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Abstract. — Adapting methods of previous papers by A. Sarti and the author, we construct K3
surfaces from invariants of the Weyl group of type E6. We study in details one of these surfaces,
which turns out to have Picard number 20: for this example, we describe an elliptic fibration (and
its singular fibers), the Picard lattice and the transcendental lattice.

This paper can be seen as a continuation of previous works by A. Sarti and the author on
the construction of singular K3 surfaces by using invariants of finite reflection groups [BoSa2,
BoSa3]. We consider here quotients of complete intersections defined by fundamental invari-
ants of a group of rank 6, namely the Weyl group of type E6.

Let W be the Weyl group of type E6 acting on V = C6 and let W ′ denote its derived
subgroup (which has index 2 in W and is equal to W ∩ SLC(V )). Then the algebra C[V ]W of
polynomial functions on V invariant under the action of W is generated by six homogeneous
and algebraically independent polynomials f2, f5, f6, f8, f9 and f12 (of respective degrees 2,
5, 6, 8, 9 and 12).

We denote by X ⊂ P(V ) the surface defined by f2 = f6 = f8 = 0 and, for λ, µ ∈ C2, we
denote by Yλ,µ the surface defined by f5 = f6 + λf3

2 = f8 + µf4
2 = 0. It turns out that X

is smooth and that Yλ,µ is smooth for generic values of (λ, µ). Our first main result in this
paper is the following (see Theorem 3.3):

Theorem A.
(a) The minimal resolution of the singular surface X/W ′ is a smooth K3 surface.
(b) If λ, µ are such that Yλ,µ has at most ADE singularities(∗), then the minimal resolution of

Yλ,µ/W
′ is a smooth K3 surface.

In the rest of the paper, we investigate further properties of X/W ′ and of its minimal
resolution X̃. The second main result of the paper is the following (see Theorem 5.1):

Theorem B.
(a) The K3 surface X̃ admits an elliptic fibration φ̃ : X̃→ P1(C) whose singular fibers are of type

E7 + E6 +A2 + 2A1.
(b) The Picard lattice of X̃has rank 20 and discriminant −228 = −22 · 3 · 19.

(c) The transcendental lattice of X̃ is given by the matrix
(
2 0
0 114

)
.

(∗)We do not know if there are values of (λ, µ) such that Yλ,µ has more complicated singularities.
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In the course of the proof of Theorem B, we obtain a complete description of the Picard
lattice: it is generated by 22 smooth rational curves whose intersection graph is given by
Theorem 5.1(b).

The paper is organized as follows. In Section 1, we fix general notation and prove some
preliminary results about group actions on tangent spaces. In Section 2, we fix the context,
recall properties of the Weyl group of type E6 and recall results from Springer theory [Spr].
Section 3 is mainly devoted to the proof of Theorem A. Section 4 gathers many geometric
properties of the quotient variety X/W ′ (singularities, smooth rational curves, explicit equa-
tions in a weighted projective space). Theorem B is proved in Section 5. As a complement to
all these data, the last section 6 contains the decomposition of the character of the represen-
tation H2(X,C) of W into a sum of irreducible characters (note that dimH2(X) = 9502).

Comments. (1) Many of the results of this paper (mostly the ones from Section 4 to the
end) rely on computer calculations done with the software MAGMA [BCP97]. To simplify
the exposition, we have removed the details and the codes of these computations: they are
available on the arXiv version of this paper [Arxiv], and precise references to this arXiv
version will be given at each stage such a computational check is needed.

(2) It is fair to say that most of the ideas of this paper come from our previous work with
A. Sarti [BoSa2, BoSa3]. The main difference is that, here, we start with a complex reflection
group of bigger rank (namely, 6 instead of 4) and so we need to consider quotients of com-
plete intersections instead of quotients of hypersurfaces. In some sense, the main purpose of
this paper is to show that the methods of [BoSa2, BoSa3] can be extended to this case.

