: Write an
iterated paraproduct as a sum of simplified iterated paraproducts and use their local expansion proper-
ties. The problem with this strategy is that Proposition [f| requires some positivity assumption on some
regularity exponents to hold — which does not necessarily hold true here. To circumvent this issue, for
any r > —1, we look at the expansion properties of the iterated paraproduct P; (fl, coos fn—1, AT(fn))
and treat A,.(f,) as a function of high enough regularity in the estimates. We verify a posteriori that
the remainders are summable over » > —1 and provide the right expression.

We use the same notations as in the proof of point (a),. Pick a;f > «, big enough such that

", +af >0foralll<j<n. Set
S—J n ]

a+ = (0417 ey 01, a'r—t)
and, for any r > —1, let
= (froeees fam1s B0 (fa)
and
= ()
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(The last notation was introduced at the beginning of Section [4.2]) One has
Pi(fi, - Arfn) = Z A<z L(Pi=(f1 - fam1)) A (A (f))

i>—1

=32 X Pl ed™) AAR) (g

i2—1e20 ge=-=<Tn(j)
. r+ T+ r+
=3 Y ()™M M.
€20 oe<-<7n(j)
From Proposition (15 and the induction hypothesis, every term [o] appearing in the paraproduct P

I
is an element of Cl°l that depends continuously on f € { H” o } x Cg™. The assumption on a;
ensures that the homogeneities of the element in the 1terated paraproducts

. M+ M+ [V
Po([rn(G) /o)™ . o™ ™)
add up to a positive quantity, however |o.|o may be non-positive. This is cured by noticing that the
assumption on a; ensures that

P (/oo ) = BEO T (G Mo M ), (43)
where
170() /0" [at = (170 ()/01lats [01/02|at - [Telats ar ).
SO one can use P£oposition on the local expansion of terms of the type ﬁl The remainder term in
is (Ay—z,0PL)(...)(x) with § = Z;—;l ;. We infer from this generic expansion property, (4.12))
and , that Pj(f1,...,Ar(fn)) has a corresponding expansion with remainder

~|7n(j) /o T . T T ™
S @I (e M) (@),
e>0 gc<--<71,(j)

with 6 = Z?:l o’y — d, here. The following result is proved in Appendix by induction on n.

21 — Lemma. For every point x € R™ and i > —1 one has the identity
~|‘rn(')/a'+|a . r+ r+ r+
K> 30 (80P (Im ) o™ [ M) (@) i
€20 g <=7 (j) (4.14)

= K<i(h)(|'|;/[[1,n]]j)(a:+h) dh.
R0

R%0

We then have from (4.14) and Lemma 6.3 in [I1]

Keilo =) (1L () ] < {anjna,} 10l 277

n
—1 r(at —a
< 9—if g n){H||fj|aj}.

j=1

Rdo
(4.15)

There is an integer i(n) depending only on n such that we have for j <n and i > —1
A’L(P](f17?fj - Z A f17"'7fj71;AT(fj)))'
r<i+i(n)
Using the identity (4.1]) on M, (7), we see that we have

<|_|x([[1,n]]j)aK<i,x>: > <n;’([[1,n]]j),g<i7x>,

r<i+i(n)
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so the expected bound
‘<nz([[]-v nﬂi)? K<i,x>
follows from (4.15]).

n iti(n) n
TaJr—a,,L —1 —i" L aj
5{H|fa‘”aj} > 2l "5{||||fj|aj}2 e
j=1

r=-—1 j=1

—~ We finally prove (c),. Pick a = (ai,...,a,) € R", a multi-indice k£ € R% such that
k| < >°7_, aj and € € P, (k). We work in the regularity structure 7, _j¢. From item () of Lemma
[20] we have for any smooth functions fi,... f, the equality

ZRCA RS OES DEEED D e (0 A A L
€>0 g.=<-<o1=<[1,n];

where My = Mges o |- Proposition |15 and point (b),, ensure by induction that all the terms [v]Me
are some elements of C/Vle—¢ that depend continuously on all the f; € Cs”?. As above it follows from
Proposition [29| that P?_lél (Bklfl, o, O fn) has a local expansion with remainder

Bra([Lnl) @ h) =" > (8P d ™7 (/o™ o) (2)
e>0 o, <---<[1,n];

where 6 = |[1,n]j|o—j¢. From Proposition [29| this remainder has |h|’ [Tj=, Ifill,, as an z-uniform
J
upper bound. Point (c),, will thus be proved after we show that for any 7 = [1,n];X*® one has

> X (@7 (/e oM ) (@) = Laco 8 (I 0IS)- (4.16)

e>00e<<T

The remainder of this paragraph is dedicated to proving this identity by induction on n. Recall that
we write

PP~ ([7’/01]'\/'E . ,[am_l/om]M“)
- ¥ (g) BT/ smlactti Pl (1 Me L [y fom] ™).
PEPm(p)
From the definition of Ah79FI5< the left hand side of (4.16]) is equal to

S BT (oML [0 M) (2 + h)

e>0 o< <T

>N S P (/oM. o™ (@) b

€20 oe=< =7 |p|<|T|a—|¢|

SIDIID SID DI N (S LN YRS 1%

e20  m=1|p|<|T/0m|a—|¢|
Oe=<-<T

h? Blom /o5 mla-
x5 Bt PET) (lom foma M oM @),
(4.17)
From item (i) of Lemma the first double sum in (4.17) is equal to
Lo Py (08 fr, . 0% f) (2 + ) = Lamo 8], (11, ]).
Lemma 20| also gives that the second line of (4.17) is equal to
1,— Z g ([1, n]]je+p) h.

[pI<|T|a—e|
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The o € T such that 0 < 7 = [1,n];X* have a form o = [m + 1,n]j4,, X?2752, in which case
/o =11, m]];’Xsl with s = 81 + s9 and v =v; +vy. Forsuch o € T Lemmagives

YooY orpe ([T/Jl]ME,...,[Uel/a]M*)(x) — 1,—0 gl ([1m]H7).
e1>00e; < =<T
Also, we have by induction that
Z Z Ah,\o\a_mp<([U/V1]Me7'"’[Vez]l\/h) = 1U2+S2=0 g;,m+h([m+17n]];&+v1)'
€22>0Vey <=0

If s # 0, then either s1 # 0 or sg + po # 0, and all the terms of (4.17)) add up to 0. Suppose now that
s =0. The o € T we have to consider are of the form o = [m + 1 n]]JJrv7 for which 7/0 = [1,m]} and
the right hand side of (4.17] - ) writes as

3
Rf@(ﬁﬂﬂj) :gz+h([[17n]]j) - Z g:fn([[lﬂn]]j+p) h?
Ipl<|[1,n] |a
€ v
- Z gfc ([[1’ mﬂj+p+ ) g;+h,m ([[m + 17 nﬂje—&-vXp)a
m,p,v
where the sum over m,p, v runs over 1 < m < n and multi-indices p, v such that |[[1 m]}v+p| el >0
and |[m + 1,n]]1+v|a7m > 0. This sum corresponds to a sum over o € T such that o < [1,n]} in
the regularity structure .7,. It follows that we finally have

Rio([Lnl}) =gl (ILnl}) = Y. ghin.(o)eh(r/o) =gl . ([L,n]}),

o<[1,n]}

which concludes the proof of (4.16]), and closes the induction step in the proof of point (c),,.

