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Abstract

Consider a d-dimensional branching Brownian motion starting with a single particle at the
origin and let nt be the number of particles at time t whose ancestral lines have remained up to t
within a ball of radius r(t) centered at the origin, where r(t) increases sublinearly with t. We obtain
a full limit large-deviation result as time tends to infinity on the probability that nt is aytpically
small. A phase transition is identified, at which the nature of the optimal strategy to realize the
aforementioned large-deviation event changes, and the Lyapunov exponent giving the decay rate
of the associated large-deviation probability is continuous. As a corollary, we also obtain a kind of
law of large numbers for nt under the stronger assumption that r(t) increases subdiffusively with t.
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1. Introduction

In this work, we consider a model of branching Brownian motion (BBM) in Rd, where at each
time the process consists of the particles of a normal BBM whose ancestral lines at that time are
fully inside a ball of radius r(t) centered at the starting position of the BBM, where r(t) increases
sublinearly with time. Let nt be the number of particles of this process at time t. Our main objective
is to prove a full limit large-deviation result as time tends to infinity on the probability that nt is
aytpically small, and hence prove [10, Conjecture 2.8]. Inter alia, we identify a phase transition in
the aforementioned limit and the optimal strategies to realize the associated large-deviation events.

1.1. Formulation of the problem and background

Let Z = (Zt)t≥0 be a strictly dyadic d-dimensional BBM with branching rate β > 0, where t
represents time. The process starts with a single particle, which performs a Brownian motion in Rd
for a random lifetime, at the end of which it dies and simultaneously gives birth to two offspring.
Similarly, starting from the position where their parent dies, each offspring repeats the same proce-
dure as their parent independently of others and the parent, and the process evolves through time
in this way. All particle lifetimes are exponentially distributed with constant parameter β > 0. For
each t ≥ 0, Zt can be viewed as a finite discrete measure on Rd, which is supported at the positions
of the particles at time t. We use Px and Ex, respectively, to denote the law and corresponding
expectation of a BBM starting with a single particle at x ∈ Rd. For simplicity, we set P = P0.
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For any particle u of the BBM, let Su and σu, respectively, denote its fission time and lifetime,
and let the function Xu : [Su − σu, Su)→ Rd give the position of u while alive. For two particles u
and v, we write v < u to mean that v is an ancestor of u. Now, extend the definition of Xu as

Xu(t) :=

{
Xu(t) if Su − σu ≤ t < Su,

Xv(t) if v < u and Sv − σv ≤ t < Sv

to be able to talk about the path of u for all times t < Su. For t ≥ 0, let Nt be the set of particles
of BBM alive at time t. For u ∈ Nt, we will refer to

X(t)
u := {Xu(s) : 0 ≤ s ≤ t}

as the ancestral line of u up to t. Now let B(x, a) denote the open ball of radius a > 0 centered at
x ∈ Rd, and let r : R+ → R+ be a radius function which is sublinearly increasing without bound,
that is,

lim
t→∞

r(t) =∞ and r(t) = o(t), t→∞. (1)

The main quantity of interest in this work is

nt := #
{
u ∈ Nt : X(t)

u ⊆ B(0, r(t))
}
. (2)

The integer-valued process (nt)t≥0 was introduced in [10] as the mass of a BBM with deactivation
at a moving boundary as follows. For a Borel set A ⊆ Rd, denote by ∂A the boundary of A. Consider
a family of Borel sets B = (Bt)t≥0. For each t ≥ 0, start with Zt, and delete from it any particle
whose ancestral line up to t has exited Bt to obtain ZBtt , which denotes a BBM with deactivation
at ∂B by ZB = (ZBtt )t≥0. The boundary is called deactivating in the following sense: once a
particle of the BBM hits the boundary of B at that time, it is instantly deactivated and otherwise
continues its life normally but is reactivated later if and when its ancestral line becomes fully inside
B at that later time. That is, ZBtt consists of ‘active’ particles at time t; these are particles whose
ancestral lines have been confined to Bt up to time t but may have left Bs at an earlier time s.
Similar to Zt, Z

Bt
t can be viewed as a finite discrete measure on Bt. Observe that the process

ZB = (ZBtt )t≥0 is non-Markovian; one can see this by noticing that particles that have disappeared
or been deactivated earlier may suddenly reappear or be reactivated at a later time. On the other
hand, the process can be recovered from a single BBM as described above.

For t > 0, now let Bt := B(0, r(t)) with r(t) as in (1) so that B = (Bt)t≥0 may be viewed as
an expanding ball, and pt be the probability of confinement to Bt of a standard Brownian motion
(starting at the origin) over [0, t]. That is, if we let X = (Xt)t≥0 be a standard Brownian motion
with corresponding probability P0, and σA = inf{s ≥ 0 : Xs /∈ A} be the first exit time of X out
of A for any Borel set A ⊆ Rd, then

pt := P0 (σBt ≥ t) .

For a Borel set A ⊆ Rd and t ≥ 0, denote by Zt(A) the mass of Z inside A at time t, and use
Nt := Zt(Rd) to denote the total mass of Z at time t. Similarly, ZBtt (A) denotes the mass of ZBtt
in A at time t. Observe by (2) that nt = ZBtt (Rd) = ZBtt (Bt). The main objective of this work
is, for a suitably decreasing function γ : R+ → R+ with limt→∞ γ(t) = 0, to find the asymptotic
behavior as t→∞ of the large-deviation probability

P
(
nt < γtpte

βt
)
, (3)
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where we have set γt = γ(t). It is easy via a many-to-one argument (see Proposition 1) to show
that

E[nt] = pte
βt. (4)

Therefore, since limt→∞ γt = 0, for large t one guesses that γtpte
βt is atypically small for nt.