(3) It is a rather easy task to determine which complete intersections defined by funda-
mental invariants of general complex reflection groups might lead, after taking the quotient
by the derived subgroup, to a K3 surface. However, describing properties of these surfaces
(Picard group, elliptic fibrations, transcendental lattices,...) can become a long and fastidious
program. We decided to focus here on the case of the Weyl group of type E6: it turns out that
the choices we made for the degrees of the fundamental invariants defining the complete
intersections are the only possible ones if one wants to obtain a K3 surface after taking the
quotient by the derived subgroup (see Remark 3.8 for more details).

(4) The K3 surfaces obtained in [BoSa2] have big Picard numbers and interesting elliptic
fibrations: this allows [BoSa3] to give original constructions of some K3 surfaces with Picard
number 20 (i.e., the biggest possible). In a forthcoming third paper in this series (with A.
Sarti), we will obtain many other K3 surfaces with Picard number 20 by investigating the
case of the Weyl group of type F4.

This is already interesting, but it is quite remarkable that the K3 surface X̃ studied in this
paper has also Picard number 20 and admits an elliptic fibration with unusual singular fibers.
We believe that the two-parameters family of K3 surfaces obtained as minimal resolutions of
Yλ,µ/W

′ might have similar properties: as it is a two-parameters family, we conjecture that a
general member of this family will have Picard number 18 and we can hope to find explicit
particular members of this family with Picard number 20. This would require much more
involved computations.

(5) It is difficult to have a full overview of all the K3 surfaces of Picard number 20 that have
been given a concrete description (i.e., not only through their transcendental lattice) but, as
far as we know, the K3 surface X̃has not been investigated elsewhere, as well as its elliptic
fibration and its description as minimal resolution of a quotient by a finite group of a surface
of general type.
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1. General notation, preliminaries

All vector spaces, all algebras, all algebraic varieties will be defined over C. Algebraic
varieties will always be reduced and quasi-projective, but not necessarily irreducible. If X
is an algeraic variety and if x ∈ X, we denote by Tx(X) the tangent space of X at x. If X is
moreover affine, we denote by C[X] its algebra of regular functions.

We fix a square root i of −1 in C. If V is a vector space, g is an element of EndC(V ) and
ζ ∈ C, we denote by V (g, ζ) the ζ-eigenspace of g. The list of eigenvalues of an element of
EndC(V ) will always be given with multiplicities (and will be seen as a multiset: a multiset
will be always written with double brackets, e.g. {{a, b, . . . }}). If d ∈ N∗, we denote by µd the
group of d-th roots of unity in C× and we set ζd = exp(2iπ/d).

If V is a finite dimensional vector space and if v ∈ V \ {0}, we denote by [v] its image in
the projective space P(V ). If p ∈ P(V ), we denote by Gp its stabilizer in G ⊂ GLC(V ). In
other words, G[v] is the set of elements of G admitting v as an eigenvector.

If X is a subset of V and if G is a subgroup of GLC(V ), we denote by Gset
X (resp. Gpt

X )
the setwise (resp. pointwise) stabilizer of X and we set G[X] = Gset

X /Gpt
X (so that G[X] acts

faithfully on the set X and on the vector space generated by X).
If d1,. . . , dn are positive integers, we denote by P(d1, . . . , dn) the associated weighted pro-

jective space. If f1,. . . , fr ∈ C[X1, . . . , Xn] are homogeneous (with Xi endowed with the
degree di), we denote by Z(f1, . . . , fr) the (possibly non-reduced) closed subscheme defined
by f1 = · · · = fr = 0.

The next three lemmas will be used throughout this paper. The first one is trivial, but very
useful [BoSa2, Lem. 2.2]:

Lemma 1.1. — Let V be a finite dimensional vector space, let f ∈ C[V ], let g ∈ GLC(V ) and let
v ∈ V \ {0} be such that:
(1) g(v) = ξv, with ξ ∈ C×.
(2) f is homogeneous of degree d with ξd ̸= 1.
(3) f is g-invariant.

