
Local expansion properties of paracontrolled systems

I. BAILLEUL and N. MOENCH

Abstract. The concept of concrete regularity structure gives the algebraic backbone of the operations
involved in the local expansions used in the regularity structure approach to singular stochastic partial
differential equations. The spaces and the details of the structures depend on each equation. We
introduce here a parameter-dependent universal algebraic regularity structure that can host all the
regularity structures used in the study of singular stochastic partial differential equations. This is done
by using the correspondence between the notions of model on a regularity structure and the notion
of paracontrolled system. We prove that the iterated paraproducts that form the fundamental bricks
of paracontrolled systems have some local expansion properties that are governed by this universal
structure.
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1 – Introduction

The theory of regularity structures was introduced by M. Hairer [13] as a convenient setting adapted
to give sense to, and study, a large class of stochastic partial differential equations that share a common
‘singular’ feature and involve some a priori ill-defined terms in their formulations, placing them beyond
the reach of classical stochastic calculus. Each equation in this class can be formulated as a fixed
point problem in a random space of modelled distributions over a deterministic, equation-dependent,
regularity structure. A solution to a singular stochastic partial differential equation then comes under
the form of a local expansion around each state space point in the setting of regularity structures.
One of the remarkable points of this setting is the prominent role played by some algebraic structures.
These structures have their origins in two different sides of the story. On the one hand, regularity
structures are intimately linked with the choice of representing an unknown function/distribution by
its ‘’jet’ in some a priori local expansion system. Some elementary consistency conditions on this
representation make appear the Hopf algebra and the comodule over this algebra that define a general
(concrete) regularity structure. (See e.g. Section 2.1 of Bailleul & Hoshino’s Tourist Guide [4].)
On the other hand, the specific needs required to deal with the singular feature of such equations via
renormalization comes under the form of another algebraic structure that needs to dovetail nicely with
the regularity structure to lead to a clear analysis of a generic singular stochastic partial differential
equation.

There is not a unique way of implementing that picture. The initial scope of the theory was mainly
about semilinear equations. An iterative fixed point formulation of such equations naturally leads
to some regularity structures indexed by some combinatorial trees. The extension by Otto and his
co-authors [20, 19, 18] of the theory of regularity structures to the setting of scalar valued quasi-linear
equations motivated the introduction of some regularity structures indexed by some multi-indices.
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When applied to semi-linear equations, this local expansion device turns out to be greedier than the
tree-based expansion device, in the sense that the multi-index based local expansions typically involve
less terms than the tree-based expansions. We keep from that picture the fact that for a fixed equation
there is not a canonical choice of regularity structure for its study.

Another remarkable feature of the study of singular stochastic partial differential equations is
the fact that each equation can be studied/formulated by using an equation-dependent regularity
structure, so there is no universal regularity structure that works for all equations at a time. This is
in contrast with what happens in the one dimensional case of rough differential equations.

Despite this state of affair, we show in the present work that there is some universal structure
behind these different regularity structures. We use for that purpose another set of tools that was
developed for the study of singular stochastic partial differential equations: the paracontrolled calculus,
introduced first by Gubinelli, Imkeller & Perkowski in [11], and developed in particular by Bailleul &
Bernicot [2, 3]. See e.g. [10, 12, 21] and the reference therein for a tiny sample of some important
contributions to this setting. A dictionary between the language of regularity structures and the
language of paracontrolled calculus was given by Bailleul & Hoshino in their works [5, 6]. Models and
modelled distributions are encoded in the notion of paracontrolled system. Such systems involve some
non-local operators on functions/distributions. We prove that their pointwise expansions involve some
‘universal’ algebra that depends only on the number of reference objects in the paracontrolled system
and their regularity exponents, not on the reference objects themselves. This is the main result of this
work, stated below as Theorem 2.

We now introduce the setting needed to understand this statement. To simplify the exposition, we
work in the Euclidean space Rd0 – all that follows has some direct counterpart in a non-isotropic setting.
The Besov-Hölder spaces Cα1 over Rd0 and their norms ∥·∥α1

are defined as usual for any α1 ∈ R from
the Littlewood-Paley projectors ∆i : D′(Rd0) → C∞(Rd0) setting ∥f∥α1

= supi≥−1 2
iα1∥∆i(f)∥∞, we

will also write Ki for the kernel associated to the operator ∆i. Let
∆<j ··=

∑
i≤j−1

∆i,

and define the paraproduct P(f, g) of any two distributions f, g as

P(f, g) ··=
∑
i≥1

∆<i−1(f)∆i(g).

For f ∈ Cα1 and g ∈ Cα2 we have the optimal continuity estimates
∥P(f, g)∥α2 ≲ ∥f∥∞∥g∥α2 if α1 ≥ 0

and
∥P(f, g)∥α1+α2

≲ ∥f∥α1
∥g∥α2

if α1 < 0.

See for instance Section 2.6 in Bahouri, Chemin & Danchin’s textbook [1] for a reference.
Our main results involve some iterated paraproduct operators that we introduce in Section 1.1.

These operators are non-local and it is non-obvious to give a systematic description of their point-
wise expansion properties. We know from Section 2.1 of [4] that such expansions involve a priori
some concrete regularity structures. We describe in §1 of Section 1.2 a particular concrete regularity
structure and define in §2 of that section a pair (Π, g) of maps on that regularity structure. Our first
main result, Theorem 1, states that (Π, g) is a model. Paracontrolled systems are then introduced in
Section 1.3, where we state the main result of this work, Theorem 2. Its proof in Section 5 will make
it clear that Theorem 2 is a corollary of Theorem 1.

1.1 – Local expansion properties of iterated paraproducts. We define inductively the iterated
paraproduct operator by setting P(f) = f , for any distribution f ∈ D′(Rd0), and

P(f1, . . . , fn) = P
(
P(f1, . . . , fn−1), fn

)
for any n ≥ 2 and any distributions f1, . . . , fn in D′(Rd0). If fn ∈ Cαn , the above continuity estimates
on the paraproduct operator imply that the iterated paraproduct P(f1, . . . , fn) is in some Cγ space
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where γ ≤ αn. Such distributions may nonetheless have some local descriptions to an accuracy strictly
larger than αn around an arbitrary point. In the case of a paraproduct P(f, g) where f ∈ Cα1 , g ∈ Cα1

and 0 < α1 < 1/2, one has for instance∣∣P(f, g)(y)− P(f, g)(x)− f(x)
(
g(y)− g(x)

)∣∣ ≲ |y − x|2α1 , (1.1)
so one can give in that setting a local description of the behaviour of P(f, g) around an arbitrary
point x up to a precision |y − x|2α1 . More generally, for α1, . . . , αn in the interval (0, 1) and f1 ∈
Cα1 , . . . , fn ∈ Cαn , define inductively on n

Sab(x, y) = P(fa, . . . , fb)(y)− P(fa, . . . , fb)(x)−
b−1∑
c=a

P(fa, . . . , fc)S(c+1)b(x, y)

for any 1 ≤ a ≤ b ≤ n. M. Hoshino proved in Theorem 3.1 of [15] that if α1 + · · · + αn < 1
then |S1n(x, y)| ≲ |y − x|α1+···+αn . This gives the equivalent of the inequality (1.1) for the iterated
paraproduct P(f1, . . . , fn) in that case.

One needs an additional ingredient to provide some expansion result at precision larger than 1. For
g ∈ Cα2 with α2 > 0 we write

Rα2(g)(y, x) ··= g(y)−
∑

|k|<α2

∂kg(x)
(y − x)k

k!

for the Taylor remainder function of g at order α2. We use here the convention that for z =
(z1, . . . , zd0) ∈ Rd0 and k ∈ Nd0 one sets zk =

∏
1≤i≤d0

(zi)ki . M. Hoshino extended in [17] the
expansion result (1.1) for P(f, g) to any f ∈ Cα1 , g ∈ Cα2 for α1, α2 > 0 by proving amongst other
things that∣∣∣∣P(f, g)(y)− ∑

|k|<α1+α2

∂k
⋆P(f, g)(x)

(y − x)k

k!
−

∑
|k|<α1

∂kf(x)Rα2(g)(y, x)

∣∣∣∣ ≲ |y − x|α1+α2 , (1.2)

where the generalized derivative

∂k
⋆P(f, g) ··= ∂kP(f, g)−

∑
k1+k2=k

|k1|<α1,|k2|≥α2

(
k

k1

)
(∂k1f)(∂k2g)

is indeed well-defined pointwise. The inequality (1.2) provides a local description of the behaviour
of P(f, g) around an arbitrary point x to a precision |y − x|α1+α2 when α1, α2 > 0. Hoshino was
able to prove in [17] a local expansion result for P(f1, f2, f3) when α1, α2, α3 are all three positive.
Theorem 1 below provides the most general extension of this type of result for some arbitrary iterated
paraproducts P(f1, . . . , fn). In the particular case where the fk ∈ Cαk with αk > 0 for all 1 ≤ k ≤ n,
it implies that the function P(f1, . . . , fn) has a local description around an arbitrary point x up
to a precision |y − x|α1+···+αn . The statement of Theorem 1 does not require that all the αk be
positive and takes a very precise form. Not only does P(f1, . . . , fn) have a local expansion around
any point x, but the functions whose values at x give the coefficients of the expansion of P(f1, . . . , fn)
also have some local expansion, to a lower precision though. The coefficients that appear in the
latter expansion can also be expanded, to an even lower precision, and so on. A reader acquainted
with regularity structures will recognize here the verbal description of a modelled distribution over a
regularity structure. Theorem 1 states that a certain family of functions and distributions defines a
model over a particular regularity structure which we now introduce.

1.2 – Regularity structures associated with iterated paraproducts. The reader will find in
Appendix A.1 some basic facts about regularity structures. It suffices to mention here that they
involve some pairs of vector spaces (T, T+) equipped with some algebraic structures

∆ : T → T ⊗ T+
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and
∆+ : T+ → T+ ⊗ T+.

§1. The regularity structure. We need some notations to introduce the structure that is involved in
Theorem 1.

We use some gothic letters k = (k1, . . . , kc) ∈ (Nd0)c to denote some tuples of multi-indices ki ∈ Nd0

of arbitrary length c. Denote by |k| = k1+ · · ·+kd the ℓ1(N)-norm of an arbitrary k = (k1, . . . , kd0) ∈
Nd0 , and set for k = (k1, . . . , kc) ∈ (Nd0)c

|k| ··=
(
|k1|, · · · , |kc|

)
∈ Nc

∥k∥ ··= |k1|+ · · ·+ |kc| ∈ N.

For k ∈ Nd0 and a non-null integer c we define the set Pc(k) of partitions of k into c sub-mutli-indices
as

Pc(k) ··=
{
(k1, . . . , kc) ∈ (Nd0)c ; k = k1 + · · ·+ kc

}
.

One has
∥k∥ = |k|

for any k ∈ Pc(k) where k ∈ Nd0 , c ≥ 1. For some integers a < b we write Ja, bK for the set of integers
in the closed interval [a, b]. Let X = (X1, . . . , Xd0) stand for an abstract d0-dimensional monomial
with commutative symbol coordinates. For p = (p1, . . . , pd0) ∈ Nd0 we set

Xp ··= (X1)p
1

· · · (Xd0)p
d0
.

Denote by (ε1, . . . , εd0
) the canonical basis of Nd0 , so Xεi = Xi.

We fix a tuple of real numbers
α = (α1, . . . , αn).

The following symbols

B ··=
{

Ja, bKj Xp
}
1≤a<b≤n, j∈Pb−a(ℓ), ℓ∈Nd0 , p∈Nd0

∪
{
Xp

}
p∈Nd0

form the basis of a vector space denoted by T . Similarly the following symbols

B+ ··=
{

Ja, bKkj
}
condition(a,b,k,j)

∪
{
Xεi

}
1≤i≤d0

generate freely an algebra with unit 1+ that we denote by T+. One says that (a, b, k, j) satisfies
condition(a, b, k, j) if 1 ≤ a < b ≤ n, k = (ka, . . . , kb) ∈ Pb−a+1(k) for some k ∈ Nd0 , and j ∈ Pb−a(ℓ)

for some ℓ ∈ Nd0 , and we have
max(|k|, |ℓ|) <

∑
1≤j≤n

|αj |

and
|ℓ|+

∑
a≤j≤b

αj > |k|. (1.3)

We emphasize that the tuples k = (ka, . . . , kb) ∈ Pb−a+1(k) have b − a + 1 components while the
tuples j ∈ Pb−a(ℓ) have b − a components. (To have a unified picture in mind one can think of
j = (ℓa, . . . , ℓb−1) as the tuple (ℓa, . . . , ℓb−1, 0) with b− a+ 1 components.) The ki in k will represent
later some derivatives in some analytic expressions like (1.9) below. The ℓj in j will represent some
polynomial weights in some analytical expressions like (1.4) below. The symbols of B and B+ index
some analytic quantities that will be described in §2. We define an α-dependent grading on T and
T+ by defining the degree of Ja, bKjXp ∈ B as∣∣Ja, bKj Xp

∣∣
α
··= ∥j∥+

∑
a≤j≤b

αj + |p|,

and, requiring that the degree map is multiplicative on T+, we set |εi|α = 1 and define the degree of
Ja, bKkj ∈ B+ as
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∣∣Ja, bKkj ∣∣α ··= ∥j∥+
∑

a≤j≤b

αj − ∥k∥.

We read on the condition (1.3) that the elements of B+ have a positive degree. We will see in Section
3 that there are some particular splitting maps ∆ and ∆+ that turn the pair

Tα ··=
(
(T,∆), (T+,∆+)

)
into a concrete regularity structure.

§2. A model on the regularity structure. We now define the analytic objects Π and g that we associate
to the symbols of the regularity structure. We will see in Theorem 1 below that they define a model
(Π, g) over a truncated version of Tα that is parametrized by some distributions (f1, . . . , fn), where
fi ∈ Cαi for all 1 ≤ i ≤ n. We make the following assumption on the regularity exponents αi of the
fi.

Assumption (A) – One has
∑

a≤j≤b αj /∈ Z for all 1 ≤ a ≤ b ≤ n.

For ℓ ∈ Nd0 and i ≥ −1, we define the modified Littlewood-Paley projector ∆ℓ
i by setting

(∆ℓ
if)(x) ··= f

(
(· − x)ℓKi(· − x)

)
(1.4)

for all f ∈ D′(Rd) and x ∈ Rd, where ∆0
i = ∆i, so Ki stands above for the smooth kernel of the

Littlewood-Paley projector ∆i. For j ≥ 0 we define
∆ℓ

<j
··=

∑
−1≤j′≤j−1

∆ℓ
j′

and set
Pℓ(f, g) ··=

∑
i≥1

(
∆ℓ

<i−1f
)
(∆ig)

for any f, g ∈ D′(Rd). For c ≥ 3, for j = (ℓ1, . . . , ℓc−1) ∈ (Nd0)c−1 and j≤c−2 = (ℓ1, . . . , ℓc−2) ∈
(Nd0)c−2 we define recursively

Pj(f1, . . . , fc) ··= Pℓc−1

(
Pj≤c−2

(f1, . . . , fc−1), fc
)
.

With j = (ε1, ε2, ε3), we have for instance

Pj(f1, . . . , f3, f4) =
∑

i4,i3,i2≥1

∆ε3
<i4−1

{
∆ε2

<i3−1

(
∆ε1

<i2−1(f1)∆i2(f2)
)
∆i3(f3)

}
∆i4(f4)

For Ja, bKjXp ∈ B we define the distribution Π
(
Ja, bKjXp

)
by its action on a test function φ

Π
(
Ja, bKjXp

)
(φ) = Π

(
Ja, bKj

)
(·pφ) (1.5)

with (·pφ)(y) = ypφ(y) and
Π
(
Ja, bKj

) ··= Pj

(
fa, . . . , fb

)
. (1.6)

The definition of the character g on T+ requires a notation. For a tuple β = (β1, . . . , βc) ∈ Rc of
regularity exponents and j = (ℓ1, . . . , ℓc−1) ∈ (Nd0)c−1 we set ℓc = 0∈ Nd0 and define the set of
j-admissible cuts of β as

j− Cut(β) ··=
{
1 ≤ d ≤ c− 1 ; ℓd = 0,

∑
1≤e≤d

(
βe + |ℓe|

)
> 0,

∑
d+1≤e≤c

(
βe + |ℓe|

)
< 0

}
(1.7)

and for d ∈ j− Cut(β) we set

rd = rd(β, j) ··= min

 ∑
1≤e≤d

(
βe + |ℓe|

)
, −

∑
d+1≤e≤c

(
βe + |ℓe|

) .

Set
β≤e ··= (β1, . . . , βe), β>e ··= (βe+1, . . . , βc), βJa,bK ··= (βa, . . . , βb)
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for any 1 ≤ e ≤ c and e ≤ c− 1 and 1 ≤ a ≤ b ≤ c, respectively. We define recursively
P̃β
j (g1, . . . , gc)

··= Pj(g1, . . . , gc)

−
∑

d∈j−Cut(β)

|m|<rd

∑
m∈Pd(m)

m′∈Pc−d(m)

m!

m!m′!
P̃
β≤d−m
j≤d

(
∂m1g1, . . . , ∂

mdgd
)
P̃β>d

j>d+m′

(
gd+1, . . . , gc

) (1.8)

where m ∈ Nd0 and m = (m1, . . . ,md) ∈ Pd(m), and with the convention that P̃βc
m

(
gc
)
= gc.

For any βi ∈ R we denote by Cβi
◦ the closure of C∞ ∩ Cβi in Cβi , and we assume from now on

that fi ∈ Cαi
◦ for all 1 ≤ i ≤ n. In the course of proving Theorem 1 below we will prove that

P̃β
j (g1, . . . , gc) ∈ L∞ if gi ∈ Cβi

◦ for all 1 ≤ i ≤ c and ∥j∥ +
∑

1≤i≤c βi > 0. We can then define for
Ja, bKjk ∈ B+ with k = (ka, . . . , kb)

g
(
Ja, bKkj

) ··= P̃
αJa,bK−|k|
j

(
∂kafa, . . . , ∂

kbfb
)
. (1.9)

1 – Theorem. The pair (Π, g) is a model on the regularity structure Tα. It depends continuously on
(f1, . . . , fn) ∈

∏n
i=1 C

αi
◦ .

For g to be part of a model, we need to prove that each function g
(
Ja, bKkj

)
has a local expansion

to accuracy |y − x||Ja,bKkj |α around any point x, with the different terms in the expansion indexed by
the algebraic structure of the Hopf algebra (T+,∆+). For Π to be part of a model, it also needs to
satisfy some local expansion property that involves g as well.

The strategy that we adopt to prove Theorem 1 is first to prove a statement of a similar flavor for
some distributions and functions that are built from a simplified version of the iterated paraproducts.
The algebra involved in the analysis of these operators is simpler than the algebra associated with the
true iterated paraproducts, and their analytical properties are more flexible. At the same time, we
will see in Proposition 19 of Section 4.2 that the iterated paraproduct P(f1, . . . , fn) can be written as
a sum of simplified iterated paraproducts evaluated on some other functions/distributions built from
the fi. This fact will play a crucial role in transfering the local expansion properties of the simplified
iterated paraproducts to the true iterated paraproducts.

1.3 – Local expansion properties of paracontrolled systems. We are interested in iterated
paraproducts as they are one of the building blocks of paracontrolled calculus. Paracontrolled systems
play within paracontrolled calculus the role that modelled distributions play in the setting of regularity
structures.

Assume we are given a finite set of letters L = {l1, . . . , l|L|} and a family [l] ∈ Crl of distributions
on Rd0 indexed by L. We denote by w∅ the empty word and by w = li1 . . . liw a generic word with
letters from L. The concatenation of two words w1 and w2 is denoted by w1w2. If w = w1w2 we say
that w1 the a begining of the word w. We assume that the letters come with a notion of size |li| ∈ R
and set |w∅| = 0 and

|w| ··= |li1 |+ · · ·+ |liw |.
For a positive real number r we denote by W<r the set of words of size less than r, including the empty
word. An r-paracontrolled system is a family (uw)w∈U<r

of functions/distributions on Rd0 indexed
by a subset U<r of W<r that contains the empty word w∅ and which has the following properties.

(1) There is a finite subset Uf
<r of U<r made up of words of positive size and such that every word

of U<r is the begining of one of the words of Uf
<r. (The exponent f in Uf

<r stands for ‘final’.)
(2) For all w ∈ U<r one has

uw =
∑
l∈L

P
(
uwl, [l]

)
+ u♯

w (1.10)

with u♯
w ∈ Cr−|w|.
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Condition (1) ensures that the family (uw)w∈U<r is finite even if some of the sizes |l| are non-positive.
This condition is automatically satisfied if all the |l| are positive. We talk of the [l] as the reference
functions/distributions.

Here is an example of an r−paracontrolled system with two reference functions [l1] ∈ C⌊l1⌋, [l2] ∈
C |l2| with |l1|, |l2| positive and |l1|+ |l2| < r

uw∅ = P(ul1 , ⌊l1⌋) + P(ul2 , ⌊l2⌋) + u♯
w∅

ul1 = P(ul1l1 , ⌊l1⌋) + u♯
l1
, u2 = P(ul2l1 , ⌊l1⌋) + u♯

l2

ul1l1 = u♯
l1l1

, ul2l1 = u♯
l2l1

.

One observes that
uw∅ = P

(
ul1l1 , ⌊l1⌋, ⌊l1⌋

)
+ P(u♯

l1
, ⌊l1⌋) + P

(
ul2l1 , ⌊l1⌋, ⌊l2⌋

)
+ P(u♯

l2
, ⌊l2⌋) + P(u♯

w∅
)

ul1 = P(u♯
l1l1

, ⌊l1⌋) + P(u♯
l1
), ul2 = P(u♯

l2l1
, ⌊l1⌋) + P(u♯

l2
).

More generally, for an arbitrary r-paracontrolled system, it follows from (1.10) that each uw writes as
a finite sum of iterated paraproducts of the form P

(
u♯
w, [li1 ], . . . , [linw

]
)
, including u♯

w = P(u♯
w).

