K3 SURFACES AND WEYL GROUP OF TYPE Eg

by

Cédric Bonnafé

Abstract. — Adapting methods of previous papers by A. Sarti and the author, we construct K3
surfaces from invariants of the Weyl group of type E¢. We study in details one of these surfaces,
which turns out to have Picard number 20: for this example, we describe an elliptic fibration (and
its singular fibers), the Picard lattice and the transcendental lattice.

This paper can be seen as a continuation of previous works by A. Sarti and the author on
the construction of singular K3 surfaces by using invariants of finite reflection groups [BoSaz2,
BoSa3]. We consider here quotients of complete intersections defined by fundamental invari-
ants of a group of rank 6, namely the Weyl group of type Eg.

Let W be the Weyl group of type Eg acting on V' = C5 and let W’ denote its derived
subgroup (which has index 2 in W and is equal to W N SL¢ (V). Then the algebra C[V]"V of
polynomial functions on V invariant under the action of W is generated by six homogeneous
and algebraically independent polynomials fs, f5, fs, f3, fo and fi2 (of respective degrees 2,
5,6,8,9and 12).

We denote by X C P(V) the surface defined by f» = fs = fs = 0 and, for \, pn € C?, we
denote by ¥, , the surface defined by f5 = fs + A\f3 = fs + ufi = 0. It turns out that X
is smooth and that ¥, , is smooth for generic values of (A, x). Our first main result in this
paper is the following (see Theorem 3.3):

Theorem A.

(a) The minimal resolution of the singular surface X /W' is a smooth K3 surface.
(b) If A, w are such that Yy ,, has at most ADE singularities*), then the minimal resolution of
Y/ W' is a smooth K3 surface.

In the rest of the paper, we investigate further properties of X /W' and of its minimal
resolution X. The second main result of the paper is the following (see Theorem 5.1):

Theorem B.

(a) The K3 surface X admits an elliptic fibration ¢ : X — P*(C) whose singular fibers are of type
E7;+ Eg+ As +2Al'
(b) The Picard lattice of X has rank 20 and discriminant —228 = —22 - 3 - 19.

(c) The transcendental lattice of X is given by the matrix <(2) 12 4>.

*)'We do not know if there are values of (), 1) such that %y, has more complicated singularities.



2 CEDRIC BONNAFE

In the course of the proof of Theorem B, we obtain a complete description of the Picard
lattice: it is generated by 22 smooth rational curves whose intersection graph is given by
Theorem 5.1(b).

The paper is organized as follows. In Section 1, we fix general notation and prove some
preliminary results about group actions on tangent spaces. In Section 2, we fix the context,
recall properties of the Weyl group of type Es and recall results from Springer theory [Spr].
Section 3 is mainly devoted to the proof of Theorem A. Section 4 gathers many geometric
properties of the quotient variety X /W’ (singularities, smooth rational curves, explicit equa-
tions in a weighted projective space). Theorem B is proved in Section 5. As a complement to
all these data, the last section 6 contains the decomposition of the character of the represen-
tation H2(%, C) of W into a sum of irreducible characters (note that dim H?(X) = 9502).

Comments. (1) Many of the results of this paper (mostly the ones from Section 4 to the
end) rely on computer calculations done with the software MAGMA [BCP97]. To simplify
the exposition, we have removed the details and the codes of these computations: they are
available on the arXiv version of this paper [Arxiv], and precise references to this arXiv
version will be given at each stage such a computational check is needed.

(2) It is fair to say that most of the ideas of this paper come from our previous work with
A. Sarti [BoSa2, BoSa3]. The main difference is that, here, we start with a complex reflection
group of bigger rank (namely, 6 instead of 4) and so we need to consider quotients of com-
plete intersections instead of quotients of hypersurfaces. In some sense, the main purpose of
this paper is to show that the methods of [BoSa2, BoSa3] can be extended to this case.

(3) It is a rather easy task to determine which complete intersections defined by funda-
mental invariants of general complex reflection groups might lead, after taking the quotient
by the derived subgroup, to a K3 surface. However, describing properties of these surfaces
(Picard group, elliptic fibrations, transcendental lattices,...) can become a long and fastidious
program. We decided to focus here on the case of the Weyl group of type Eg: it turns out that
the choices we made for the degrees of the fundamental invariants defining the complete
intersections are the only possible ones if one wants to obtain a K3 surface after taking the
quotient by the derived subgroup (see Remark 3.8 for more details).

(4) The K3 surfaces obtained in [BoSa2] have big Picard numbers and interesting elliptic
fibrations: this allows [BoSa3] to give original constructions of some K3 surfaces with Picard
number 20 (i.e., the biggest possible). In a forthcoming third paper in this series (with A.
Sarti), we will obtain many other K3 surfaces with Picard number 20 by investigating the
case of the Weyl group of type Fj.

This is already interesting, but it is quite remarkable that the K3 surface X studied in this
paper has also Picard number 20 and admits an elliptic fibration with unusual singular fibers.
We believe that the two-parameters family of K3 surfaces obtained as minimal resolutions of
Y,/ W' might have similar properties: as it is a two-parameters family, we conjecture that a
general member of this family will have Picard number 18 and we can hope to find explicit
particular members of this family with Picard number 20. This would require much more
involved computations.

(5) Itis difficult to have a full overview of all the K3 surfaces of Picard number 20 that have
been given a concrete description (i.e., not only through their transcendental lattice) but, as
far as we know, the K3 surface I has not been investigated elsewhere, as well as its elliptic
tibration and its description as minimal resolution of a quotient by a finite group of a surface
of general type.
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1. General notation, preliminaries

All vector spaces, all algebras, all algebraic varieties will be defined over C. Algebraic
varieties will always be reduced and quasi-projective, but not necessarily irreducible. If X
is an algeraic variety and if x € I, we denote by T, () the tangent space of X at . If I is
moreover affine, we denote by C[X] its algebra of regular functions.

We fix a square root i of —1 in C. If V is a vector space, ¢ is an element of End¢ (V') and
¢ € C, we denote by V (g, () the (-eigenspace of g. The list of eigenvalues of an element of
Endc (V) will always be given with multiplicities (and will be seen as a multiset: a multiset
will be always written with double brackets, e.g. {{a,b, ... }}). If d € N*, we denote by p, the
group of d-th roots of unity in C* and we set (; = exp(2im/d).

If V is a finite dimensional vector space and if v € V' \ {0}, we denote by [v] its image in
the projective space P(V). If p € P(V), we denote by G, its stabilizer in G C GL¢(V). In
other words, G|, is the set of elements of (G admitting v as an eigenvector.

If X is a subset of V and if G is a subgroup of GL¢(V), we denote by G5 (resp. G%)
the setwise (resp. pointwise) stabilizer of X and we set G[X] = G'/G% (so that G[X] acts
faithfully on the set X and on the vector space generated by X).