Then f(v) = 0.

The next one is certainly well-known and might have its own interest:

Lemma 1.2. — Let V be a finite dimensional vector space, let n = dimC V , let G be a subgroup of
GLC(V ), let v ∈ V \ {0} and let f1,. . . , fr ∈ C[V ] be G-invariant and homogeneous of respective
degrees d1,. . . , dr. We assume that:
(1) Z(f1, . . . , fr) is a global complete intersection in P(V ).
(2) G stabilizes the line [v] (let θv : G → C× denote the linear character defined by g(v) = θv(g)v

for all g ∈ G).
(3) [v] is a smooth point of Z(f1, . . . , fr).

Then the r-dimensional semisimple representation θd1−1
v ⊕ · · · ⊕ θdr−1

v is isomorphic to a subrepre-
sentation E of the (n− 1)-dimensional representation (V/[v])∗ of G and, as representations of G, we
have an isomorphism

T[v](Z(f1, . . . , fr)) ≃ E⊥ ⊗ θ−1
v ,

where E⊥ = {x ∈ V/[v] | ∀ φ ∈ E, φ(x) = 0}.
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Remark 1.3. — Keep the notation of the proposition. Recall that we have a natural identifi-
cation T[v](P(V )) ≃ V/[v] but that this identification is not G-equivariant. We will recall the
construction of this isomorphism in the proof of the proposition, so that we can follow the
action of G: as we will see, we have a natural isomorphism of G-representations T[v](P(V )) ≃
(V/[v])⊗ θ−1

v . Therefore, T[v](X) is naturally a subrepresentation of (V/[v])⊗ θ−1
v , and this is

the aim of this proposition to identify this subrepresentation. ■

Proof. — Write X = Z(f1, . . . , fr) and p = [v]. The point p of P(V ) corresponds to the
homogeneous ideal p of C[V ] generated by v⊥ ⊂ V ∗. The local ring O of P(V ) at p is

C[V ](p) = {a/b | a, b ∈ C[V ], homogeneous and b ̸∈ p}.
We denote by m the unique maximal ideal of O. Then

m = {a/b | a, b ∈ C[V ], homogeneous, a ∈ p and b ̸∈ p}.
The map

dv : m −→ V ∗

f 7−→ dvf

induces an isomorphism

δ : Tp(P(V ))∗ = m/m2 ∼−→ v⊥ = (V/[v])∗.

(Recall that, if a ∈ p is homogeneous of degree m and b ̸∈ p is homogeneous, then dv(a/b)(v) =
(dva)(v)/b(v) = 0 because (dva)(v) = ma(v) = 0 by Euler’s identity). Note, however, that δ
is not G-equivariant for the classical action: indeed, as g(v) = θv(g)v for all g ∈ G, δ induces
an isomorphism of G-modules

δ : Tp(P(V ))∗
∼−→ (V/[v])∗ ⊗ θv.

Through this isomorphism,

Tp(X)∗ ≃
(
(V/[v])∗/E

)
⊗ θv, where E =

r∑
k=1

Cδ(fk).

Now, since X is smooth at p and X is a global complete intersection, this means that the
elements δ(f1),. . . , δ(fr) are linearly independent. To conclude the proof of the proposition,
it remains to notice that g(δ(fk)) = θv(g)

dk−1δ(fk) for all g ∈ G, which follows immediately
from the G-invariance of fk.

Lemma 1.2 applied to the case where G is a cyclic group gives the following result:

Corollary 1.4. — Let V be a finite dimensional vector space, let n = dimC V , let g ∈ GLC(V ), let
v ∈ V \ {0} and let f1,. . . , fr ∈ C[V ] be g-invariant and homogeneous of respective degrees d1,. . . ,
dr. Let {{ξ1, . . . , ξn}} be the multiset of eigenvalues of g. We assume that:
(1) Z(f1, . . . , fr) is a global complete intersection in P(V ).
(2) g(v) = ξnv.
(3) [v] is a smooth point of Z(f1, . . . , fr).