Paracontrolled systems were first introduced by Bailleul & Bernicot in [3] in their development
of paracontrolled calculus, tailored for its application to some classes of singular stochastic partial
differential equations. Under some appropriate conditions, such equations have a unique solution in
an equation-dependent space of functions/distributions with a paracontrolled structure (1.10). On
can say that paracontrolled calculus replaces the mechanics of local expansions in space that is at the
heart of regularity structures by a type of expansion in frequency (Fourier) space.

The notion of paracontrolled system is useful even for the study of regularity structures. Bailleul
& Hoshino proved for instance in [5] that, for a model M = (Π, g) on a fixed regularity structure, the
distributions/functions Π(τ) and g(µ) can be described by some paracontrolled systems

Π(τ) =
∑
σ<τ

P
(
g(τ/σ), [σ]M

)
+ [τ ]M

g(µ) =
∑

1+<+ν<+µ

P
(
g(µ/ν), [ν]g

)
+ [µ]g

(1.11)

for some reference functions/distributions [τ ]M ∈ C |τ |, [µ]g ∈ C |µ| built from the model M, for some
index sets σ < τ and 1+ <+ ν <+ µ whose precise definition does not matter here – see Section 2.2
of [4] for that point. Furthermore, for any modelled distribution v =

∑
τ vττ of positive regularity r

the family
(
RM(v), (vτ )τ

)
is an r-paracontrolled system

RM(v) =
∑
|τ |<r

P
(
vτ , [τ ]

M
)
+ [v]

vτ =
∑

τ<σ,|σ|<r

P
(
vσ, [σ/τ ]

g
)
+ [vτ ]

(1.12)

with reference functions/distributions the family of brackets [τ ]M, [µ]g, and for some funtctions [v]
and [vτ ]. This is Proposition 12 and Theorem 1 in [5]. Bailleul & Hoshino further proved in The-
orem 1 of [6] that a sub-family of these ‘brackets’ [τ ]M, [µ]g parametrizes the set of models over a
given regularity structure, providing in particular a linear parametrization of the nonlinear space
of models on that regularity structure. These results hold for any reasonable regularity structure.
For a particular class of regularity structures T including the BHZ regularity structures used for
the study of subcritical singular stochastic PDEs, they proved that for a given model on T the set
of modelled distributions with regularity r is parametrized by the family of functions/distributions{
[v] ∈ Cr

}
∪
{
[vτ ] ∈ Cr−|τ |, τ in a linear basis of T

}
|τ |<r

– this is Theorem 5 and Theorem 7 in [6].
In all these results the regularity structure is fixed. In particular, if we are given some placeholders

for [v] and the [vτ ] there is a unique modelled distribution over the given regularity structure that
has these functions/distributions as its brackets. We have no a priori regularity structure in the more
general situation of an arbitrary paracontrolled system. Our second main result means informally that
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we can lift a paracontrolled system into a modelled distribution on some universal regularity structure
and for some system-dependent model. Recall we assume [l] ∈ Crl .

2 – Theorem. Pick r > 0. Given an r-paracontrolled system (uw)w∈U<r
as in (1.10) there is an

explicit regularity structure TL that depends only on |L|, r and the regularity exponents rl, a model M
on TL and a modelled distribution u of regularity r such that uw∅ = RM(u).

We call the regularity structure TL universal as it only depends on the numbers |L|, r, rl and not
on the reference objects [l] themselves.

Bailleul & Hoshino’s works [5, 6] established a correspondence between modelled distributions and
paracontrolled systems building on (1.11) and (1.12). One associates to an equation a regularity
structure T , to a model M on T the paracontrolled system (1.11) and to a model distribution v
defined of M the paracontrolled system (1.12). The inverse map consists in getting back the model M
over T from (1.11) and the modelled distribution v from (1.12). In that particular context, Theorem
2 does something of a different nature. Starting from a regularity structure T , a model M on T , a
modelled distribution v and their associated paracontrolled systems (1.11) and (1.12), it introduces

– another regularity structure TL that retains little information about the initial regularity
structure T ,

– a model and a modelled distribution on TL,
whose associated paracontrolled systems are also given by (1.11) and (1.12). This situation is some-
what reminiscent of the study by Hairer & Kelly [14] of the links between the notions of geometric
and branched rough paths.

Note the important fact that Theorem 2 applies to any paracontrolled system. It does not need to
come as the system associated with a model on a regularity structure or a modelled distribution.

Organisation of the article. A simplified iterated paraproduct operator P<(f1, . . . , fn) is intro-
duced in Section 2, and we provide in Section 2.3 its local expansion properties. The latter involve
some functions ∂k

⋆P(f1, . . . , fn) that are introduced in Section 2.2. These functions also have some
local expansion properties which we investigate in Section 2.4. We leave aside the simplified iterated
paraproducts in Section 3 and describe in this section the regularity structure Tα that is involved in
the statement of Theorem 1. This statement is proved in Section 4. We build in Section 4.1 a number
of functions/distributions that will be used to represent an iterated paraproduct P(f1, . . . , fn) as a
sum of simplified P< iterated paraproducts. The representation formula itself is proved in Section
4.2. We prove Theorem 1 in Section 4.3. Section 5 is dedicated to proving Theorem 2. We describe
the universal regularity structure involved in this statement in Section 5.1 and prove Theorem 2 in
Section 5.2. A number of technical lemmas are deferred to some appendices. The proof of the local
expansion property of the functions ∂k

⋆P(f1, . . . , fn) involves in particular some algebraic results that
are proved in Appendix A.4. We also defer to the appendices the proof of some algebraic identities
that play a crucial role in our proof of Theorem 1. Appendix A.1 gives some background on regularity
structures and Appendix A.2 gives some general and particular analysis results.

Notations. We collect here a number of notations that are used throughout the text.
– The letters i, j and a, b, c, d, e will exclusively be used to denote some integers.
– The letters k, ℓ,m will denote exclusively some elements of Nd0 .
– We denote by α = (α1, α2, . . . ) or β = (β1, β2, . . . ) some finite tuples of regularity exponents
αi, βj in R.

– For z = (z1, . . . , zd0) ∈ Rd0 and k ∈ Nd0 we write zk =
∏

1≤i≤d0
(zi)ki .

– For k = (k1, . . . , kd0) ∈ Nd0 we write k! =
∏d0

i=1 k
i! and for m,m′

1, . . . ,m
′
r in Nd0 we set(

m

(m′
1, . . . ,m

′
r)

)
··=

m!∏
1≤i≤r m

′
i!
.

– We write ≲p for an inequality that holds up to a multiplicative positive constant that only
depends on some parameter p.
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– We work here in the Euclidean space Rd0 . All that follows has a direct counterpart in an
anisotropic version of Rd0 . We stick to the Euclidean setting not to distract the reader from
the main points of this work.

2 – Simplified iterated paraproducts P< and their local expansion properties

We introduce in this section some simplified iterated paraproducts. It turns out to be convenient
to define these operators on a slightly larger class Cα

◦ of spaces than the usual Cα spaces (α ∈ R).
This extended setting is described in Section 2.1, where the simplified iterated operator P< is also
introduced. The description of the local expansion properties of the simplified iterated paraproducts
involves some generalized derivative operators ∂k

⋆ that we introduce in Section 2.2. The main result
of this section is Corollary 5, that entails the continuity of the ∂k

⋆P< operators on the space
∏n

j=1 C
αj
◦

if |k| <
∑n

j=1 αj . Generalizing Hoshino’s result (1.2), we state and prove the local expansion property
of the P<(f1, . . . , fn) in Section 2.3, for fj ∈ C

αj
◦ with αj > 0 for all 1 ≤ j ≤ n. It takes the form

P<(f1, . . . , fn)(y) =
∑

|k|<
∑n

j=1 αj

∂k
⋆P<

(
f1, . . . , fn

)
(x)

(y − x)k

k!

+
n−1∑
c=1

∑
|k|<

∑c
j=1 αj

∂k
⋆P<

(
f1, . . . , fc

)
(x)

(y − x)k

k!
△yxP<(fc+1, . . . , fn)

+
(
△yxP<

)
(f1, . . . , fn),

where each term △yxP<(fc+1, . . . , fn) is of order |y − x|
∑n

j=c+1 αj , for x, y ∈ Rd close enough.

2.1 – Simplified iterated paraproducts. We will work through part of this document with the
following extension of the classical Besov-Hölder spaces.
Definition – For r ∈ R we define Cr as the vector space of sequences f = (fi)i≥−1 of smooth
functions to which one can associate a ball B ⊂ (Rd0)′ such that each fi is spectrally supported in 2iB
and

∥f∥r ··= sup
i≥−1

2ir ∥fi∥L∞ < ∞.

This formula defines a norm on Cr. An element of

C∞ ··=
⋂
r>0

Cr

is said to be smooth, and we set

C−∞ ··=
⋃
r∈R

Cr, C0+ ··=
⋃
r>0

Cr.

We write Cr
◦ for the closure of C∞ in Cr.

For r > 0 there is a canonical continuous non-injective surjection from Cr onto the classical Besov-
Hölder space Cr sending f = (fi)i≥−1 to

∑
i≥−1 fi. The Littlewood-Paley projectors give a continuous

injection ι from Cr into Cr for any r ∈ R, by setting ι(f) ··= (∆i(f))i≥−1. We define for any distribution
f on Rd0 and o ∈ R+ its Taylor polynomial T o

hf of order o in the direction h ∈ Rd as the distribution

(T o
hf)(·) ··=

∑
|k|<o

hk

k!
∂kf(·).

Its associated Taylor remainder Ro
hf is defined from the relation

|h|o(Ro
hf)(·) ··= f(·+ h)− (T o

hf)(·).
The derivation operator ∂k, the Taylor expansion and remainder maps T o

h , R
o
h can be applied to any

f = (fi)i≥−1 ∈ Cr by applying the corresponding classical operators to each fi. These operations
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behave well in this context. For any r ∈ R and k ∈ Nd0 , Bernstein inequalities ensures that the
operator ∂k sends continuously Cr into Cr−|k|. We give the proof of the following elementary fact in
Appendix A.2.

3 – Lemma. For r ∈ R, f ∈ Cr with fi is spectrally supported in 2iB for all i ≥ −1, and o ∈ R+ we
have

f(·+ h)−
∑
|k|<o

hk

k!
(∂kf)(·) = |h|o (Ro

hf)(·)

with
∥Ro

hf∥r−o ≲B ∥f∥r ,
uniformly over |h| ≤ 1.

For f1, . . . , fn in C−∞ we define iteratively the simplified iterated paraproducts
P<(f1, . . . , fn) =

(
P<(f1, . . . , fn)i

)
i≥−1

∈ C−∞

as the element of C−∞ given by P<(f1) = f1 and with fn = (fni)i≥−1

P<(f1, . . . , fn)i ··=
∑

j<i−1

P<(f1, . . . , fn−1)j fni.

We write
P<(f1, . . . , fn) ··=

∑
i≥−1

P<(f1, . . . , fn)i

for its associated distribution. With f1 = (∆i(f1))i≥−1, and similar definitions of f2, f3, f4 in terms of
some distributions f2, f3, f4, we have for instance

P<(f1, f2, f3) =
∑

i1<i2−1
i2<i3−1

∆i1(f1)∆i2(f2)∆i3(f3)

while
P(f1, f2, f3) =

∑
i1<i2−1
i2<i3−1

∆<i3−1

(
∆i1(f1)∆i2(f2)

)
∆i3(f3),

and
P<

(
f1, f2, f3, f4

)
=

∑
i1<i2−1
i2<i3−1
i3<i4−1

∆i1(f1)∆i2(f2)∆i3(f3)∆i4(f4)

while
P
(
f1, f2, f3, f4

)
=

∑
i1<i2−1
i2<i3−1
i3<i4−1

∆<i4−1

(
∆<i3−1

(
∆i1(f1)∆i2(f2)

)
∆i3(f3)

)
∆i4(f4)

Recall that Assumption (A) requires from a tuple α = (α1, . . . , αn) ∈ Rn that
∑

a≤j≤b αj /∈ Z
for all 1 ≤ a ≤ b ≤ n.. From now on

all our tuples α = (α1, . . . , αn), β = (β1, . . . , βn) in Rn will satisfy Assumption (A).

2.2 – Generalized derivative operator ∂k
⋆ . We define in this section some operators ∂k

⋆ that
will turn out to be involved in the pointwise expansion of the simplified iterated paraproducts. They
are built from some operators P̃β

< that we first introduce in §1. The continuity properties of these
operators are stated in §1 in Corollary 5 and proved in §2.
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§1 On the operators P̃β
< – Recall that, for a tuple β = (β1, . . . , βc) ∈ Rc of regularity exponents and

j = (ℓ1, . . . , ℓc−1) ∈ (Nd0)c−1, we set ℓc = 0 ∈ Nd0 and define the set of j-admissible cuts of β as

j− Cut(β) ··=
{
1 ≤ d ≤ c− 1 ; ℓd = 0,

∑
1≤e≤d

(
βe + |ℓe|

)
> 0,

∑
d+1≤e≤c

(
βe + |ℓe|

)
< 0

}
.

We define here the set of cuts of β as

Cut(β) ··= 0− Cut(β) =

{
d ∈ [[1, n− 1]],

d∑
j=1

βj > 0 and
n∑

j=d+1

βj < 0

}
.

We also define the following set of multi-cuts of β

MultiCut(β) =
{
d =

(
0 =·· d0 < d1 < · · · < dn(d) ··= n

)
; ∀e ∈ J1, n(d)− 1K, de ∈ Cut(β)

}
.

For β ∈ Rn and f1, . . . , fn ∈ C0+ we set

P̃β
<(f1, . . . , fn) ··=

∑
d∈MultiCut(β)

(−1)n(d)+1

n(d)∏
e=1

P<

(
fde−1+1, . . . , fde

)
. (2.1)

One has for instance P̃β
<(f) = P<(f) =

∑
i≥−1 fi for all f = (fi)i≥−1 ∈ C−∞, and

P̃
(2,1)
< (f1, f2) = P<(f1, f2),

P̃
(1,−2)
< (f1, f2) = P<(f1, f2)− f1f2,

P̃
(1,−2,2,−1)
< (f1, f2, f3, f4) = P<(f1, f2, f3, f4)− f1P<(f2, f3, f4)− P<(f1, f2, f3)f4 + f1P<(f2, f3)f4,

P̃
(1,−1,3/2)
< (f1, f2, f3) = P<(f1, f2, f3).

We also set for i ≥ −1

P̃β
<(f1, . . . , fn){i}

··=
∑

d∈MultiCut(β)

(−1)n(d)+1

{ n(d)−1∏
c=1

P<

(
fdc−1+1, . . . , fdc

)}
P<

(
fdn(d)−1+1, . . . , fn

)
i
.

One has the relation
P̃β
<(f1, . . . , fn) =

∑
i≥−1

P̃β
<(f1, . . . , fn){i},

but beware that P̃β
<(f1, . . . , fn){i} does not represent the Littlewood-Paley projection of the distri-

bution P̃β
<(f1, . . . , fn) as P̃β

<(f1, . . . , fn){i} is not spectrally supported in a ball. We introduce it as it
appears naturally in the algebraic manipulations involving the operators P̃β

<.
Equation 2.1 defining the P̃β

< can be compared to Zimmermann’s forest formula. Here, the ’diverging
parts’ one can extract from a simplified paraproduct P<(f1, . . . , fn) are the tails P<(fj , . . . , fn) such
that

∑n
j=1 βj < 0.

We prove below the following statement.

4 – Proposition. For any β ∈ Rn, set

Eβ ··=
{
c ∈ J1, nK ;

c∑
j=1

βj > 0 and
n∑

j=c+1

βj > 0

}
and

m0 ··=
{

max Eβ , if Eβ ̸= ∅,
1, otherwise. .
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One has for every
(
f1, . . . , fn

)
∈ (C0+)n the estimate∥∥P̃β

<

(
f1, . . . , fn

)
{i}

∥∥
L∞ ≲ 2−i

∑n
j=m0

βj

n∏
j=1

∥fj∥βj
.

5 – Corollary. For any β ∈ Rn such that
∑n

j=1 βj > 0, the multilinear map(
f1, . . . , fn

)
∈ (C∞)n 7→ P̃β

<

(
f1, . . . , fn

)
∈ L∞

has a continuous extension as a map from
∏n

j=1 C
βj
◦ into L∞.

Proof – From the definition of m0, the sum
∑n

j=m0
βj is positive, then

∑
i≥−1 2

−i
∑n

j=m0
βj < +∞,

so that the last proposition ensures∣∣P̃β
<

(
f1, . . . , fn

)∣∣ ≤ ∑
i

∥∥P̃β
<

(
f1, . . . , fn

)
{i}

∥∥
L∞ ≲

n∏
j=1

∥fj∥βj
.

This inequality gives the result. �

§2 Proof of Proposition 4 – The following algebraic result will be useful in the proof of Proposition
4. The reader can harmlessly skip its proof on a first reading In the following statement, any constant
in the open interval (1, 2) could be used in place of the constant 3/2.

6 – Lemma. Given β ∈ Rn we define

ρc ··=
{

+1 if (n− c) ∈ Cut(β)
−1 otherwise , ρ ··=

n−1∏
c=1

(−ρc).

For any f1 = (f1i)i≥−1, . . . , fn = (fni)i≥−1 in C∞ we have

P̃β
<(f1, . . . , fn){i1} = ρ

∑
ρ1(i2−i1+3/2)>0

· · ·
∑

ρn−1(in−in−1+3/2)>0

n∏
c=1

fcin−c+1
.

Proof – We prove the identity by induction on n. The result holds for P̃β
<(f1). Suppose now that

it holds for (n − 1) functions and consider first the case that (n − 1) /∈ Cut(β), so ρ1 = −1 and the
condition ρ1(i2 − i1 + 3/2) > 0 reads i2 < i1 − 1. Then P̃β

<

(
f1, . . . , fn

)
{i1} is equal to

∑
d∈MultiCut(β)

(−1)n(d)+1

{ n(d)−1∏
c=1

P<

(
fdc−1+1, . . . , fdc

)}
P<

(
fdn(d)−1+1, . . . , fn

)
i1

=
∑

d∈MultiCut(β)

(−1)n(d)+1

{ n(d)−1∏
c=1

P<

(
fdc−1+1, . . . , fdc

)}
P<

(
fdn(d)−1+1, . . . , fn−1

)
<i1−1

fni1

=
∑

i2<i1−1

P̃β∗

<

(
f1, . . . , fn−1

)
{i2} fni1

where
β∗ ··=

(
β1, . . . , βn−2, βn−1 + βn

)
.

From the induction hypothesis we have

P̃β∗

<

(
f1, . . . , fn−1

)
{i2} = ρ

∑
ρ2(i3−i2+3/2)>0

· · ·
∑

ρn−1(in−in−1+3/2)>0

n−1∏
c=1

fcin−c+1
,

so we can conclude the induction in that case. If now (n − 1) ∈ Cut(β) we have ρ1 = 1 and the
condition ρ1(i2 − i1 + 3/2) > 0 reads i2 ≥ i1 − 1. We have in that case
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P̃β
<(f1, . . . , fn){i1}

=
∑

d∈MultiCut(β)
(n−1)∈d

(−1)n(d)+1

n(d)−1∏
c=1

P<

(
fdc−1+1, . . . , fdc

)
fni1

+
∑

d∈MultiCut(β)
(n−1)/∈d

(−1)n(d)+1

n(d)−1∏
c=1

P<

(
fdc−1+1, . . . , fdc

)
P<

(
fdn(d)−1+1, . . . , fn

)
i1

=
∑

d∈MultiCut(β)
(n−1)∈d

(−1)n(d)+1

n(d)−1∏
c=1

P<

(
fdc−1+1, . . . , fdc

)
fni1

+
∑

d∈MultiCut(β)
(n−1)/∈d

(−1)n(d)+1

n(d)−1∏
c=1

P<

(
fdc−1+1, . . . , fdc

)
P<

(
fdn(d)−1+1, . . . , fn−1

)
<i1−1

fni1

=
∑

d∈MultiCut(β∗)

(−1)n(d)+1

{ n(d)−1∏
c=1

P<

(
fdc−1+1, . . . , fdc

)

−
n(d)−2∏
c=1

P<

(
fdc−1+1, . . . , fdc

)
P<

(
fdn(d)−2+1, . . . , fn−1

)
<i1−1

}
fni1

= −
∑

i2>i1−2

P̃β∗

<

(
f1, . . . , fn−1

)
{i2} fni1 .

We conclude from the induction hypothesis that

P̃β
<

(
f1, . . . , fn

)
{i1} = −

∑
i2≥i1−1

(−ρ)
∑

ρ2(i3−i2+3/2)>0

· · ·
∑

ρn−1(in−in−1+3/2)>0

{ n−1∏
c=1

fcin−c+1

}
fni1

which allows us to close the induction in that case. �

Proof of Proposition 4 – For f1, . . . fn ∈ C+∞ we have from Lemma 6 the bound∣∣P̃β
<

(
f1, . . . , fn

)
{i}

∣∣ ≲ Cβ(i)

n∏
j=1

∥fj∥βj
,

where

Cβ(i1) ··=
∑

ρ1(i2−i1+3/2)>0

· · ·
∑

ρn−1(in−in−1+3/2)>0

n∏
c=1

2−in+c−1βc .

We prove by induction that
Cβ(i) ≲ 2−i

∑n
j=m0

βj . (2.2)
– If β1 < 0 we have ρn−1 = −1 and ∑

in; ρn−1(in−in−1+3/2)>0

2−inβ1 ≃ 2−in−1β1 .

We have in that case
C(β1,...,βn)(i) ≃ C(β1+β2,β3...,βn)(i).

– If now β1 > 0 and
∑n

j=2 βj < 0, then ρn−1 = +1 and we have
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∑
in; ρn−1(in−in−1+3/2)>0

2−inβ1 ≃ 2−in−1β1 ,

so we have again
C(β1,...,βn)(i) ≃ C(β1+β2,β3...,βn)(i).