5 — Back to paracontrolled systems

This section is dedicated to proving Theorem 2] We set ourselves in the setting of Section[I.3] with
its finite alphabet £ = (Iy,...,l|z|) and its associated set W of finite words w = [;, ...l;;. An a priori
notion of size | - |2 is given on £ and extended to W setting

i, "‘lijlﬁ = |l |lc+ -+ |lij|1:~

5.1 — The regularity structure 9. The following construction is identical to the construction
of Section [3] We define a set of symbols
B e {[[w]]jXP; w=1 ...l W, pLeN® je Pj_l(e)} U{X ) endos
and
_ {Mf; w=1i ...l €W, k,te N® j € P, 1(0), t € Pi(k), [w]e — k] + €] > o}

U{X“} iz,

We let T be the vector space freely generated by B, and Ty be the algebra freely generated by BT,

with unit 1. We also set

[fw]; X?| . o= |wle + €] + |p]
and define |- |z on T as a multiplicative function such that |X®|,
Tl = hwle + 16 — k]
Proceding as in Section 3} for 7 = [l;, ...0;,]j € T we set

o(1) == {[[li1 ...l,-j]]fq €BT;1<j<n, £;=0,pePjp)pec Ndo} u{1t},

=1 and
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and for p = [l;, ... 1, ]} € TT we set
o) = {1, 1P € B 1< j <, £, = 0,p € Py(p),p € N f U {17},

Set for 7 =[l;, ...1;,]; € T and o = [l;, ...lijﬂf € @(r) with j <n

(T\o) == (;)[[limmlinﬂwple,

p=p1+p2

and for j = n set (7\o) := %Xp. For = [li, ... 1, ] and v = [I;, ...lij]]ij € ®(p) with j <n

TR DI ) (RS e

p=p1+p2

and for j = n set (u\v) := %Xp. Finally set

A(r):= Y (T\o)®o,
ced®(T)
and
At =Y (e

veED (1)
[(p\v)]£>0

Proceding as in Section [3] shows that
gﬁ = ((T7 A)7 (T+7 A+))

is a concrete regularity structure. Given a = (ai,...,q)z|) with Z‘Jﬂl a; > 0, and some functions
(1] € C&) e given a priori, we define from Theorem [l a model on J; setting
N([, -0, 05) = P[] - - [l,]).

=4 lil geees lin —|t n
g(lli, -1, 8) = Pllalerllnlel =iy, 1 gk, ),
and I'I([[l“ . linﬂjXp)(') =P I'I([[lzl .. lln]ﬂ])()a with the notation "

5.2 — Paracontrolled systems and modelled distributions. We prove Theoremin the re-

fined form of Theorem [22] below. Recall from the introductory Section [I.3] the definition of an -
paracontrolled system. (Paracontrolled systems in the generality of Section were first introduced
in Bailleul & Mouzard’s work [7].)

Let r > 0 and (uy)weu., be a system r-paracontrolled by the ([I])cz, as in (L.10). For each

T = [[’lU]]jXp €B
with w =1;, ...1;,, and j € Pp,—1(£) with I,p € N% such that |7|; < r, set

k\ < /
= (’Y_‘ww |7|l'i ‘»"‘7|lin‘)_‘él k1 ﬁ k2 . 29 .
Ur Z Z (E) P 2 (8 uww” a [lzz]v'naa [lln})7

w'=liy...li,, EW EEP, (£4p)
ww EWL

From Theorem [I} each u, defines a bounded function as r — ||z > 0. We define the T-valued function
u(z) == Z ur(z) 7.
TEB
Theorem [2]is a direct consequence of the following result.

22 — Theorem. One has u € D"(T,g), and its reconstruction RM(u) is equal to

Proof — We use Theorem [I] to prove that statement, but in a regularity structure that takes into
account the uf, on the same footing as the [I]. We introduce for that purpose a new alphabet

A=LUW
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and set |A|4 = |A|z for A € £ and |M 4 := 7 — |\|z for A € W. We write W4 for the set of words
written with the alphabet A. To avoid any confusion when writing words with the alphabet A we
will write (w), with the parentheses, the letter of A associated with w € W. We extend our collection
(MNiec into ([A\])rca setting
[w] := uﬁu e orlvl

for A = w € W. As above, Theorem [I] provides a regularity structure associated with A and a
model M = (T1,g) on it associated with ([A])xea. There is a canonical injection ¢ : J; < J4 that
commutes with the coproducts, and M is an extension M. We can thus freely pass from g to g in some
computations below.

Within 74, working with M, for 7 = [w]; X one can rewrite

Ur(e) = Y B ([(ww)u' 7).

w' eW
For w € W we let

p(w) = [(w)w]
where (w)w € A is the word beginning with the letter (w) € A followed by w € A —for w =1;, ---;,
it represents the function P(uf,,[l;,],...,[l;,]). Then the function u can be re-written in .74 under

the form

u(@)= Y Y Elpw)/o)o,

wEU<r o< p(w)
Note that any o < p(w) has form [w'];X? where w’ is a subword of w. We now prove that u €
D"(T',g) by proving that for any w € U, the map hy () = }_,_ ) 8z (p(w)/0) o is an element of

DIPW)(Ty,g). For any x,y € R, and for 7 = [w]; X*, one has

Euhu(@) = D E(p(w)/0) gyalo/v)v =3 (8, (p(w)/v) ~ Bulplw) 1)) v

v<o<p(w) v<T

= hw(y) - Zgyr (p(w)/y) v.

v<T

Theorem [1|ensures that |g, . (p(w)/v)| < |y—xz|P@)/¥ with |p(w)/v| = r—|v|4, hence h,, € D" (T, g).
yxr ~

As
Mo(hw(@) = Y (pw)/o) Moo =N(p(w)) - Ma(p(w)),

o<p(w)
the reconstruction of h,, is -

M(p(w)) =P(uf, ;] [L),.]),
where w = 1;, ...1;, . And finally RM(u) = > weul-, RM(Ryp) = Uy, -

>
A — Appendix

A.1 — Basics in regularity structures. We recall here some basic facts about regularity structure.
We refer the reader to [4] for a thorough introduction to the subject, and to [13] for the original work
of M. Hairer on the subject.