Then {{ξ−d1
n , . . . , ξ−dr

n }} is contained in the multiset {{ξ−1
n ξ1, . . . , ξ

−1
n ξn−1}} and the list of eigenval-

ues of g for its action on the tangent space T[v](Z(f1, . . . , fr)) is the multiset

{{ξ−1
n ξ1, . . . , ξ

−1
n ξn−1}} \ {{ξ−d1

n , . . . , ξ−dr
n }}.
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Remark 1.5. — Keep the notation of Lemma 1.2 and assume moreover that G is a closed
reductive subgroup of GLC(V ) (for instance, G might be finite), that v ∈ V G (so that θv = 1)
and that P(V G) ⊂ Z(f1, . . . , fr). We want to show that

(#) [v] is a singular point of Z(f1, . . . , fr).

For this, assume that [v] is smooth and let E denote the G-stable subspace of (V/[v])∗ of di-
mension r defined in the proof of Lemma 1.2 and such that the G-module T[v](Z(f1, . . . , fr))

is identified with E⊥. By hypothesis, V G/[v] ⊂ T[v](Z(f1, . . . , fr)) so, since G acts semisim-
ply on V , its orthogonal F in (V/[v])∗ satisfies FG = 0. This contradicts the fact that E ⊂ F .
This shows (#).

If G is finite, dimC V G = 1 (resp. dimC V G = 2) and r = 1, we retrieve [BoSa2, Coro. 2.4]
(resp. [BoSa2, Coro. 2.9]). ■

2. Set-up

For the classical theory of Coxeter groups, reflection groups, Dynkin diagrams, we mainly
refer to Bourbaki’s book [Bou] or Broué’s book [Bro]. For Springer theory (and its enhance-
ment by Lehrer-Springer), we refer to [Spr], [LeSp1], [LeSp2] and [LeMi].

Let V = C6 be endowed with its canonical basis (e1, e2, e3, e4, e5, e6). Through this ba-
sis, we identify GLC(V ) and GL6(C) and we let it act on V on the left. We denote by
(X1, X2, X3, X4, X5, X6) the dual basis of (e1, e2, e3, e4, e5, e6), so that the algebra C[V ] will
be identified with the polynomial algebra C[X1, X2, X3, X4, X5, X6]. We endow it with the
symmetric bilinear form ⟨, ⟩ attached to the Dynkin diagram of type E6 (we follow the strange
numbering of nodes given by Bourbaki [Bou, Chap. 6, Planche V]):

h1 h3 h4 h5 h6
h2

(E6)

Recall that this means that
⟨ek, ek⟩ = 1 if 1 ⩽ k ⩽ 6,
⟨ek, el⟩ = −1/2 if 1 ⩽ k ̸= l ⩽ 6 and {k, l} is an edge of the graph (E6),
⟨ek, el⟩ = 0 if 1 ⩽ k ̸= l ⩽ 6 and {k, l} is not an edge of the graph (E6).

Recall that ⟨, ⟩ is non-degenerate (in fact, when restricted to R6, it is positive definite). For
1 ⩽ k ⩽ 6, we denote by sk the orthogonal reflection such that sk(ek) = −ek. We set

W = ⟨s1, s2, s3, s4, s5, s6⟩.

We denote by O(V ) the orthogonal group of V , with respect to the bilinear form ⟨, ⟩. By
construction, W is a sugroup of O(V ) and is called a Weyl group of type E6.
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2.A. First properties of W . — The following numerical results concerning W can be found
in [Bou, Chap. VI, Table V]. The group W is finite and acts irreducibly of V . Moreover,

(2.1) |W | = 51840.

Also, the center of W is trivial, so W acts faithfully on P(V ). Let ε : W → µ2 = {−1, 1},
w 7→ det(w). Recall that Ker ε is the derived (i.e. commutator) subgroup of W , which will be
denoted by W ′. In particular,

(2.2) |W ′| = 25920.