Theorem 1 verifies that this is indeed so, and at the same time proves Conjecture 2.8 from [10].
We note that only certain bounds for the asymptotics of (3) as t → ∞ were proved in [10] (see
Theorem 2.4 therein). Theorem 2 under the stronger assumption r(t) = o(

√
t) further shows that

pte
βt is the typical growth of mass in a certain sense. The reason why we call (3) a large-deviation

probability is explained in Remark 2.
Branching diffusions in frozen or dynamic restricted domains in Rd have been widely studied

over the past decades. Starting with Sevast’yanov [12], most of the models involved absorbing
boundaries, where particles were immediately absorbed by the boundary upon hitting it. In [7],
Kesten studied a BBM with negative drift in one dimension with absorption at the origin, starting
with a particle at position x > 0 . This model proved to be rich, leading to various fine results in
subsequent works. Note that the one-dimensional model of a BBM with drift and a fixed barrier is
equivalent to the case of no drift and a linearly moving barrier. More recently in [5], Harris et al.
studied a BBM with drift in a fixed-size interval in R, which is in effect a two-sided barriered version
of Kesten’s model. We emphasize that in all of the aforementioned works, the process studied is
Markovian contrary to the non-Markovian nature of the process ZB introduced here.

1.2. Motivation

The motivation to introduce and study the model of BBM with deactivation at a moving bound-
ary arised from its intimate relation with the problem of BBM among mild Poissonian obstacles.
Here, we briefly describe the connection. Let Π be a homogeneous Poisson point process in Rd,
(Ω,P) be the associated probability space, and for ω ∈ Ω define the trap field with radius a > 0 as
the random set

K = K(ω) =
⋃

xi∈supp(Π)

B̄(xi, a),

where B̄(x, a) denotes the closed ball of radius a centered at x ∈ Rd. The mild obstacle rule for
BBM is that when particles are inside K they branch at a lower rate (possibly zero) than when
they are outside K, where they branch at the normal rate. Hence, the random trap field serves as
a mass-suppressing mechanism and in a typical environment one expects the mass of BBM to grow
slower than that of a free BBM, that is, a BBM in Rd without any obstacles.

In [10], a quenched strong law of large numbers for the mass of BBM among mild obstacles was
proved (see Theorem 2.1 therein). It was shown that in almost every environment with respect to
the Poisson point process, certain trap-free regions (called clearings) exist, which may be suitably
indexed by time t in regard to the evolution of the BBM. More precisely, it was shown that for all
large t, with ‘high’ probability at least one particle of the BBM is able to hit a spherical clearing of a
certain radius R = R(t) soon enough, and the sub-BBM emanating from this particle and confined
to this clearing over the remaining time, determines to the leading order the overall growth of mass
of the entire BBM among the mild obstacles. Therefore, understanding the growth of particles
whose ancestral lines don’t escape these clearings is essential for the proofs. We refer the reader to
[10, Section 5] for details.

Notation: We use c as a generic positive constant, whose value may change from line to line.
If we wish to emphasize the dependence of c on a parameter p, then we write c(p). We denote by
f : A → B a function f from a set A to a set B. For two functions f, g : R+ → R+, we write
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g(t) = o(f(t)) if g(t)/f(t)→ 0 as t→∞, and write g(t) = O(f(t)) if there exist M > 0 and t0 > 0
such that g(t) ≤Mf(t) for all t ≥ t0.

We denote by X = (Xt)t≥0 a generic standard Brownian motion in d-dimensions, and use Px

and Ex, respectively, as the law of X started at position x ∈ Rd, and the corresponding expectation.
Also, we denote by λd the principal Dirichlet eigenvalue of −1

2∆ on the unit ball in d dimensions.
Outline: The rest of the paper is organized as follows. In Section 2, we present our results. In

Section 3, we develop the preparation needed for the proof of Theorem 1, which is our main result.
In Section 4 and Section 5, we present, respectively, the proofs of Theorem 1 and Theorem 2.

2. Results

Our main result is on the large-time asymptotic behavior of the probability that the mass of
BBM inside a sublinearly expanding ball B = (Bt)t≥0 with deactivation at the boundary of the
ball, is atypically small. For a generic standard Brownian motion X = (Xt)t≥0 and a Borel set
A ⊆ Rd, let σA = inf{s ≥ 0 : Xs /∈ A} as before. Denote by a ∧ b the minimum of the numbers a
and b.

Theorem 1 (Lower large-deviations for mass of BBM in an expanding ball). Let r : R+ → R+

be increasing as in (1). In addition, suppose that r(t) = o(
√
t) (subdiffusive) or

√
t = O(r(t))

(diffusive or superdiffusive). Let γ : R+ → R+ be defined by γ(t) = e−κr(t), where κ > 0 is a
constant. For t > 0, set Bt = B(0, r(t)), pt = P0(σBt ≥ t), and let nt be as in (2). Then,

lim
t→∞

1

r(t)
logP

(
nt < γtpte

βt
)

= −(κ ∧
√

2β).

Remark 1. Theorem 1 says that there is a continuous phase transition at a critical value κ =
√

2β
in the asymptotic behavior of P

(
nt < γtpte

βt
)
. This is revealed by the rate function given by

I(κ) := κ∧
√

2β. In terms of the optimal strategies for the BBM to realize the large-deviation event
{nt < γtpte

βt}, the phase transition can be explained as follows.

� When κ>
√

2β, the BBM simultaneously suppresses the branching of the initial particle and
moves it outside B(0, r(t)) over the time interval [0, r(t)/

√
2β]. Once the initial particle is

moved outside B(0, r(t)), the event {nt = 0} is realized and there is no need for further
atypical behavior that could incur a probabilistic cost.

� When 0<κ≤
√

2β, the BBM suppresses the branching completely over the time interval
[0, (κ/β)r(t)], and then behaves ‘normally’ in the remaining interval [(κ/β)r(t), t]. This
means, the parameter κ is low enough so that there is no additional need to move the initial
particle outside B(0, r(t)) over a time interval of order r(t).