– If finally β1 > 0 and
∑n

j=2 βj > 0, we have this time∑
in; ρn−1(in−in−1+3/2)>0

2−inβ1 ≃ 1,

so
C(β1,...,βn)(i) ≃ C(β2,β3...,βn)(i).

In all the cases the inequality (2.2) follows by induction since C(β1)(i) = 2−iβ1 . �

§3 Generalized derivative operators ∂k
⋆ – These operators are defined in terms of the operators P̃β

<

as follows.

Definition – Pick some integers 1 ≤ a ≤ b ≤ n and α = (αa, . . . , αb) ∈ Rb−a+1. For k =

(ka, . . . , kb) ∈ (Nd0)b−a+1 and fa, . . . , fb in C∞ we define

∂k
⋆αP<

(
fa, . . . , fb

) ··= P̃
α[a,b]−|k|
<

(
∂ka fa, . . . , ∂

kb fb
)
.

and
∂k
⋆αP<

(
fa, . . . , fb

) ··= ∑
k∈Pb−a+1(k)

(
k

k

)
∂k
⋆αP<

(
fa, . . . , fb

)
,

As a consequence of Corollary 5 the map ∂k
⋆αP< is continuous from

∏b
j=a C

αj
◦ into L∞ if |k| <∑b

j=a αj . It makes sense in that setting to simply write ∂k
⋆ rather than ∂k

⋆α, as the information on α

is already recorded in the domain
∏b

j=a C
αj
◦ of the extension.

The following lemma gives a recursive definition of the P̃β
<(f1, . . . , fn){i} and leads in (2.4) below

to a similar recursive formula for the operators ∂⋆P<.

7 – Lemma. For any β = (β1, . . . , βn) ∈ Rn and any f1, . . . , fn in C∞ we have

P̃β
<

(
f1, . . . , fn

)
{i} = P<

(
f1, . . . , fn

)
i

−
∑

d∈Cut(β)

P̃
(β1,...,βd)
<

(
f1, . . . , fd

)
P̃
(βd+1,...,βn)
<

(
fd+1, . . . , fn

)
{i}. (2.3)

Proof – Assumption (A) implies in particular that the numbers
∑j

c=1 βc are all distinct for dif-
ferent j ∈ J1, n− 1K. We then have the following partition of MultiCut(β)

MultiCut(β) =
{
(0, n)

}
⊔

⊔
d∈Cut(β)

MultiCut(β)[d],

with

MultiCut(β)[d] ··=
{
d ∈ MultiCut(β) ; d ∈ d,

d∑
c=1

βc = min
j∈d

j∑
c=1

βc

}
.

One can thus write
P̃β
<(f1, . . . fn){i} = P<(f1, . . . , fn)i

+
∑

d∈Cut(β)

∑
d∈MultiCut(β)[d]

(−1)n(d)+1

n(d)−1∏
c=1

P<

(
fdc−1+1, . . . , fdc

)
P<

(
fdn(d)−1+1, . . . , fn

)
{i}.

For d ∈ Cut(β) and 1 < j < d we have the equivalence(
∃d ∈ MultiCut(β)[d], j ∈ d

)
⇔

(
j ∈ Cut

(
(β1, . . . , βd)

))
.
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Likewise for d < j < n we have(
∃d ∈ MultiCut(β)[d], j ∈ d

)
⇔

(
j − d ∈ Cut

(
(βd+1, . . . , βn)

))
.

This entails that we have∑
d∈MultiCut(β)[d]

(−1)n(d)+1

n(d)−1∏
c=1

P<

(
fdc−1+1, . . . , fdc

)
P<

(
fdn(d)−1+1, . . . , fn

)
{i}

= −P̃
β≤d

<

(
f1, . . . , fd

)
P̃β>d
<

(
fd+1, . . . , fn

)
{i},

from which the statement of the lemma follows. �

Recall that Corollary 5 extends continuously the P̃β
< maps to

∏n
j=1 C

βj
◦ and justifies that we remove

the index α from ∂k
⋆α when it is understood that (f1, . . . , fn) ∈

∏n
j=1 C

αj
◦ . One can rewrite Lemma 7

in the context of the ∂⋆-derivatives. For any multi-indice k ∈ Nd0 and (f1, . . . , fn) ∈
∏n

j=1 C
βj
◦ we have

∂k
⋆P<

(
f1, . . . , fn

)
= ∂kP<

(
f1, . . . , fn

)
−

n−1∑
c=1

∑
|ℓ|<

∑c
j=1 αj

|k−ℓ|>
∑n

j=c+1 αj

(
k

ℓ

)
∂ℓ
⋆P<

(
f1, . . . , fc

)
∂k−ℓ
⋆ P<

(
fc+1, . . . , fn

)
. (2.4)

2.3 – Local expansion properties of the P<(f1, . . . fn). Recall Hoshino’s expansion result (1.2)
for P(f, g), for both f and g of positive regularity. We give in Proposition 12 below a similar expansion
result for P<(f1, . . . , fn), for any n ≥ 2 and fj ∈ C

αj
◦ for all 1 ≤ j ≤ n.

Let us make a first naive try at expanding P<(f1, . . . fn)(· + h) as a function of h ∈ Rd0 . For any
o > 0 we have

P<

(
f1, . . . , fn

)
(·+ h) = P<

(
f1(·+ h), . . . , fn(·+ h)

)
= P<

( ∑
|k1|<o

hk1

k1!
∂k1 f1 + |h|oRo

hf1, f2(·+ h), . . .

)

=
∑

|k1|<o

P<

(
∂k1 f1

hk1

k1!
,

∑
|k2|<o−|k1|

hk2

k2!
∂k2 f2 + |h|o−|k1|R

o−|k1|
h f2, . . .

)
+ P<

(
|h|oRo

hf1, f2(·+ h), . . .
)
= (· · · )

=
∑
|k|<o

∑
k∈Pn(k)

hk

k!

(
k

k

)
P<

(
∂k1 f1, . . . , ∂

kn fn
)

+

n∑
c=1

∑
|k|<o

k∈Pc−1(k)

hk|h|o−|k|

k!
P<

(
∂k1 f1, . . . , ∂

kc−1 fc−1, R
o−|k|
h fc, fc+1(·+ h), . . .

)

(2.5)

= T o
hP<

(
f1, . . . , fn

)
+

n∑
c=1

∑
|k|<o

k∈Pc−1(k)

hk|h|o−|k|

k!
P<

(
∂k1 f1, . . . , ∂

kc−1 fc−1, R
o−|k|
h fc, fc+1(·+ h), . . .

)
.

This formula does not give us the kind of expansion we are looking for as the last paraproducts
in the right hand side of the equality contain some distributions with negative regularities so these
paraproducts have no reason to define some functions. This would be the case if we had instead
of some P< terms some P̃β

< terms, for some appropriate tuples β depending on the arguments. We
will get our local expansion for P<(f1, . . . fn)(·+ h) by introducing the appropriate terms to force the
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appearance of these P̃β
< operators. We proceed gradually and first introduce the quantity that will be

the remainder term in this expansion.
For 1 ≤ a ≤ b ≤ n− 1, k ∈ Nd0 and k = (ka+1, . . . , kb−1) ∈ Pb−a−1(k) set

αa(k, o) ··=
(
αa+1 − |ka+1|, . . . , αb−1 − |kb−1|, αb − o+ |k|, αb+1, . . . , αn

)
.

and (
△α

h,oP<

)
(fa+1, . . . , fn) ··=

n∑
b=a+1

∑
|k|<o

k∈Pb−a−1(k)

hk|h|o−|k|

k!
P̃
αa(k,o)
<

(
∂ka+1 fa+1 . . . , ∂

kb−1 fb−1,

R
o−|k|
h fb, fb+1(·+ h), . . . , fn(·+ h)

)
,

(2.6)

and for i ≥ −1(
△α

h,oP<

)
(fa+1, . . . , fn){i} ··=

n∑
b=a+1

∑
|k|<o

k∈Pb−a−1(k)

hk|h|o−|k|

k!
P̃
αa(k,o)
<

(
∂ka+1 fa+1 . . . , ∂

kb−1 fb−1,

R
o−|k|
h fb, fb+1(·+ h), . . . , fn(·+ h)

)
{i}.

(2.7)

We denote by δ0 the distance from Z to the set of all
∑

a≤j≤b αj /∈ Z where 1 ≤ a ≤ b ≤ n; it is positive
from Assumption (A). Proposition 4 and Corollary 5 give us some uniform continuity estimates on
(△α

h,oP<)(fa+1, . . . , fn){i} and (△α
h,oP<)(fa+1, . . . , fn) in the form of the following Lemma.

8 – Lemma. If o >
∑n

j=a+1 αj − δ0, one has∣∣(△α
h,oP<

)
(fa+1, . . . , fn){i}

∣∣ ≲ |h|o 2−i(
∑n

j=a+1 αj−o)
n∏

j=a+1

∥fj∥αj
, (2.8)

and for o <
∑n

j=a+1 αj ∣∣(△α
h,oP<

)
(fa+1, . . . , fn)

∣∣ ≲ |h|o
n∏

j=a+1

∥fj∥αj
. (2.9)

Proof – We prove here estimate 2.8, the other one is proven along the same lines. From the assump-
tion on o, for any k < |o| and k ∈ Pb−a−1(k), the sum of the entries of the uplet αa(k, o) is positive,
and then Proposition 4 ensures that∣∣∣P̃αa(k,o)

<

(
∂ka+1 fa+1 . . . , ∂

kb−1 fb−1, R
o−|k|
h fb, fb+1(·+ h), . . . , fn(·+ h)

)
{i}

∣∣∣
≲ 2−i(

∑n
j=a+1 αj−o)

b−1∏
c=a+1

∥∥∂kc fc
∥∥
αc−|kc|

∥∥Ro−|k|
h fb

∥∥
αb−|o|+|k|

n∏
d=b+1

∥fd(·+ h)∥αd
.

Using Lemma 3 for estimating
∥∥Ro−|k|

h fb
∥∥
αb−|o|+|k| and the Bernstein inequalities for estimating∥∥∂kc fc

∥∥
αc−|kc|

, we obtain for this last twisted paraproduct the bound 2−i(
∑n

j=a+1 αj−o) ∏n
j=a+1 ∥fj∥αj

.
Summing these inequalities over b and k gives the estimate 2.8. �

9 – Proposition. Pick f1, . . . , fn in C∞. Assume all the αj are positive and o >
∑n

j=1 αj − δ0. Then
we have(

△α
h,oP<

)
(f1, . . . , fn){i}
= P<

(
f1, . . . , fn

)
i
(·+ h)− T o

hP<

(
f1, . . . , fn

)
i

−
n∑

a=1

∑
|k|<

∑a
i=1 αi

∂k
⋆α≤a

P<(f1, . . . , fa)
hk

k!

(
△α

h,o−|k|P<

)
(fa+1, . . . , fn){i}.

(2.10)
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Proof – We use in the proof the shorthand notation

α(k) ··= α0(k, o) =
(
α1 − |k1|, . . . , αj−1 − |kj−1|, αj − o+ |k|, αj+1, . . . , αn

)
.

As all the αj are positve we have Cut(α(k)) ⊂ J1, j − 1K, so (2.3) writes here

P̃
α(k)
<

(
∂k1 f1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i}

= P<

(
∂k1 f1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
i

−
∑

d∈Cut(α(k))

P̃
α(k)≤d

<

(
∂k1 f1, . . . , ∂

kd fd
)

× P̃
α(k)>d

<

(
∂kd+1 fd+1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i}

= P<

(
∂k1 f1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
i

−
∑

d∈Cut(α(k))

∂
k≤d
⋆ P<

(
f1, . . . , fd

)
× P̃

α(k)>d

<

(
∂kd+1 fd+1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i}.

Note that as o >
∑n

j=1 αj − δ0 we have

Cut(α(k)) =

{
d ∈ J1, nK ;

d∑
j=1

α(k)j > 0

}
;

we will use this fact to invert the sums over m and j below. Summing over j, k and k gives

(△α
h,oP<)(f1, . . . , fn){i} −

n∑
j=1

∑
|k|<o

k∈Pj−1(k)

hk|h|o−|k|

k!
P<

(
∂k1 f1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
i

=

n∑
j=1

∑
|k|<o

k∈Pj−1(k)

hk|h|o−|k|

k!

∑
d∈Cut(α(k))

∂
k≤d
⋆ P<

(
f1, . . . , fd

)

× P̃
α(k)>d

<

(
∂kd+1 fd+1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i}

=

n∑
d=1

∑
|k|<

∑d
i=1 αi

k∈Pd−1(k)

hk

k!
∂k
⋆α≤d

P<

(
f1, . . . , fd

) n∑
j=d+1

∑
|ℓ|<o−|k|

j∈Pj−d−1(ℓ)

hℓ|h|o−|k|−|ℓ|

j!

× P̃
βd(j,o−|k|)
<

(
∂ℓ1 fd+1, . . . , ∂

ℓj−d−1 fj−1, R
o−|k|−|ℓ|
h fj , fj+1(·+ h), . . .

)
{i}
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=

n∑
d=1

∑
|k|<

∑d
i=1 αi

hk

k!
∂k
⋆α≤d

P<(f1, . . . , fd)
(
△α

h,o−|k|P<

)
(fd+1, . . . , fn){i}.

The identity (2.10) then follows from (2.5). �

The terms △α
h,o−|k|P<(fd+1, . . . , fn) for which o− |k| >

∑n
j=d+1 αj , in (2.10), are still problematic

as one cannot use Corollary 5 for them.

10 – Lemma. Assume all the αj positive. For 1 ≤ a ≤ n and
∑n

j=a αj − δ0 < o1 < o2, we have(
△α

h,o2P<

)(
fa, . . . , fn

)
{i} −

(
△α

h,o1P<

)(
fa, . . . , fn

)
{i} =

∑
o1<|k|<o2

hk

k!
∂k
⋆α≥a

P<

(
fa, . . . , fn

)
{i}.

Proof – We prove this identity by induction over n − a with the help of Proposition 9 and the
inductive relation (2.4) satisfied by the star derivatives.
The result is true for a = n as in this case the operator △h,oP< coincides with the Taylor remainder the
operator |h|rRr

h. To run the induction step we use Proposition 9 to see that
(
△α

h,o2
P<

)(
fa, . . . , fn

)
{i}−(

△α
h,o1

P<

)(
fa, . . . , fn

)
{i} is equal to

= T o2
h P<

(
fa, . . . , fn

)
i
− T o1

h P<

(
fa, . . . , fn

)
i

−
n−1∑
j=a

∑
|p|<

∑j
s=a αs

∂p
⋆αJa,jK

P<(fa, . . . , fj)
hp

p!

×
{(

△α
h,o2−pP<

)(
fj+1, . . . , fn

)
{i} −

(
△α

h,o1−pP<

)(
fj+1, . . . , fn

)
{i}

}
.

From the induction hypothesis the above quantity is equal to∑
o1<|k|<o2

∂kP<(fa, . . . , fn)i
hk

k!
−

n−1∑
j=a

∑
|p|<

∑j
s=a αs

∂p
⋆αJa,jK

P<(fa, . . . , fj)
hp

p!

×
∑

o1<|ℓ|+|p|<o2

∂ℓ
⋆αJj+1,nK

P<

(
fj+1, . . . , fn

)
{i} hℓ

ℓ!
.

We conclude using (2.4). �

For 0 ≤ c ≤ n− 1 we let
△yxP<(fc+1, . . . , fn) ··=

(
△α

y−x,
∑n

j=c+1 αj
P<

)(
fc+1, . . . , fn

)
(x),

and for i ≥ −1

△yxP<(fc+1, . . . , fn){i} ··=
(
△α

y−x,
∑n

j=c+1 αj
P<

)(
fc+1, . . . , fn

)
{i}(x).

From Lemma 10 we know that for any o ∈ (
∑n

j=c+1 αj − δ0,
∑n

j=c+1 αj + δ0) one has the equality

△yxP<(fc+1, . . . , fn){i} =
(
△α

y−x,oP<

)(
fc+1, . . . , fn

)
{i}(x).

Then, for any o in a neighborhood of
∑n

j=c+1 αj , the following estimate∣∣△yxP<(fc+1, . . . , fn){i}
∣∣ ≲ |y − x|o

n∏
j=c+1

∥fj∥αj
2−i(

∑n
j=c+1 αj−o) (2.11)

holds as a consequence of (2.8).
The following elementary fact was already used in Hoshino’s work [16] and enables us to get the

optimal bound on |△yxP<(fc+1, . . . , fn)|. We reproduce its proof in Appendix A.2.
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11 – Lemma. Assume we are given an (Rd × Rd)-indexed family of absolutely convergent series(
Xyx =

∑
i≥−1 X

i
yx

)
x,y∈Rd , such that there exists some positive constants C > 0 and some exponent

γ > 0 such that the uniform bound
|Xi

yx| ≤ C2−i(γ−θ) |y − x|θ

holds for any θ in a neighborhood of γ. Then we have
|Xyx| ≲ C|y − x|γ ,

uniformly over x, y ∈ Rd such that |y − x| ≤ 1.

From (2.11) and Lemma 11 one has then for |y − x| ≤ 1∣∣△yxP<(fc+1, . . . , fn)
∣∣ ≲ { n∏

j=c+1

∥fj∥αj

}
|y − x|

∑n
j=c+1 αj

12 – Proposition. Pick α = (α1, . . . , αn) ∈ (0,+∞)n. For all
(
fj ∈ C

αj
◦
)
1≤j≤n

we have

P<(f1, . . . , fn)(y) =
∑

|k|<
∑n

j=1 αj

∂k
⋆αP<

(
f1, . . . , fn

)
(x)

(y − x)k

k!

+

n−1∑
c=1

∑
|k|<

∑c
j=1 αj

∂k
⋆α≤c

P<

(
f1, . . . , fc

)
(x)

(y − x)k

k!
△yxP<(fc+1, . . . , fn)

+
(
△yxP<

)
(f1, . . . , fn),

where ∣∣∣(△yxP<

)
(fc+1, . . . , fn)

∣∣∣ ≲ { n∏
j=c+1

∥fj∥αj

}
|y − x|

∑n
j=c+1 αj (2.12)

for all x, y ∈ Rd with |y − x| ≤ 1.

Proof – First, for f1, . . . , fn in C∞ we have from the propositions 9 and 10

(△yxP<)(f1, · · · , fn) = P<

(
f1, · · · , fn

)
(y)−

∑
|k|<θ

(y − x)k

k!
∂kP<

(
f1, · · · , fn

)
(x)

−
n∑

c=1

∑
|p|<

∑c
j=1 αi

∂p
⋆P<

(
f1, · · · , fc

)
(x)

(y − x)p

p!

(
△yxP<

)
(fc+1, · · · , fn)

−
n∑

c=1

∑
|p|<

∑c
j=1 αj

|ℓ|>
∑n

j=c+1 αj

(y − x)p

p!

(y − x)ℓ

ℓ!

× ∂p
⋆P<

(
f1, · · · , fc

)
(x)∂ℓ

⋆P<

(
fc+1, · · · , fn

)
(x).

Using the recursive relation 2.4 for the ∂k
⋆ operators gives the statement of the proposition.

We obtain the fact that one can work with fj ∈ C
αj
◦ rather than with fj ∈ C∞ from the inequality

(2.12) by an elementary continuity reasoning. �

2.4 – Local expansion properties of the ∂k
⋆P<(f1, ..., fn). The quantities ∂p

⋆P<(f1, . . . , fc), with
|p| <

∑c
i=1 αi, appear in Proposition 12 as some coefficients in the local expansion of the simplified

paraproduct P<(f1, . . . , fn). These coefficients also have a local expansion property, described in the
proposition below. We state it and defer its proof to Appendix A.3 as it is similar to the proof of
Proposition 12.
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13 – Proposition. Assume |p| <
∑c

i=1 αi for some p ∈ Nd0 and (α1, . . . , αn) ∈ Rn. Take fj ∈ C
αj
◦

for 1 ≤ j ≤ n. For all 0 ≤ c ≤ n− 1 there are some functions △yx(∂
p
⋆P<)(fc+1, . . . , fn) such that∣∣∣(△yx(∂

p
⋆P<)(fc+1, . . . , fn)

∣∣∣ ≲ { n∏
j=c+1

∥fj∥αj

}
|y − x|

∑n
j=c+1 αj

for all x, y ∈ Rd with |y − x| ≤ 1, and we have

∂p
⋆P<(f1, . . . , fn)(y) =

∑
|k|<

∑n
j=1 αj−|p|

∂k+p
⋆ P<

(
f1, . . . , fn

)
(x)

(y − x)k

k!

+

n−1∑
c=1

∑
|k|<

∑c
j=1 αj−|p|

∂k+p
⋆ P<

(
f1, . . . , fc

)
(x)

(y − x)k

k!
△yx(∂

p
⋆P<)(fc+1, . . . , fn)

+△yx(∂
p
⋆P<)(f1, . . . , fn).

(2.13)

3 – The regularity structure of iterated paraproducts

We fix α ∈ Rn in this section. We introduced in Section 1.2 the spaces T and T+ of symbols of
the regularity structure that we will associate to some iterated paraproducts. The vector space T is
spanned by the basis symbols

B ··=
{

Ja, bKj Xp
}
1≤a<b≤n, j∈Pb−a(ℓ), ℓ∈Nd0 , p∈Nd0

∪
{
Xp

}
p∈Nd0

and the algebra is generated by the basis symbols

B+ ··=
{

Ja, bKkj
}
condition(a,b,k,j)

∪
{
Xεi

}
1≤i≤d

,

where one says that (a, b, k, j) satisfies condition(a, b, k, j) if 1 ≤ a < b ≤ n, k = (ka, . . . , kb) ∈ Pb−a+1(k)

for some k ∈ Nd0 , and j ∈ Pb−a(ℓ) for some ℓ ∈ Nd0 , and we have

max(|k|, |ℓ|) <
∑

1≤j≤n

|αj |

and ∣∣Ja, bKkj ∣∣α > 0.