We denote by Deg(W ) (resp. Codeg(W )) the degrees (resp. the codegrees) of W , as defined
in [Bro, Chap. 4]. Moreover,

(2.3) Deg(W ) = {2, 5, 6, 8, 9, 12} and Codeg(W ) = {0, 3, 4, 6, 7, 10}.

In particular, this means that there exist 6 homogeneous W -invariant polynomials f2, f5, f6,
f8, f9 and f12, of respective degrees 2, 5, 6, 8, 9 and 12, such that

(2.4) C[V ]W = C[f2, f5, f6, f8, f9, f12].

We set f = (f2, f5, f6, f8, f9, f12) and we recall that f is not uniquely determined. Thanks
to (2.4), we get that

πf : P(V ) −→ P(2, 5, 6, 8, 9, 12)
[v] 7−→ [f2(v), f5(v), f6(v), f8(v), f9(v), f12(v)]

is well-defined and induces an isomorphism of varieties

(2.5) P(V )/W
∼−→ P(2, 5, 6, 8, 9, 12).

The graded algebra associated with the weighted projective space P(2, 5, 6, 8, 9, 12) will be
denoted by C[Z2, Z5, Z6, Z8, Z9, Z12], with Zd being given the degree d (for all d ∈ Deg(W )).

Remark 2.6. — The quadratic form Q : V → C, v 7→ ⟨v, v⟩ is W -invariant. Hence f2 is a
scalar multiple of Q. Since Q is positive definite when restricted to R6, we have in particular
that f2(e1) ̸= 0. ■

Let Ref(W ) be the set of reflections of W and let Abe the hyperplane arrangement of W
(i.e. A= {V s | s ∈ Ref(W )}). Then

(2.7) |Ref(W )| = |A| =
∑

d∈Deg(W )

(d− 1) = 36.

If H ∈ A, we denote by αH an element of V ∗ such that H = KerαH . We set

Jac =
∏
H∈A

αH ∈ C[V ].

Since all the αH are well-defined up to a non-zero scalar, Jac is also well-defined up to a
non-zero scalar. Then

(2.8) wJac = ε(w)Jac

for all w ∈ W and

(2.9) C[V ]W
′
= C[f2, f5, f6, f8, f9, f12, Jac].
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Moreover, Jac is homogeneous of degree 36 by (2.7). Also, since Jac2 ∈ C[V ]W by (2.8), there
exists a unique homogeneous polynomial Pf ∈ C[Z2, Z5, Z6, Z8, Z9, Z12] such that

Jac2 = Pf (f2, f5, f6, f8, f9, f12).

Of course, Pf depends heavily on the choice of the family f and, up to a non-zero scalar, on
the choice of the αH ’s. It turns out that this relation generates the ideal of relations between
the functions f2, f5, f6, f8, f9, f12 and Jac. In particular, the map

π′
f : P(V ) −→ P(2, 5, 6, 8, 9, 12, 36)

[v] 7−→ [f2(v) : f5(v) : f6(v) : f8(v) : f9(v) : f12(v) : Jac(v)]

is well-defined and induces an isomorphism of varieties

(2.10)
P(V )/W ′ ∼−→ {[z2 : z5 : z6 : z8 : z9 : z12 : j] ∈ P(2, 5, 6, 8, 9, 12, 36) |

j2 = Pf (z2, z5, z6, z8, z9, z12)}.

Finally, we denote by ω : P(V )/W ′ −→ P(V )/W the natural morphism, which is just the
quotient map by µ2 ≃ W/W ′. Through the isomorphisms (2.5) and (2.10), the action of the
non-trivial element of µ2 is given by the involutive automorphism σ given by

σ[z2 : z5 : z6 : z8 : z9 : z12 : j] = [z2 : z5 : z6 : z8 : z9 : z12 : −j]

and ω is given by

ω[z2 : z5 : z6 : z8 : z9 : z12 : j] = [z2 : z5 : z6 : z8 : z9 : z12].