If dy,..., d,, are positive integers, we denote by P(dy, ..., d,) the associated weighted pro-
jective space. If fi,..., fr € C[Xy,...,X,] are homogeneous (with X; endowed with the
degree d;), we denote by Z(f1, ..., fr) the (possibly non-reduced) closed subscheme defined
by.flzzfr:()

The next three lemmas will be used throughout this paper. The first one is trivial, but very
useful [BoSa2, Lem. 2.2]:

Lemma 1.1. — Let V be a finite dimensional vector space, let f € C[V], let g € GLc(V') and let
v € V' \ {0} be such that:

) g(v) = &, with § € C*.

) f is homogeneous of degree d with £ # 1.

) [ is g-invariant.
n

Then f(v) = 0.

(1
(2
(3

The next one is certainly well-known and might have its own interest:

Lemma 1.2. — Let V be a finite dimensional vector space, let n = dimc V, let G be a subgroup of
GLc(V), let v € V \ {0} and let f1,..., fr € C[V] be G-invariant and homogeneous of respective
degrees dy,. .., d,. We assume that:
(1) E(f1,..., fr) is a global complete intersection in P(V').
(2) G stabilizes the line [v] (let 6, : G — C* denote the linear character defined by g(v) = 6,(g)v
forall g € G).
(3) [v] is a smooth point of £(f1,..., fr).

Then the r-dimensional semisimple representation 04~ & - - - & 0% ~1 is isomorphic to a subrepre-
sentation E of the (n — 1)-dimensional representation (V/[v])* of G and, as representations of G, we
have an isomorphism

( (flv"wf?“)):EJ_@ev_la
whereEL:{xGV/[HVger ¢(z) =0}
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Remark 1.3. — Keep the notation of the proposition. Recall that we have a natural identifi-
cation Ty, (P(V))) =~ V/[v] but that this identification is not G-equivariant. We will recall the
construction of this isomorphism in the proof of the proposition, so that we can follow the
action of G: as we will see, we have a natural isomorphism of G-representations T, (P(V')) =~
(V/[v]) ® 0, . Therefore, T,(X) is naturally a subrepresentation of (V/[v]) ® 6!, and this is
the aim of this proposition to identify this subrepresentation. H

Proof. — Write X = Z(f1,...,f;) and p = [v]. The point p of P(V) corresponds to the
homogeneous ideal p of C[V] generated by v~ C V*. The local ring 6 of P(V') at p is

ClV]p) =1{a/b|a,b € C[V], homogeneous and b ¢ p}.
We denote by m the unique maximal ideal of ©. Then

m = {a/b|a,b € C[V], homogeneous, a € pand b & p}.

The map
dy: m — V*
[ dof
induces an isomorphism
§: Tp(P(V)* = m/m?* = vt = (V/[])*.
(Recall that, if a € p ishomogeneous of degree m and b ¢ p is homogeneous, then d, (a/b)(v) =
(dya)(v)/b(v) = 0 because (d,a)(v) = ma(v) = 0 by Euler’s identity). Note, however, that §

is not G-equivariant for the classical action: indeed, as g(v) = 6,(g)v for all g € G, § induces
an isomorphism of G-modules

0 : Tp(P(V))" — (V/[])" @ Ou.

Through this isomorphism,

Tp(X)* ~ (V/[v])*/E) ® 6,,  where E =Y Ci(fi).
k=1
Now, since X is smooth at p and X is a global complete intersection, this means that the
elements §(f1),..., 6(f) are linearly independent. To conclude the proof of the proposition,
it remains to notice that g(6(fx)) = 0»(g)%13(fi) for all g € G, which follows immediately
from the G-invariance of f. O

Lemma 1.2 applied to the case where G is a cyclic group gives the following result:

Corollary 1.4. — Let V be a finite dimensional vector space, let n = dimc V, let g € GLc(V), let
v e V\A{0}and let fi,..., fr € C[V] be g-invariant and homogeneous of respective degrees dj,. ..,
dy. Let {{&1,...,&n )} be the multiset of eigenvalues of g. We assume that:

(1) £(f1,..., fr) is a global complete intersection in P(V').

(2) g(v) = &nv.

(3) [v] is a smooth point of E(f1,..., fr)-
Then {{&, %, ..., &9} is contained in the multiset {{&; €1, . .., &, ¢n—1}} and the list of eigenval-
ues of g for its action on the tangent space T, (E(f1,. .., f-)) is the multiset

S ST o Y N o 13
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Remark 1.5. — Keep the notation of Lemma 1.2 and assume moreover that G is a closed
reductive subgroup of GL¢ (V) (for instance, G’ might be finite), that v € V¢ (so that 6, = 1)
and that P(VS) € E(f1,. .., f). We want to show that

(#) [v] is a singular point of E(f1,. .., fr)-

For this, assume that [v] is smooth and let £ denote the G-stable subspace of (V/[v])* of di-
mension r defined in the proof of Lemma 1.2 and such that the G-module T, (Z(f1,. .-, f+))
is identified with E+. By hypothesis, V¢ /[v] C T (E(f1,-- -, fr)) so, since G acts semisim-
ply on V, its orthogonal F in (V/[v])* satisfies F“ = 0. This contradicts the fact that £ C F.
This shows (#).

If G is finite, dim¢ VE =1 (resp. dimc V& = 2)and r = 1, we retrieve [BoSa2, Coro. 2.4]
(resp. [BoSa2, Coro. 2.9]). B

2. Set-up

For the classical theory of Coxeter groups, reflection groups, Dynkin diagrams, we mainly
refer to Bourbaki’s book [Bou] or Broué’s book [Bro]. For Springer theory (and its enhance-
ment by Lehrer-Springer), we refer to [Spr], [LeSp1], [LeSp2] and [LeMi].

Let V = C5 be endowed with its canonical basis (e1, ez, 3, €4, €5, €5). Through this ba-
sis, we identify GL¢ (V) and GLg(C) and we let it act on V' on the left. We denote by
(X1, X2, X3, X4, X5, X) the dual basis of (e, ez, €3, €4, €5, €6), so that the algebra C[V] will
be identified with the polynomial algebra C[X, X2, X3, X4, X5, Xs]. We endow it with the
symmetric bilinear form (, ) attached to the Dynkin diagram of type E¢ (we follow the strange
numbering of nodes given by Bourbaki [Bou, Chap. 6, Planche V]):

1 3 4 ) 6
(o) O—O0—0—0—0
2!
Recall that this means that
(eg,ex) =1 if1 <k<6,
(e, e) = —1/2 1f 1 <k #1<6and {k, !} is an edge of the graph (Es),
(ek,e1) =0 if 1 <k +#1<6and {k,I} is not an edge of the graph (Es).

Recall that (,) is non-degenerate (in fact, when restricted to RS, it is positive definite). For
1 < k < 6, we denote by s, the orthogonal reflection such that si(e;) = —ej. We set

W = (s1, 52, 53, 54, 55, 56

We denote by O(V) the orthogonal group of V/, with respect to the bilinear form (,). By
construction, W is a sugroup of O(V') and is called a Weyl group of type Es.
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2.A. First properties of W. — The following numerical results concerning W can be found
in [Bou, Chap. VI, Table V]. The group W is finite and acts irreducibly of V. Moreover,
(2.1) [W| = 51840.