Remark 2. We call P
(
nt < γtpte

βt
)

with γt = e−κr(t) a large-deviation probability, because both

P (nt = 0) and P
(
nt < γtpte

βt
)

decay as e−cr(t), where the values c > 0 may differ, to the leading or-

der for large t. The significance of the choice γt = e−κr(t) is as follows. It can be shown that if γt → 0
as t→∞, then for all large t, P (nt < γtpte

βt) ≥ δγt for some δ > 0. If γt decays slower than e−cr(t)

so that (log γt)/r(t) → 0 as t → ∞, this would imply lim inft→∞(r(t))−1 logP
(
nt < γtpte

βt
)

= 0.
Therefore, in that case, in view of Theorem 1, the event {nt < γtpte

βt} would not be a large-
deviation event. (See the proof of the lower bound of Theorem 1 in Section 4 for details.)
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Theorem 2 (Law of large numbers for mass of BBM in an expanding ball). Let r : R+ → R+ be
subdiffusively increasing without bound, that is, r(t) → ∞ as t → ∞ and r(t) = o(

√
t). For t > 0,

set Bt = B(0, r(t)), pt = P0(σBt ≥ t), and let nt be as in (2). Then,

lim
t→∞

(r(t))2

(
log nt
t
− β

)
= −λd in P -probability.

Remark 3. A subdiffusive expansion means, the ball is expanding slower than the typical rate at
which a standard Brownian motion moves away from the origin, and therefore for large t it would
be a rare event for the Brownian motion to be confined in Bt. The large-time behavior of pt when
r = r(t) is subdiffusive is given in Proposition C.

Remark 4. Theorem 2 is called a law of large numbers, because it says that in a sense the process
nt grows as its expectation as t→∞. That is, in a loose sense,

log nt
t
≈ logE(nt)

t
, t→∞.

Remark 5. For radius functions of powerlike growth r(t) = tα, 0 < α < 1/2, it seems possible with
further work to improve the convergence in probability in Theorem 2 to almost sure convergence,
and hence obtain a strong law of large numbers for nt. A careful look at the probability estimates
in Section 5 suggests that the decay in t of the probabilities of the unlikely events therein could be
sufficient for a Borel-Cantelli argument. It should however be noted that nt is not almost surely
increasing in t; therefore, it is not clear how one would pass from integer (or countable) times to
continuous time once the Borel-Cantelli lemma is applied.

On the other hand, for arbitrarily growing radius functions with r(t) → ∞ as t → ∞ and
r(t) = o(

√
t), it is not clear whether the probability estimates in Section 5 are sufficient to pass to

a strong law for nt via a Borel-Cantelli argument.

3. Preparations

In this section, we first list three well-known results, one concerning the distribution of mass
in branching systems and the other two on the hitting times of a d-dimensional Brownian motion.
Then, we state and prove two propositions which can be obtained from existing results in a some-
what straightforward way. The results of this section will be useful in the proof of the upper bound
of Theorem 1.

The following proposition is well-known from the theory of continuous-time branching processes.
For a proof, see for example [6, Section 8.11].

Proposition A (Distribution of mass in branching systems). For a strictly dyadic continuous-time
branching process N = (Nt)t≥0 with constant branching rate β > 0, the probability distribution at
time t is given by P (Nt = k) = e−βt(1− e−βt)k−1 for k ≥ 1, from which it follows that

P (Nt > k) = (1− e−βt)k and E[Nt] = eβt.

As before, we use X = (Xt)t≥0 to denote a generic Brownian motion in d dimensions, and use
Px and Ex, respectively, for the associated probability and expectation for a process that starts
at position x ∈ Rd. Proposition B below is on the large-time asymptotic probability of atypically
large (linear) Brownian displacements. For a proof, see for example [8, Lemma 5].
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Proposition B (Linear Brownian displacements). For k > 0,

P0

(
sup

0≤s≤t
|Xs| > kt

)
= exp

[
−k

2t

2
(1 + o(1))

]
.

The following is a standard result on the large-time Brownian confinement in balls, and for
instance can be deduced from [2, Proposition 1.6], along with Brownian scaling. Recall that σA =
inf{s ≥ 0 : Xs /∈ A} denotes the first exit time of X out of A.

Proposition C (Brownian confinement in balls). For t > 0, let Bt = B(0, r(t)), where r : R+ →
R+ is such that r(t)→∞ as t→∞ and r(t) = o(

√
t). Then, as t→∞,

P0 (σBt ≥ t) = exp

[
− λdt

r2(t)
(1 + o(1))

]
.

The following result is an easy consequence of the classical many-to-one lemma for branching
processes.

Proposition 1.
E[nt] = pte

βt.

Proof. By the many-to-one lemma (using for instance [1, Lemma 25] with the choice F (Xu(s), s ≤
t) = 1{Xu(s)⊆B(0,r(t)) ∀ s≤t} therein), for any t ≥ 0,

E[nt] = E

[∑
u∈Nt

1{Xu(s)⊆B(0,r(t)) ∀ s≤t}

]
= eβtE0

[
1{Xs⊆B(0,r(t))∀ s≤t}

]
= pte

βt.

For a > 0, we introduce the notation Pa to stand for the law of a Brownian motion that starts
at a distance a from the origin. Also, for a > 0, set τa = σB(0,a) for ease of notation. The following
result compares the probabilities of confinement in balls for Brownian motions starting at the center
of the ball and at any other point inside the ball.

Proposition 2 (Brownian confinement in balls, comparison). Let a, b ∈ R such that 0 < a < b.
Then, there exists a positive constant D = D(b/a, d) such that for all large t,

DPa(τb ≥ t) ≥ P0(τb ≥ t).