23 — Definition. A concrete regularity structure is a pair 7 = (T,T) of graded vector spaces
r-@r. T - @
reA SEAT
such that the following holds.

— The spaces T, and T are finite dimensional for anyr € A and s € A*. One has AT C [0, +00)
and both A and AT are bounded from below and have no accumulation points.

— The vector space T is an Hopf algebra with coproduct At and grading AT C [0, +o0].
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— The vector space is endowed with a linear splitting map A : T — T @ T+ such that
(A®I)A = (Id® AT)A.
— We have
AT,,c P T,oT_,,, AT c P TieT]

8§1—S82°
ro€A sa€AT

We suppose here that the vector spaces T and T come with some bases B and B*. Then for any
7 € T we have a decomposition

AT = Z(T /o) @0
oeB
for some elements 7/0 € T. Likewise we define 7/0 € T" for 7 € T and o € B* from the identity

Atr = Z (/o) ® 0.
oceBt

For o,7 € B we write 0 < 7 if /0 # 0 and 0 < 7 if 0 and 7 are distinct and o < 7. For 7,0,v € B

we have
At (r)o) = Z T/v®Uu/o.
o<v<T
We denote by GT the set of real-valued characters of the algebra 7. We endow GT with a group
structure by defining the convolution product of g; and go as

(g1 g2)(1) = (g1 ® g2) AT,
for all 7 € T. We write g~! for the inverse of a character g € G in this group structure. For any
map z € R™ — g € G we define for any z,y € R% the character

Byo = 8y * 8y -
Similarly we define for any map M : T — D'(R%), any point 2 € R, a new map I, : T — D'(R™)
by setting
N, =(N®g')A.
For any function ¢, point € R™ and € > 0 we set
-z
P() =l p( ).

Finally for any integer ng also define F,,, as the set of C™° functions ¢ supported in the unit ball of
R% and such that [|¢]|on, < 1.

24 — Definition. Pickn > |Bo]. A model M = (1N, g) over a reqularity structure T is a pair of maps
n:7— c%R%), g:R®GF
with the following properties.

— For any x € R and T € Ti-| we have
M(7)(95)] S &l

uniformly in z in compact subsets of R, ine € (0,1) and in ¢ € Fn,.
— For any x,y € R and e TIZI we have
lgya (W] S 1y — [

uniformly for x,y in compact subsets of R,

Definition — Let T be a regularity structure and M = (M, g) be a model on it. For anyr € R, a
modelled distributions § € D"(T,g) is a map f: R — @,.,_. T, such that

r'<r
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max sup |[[f(z)]],, < +oo,

T'<T peRdo

7/\ x ,
max sup Hf(y) gymgf_(r,)) — < +o0.
r'<r x,yE€R%0 |y—$|

A.2 — Basics on analysis and proofs of three lemmas. For any function f and any multi-index
¢ € N we define the modified Littlewood-Paley projector

(AiN@) = [ Kilx=y)y—2)"fy)dy.

Rdo
25 — Lemma. For f € C" with r > 0 one has (Aff)p_l e C i and
Iass)

is_illcrsia S,

Proof — If |i — j| > 2 we have AY(A; f) = A;(ALf) =0, so AFf is spectrally supported in a ball 2! B
and

Y Al = Y / K — )@ — 1) (A5 F) () dy

li—il<1 li—i|<1
Then we get
<] [ K@t 3 1Al <27 [ K11, <20 g
—i|<1
using the scaling property of the kernel K for the last inequality. >

Note that the sequence (Af f)i>—1 does not represent the Littlewood-Paley blocks of any distribu-
tion as Y, AL f =0 for any ¢ # 0.
Proof of Lemma @. Pick f = (f;)i>—1 € C" and o > 0 with integer part |o]. If f; is spectrally

supported in a ball 2'B, then f;(- + h) — Z|k|<o 8kflhk—]: is spectrally supported in the same ball 2°B.
From Taylor Young inequality applied to f; at order |o] + 1 and Bernstein inequality we have for any

z € R%
-y Ofile

|k|<o

< |h|[oj+1 HDL0J+1]¢- H

S a2l g
Similarly Taylor-Young inequality at order |o] gives

file+h)y = Y 9" fi(x) ‘ < Inftel2tel | fill
|k|< o]
from which we see that

fix+h) =Y 0" fi(w)

|k|<o

> a’Cf(x)’lk]
SR

|k|=Lo]
[Dldsi|| s nlte2ted g

hk
<|filw+n)- 3 a’“fi(a:)k!‘ +

|kl <Lo]

S (27N il + R

We conclude by interpolation that we have

filoth) = 3 )] S 2 Al S 020 )],
|k|<o
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Proof of Lemma Let § > 0 such that the estimate holds for 6 € [y — 6,y + §]. For z,y € R
with |y — x| < 1, one has for any integer N

S Xi, <O ly—al 20 < CaVoly a7,

i<N i<N
S X, <O fy— a2 S 02 Ny — o,
>N i>N

Choosing N such that |y — x| ~ 27" gives the required bound.
Proof of Lemma [21]. Using the definition of A P~ we have

S (@) (e oM ) @)

Oe=<Tn(j)
~|mn(j) /ot . r T i
=3 > R ()M o™ M) @+ )

€20 oe<-=7n(j)

D DD D (G0 V2 L s L L TEOP

e>0 |k|<r’
0-6_<"'_<T7L(j)

- x >> AP ([l o o)

e>0 1<m<e
o= =7 () [k[<|Tn(3)/om]

Rk ” -
X ﬁ (Ah,\am|a+a$ P<) ([Um/am—l]M +a BERE) [n]M +>a

where we use the shorthand
3fP< ([Tn(j)/ffl}MNr, ey [Um—l/am}MT+)

DI () L e T e L ey L
EEP, (k)

The first line of the right hand side gives P; (fl, ceey Arfn)(x +h). As

K_i(h)h? dh =0

R0
for p # 0, the second line of the right hand side gives a zero contribution when integrated against
K ; except for p = 0, in which case it gives P; (fl, cee A,«fn)(x). Then

Lo X @B (e o ) @)

ge<<7n (i)

:/Rd KB Py(fir oo Arfa) (@ + By dh — Py (1, Arf) (@)

-y ¥ S AP (/™M) @)

U'<T7L(j) |k|<|7'n(l)/o" e120
0=0¢y < =<Tn(j)

k
5 K_i(h) % Z Z Dy jol4atP< ([O’/l/l]MT+7 e [n]Mr+> dh.

d
R0 €22>0Vey <=0

The o € B such that 0 < 7,,(j) have form o = [m + 1,n — 1];4,, X?*7*2 and 7/0 = [1,m[} X** where
p =51 +p2 and l,_1 = s1 + s2. For such o, using Lemma@the sum

> AP ()™ o o) @)

<=7 (j)
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is 0 if s1 # 0, otherwise (s; = 0) this sum is equal to
P\ spttra m+Dm — £
S (D) PE @ b 1) @) = 6 (1),
PEPm(p)
On the other hand for o = [m + 1,n]j4p, XP>*!"=1, we have from the induction hypothesis

k
K<i(h)h—'z > (DhoirarP<) o/ ™, ™) dh
k!

d
R0 €220 Vey <=0

- Ko;(h) N (Im + 1, n]j4, X %) (z + h).