Also, the center of W is trivial, so W acts faithfully on P(V'). Lete : W — p, = {-1,1},
w — det(w). Recall that Ker ¢ is the derived (i.e. commutator) subgroup of W, which will be
denoted by W’. In particular,

(2.2) [W'| = 25920.

We denote by Deg(W) (resp. Codeg(WV)) the degrees (resp. the codegrees) of W, as defined
in [Bro, Chap. 4]. Moreover,

(2.3) Deg(W) ={2,5,6,8,9,12} and Codeg(W) = {0,3,4,6,7,10}.

In particular, this means that there exist 6 homogeneous W-invariant polynomials f3, fs, fs,
fs, fo and fi2, of respective degrees 2, 5, 6, 8, 9 and 12, such that

(2.4) CVIW = Clfa, f5, for f3, fo, fr12)].

We set f = (fa, f5, f6, fs, fo, f12) and we recall that f is not uniquely determined. Thanks
to (2.4), we get that

me: P(V) — P(2,5,6,8,9,12)
W] = [f2(v), f5(v), fe(v), fs(v), fo(v), fr2(v)]
is well-defined and induces an isomorphism of varieties
(2.5) P(V)/W = P(2,5,6,8,9,12).

The graded algebra associated with the weighted projective space P(2,5,6,8,9,12) will be
denoted by C[Zs, Zs, Zs, Zs, Zgy, Z12], with Z; being given the degree d (for all d € Deg(W)).

Remark 2.6. — The quadratic form Q : V. — C, v — (v,v) is W-invariant. Hence f is a

scalar multiple of Q. Since Q is positive definite when restricted to RS, we have in particular
that fg(el) 7& 0.1

Let Ref(1W) be the set of reflections of W and let o be the hyperplane arrangement of W
(i.e. o = {V?*|s € Ref(IW)}). Then

(2.7) Ref(W)| =[] = ) (d—1)=36.
deDeg(W)
If H € d, we denote by oy an element of V* such that H = Ker ayy. We set
Jac = H ag € C[V].
Hesd

Since all the oy are well-defined up to a non-zero scalar, Jac is also well-defined up to a
non-zero scalar. Then

(2.8) “Jac = e(w)Jac
forallw € W and
(2.9) CVIY' = Clfa, f5, fs, fs. fo, fr2, Jac].
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Moreover, Jac is homogeneous of degree 36 by (2.7). Also, since Jac? € C[V]" by (2.8), there
exists a unique homogeneous polynomial Pr € C[Z3, Z5, Zs, Zg, Z9, Z12] such that

Jac? = Pe(fa, f5, fo. fs, fo, f12)-

Of course, Pr depends heavily on the choice of the family f and, up to a non-zero scalar, on
the choice of the ay’s. It turns out that this relation generates the ideal of relations between
the functions fo, f5, f6, fs, fo, fi2 and Jac. In particular, the map

e P(V) — P(2,5,6,8,9,12,36)
[l = [f2(v): f5(0) : fo(v) : fs(v) = fo(v) = fra(v) : Jac(v)]
is well-defined and induces an isomorphism of varieties

210) P(V)/W' =5 {lz0:25:26:28: 29 212 : j] € P(2,5,6,8,9,12,36) |

§? = Pg(22, 25, 26, 28, 29, 212) }

Finally, we denote by w : P(V)/W’' — P(V)/W the natural morphism, which is just the
quotient map by p, ~ W/W'. Through the isomorphisms (2.5) and (2.10), the action of the
non-trivial element of p, is given by the involutive automorphism o given by

Olzo 12526 28 :29:212: 7] =[22: 25 26 281 29 : 212+ — ]|

and w is given by

wlze 1252628 :29:212: 7] =[22:25: 26 28 : 29 : 212].

2.B. Eigenspaces, Springer theory. — Asin [BoSa2], an important role is played by Springer
and Lehrer-Springer theory. We recall briefly the results we will need (this subsection is a
simplified version of [BoSa2, §3.3], adapted to the particular case of our Weyl group W). All
the results stated here can be found in [Spr], [LeSp1], [LeSp2]. Note that some of the proofs
have been simplified in [LeMi]. Let us fix now a natural number e. We set

A(e) = {d € Deg(WW) | e divides d},
A*(e) = {d* € Codeg(W) | e divides d*},
5(@)=|A(e)  and  3%(e) = |A*(e)].
With this notation, we have

(2.11) §(e) = max (dim V (w, ().
weW
In particular, (. is an eigenvalue of some element of W if and only if d(e) # O that is, if and
only if e € {1,2,3,4,5,6,8,9,12}. In this case, we fix an element w, of W of minimal order
such that
dim V' (we, () = d(e).

We set for simplification V (e) = V(we, () and W (e) = W[V (e)] = W‘S/e(te)/W‘l;t(e).

Remark 2.12. — Note for future reference that w3 and w; ' are not conjugate in W”: in fact,
they are not conjugate in SO(V') by [Bon2, Lemma 1.7]. B
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If f € C[V], we denote by f[¢ its restriction to V (e). Note that if d € Deg(W) is such that
d ¢ A(e), then fc[le] = 0 by Lemma 1.1.

Theorem 2.13 (Springer, Lehrer-Springer). — Assume that 6(e) # 0. Then:
(a) If w € W, then there exists x € W such that z(V (w, (.)) C V(e).
(b) W (e) acts (faithfully) on V (e) as a group generated by reflections.
(c) The family (f (Ee]) deA(e) 18 a family of fundamental invariants of W (e). In particular, the list of
degrees of W (e) consists of the degrees of W which are divisible by e.

(d) We have
U Vw,¢) = | 2(V(e)) ={v e V|V d € Deg(W) \ Afe), fa(v) =0}.
weWw €W

(e) 6*(e) = &(e) with equality if and only ifW“}t(e) =1.

(f) If 6*(e) = d(e), then w, has order e, W(e) = W‘S/e(te) = Cw(we) and the multiset of eigen-
values (with multiplicity) of w. is equal to {{Cel_d}}deDeg(W). Moreover, if w is such that
dim V' (w, () = d(e), then w is conjugate to we.

Example 2.14. — Lete € {8,9,12}. Then d(e) = 0*(e) = 1. So V'(e) is a line in V, and can be
viewed as an element of P(V). It follows from the above results that

Wy ey = (we)

(see for instance [BoSa2, Rem. 3.14] for a proof).
Moreover, by Theorem 2.13(f), we have det(w.) = (. 3¢, so

wg, Wiz € W' and wg & W',

In particular, if we denote by p, (resp. ¢.) the image of V(e) in P(V)/W' (resp. P(V)/W),
then the morphism w is unramified (resp. ramified) over g9 and ¢;2 (resp. ps). This implies
also that o(pg) # pg and o (p12) # p12. W

Example 2.15. — Note that 6*(5) = 2 > 0(5) = 1 while, if e € {1,2,3,4,6,8,9,12}, then
d*(e) = 6(e). If z is an element of order 5, then = admits a primitive fifth root of unity as
eigenvalue, so admits (5 as an eigenvalue because x is represented by a matrix with rational
coefficients. So we can take ws = x, and so w; has order 5.