Proof. Let τ
(ν)
b be the first hitting time to b of the Bessel process with index ν. (This process

coincides with what is called the Bessel process of dimension 2ν + 2 in some standard texts such
as [11].) It is well-known that if 2ν + 2 is a positive integer, then the Bessel process is identical in
law to the radial component of a (2ν + 2)-dimensional Brownian motion. It follows from (2.7) and
(2.8) of [4], respectively, that as t→∞,

P0(τb ≥ t) =
1

2ν−1Γ(ν + 1)
e−

j2ν,1t

2b2 (1 + o(1)) (5)

and

Pa(τb ≥ t) = 2

(
b

a

)ν Jν(ajν,1/b)

jν,1Jν+1(jν,1)
e−

j2ν,1t

2b2 (1 + o(1)), (6)
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where 0 < a < b, Jµ is the Bessel function of the first kind of order µ, {jµ,k}∞k=1 is the increasing
sequence of positive zeros of Jµ, and we suppress the dependence of τ on ν (hence on d) in notation.
It then follows from (5) and (6) that there exist t0 > 0 and a positive constant D = D(b/a, d) such
that for all t ≥ t0,

DPa(τb ≥ t) ≥ P0(τb ≥ t).

For 0 < δ < 1, k ≥ 0 (k need not be an integer), and Bt = B(0, r(t)), let

p̃t = p̃t(k) = Pδr(t) (σBt ≥ t− kr(t)) . (7)

Observe that by Brownian scaling, we have p̃t = Pδ
(
σB(0,1) ≥ (t− kr(t))/(r(t))2

)
. The following

result is on the aytpically small growth of mass of a BBM with deactivation at the boundary of a
sublinearly expanding ball, where the BBM is started with a single particle at an interior point of
the ball whose distance to the center is on the scale of the radius of the ball. For a > 0, denote by
P a the law of a branching Brownian motion that starts with a single particle at distance a from
the origin.

Proposition 3. Let 0<δ< 1, 0≤ k1<k2 and r : R+ → R+ be sublinearly increasing as in (1). Let
γt = e−κr(t), where κ > 0 is a constant, and p̃t = p̃t(k) be as in (7). For t > 0, set Bt = B(0, r(t))
and let nt be as in (2). Then, there exists a constant c = c(δ, κ, β) > 0 such that for all large t,

sup
k1≤k≤k2

P δr(t)
(
nt−kr(t) < γtp̃te

β(t−kr(t))
)
≤ e−cr(t). (8)

The following proof follows closely the proof of the upper bound of [10, Theorem 2.4]. The
main difference between the current result and the upper bound of [10, Theorem 2.4] is that here,
as opposed to starting from the origin, the process starts at an interior point of the ball whose
distance to the center is on the scale of the radius of the ball. A minor difference is that here, we
investigate the state of the system at times t− kr(t) uniformly over k ∈ [k1, k2], where 0≤ k1<k2

are fixed. In the following proof, the proof of the upper bound of [10, Theorem 2.4] was suitably
modified so as to take into account these two differences. We emphasize that Proposition 3 will be
the key ingredient in the proof of the upper bound of Theorem 1 (see Section 4.2).

Proof. Let k ∈ [k1, k2] and set gt = 2γt. Recall that Nt = Zt(Rd), where Z = (Zt)t≥0 denotes a
BBM. For t > 0, start with the estimate

P δr(t)( · ) ≤ P δr(t)
(
·
∣∣Nt−kr(t) > eβ(t−kr(t))gt

)
+ P δr(t)

(
Nt−kr(t) ≤ eβ(t−kr(t))gt

)
. (9)

Proposition A yields P (Nt−kr(t) ≤ n) = 1−(1−e−β(t−kr(t)))n ≤ ne−β(t−kr(t)) for any n ≥ 1. Setting

n =
⌊
eβ(t−kr(t))gt

⌋
, we have for t > 0,

P
(
Nt−kr(t) ≤ eβ(t−kr(t))gt

)
= P

(
Nt−kr(t) ≤

⌊
eβ(t−kr(t))gt

⌋)
≤ gt, (10)

which bounds the second term on the right-hand side of (9). Since k2 > 0 is fixed, and r(t) = o(t)
by assumption, it is clear that there exists t0 > 0 such that t− k2r(t) > 0 and

⌊
eβ(t−k2r(t))gt

⌋
≥ 1

for all t ≥ t0. Fix this t0, and for t ≥ t0, define

P̃t ( · ) = P δr(t)
(
·
∣∣Nt−kr(t) > eβ(t−kr(t))gt

)
,
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and let Ẽt and Ṽart denote, respectively, the expectation and variance associated to P̃t. Let Nt
denote the set of particles of Z at time t, and for u ∈ Nt, let (Yu(s))0≤s≤t denote the ancestral line
up to t of particle u. Now, conditional on the event {Nt−kr(t) > eβ(t−kr(t))gt}, choose randomly,

independent of their genealogy and position, Mt :=
⌊
eβ(t−kr(t))gt

⌋
particles out of the particles at

time t. Denote the collection of the chosen particles by Mt, and define

n̂t =
∑
u∈Mt

1Au ,

where Au = {Yu(s) ∈ Bt ∀ 0 ≤ s ≤ t− kr(t)}, and we have suppressed the dependence of Au on t
in notation. Since the collection Mt is chosen independently of the motion process, the ancestral
line of each particle in Mt is Brownian and the linearity of expectation gives

Ẽt [n̂t] = p̃t

⌊
eβ(t−kr(t))gt

⌋
,

where p̃t is as in (7). Now apply Chebyshev’s inequality to the random variable n̂t to obtain, by
(9) and (10), for t ≥ t0,

P δr(t)
(
nt−kr(t) < γtp̃te

β(t−kr(t))
)
≤ P̃t

(
n̂t < γtp̃te

β(t−kr(t))
)