Rdo

One finally gets

Lo 2 (w0 (o ) @)
j)

oe=-=Tn(j
— [ K. ih) {Pj(fl, A f) (@ B) = Py (fr, - A ) ()

R0
= 3 (LI ) (X [+ Ll (o + b dh

m,k,p

= | K { ([l @) - S g ([nli/o); (o) (@ + )} dh

R0 o<[1,n];
:/ Ki(h) L' ([1,n];)(x + h) dh,
R0
so we have indeed (4.14).

A.3 — Proofs for Section Proposition gives the expansion property of the functions 07 P ..
The proof of this proposition requires that we introduce some operators.

~nl n2
§1. The operators Pg 8" _ It will be convenient to introduce as an intermediate tool some operators
~nl 92
Pg 7 indexed by two tuples of integers. This operator will be useful to obtain the local expansion

~ pl ~
of the Pg , the uplet 5% will play a different role, similar to the one of the 8 when we used the P?
operator to obtain the expansion of the simplified paraproduct in Section 2.3

Their definition requires the following notation.

Definition — For B, 3% in R" such that B} > B2 for all 1 <i <n we set
MultiCut(3", 5°)
= {d =(0=dy<di < <dya =n); Ve € [1,n(d) — 1], d. € Cut(8") U Cut(ﬁg)}.

For (hi)1<i<n C COF we set

n(d)
PL (hy,. .. hy) = S @ ] Pe(hg,ysrseeesha,)
deMultiCut(81,82) e=1

We will use in the end the operators ﬁil’ﬁ * in some situations where S 8% > 0. In that case
we have Cut(f') C Cut(B?), so ﬁgl’ﬁQ (h1,...,h,) = ﬁf (h1,...,h,), and we can use the continuity
~nl n2
property of Proposition [5| The general Pi h operators will be useful in the algebraic steps below.
For any k € N and € = (kq, ..., k) € Py_at1(k) we also set

ORI (S, fy) = Pt Plent = ghag | gho,)
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and

D DI (Y L)

tEPy_at1(k)

The following statement is proved in Appendix [A.4.7]
26 — Lemma. Pick 51,52 in R? satisfying Assumption (A). If 52 < Bl for all 1 < i < n then
for any hy,... h, in C> we have

. _ il 2 ~al 2
B2 () =P (i) = 3 PR ) PE ()
deCut(B2)\Cut(B1)

§2 Local expansion properties of the Isg (fl, el ,fn) — Pick B € R" such that > ; 8; > 0. Proceding
as in (2.5)) we see that

ﬁi(fl,... (-+h) =PL(Fi(-+ D), Fu(- + 1))

n)(
Pi(fl,...,f)
¥ h|e Ikl < o—
*Z > W™ 5 B(a’“f O,y Ry fm+1('+h)v--~>

¢!
m=1  |k|<o
teEPm_1(k)

With the same motivations as in Section 2.3] we set here
Bal8,0) i= (Barr — lhasal s Bt — koals By — 0+ K], By, B ).

and

~ n hE|plo— Ikl
(Ah,opg)(fa-‘rl? s ;fn) = Z Z % Pi>a7ﬁa(é’r) <aka+1fa+1 e ,5kb—1fb_1,

b=a+1 |k|<o
éE’Pb_a_l(k:)

By M, a4 B, B)

and for 7 > —1

~ n k| plo—IEl " .
(P2 aren by = S 3 M D pmesnten) (greg, L gprgy .

£l
b=at+1  |k|<o
teEPp_a_1 (k)

ROy fypr (4 h), e - + h)){i}-

We define
1(8) = {ce [ln—1]; Zﬁj>o and Z 8; >0},

j=c+1
27 — Proposition. For o > 2?21 B; — 0o, we have
(A0 PEY(Fr - f) (i} = PL(F, .. fu) {i}(- + h) — TEPL (fl, o fa) {3}

- > > Ok Po(f,.. ) (Aﬁo ‘k‘55>°)(fc+1,...,fn){i},

cel(B) |k‘<25=1 Bj

Proof — Recall that for k € N% and ¢ € P;_, (k)
B(,0) = (B = lkaly- o B = ksl B — 0+ K], By, Ba).
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We are going to apply Lemma [26{ with the tuples o and S(¥, 0), which verify indeed 5(¢,0), < «, for
any 1 < a < n. Moreover for a > j we have (¢, 0), = a4, and as consequence Cut(3(¢,0))\Cut(a) C
[1,7 —1]. Then Lemma [26] gives

ﬁg“"’)<8’“1f1,...,8’“f*1f 1, Ry ),---){i}

:ﬁﬁ(aklfl,...,a’“ﬂ'*lf LR ),...){i}

B Z ﬁzsc,ﬁ(E,O)Sc (ak1f17 o ’3kcfc)

ceCut(B(t,0))\Cut(a)

x plreltore (8k°“fc+1, ot Ry (R, ){z}
= ﬁg (3k1f1, .. .,8kj71fj_1’ RZ"’“‘fj, fir1(-+h),. ){z}

_ 3 otsep_ (fl,...,fc)

ceCut(B(k,0))\Cut(B)
X 5‘§>C’B(E’O)>° (8kc+1fc+1, .. .,8’“f*1fj—1,RZ_‘k‘fj’ fipi(-+h),. ..>{i},
where we used that
PRt sl (ghafy . abef,) = PEOOse (ghfy, .. 0,
since Y i_, B(k,0); > 0 for ¢ € Cut(B(¢,0)).