The above argument shows that the multiset of eigenvalues of ws is {{1,1, (5, (2, (3, (3 1}
Now, if w is an element of W such that w(V(5)) = V(5), then, since w is defined over Q, it
stabilizes the Céf-eigenspace of wfor k € {1,2,3,4}. Therefore, it stabilizes the sum F of these
4 eigenspaces. But E = Ker(Idy +ws + w? + w3 + w3) is defined over Q (and so over R) so
its orthogonal E~ in V with respect to the bilinear form (,) satisfies £ ® E+ = V (because
its restriction to R is positive definite). This shows that w and ws stabilize also E+, which
is necessarily equal to Ker(ws — Idy ). In particular w centralizes ws. But, by the fourth line
of [Arxiv, Comput. 1.12], we have Cyy/(ws) = (ws). So we have proved that

Wy (5 = (ws).
This fact will be used in the proof of Theorem 3.3. W
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3. K3 surfaces

Let
X =Z(f2, fo, f3)
and, for A\, u € C, set

Y= FE(f5, fo + Mo, fs + 11fa)-

Note that the invariants f» and f5 are uniquely defined up to a scalar and that, up to a scalar,
every fundamental invariant of degree 6 (resp. 8) is of the form fs + \f3 (resp. fs + ufs +
vfefa) for some A € C (resp. u, v € C). But Z(fa, fo + A\f3, fs + ufy + vfsf2) = XL and
F(fs, fo + N3, fs + ufs + visfa) = Y u—xv- So this shows in particular that I does not
depend on the choices of the fundamental invariants of W. By construction, X and ¥, , are
W -stable.

Remark 3.1. — The choice of the family f of fundamental invariants is irrelevant for all the
theoretical results stated in this paper. However, for some numerical results (for instance,
the equation of X /W’ given by (4.10) or the coordinates of its singular points given by
Lemma 4.8), this choice needs to be specified: in this paper, for all computational results,
we will choose f as in [Arxiv, App.I]. B

Proposition 3.2. — With the above notation, we have:

(a) X is a smooth irreducible surface, which is a complete intersection in P(V')).

(b) If X\, u € C, then Y, ,, has pure dimension 2, and so is a complete intersection in P(V'). If it is
smooth or has only ADE singularities, then it is irreducible.

(c) The set of (A, ) € C? such that Y,y ,, is smooth is a non-empty open subset of C2.

Proof. — Through the isomorphism (2.5), we have
X/W ~P(5,9,12) and Ynpu/W ~1P(2,9,12),

so X /W and Y, ,/W are irreducible of dimension 2. Since W is finite, this implies that X
and ¥, , are of pure dimension 2 and so are complete intersections. In particular, they are
connected [Har, Chap. II, Exer. 8.4(c)].

(a) By [Arxiv, Comput. I.1], the open affine chart of X defined by z¢ # 0 is smooth. This
shows that the singular locus § of X is contained in the projective hyperplane P(H ), where
H = {(x1, 22,73, 74, 75,76) € CO| x5 = 0}. Since W acts on X, we have that § is contained
in P(Nyeww(H)). But Nyeww(H) is a W-stable proper subspace of V, so it is equal to {0}
since W acts irreducibly on V. Hence § = @. This shows that & is smooth and, in particular,
irreducible (because it is connected).

(b) We already know that Y, , is connected. If moreover it admits only ADE singularities,
then it is necessarily irreducible.

(c) Let U be the set of (A, ) € C? such that ¥, ,, is smooth. It is clear that U is open, so we
only need to prove that it is non-empty. With the particular choice of fundamental invariants
given in [Arxiv, App. I] (see Remark 3.1), we have that the open affine chart of Y ¢ defined
by x¢ # 0is smooth by [Arxiv, Comput. I.1]. The same argument as in (a) allows to conclude
that Y ¢ is smooth and irreducible. O
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We are now ready to state the first main result of this paper:

Theorem 3.3. — Let \, u € C be such that Yy ,, admits only ADE singularities and let V" be one
of the varieties X or Yy .. Then V' /W' is a K3 surface with only ADE singularities and its minimal

smooth resolution <V is a smooth K3 surface.

Proof. — The proof will be given in the next subsections, following the same lines as [BoSa2,
Theo. 5.4]. More precisely, if 7" denotes one of the above varieties X or ¥, ,, we will prove
in the next subsections the following three facts:

(A) The smooth locus of ¥ /W’ admits a symplectic form (see Lemma 3.6);

(B) The variety ' /W' has only ADE singularities (see Lemma 3.9);

(C) The Euler characteristic of ¥ /W is positive (see Lemma 3.12).
Therefore, by (A) and (B), the variety ¥ /W’ is a symplectic singularity and its minimal
smooth resolution ¥ is a crepant resolution, i.e. a symplectic resolution. So ¥ admits a
symplectic form. By the classification of surfaces, this forces ¥ to be a smooth K3 surface or
an abelian variety. But, by (B), the Euler characteristic of %/ is greater than or equal to the
one of ¥ /W, so the Euler characteristic of ¥/ is positive by (C). Since an abelian variety has
Euler characteristic 0, this shows that ¥ is a smooth K3 surface. O

So it remains to prove the three facts (A), (B) and (C) used in the above proof.

Notation. For the rest of this section, we fix A, 1 in C such that Y, ,
admits only ADE singularities and we denote by 7" a variety which
can be X or Yy ;.

Recall that this implies that ¥ is irreducible and normal and, in particular, that 7 /W’ is
irreducible and normal too.

3.A. Symplectic form. — Through the isomorphism (2.10), we have
X /W' >~ {[z5: 29 : 212 : 7] € P(5,9,12,36) | 72 = P¢(0, 25,0, 0, 29, 212)

and %,M/W’ ~ {[z2: 29 : 212 : j| € P(2,9,12,36) ]j2 = Pg(22,0, —)\zg’, —,uzg‘,ZQ,zlz)}.

But note that IP(5,9,12,36) = P(5, 3,4, 12), so there exists a unique homogeneous polyno-
mial Qf € C[Y5,Y3,Yy] of degree 24 (where Y; is endowed with the degree i) such that
Pr(0,25,0,0, 29, 212) = Qg(23, 29, 212). Hence,

(34) L/W' = {lys - ys 2 ya : j] € P(5,3,4,12) | 5* = Qe(ys, ys, 1a)}-
So the degree of the equation defining X /W' (namely, 24) is equal to the sum of the weights
of the projective space (namely, 5 + 3 + 4 + 12). By [BoSa2, Lem. A.1], this implies that the
smooth locus of X /W’ is endowed with a symplectic form.