Note that B+ generates T+ as an algebra. A linear basis of the vector space T+ is given by the
monomials Xp(p ∈ Nd0) and the Ja, bKkjX

p for Ja, bKkj ∈ B+ and p ∈ Nd0 . We call below this basis the
canonical linear basis of T+. We use below the notation

M
(
(σ1 ⊗ σ2), (X

m1 ⊗Xm2)
) ··= (σ1X

m1)⊗ (σ2X
m2).

We introduce in this section some splitting maps ∆ : T → T ⊗ T+ and ∆+ : T+ → T ⊗ T+ and
prove in Proposition 14 that ((T,∆), (T+,∆+)) is indeed a concrete regularity structure. We refer the
reader to Appendix A.1 for some basics on the subject.

For τ = Ja, bKj ∈ B, with j = (ℓa, . . . , ℓb), we define a subset of T+ setting

⊕(τ) =
{

Ja, cKpj<c
∈ B+ ; a ≤ c ≤ b, ℓc = 0, p ∈ Pc−a+1(p), p ∈ Nd0

}
∪ {1+},

we recall that j<c = (ℓa, . . . , ℓc−1). For τ = Ja, bKj ∈ B and σ = Ja, cKpj<c
∈ ⊕(τ) we define (τ\1+) = τ

and if c ≤ b− 1 we set

(τ\σ) ··=
∑

p=p1+p2

∑
p1∈Pb−c(p1)

p!

p1! p2! p!
Jc+ 1, bKj>c−a+1+p1

Xp2 ,

and for c = b we set (τ\σ) ··= 1
p! X

p. For p ∈ Nd0 we set
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∆(Xp) = ∆+(Xp) ··=
∑

p1+p2=p

(
p

p1

)
Xp1 ⊗Xp2 .

We define the map ∆ on T by setting
∆
(
Ja, bKjXp

)
= M

(
∆(Ja, bKj) , ∆(Xp)

)
and for τ = Ja, bKj ∈ B

∆(τ) =
∑

σ∈⊕(τ)

(τ\σ)⊗ σ.

For µ = Ja, bKkj ∈ B+ we set

⊕(µ) =
{

Ja, cKk≤c−a+1+p
j<c

∈ B+ ; a ≤ c ≤ b, ℓc = 0, p ∈ Pc−a+1(p), p ∈ Nd0

}
∪ {1+}.

For µ = Ja, bKkj ∈ B+ and ν = Ja, cKk≤c−a+1+p
j<c

∈ ⊕(µ) with p ∈ Pc−a+1(p), we define for c ≤ b− 1

(µ\ν) ··=
∑

p=p1+p2

∑
p1∈Pb−c(p1)

p!

p1! p2! p!
Jc+ 1, bKk>c−a+1

j>c−a+1+p1
Xp2 , (3.1)

and for c = b set (τ\σ) ··= 1
p! X

p. All the terms in this sum have the same homogeneity |Jc +

1, bKk>c−a+1

j>c
|α + |p|. We define the map ∆+ on T+ by setting

∆+
(
Ja, bKkjX

p
)
= M

(
∆+(Ja, bKkj ) , ∆

+(Xp)
)

and for µ = Ja, bKkj ∈ B+

∆+(µ) =
∑

ν∈⊕(µ)
⟨(µ\ν)⟩α>0

(µ\ν)⊗ ν.

With the notation of (3.1), the condition ⟨(µ\ν)⟩α > 0 means that we only consider here those
ν ∈ ⊕(µ) such that |Jc + 1, bKk>c−a+1

j>c
|α > 0. The regularity structures introduced by Bruned, Hairer

& Zambotti in [8] are also built from some deformations of some simple combinatorial structure –
the Connes-Kreimer structure on trees therein, the deconcatenation splitting here. This picture of a
deformed structure was investigated systematically in Bruned & Manchon’s work [9].

14 – Proposition. The space
(
(T,∆), (T+,∆+)

)
is a concrete regularity structure.

In the proof of this proposition we use the following generalisation of the Vandermonde identity,
which states that for any integer i ≥ 1, for any p, q, r in Nd0 such that p+ q = r, and any r ∈ Pi(r),
one has ∑

p∈Pi(p),q∈Pi(q)
p+q=r

r!

p! q!
=

r!

p! q!
. (3.2)

Proof – We prove here that we have the comodule identity
(∆⊗ Id)∆ = (Id ⊗∆+)∆.

The proof of the coassociativity identity
(∆+ ⊗ Id)∆+ = (Id ⊗∆+)∆+

is almost identical and left to the reader. We also let the reader check the other conditions involved
in the definition of a concrete regularity structure spelled out in Definition 23 in Appendix A.1.
It suffices to prove the comodule identity for τ = Ja, bKj ∈ B with j = (ℓa, . . . , ℓb). To lighten the
computations we use the convention Jc+ 1, cK = 1(+) for any a ≤ c ≤ b. We have

∆
(
Ja, bKj

)
=

∑
c,k1,k2,k′

k!

k′! k1! k2!

(
Jc+ 1, bKj>c+k1X

k2

)
⊗

(
Ja, cKk

′

j<c

)
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where the sum runs over the a ≤ c ≤ b such that ℓc = 0 and the multi-indices k = k1 + k2 such that∣∣Ja, cKkj<c

∣∣
α
> 0, over k1 ∈ Pb−c(k1) and k′ ∈ Pc−a+1(k). Then (∆⊗ Id)∆(τ) is equal to

∑
c,k1,k2,k

′

d,p1,p2,p
′

k! p!

k′! k1! k21! k22! p′! p1! p2!
Jd+ 1, bKj>d+(k1)>b−d+p1

Xk21+p2

⊗ Jc+ 1, dKp
′

jJc+1,d−1K+(k1)≤b−d
Xk22 ⊗ Ja, cKk

′

j<c
.

where the sum runs over 1 < c ≤ d ≤ b such that ℓc and ℓd + (k1)d−c are null, and the multi-indices
k = k1 + k2, k2 = k21 + k22, p = p1 + p2 such that∣∣Ja, cKkj<c

∣∣
α
> 0

and ∣∣Jc+ 1, dKp
′

jJc+1,d−1K+(k1)≤d−c

∣∣
α
> 0

and p1 ∈ Pb−d(p1), p
′ ∈ Pd−c(p). On the other hand (Id ⊗∆+)∆(τ) is equal to∑

c,k1,k2,k
′

d,p1,p2,p
′

k! p!

k′! k1! k2! p′! p1! p2!
Jc+ 1, bKj>c+k1X

k2 ⊗ Je+ 1, cKk>e−a+1

jJe+1,c−1K+p1
Xp2 ⊗ Ja, eKk≤e−a+1+p′

j<e
,

where the sum runs over a < e ≤ c ≤ b such that ℓc = ℓe = 0 and multi-indices p = p1 + p2 such that
p′ ∈ Pe−a+1(p) and ∣∣Ja, eKk≤e−a+1+p′

j<e

∣∣
α
> 0

and ∣∣Je+ 1, cKk>t

jJe+1,c−1K+p1

∣∣
α
> 0.

Both sums take the form∑
c,k1,k2,q
d,p1,p2,q

′

Ck1,k2,q
p1,p2,q′Jd+ 1, bKj>d+k1X

k2 ⊗ Jc+ 1; dKqjJc+1,d−1K+p1
Xp2 ⊗ Ja, cKq

′

j<c
,

where the sum runs over a ≤ c ≤ d ≤ b such that ℓc, ℓd ̸= 0, over multi-indices and tuples of
multi-indices k1, k2, q, p1, p2, q

′ such that the first two terms in each tensor products are in T+ and
q + q′ = k1 + k2 + p1 + p2 and q ≤ k1 + k2.
We check that the constants Ck1,k2,q

p1,p2,q′
coincide in both expressions using the Vandermonde identity

(3.2). Both are equal to

Ck1,k2,q
p1,p2,q′

=
1

k1! k2! p1! p2! q! q′!

k! q′!

q!
,

which concludes the proof of the statement. �

An iterated paraproduct Pj(f1, . . . , fn) can be represented pictorially by a linear tree where each
vertex corresponds to a distribution fj and the entries of j appear as decorations on the edges, idem
for generalized corrector P̃k

j (f1, . . . , fn) with an additional decoration on the vertices corresponding to
the entries of k. The coproduct defined here bears resemblance with to the one in regularity structures
on decorated trees, which is also constructed via admissible cuts. While both frameworks involve
extracting branches of positive homogeneity, the role of decorations differs. In regularity structures
derivations are attached to edges and polynomials to vertices, in our setting derivations corresponds to
the k and are attached to vertices, whereas polynomials are encoded in the edge decorations through
j.

We note that Hoshino was the first to investigate in [15] the algebraic structure behind the iterated
paraproducts, in a restricted setting compared to the present general setting.
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For τ ∈ T one can re-index the sum defining ∆(τ) by its different components τ1 on the canonical
basis B of the T factor in T ⊗ T+ and write

∆(τ) =··
∑
τ1≤τ

τ1 ⊗ (τ/τ1). (3.3)

(This identity defines the notations τ1 ≤ τ and (τ/τ1).) Below we write τ1 < τ to mean that τ1
appears in this decomposition and τ1 ̸= τ . Similarly we can rewrite

∆+(µ) =··
∑

µ1≤+µ

µ1 ⊗ (µ/+µ1).

(This identity defines the notations µ1 ≤+ µ and (µ/+µ1).) Below we write µ1 <+ µ to mean that µ1

appears in this decomposition and µ1 ̸= µ.

4 – Local expansion properties of iterated paraproducts

We prove Theorem 1 in this section. This proof involves the local expansion properties of the
operators P< and the regularity structure from Proposition 14. The core of the proof relates these
two ingredients and rests on a representation

Pj(fa, . . . , fb) =
∑
c≥0

∑
τ1,...,τc

P<

(
[τ/τ1]

f, . . . , [τc]
f
)

of the Pj operators in terms of the simplified iterated paraproduct operators P< and some functions
[σ]f that we build from the tuple f = (fa, . . . , fb). The symbol τ is here equal to Ja, bKj ∈ B and the
notation τ/τ1 is the notation from (3.3). Once proved such a representation formula, one can infer
the local expansion properties of Pj(fa, . . . , fb) from the local expansion properties of the operators
P< obtained in Section 2 and Section 2.4.

We describe in Section 4.1 the generic construction of some bracket maps [σ] from some a priori
given pair of maps (Π, g) of a particular type. We construct such a pair of maps in Section 4.2 from
a fixed tuple f = (f1, . . . , fn) of distributions. The actual proof of Theorem 1 occupies all of Section
4.3. The inductive mechanics of this proof is detailed at the begining of this section.

4.1 – Building blocks for a representation of P in terms of P<. Recall from Appendix A.1
the basic notions and notations on regularity structures. We work in this section with the concrete
regularity structure of Proposition 14. Let Π be a linear map from T into D′(Rd0) and g be a map from
Rd0 into the set of characters on the algebra T+. For any x ∈ Rd0 we denote by g−1

x the convolution
inverse of the character gx, uniquely characterized by the property (gx ⊗ g−1

x )∆+ = 1′
+1+, where 1′

+

stands for the dual vector of the vector 1+ in the canonical linear basis of T+. We define
Πx ··= (Π⊗ g−1

x )∆

for any x ∈ Rd0 . We have
Π(τ) =

∑
τ1≤τ

gx(τ/τ1)Πx(τ1),

that is
Πx(τ) = Π(τ)−

∑
τ1<τ

gx(τ/τ1)Πx(τ1).

Iterating we obtain the formula
Πx(τ) = Π(τ)−

∑
e≥1

(−1)e−1
∑

τe<···<τ1<τ

gx(τ/τ1) · · · gx(τq−1/τe)Π(τe), (4.1)
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where the sum over e is finite as the sets A and A+ that index the homogeneities of the regularity
structure ((T,∆), (T+,∆+)) are locally finite and bounded from below. Likewise for τ/ρ ∈ T+

gyx
(
τ/ρ

)
= gy

(
τ/ρ

)
− gx

(
τ/ρ

)
−
∑
e≥1

(−1)e−1
∑

ρ<τe<···<τ1<τ

gx
(
τ/τ1

)
· · · gx

(
τe−1/τe

)(
gy
(
τe/τ1

)
− gx

(
τe/ρ

))
. (4.2)

Recall the ∆i stand for the Littlewood-Paley projectors and ∆<i−1 =
∑

−1≤j<i−1 ∆j . For τ ∈ T we
define an element [τ ] = ([τ ]i)i≥−1 of C−∞ setting

[τ ]i ··= ∆i

(
Π(τ)

)
−
∑
e≥1

(−1)e−1
∑

τe<···<τ1<τ

∆<i−1

(
g
(
τ/τ1

))
· · ·∆<i−1

(
g
(
τq−1/τe

))
∆i

(
Π
(
τe
))
.

Likewise, for τ/ρ ∈ T+, we define an element [τ/ρ] = ([τ/ρ]i)i≥−1 of C−∞ setting
[τ/ρ]i ··= ∆i

(
g(τ/ρ)

)
−
∑
e≥1

(−1)e−1
∑

ρ<τe<···<τ1<τ

∆<i−1

(
g
(
τ/τ1

))
· · ·∆<i−1

(
g
(
τq−1/τe

))
∆i

(
g
(
τe/ρ

))
.

We now introduce an appropriate notion of size of the pair LΠ, gM to quantify the regularity of the [τ ]
and [τ/ρ]. For any integer n0 define Fn0

as the set of Cn0 functions φ supported in the unit ball of
Rd0 and such that ∥φ∥Cn0 ≤ 1. For a real-valued function φ on Rd0 , x ∈ Rd0 and ε > 0 we define

φε
x(y) ··= ε−d0φ

(
ε−1(y − x)

)
.

To define the size LΠ, gM of (Π, g) we first for τ ∈ T|τ | and ν ∈ T+
|ν|

∥τ∥(Π,g) ··= sup
x∈Rd0

sup
φ∈Fn0

sup
ε∈(0,1]

ε−|τ |∣∣⟨Πxτ, φ
ε
x⟩
∣∣,

∥ν∥(Π,g) ··= sup
x,y∈Rd0

gyx(ν)

|y − x||ν|
,

and recursively for τ ∈ B and µ ∈ B+

∥τ∥∗(Π,g) ··= max
(
∥τ∥(Π,g), max

σ<τ
∥τ/σ∥(Π,g)∥σ∥∗(Π,g)

)
∥µ∥∗(Π,g) ··= max

(
∥µ∥(Π,g), max

ν<+µ
∥µ/ν∥(Π,g)∥ν∥∗(Π,g)

)
.

We then set
LΠ, gM ··= max

τ∈B,µ∈B+

(
∥τ∥∗(Π,g) , ∥µ∥(Π,g)

)
.

15 – Proposition. For any τ ∈ T|τ | and τ/ρ ∈ T+
|τ/ρ| we have

∥[τ ]∥|τ | + ∥[τ/ρ]∥|τ/ρ| ≲ LΠ, gM,

so [τ ] ∈ C|τ | and [τ/ρ] ∈ C|τ/ρ| if LΠ, gM < ∞.

The proof of this statement uses the following result stated in Proposition 8 of Bailleul & Hoshino’s
work [5]. We denote below by Kj(x − y) the translation-invariant kernel of the Littlewood-Paley
projector ∆j and set

K<i−1 ··=
∑

−1≤j<i−1

Kj .

16 – Lemma. Let F = (Fx)x∈Rd0 be a family of distributions on Rd0 indexed by Rd0 . Set

(QiF )(z) ··=
∫

K<i−1(z − x)Fx

(
Ki(z − ·)

)
dx

and assume that
∥QiF∥∞ ≤ CF 2

−ir1
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for some positive constant CF and r1 ∈ R. Let G be a function on (Rd0)2 such that we have
|F (x, y)| ≤ CG|y − x|r2

for all x, y, for some exponent r2 > 0 and some positive constant CG. Set(
Q+

i F
)
(z) ··=

x
K<i−1(z − x)K<i−1(z − y)F (x, y) dxdy.

Then QF = (QiF )i≥−1 ∈ Cr1 and Q+G = (Q+
i G)i≥−1 ∈ Cr2 with

∥QF∥r1 +
∥∥Q+G

∥∥
r2

≲ CF + CG.

Proof of Proposition 15 – We proceed by induction. For τ ∈ T|τ | and τ/ρ ∈ T+
|τ/ρ| we set Fτx =

Πxτ and Gτ/ρ(x, y) = gyx(τ/ρ), for all x, y ∈ Rd0 . Writing

Πxτ = Πzτ +
∑
σ<τ

gzx(τ/σ)Πzσ

we see that(
QiFτ

)
(z) =

∫
K<i−1(z − x)(Πzτ)

(
Ki(z − ·)

)
dx+

∑
σ<τ

∫
K<i−1(z − x) gzx(τ/σ) (Πzσ)

(
Ki(z − ·)

)
dx

with ∣∣(Πzτ)
(
Ki(z − ·)

)∣∣ ≲ 2−i|τ |∥τ∥(Π,g)
uniformly in z, with a similar estimate with σ in place of τ , and∫ ∣∣K<i−1(z − x) gzx(τ/σ)

∣∣dx ≲ 2i|τ/σ|∥τ/σ∥(Π,g).

It follows that
∥QiFτ∥∞ ≲ 2−i|τ | max

{
∥τ/σ∥(Π,g) ; σ ≤ τ

}
,

so we get from Lemma 16 that QFτ ∈ C|τ | with ∥QFτ∥|τ | ≲ max
{
∥τ/σ∥(Π,g) ; σ ≤ τ

}
. Note that

QiFτ = ∆i(Πτ)−
∑
e≥1

(−1)e−1
∑

σe<···<σ1<τ

∆i−1

(
g(τ/σ1) · · · g(σe−1/σe)

)
∆i(Πσe).

On the other hand one has directly from Lemma 16 that Q+Gτ/ρ ∈ C|τ/ρ| with norm bounded above
by a constant multiple of ∥τ/ρ∥(Π,g). We actually have from (4.2) the following formula for

(
Q+Gτ/ρ

)
i
= ∆<i−1

(
g(τ/σ)

)
−
∑
e≥1

(−1)e−1
∑

σ<σe<···<σ1<τ

{
∆<i−1

(
g
(
τ/σ1

)
· · · g

(
σe−1/σe

))
∆<i−1

(
g
(
σe/σ

))
−∆<i−1

(
g(τ/σ1) · · · g(σe−1/σe) g(σe/σ)

)}
It follows from induction that

(
(Q+Gτ/ρ)i[ρ]i

)
i≥−1

defines an element of C|τ | with norm bounded by
a constant multiple of LΠ, gM. The conclusion of Proposition 15 follows after we check that

[τ ]i = QiFτ +
∑
σ<τ

(
Q+

i Gτ/σ

)
[σ]i. (4.3)

To see that one has this identity we notice that for any σ < τ one has(
Q+

i Gτ/σ

)
[σ]i =

∑
e1,e2≥0

σe2
<···<σ<νe1

<···<τ

(−1)e1+e2∆<i−1

(
g(τ/ν1) · · · g(νe1−1/νe1)

)
∆<i−1

(
g(νe1/σ)

)

×∆<i−1

(
g(σ/σ1)

)
· · ·∆<i−1

(
g(σe2−1/σe2

)
∆i

(
Π(σe2)

)
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−
∑

e1,e2≥0
σe2

<···<σ<νe1
<···<τ

(−1)e1+e2∆<i−1

(
g(τ/ν1) · · · g(νe1−1/νe1)g(νe1/σ)

)
×∆<i−1

(
g(σ/σ1)

)
· · ·∆<i−1

(
g(σe2−1/σe2)

)
∆i

(
Π(σe2)

)
,

so summing over σ < τ one recognizes a telescopic sum which simplifies indeed to (4.3). �

4.2 – A representation formula. We fix here a tuple f = (f1, . . . , fn) of smooth functions and
α = (α1, . . . , αn) ∈ Rn. In §1 we associate to f and α a pair (Πf, gf) of maps as in Section 4.1, with
associated bracket functions [·]f. Proposition 19 in §2 is the main result of this section. In its simplest
form, with τ = Ja, bKj, it tells us that

Pℓ(fa, . . . , fb) =
∑
e≥0

∑
σe≺···≺σ1≺τ

P<

(
[τ/σ1]

f, . . . , [σe]
f
)

can be represented as a sum of simplified iterated paraproducts. It also provides a similar represen-
tation formula for P̃

Ja,bK−|k|
j (∂kafa, . . . , ∂

kbfb).
To make everything plain recall from Section 2.1 the following notational point. For h1, . . . , he in

the sequence space C−∞ we first define P<(h1, . . . , he)i by induction, for all i ≥ −1, and then set
P<(h1, . . . , he) =

∑
i≥−1 P<(h1, . . . , he)i. The term P<

(
[τ/σ1]

f, . . . , [σe]
f
)

above has that meaning.

§1. A pair of maps (Πf, gf) associated to f. We associate to f the pair of maps
Mf,α = Mf = (Πf, gf)

on T and T+, respectively, where
Πf

(
Ja, bKjXp

)
(y) ··= yp Pj

(
fa, . . . , fb

)
(y)

and
gf
(
Ja, bKkjX

q
)
(y) ··= yq P̃

αJa,bK−|k|
j

(
∂kafa, . . . , ∂

kbfb
)
(y).

(We do not record the dependence of these quantities on α in the notation.) We denote by [·]f the
bracket maps associated to the pair of maps (Πf, gf) as in Section 4.1. Recall from (1.4) the definition
of the operators ∆p

i , for p ∈ Nd0 . For each Ja, bKjXp ∈ B we define an element
πf(Ja, bKjXp) =

(
πf(Ja, bKjXp)i

)
i≥−1

of C0+ by setting
πf(Ja, bKjXp)i ··= ∆p

i

(
Pj(fa, · · · , fb)

)
.

Likewise, for Ja, bKkjX
q ∈ B+ with k = (ka, . . . , kb)∈ (Nd0)b−a+1, we define an element

gf(Ja, bKkjX
q) =

(
gf(Ja, bKkjX

q)i
)
i≥−1

of C0+ by setting
gf(Ja, bKkjX

q)i ··= ∆q
i

(
P̃
αJa,bK−|k|
j

(
∂kafa, · · · , ∂kbfb

))
.