2.B. Eigenspaces, Springer theory. — As in [BoSa2], an important role is played by Springer
and Lehrer-Springer theory. We recall briefly the results we will need (this subsection is a
simplified version of [BoSa2, §3.3], adapted to the particular case of our Weyl group W ). All
the results stated here can be found in [Spr], [LeSp1], [LeSp2]. Note that some of the proofs
have been simplified in [LeMi]. Let us fix now a natural number e. We set

∆(e) = {d ∈ Deg(W ) | e divides d},

∆∗(e) = {d∗ ∈ Codeg(W ) | e divides d∗},

δ(e) = |∆(e)| and δ∗(e) = |∆∗(e)|.
With this notation, we have

(2.11) δ(e) = max
w∈W

(
dimV (w, ζe)

)
.

In particular, ζe is an eigenvalue of some element of W if and only if δ(e) ̸= 0 that is, if and
only if e ∈ {1, 2, 3, 4, 5, 6, 8, 9, 12}. In this case, we fix an element we of W of minimal order
such that

dimV (we, ζe) = δ(e).

We set for simplification V (e) = V (we, ζe) and W (e) = W [V (e)] = W set
V (e)/W

pt
V (e).

Remark 2.12. — Note for future reference that w3 and w−1
3 are not conjugate in W ′: in fact,

they are not conjugate in SO(V ) by [Bon2, Lemma 1.7]. ■
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If f ∈ C[V ], we denote by f [e] its restriction to V (e). Note that if d ∈ Deg(W ) is such that
d ̸∈ ∆(e), then f

[e]
d = 0 by Lemma 1.1.

Theorem 2.13 (Springer, Lehrer-Springer). — Assume that δ(e) ̸= 0. Then:
(a) If w ∈ W , then there exists x ∈ W such that x(V (w, ζe)) ⊂ V (e).
(b) W (e) acts (faithfully) on V (e) as a group generated by reflections.
(c) The family (f

[e]
d )d∈∆(e) is a family of fundamental invariants of W (e). In particular, the list of

degrees of W (e) consists of the degrees of W which are divisible by e.
(d) We have⋃

w∈W
V (w, ζe) =

⋃
x∈W

x(V (e)) = {v ∈ V | ∀ d ∈ Deg(W ) \∆(e), fd(v) = 0}.

(e) δ∗(e) ⩾ δ(e) with equality if and only if W pt
V (e) = 1.

(f) If δ∗(e) = δ(e), then we has order e, W (e) = W set
V (e) = CW (we) and the multiset of eigen-

values (with multiplicity) of we is equal to {{ζ1−d
e }}d∈Deg(W ). Moreover, if w is such that

dimV (w, ζe) = δ(e), then w is conjugate to we.

Example 2.14. — Let e ∈ {8, 9, 12}. Then δ(e) = δ∗(e) = 1. So V (e) is a line in V , and can be
viewed as an element of P(V ). It follows from the above results that

WV (e) = ⟨we⟩
(see for instance [BoSa2, Rem. 3.14] for a proof).

Moreover, by Theorem 2.13(f), we have det(we) = ζ−36
e , so

w9, w12 ∈ W ′ and w8 ̸∈ W ′.

In particular, if we denote by pe (resp. qe) the image of V (e) in P(V )/W ′ (resp. P(V )/W ),
then the morphism ω is unramified (resp. ramified) over q9 and q12 (resp. p8). This implies
also that σ(p9) ̸= p9 and σ(p12) ̸= p12. ■

Example 2.15. — Note that δ∗(5) = 2 > δ(5) = 1 while, if e ∈ {1, 2, 3, 4, 6, 8, 9, 12}, then
δ∗(e) = δ(e). If x is an element of order 5, then x admits a primitive fifth root of unity as
eigenvalue, so admits ζ5 as an eigenvalue because x is represented by a matrix with rational
coefficients. So we can take w5 = x, and so w5 has order 5.