On the other hand, P(2,9,12,36) = P(1,9,6,18) = P(1,3,2,6) so there exists a unique
homogeneous polynomial Q? " e C[Y1,Ys, Ya] of degree 12 (where Y; is endowed with the
degree i) such that Pr(z2,0, —\23, —p23, 29, 212) = Q;"“(z%, 29, z12). Hence,

(3.5) Yo/ W' = {lyr 2 sy 2 ] € P(1,3,2,6) | 5 = Q¢ (y1, 43, y2)}-
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So the degree of the equation defining Y, ,,/W' (namely, 12) is equal to the sum of the weights
of the projective space (namely, 1 + 3 + 2 + 6). By [BoSa2, Lem. 5.4], this implies that the
smooth locus of X /W’ is endowed with a symplectic form. Therefore, we have proved the
following lemma, which corresponds to the Fact (A) stated in the proof of Theorem 3.3:

Lemma 3.6. — The smooth locus of V' /W' admits a symplectic form.

Remark 3.7. — In both cases, the ramification locus of the morphism w : ¥ /W' — ¥ /W is
given by the equation j = 0 (in the models given by equations (3.4) or (3.5)). B

Remark 3.8. — Let {di,d2,d3} be a subset of Deg(W) of cardinality 3 and consider the com-
plete intersection @ = Z(f4,, fd,, fa;). Then, through the isomorphism (2.10), one can write
/W' as a closed subvariety of P(d}, d5, d, 36) defined by an equation of degree 72, where
{dy,d},ds} is the complement of {d;,ds,d3} in Deg(W). After simplifying the weights of
P(d}, d, df, 36) as above, one finds that the degree of the equation of /W’ equals the sume
of the weights of the weighted projective space if and only if (di, d2, d3) is equal to (2,6, 8),
(5,6,8) or (2,5, 8). However, in this last case, @ is a union of 80 projective planes (as follows
from Theorem 2.13(d) applied to the case where e = 3) which sometimes intersect along a
projective line, so this case is uninteresting for our purpose. So the choices of the degrees
of the equations defining X or Y, , are the only ones that have a chance to give rise to a K3
surface after taking the quotient by W/. W

3.B. Singularities. — We aim to prove here the following lemma, which corresponds to the
Fact (B) stated in the proof of Theorem 3.3:

Lemma 3.9. — The surface V' /W' has only ADE singularities.

Proof. — First, as ¥ has only ADE singularities and W’ has index 2 in W, every point of
U /W' lying above a smooth point of ¥ /W is smooth or is an ADE singularity by [BoSa2,
Coro. B.7]. So it remains only to study the points lying above the singular points of 7 /W

The singular points of X /W ~ P(5,3,4) aregs = [1:0:0], g9 =[0:1:0]and g2 = [0 :
0 : 1]. The singular points of Y, ,/W ~ P(1,3,2)areqyg = [0 : 1 : 0] and ¢12 = [0 : 0 : 1].
Note that the notation gg9 and g2 is consistent with Example 2.14, as they correspond to the
points g9 and ¢i2 defined in this example through the embeddings ¥ /W — P(V)/W ~
P(2,5,6,8,9,12). Still by Example 2.14, the morphism ¥ /W' — ¥ /W is unramified above
g9 and qy2. Therefore, the points pg and py = o(py) (resp. pi2 and p}, = o(pi2)) of V' /W' are
distinct and have the same type of singularities than the point g9 (resp. gi2) of 7' /W. But g9
is a singular point of type A, of P(5, 3,4) or P(1,3,2) and ¢;2 is a singular point of type A3
(resp. A1) of P(5, 3,4) (resp. P(1,3,2)). This shows that the following results holds:

Lemma 3.10. — We have:
(a) The points pg and p{ are Ay singularities of X /W' and the points p12 and p’,
are Ag singularities of X /W'.
(b) The points py and py are Ao singularities of Y,/ W' and the points p2 and
Py are Ay singularities of Yy .,/ W'
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Therefore, it remains to prove that the points of X /W' lying above g5 are ADE singularities.
For this, note that

7 gs) ={z € P(V) | folz) = fo(x) = fa(z) = fo(x) = fra(x) = 0}.

But, by (2.11) and Theorem 2.13(d) applied to the case where e = 5, we get that V(5) is a
line in V, so may be viewed as a point of P(V) and 7; '(gs) is the W-orbit of V'(5). Now,
0*(5) = 2 > 6(5) = 1, so it follows from Theorem 2.13(f) that W‘F/)t(m # 1. By Steinberg’s

Theorem (see for instance [Bro, Theo. 4.7]), this shows that W‘I;t(g)) contains a reflection, and

so the stabilizer G of V(5) in W contains a reflection. In particular, G is not contained in W'.
This proves that the morphism X /W' — X /W is ramified above ¢5: we denote by p5 the
unique point of L /W’ lying above gs.

Now, Example 2.15 shows that the stabilizer of V' (5) in W' is (ws). So, in order to determine
the type of singularity of & /W’ at p5, we only need to determine the two eigenvalues of ws
for its action on Ty (5)(X). This is easily done thanks to Corollary 1.4: the two eigenvalues

are (5 and (5 '. We have thus proved the following result:
Lemma 3.11. — The point ps is an Ay singularity of X /W'.

This completes the proof of Lemma 3.9. ]

3.C. Euler characteristic. — Since ¥ is a complete intersection which is smooth or has
only ADE singularities, its cohomology (with coefficients in C) is concentrated in even de-
gree [Dim, Theo. 2.1, Lem. 3.2 and Example 3.3]. Now, H*(% /W', C) ~ H*(¥, (C)W/, so the
cohomology of ¥ /W' is concentrated in even degree. This implies the next lemma, which
corresponds to the Fact (C) stated in the proof of Theorem 3.3, and completes the proof of
Theorem 3.3:

Lemma 3.12. — The Euler characteristic of V' /W' is positive.

Notation. The minimal smooth resolution of the surface & /W' will be de-

noted by p : X — X /W'. Theorem 3.3 says that X is a smooth projective
K3 surface.

4. Some numerical data for the surface C /W’

We complete here the qualitative result given by Theorem 3.3 with some concrete results
concerning the surface X /W’ (type of singularities, equation, coordinates of singular points,
cohomology,...). These informations will be used in the next section to obtain further prop-
erties of the K3 surface & (Picard lattice, elliptic fibration,...).
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4.A. Singularities. — In the course of the proof of Theorem 3.3, we have obtained some
quantitative results (see Lemmas 3.10 and 3.11). We complete them by determining all the
singularities of & /W'

Proposition 4.1. — The surface X /W' admits Ay + 2 Az + 3 A + 2 Ay singularities.

Proof. — Note that we have already found Ay + 2 A3 + 2 Ay singularities in X /W’ (see
Lemma 3.10 and 3.11), given by the points ps, py, py, p12 and p), lying respectively above
the points g5 = [1:0:0],g9 =[0:1:0land 12 =[0:0: 1] of X/W ~P(5,3,4).

To determine the other singularities, one must study the fixed points schemes X", for w €
W\ {1} (note that X™ is in fact smooth because X is smooth). The details of the arguments
and of the computer calculations can be found in [Arxiv, Proof of Prop. 4.1 and App.I.B] and
are summarized as follows (note that some of the arguments make use of Corollary 1.4):

e There is only one conjugacy class of W’ consisting of elements of order 2 whose list of
eigenvalues is {{1,1, 1,1, —1, —1}}: if vy is a representative of this class, then the image
of X2 in X /W’ consists of two points p; and p} which are singular points of type A;.

e There is one conjugacy class of W’ consisting of elements of order 3 whose list of eigen-
valuesis {{1,1,1,1,(3, (5 M:ifuzisa representative of this class, then the image of "3
in & /W’ consists of smooth points and one singular point p, of type As. Moreover, ps
is different from py and pj.

e If w # 1 does not belong to one of the above two conjugacy classes, then the image of X"
in /W' consists of smooth points or points belonging to {p1, p}, p2, ps. p9, Py, P12, P2 }-
They give rise to no new singularity in & /W’.