For j ≥ 0 we set

gf(Ja, bKkjX
q)<j ··=

j−1∑
i=−1

gf(Ja, bKkjX
q)i.

The statement of Proposition 19 below, and the next two preparatory results, require a notation that
we now introduce. For τ = Ja, bKjXp ∈ B we write

σ ≺ τ if σ < τ and σ = Jc, bKj′Xp′
with c > a.

We also write
σ ≦ τ if σ < τ but not σ ≺ τ.
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For a descending sequence σe ≦ · · · ≦ σ1 ≦ τ we have σj = Ja, bKjXpj with 0 ≤ pe < · · · < p1 < p,
and σj/σj+1 =

(
pj

pj+1

)
Xpj−pj+1 . For µ = Ja, bKkjX

q ∈ B+ we write

ν ≺ µ if ν < µ and ν = Jc, bKk
′

j′X
q′ with c > a.

The next statement relates πf ∈ C0+ to the maps Πf and gf on the one hand, and gf to gf on the other
hand.

17 – Lemma. We have for τ ∈ T and i ≥ 1

πf(τ)i = ∆i(Π
f(τ))−

∑
e≥1

(−1)e
∑

σe≦···≦σ1≦τ

∆<i−1

(
gf
(
τ/σ1

))
· · ·∆<i−1

(
gf
(
σe−1/σe

))
∆i

(
Πf(σe)

)
(4.4)

and for τ/σ ∈ T+ with σ ≺ τ

gf(τ/σ)<i−1 =

∆<i−1

(
gf(τ/σ)

)
−
∑
e≥1

(−1)e
∑

σe≦···≦σ1≦τ

σ≺σe

∆<i−1

(
gf
(
τ/σ1

))
· · ·∆<i−1

(
gf
(
σe−1/σe

))
∆<i−1

(
gf(σe/σ)

)
. (4.5)

Proof – 1) We consider first the identity (4.4). Denote by (⋆)i(·) the function on Rd defined by the
right hand side of (4.4). It suffices to treat the case of τ = J1, nKjXp. One has τ/σ1 =

(
p
p1

)
Xp−p1 and

σj/σj+1 =
(

pj

pj+1

)
Xpj−pj+1 for 1 ≤ j ≤ e − 1; moreover for k ∈ Nd0 we have ∆<i−1

(
gf(Xk)

)
(x) = xk

for all i ≥ 1. It follows that (⋆)i(x) is equal to

∆i(Π
f(J1, nKjXp))(x)−

∑
e≥1

(−1)e
∑

0≤pe<···<p1<p

e−1∏
j=1

(
pj

pj+1

)
xpj−pj+1∆i

(
Πf

(
J1, nKjXpq

))
(x)

= ∆i

(
Πf

(
J1, nKjXp

))
(x)−

∑
r<p

Cpr x
p−r∆i

(
Πf

(
J1, nKjXr

))
(x)

where

Cpr ··=
∑
e≥1

(−1)e
∑

r<pe−1<···<p1<p

e−1∏
j=0

(
pj

pj+1

)
.

We note that the constants Cpr satisfy the inductive relation

Cpr = −
(
p

r

)
+

∑
r<s<p

(
p

s

)
Csr,

so
Cpr = (−1)p−r+1

(
p

r

)
.

One then has

(⋆)i(x) = ∆i

(
Πf

(
J1, nKjXp

))
(x) +

∑
r<p

(−1)p−r

(
p

r

)
xp−r∆i

(
Πf

(
J1, nKjXr

))
(x)

=

∫
Rd0

Ki(y − x)

p∑
r=0

(−1)p−r

(
p

r

)
xp−ryr Pj(f1, · · · , fn)(y) dy = πf(τ)i(x).

2) One uses a similar reasoning to prove identity (4.5). It suffices to treat the case τ = J1, aKjXp and
σ = Jn+ 1, aKj>n+sX

q. One has in that case

τ/σ =
∑
s1,r

1

s!(s1 − |s|)!

(
p

r

)
J1;nKs1j<n

Xr

where the sum runs over the multi-indices s1, r such that p = q+∥s∥+r−s1 and such that J1;nKs1j<n
∈

T+ and r ≥ 0. We write Dp,q for the set of such s1, r. Writing (⋆⋆)i(·) for the right hand side of (4.5),
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we have this time

(⋆⋆)i(x) =
∑

(s1,r)∈Dp,q

1

s!(s1 − |s|)!

(
p

r

)
∆<i−1

(
gf
(
J1, nKs1j Xr

))
(x)

−
∑
p′<p

∑
(s1,r′)∈Dp′,q

Cpp′xp−p′
(
p′

r′

)
1

s!(s1 − |s|)!
∆<i−1

(
gf
(
J1, nKs1j Xr′

))
(x)

=
∑

(s1,r)∈Dp,q

1

s!(s1 − |s|)!

(
p

r

)
∆<i−1

(
gf
(
J1, nKs1j Xr

))
(x)

−
∑

(s1,r)∈Dp,q

∑
r′<r

1

s!(s1 − |s|)!

(
p

r

)
(−1)r−r′xr−r′

(
r

r′

)
∆<i−1

(
gf
(
J1, nKs1j Xr′

))
(x).

where we used that, for any fixed s1, if (s1, r′) ∈ Dp′,q and (s1, r) ∈ Dp′,q then p − p′ = r − r′. This
gives indeed equal to gf(τ/σ)<i−1(x). �

18 – Corollary. For any τ ∈ B and i ≥ 1 we have the relation

[τ ]fi = πf(τ)i −
∑
e≥1

(−1)e−1
∑

σe≺···≺σ1≺τ

gf
(
τ/σ1

)
<i−1

· · · gf
(
σe/σe−1

)
<i−1

πf
(
σe

)
i
.

Likewise for τ/σ ∈ B+ we have

[τ/σ]fi = gf(τ/σ)i −
∑
e≥1

(−1)e−1
∑

σ≺σe≺···≺σ1≺τ

gf
(
τ/σ1

)
<i−1

· · · gf
(
σe/σe−1

)
<i−1

gf
(
σe/σ

)
i
.

Proof – Plugging the identities of Lemma 17 giving Πf and gf into the right hand of the identity
to prove, developing the products, one recovers the definition of [τ ]fi and [τ/σ]fi by noting that any
descending sequence τe < · · · < τ1 < τ takes the form

· · · ≦ τ3,0 ≺ τ2,e2 ≦ · · · ≦ τ2,0 ≺ τ1,e1 ≦ · · · ≦ τ1,1 ≦ τ.

The conclusion follows. �

§2. A representation formula of Pℓ in terms of the P< operators. We are now ready to state
and prove the main result of this section. Each bracket [·]f that appears below is an element of the
extended function space C0+ so the quantities P<(. . . )i in (4.6) and (4.7) is not the i-th term in a
Lilttewood-Paley decomposition but rather the i-th element that defines the corresponding sequence
P<(. . . ).

19 – Proposition. For any τ = Ja, bKjXp ∈ T we have

∆p
i

(
Pj(fa, · · · , fb)

)
=

∑
e≥0

∑
σe≺···≺σ1≺τ

P<

(
[τ/σ1]

f, . . . , [σe]
f
)
i

(4.6)

and for σ ≤ τ with τ/σ = Jc, dKkj′X
q ∈ T+ we have

∆q
i

(
P̃
αJc,dK−|k|
j′

(
∂kcfc, · · · , ∂kdfd

))
=

∑
e≥0

∑
σ≺σe≺···≺σ1≺τ

P<

(
[τ/σ1]

f, . . . , [σe/σ]
f
)
i

(4.7)

Proof – We prove (4.6) and let the reader prove (4.7) as its proof is almost identical. We proceed
by developing the sum ∑

e≥0

∑
σe≺···≺σ1≺τ

P<

(
[τ/σ1]

f, · · · , [σe]
f
)
i

and use the identities of Corollary 18 to see that a number of cancellations give in the end πf(τ)i.
A non-increasing map a : J0, eK → N is said to be admissible if it is such that a(e) = 0, a(e − 1) = 1
and a(j)− a(j + 1) ∈ {0; 1} for every 0 ≤ j ≤ e− 1. For any such a and any integer 0 ≤ m ≤ a(0) we
define ja(m) as the smallest integer j such that a(j) = m.
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We associate to any i ≥ −1, to any descending chain ν : νe ≺ · · · ≺ ν0 = τ , and to any admissible a
the element of C−∞

Qπ

(
τ/ν1, . . . , νe−1/νe, νe

)
ie
··=

∑
(ij)0≤j≤e−1∈Da,ie

e−1∏
j=0

gf
(
νj/νj+1

)
ij
πf(νe)ie ,

where
Da,ie

··=
{
(ij)0≤j≤e−1 ∈ J−1,+∞Je, ∀j ∈ J0, e− 1K, ij < ija(a(j)−1) − 1

}
.

For every descending chain σ : σe′ ≺ · · · ≺ τ , from the identity of Lemma 17 giving [σj/σj+1] and
[σe′ ] in terms of gf and Πf, developing the products gives the identity

P<

(
[τ/σ1], . . . , [σe′ ]

)
i
=

∑
ν,a

λν,a
σ Qa

(
τ/ν1, . . . , νe

)
i

where the sum runs over the set of descending sequences νe ≺ · · · ≺ ν0 = τ and the set of admissible
maps a, and where λν,a

σ = 0 except if σ is a subsequence of ν of size e′ such that a(0) − e′ ∈ {0, 1}
and σe′−m = νja(m) for every 0 ≤ m ≤ e′, in which case we have λν,a

σ = (−1)e−e′ . Then∑
e′≥0

∑
σq′≺···≺σ1≺τ

P<

(
[τ/σ1], · · · , [σe′ ]

)
i
=

∑
e≥0

∑
νe≺···≺ν1≺τ

∑
a

λν,aQa

(
τ/ν1, · · · , νe

)
where λν,a =

∑
σ λν,a

σ , for a sum over the set of finite descending sequences σ : σe′ ≺ · · · ≺ τ . We
actually have λν,a = 0 for every non-empty sequence ν. Indeed for any given ν ̸= ∅ of size e and any
admissible a there are only two descending sequences such that λν,a

σ ̸= 0. These sequences σ1 and σ2

are of size a(0) and a(0)− 1, respectively, and
σ1
m = νja(a(0)−m)

and
σ2
m = νja(a(0)−1−m).

The two coefficient λν,a
σ for these two σ are of opposite sign, which implies indeed that λν,a = 0. �

4.3 – Proof of Theorem 1. Theorem 1 states that (Πf, gf) is a model on the regularity structure
from Section 3. To put our proof strategy in context, we recall a variation on Lemma 6.6 of Gubinelli,
Imkeller & Perkowski’s work [11].

Lemma – Let Π be a linear map from T to D′(Rd0) and g be a map from Rd0 into the set of characters
of the algebra T+. The pair (Π, g) is a model if and only if one has both∣∣⟨Πxτ,K<i,x⟩

∣∣ ≲ 2−i|τ | (∀ τ ∈ B) (4.8)

uniformly over i ≥ −1 and x ∈ Rd0 , and
|gyx(µ)| ≲ |y − x||µ| (∀µ ∈ B+) (4.9)

uniformly on (x, y) in any compact subset of Rd0 .

For τ, σ ∈ T and a descending sequence σ(e) = (σe ≺ · · · ≺ σ1) we write
σ ≺ σ(e) ≺ τ if

(
σ ≺ σe and σ1 ≺ τ

)
and set

|τ/σ(e)|α ··=
(
|τ/σ1|α, · · · , |σe/σ|α

)
∈ Re+1.

Strategy. We prove by induction on n the following three facts at a time.
(a)n For any tuple α = (αj)1≤j≤n ∈ Rn such that

∑n
j=1 αj > 0 the map(

g1, . . . , gn
)
7→ P̃α

j (g1, . . . , gn)

has a continuous extension from
∏n

j=1 C
αj
◦ into L∞.

For any α = (α1, . . . , αn) ∈ Rn and any tuple f = (f1, . . . , fn) of smooth functions one has
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(b)n for any homogeneous τ = Ja, bKjXp ∈ T we have∣∣⟨Πf
xτ,K<i,x⟩

∣∣ ≲ ∥fa∥αa
· · · ∥fb∥αb

2−i|τ |α ,

uniformly over x ∈ Rd0 and i ≥ 0;
(c)n for any homogeneous τ = Ja, bKkjX

p ∈ T+ we have∣∣gfy,x(τ)∣∣ ≲ ∥fa∥αa
· · · ∥fb∥αb

|y − x||τ |α ,

uniformly over x, y ∈ Rd0 .

Theorem 1 follows as a consequence.
• The result holds true for n = 1.
• We will use in the induction the following two algebraic identities proved in Appendix A.4.2.

20 – Lemma. We fix a tuple f = (f1, . . . , fn) of smooth functions.

(i) Pick k ∈ Nd0 with k ∈ Pn(k). Set ∂kf ··= (∂k1f1, . . . , ∂
knfn). We work in this item in the

regularity structure Tα−|k| with the pair of maps (Π∂kf, g∂
kf) and its associated bracket maps

[·]∂kf. For τ = J1, nKjXm ∈ T with |k| < |J1, nKj|α we have∑
e≥0

∑
σe≺···≺σ1≺τ

P̃
|τ/σ(e)|α−|k|
<

(
[τ/σ1]

∂kf, . . . , [σe]
∂kf

)
= 1m=0 P̃

α−|k|
j

(
∂k1f1, · · · , ∂knfn

)
.

(ii) We work in this item in the regularity structure Tα with the pair of maps (Πf, gf) and its
associated bracket maps [·]f. For τ/σ = J1, nKkjX

m ∈ T+ and |p| < |τ/σ|α we have the identity∑
e≥0

∑
σ≺σ(e)≺τ

∑
p∈Pe+1(p)

(
p

p

)
P̃
|τ/σ(e)|α−|p|
<

(
∂p1 [τ/σ1]

f, · · · , ∂pq+1 [σe/σ]
f
)

= 1m=0

{ ∑
k∈Pn(k)

∑
p∈Pn(p)

(
k

k

)(
p

p

)
P̃
α−|k+p|
j

(
∂k1+p1f1, · · · , ∂kn+pnfn

)}
.

We proceed with the induction step(
(a)n−1, (b)n−1, (c)n−1

)
=⇒

(
(a)n, (b)n, (c)n

)
.

– We begin by proving (a)n. Pick β = (β1, . . . , βn) ∈ Rn with
∑n

i=1 βi > 0. We work with the
regularity structure Tβ . For j = (ℓ1, . . . , ℓn−1) ∈ (Rd0)n−1 set j− ··= (ℓ1, . . . , ℓn−2) and

τn(j) ··= J1, n− 1Kj−Xℓn−1 .

Write JnK for Jn, nK ∈ T and [n]g for its associated bracket map. From the continuity result of
Proposition 5 for the P̃γ

< it suffices to prove that

P̃β
j

(
g1, . . . , gn

)
=

∑
e≥0

∑
σe≺···≺τn(j)

P̃
|τn(j)/σ+|β
<

(
[τn(j)/σ1]

g, . . . , [σe]
g, [n]g

)
(4.10)

where ∣∣τn(j)/σ+
∣∣
β
··=

(
|τn(j)/σ1|β , |σ1/σ2|β , . . . , |σe|β , βn

)
.

The symbol + meaning that we added βn at the end of the uplet |τn(j)/σ|β . Indeed, if one has (4.10),
the induction hypothesis and Proposition 15 ensure that any term [ν]g appearing in the right hand
side of (4.10) is an element of C|ν| that depends continuously on g ∈

∏n
j=1 C

βj
◦ . Since

|τn(j)/σ1|β + |σ1/σ2|β + · · ·+ |σe|β + βn =

n∑
j=1

βj > 0

we can use Proposition 5 to conclude that (a)n holds true.
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The remaining of this paragraph is dedicated to proving (4.10) by induction. The recursive defini-
tion (2.3) of the P̃α

< given in Lemma 7 writes here∑
e≥0

∑
σe≺···≺τn(j)

P̃
|τn(j)/σ+|β
<

(
[τn(j)/σ1]

g, . . . , [σe]
g, [n]g

)
=

∑
e≥0

∑
σe≺···≺τn(j)

P<

(
[τn(j)/σ1]

g, . . . , [σe]
g, [n]g

)
−

∑
σ≺τn(j)

|σ|β+βn<0

∑
σ≺σe1

≺···≺τn(j)

P̃
|τn(j)/σ|β
<

(
[τn(j)/σ1]

g, . . . , [σe1/σ]
g
)

×
∑

νe2
≺···≺σ

P̃
|σ/ν+|β
<

(
[σ/ν1]

g, . . . , [νe2 ]
g, [n]g

)
.

(4.11)

From Proposition 19 one has∑
e≥0

∑
σe≺···≺τn(j)

P<

(
[τn(j)/σ1]

g, . . . , [σe]
g, [n]g

)
= Pj

(
g1, . . . , gn

)
.

Since any σ ≺ τn(j) has the form σ = Jm + 1, n − 1Kj+p1X
p2+s2 , one has τn(j)/σ = J1,mKpjX

s1 ,
with ℓn−1 = s1 + s2 and p = p1 + p2. If s1 = 0, item (ii) of Lemma 20 ensures that the sum over
the descending sequences σ ≺ σe1 ≺ · · · ≺ τn(j) is null. The terms σ ≺ τn(j) that may give some
non-trivial contributions to the sum (4.11) are thus of the form σ = Jm + 1, n − 1Kj+p1

Xp2+ln−1 , for
which τn(j)/σ = J1,mKpj with p1 + p2 = p. For such σ, item (ii) of Lemma 20 gives∑

σ≺σe1≺···≺τn(j)̃

P
|τn(j)/σ|β
<

(
[τn(j)/σ1]

g, . . . , [σe1/σ]
g
)
=

∑
p∈Pm(p)

(
p

p

)
P̃
β≤m−|k|
j<m

(
∂p1g1, . . . , ∂

pmgm
)

and we have from the induction hypothesis∑
νe2≺···≺σ

P̃
|σ/ν+|β>m
<

(
[σ/ν1]

g, . . . , [νe2 ]
g, [n]g

)
= P̃β

Jp1,p2 (j>m)

(
gm+1, . . . , gn

)
where

Jp1,p2
(j>m) =

∑
a∈Pn−m−2(p1)

(
p1
a

)(
k

p1

)(
ℓm+1 + a1, . . . , ℓn−2 + an−m−2, ℓn−1 + p2

)
.

We recognize then in (4.11) the recursive relation satisfied by the P̃β
j , which proves (4.10).

– We now turn to (b)n. We would like to implement the same strategy as in point (a)n: Write an
iterated paraproduct as a sum of simplified iterated paraproducts and use their local expansion proper-
ties. The problem with this strategy is that Proposition 5 requires some positivity assumption on some
regularity exponents to hold – which does not necessarily hold true here. To circumvent this issue, for
any r ≥ −1, we look at the expansion properties of the iterated paraproduct Pj

(
f1, . . . , fn−1,∆r(fn)

)
and treat ∆r(fn) as a function of high enough regularity in the estimates. We verify a posteriori that
the remainders are summable over r ≥ −1 and provide the right expression.

We use the same notations as in the proof of point (a)n. Pick α+
n > αn big enough such that∑n−1

s=j αs + α+
n > 0 for all 1 ≤ j < n. Set

α+ ··= (α1, . . . , αn−1, α
+
n )

and, for any r ≥ −1, let
fr ··=

(
f1, . . . , fn−1,∆r(fn)

)
and

Mr+ =
(
Πr+, gr+

) ··= Mfr,α+
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(The last notation was introduced at the beginning of Section 4.2.) One has

Pj

(
f1, . . . ,∆rfn

)
=

∑
i≥−1

∆
ℓn−1

<i−1

(
Pj−

(
f1, . . . , fn−1

))
∆i

(
∆r(fn)

)
=

∑
i≥−1

∑
e≥0

∑
σe≺···≺τn(j)

P<

(
[τn(j)/σ1]

M, . . . , [σe]
M
)
<i−1

∆i

(
∆r(fn)

)
=

∑
e≥0

∑
σe≺···≺τn(j)

P<

(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+
)
.

(4.12)

From Proposition 15 and the induction hypothesis, every term [σ] appearing in the paraproduct P<

is an element of C|σ| that depends continuously on f ∈
{∏n−1

j=1 C
αj
◦

}
× C

α+
n

◦ . The assumption on α+
n

ensures that the homogeneities of the element in the iterated paraproducts
P<

(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+)

add up to a positive quantity, however |σe|α may be non-positive. This is cured by noticing that the
assumption on α+

n ensures that

P<

(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+
)
= P̃

|τn(j)/σ+|
α+

<

(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+
)
, (4.13)

where
|τn(j)/σ+|α+ ··=

(
|τn(j)/σ1|α+ , |σ1/σ2|α+ , . . . , |σe|α+ , α+

n

)
,

so one can use Proposition 29 on the local expansion of terms of the type P̃γ
<. The remainder term in

(A.1) is (△y−x,θP̃
γ
<)(. . . )(x) with θ =

∑n
j=1 γj . We infer from this generic expansion property, (4.12)

and (4.13), that Pj(f1, . . . ,∆r(fn)) has a corresponding expansion with remainder∑
e≥0

∑
σe≺···≺τn(j)

(
△y−x,θP̃

|τn(j)/σ+|
α+

<

)(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+
)
(x),

with θ =
∑n

j=1 α
′
j − δ, here. The following result is proved in Appendix A.2 by induction on n.

21 – Lemma. For every point x ∈ Rd0 and i ≥ −1 one has the identity∫
Rd0

K<i(h)
∑
e≥0

∑
σe≺···≺τn(j)

(
△h,θP̃

|τn(j)/σ+|
α+

<

)(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+
)
(x) dh

=

∫
Rd0

K<i(h)
(
Πr

x
′J1, nKj

)
(x+ h) dh.