+ gt

≤ P̃t
(
|n̂t − Ẽt[n̂t]| > p̃t

⌊
eβ(t−kr(t))gt

⌋
− γtp̃teβ(t−kr(t))

)
+ gt

≤ Ṽart(n̂t)

[(gt − γt)p̃teβ(t−kr(t)) − p̃t]2
+ gt. (11)

Let P the probability under which the pair (i, j) is chosen uniformly at random among the
Mt(Mt − 1) possible pairs in Mt, and let E be the corresponding expectation. For a generic
Brownian motion X, let Var denote its variance and A := {Xs ∈ Bt ∀ 0 ≤ s ≤ t}. Then,

Ṽart (n̂t) = Ṽart

( ∑
u∈Mt

1Au

)
= MtVar (1A) +

∑
1≤i 6=j≤Mt

C̃ovt
(
1Ai ,1Aj

)
= Mt

(
p̃t − p̃2

t

)
+Mt(Mt − 1)

∑
1≤i 6=j≤Mt

C̃ovt
(
1Ai ,1Aj

)
Mt(Mt − 1)

≤ gteβ(t−kr(t)) (p̃t − p̃2
t

)
+ g2

t e
2β(t−kr(t))

[
(E ⊗ P̃t)(Ai ∩Aj)− p̃2

t

]
, (12)

where (E⊗P̃t)(Ai∩Aj) = E [P̃t(Ai∩Aj)] denotes averaging P̃t(Ai∩Aj) over the Mt(Mt−1) possible
pairs in the randomly chosen set Mt. Define

p̃(t)(x, s, dy) := Px(Xs ∈ dy | Xz ∈ Bt ∀ 0 ≤ z ≤ s) and pts,x := Px(σBt ≥ s). (13)

Note that an application of the Markov property of a standard Brownian motion at time s with
0 < s < t yields

p̃t = pts,δr(t)e

∫
Bt

ptt−kr(t)−s,y p̃
(t)(δr(t)e, s, dy), (14)

where e denotes any unit vector in Rd. Let Q(t) be the distribution of the splitting time of the
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most recent common ancestor of ith and jth particles under E ⊗ P̃t. Then, applying the Markov
property at this splitting time, we obtain(

E ⊗ P̃t
)

(Ai ∩Aj) = p̃t

∫ t−kr(t)

0

∫
Bt

ptt−kr(t)−s,x p̃
(t)(δr(t)e, s, dx)Q(t)(ds). (15)

Indeed, conditioning on the event {Nt−kr(t) > eβ(t−kr(t))gt} does not affect the motion of particles;

therefore, under the law E ⊗ P̃t the path of each ancestral line is still Brownian. The ancestral line
of, say particle i, up to time t− kr(t) contributes a factor of p̃t to the right-hand side of (15), and
the ancestral line of particle j starting from the aforementioned splitting time up to time t− kr(t)
gives the rest of the right-hand side of (15). Set pts,δr(t) = pts,δr(t)e for simplicity. It then follows

from (14) and (15) that (
E ⊗ P̃t

)
(Ai ∩Aj) = p̃2

t

∫ t−kr(t)

0

1

pts,δr(t)
Q(t)(ds). (16)

For t > 0, define

Jt(k) :=

∫ t−kr(t)

0

1

pts,δr(t)
Q(t)(ds).

Then, by (12) and (16), we have for all t ≥ t0,

Ṽart(n̂t) ≤ gtp̃teβ(t−kr(t)) + g2
t p̃

2
t e

2β(t−kr(t))(Jt(k)− 1). (17)

Observe that Jt(k)− 1 ≥ 0. Next, we bound Jt(k)− 1 from above.
Choose c > 0, fix it, and for t large enough so that t− k2r(t) > cr(t), define

J
(1)
t =

∫ cr(t)

0

1

pts,δr(t)
Q(t)(ds), J

(2)
t (k) =

∫ t−kr(t)

cr(t)

1

pts,δr(t)
Q(t)(ds).

Split Jt as Jt(k) = J
(1)
t + J

(2)
t (k). In what follows, to bound Jt from above for large t, we will

use that over the first time interval [0, cr(t)], the integrand 1/pts,δr(t) is small enough; whereas the

distribution of Q(t) puts a small enough ‘weight’ on the second time interval [cr(t), t− kr(t)].
Since pts,δr(t) is nonincreasing in s, J

(1)
t ≤

[
ptcr(t),δr(t)

]−1
. Moreover, by Proposition B,

1− ptcr(t),δr(t) = exp

[
−(1− δ)2r(t)

2c
(1 + o(1))

]
,

from which it follows that

J
(1)
t − 1 ≤ exp

[
−(1− δ)2r(t)

2c
(1 + o(1))

]
. (18)

Next, we bound J
(2)
t (k) from above. It is known from [3, (52)] that Q(t) is absolutely continuous

with respect to the Lebesgue measure, which we denote by ds, and its density function, which we
denote by q(t), satisfies

∃C > 0, s0 > 0 such that ∀ s ≥ s0, q
(t)(s) ≤ Cse−βs.
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Recall that jν,1 is the first positive zero of the Bessel function of the first kind of order ν. It follows
from [4, (2.8)] and Brownian scaling that there exists a positive constant D = D(δ, d) such that for
all t > 0,

pts,δr(t) ≥ De
−

j2ν,1

2(r(t))2
s
.