The above argument shows that the multiset of eigenvalues of w5 is {{1, 1, ζ5, ζ25 , ζ35 , ζ45}}.
Now, if w is an element of W such that w(V (5)) = V (5), then, since w is defined over Q, it
stabilizes the ζk5 -eigenspace of w for k ∈ {1, 2, 3, 4}. Therefore, it stabilizes the sum E of these
4 eigenspaces. But E = Ker(IdV +w5 + w2

5 + w3
5 + w4

5) is defined over Q (and so over R) so
its orthogonal E⊥ in V with respect to the bilinear form ⟨, ⟩ satisfies E ⊕ E⊥ = V (because
its restriction to R6 is positive definite). This shows that w and w5 stabilize also E⊥, which
is necessarily equal to Ker(w5 − IdV ). In particular w centralizes w5. But, by the fourth line
of [Arxiv, Comput. I.12], we have CW ′(w5) = ⟨w5⟩. So we have proved that

W ′
V (5) = ⟨w5⟩.

This fact will be used in the proof of Theorem 3.3. ■
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3. K3 surfaces

Let
X= Z(f2, f6, f8)

and, for λ, µ ∈ C, set
Yλ,µ = Z(f5, f6 + λf3

2 , f8 + µf4
2 ).

Note that the invariants f2 and f5 are uniquely defined up to a scalar and that, up to a scalar,
every fundamental invariant of degree 6 (resp. 8) is of the form f6 + λf3

2 (resp. f8 + µf4
2 +

νf6f2) for some λ ∈ C (resp. µ, ν ∈ C). But Z(f2, f6 + λf3
2 , f8 + µf4

2 + νf6f2) = X and
Z(f5, f6 + λf3

2 , f8 + µf4
2 + νf6f2) = Yλ,µ−λν . So this shows in particular that X does not

depend on the choices of the fundamental invariants of W . By construction, X and Yλ,µ are
W -stable.

Remark 3.1. — The choice of the family f of fundamental invariants is irrelevant for all the
theoretical results stated in this paper. However, for some numerical results (for instance,
the equation of X/W ′ given by (4.10) or the coordinates of its singular points given by
Lemma 4.8), this choice needs to be specified: in this paper, for all computational results,
we will choose f as in [Arxiv, App. I]. ■

Proposition 3.2. — With the above notation, we have:
(a) X is a smooth irreducible surface, which is a complete intersection in P(V )).
(b) If λ, µ ∈ C, then Yλ,µ has pure dimension 2, and so is a complete intersection in P(V ). If it is

smooth or has only ADE singularities, then it is irreducible.
(c) The set of (λ, µ) ∈ C2 such that Yλ,µ is smooth is a non-empty open subset of C2.

Proof. — Through the isomorphism (2.5), we have

X/W ≃ P(5, 9, 12) and Yλ,µ/W ≃ P(2, 9, 12),

so X/W and Yλ,µ/W are irreducible of dimension 2. Since W is finite, this implies that X
and Yλ,µ are of pure dimension 2 and so are complete intersections. In particular, they are
connected [Har, Chap. II, Exer. 8.4(c)].

(a) By [Arxiv, Comput. I.1], the open affine chart of Xdefined by x6 ̸= 0 is smooth. This
shows that the singular locus Sof X is contained in the projective hyperplane P(H), where
H = {(x1, x2, x3, x4, x5, x6) ∈ C6 | x6 = 0}. Since W acts on X, we have that S is contained
in P(∩w∈Ww(H)). But ∩w∈Ww(H) is a W -stable proper subspace of V , so it is equal to {0}
since W acts irreducibly on V . Hence S= ∅. This shows that X is smooth and, in particular,
irreducible (because it is connected).

(b) We already know that Yλ,µ is connected. If moreover it admits only ADE singularities,
then it is necessarily irreducible.