(4.14)

We then have from (4.14) and Lemma 6.3 in [11]

∣∣∣∣∫
Rd0

K<i(x− y)
(
Π′(r)

x J1, nKj
)
(y) dy

∣∣∣∣ ≲ { n−1∏
j=1

∥fj∥αj

}
∥∆rfn∥α+

n
2−iθ

≲ 2−iθ 2r(α
+
n−αn)

{ n∏
j=1

∥fj∥αj

}
.

(4.15)

There is an integer i(n) depending only on n such that we have for j ≤ n and i ≥ −1

∆i

(
Pj(f1, . . . , fj)

)
=

∑
r≤i+i(n)

∆i

(
Pj

(
f1, . . . , fj−1,∆r(fj)

))
.

Using the identity (4.1) on Πx(τ), we see that we have〈
Πx(J1, nKj),K<i,x

〉
=

∑
r≤i+i(n)

〈
Πr

x
′(J1, nKj

)
,K<i,x

〉
,
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so the expected bound∣∣∣〈Πx(J1, nKj),K<i,x

〉∣∣∣ ≲ { n∏
j=1

∥fj∥αj

} i+i(n)∑
r=−1

2r(α
+
n−αn) 2−iθ ≲

{ n∏
j=1

∥fj∥αj

}
2−i

∑n
j=1 αj

follows from (4.15).

– We finally prove (c)n. Pick α = (α1, . . . , αn) ∈ Rn, a multi-indice k ∈ Rd0 such that
|k| <

∑n
j=1 αj and k ∈ Pn(k). We work in the regularity structure Tα−|k|. From item (ii) of Lemma

20, we have for any smooth functions f1, . . . fn the equality

P̃
α−|k|
j

(
∂k1f1, . . . , ∂

knfn
)
=

∑
e≥0

∑
σe≺···≺σ1≺J1,nKj

P̃
|J1,nKj/σ|α−|k|
<

(
[J1, nKj/σ1]

Mk , . . . , [σe]
Mk

)
,

where Mk = M∂kf,α−|k|. Proposition 15 and point (b)n ensure by induction that all the terms [ν]Mk

are some elements of C|ν|α−k that depend continuously on all the fj ∈ C
αj
◦ . As above it follows from

Proposition 29 that P̃
α−|k|
j

(
∂k1f1, . . . , ∂

knfn
)

has a local expansion with remainder

Rf,α

(
J1, nKkj

)
(x, h) ··=

∑
e≥0

∑
σe≺···≺J1,nKj

(
△h,θP̃

|J1,nKj/σ|α−|k|
<

)(
J1, nKj/σ1]

Mk , . . . , [σe]
Mk

)
(x)

where θ = |J1, nKj|α−|k|. From Proposition 29 this remainder has |h|θ
∏n

j=1 ∥fj∥αj
as an x-uniform

upper bound. Point (c)n will thus be proved after we show that for any τ = J1, nKjXs one has∑
e≥0

∑
σe≺···≺τ

(
△h,θP̃

|τ/σ|α−|k|
<

)(
[τ/σ1]

Mk , . . . , [σe]
Mk

)
(x) = 1s=0 gfx+h,x

(
J1, nKkj

)
. (4.16)

The remainder of this paragraph is dedicated to proving this identity by induction on n. Recall that
we write

∂p
⋆P<

(
[τ/σ1]

Mk , . . . ,[σm−1/σm]Mk
)

=
∑

p∈Pm(p)

(
p

p

)
P̃
|τ/σ≤m|α−|k|−|p|
<

(
[τ/σ1]

Mk , . . . , [σm−1/σm]Mk
)
.

From the definition of △h,θP̃< the left hand side of (4.16) is equal to∑
e≥0

∑
σe≺···≺τ

P̃
|τ/σ|α−|k|
<

(
[τ/σ1]

Mk , . . . , [σe]
Mk

)
(x+ h)

−
∑
e≥0

∑
σe≺···≺τ

∑
|p|<|τ |α−|k|

∂p
⋆ P̃<

(
[τ/σ1]

Mk , . . . , [σe]
Mk

)
(x)hp

−
∑
e≥0

σe≺···≺τ

e∑
m=1

∑
|p|<|τ/σm|α−|k|

∂p
⋆P<

(
[τ/σ1]

Mk , . . . , [σm−1/σm]Mk

)
(x)

× hp

p!

(
△h,|σm|α−|k| P̃

|σm/σ>m|α−|k|
<

)(
[σm/σm−1]

Mk , . . . , [σe]
Mk

)
(x),

(4.17)
From item (i) of Lemma 20, the first double sum in (4.17) is equal to

1s=0 P̃
α−|k|
j

(
∂k1f1, . . . , ∂

knfn
)
(x+ h) = 1s=0 gfx+h

(
J1, nKkj

)
.

Lemma 20 also gives that the second line of (4.17) is equal to

1s=0

∑
|p|<|τ |α−|k|

gfx
(
J1, nKk+p

j

)
hp.
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The σ ∈ T such that σ ≺ τ = J1, nKjXs have a form σ = Jm + 1, nKj+v1X
v2+s2 , in which case

τ/σ = J1,mKvj X
s1 with s = s1 + s2 and v = v1 + v2. For such σ ∈ T Lemma 20 gives∑

e1≥0

∑
σe1

≺···≺τ

∂p
⋆P<

(
[τ/σ1]

Mk , . . . , [σe1/σ]
Mk

)
(x) = 1s1=0 gfx

(
J1,mKk+v+p

j

)
.

Also, we have by induction that∑
e2≥0

∑
νe2

≺···≺σ

△h,|σ|α−|k|P<

(
[σ/ν1]

Mk , . . . , [νe2 ]
Mk

)
= 1v2+s2=0 gfx,x+h

(
Jm+ 1, nKkj+v1

)
.

If s ̸= 0, then either s1 ̸= 0 or s2 + p2 ̸= 0, and all the terms of (4.17) add up to 0. Suppose now that
s = 0. The σ ∈ T we have to consider are of the form σ = Jm+1, nKj+v, for which τ/σ = J1,mKvj and
the right hand side of (4.17) writes as

Rf,α

(
J1, nKkj

)
= gfx+h

(
J1, nKkj

)
−

∑
|p|<|J1,nKkj |α

gfx
(
J1, nKk+p

j

)
hp

−
∑
m,p,v

gfx
(
J1,mKk+p+v

j

)
gfx+h,x

(
Jm+ 1, nKkj+vX

p
)
,

where the sum over m, p, v runs over 1 ≤ m < n and multi-indices p, v such that
∣∣J1,mKv+p

j

∣∣
α−|k| > 0

and
∣∣Jm + 1, nKj+v

∣∣
α−|k| > 0. This sum corresponds to a sum over σ ∈ T+ such that σ ≺ J1, nKkj in

the regularity structure Tα. It follows that we finally have
Rf,α

(
J1, nKkj

)
= gfx+h

(
J1, nKkj

)
−

∑
σ<J1,nKkj

gfx+h,x(σ)g
f
x(τ/σ) = gfx+h,x

(
J1, nKkj

)
,

which concludes the proof of (4.16), and closes the induction step in the proof of point (c)n.

5 – Back to paracontrolled systems

This section is dedicated to proving Theorem 2. We set ourselves in the setting of Section 1.3, with
its finite alphabet L = (l1, . . . , l|L|) and its associated set W of finite words w = li1 . . . lij . An a priori
notion of size | · |L is given on L and extended to W setting

|li1 . . . lij |L ··= |li1 |L + · · ·+ |lij |L.

5.1 – The regularity structure TL. The following construction is identical to the construction
of Section 3. We define a set of symbols

B ··=
{

JwKjXp ; w = li1 . . . lij ∈ W, p, ℓ ∈ Nd0 , j ∈ Pj−1(ℓ)
}
∪ {Xk}k∈Nd0 ,

and
B+ ··=

{
JwKkj ; w = li1 . . . lij ∈ W, k, ℓ ∈ Nd0 , j ∈ Pj−1(ℓ), k ∈ Pj(k), |w|L − |k|+ |ℓ| > 0

}
∪
{
Xei

}
1≤i≤d0

.

We let T be the vector space freely generated by B, and T+ be the algebra freely generated by B+,
with unit 1+. We also set ∣∣JwKjXp

∣∣
L
··= |w|L + |ℓ|+ |p|

and define | · |L on T+ as a multiplicative function such that |Xei |L = 1 and∣∣JwKkj
∣∣
L
··= |w|L + |ℓ| − |k|.

Proceding as in Section 3, for τ = Jli1 . . . linKj ∈ T we set

⊕(τ) ··=
{

Jli1 . . . lij K
p
j<j

∈ B+ ; 1 ≤ j ≤ n, ℓj = 0, p ∈ Pj(p), p ∈ Nd0

}
∪ {1+},
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and for µ = Jli1 . . . linKkj ∈ T+ we set

⊕(µ) ··=
{

Jli1 . . . lij K
k+p
j<j

∈ B+ ; 1 ≤ j ≤ n, ℓj = 0, p ∈ Pj(p), p ∈ Nd0

}
∪ {1+}.

Set for τ = Jli1 . . . linKj ∈ T and σ = Jli1 . . . lij K
p
j ∈ ⊕(τ) with j < n

(τ\σ) ··=
∑

p=p1+p2

(
p

p1

)
Jlij+1 . . . linKj+p1X

p2 ,

and for j = n set (τ\σ) ··= 1
p!X

p. For µ = Jli1 . . . linKkj and ν = Jli1 . . . lij K
k+p
j ∈ ⊕(µ) with j < n

(µ\ν) ··=
∑

p=p1+p2

(
p

p1

)
Jlij+1 . . . linKkj+p1

Xp2 ,

and for j = n set (µ\ν) ··= 1
p!X

p. Finally set

∆(τ) ··=
∑

σ∈⊕(τ)

(τ\σ)⊗ σ,

and
∆+(µ) ··=

∑
ν∈⊕(µ)

|(µ\ν)|L>0

(µ\ν)⊗ ν.

Proceding as in Section 3 shows that
TL =

(
(T,∆), (T+,∆+)

)
is a concrete regularity structure. Given α = (α1, . . . , α|L|) with

∑|L|
j=1 αj > 0, and some functions

([l] ∈ Cαl
◦ )l∈L given a priori, we define from Theorem 1 a model on TL setting

Π(Jli1 . . . linKj) ··= Pj

(
[li1 ], . . . , [lin ]

)
,

g
(
Jli1 . . . linKkj

) ··= P̃
(|li1 |L,...,|lin |L)−|k|
j

(
∂k1 [li1 ], . . . , ∂

kn [lin ]
)
,

and Π(Jli1 . . . linKjXp)(·) = ·p Π(Jli1 . . . lin ]Kj)(·), with the notation (1.5).

5.2 – Paracontrolled systems and modelled distributions. We prove Theorem 2 in the re-
fined form of Theorem 22 below. Recall from the introductory Section 1.3 the definition of an r-
paracontrolled system. (Paracontrolled systems in the generality of Section 1.3 were first introduced
in Bailleul & Mouzard’s work [7].)

Let r > 0 and (uw)w∈U<r
be a system r-paracontrolled by the ([l])l∈L, as in (1.10). For each

τ = JwKjXp ∈ B
with w = lj1 . . . ljm and j ∈ Pm−1(ℓ) with l, p ∈ Nd0 such that |τ |L < r, set

uτ ··=
∑

w′=li2 ...lin∈W
ww′∈W<r

∑
k∈Pn(ℓ+p)

(
k

k

)
P̃(γ−|ww′|,|li2 |,...,|lin |)−|k|

(
∂k1u♯

ww′ , ∂
k2 [li2 ], . . . , ∂

kn [lin ]
)
,

From Theorem 1, each uτ defines a bounded function as r−|τ |L > 0. We define the T -valued function

u(x) ··=
∑
τ∈B

uτ (x) τ.

Theorem 2 is a direct consequence of the following result.
22 – Theorem. One has u ∈ Dr(T, g), and its reconstruction RM(u) is equal to uw∅

Proof – We use Theorem 1 to prove that statement, but in a regularity structure that takes into
account the u♯

w on the same footing as the [l]. We introduce for that purpose a new alphabet
A ··= L ⊔W
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and set |λ|A ··= |λ|L for λ ∈ L and |λ|A ··= r − |λ|L for λ ∈ W. We write WA for the set of words
written with the alphabet A. To avoid any confusion when writing words with the alphabet A we
will write (w), with the parentheses, the letter of A associated with w ∈ W. We extend our collection
([l])l∈L into ([λ])λ∈A setting

[w] ··= u♯
w ∈ Cr−|w|

for λ = w ∈ W. As above, Theorem 1 provides a regularity structure associated with A and a
model M = (Π, g) on it associated with ([λ])λ∈A. There is a canonical injection ι : TL ↪→ TA that
commutes with the coproducts, and M is an extension M. We can thus freely pass from g to g in some
computations below.
Within TA, working with M, for τ = JwKjXp one can rewrite

uτ (x) =
∑

w′∈W
gx

(
[(w′w)w′ ]l+p

)
.

For w ∈ W we let
ρ(w) ··= [(w)w]

where (w)w ∈ A is the word beginning with the letter (w) ∈ A followed by w ∈ A – for w = li1 · · · lin
it represents the function P

(
u♯
w, [li1 ], . . . , [lin ]

)
. Then the function u can be re-written in TA under

the form
u(x) =

∑
w∈U<r

∑
σ<ρ(w)

gx(ρ(w)/σ)σ,

Note that any σ < ρ(w) has form [w′]jX
p where w′ is a subword of w. We now prove that u ∈

Dr(T, g) by proving that for any w ∈ U<r the map hw(x) =
∑

σ<ρ(w) gx(ρ(w)/σ)σ is an element of
D|ρ(w)|(TA, g). For any x, y ∈ Rd0 , and for τ = JwKjXp, one has

ĝyx(hw(x)) =
∑

ν≤σ<ρ(w)

gx
(
ρ(w)/σ

)
gyx(σ/ν) ν =

∑
ν<τ

(
gy(ρ(w)/ν)− gyx(ρ(w)/ν)

)
ν

= hw(y)−
∑
ν<τ

gyx
(
ρ(w)/ν

)
ν.

Theorem 1 ensures that
∣∣gyx(ρ(w)/ν)∣∣ ≲ |y−x||ρ(w)/ν|, with |ρ(w)/ν| = r−|ν|A, hence hw ∈ Dr(T, g).

As
Πx(hw(x)) =

∑
σ<ρ(w)

gx(ρ(w)/σ)Πxσ = Π(ρ(w))− Πx(ρ(w)),

the reconstruction of hw is
Π(ρ(w)) = P

(
u#
w , [lj1 ], . . . , [ljm ]

)
,

where w = lj1 . . . ljm . And finally RM(u) =
∑

w∈U<r
RM(hw) = uw∅ .

�

A – Appendix

A.1 – Basics in regularity structures. We recall here some basic facts about regularity structure.
We refer the reader to [4] for a thorough introduction to the subject, and to [13] for the original work
of M. Hairer on the subject.
23 – Definition. A concrete regularity structure is a pair T = (T, T+) of graded vector spaces

T =
⊕
r∈A

Tr, T+ =
⊕
s∈A+

T+
s ,

such that the following holds.
– The spaces Tr and T+

s are finite dimensional for any r ∈ A and s ∈ A+. One has A+ ⊂ [0,+∞)
and both A and A+ are bounded from below and have no accumulation points.

– The vector space T+ is an Hopf algebra with coproduct ∆+ and grading A+ ⊂ [0,+∞[.
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– The vector space is endowed with a linear splitting map ∆ : T → T ⊗ T+ such that
(∆⊗ Id)∆ = (Id ⊗∆+)∆.

– We have
∆Tr1 ⊂

⊕
r2∈A

Tr2 ⊗ T+
r1−r2 , ∆+T+

s1 ⊂
⊕

s2∈A+

T+
s2 ⊗ T+

s1−s2 .

We suppose here that the vector spaces T and T+ come with some bases B and B+. Then for any
τ ∈ T we have a decomposition

∆τ =
∑
σ∈B

(τ/σ)⊗ σ

for some elements τ/σ ∈ T . Likewise we define τ/σ ∈ T+ for τ ∈ T+ and σ ∈ B+ from the identity

∆+τ =
∑
σ∈B+

(τ/σ)⊗ σ.

For σ, τ ∈ B we write σ ≤ τ if τ/σ ̸= 0 and σ < τ if σ and τ are distinct and σ ≤ τ . For τ, σ, ν ∈ B
we have

∆+(τ/σ) =
∑

σ≤ν≤τ

τ/ν ⊗ ν/σ.

We denote by G+ the set of real-valued characters of the algebra T+. We endow G+ with a group
structure by defining the convolution product of g1 and g2 as

(g1 ∗ g2)(τ) = (g1 ⊗ g2)∆
+τ,

for all τ ∈ T . We write g−1 for the inverse of a character g ∈ G+ in this group structure. For any
map x ∈ Rd0 7→ gx ∈ G+ we define for any x, y ∈ Rd0 the character

gyx ··= gy ∗ g−1
x .

Similarly we define for any map Π : T → D′(Rd0), any point x ∈ Rd0 , a new map Πx : T → D′(Rd0)
by setting

Πx =
(
Π⊗ g−1

x

)
∆.

For any function φ, point x ∈ Rd0 and ε > 0 we set

φλ
x(·) ··= ε−d φ

( · − x

ε

)
.

Finally for any integer n0 also define Fn0
as the set of Cn0 functions φ supported in the unit ball of

Rd0 and such that ∥φ∥Cn0 ≤ 1.

24 – Definition. Pick n ≥ |β0|. A model M = (Π, g) over a regularity structure T is a pair of maps
Π : T → Cβ0(Rd0), g : Rd0 → G+

with the following properties.

– For any x ∈ Rd0 and τ ∈ T|τ | we have∣∣Πx(τ)(φ
ε
x)
∣∣ ≲ ε|τ |

uniformly in x in compact subsets of Rd0 , in ε ∈ (0, 1) and in φ ∈ Fn0 .
– For any x, y ∈ Rd0 and µ ∈ T+

|µ| we have

|gyx(µ)| ≲ |y − x||µ|

uniformly for x, y in compact subsets of Rd0 .

Definition – Let T be a regularity structure and M = (Π, g) be a model on it. For any r ∈ R, a
modelled distributions f ∈ Dr(T, g) is a map f : Rd0 →

⊕
r′<r Tr′ such that
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max
r′<r

sup
x∈Rd0

∥f(x)∥r′ < +∞,

max
r′<r

sup
x,y∈Rd0

∥∥f(y)− ĝyx(f(x))
∥∥
r′

|y − x|r−r′
< +∞.

A.2 – Basics on analysis and proofs of three lemmas. For any function f and any multi-index
ℓ ∈ Nd0 we define the modified Littlewood-Paley projector

(∆ℓ
if)(x) ··=

∫
Rd0

Ki(x− y)(y − x)ℓf(y) dy.

25 – Lemma. For f ∈ Cr with r > 0 one has
(
∆ℓ

if
)
i≥−1

∈ Cr+|ℓ| and∥∥(∆ℓ
if
)
i≥−1

∥∥
Cr+|ℓ| ≲ ∥f∥r .

Proof – If |i− j| ≥ 2 we have ∆ℓ
i(∆jf) = ∆j(∆

ℓ
if) = 0, so ∆k

i f is spectrally supported in a ball 2iB
and

(∆ℓ
if)(x) =

∑
|j−i|≤1

∆ℓ
i(∆jf)(x) =

∑
|j−i|≤1

∫
Ki(x− y)(x− y)ℓ(∆jf)(y) dy

Then we get∣∣(∆ℓ
if)(x)

∣∣ ≤ ∣∣∣ ∫ Ki(z)z
ℓdz

∣∣∣ ∑
|j−i|≤1

∥∆jf∥L∞ ≤ 2−ir
∣∣∣ ∫ Ki(z)z

ℓdz
∣∣∣ ∥f∥r ≤ 2−i(r+|ℓ|) ∥f∥r ,

using the scaling property of the kernel Ki for the last inequality. �

Note that the sequence (∆ℓ
if)i≥−1 does not represent the Littlewood-Paley blocks of any distribu-

tion as
∑

i ∆
ℓ
if = 0 for any ℓ ̸= 0.

Proof of Lemma 3. Pick f = (fi)i≥−1 ∈ Cr and o > 0 with integer part ⌊o⌋. If fi is spectrally
supported in a ball 2iB, then fi(·+ h)−

∑
|k|<o ∂

kfi
hk

k! is spectrally supported in the same ball 2iB.
From Taylor Young inequality applied to fi at order ⌊o⌋+1 and Bernstein inequality we have for any
x ∈ Rd0 ∣∣∣∣fi(x+ h)−

∑
|k|<o

∂kfi(x)
hk

k!

∣∣∣∣ ≲ |h|⌊o⌋+1
∥∥∥D⌊o⌋+1fi

∥∥∥
L∞

≲ |h|⌊o⌋+12i(⌊o⌋+1) ∥fi∥L∞ .

Similarly Taylor-Young inequality at order ⌊o⌋ gives∣∣∣∣fi(x+ h)−
∑

|k|<⌊o⌋

∂kfi(x)
hk

k!

∣∣∣∣ ≲ |h|⌊o⌋2i⌊o⌋ ∥fi∥L∞ ,

from which we see that∣∣∣∣fi(x+ h)−
∑
|k|<o

∂kfi(x)
hk

k!

∣∣∣∣ ≤ ∣∣∣∣fi(x+ h)−
∑

|k|<⌊o⌋

∂kfi(x)
hk

k!

∣∣∣∣+ ∣∣∣∣ ∑
|k|=⌊o⌋

∂kfi(x)
hk

k!

∣∣∣∣
≲ |h|⌊o⌋2i⌊o⌋ ∥fi∥L∞ + |h|⌊o⌋

∥∥∥D⌊o⌋fi

∥∥∥
L∞

≲ |h|⌊o⌋2i⌊o⌋ ∥fi∥L∞ .