We may then continue with

J
(2)
t (k) =

∫ t−kr(t)

cr(t)

1

pts,δr(t)
Q(t)(ds) ≤ C

D

∫ ∞
cr(t)

s exp

[
−

(
β −

j2
ν,1

2(r(t))2

)
s

]
ds = e−βcr(t)(1+o(1)),

(19)
where the last step follows by an application of integration by parts along with the assumption
that r(t)→∞ as t→∞. It follows from (18) and (19) that there exists a positive constant c(δ, β)
such that for all large t,

Jt(k)− 1 = J
(1)
t − 1 + J

(2)
t (k) ≤ e−c(δ,β)r(t). (20)

The bound in (20) has no dependence on k. Moreover, the bounds in (11) and (17) hold for each
k ∈ [k1, k2]. Then, from (11), (17) and (20), we have

P δr(t)
(
nt−kr(t) < γtp̃te

β(t−kr(t))
)
≤ gtp̃te

β(t−kr(t)) + g2
t p̃

2
t e

2β(t−kr(t))e−c(δ,β)r(t)

[(gt − γt)p̃teβ(t−kr(t)) − p̃t]2
+ gt.

To complete the proof, recall the choice gt = 2γt and that γt = e−κr(t) for some κ > 0. This yields,
there exists t1 > 0 such that for all t ≥ t1 and k ∈ [k1, k2],

P δr(t)
(
nt−kr(t) < γtp̃te

β(t−kr(t))
)
≤ 4

γtp̃t
e−β(t−kr(t)) + 8e−c(δ,β)r(t) + gt ≤ 11e−(c(δ,β)∧κ)r(t).

The last inequality follows, because r(t) = o(t) but r(t) → ∞ as t → ∞, and therefore the decay
of p̃t to zero (if at all) is at most subexponential in t.

4. Proof of Theorem 1

4.1. Proof of the lower bound

The proof of the lower bound of Theorem 1 is based on finding an optimal strategy to realize
the event {nt < γtpte

βt} for each of the low κ regime 0 < κ ≤
√

2β and the high κ regime κ >
√

2β,
and it was given in [10]. Here, we review the proof for completeness.

Note that {nt = 0} ⊆ {nt < γtpte
βt}, and one way to realize the event {nt = 0} is to completely

suppress the branching of the initial particle and move it outside Bt = B(0, r(t)) over the time
interval [0, kr(t)] for some k > 0. By Proposition B, the probability of this joint strategy is

exp

[
−βkr(t)− r(t)

2k
(1 + o(1))

]
. (21)

Optimizing the exponent in (21) over k > 0 gives k = 1/
√

2β, and with this choice of k, we obtain

P (nt < γtpte
βt) ≥ P (nt = 0) ≥ exp

[
−
√

2βr(t)(1 + o(1))
]
. (22)
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Now let f : R+ → R+ be such that f(t) = o(t), and denote by τ1 and (Y1(s))0≤s≤τ1 , respectively,
the lifetime and the path of the initial particle. For t > 0, define the events

At = {Nf(t) = 1}, Et = {nt < γtpte
βt}, Dt = {Y1(z) ∈ Bt ∀ 0 ≤ z ≤ f(t)}.

Estimate
P (Et) ≥ P (Et ∩At) = P (Et | At)P (At). (23)

Conditional on At, it is clear that τ1 ≥ f(t) and that nt = 0 if Y1(z) /∈ Bt for some z ∈ [0, f(t)].
Hence,

E [nt | At] = E [nt1Dt | At] = E [nt | At, Dt]P (Dt | At). (24)

Using the notation from (13) and applying the Markov property of the BBM at time f(t), we have

E [nt | At, Dt] =

∫
Bt

Ey
[
nt−f(t)

]
P (Y1(f(t)) ∈ dy | At, Dt)

=

∫
Bt

Ey
[
nt−f(t)

]
p̃(t)(0, f(t), dy) (25)

and
P (Dt | At) = ptf(t),0. (26)

Then, using the many-to-one lemma similarly as in the proof of Proposition 1, we obtain

Ey
[
nt−f(t)

]
= ptt−f(t),y e

β(t−f(t)), y ∈ Bt. (27)

It then follows from (24)-(27) that

E [nt | At] = eβ(t−f(t))ptf(t),0

∫
Bt

ptt−f(t),y p̃
(t)(0, f(t), dy) = eβ(t−f(t))pt,

where the last equality follows by applying the Markov property of Brownian motion at time f(t),
similar in spirit to (14). Then, by the Markov inequality,

P (Ect | At) ≤
E
[
nt
∣∣At]

γtpteβt
= γ−1

t e−βf(t). (28)

Choose f(t) = −(1/β) log((1− δ)γt) with 0 < δ < 1 in (28), which leads to P (Et | At) ≥ δ. Noting
that P (At) = e−βf(t), the estimate in (23) then yields

P (Et) ≥ δe−βf(t) = δ(1− δ)γt = e−κr(t)(1+o(1)).

In view of (22), this completes the proof of the lower bound of Theorem 1.

4.2. Proof of the upper bound

We will follow a discretization method similar to the proof of the upper bound of Theorem 2.1
in [9]. Proposition 2 and Proposition 3 will be the key ingredients in the proof.

Remark 6. We emphasize that the proof of the upper bound of [10, Theorem 2.4] finds a loose
upper bound on the large-deviation probability P

(
nt < γtpte

βt
)

in the following sense: there exists
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a positive constant c such that

lim sup
t→∞

1

r(t)
logP

(
nt < γtpte

βt
)
≤ −c. (29)

The proof below aims for a sharp upper bound on P
(
nt < γtpte

βt
)
, and hence finds the largest

constant c such that (29) holds. Also, the proof below has a bootstrap nature in that it uses the
loose bound in Proposition 3 as a first step to obtain the sharp upper bound on P

(
nt < γtpte

βt
)

mentioned above. On the other hand, the proof of the upper bound of [10, Theorem 2.4] is based on
a second moment argument for nt, which is a totally different method than that of the proof below.

Recall that Nt = Zt(Rd) is the total mass at time t, and define the random variable

ρt = sup{ρ ∈ [0, 1] : Nρ(κ/β)r(t) ≤ br(t)c}.