This is the expected result. O

For the singular points of X /W', we keep the notation of the proof of Proposition 4.1:

e The two singular points of type A; are denoted by p; and p). Note that they are both o-
fixed because they lie above smooth points of X /W (so they must lie on the ramification
locus of w : X /W' — XL /W).

e The singular point of type Az coming from the fixed point locus X*3, where u3 has order
3 and satisfies dim V"3 = 4, is denoted by py. Again, o(p2) = p2.

e The singular points ps, pg, Py, p12 and p}, involved in Lemma 3.9 are of type A4, Aa, As,
Az and A3 respectively. We have o(ps) = ps, py = o(p9) and p}, = o(p12).

4.B. Two smooth rational curves. — Recall that V/(3) is the eigenspace of ws for the eigen-
value (3 and denote by V'~ (3) the eigenspace of ws for the eigenvalue (;'. By (2.11), they
both have dimension 3 and so

(4.2) V=V@) eV (3).

Let 6" = P(V(3))NX and €~ = P(V~(3))NX. By Theorem 2.13(f), w3 and w; ' are conjugate
in W, but it follows from Remark 2.12 that they are not conjugate in W’. Fix g € W be such
that wy ! = gwsg™!. Then g ¢ W’ and g(V(3)) = V~(3). This shows that

(4.3) € =g(6").

Lemma 4.4. — The schemes 61 and 6~ are smooth irreducible curves of genus 10.
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Proof. — By (4.2), P(V)*s = P(V(3)) UP(V~(3)), where U means a disjoint union. So
(4.5) XY =BT UG,
Since X3 is smooth, this implies that € and €~ are smooth. Now, by Lemma 1.1, the
restriction of fy, f5 and fs to V(3) are equal to 0. Therefore,
6" ={zcP(V(3)) ] fo(v) =0}

This shows that 67 is a connected curve of P(V(3)). Since it is smooth, it must be irreducible.
Moreover, it is of degree 6, so its genus is equal to 10. ]

Let C@gr (resp. 65 ) denote the image of 8" (resp. 67) in X /W’ and let €5 denote the
image of €1 in L /W ~ P(5, 3,4). Note that G; is also the image of 6~ by (4.3). Moreover,

(4.6) G5 = {[ys,ys, ya] € P(5,3,4) | y5 = 0} = P(3,4) = P'(C).

Indeed, 65 is irreducible, of dimension 1 and contained in {[ys : y3 : y4] € P(5,3,4) | y5 = 0}
by Lemma 1.1 (see also Theorem 2.13(d)).

Proposition 4.7. — We have €5 = o(B6:) # 6. Moreover, 6 and @5 are both isomorphic to
PL(C), intersect transversely along only one point and satisfy

G UG ={[ys:y3:ya:j] € XL/W' [ys =0}

Proof. — The fact that 6; = o(@6;") follows from (4.3). Now, the irreducibility of € and
€~ implies the irreducibility of C@; and 65 . Also, by (4.6),

G5 UGy ~ {[ys : ya: ] € P(3,4,12) | 5% = Q¢(0,y3,v4) }-

But P(3,4,12) = P(3,1,3) = P(1,1,1) = P?(C), so there exists a polynomial Q3 € C[T5,Ty],
which is homogenous of degree 2 (with T}, of degree 1) and such that Q¢ (0, y3, y4) = Q3(v3, y3)-
Therefore,

65 UGs ~ {[ts :ta: j] € PA(C) | j* = Qs(t3,ta)}-
It just remains to prove that the polynomial @3 is the square of a linear form: in other words,
we only need to prove that 6 # 6; .

Since 61 is irreducible of degree 6, it cannot be contained in a union of projective lines
of P(V(3)). Since moreover 6*(3) = 6(3) = 3, Theorem 2.13(f) thus implies that there exists
v e V(3)\ {0} such that [v] € " and W, = 1. We now only need to prove that 7;([v]) &€ 6.
So assume that 7¢([v]) € €~. This would imply that there exists w € W’ such that w(v) €
V'~ (3). Consequently,

w ™ wswws(v) = v,
and so wlwswws = 1 since W,, = 1. Hence, ws and w3 L are conjugate in W/, which is
impossible by Remark 2.12. O

By exchanging pg and py (resp. p12 and pf,) if necessary, we may assume that

po,p12 €65 and  pj,pl, € 65 .
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4.C. Singular points, equation. — Of course, the equation giving X /W’ and the coordi-
nates of the singular points depend on a model for W and on a choice of fundamental invari-
ants. With the choices made in [Arxiv, App. I] (see Remark 3.1), we get:

Lemma 4.8. — The coordinates of the singular points in P(5, 3,4, 12) are given by
ps=[1:0:0:0], po,ph=1[0:1:0:+2V=3], pr2,pla=1[0:0:1:+54%/=3]
p1,p) = [$(n536v/19 + 2336) : §(—n60v/19 — 260) : £(n130v/19 + 565) : 0], with n = £1,
=1[4/9:10/9:-5/12:0].

Proof. — The details of this calculation are given in [Arxiv, Proof of Lem. 4.15]. O

The computation of the coordinates of the intersection point p of 6 and 6; is done
in [Arxiv, §4.C]:

(4.9) p=1[0:2/9:1/4:0].

As explained in [Arxiv, §4.C], knowing that X /TV’ contains p and the singular points given
in Lemma 4.8 is sufficient for obtaining an explicit equation of X /W'

(410) X/W'={[ys :y3:ya:j] € P(5,3,4,12) | 2 = =3(2 y4 — 35 v3)? — ys R(y5, y3,ya)}
with

(4.11) R =ysys(30 v + 390 ) + B2 ysydyd — 322 y2ys — 220 gy,

Remark 4.12. — With this equation, it is easy to describe the union 6;” U 65, namely
G UGy = {lys:ya: ] € P(3,4,12) | 12 = —3(% - 25 43)?).
But P(3,4,12) ~ P(1,4,4) ~ P(1,1,1) = P?(C) and, through these isomorphisms,
65 UGy ={[Y3:Ya:j] €P*(C) | %= —3(3 Y3 — o3 Ya)?},

which is indeed a union of two smooth rational curves. B

4.D. Two other smooth rational curves in  /W’. — For k € {3,4}, we set
Gr={[ys : y3:ys:j] € X/W'|yp =0}

Proposition 4.13. — The schemes 63 and 64 are reduced, irreducible and are smooth rational
curves. They intersect transversely at ps = [1:0:0 : 0].
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Proof. — From the equation (4.10), we get that

63 ~ {[y5 “Ya ]] S P(5747 12) |.72 = _?TQ y4 + 3110285 y5y4}'
But P(5,4,12) = P(5, 1, 3), so

63 ~ {[y5 “Ya ]} € P(57 173) ’.72 = _379 y4 + 3110285 y5y4}
The open subset of 63 defined by y4 # 0 is clearly isomorphic to A!(C).