We now sum over j, k and £ and invert the sums over ¢ and j. In order to implement this sum inversion

we use the inclusion Cut(B(E,0))\Cut(3) C I(B). This gives

hk|h|°_‘k‘ 58 [ ak k;
(DnoP2)(Fr, ... ) (i} — Z 3y Pl (a R Lt

j=1 |k|<o
teP; 1 (k)

By £ (4 ), ) {6
n hk hof|k|
:Z Z | E|| Z 8EP<(fla"'afc)

j=1 |k|<o " ceCut(B(t,0))\Cut(B)
teP;_1(k)

x PO (Rt 08 Ry M G h), ) ()

k
=y X %6fP<(f1,...,fc)

cel(B) |kI<>25_, Bi
teP._ 1(k)

n hP|ploe—Ikl=lpl _ Y »
« Z Z |p!Pg>cﬁ(E’ )>e (8p1fc+17...,6’”*0*1@,1,

j=c+1 Ip|<o
pe,ijcfl (p)

By a4 ), ) ()
hk /{7~ﬁ<c pB>ec .
=y 3 T P (Fy ) (Dhom|5PZ) (Fots -, Fn) (i}

c€l(B) k<35, Bi
The result follows from this identity. >
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28 — Lemma. For0<c<n-—1, foro, >0, > Z?:c-u a; — 0, we have

~ . ~ . hF s .
(LhosPZ?) Fogts o B0} = (Bnos PE) (o, F) i} = > Hafp%c(fm, o E (i)

01<|k|<o2

Proof — The proof follows the same induction as for Lemma The result is true for c = n — 1
as Ah,oPg coincides still with the Taylor remainder |h|°Rj. Suppose it to be true for (n — ¢ — 1)
functions. Proposition [27] gives then

(Do PZ) (Ferty o ) (i} = (Bhoor PE) (Feps -, ) {3}

= TPP2e (forn, .o ), — TP P2 (forn, .. ),
L
> > 8fP<(fc+1,...,fj)E
FENB>e) |p|<XI_ 41 Ba '
< B P2 G160 8 = (B P27 (11, ) )
From the induction hypothesis this quantity is equal to
hk hP
> za’mﬁﬂ(cﬂ,... iy — > > Hafp<(fc+1,...,fj)
01<|k|<o2 JEI(B>c) |p\<zi:0+1 Ba
ht _,~ )
x Y i P (Fi, .. E){i}

01 <|€|+|p|<o2

- Y 5 Y (e

01<|k|<oz = tEPn_.(k)
where
Agi = P2 (0% F ey, .., 0%, {0} —
Z ﬁ/i[[chl,j]]_lel (8k1fc+1, o akn—j«l»lfn) ﬁi>j,ﬁ>j*|3| (aknﬂ- JERT 7aknfcfn) {i}.
FECUt(Bs —[E)\Cut(B>c)

Lemma [26] gives
Aei = PEof=e I (@hag L obeef,) (i),

and the result follows. >
For 0 < a <n —1 we define
(DyeP2) (Fasn, o ) = (Dy-asr ., 8, PO) (Fagty s fu)(2);

From the same arguments of Section [2| for o in a neighborhood of Z;L:1 B; one has the estimate

[(D2PL) Farrs - F i S TN, 1y — wfo2 =)
j=1

where _ ~
(Aywpg)(fcwrla o ,fn){l} = (Ayfz,z;‘:a_*_l Bj P’i)(ﬂwl; s 7fn){l}($)
Then Lemma [11] gives the estimate

|(Ayz5’i)(fa+1,...,fn)]5{ 11 ||fj||5j}|y_x2?a+1ﬁj,

j=a+1

29 — Proposition. Pick 8= (51,...,08s) € R" with 2?21 B; >0 andf; € co for 1 <j<mn. Then
we have the local expansion
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pA kBB (y —a)*
PL(f,.. )= > 8*P<(f1,...,fn)(x)T
|kI<327—1 Bs
n—1 k
~ y—x ~ (A1)
+3 Y OPL(fi,.. . ) () % DyaP? (Fogr, . fn)
=1 k<35, B '
+ Ay PR, ).
where .
(@02 e ] S { TT 16l ool
j=c+1
Proof — We proceed as in the proof of Proposition Proposition [27] and Lemma [28| give
~ ~ hE o
|kl<o
~ hP ~
-3 Y #PL(fi.. . f) o (DyeP2) (Fess .o )
c€l(B) [pI<35_ Bi ’
hP ht < ~
-y 3 EE&{’Pﬁ(fl,...,fc)afPﬁ(chrl,...,fn).
c€l(B) |pI<35_1 Bi
le1>3"7 i1 Bi
From Lemma we have, for any k € N% such that k| < Z?:l B;, that OFP_ (fl, . ,fn) is equal to
~ k ~ e
OFPL(fr, ..., ) — > > (p) OPPE(Fy, .. £ OFPPE(fuyy, ... ).
c€l(B)  IpI<5_ Bs
lk—p|>327 i1 Bi
This identity concludes the proof of this proposition. >

A.4 — Proof of some algebraic lemmas. We prove in this section a number of algebraic results
that were used in the main body of the text. We start Section by proving the inductive relation

p8Le* pB.B p8hLe*
(Lemma on the P_"" that we used above. The operators P_"" have an analogue P; defined
from the ﬁrue) iterated paraproduct operator. The remainder of Section is dedicated to proving

Lemma (31} which is the analogue of Lemma for the operators ISJB 58 . Lemma plays a crucial
role in our proof of Lemma The later is the main ingredient of our proof of Theorem[I] The proof
of Lemma [20] occupies all of Section [A.4.2]

A.4.1 — Algebraic properties of the 5@1’52. We start with the

Proof of Lemma . The proof is very similar to the proof of Lemma [7| From Assumption (A) we
have the following partition of MultiCut(3?, %)

MultiCut (8%, 8%) = MultiCut(5") U | | MultiCut(2)[8",m],
meCut(B2)\Cut(81)
where

Jj€i, j¢Cut

m J
MultiCut(8)[8", m] = {i € MultiCut (3", 82): m € i, ;[32 —  min (ﬁl);,ﬁf}.

We thus have
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~ nl 2 1
P27 (hy,...h,) =P (hi,...,hy,)
n(d)

+ Z Z d)+1 HP< iho1t1see o hi )

meCut(B2)\Cut(Bt) ieMultiCut(B82)[B1, m}
so it suffices to show that for any m € Cut(82)\Cut(S') we have

n(d)
Z (—1mat H Pe(hipit1,---5hiy)
ieMultiCut(B82)[B81,m] k=1

~p1 2 ~
i (TR L (I T
Pick m € Cut(3?)\Cut(8'). We prove that: For 1 < j < m we have
{Hi € MultiCut(82)[8",m]; j € i} P {j e Cut(BL,,) U cut(ﬁgm)},

and for m < j < n we have

{Hi € MultiCut(82)[8',m]; j € i} = {j —m e Cut(pL,,) U cut(ﬁim}.