Observe that for x ∈ [0, 1], we have {ρt ≥ x} ⊆ {Nx(κ/β)r(t) ≤ br(t)c+ 1}, and that ρtκr(t)/β is a

stopping time. Recall that γt = e−κr(t) and pt = P0(σBt ≥ t). For t > 0, define the event

At = {nt < γtpte
βt}.

We condition on ρt as follows. For every n = 2, 3, . . .

P (At) =

n−2∑
i=0

P

(
At ∩

{
i

n
≤ ρt <

i+ 1

n

})
+ P

(
At ∩

{
ρt ≥ 1− 1

n

})

≤
n−2∑
i=0

exp

[
− i
n
κr(t) + o(r(t))

]
P

(i,n)
t (At) + exp

[
−κr(t)

(
1− 1

n

)
+ o(r(t))

]
, (30)

where we have used Proposition A to bound P ( in ≤ ρt <
i+1
n ) and P (ρt ≥ 1 − 1/n) from above,

and introduced the conditional probabilities

P
(i,n)
t ( · ) = P

(
·
∣∣∣∣ in ≤ ρt < i+ 1

n

)
, i = 0, 1, . . . , n− 2.

Next, we bound P
(i,n)
t (At) from above. To that end, let 0 < δ < 1 and Ft be the event that there

is at least one particle outside the ball B(0, δr(t)) at some instant s with 0 ≤ s ≤ ρt(κ/β)r(t), and
continue with the estimate

P
(i,n)
t (At) ≤ P (i,n)

t (Ft) + P
(i,n)
t (At ∩ F ct ) . (31)

Under the law P
(i,n)
t , we have ρt < (i + 1)/n, and by definition of ρt there are exactly br(t)c + 1

particles present at time ρt(κ/β)r(t). Therefore, the first term on the right-hand side of (31) can
be estimated via Proposition B and the union bound as

P
(i,n)
t (Ft) ≤ (br(t)c+ 1)P0

(
sup

0≤s≤ i+1
n

κ
β
r(t)

|Xs| > δr(t)

)

= exp

[
−1

2

(
δβn

(i+ 1)κ

)2 i+ 1

n

κ

β
r(t)(1 + o(1))

]
= exp

[
− δ

2nβr(t)

2(i+ 1)κ
(1 + o(1))

]
. (32)
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We now bound the term P
(i,n)
t (At ∩ F ct ) in (31) from above. Observe that under the law P

(i,n)
t on

the event F ct , there exists an instant, namely ρt(κ/β)r(t), inside the time interval [i/n(κ/β)r(t), (i+
1)/n(κ/β)r(t)], at which there are exactly br(t)c + 1 particles, all of which are inside B(0, δr(t))
and have ancestral lines confined to B(0, δr(t)) over [0, ρt(κ/β)r(t)]. For an upper bound on

P
(i,n)
t (At ∩ F ct ), we suppose the ‘worst case’, that is, suppose that each of these particles is on

the boundary of B(0, δr(t)) at time ρt(κ/β)r(t). Then, an application of the strong Markov prop-
erty of the BBM at time ρt(κ/β)r(t) along with the independence of the sub-BBMs initiated at
that time yields

P
(i,n)
t (At ∩ F ct ) ≤

 sup
i
n
≤x≤ i+1

n

[
P δr(t)

(
nt−x(κ/β)r(t) < γtpte

βt
)]br(t)c . (33)

Next, we seek to find a suitable upper bound for P δr(t)
(
nt−x(κ/β)r(t) < γtpte

βt
)

uniformly over

x ∈ [i/n, (i+ 1)/n]. If r(t) = o(
√
t), then there exists D1 = D1(δ, d) > 0 such that for all large t,

P0 (σBt ≥ t) = P0

(
σB(0,1) ≥ t/(r(t))2

)
≤ D1P

δ
(
σB(0,1) ≥ t/(r(t))2

)
= D1P

δr(t) (σBt ≥ t) ,

where we have used Proposition 2 in the inequality since t/(r(t))2 →∞ as t→∞ by assumption.
On the other hand, if

√
t = O(r(t)), then there exist M > 0 and D2 = D2(δ, d,M) > 0 such that

for all large t,

D2P
δr(t) (σBt ≥ t) = D2P

δ
(
σB(0,1) ≥ t/(r(t))2

)
≥ D2P

δ
(
σB(0,1) ≥M2

)
≥ 1.

Hence either when r(t) = o(
√
t) or

√
t = O(r(t)), there exists a positive constant D = D(δ, d) such

that P0 (σBt ≥ t) ≤ DPδr(t) (σBt ≥ t) for all large t. Now let 0 ≤ k1 < k2. Provided κ − k2β > 0,
there exists t0 > 0 such that for all t ≥ t0 and k ∈ [k1, k2], the following bound on γtpte

βt holds:

γtpte
βt = e−κr(t)P0 (σBt ≥ t) eβt

= e−(κ−kβ)r(t)P0 (σBt ≥ t) eβ(t−kr(t))

≤γtDPδr(t) (σBt ≥ t) eβ(t−kr(t))

≤γtDPδr(t) (σBt ≥ t− kr(t)) eβ(t−kr(t))

≤ e−(κ−k2β)r(t)/2p̃te
β(t−kr(t)), (34)

where D = D(δ, d) > 0, we have set γt := e−(κ−kβ)r(t), used the monotonicity in s of P · (σBt ≥ s)
in the second inequality, and used that Dγt ≤ De−(κ−k2β)r(t) ≤ e−(κ−k2β)r(t)/2 for all large t since
D does not depend on t. Now set k1 = (i/n)(κ/β) and k2 = ((i + 1)/n)(κ/β). Observe that
κ − k2β = κ(1 − (i + 1)/n) > 0 since i ≤ n − 2. With these choices of k1 and k2, it then follows
from (34) and Proposition 3 upon replacing γt by γ̃t := e−(κ−k2β)r(t)/2 in (8) and setting x = kβ/κ
that there exist c = c(δ, κ−k2β2 , β) > 0 and t1 > 0 such that for all x ∈ [i/n, (i+ 1)/n] and t ≥ t1,