We conclude by interpolation that we have∣∣∣∣fi(x+ h)−
∑
|k|<o

∂kfi(x)
hk

k!

∣∣∣∣ ≲ |h|o2io ∥fi∥L∞ ≲ |h|o 2−i(r−o) ∥f∥r .
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Proof of Lemma 11. Let δ > 0 such that the estimate holds for θ ∈ [γ − δ, γ + δ]. For x, y ∈ Rd

with |y − x| ≤ 1, one has for any integer N∑
i≤N

Xi
yx ≤ C

∑
i≤N

|y − x|γ+η2iη ≲ C2Nη|y − x|γ+η,

∑
i>N

Xi
yx ≤ C

∑
i>N

|y − x|γ−η2−iη ≲ C2−Nη|y − x|γ−η,

Choosing N such that |y − x| ≃ 2−N gives the required bound.
Proof of Lemma 21. Using the definition of △h,r′P< we have∑

σe≺···≺τn(j)

(
△h,r′ P̃

|τn(j)/σ+|
α+

<

)(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+
)
(x)

=
∑
e≥0

∑
σe≺···≺τn(j)

P̃
|τn(j)/σ+|

α+

<

(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+
)
(x+ h)

−
∑
e≥0

σe≺···≺τn(j)

∑
|k|<r′

∂k
⋆P<

(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+
)
(x)hp

−
∑
e≥0

σe≺···≺τn(j)

∑
1≤m≤e

|k|<|τn(j)/σm|

∂k
⋆P<

(
[τn(j)/σ1]

Mr+

, . . . , [σm−1/σm]M
r+
)

× hk

k!

(
△h,|σm|α+α+

n
P<

)(
[σm/σm−1]

Mr+

, . . . , [n]M
r+
)
,

where we use the shorthand
∂k
⋆P<

(
[τn(j)/σ1]

Mr+

, . . . , [σm−1/σm]M
r+
)

=
∑

k∈Pm(k)

(
k

k

)
P̃
Dk|τn(j)/σ≤m|α
<

(
∂k1 [τn(j)/σ1]

Mr+

, . . . , ∂km [σm−1/σm]M
r+
)
.

The first line of the right hand side gives Pj

(
f1, . . . ,∆rfn

)
(x+ h). As∫

Rd0

K<i(h)h
p dh = 0

for p ̸= 0, the second line of the right hand side gives a zero contribution when integrated against
K<i except for p = 0, in which case it gives Pj

(
f1, . . . ,∆rfn

)
(x). Then∫

Rd0

∑
σe≺···≺τn(j)

(
△h,r′ P̃

|τn(j)/σ+|
α+

<

)(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+
)
(x) dh

=

∫
Rd0

K<i(h)Pj

(
f1, . . . ,∆rfn

)
(x+ h) dh− Pj

(
f1, . . . ,∆rfn

)
(x)

−
∑

σ≺τn(j)

∑
|k|<|τn(l)/σ|

∑
e1≥0

σ≺σe1
≺···≺τn(j)

∂k
⋆P<

(
[τn(l)/σ1]

Mr+

, . . . , [σ]M
r+
)
(x)

×
∫
Rd0

K<i(h)
hk

k!

∑
e2≥0

∑
νe2≺···≺σ

△h,|σ|+α+
n
P<

(
[σ/ν1]

Mr+

, . . . , [n]M
r+
)
dh.

The σ ∈ B such that σ ≺ τn(j) have form σ = Jm+ 1, n− 1Kj+p1
Xp2+s2 and τ/σ = J1,mKpjX

s1 where
p = s1 + p2 and ln−1 = s1 + s2. For such σ, using Lemma 20 the sum∑

σ≺···≺τn(j)

∂k
⋆P<

(
[τn(j)/σ1]

Mr+

, . . . , [σm−1/σ]
Mr+

)
(x)
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is 0 if s1 ̸= 0, otherwise (s1 = 0) this sum is equal to∑
p∈Pm(p)

(
p

p

)
P̃Dk+pα
j≤m

(
∂k1+p1f1, . . . , ∂

km+pmfm
)
(x) = gf

(
J1,mKk+p

j≤m

)
.

On the other hand for σ = Jm+ 1, nKj+p1
Xp2+ln−1 , we have from the induction hypothesis∫

Rd0

K<i(h)
hk

k!

∑
e2≥0

∑
νe2

≺···≺σ

(
△h,|σ|+α+

n
P<

)(
[σ/ν1]

Mr+

, . . . , [n]M
r+
)
dh

=

∫
Rd0

K<i(h)Π
r
x
′(Jm+ 1, nKj+pX

k
)
(x+ h).

One finally gets∫
Rd0

∑
σe≺···≺τn(j)

(
△h,r′ P̃

|τn(j)/σ+|
α+

<

)(
[τn(j)/σ1]

Mr+

, . . . , [σe]
Mr+

, [n]M
r+
)
(x) dh

=

∫
Rd0

K<i(h)
{
Pj

(
f1, . . . ,∆rfn

)
(x+ h)− Pj

(
f1, . . . ,∆rfn

)
(x)

−
∑
m,k,p

grx
′(J1,mKk+p

j

)
Πr

x
′(XkJm+ 1, nKj+p

)
(x+ h) dh

}
=

∫
Rd0

K<i(h)
{
Πr ′(J1, nKj

)
(x+ h)−

∑
σ<J1,nKj

grx
′(J1, nKj/σ

)
Πr

x
′(σ)(x+ h)

}
dh

=

∫
Rd0

K<i(h)Π
r
x
′(J1, nKj

)
(x+ h) dh,

so we have indeed (4.14).

A.3 – Proofs for Section 2.4 Proposition 13 gives the expansion property of the functions ∂p
⋆P<.

The proof of this proposition requires that we introduce some operators.

§1. The operators P̃β1,β2

< – It will be convenient to introduce as an intermediate tool some operators
P̃β1,β2

< indexed by two tuples of integers. This operator will be useful to obtain the local expansion
of the P̃β1

< , the uplet β2 will play a different role, similar to the one of the β when we used the P̃β

operator to obtain the expansion of the simplified paraproduct in Section 2.3
Their definition requires the following notation.

Definition – For β1, β2 in Rn such that β1
i ≥ β2

i for all 1 ≤ i ≤ n we set
MultiCut

(
β1, β2

)
··=

{
d =

(
0 = d0 < d1 < · · · < dn(d) = n

)
; ∀e ∈ J1, n(d)− 1K, de∈Cut(β1) ∪ Cut(β2)

}
.

For (hi)1≤i≤n ⊂ C0+ we set

P̃β1,β2

<

(
h1, . . . , hn

) ··= ∑
d∈MultiCut(β1,β2)

(−1)n(d)+1

n(d)∏
e=1

P<

(
hde−1+1, . . . , hde

)
.

We will use in the end the operators P̃β1,β2

< in some situations where
∑n

i=1 β
2
i > 0. In that case

we have Cut(β1) ⊂ Cut(β2), so P̃β1,β2

< (h1, . . . , hn) = P̃β2

< (h1, . . . , hn), and we can use the continuity
property of Proposition 5. The general P̃β1,β2

< operators will be useful in the algebraic steps below.

For any k ∈ Nd0 and k = (ka, . . . , kb) ∈ Pb−a+1(k) we also set

∂k
⋆P̃

βJa,bK
< (fa, . . . , fb) ··= P̃

βJa,bK,βJa,bK−|k|
<

(
∂ka fa, . . . , ∂

kb fb
)
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and
∂k
⋆ P̃

βJa,bK
< (fa, . . . , fb) ··=

∑
k∈Pb−a+1(k)

(
k

k

)
∂k
⋆P̃

βJa,bK
< (fa, . . . , fb).

The following statement is proved in Appendix A.4.1.

26 – Lemma. Pick β1, β2 in Rd satisfying Assumption (A). If β2
i ≤ β1

i for all 1 ≤ i ≤ n then
for any h1, . . . , hn in C∞ we have

P̃β1,β2

<

(
h1, . . . hn

)
= P̃β1

<

(
h1, . . . , hn

)
−

∑
d∈Cut(β2)\Cut(β1)

P̃
β1
≤m,β2

≤m

<

(
h1, . . . , hm

)
P̃
β1
>m,β2

>m
<

(
hm+1, . . . , hn

)
.

§2 Local expansion properties of the P̃β
<

(
f1, . . . , fn

)
– Pick β ∈ Rn such that

∑n
i=1 βi > 0. Proceding

as in (2.5) we see that

P̃β
<

(
f1, . . . , fn

)
(·+ h) = P̃β

<

(
f1(·+ h), . . . , fn(·+ h)

)
= T o

h P̃
β
<

(
f1, . . . , fn

)
+

n∑
m=1

∑
|k|<o

k∈Pm−1(k)

hk|h|o−|k|

k!
P̃β
<

(
∂k1 f1, . . . , ∂

km−1 fm−1, R
o−|k|
h fm, fm+1(·+ h), . . .

)
With the same motivations as in Section 2.3 we set here

βa(k, o) ··=
(
βa+1 − |ka+1|, . . . , βb−1 − |kb−1|, βb − o+ |k|, βb+1, . . . , βn

)
.

and (
△h,oP̃

β
<

)
(fa+1, . . . , fn) ··=

n∑
b=a+1

∑
|k|<o

k∈Pb−a−1(k)

hk|h|o−|k|

k!
P̃
β>a,βa(k,r)
<

(
∂ka+1 fa+1 . . . , ∂

kb−1 fb−1,

R
o−|k|
h fb, fb+1(·+ h), . . . , fn(·+ h)

)
,

and for i ≥ −1(
△h,oP̃

β
<

)
(fa+1, . . . , fn){i} ··=

n∑
b=a+1

∑
|k|<o

k∈Pb−a−1(k)

hk|h|o−|k|

k!
P̃
β>a,βa(k,r)
<

(
∂ka+1 fa+1 . . . , ∂

kb−1 fb−1,

R
o−|k|
h fb, fb+1(·+ h), . . . , fn(·+ h)

)
{i}.

We define
I(β) ··=

{
c ∈ J1, n− 1K ;

c∑
j=1

βj > 0 and
n∑

j=c+1

βj > 0
}
.

27 – Proposition. For o >
∑n

j=1 βj − δ0, we have(
△β

h,rP̃
β
<

)
(f1, . . . , fn){i} = P̃β

<

(
f1, . . . , fn

)
{i}(·+ h)− T o

h P̃
β
<

(
f1, . . . , fn

)
{i}

−
∑

c∈I(β)

∑
|k|<

∑c
j=1 βj

∂k
⋆β≤c

P<

(
f1, . . . , fc

) hk

k!

(
△β

h,o−|k|P̃
β>c
<

)(
fc+1, . . . , fn

)
{i},

Proof – Recall that for k ∈ Nd0 and k ∈ Pj−1(k)

β(k, o) =
(
β1 − |k1|, . . . , βj−1 − |kj−1|, βj − o+ |k|, βj+1, . . . , βn

)
.
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We are going to apply Lemma 26 with the tuples α and β(k, o), which verify indeed β(k, o)a ≤ αa for
any 1 ≤ a ≤ n. Moreover for a > j we have β(k, o)a = αa, and as consequence Cut(β(k, o))\Cut(α) ⊂
J1, j − 1K. Then Lemma 26 gives

P̃
β(k,o)
<

(
∂k1 f1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i}

= P̃β
<

(
∂k1 f1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i}

−
∑

c∈Cut(β(k,o))\Cut(α)

P̃
α≤c,β(k,o)≤c

<

(
∂k1 f1, . . . , ∂

kc fc
)

× P̃
β>c,β(k,o)>c

<

(
∂kc+1 fc+1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i}

= P̃β
<

(
∂k1 f1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i}

−
∑

c∈Cut(β(k,o))\Cut(β)

∂
k≤c
⋆ P<

(
f1, . . . , fc

)
× P̃

α>c,β(k,o)>c

<

(
∂kc+1 fc+1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i},

where we used that
P̃
β(k,o)≤c,β≤c

<

(
∂k1 f1, . . . , ∂

kc fc
)
= P̃

β(k,o)≤c

<

(
∂k1 f1, . . . , ∂

kc fc
)

since
∑c

i=1 β(k, o)i > 0 for c ∈ Cut(β(k, o)).
We now sum over j, k and k and invert the sums over c and j. In order to implement this sum inversion
we use the inclusion Cut

(
β(k, o)

)
\Cut

(
β
)
⊂ I(β). This gives

(
△h,oP̃

β
<

)(
f1, . . . , fn

)
{i} −

n∑
j=1

∑
|k|<o

k∈Pj−1(k)

hk|h|o−|k|

k!
P̃β
<

(
∂k1 f1, . . . , ∂

kj−1 fj−1,

R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i}

=

n∑
j=1

∑
|k|<o

k∈Pj−1(k)

hk|h|o−|k|

k!

∑
c∈Cut(β(k,o))\Cut(β)

∂k
⋆P<

(
f1, . . . , fc

)

× P̃
β>c,β(k)>c

<

(
∂kc+1 fc+1, . . . , ∂

kj−1 fj−1, R
o−|k|
h fj , fj+1(·+ h), . . .

)
{i}

=
∑

c∈I(β)

∑
|k|<

∑c
i=1 βi

k∈Pc−1(k)

hk

k!
∂k
⋆P<

(
f1, . . . , fc

)

×
n∑

j=c+1

∑
|p|<o

p∈Pj−c−1(p)

hp|h|o−|k|−|p|

p!
P̃
β>c,β(k,o)>c

<

(
∂p1 fc+1, . . . , ∂

pj−c−1 fj−1,

R
o−|p|
h fj , fj+1(·+ h), . . .

)
{i}

=
∑

c∈I(β)

∑
|k|<

∑c
i=1 βi

hk

k!
∂k
⋆ P̃

β≤c

< (f1, . . . , fc)
(
△h,o−|k|P̃

β>c
<

)
(fc+1, . . . , fn){i}.

The result follows from this identity. �
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28 – Lemma. For 0 ≤ c ≤ n− 1, for o2 > o1 >
∑n

j=c+1 αj − δ0, we have(
△h,o2 P̃

β>c
<

)
(fc+1, . . . , fn){i} −

(
△h,o1 P̃

β>c
<

)
(fc+1, . . . , fn){i} =

∑
o1<|k|<o2

hk

k!
∂k
⋆ P̃

β>c
< (fc+1, . . . , fn){i}.

Proof – The proof follows the same induction as for Lemma 10. The result is true for c = n − 1

as △h,oP̃
β
< coincides still with the Taylor remainder |h|oRo

h. Suppose it to be true for (n − c − 1)
functions. Proposition 27 gives then(

△h,o2 P̃
β>c
<

)(
fc+1, . . . , fn

)
{i} −

(
△h,o1 P̃

β>c
<

)(
fc+1, . . . , fn

)
{i}

= T o2
h P̃β>c

<

(
fc+1, . . . , fn

)
i
− T o1

h P̃β>c
<

(
fc+1, . . . , fn

)
i

−
∑

j∈I(β>c)

∑
|p|<

∑j
a=c+1 βa

∂p
⋆P<(fc+1, . . . , fj)

hp

p!

×
{(

△h,o2−|p|P̃
β>j

<

)(
fj+1, . . . , fn

)
{i} −

(
△h,o1−|p|P̃

β>j

<

)(
fj+1, . . . , fn

)
{i}

}
.

From the induction hypothesis this quantity is equal to

∑
o1<|k|<o2

hk

k!
∂kP̃β>c

< (fc+1, . . . , fn){i} −
∑

j∈I(β>c)

∑
|p|<

∑j
a=c+1 βa

hp

p!
∂p
⋆P<(fc+1, . . . , fj)

×
∑

o1<|ℓ|+|p|<o2

hℓ

ℓ!
∂ℓ
⋆P̃

β>c
< (fj+1, . . . , fn){i}

=
∑

o1<|k|<o2

hk

k!

∑
k∈Pn−c(k)

(
k

k

)
Λk,i,

where
Λk,i ··= P̃β>c

<

(
∂k1 fc+1, . . . , ∂

kn−c fn
)
{i} −∑

j∈Cut(β>c−|k|)\Cut(β>c)

P̃
βJc+1,jK−|k|
<

(
∂k1 fc+1, . . . , ∂

kn−j+1 fn
)
P̃
β>j ,β>j−|k|
<

(
∂kn−j fj+1, . . . , ∂

kn−c fn
)
{i}.

Lemma 26 gives
Λk,i = P̃

β>c,β>c−|k|
<

(
∂k1 fc+1, . . . , ∂

kn−c fn
)
{i},

and the result follows. �

For 0 ≤ a ≤ n− 1 we define(
△yxP̃

β
<

)
(fa+1, . . . , fn) ··=

(
△y−x,

∑n
j=a+1 βj

P̃β
<

)
(fa+1, . . . , fn)(x);

From the same arguments of Section 2, for o in a neighborhood of
∑n

j=1 βj one has the estimate∣∣(△yxP̃
β
<

)
(fa+1, . . . , fn){i}

∣∣ ≲ n∏
j=1

∥fj∥βj
|y − x|o2−i(

∑n
j=1 βj−o)

where (
△yxP̃

β
<

)
(fa+1, . . . , fn){i} ··=

(
△y−x,

∑n
j=a+1 βj

P̃β
<

)
(fa+1, . . . , fn){i}(x).

Then Lemma 11 gives the estimate∣∣(△yxP̃
β
<

)
(fa+1, . . . , fn)

∣∣ ≲ { n∏
j=a+1

∥fj∥βj

}
|y − x|

∑n
j=a+1 βj .

29 – Proposition. Pick β = (β1, . . . , βn) ∈ Rn with
∑n

j=1 βj > 0 and fj ∈ C
βj
◦ for 1 ≤ j ≤ n. Then

we have the local expansion
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P̃β
<(f1, . . . , fn)(y) =

∑
|k|<

∑n
j=1 βj

∂k
⋆ P̃

β
<

(
f1, . . . , fn

)
(x)

(y − x)k

k!

+

n−1∑
c=1

∑
|k|<

∑c
j=1 βj

∂k
⋆ P̃

β
<

(
f1, . . . , fc

)
(x)

(y − x)k

k!
△yxP̃

β
<(fc+1, . . . , fn)

+△yxP̃
β
<(f1, . . . , fn).

(A.1)

where ∣∣∣(△yxP̃
β
<

)
(fc+1, . . . , fn)

∣∣∣ ≲ { n∏
j=c+1

∥fj∥βj

}
|y − x|

∑n
j=c+1 βj .

Proof – We proceed as in the proof of Proposition 12. Proposition 27 and Lemma 28 give

(△yxP̃
β
<)(f1, . . . , fn) = P̃β

<

(
f1, . . . , fn

)
(·+ h)−

∑
|k|<o

hk

k!
∂kP̃β

<

(
f1, . . . , fn

)
−

∑
c∈I(β)

∑
|p|<

∑c
j=1 βi

∂p
⋆ P̃

β
<(f1, . . . , fc)

hp

p!

(
△yxP̃

β
<

)
(fc+1, . . . , fn)

−
∑

c∈I(β)

∑
|p|<

∑c
j=1 βj

|ℓ|>
∑n

j=c+1 βj

hp

p!

hℓ

ℓ!
∂p
⋆ P̃

β
<(f1, . . . , fc) ∂

ℓ
⋆P̃

β
<(fc+1, . . . , fn).

From Lemma 26, we have, for any k ∈ Nd0 such that |k| <
∑n

j=1 βj , that ∂k
⋆P<

(
f1, . . . , fn

)
is equal to

∂kP̃β
<

(
f1, . . . , fn

)
−

∑
c∈I(β)

∑
|p|<

∑c
j=1 βj

|k−p|>
∑n

j=c+1 βj

(
k

p

)
∂p
⋆ P̃

β
<(f1, . . . , fc) ∂

k−p
⋆ P̃β

<(fc+1, . . . , fn).

This identity concludes the proof of this proposition. �

A.4 – Proof of some algebraic lemmas. We prove in this section a number of algebraic results
that were used in the main body of the text. We start Section A.4.1 by proving the inductive relation
(Lemma 26) on the P̃β1,β2

< that we used above. The operators P̃β1,β2

< have an analogue P̃β1,β2

j defined
from the (true) iterated paraproduct operator. The remainder of Section A.4.1 is dedicated to proving
Lemma 31, which is the analogue of Lemma 26 for the operators P̃β1,β2

j . Lemma 31 plays a crucial
role in our proof of Lemma 20. The later is the main ingredient of our proof of Theorem 1. The proof
of Lemma 20 occupies all of Section A.4.2.

A.4.1 – Algebraic properties of the P̃β1,β2

< . We start with the

Proof of Lemma 26. The proof is very similar to the proof of Lemma 7. From Assumption (A) we
have the following partition of MultiCut(β1, β2)

MultiCut
(
β1, β2

)
= MultiCut

(
β1

)
⊔

⊔
m∈Cut(β2)\Cut(β1)

MultiCut(β2)
[
β1,m

]
,

where

MultiCut(β2)
[
β1,m

] ··= {
i ∈ MultiCut

(
β1, β2

)
; m ∈ i,

m∑
s=1

β2
s = min

j∈i, j /∈Cut(β1)

j∑
s=1

β2
s

}
.

We thus have



45

P̃β1,β2

< (h1, . . . hn) = Pβ1

<

(
h1, . . . , hn

)
+

∑
m∈Cut(β2)\Cut(β1)

∑
i∈MultiCut(β2)[β1,m]

(−1)n(d)+1

n(d)∏
k=1

P<

(
hik−1+1, . . . , hik

)
.

so it suffices to show that for any m ∈ Cut(β2)\Cut(β1) we have∑
i∈MultiCut(β2)[β1,m]

(−1)n(d)+1

n(d)∏
k=1

P<

(
hik−1+1, . . . , hik

)
= −P̃

β1
≤m,β2

≤m

<

(
h1, . . . , hm

)
P̃
β1
>m,β2

>m
<

(
hm+1, . . . , hn

)
.