The proof of Lemma [20] follows from these equivalences as in the proof of Lemma [7]
As a preliminary remark we note that for m € Cut(8%)\Cut(B') we have >-7" B! > 0 and

> i1 Be > 0. We prove now the first equivalence relation. Suppose i € MultiCut(5%)[5", m]

and 1 < j < m is such that j € 4. If j € Cut(B') then j € Cut(ﬁ%m). Otherwise j € Cut(3?)\Cut(81)
and j € Cut(82,,). Reciprocally if j € Cut(ﬁ%m) U Cut(ﬂ%m) then necessarily Z:L:J.H B% < 0 and

jECut(p?) and Y0 BE< Y0 L B2

The second equivalence relation is proved in the same way. >

The remainder of this section is dedicated to stating and proving an analogue of Lemma [26] for

some operator PB #2 that we can associate to the iterated paraproduct operators Pg We first need
an ad hoc bettlng to introduce these operators. It is very close to the setting of Section [3|
Fix n > 1. Define the set of symbols

B:= {[[a,b]]fxm; 1<a<b<n, LE€N® Py o(0), €€ Ppar1(k),me NdO}
U{Xm}mENdO'
Given 3 € R" and 7 = [a, 0]} € B we set

b
ITls =D B — Ikl + 4.
Jj=a

We denote by T the vector space freely spanned by the elements of l§, and for 7 = [a, b]]f we set
o(r) = {la.eli*? a<e<b bea=0},

for o = [a, c]]Eﬂj € @(7) define an element of 7' setting

CUED D () | RN e

k=p1+p2
Finally we define a coproduct AT—TeT setting
3(’7’) = Z (1\o) ® 0.
ce®(T)

Proceeding as in the proof of Propositionone can see that A is co-associative. We note in particular
that all the elements of T in the sum defining (7\o) have the same homogeneity. Re-indexing the sum
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defining A(7) we can write
8(7') =: Z veT/V,
v<T
with v running in the basis B of T" and 7/v defined by this identity. The element 7/v of T is a sum
of terms with the same | - |g-homogeneity, so we can abuse notations and write |7/v|g.

For 7 € B we define the set of cuts
Gﬁ(n B) == {027'; lo|g <0 and |7/0|g > 0},
and the set of multicuts
Mﬁti\Cut(T7 B) = {0' = (01, ,0¢(0)) € Eu\t(T)e(”) se(o) > 1, 06(0)2 e 20127}.

For a fixed tuple g = (g1, ..., gn) of distributions, for o = [a, b]]f € B we set
Yg(0) :=P;i(0"ga,...,0"g).
We note that for any p € (N%)"_ setting 8%g = (91 g4, ..., gy), one has
Yorg ([a.b]5) = Tg([a, b];*"). (A.2)

30 — Lemma. For any { € N® andje Pr-1(£), letting T = ﬂl,n]]?, we have
PP(gi - gn) =Pilgr, - gn) — Y. (DY (7/01)Tg(01/02) -+ Tg(0e(o)). (A3)

o‘EMﬁtiTut(T,B)

Proof — We prove by induction on n. The result is true for n = 1. We prove that the right
hand side of satisfies the same recursive relation as P? (gl, . ,gn). The proof is analogous to
the proof of Lemma

From Assumption (A) we have a partition

MultiCut(r, 8) = | | MultiCut(r, 8)[1/],
027'
where

MultiCut(r, B)[v] = {0' — (01, ,Oe(e)) € MultiCut(r, B); v € &, |7/v| = Juin T/aj|}.
s)selo

For any v € EE(T, B) and u<v we have the equivalence
{EIO' € I\/Imti\Cut(T,ﬁ)[l/] s E 0'} & {u € a(u,ﬁ)}
Likewise, for v<u<7 we have
{30’ € Mu/ItEut(T,ﬁ)[u] T pE a’} & {u/u € EE(T/V,B)}.

Define o

To(rB):= Y (D) (7/01)Yg(01/02) - Tg(0e(o)-

UGMﬁEEut(T,B)

Using the two equivalence relations above, the same computation as in the proof of Lemma [7] gives
that

TyrB) == 3 (Te(0) = Ty(0.8)) (To(r/0) = Ty(r/c,8)).

06611\1:(7',/3)

From the induction hypothesis, for o = [c+ 1, n]j4+, € EE(T, B) we have

TQ(U) - T5]((-"-7 /8) = ﬁ]ﬁj;n (9m+1a e 7gn)~
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Likewise, for 7/c = [1,c]?, using (A.2)) we have

Z <§>{TQ(HLCH?) 7T9([1vcﬂfa5)}

Tg(T/U) - TQ(T/O—’ﬂ)

PEPMm(p)
p —
= Z ( ){TOVQ(HLC]]?) —Tapg([[l,c]]?,ﬂ— |p|)}
p
PEPm (p)
— Z (i) IS’ESC_M (87"191, el 8pmgm).
]JE'Pm(p)
This closes the induction step. >

Define
MultiCut(r, 5%, 32)

- {a’ _ (0_1, . ,O'e(o-)) c (G(T,ﬁl) U E-U\t(T, /82))€(0') : 6(0') >1, 0’6(0.)2 ce 20’127’}5
and set
~ a1 52
P (gt agn)i=Pilonom) = D (ST (/1) Tg(o1/02) -+ Tg(0e(er):
o eMultiCut(r,1,32)

31 — Lemma. Suppose B, 32 are two tuples of real numbers such that B} > 32 for every 1 < s < n.
Then we have

~nl 2 ~ a1 ~gl_|e|, 82—t . =31 32
Pjﬂ’ﬁ (gl,...,gn) = Pjﬂ (gl,...,gn) fZPjﬂ €57~ ‘(legl,...,ak‘gc) Pjﬁ_Hf (gc+1,...,gn),
for a sum over ¢+ 1,n]];" € ELR(T, 52)\Eﬁ(7,51).
Proof — The proof is the same as the proof of Lemma Using Assumption (A) we can partition
of MultiCut(, 8%, 8?) as
MultiCut (7, 8%, 82) = MultiCut(r, 8) U | | MultiCut(r, 8%) [8", ],
veCut(r,82)\Cut(r,8)

where

Mﬁti\Cut(T, A8 v] == {0' € Mﬁti\Cut(T,ﬂl,ﬂa) svEeo,|T/v|g, = min |T/O'52}.
c€o,o¢Cut(r,B)

Then we have
~ Al 2 ~nl
PJB # (glv"' »gn) :P]B (glv'" 7gn)

Y G T /o) Te(0ua)).
veCut(r,82)\Cut(r,8")
O'GMﬁtiTut(T,ﬁz)[ﬁl,V}

It suffices then to show for any v = [1, c]]f € GE(T, 62)\a(7, BY) we have

Z (_l)e(a)—i-l'rg(T/Ol)...Tg(ge(a))
oeMultiCut(r,82)[8!,v]