Similary, from the equation (4.10), we get that

G1 = {[ys 1 y3 : j] € P(5,3,12) | j2 = — 355 y§ + 3B 3431,
But P(5,3,12) = P(5,1,4), so

By ~ {[3/5 ‘Y3 ]] € P(5a 174) ‘]2 212 3/3 + 3816245 y5y3}
The open subset of 6, defined by y3 # 0 is clearly isomorphic to A!(C).

So 63 and 6, are rational curves, and it remains to prove that 63 and €, are smooth and

intersect transversely. Both questions are local around the point ps = [1 : 0 : 0 : 0], so we
must work in the affine chart of X /W’ defined by y5 # 0. The computation is somewhat
involved and details are given in [Arxiv, Proof of Prop. 4.22]. O

5. The K3 surface &

Recall that p : X — X /W’ denotes the minimal smooth resolution. We will deduce
several properties of X (Picard lattice, elliptic fibration,...) from the list of properties of X /W’
given in the previous section. Note that since I is obtained from X /W’ by successively
blowing-up the singular locus, the automorphism o of X /W lifts to an automorphism of &
(which will still be denoted by o).

We denote by A; and A] the two smooth rational curves of x lying above p; and p}
respectively. For e € {2,5,9,12}, we denote by Al,..., A the smooth rational curves of <
lying above p. (here, r. is the Milnor number of the singularity pe(1), and we assume that
they are numbered in such a way that A¥ N A¥+1 £ &. For e € {9, 12}, the smooth rational
curves of X lying above p/, are then given by o(Al),..., J(A’"e)

Finally, we denote by 65" the strict transform of €5 in L. Of course, €; = 0(6F). As
I is obtained from X /W’ by successive blow-ups of points, € and 6, are smooth rational
curves. Also, we denote by @3 and B, the strict transforms of B3 and By: for the same reason,
they are also smooth rational curves.

One of the aims of this section is to determine the intersection graph of the 22 smooth
rational curves 63, €4, 65, Ay, A}, (A’g)ee{27579712}71 <k<r and (“A’g)ee{9712}71 <k<r- FOr
this, we will use the construction of an elliptic fibration on .

Recall that, for a K3 surface, an elliptic fibration is just a morphism to P! (C) such that at least
one fiber is a smooth elliptic curve. Since X /W' has A4 + 2 A3 + 3 As + 2 A; singularities, its
Picard number is greater than or equalto 1 + (4 4+2-3 +3 -2+ 1) = 19 (in fact, we will see
later that it has Picard number 20). Therefore, it admits an elliptic fibration (because every

(") For the definition of the Milnor number of an isolated hypersurface singularity, see [Mil, §7]: recall that the
Milnor number of a singularity of type Ax, Dy or E} is equal to k.
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K3 surface with Picard number > 5 admits an elliptic fibration [Huy, Chap. 11, Prop. 1.3(ii)]).
Another aim of this section is to contruct at least one such fibration. For this, let

o (X/W)\{ps} — PC)
s cys pat gl — [y3: il
Then ¢ is a well-defined morphism of varieties, so the map ¢ o p : L \ p~*(ps) — PY(C)

is also a well-defined morphism of varieties. We are now ready to prove the second main
result of our paper:

Theorem 5.1. — With the above notation, we have:
(a) The morphism @ o p: X \ p~*(ps) — P'(C) extends to a unique morphism
¢: L — P! (C),
which is an elliptic fibration whose singular fibers are of type E7 + Eg + Aa + 2 Ay.

(b) There exists a way of numbering the smooth rational curves lying above singular points of
X /W' such that the intersection graph of the 22 smooth rational curves 63, Gy, ‘6;, A, A

(Ag)e€{2,5,9,12},1 <k<r and (0A5)66{9,12},1 <k <r IS given b?/(i)

/ } ‘7 Al
AFO

230 Al
(%) 610 O
A3
“AFO
85O -
€ Al
In this graph:

(bl) The union of the singular fibers of ¢ of type E7 and Eg is given by the white disks in the
big connected subgraph of ().

(b2) The singular fibers of ¢ of type Ay are €1 U Ay and €, U A} for some smooth rational
curves 6y and ‘é{

(b3) The singular fiber of ¢ of type A is B2 U AL U A3 for some smooth rational curve 6s.

(b4) The curves marked with full black disks in (%) are sections of .

(b5) The curve A2 is a double section of .

(c) The 22 smooth rational curves in this intersection graph generate the Picard lattice Pic().
More precisely, Pic(X) is generated by the list obtained from these 22 smooth rational curves by
removing A2 and A}, Its discriminant is —228 = —22 - 3 - 19.

(d) The Mordell-Weil group of ¢ is isomorphic to Z>.

(e) The transcendental lattice is given by the matrix (3 1(1) 4>.

(! This means that two smooth rational curves C' and C” in this list intersect if and only if they are joined by an
edge in the above graph, and that, if so, then C' - C' = 1.
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Remark 5.2. — There are several possible types of singular fibers of type A; (resp. As) in
elliptic fibrations. In the above Theorem 5.1, singular fibers of type A; (resp. As) are of type
I (resp. I3) in Kodaira’s classification. H

Proof. — The details of the (very computational) proof of the statements (a) and (b) is given
in [Arxiv, App. III].

For (c), let M denote the incidence matrix of the 18 smooth rational curves belonging to
the big connected subgraph of (%). Then M has rank 16 and the greatest common divi-
sor of the diagonal minors of M is equal to 19 by [Arxiv, Comput. IV.1]. Moreover, the
diagonal minor corresponding to the curves B3, Ba, ‘%gc, Al A3, (A’;)ee{gm,l <k<r and
(”A’g)ee{9712}71 <k <r, is equal to —19 (see [Arxiv, Comput. IV.1]). So, if we denote by A the
lattice generated by these 16 curves together with A;, A}, Al and A%, then A has rank 20 and
discriminant —228 = —22 - 3 - 19. This shows that Pic(X) has rank > 20, and so has rank 20
as a K3 surface has always Picard number < 20. If we denote by n the index of A in Pic(%),
then n? divides 228, which shows that n € {1,2}.

But if we denote by T(X) the transcendental lattice of &, then T(X) has rank 22 — 20 = 2,
is even and definite positive, with discriminant 228/n?. Hence it can be represented by a

matrix of the form
2a b
b 2c

with @, ¢ > 0 and 4ac — b? = 22~8/n2. But 4ac — b? =0or3 mod 4, so 4ac — b? # 57. This
shows that n = 1 and that Pic(%) is generated by 63, 64, 65, AL, A%, (AF)ecio1211 <k < e
and (O-Alg)ee{g,lz}’l < k < r.r as expected. This concludes the proof of (c).