Pick m ∈ Cut(β2)\Cut(β1). We prove that: For 1 < j < m we have{
∃ i ∈ MultiCut(β2)[β1,m] ; j ∈ i

}
⇔

{
j ∈ Cut

(
β1
≤m) ∪ Cut(β2

≤m

)}
,

and for m < j < n we have{
∃ i ∈ MultiCut(β2)[β1,m] ; j ∈ i

}
⇔

{
j −m ∈ Cut

(
β1
>m) ∪ Cut(β2

>m

}
.

The proof of Lemma 26 follows from these equivalences as in the proof of Lemma 7.
As a preliminary remark we note that for m ∈ Cut(β2)\Cut(β1) we have

∑m
s=1 β

1
s > 0 and∑n

s=m+1 β
1
s > 0. We prove now the first equivalence relation. Suppose i ∈ MultiCut(β2)[β1,m]

and 1 < j < m is such that j ∈ i. If j ∈ Cut(β1) then j ∈ Cut(β1
≤m). Otherwise j ∈ Cut(β2)\Cut(β1)

and j ∈ Cut(β2
≤m). Reciprocally if j ∈ Cut(β1

≤m) ∪ Cut(β2
≤m) then necessarily

∑m
s=j+1 β

2
s < 0 and

j ∈ Cut(β2) and
∑n

s=j+1 β
2
s <

∑n
s=m+1 β

2
s .

The second equivalence relation is proved in the same way. �

The remainder of this section is dedicated to stating and proving an analogue of Lemma 26 for
some operator P̃β1,β2

ℓ that we can associate to the iterated paraproduct operators P̃ℓ. We first need
an ad hoc setting to introduce these operators. It is very close to the setting of Section 3.

Fix n ≥ 1. Define the set of symbols

B̂ ··=
{

Ja, bKkjX
m ; 1 ≤ a ≤ b ≤ n, ℓ, k ∈ Nd0 , j ∈ Pb−a(ℓ), k ∈ Pb−a+1(k),m ∈ Nd0

}
∪ {Xm}m∈Nd0 .

Given β ∈ Rn and τ = Ja, bKkj ∈ B̂ we set

|τ |β =

b∑
j=a

βj − |k|+ |ℓ|.

We denote by T̂ the vector space freely spanned by the elements of B̂, and for τ = Ja, bKkj we set

⊕(τ) ··=
{

Ja, cKk+p
j<c−a

; a < c < b, ℓc−a = 0
}
,

for σ = Ja, cKk+p
j<c−a

∈ ⊕(τ) define an element of T̂ setting

(τ\σ) ··=
∑

k=p1+p2

(
k

p1

)
Jc+ 1, bKj>j1−j+p1 X

p2

Finally we define a coproduct ∆̂ : T̂ → T̂ ⊗ T̂ setting
∆̂(τ) =

∑
σ∈⊕(τ)

(τ\σ)⊗ σ.

Proceeding as in the proof of Proposition 14 one can see that ∆̂ is co-associative. We note in particular
that all the elements of T in the sum defining (τ\σ) have the same homogeneity. Re-indexing the sum
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defining ∆̂(τ) we can write
∆̂(τ) =··

∑
ν<̂τ

ν ⊗ τ/ν,

with ν running in the basis B of T and τ/ν defined by this identity. The element τ/ν of T̂ is a sum
of terms with the same | · |β-homogeneity, so we can abuse notations and write |τ/ν|β .

For τ ∈ B̂ we define the set of cuts
Ĉut(τ, β) ··=

{
σ<̂τ ; |σ|β < 0 and |τ/σ|β > 0

}
,

and the set of multicuts
M̂ultiCut(τ, β) ··=

{
σ = (σ1, · · · , σe(σ)) ∈ Ĉut(τ)e(σ) ; e(σ) ≥ 1, σe(σ)<̂ · · · <̂σ1<̂τ

}
.

For a fixed tuple g = (g1, . . . , gn) of distributions, for σ = Ja, bKkj ∈ B̂ we set
Υg(σ) ··= Pj

(
∂kaga, . . . , ∂

kbgb
)
.

We note that for any p ∈ (Nd0)n, setting ∂pg = (∂p1g1, . . . , ∂
pngn), one has

Υ∂pg

(
Ja, bKkj

)
= Υg

(
Ja, bKk+p

j

)
. (A.2)

30 – Lemma. For any ℓ ∈ Nd0 and j ∈ Pn−1(ℓ), letting τ = J1, nK0j , we have

P̃β
j

(
g1, · · · , gn

)
= Pj

(
g1, · · · , gn

)
−

∑
σ∈M̂ultiCut(τ,β)

(−1)e(σ)+1 Υg(τ/σ1)Υg(σ1/σ2) · · ·Υg(σe(σ)). (A.3)

Proof – We prove (A.3) by induction on n. The result is true for n = 1. We prove that the right
hand side of (A.3) satisfies the same recursive relation as P̃β

j

(
g1, . . . , gn

)
. The proof is analogous to

the proof of Lemma 7.
From Assumption (A) we have a partition

M̂ultiCut(τ, β) =
⊔
σ<̂τ

M̂ultiCut(τ, β)[ν],

where

M̂ultiCut(τ, β)[ν] ··=
{
σ = (σ1, · · · , σe(σ)) ∈ M̂ultiCut(τ, β) ; ν ∈ σ, |τ/ν| = min

1≤j≤e(σ)
|τ/σj |

}
.

For any ν ∈ Ĉut(τ, β) and µ<̂ν we have the equivalence{
∃σ ∈ M̂ultiCut(τ, β)[ν] ; µ ∈ σ

}
⇔

{
µ ∈ Ĉut(ν, β)

}
.

Likewise, for ν<̂µ<̂τ we have{
∃σ ∈ M̂ultiCut(τ, β)[ν] ; µ ∈ σ

}
⇔

{
µ/ν ∈ Ĉut(τ/ν, β)

}
.

Define
Υg(τ, β) ··=

∑
σ∈M̂ultiCut(τ,β)

(−1)e(σ)+1Υg(τ/σ1)Υg(σ1/σ2) · · ·Υg(σe(σ)).

Using the two equivalence relations above, the same computation as in the proof of Lemma 7 gives
that

Υg(τ, β) = −
∑

σ∈Ĉut(τ,β)

(
Υg(σ)−Υg(σ, β)

) (
Υg(τ/σ)−Υg(τ/σ, β)

)
.

From the induction hypothesis, for σ = Jc+ 1, nKj+p ∈ Ĉut(τ, β) we have

Υg(σ)−Υg(σ, β) = P̃β>m

j+p (gm+1, . . . , gn).
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Likewise, for τ/σ = J1, cKpj , using (A.2) we have

Υg(τ/σ)−Υg(τ/σ, β) =
∑

p∈Pm(p)

(
p

p

){
Υg

(
J1, cKpj

)
−Υg

(
J1, cKpj , β

)}
=

∑
p∈Pm(p)

(
p

p

){
Υ∂pg

(
J1, cK0j

)
−Υ∂pg

(
J1, cK0j , β − |p|

)}
=

∑
p∈Pm(p)

(
p

p

)
P̃
β≤c−|p|
j

(
∂p1g1, . . . , ∂

pmgm
)
.

This closes the induction step. �

Define
M̂ultiCut(τ, β1, β2)

··=
{
σ = (σ1, · · · , σe(σ)) ∈

(
Ĉut(τ, β1) ∪ Ĉut(τ, β2)

)e(σ)
; e(σ) ≥ 1, σe(σ)<̂ · · · <̂σ1<̂τ

}
,

and set
P̃β1,β2

j

(
g1, . . . , gn

)··= Pj

(
g1, . . . , gn

)
−

∑
σ∈MultiCut(τ,β1,β2)

(−1)e(σ)+1Υg(τ/σ1)Υg(σ1/σ2) · · ·Υg(σe(σ)).

31 – Lemma. Suppose β1, β2 are two tuples of real numbers such that β1
s ≥ β2

s for every 1 ≤ s ≤ n.
Then we have

P̃β1,β2

j

(
g1, . . . , gn

)
= P̃β1

j

(
g1, . . . , gn

)
−
∑

P̃
β1−|k|,β2−|k|
j

(
∂k1g1, . . . , ∂

kcgc
)
P̃β1,β2

j+k

(
gc+1, . . . , gn

)
,

for a sum over Jc+ 1, nKkj ∈ Ĉut(τ, β2)\Ĉut(τ, β1).

Proof – The proof is the same as the proof of Lemma 26. Using Assumption (A) we can partition
of M̂ultiCut(τ, β1, β2) as

M̂ultiCut
(
τ, β1, β2

)
= M̂ultiCut(τ, β1) ⊔

⊔
ν∈Ĉut(τ,β2)\Ĉut(τ,β1)

M̂ultiCut(τ, β2)
[
β1, ν

]
,

where

M̂ultiCut(τ, β2)
[
β1, ν

] ··= {
σ ∈ M̂ultiCut

(
τ, β1, β2

)
; ν ∈ σ, |τ/ν|β2

= min
σ∈σ, σ/∈Ĉut(τ,β1)

|τ/σ|β2

}
.

Then we have
P̃β1,β2

j (g1, · · · , gn) =P̃β1

j

(
g1, · · · , gn

)
+

∑
ν∈Ĉut(τ,β2)\Ĉut(τ,β1)

σ∈M̂ultiCut(τ,β2)[β1,ν]

(−1)e(σ)+1 Υg(τ/σ1)Υg(σ1/σ2) · · ·Υg(σe(σ)).

It suffices then to show for any ν = J1, cKkj ∈ Ĉut(τ, β2)\Ĉut(τ, β1) we have∑
σ∈M̂ultiCut(τ,β2)[β1,ν]

(−1)e(σ)+1Υg(τ/σ1) · · ·Υg(σe(σ))

= −P̃
Dkβ1

≤m,Dkβ2
≤m

j≤m

(
∂k1f1, · · · , ∂kmfm

)
P̃
β1
>m,β2

>m

j+k

(
fm+1, · · · , fn

)
.

For such a ν, we show below that for µ<̂ν we have{
∃σ ∈ M̂ultiCut(τ, β2)[β1, ν], µ ∈ σ

}
⇔

{
µ ∈ Ĉut(ν, β1) ∪ Ĉut(ν, β2)

}
, (A.4)

and that for ν<̂µ<̂τ we have{
∃σ ∈ M̂ultiCut(τ, β2)[β1, ν], µ ∈ σ

}
⇔

{
τ/µ ∈ Ĉut(τ/ν, β1) ∪ Ĉut(τ/ν, β2)

}
. (A.5)
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We can then conclude the proof of our lemma in the same way as in the proof of Lemma 7.
A basic observation we will use is that for ν = J1, cKkj ∈ Ĉut(τ, β2)\Ĉut(τ, β1) we necessarily have
|ν|β1 > 0 and |τ/ν|β1 > 0. We now prove (A.4). Suppose σ ∈ M̂ultiCut(τ, β2)[β1, ν] and µ<̂ν such
that µ ∈ σ. If µ ∈ Ĉut(τ, β1), then µ ∈ Ĉut(ν, β1) and otherwise µ ∈ Ĉut(τ, β2)\Ĉut(τ, β1), then
µ ∈ Ĉut(µ, β2). Reciprocally if µ ∈ Ĉut(ν, β1, β2), then necessarily |ν/µ|β2 < 0 and µ ∈ Ĉut(τ, β2) and
|τ/µ|β2 < |τ/ν|β2 . We proceed similarly to prove the equivalence (A.5). �

A.4.2 – Proof of Lemma 20. We first prove point (i) by induction. From the definition of the
operator P̃< we have

P̃
|τ/σ|α−|k|
<

(
[τ/σ1]

∂kf, . . . , [σe]
∂kf

)
= P<

(
[τ/σ1]

∂kf, . . . , [σe]
∂kf

)
−

∑
c

P̃
|τ/σ≤c|α−|k|
<

(
[τ/σ1]

∂kf, · · · , [σc−1/σc]
∂kf

)
× P̃

|σc/σ>c|α−|k|
<

(
[σc/σc+1]

∂kf, · · · , [σe]
∂kf

)
,

with a sum over the set of integers c ∈ J1, eK such that |τ/σc|α−|k| > 0 and |σc|α−|k| < 0. Summing
over the set of descending sequences σe ≺ · · · ≺ σ1 ≺ τ = J1, nKjXm, we obtain that∑

e≥0

∑
σe≺···≺σ1≺τ

P̃
|τ/σ|α−|k|
<

(
[τ/σ1]

∂kf, . . . , [σe]
∂kf

)
is equal to

∑
e≥0

∑
σe≺···≺σ1≺τ

P<

(
[τ/σ1]

∂kf, · · · , [σe]
∂kf

)
−

∑
σ≺τ

σ∈Ĉut(τ,α−|k|)

∑
e1≥0

σ≺σe1
≺···≺τ

P̃
|τ/σ|α−|k|
<

(
[τ/σ1]

∂kf, . . . , [σe1/σ]
∂kf

)

×
∑
e2≥0

∑
νe2≺···≺σ

P̃
|σ/ν|α−|k|
<

(
[σ/ν1]

∂kf, . . . , [νe2 ]
∂kf

)
(A.6)

From Lemma 19 the first sum in (A.6) is equal to Pj

(
∂k1f1, · · · , ∂knfn

)
if m = 0 and 0 otherwise.

For the second double sum in the right hand side of (A.6), note first that all the homogeneities in
the tuple |τ/σ|α−|k| are positive. It follows that we have

P̃
|τ/σ|α−|k|
<

(
[τ/σ1]

∂kf, . . . , [σc−1/σ]
∂kf

)
= P<

(
[τ/σ1]

∂kf, . . . , [σc−1/σ]
∂kf

)
.

Now, the elements σ ≺ τ have the form σ = Jc + 1, nKj>c+p1
Xp2+m1 , and τ/σ = J1, cKpj<c

Xm2 with
m = m1 +m2 and p = p1 + p2, so it follows from Lemma 19 that∑

e1≥0

∑
σ≺σe1

≺···≺τ

P<

(
[τ/σ1]

∂kf, . . . , [σm−1/σ]
∂kf

)
= 1m2=0

∑
p∈Pc(p)

(
p

p

)
P̃
α≤c−|k+p|
j<c

(
∂k1+p1f1, . . . , ∂

kc+pcfc
)

Also, the induction hypothesis gives∑
e2≥0

∑
νe2

≺···≺σ

P̃
|σ/ν|α−|k|
<

(
[σ/ν1]

∂kf, . . . , [νe2 ]
∂kf

)
= 1p2+m1=0 P̃

α−|k|>c

j>c+p1

(
∂kc+1fc+1, . . . , ∂

knfn
)
.

If m ̸= 0 then m1 ̸= 0 or m2 + p1 ̸= 0, and then all the terms in the right hand side of A.6 add up to
0; this closes the induction in that case. If now m = 0, the non-zero terms in the sum over σ ≺ τ are
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the terms with σ = Jc+ 1, nKj+p and τ/σ = J1, cKpj , and∑
e≥0

∑
σe≺···≺σ1≺τ

P̃
|τ/σ|α−|k|
<

(
[τ/σ1]

∂kf, . . . , [σe]
∂kf

)
= Pj

(
∂k1f1, . . . , ∂

knfn
)

−
∑
c,p

∑
p∈Pc(p)

P̃
α≤c−|k+p|
j<c

(
∂k1+p1f1, . . . , ∂

kc+pcfc
)
P̃
α>c−|k|
j>c+p

(
∂kc+1fc+1, . . . , ∂

knfn
)
,

where the sum in the right hand side runs over the paris (c, p) such that ℓc = 0, |J1, cKpj<c
|α−|k| > 0

and |Jc + 1, nKj>c+p|α−|k| < 0. It follows then from recursive definition of the correctors P̃ β
j that the

above quantity is indeed equal to P̃
α−|k|
j

(
∂k1f1, . . . , ∂

knfn
)
.

– We now prove point (ii) by proving the following stronger statement: For τ = J1, nKjXm ∈ T ,
and for any p ∈ Nd0 , one has∑

e≥0

∑
σ≺σe≺···≺τ

∂p
⋆P<

(
[τ/σ1]

f, . . . , [σe/σ]
f
)

= 1m=0

∑
p∈Pn(p)

∑
k∈Pn(k)

(
p

p

)(
k

k

)
P̃
α−|k|,α−|k+p|
j

(
∂k1+p1f1, . . . , ∂

kn+pnfn

)
,

where

∂p
⋆P<

(
[τ/σ1]

f, . . . , [σe/σ]
f
)
=

∑
p∈Pe+1(p)

(
p

p

)
P̃
|τ/σ|α−|p|
<

(
∂p1 [τ/σ1]

f, . . . , ∂pe+1 [σe/σ]
f
)
.

The proof of this fact relies on Lemma 31 and is an induction over n. The result is true for n = 1;
suppose it holds true for (n− 1). From the definition of ∂p

⋆P< and the recursive relation of Lemma 7,
for any descending sequence σ ≺ σe ≺ · · · ≺ τ , the distribution ∂p

⋆P<

(
[τ/σ1]

f, · · · , [σe/σ]
f
)

is equal to∑
p∈Pe(p)

(
p

p

)
P̃
|τ/σ|−|p|
<

(
∂p1 [τ/σ1]

f, . . . , ∂pq [σe/σ]
f
)

=
∑

p∈Pe(p)

(
p

p

){
P<

(
∂p1 [τ/σ1]

f, . . . , ∂pe [σe/σ]
f
)

(· · · )

−
∑

c∈Cut(|τ/σ|−|p|)

P̃
|τ/σ≤c|−|p≤c|
<

(
∂p1 [τ/σ1]

f, . . . , ∂pc [σc−1/σc]
f
)

× P̃
|σc/σ>c|−|p>c|
<

(
∂pc+1 [σc/σc+1]

f, . . . , ∂pe [σe/σ]
f
)}

.

Then, summing over descending sequences σ ≺ σe ≺ · · · ≺ τ and inverting the sums over p and c, we
obtain∑

e≥0

∑
σ≺σe≺···≺τ

∂p
⋆P<

(
[τ/σ1]

f, . . . , [σe/σ]
f
)
= ∂p

{∑
e≥0

∑
σ≺σe≺···≺τ

P<

(
[τ/σ1]

f, . . . , [σe/σ]
f
)}

−
∑
ν≺τ

∑
p=a+b

(a,b)∈C(τ,ν,σ)

(
p

a

){ ∑
e1≥0

ν≺νe1
≺···≺τ

∑
a∈Pe1

(a)

(
a

a

)
P̃
|τ/ν|−|a|
<

(
∂a1 [τ/ν1]

f, . . . , ∂ae1 [νe1/ν]
f
)

×
∑
e2≥0

σ≺σe2≺···≺ν

∑
b∈Pe2

(b)

(
b

b

)
P̃
|ν/σ|−|b|
<

(
∂b1 [ν/σ1]

f, . . . , ∂be2 [σe/σ]
f
)}

,

where
C(τ, σ, ν) ··=

{
(a, b) ∈ (Nd0)2, |τ/ν| > |a| and |ν/σ| < |b|

}
.

From Lemma 19 the first line of the right hand side of the last equality is equal 0 if m ̸= 0, as∑
i≥−1 ∆

m
i (g) = 0 for any function g; it is equal to ∂pgf(τ) if m = 0.
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We are able to use induction hypothesis for the remaining terms. Suppose first that m ̸= 0. For
any ν ≺ τ the elements τ/ν, ν/σ ∈ T+ have the form τ/ν = J1, cKk

′
1

j Xm1 and ν/σ = Jc+ 1, nKk
′
2

j+vX
m2

where m1,m2 cannot be both equal to 0. The induction assumption ensures in that case that the
second term on the right hand side is 0, which closes the induction step.

Suppose now that m = 0. In this case for ν ≺ τ , the elements τ/ν, ν/σ ∈ T+ have form τ/ν =

J1, cKka+v
j and ν/σ = Jc + 1, nKkb

j+v1
Xv2 with k = ka + kb and v = v1 + v2. For v2 ̸= 0 the induction

assumption ensures that the sum over e2 is null. We are thus left with the ν for which v2 = 0. This
leads to the equality∑

e≥0

∑
σ≺σe≺···≺τ

∂p
⋆P<

(
[τ/σ1]

f, . . . , [σe/σ]
f
)

=
∑

k∈Pn(k)

(
k

k

){
∂pP̃

α−|k|
j

(
∂k1f1, . . . , ∂

knfn

)
−

∑
p=q+q′

c,v

(
p

q

) ∑
q∈Pc(q)

∑
v∈Pc(v)

(
q

q

)(
v

v

)
P
α−|k|≤c,α≤m−|k+q+v|
j≤m

(
∂k1+q1+v1f1, . . . , ∂

kc+qc+vcfc

)

×
∑

q′∈Pn−c(q′)

(
q

q′

)
P̃
α−|k|>c,α>c−|k+q|
j>c+v

(
∂kc+1+qc+1fc+1, . . . , ∂

kn+qnfn

)}
,

where the sum over q, q in Nd0 subject to q + q′ = p, and c, v runs over the indices such that
J1, cKk≤c+v

j , Jc+ 1, nKk>c

j+v ∈ T+ and ℓc = 0 and

|q| <
∣∣J1, cKk≤c+v

j

∣∣
α−q

, and |q′| >
∣∣Jc+ 1, nKk>c

j+v

∣∣
α−q

.

This gives then

∑
p∈Pn(p)

∑
k∈Pn(k)

(
p

p

)(
k

k

){
P̃
α−|k|
j

(
∂k1+p1f1, . . . , ∂

kn+pnfn

)
−

∑
c,v

v∈Pc(v)

P̃
α−|k|≤c,α≤c−|k+p|
j≤c

(
∂k1+p1+v1f1, . . . , ∂

kc+pc+vcfc

)

× P̃
α−|k|>c,α>c−|k+b|
j>c+v

(
∂kc+1+pc+1fc+1, . . . , ∂

kn+pnfn

)}
,

where the sum sum over c, v runs over indexes such that Jc+1, nKk>c
j+v ∈ Ĉut

(
τ, α−|k+p|

)
\Ĉut

(
τ, α−|k|

)
.

The result follows in that case from Lemma 31.
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