~Déﬂl "L,DEBZ m ~/31m7ﬂ2 m
— By T 0 e 0 )BT (i ).
For such a v, we show below that for u<v we have
{30' € l\/lﬁcfut(T7 BB V], ne a} & {u € a(u,ﬁl) u GR(V, ﬁ2)}, (A.4)

and that for v<u<7 we have

{EIO' € Mu/ltfut(T, BH[B V], ne 0'} & {T/,u € ElR(T/V,,Bl) U EE(T/Z/, 52)}. (A.5)



48

We can then conclude the proof of our lemma in the same way as in the proof of Lemma [7]

A basic observation we will use is that for v = [[1,0]]jE € EE(T, ,82)\6&(7, BY) we necessarily have
|v|gr > 0 and |7/v|g > 0. We now prove (A.4)). Suppose o € MultiCut(r, 82)[8', ] and u<v such
that p € o. If p € Eu\t(r,ﬁl), then p € Eﬁ(u,ﬂl) and otherwise pu € GR(T, ﬁQ)\Eu\t(T,ﬁl), then
uwe a?c(,u,ﬂ2). Reciprocally if p € GE(I/,BI,B2), then necessarily |v/p|g2 < 0and p € GE(T, %) and
|7/l g2 < |7/v|g2. We proceed similarly to prove the equivalence (A.5). >

A.4.2 — Proof of Lemma We first prove point (i) by induction. From the definition of the
operator P we have

P (/00?0 ?T) = P ([ /o), [0
_ Zﬁ‘;/agc\a—\f\ <[T/01]a*f’ o [Uc—l/Uc]8€f>

y ’§|<G‘c/a>c‘o¢7\” ([O_C/O_C+1]83f’ ey [O’e]aef)?

with a sum over the set of integers ¢ € [1,¢e] such that |7/0c|q—j¢ > 0 and |o¢|q—j¢) < 0. Summing
over the set of descending sequences o, < --- < 01 < 7 = [1,n];X™, we obtain that

X (/e o)

e>0 0e<-<0o1<T
is equal to

S Pl o)

e>0 oe<<o1<T

> S B (o o o))

o<r €120 (A.6)

oeCut(r,a—[E)) o=<oe, <=7
=lo/V|a_ 3 3
DD DRl (TP RN R e

€220 Ve, < <0
From Lemma |19|the first sum in (A.6) is equal to P; (87“ fi,---,0Fn fn) if m =0 and 0 otherwise.

For the second double sum in the right hand side of (A.6), note first that all the homogeneities in
the tuple |7/0|o_¢ are positive. It follows that we have

|3|<T/6|w|k\ ([T/(;l]a"f7 o [gc_l/g]aef) =P. ([T/O‘l]akf’ . [Uc—l/a]aef)-

Now, the elements o < 7 have the form o = [c + 1,n[;. 1, X?**™, and 7/0 = [1,c]]_ X"™2 with
m =my +ms and p = p; + p2, so it follows from Lemma [T9] that

Z Z P<([T/Ul]6ef7~--,[O’m_1/0'}8?f>

€1>00<0ey <=7
P\ sa<c—|t+p] etpe
= 1m2=0 Z (p> P;Xfc (ak1+plf17' .. 7ak t fc)
pEP:(p)
Also, the induction hypothesis gives
plo/vla- t € Sa—t>c [ ak. .
DD D ‘”([a/ulr’ T [ves)? f) = 1pymi=0 P e (05 fugr, . 08 f).
€220 Vey <=0

If m # 0 then my # 0 or ma + p1 # 0, and then all the terms in the right hand side of [AZ6] add up to
0; this closes the induction in that case. If now m = 0, the non-zero terms in the sum over o < 7 are
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the terms with o = [c+1,n]j4, and 7/0 = [1,¢]}, and

> X P/ = Py (@M 00 )

e>0 o< <0o1<T
|8+ +De et e n
=20 D0 BT R 0 ) B (@R fea, 0 ),

&P pEP:(p)
where the sum in the right hand side runs over the paris (c,p) such that £ = 0, |[1,c]]_|a—jg > 0
and |[c + 1,n];., 1pla—je < 0. It follows then from recursive definition of the correctors Pjﬁ that the
above quantity is indeed equal to '|5;1—\3| (OFr fr,..., 0% f,).
— We now prove point (ii) by proving the following stronger statement: For 7 = [1,n];X™ € T,
and for any p € N% one has

> X (/o loe/ol)
e>0 0<0e<<T
= 1m 0 Z Z < >< ) a [e],a— \B+P|(ak1+?1f 7akn+p"fn),

PEPn (p) LEPn (k)
where
P (r/olf o loefol) = 0 (i’)'F?g/”a—P'(apl[r/al}f,...,apeﬂ[oe/a}f).
PEPe+1(p)

The proof of this fact relies on Lemma [31] and is an induction over n. The result is true for n = 1;
suppose it holds true for (n —1). From the definition of 9YP. and the recursive relation of Lemma
for any descending sequence o < o, < -+ < 7, the distribution 0YP ([t/01],- -, [0./0]7) is equal to

> (D) (o ol 0%l o)

PEP:(p)
— Z <§){P<(8p1[7/01]f,...,ape[ae/a]f) ()

pEPe(p)

_ Z ’|5|<T/asc|—lpsc|(8121[7/01])‘7.“ﬁpc[gc_l/gc]f)

ceCut(|r/a|—=[p])

X P“TC/0'>C| ‘p>0|(8pc+1[a.c/o.c+1] ape[ e/o’]f)}'

Then, summing over descending sequences o < o, < --- < 7 and inverting the sums over p and ¢, we
obtain

> aPe(irfol ool ) = {3 X Po([r/ei)l /o)) |

e>0 0<0e=<-<T e>00<0e=<--<T

Yy (Z){ > Z <)p7/"' om0 [, )

v<T p=a+b e1 >0 aeP
(a,b)eC(r,v,0) V=Vey <X XT

D D SN (4 L CO e 1

e2>0 beP., (b)
O0=0eqy <=V

where
C(r,o,v) = {(a,b) € (N®)2,  |r/v] > |a] and |v/o| < |bl}.

From Lemma the first line of the right hand side of the last equality is equal 0 if m # 0, as
i1 AT (g) = 0 for any function g; it is equal to 9Pg!(r) if m = 0.
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We are able to use induction hypothesis for the remaining terms Suppose first that m ;é () For
any v < 7 the elements 7/v,v/c € T have the form 7/v = [1, c]] 1X™ and vio=[c+1 n]]JJrUsz
where my, mgo cannot be both equal to 0. The induction abbumptlon ensures in that case that the
second term on the right hand side is 0, which closes the induction step.