(d) Since we have determined the Picard lattice of X in (c), the structure of the Mordell-
Weil group follows (note that it has no torsion, as expected by [Shi, Table 1, entry 2420]).

(e) The transcendental lattice of X is given by a matrix of the form (2ba 2bc> whose under-

lying quadratic form is definite positive and has discriminant 228 by (c). The classification
of even integral binary quadratic forms [Bue, Theo. 2.3], shows that there are only four such
matrices, up to equivalence, namely:

2 0 6 0 4 2 12 6
Ml_(o 114)’ M2_(0 38)’ M3_<2 58> and M4_<6 22)'

Let P = Pic(X) and 7' = T(X). Let
PL={veQ®zP|VV P, (v,o)) € Z}

and let us define 7T+ similarly. Then the quadratic forms on Q ®7 P and Q ®z T induce
well-defined maps

qgp: Pt/P —Q/2Z and  qp:TH/T — Q/2Z.

Since H?(X, Z) is unimodular of signature (3, 19), it turns out that there is an isomorphism
t: T+/T =5 PL/P such that gr = —qp o« (see [Nik, Prop. 1.6.1]). In particular, the set
of values of g7 and —gp coincide: the subset —gp(P+/P) of Q/2Z can easily be computed
thanks to (b) and (c) using MAGMA, and we only need to compare the corresponding sets for
the four rank 2 lattices determined by M;, M>, M3 and M. This comparison gives the result
(see [Arxiv, §IV.B] for detailed computations). O
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Remark 5.3. — Theorem 5.1(e) shows that the K3 surface X is not a Kummer surface [Huy,
Chap. 14, Cor. 3.20]. It also shows that I is not isomorphic to any of the singular K3 surfaces
constructed by Barth-Sarti in [BaSa] or to any of the singular K3 surfaces constructed by
Brandhorst-Hashimoto in [BrHa] (see also [BoSal] for a description of some of these). B

6. Complement: action of W on the cohomology of &L

The group W acts on X so it acts on the cohomology groups H*(X, C). Since X is a com-
plete intersection in P?(C), with defining equations of degree 2, 6, and 8, we have:

1 if k € {0,4},
6.1) dime HY(X,C) = { 9502 ifk =2,
0 otherwise.

The action of W on H%(X, C) and H*(X, C) is trivial. The aim of this subsection is to deter-
mine the character of the representation of W afforded by H*(I, C).

For this, we first need to parametrize the irreducible characters of W. If x € Irr(W), we
denote by b, the minimal number k such that x occurs in the character of the symmetric
power Sym” (V') of the natural representation V' of . For instance, if we denote by 1y the
trivial character of W and by xy the character afforded by the natural representation V, then

(6.2) b1, =0, by, =1 and b= |d| =236

(recall that € denotes the restriction of the determinant to W). Indeed, the first two equalities
are immediate from the definition and the last one follows from [Bou, Chap. V, §5, Prop. 5]
and (2.7). Recall from Molien’s formula that the number b, an be computed as follows: let ¢
be an indeterminate and let

[acpegn) (1 =) x(w™h)
Bt = W U;V det(1 —tw) < S
It is a classical fact [Bro, §4.5.2] that F, (¢) € N[t|, that (1) = x(1) and
6.3) by = val F\ (t).

The polynomial F,(t) is called the fake degree of x.
A particular feature of the Weyl group of type Eg is that the map
DB: Imr(W) — NxN
x oo (1) by)
is injective (see for instance [Arxiv, Comput. I1.2]). We denote by 2% (W) the image of DB.
If (d,b) € DRB(W), let ¢4, denote its inverse image in Irr(W). Note that ¢4 is the character
afforded by an irreducible representation of dimension d. For instance, by (6.2), we get
(6.5) ¢r0=1w,  ¢e1=xv  and ¢35 =¢.
By [Arxiv, Comput. I1.2], we have that | Irr(W)| = 25 and that
DB(W) = {(1,0); (1,36); (6,1); (6,25); (10,9); (15, 17); (15, 4); (15, 16); (15, 5);
(6.6) (20,20); (20,10); (20, 2); (24, 6); (24, 12); (30, 3); (30, 15); (60, 11);
(60,8); (60, 5); (64,13); (64, 4); (80, 7); (8L, 6); (81, 10); (90, 8)}.

(6.4)
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Fori > 0, let Xg) denote the character afforded by the W-module H (X, C). We set
xa = Y (-1

i>0
By (6.1), we have

(6.7) Xz =X + X5 X =2 1w+ X

The character xé? ) is given by the following formula:
Xs(xz) = 1w +3e+8¢ps25 +2¢109 + 7 P1517 + P154 + 9 P15,16 + D155
(6.8) +14 20,20 + 4 20,10 + 2 24,6 + 8 P24,12 + 14 ¢30,15 + 18 P60, 11 + 12 de0,8
+4 60,5 + 26 064,13 + 2 P4 + 12 Pg0,7 + 7 ds1,6 + 21 ds1,10 + 12 Poo 8-

Proof. — Since X is smooth and W is finite, it follows from Lefschetz fixed point formula that
Xx (w) is equal to the Euler characteristic of the fixed point subvariety X". If dim(X") > 1,
then w is conjugate to 1, s or ws (see [Arxiv, Comput. I1.3]). But:
e xx(1) = 9504 by (6.1).
e Note that P(V)*' = [e;] UP(V*'). Since [e;] ¢ X by Remark 2.6, we have that X*' =
X NP(V*). So X! is a smooth complete intersection in P(V*!) ~ P*(C) defined by
equations of degree 2, 6 and 8 (the restrictions of f>, fs and fs to V*'), so it has Euler
characteristic —=2-6-8-(2+6+8 —4 — 1) = —1056. Hence, xx (s1) = —1056.
e By Lemma 4.4 (and its proof), xq (w3) = —36.
If dim(X™) < 0, then xg (w) is just the cardinality of X (which might be equal to 0). These
last values of xg as well as the decomposition of xy as a sum of irreducible characters are
computed in [Arxiv, Comput. IL.4]. The result then follows from (6.7). O

To be fair, knowing the exact character is not that interesting, but at least we will use it for
making a sanity check for Proposition 4.1. Indeed, H* (X, C)"" is the direct sum of H*(%, C)W
and the e-isotypic component of H*(X, C). Then (6.8) and (6.1) show that

> (=1)F dime H*(,C)V = 6.
kEZ

In other words, the Euler characteristic of /W is equal to 6. But the fiber of the map X —
X /W' above an Ay, singularity is the union of £ smooth rational curves in Aj-configuration,
and this union has Euler characteristic k¥ + 1. So the Euler characteristic of I is the Euler
characteristic of X /W’ plus the sum of all the Milnor numbers of singularities of £ /W’. So,

by Proposition 4.1, the Euler characteristic of & is
6+2-14+3-2+2-3+4=24,

as expected for a K3 surface.

Remark 6.9. — Since X is a smooth complete intersection, its Hodge numbers can be com-
puted from the degrees of the equations and we get that

R20(X) = h%%(X) =1591 and  AMH(X) = 6320.

However, we do not know how to compute the character of the representations H”4(X, C). B
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