P δr(t)
(
nt−x(κ/β)r(t) < γtpte

βt
)
≤ P δr(t)

(
nt−x(κ/β)r(t) < γ̃tp̃te

β(t−x(κ/β)r(t))
)
≤ e−cr(t). (35)

Combining (31)-(33) and (35), for all large t,

P
(i,n)
t (At) ≤ exp

[
− δ

2nβr(t)

2(i+ 1)κ
(1 + o(1))

]
+
(
e−cr(t)

)br(t)c
. (36)
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Observe that the first term on the right-hand side of (36) is the dominating term for large t. (The
positive constant c = c(δ, κ−k2β2 , β) in the second term depends on (κ− k2β)/2, which could be as
small as κ/(2n). However, this dependence of c on n will not matter at the end since we will first
let t→∞ below.) Substituting (36) into (30), and optimizing over i ∈ {0, 1, . . . , n− 2} yields

lim sup
t→∞

1

r(t)
logP (At) ≤ −β

[
min

i∈{0,1,...,n−2}

{
i

n

κ

β
+

δ2

2κ(i+ 1)/n

}
∧ κ
β

(
1− 1

n

)]
. (37)

First, let δ → 1 on the right-hand side of (37); then set ρ = i/n to obtain

lim sup
t→∞

1

r(t)
logP (At) ≤ −β

[
min

ρ∈{0,1/n,...,(n−2)/n}

{
ρκ

β
+

1

2κρ+ 2κ/n

}
∧ κ
β

(
1− 1

n

)]
.

Now let n→∞ and use the continuity of the functional form from which the minimum is taken to
obtain

lim sup
t→∞

1

r(t)
logP (At) ≤ −β

[
inf

ρ∈(0,1]

{
ρκ

β
+

1

2κρ

}
∧ κ
β

]
. (38)

For ρ ∈ (0, 1], define the function f by

f(ρ) =
ρκ

β
+

1

2κρ
.

One can check that when κ >
√

2β, f is minimized at ρ̄ =
√
β/(2κ2) over (0, 1] where 0 < ρ̄ < 1/2,

and the minimum value of f is
√

2/β. On the other hand, when κ ≤
√

2β, the minimum value of
f over (0,∞) is

√
2/β, which means, due to κ/β ≤

√
2/β, the second term under the minimum in

(38) is the output of this minimum. Collecting all this regarding f , and using (38), we arrive at

lim sup
t→∞

1

r(t)
logP (At) ≤ −(κ ∧

√
2β).

This completes the proof of the upper bound of Theorem 1.

5. Proof of Theorem 2

Recall that the statement of Theorem 2 includes the stronger assumption that r(t) = o(
√
t).

5.1. Proof of the upper bound

We use the Markov inequality together with the known formula for E(nt). Recall from (4) that
E(nt) = pte

βt, where pt stands for the probability of confinement of a Brownian motion to B(0, r(t))
over [0, t]. It follows from Proposition C that pt = P0 (σBt ≥ t) = exp

[
−λdt(1 + o(1))/(r(t))2

]
.

Then, by the Markov inequality, for any ε > 0,

P

(
nt > exp

[
βt− (λd − ε)t

(r(t))2

])
≤ E(nt)

exp
[
βt− (λd−ε)t

(r(t))2

] =
exp

[
− λdt

(r(t))2
(1 + o(1)) + βt

]
exp

[
βt− (λd−ε)t

(r(t))2

]
= exp

[
− t

(r(t))2
(ε+ o(1))

]
→ 0, t→∞.

This proves the upper bound of Theorem 2.
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5.2. Proof of the lower bound

To prove the lower bound of Theorem 2, we will show that for any ε > 0, as t → ∞,
P
(
nt < exp

[
βt− (λd + ε)t/(r(t))2

])
→ 0. We consider two cases: r(t) . t1/3 and r(t) & t1/3,

where we use the notation f(t) & g(t) to mean there exists a positive constant c > 0 such that
f(t)/g(t) ≥ c for all t ≥ t0 for some t0 > 0.
Case 1: Suppose that limt→∞ r(t) = ∞ and r(t) . t1/3. Then, e−εt/(r(t))

2 ≤ e−κr(t) for some
κ = κ(ε) > 0 for all large t, and it follows that for all large t,

P

(
nt < exp

[
βt− (λd + ε)t

(r(t))2

])
≤ P

(
nt < exp

[
βt− λdt

(r(t))2
− κr(t)

])
→ 0, t→∞,

where we have used Theorem 1 and that pt = exp
[
− λdt

(r(t))2
(1 + o(1))

]
.

Case 2: Suppose that r(t) = o(
√
t) and r(t) & t1/3. To handle this case, we revisit the proof of

the upper bound of Theorem 2 in [10]. Although the aforementioned result uses that γt = e−κr(t),
its proof up to (6.23) therein does not use the specific form of γt at all, but only that γt < gt for
all t > 0, where gt is an arbitrary function such that gt → 0. Thus, we can apply [10, (6.23)] with

for instance gt = 2γt and γt = e
− εt

2(r(t))2 . Then, for all large t,

P

(
nt < exp

[
βt− (λd + ε)t

(r(t))2

])
≤ P

(
nt < γtpte

βt
)

≤ 4

γtpt
e−βt + 8e−

√
β/2r(t) + gt ≤ 3gt.

Since gt → 0 as t→∞, this completes the proof of the lower bound of Theorem 2.
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