Suppose now that m = 0. In this case for v < 7, the elements 7/v,v/c € T have form 7/v =
[1, c]]k “tand v/o = [c+ 1 n]]HU XV with k = kq + kp and v = v1 4+ va. For vy # 0 the induction
assumptlon ensures that the sum over e; is null. We are thus left with the v for which vy = 0. This
leads to the equality

> 3 ap(ir/oiloefol)

e>0 0<0e < <T

= 3 <’Z>{apﬁ?"*'(aklfl,...,a’fnfn)

teP, (k)
_ Z () Z Z ()( )Pa|8<ma<m|P+q+v<3k1+q1+v1f1 akc+qc+vcfc)
j<m yrro
p=q+q’ q€P:(q) vEP:(
c,v
q No‘i‘é‘ c, & C7‘8+q| kfc c kn n
x> (q/)%cg - et oy, ORI g )
q'E€Pn—c(q’)

where the sum over ¢,q in Ndo subject to ¢ + ¢ = p, and c,v runs over the indices such that
[1, c]]fsc—w, [e+1,n] € T+ and £, = 0 and

i+v
3 et c
lal < |[1,el;=7"|,_,» and |¢'| > [[e+1,n];

J+vla

a—q

This gives then

DY ( )( ){ﬁ;lE(8k1+p1f1,“"3kn,+Pn,fn)

PEP(p) EEPL (k)
§ : a—¢|<c,acc—E+p] k1+p1+ ke+pe+tve
P a 1TP1TV1 f ey a DPeTV f

i<e

UEP (’U)

j>ctv

Eleertrs o [E+D , .
% P —[E]>c,asc—|E+ |(akc+1+1h+1fc+1’.“781€n+;ﬂnfn)},

where the sum sum over ¢, v runs over indexes such that [e+1, n]]fig € CUt(T a— |{’,+p|)\aﬁ (7, 0—1¢]).
The result follows in that case from Lemma [31]

References

[1] BaHourt H., CHEMIN J.Y. and DANCHIN R., Fourier Analysis and Nonlinear Partial Differential Equations.
Grundlehren der mathematischen Wissenschaften, 343, Springer (2011).

[2] BAILLEUL I. and BERNICOT F., Spacetime paraproducts for paracontrolled calculus, 8d-PAM and multiplicative
Burgers equations. Ann. Sci. Ec. Norm. Sup., 51(6):1399-1457, (2018).

[3] BaiLLEUL I. and BERNICOT F., High order paracontrolled calculus. Forum Math. Sigma, 7(e44):1-94, (2019).

[4] BAlLLEUL 1. and HosHINO M., A tourist guide to regularity structures and singular stochastic PDEs.
arXiv:2006.03525, to appear in EMS Surveys Math. Sci. (2025).

[5] BAILLEUL I. and HOSHINO M., Paracontrolled calculus and regularity structures I. J. Math. Soc. Japan 73 (2021),
no. 2, 553-595.

[6] BAILLEUL I. and HOSHINO M., Paracontrolled calculus and regularity structures II. J. Ec. polytech. Math. 8
(2021), 1275-1328.

[7] BAILLEUL I. and MOUZARD A., Paracontrolled calculus for quasilinear singular PDEs. Stoch. PDE: Anal. Comp.,
11:599-650 (2023).



51

[8] BRUNED Y., HAIRER M. and ZAMBOTTI L., Algebraic renormalisation of regularity structures. Invent. Math.,
215:1039-1156, (2019).
[9] BRUNED Y. and MANCHON D., Algebraic deformation for (S)PDEs. J. Math. Soc. Japan, 75(2):485-526, (2023).

[10] GHOsAL, P. and Y1, J., Fractal geometry of the PAM in 2D and 3D with white noise potential. arXiv:2303.16063,
(2023).

[11] GUBINELLI M., IMKELLER P. and PERKOWSKI N., Paracontrolled distributions and singular PDEs. PDEs. Forum

Math. Pi, 3(e6):1-75, (2015).

[12] GUBINELLI M. and PERKOWSKI N., KPZ reloaded, Comm. Math. Phys., 349:165-269, (2017).

13] HAIRER M., A theory of regularity structures. Invent. Math., 198:269-504, (2014).

[14] HAIRER M. and KELLY D., Geometric versus non-geometric rough paths. Ann. Inst. H. Poincaré Probab. Statist.,
51(1):207-251, (2015).

[15] HosHINO M., [Iterated paraproducts and iterated commutator estimates in Besov spaces. Stochastic analysis,
random fields and integrable probability—Fukuoka 2019, 239-259, Adv. Stud. Pure Math., 87, Math. Soc.
Japan, Tokyo.

[16] HosHINO M., Commutator estimates from a viewpoints of regularity structures . RIMS Kokytroku Bessatsu,
B79:179-197, (2020).

[17] HosHINO M., A note on the Taylor estimates of iterated paraproducts. RIMS Koékytroku Bessatsu, B95:37-51,
(2024).

[18] LiNARES, P., OTTO, F. and TEMPELMAYR, M., The structure group for quasi-linear equations via universal
enveloping algebras. Comm. Am. Math. Soc., 3:1-64, (2023).

[19] OTTO, F., SAUER, J., SMITH, S.A. and WEBER, H., A priori bounds for quasi-linear SPDEs in the full subcritical
regime. J. Europ. Math. Soc., 27(1):71-118, (2024).

[20] OTTO, F. and WEBER, H., Quasilinear SPDEs via rough paths. Arch. Ration. Mech. Anal., 232(2):873-950,
(2019).

[21] SHEN, H., ZHU, R. and ZnU, X. Global well-posedness for 2D generalized Parabolic Anderson Model via para-
controlled calculus. arXiv:2402.19137, (2024).

e |. Bailleul — Univ Brest, CNRS UMR 6205, Laboratoire de Mathematiques de Bretagne Atlantique,
F- 29200 Brest, France. FE-mail: ismael.bailleulQuniv-brest.fr. Partial support from the ANR-22-
CE40-0017 grant.

e N. Moench — Univ. Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France. FE-mail:
nicolas.moench@ens-rennes.fr



	Introduction
	Local expansion properties of iterated paraproducts.  
	Regularity structures associated with iterated paraproducts.
	Local expansion properties of paracontrolled systems.  

	Simplified iterated paraproducts P< and their local expansion properties
	Simplified iterated paraproducts.
	Generalized derivative operator k.
	Local expansion properties of the P<(f1,…fn).
	Local expansion properties of the kP<(f1,...,fn).

	The regularity structure of iterated paraproducts
	Local expansion properties of iterated paraproducts
	Building blocks for a representation of P in terms of P<.
	A representation formula.
	Proof of Theorem 1.  

	Back to paracontrolled systems
	The regularity structure TL.
	Paracontrolled systems and modelled distributions.

	Appendix
	Basics in regularity structures.
	Basics on analysis and proofs of three lemmas.
	Proofs for Section ??
	Proof of some algebraic lemmas.