(c) Let U be the set of (λ, µ) ∈ C2 such that Yλ,µ is smooth. It is clear that U is open, so we
only need to prove that it is non-empty. With the particular choice of fundamental invariants
given in [Arxiv, App. I] (see Remark 3.1), we have that the open affine chart of Y0,0 defined
by x6 ̸= 0 is smooth by [Arxiv, Comput. I.1]. The same argument as in (a) allows to conclude
that Y0,0 is smooth and irreducible.
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We are now ready to state the first main result of this paper:

Theorem 3.3. — Let λ, µ ∈ C be such that Yλ,µ admits only ADE singularities and let V be one
of the varieties X or Yλ,µ. Then V/W ′ is a K3 surface with only ADE singularities and its minimal
smooth resolution Ṽ is a smooth K3 surface.

Proof. — The proof will be given in the next subsections, following the same lines as [BoSa2,
Theo. 5.4]. More precisely, if Vdenotes one of the above varieties X or Yλ,µ, we will prove
in the next subsections the following three facts:
(A) The smooth locus of V/W ′ admits a symplectic form (see Lemma 3.6);
(B) The variety V/W ′ has only ADE singularities (see Lemma 3.9);
(C) The Euler characteristic of V/W ′ is positive (see Lemma 3.12).

Therefore, by (A) and (B), the variety V/W ′ is a symplectic singularity and its minimal
smooth resolution Ṽ is a crepant resolution, i.e. a symplectic resolution. So Ṽ admits a
symplectic form. By the classification of surfaces, this forces Ṽ to be a smooth K3 surface or
an abelian variety. But, by (B), the Euler characteristic of Ṽ is greater than or equal to the
one of V/W ′, so the Euler characteristic of Ṽ is positive by (C). Since an abelian variety has
Euler characteristic 0, this shows that Ṽ is a smooth K3 surface.

So it remains to prove the three facts (A), (B) and (C) used in the above proof.

Notation. For the rest of this section, we fix λ, µ in C such that Yλ,µ

admits only ADE singularities and we denote by V a variety which
can be Xor Yλ,µ.

Recall that this implies that V is irreducible and normal and, in particular, that V/W ′ is
irreducible and normal too.

3.A. Symplectic form. — Through the isomorphism (2.10), we have

X/W ′ ≃ {[z5 : z9 : z12 : j] ∈ P(5, 9, 12, 36) | j2 = Pf (0, z5, 0, 0, z9, z12)

and Yλ,µ/W
′ ≃ {[z2 : z9 : z12 : j] ∈ P(2, 9, 12, 36) | j2 = Pf (z2, 0,−λz32 ,−µz42 , z9, z12)}.

But note that P(5, 9, 12, 36) = P(5, 3, 4, 12), so there exists a unique homogeneous polyno-
mial Qf ∈ C[Y5, Y3, Y4] of degree 24 (where Yi is endowed with the degree i) such that
Pf (0, z5, 0, 0, z9, z12) = Qf (z

3
5 , z9, z12). Hence,

(3.4) X/W ′ ≃ {[y5 : y3 : y4 : j] ∈ P(5, 3, 4, 12) | j2 = Qf (y5, y3, y4)}.
So the degree of the equation defining X/W ′ (namely, 24) is equal to the sum of the weights
of the projective space (namely, 5 + 3 + 4 + 12). By [BoSa2, Lem. A.1], this implies that the
smooth locus of X/W ′ is endowed with a symplectic form.

On the other hand, P(2, 9, 12, 36) = P(1, 9, 6, 18) = P(1, 3, 2, 6) so there exists a unique
homogeneous polynomial Qλ,µ

f ∈ C[Y1, Y3, Y2] of degree 12 (where Yi is endowed with the
degree i) such that Pf (z2, 0,−λz32 ,−µz42 , z9, z12) = Qλ,µ

f (z32 , z9, z12). Hence,

(3.5) Yλ,µ/W
′ ≃ {[y1 : y3 : y2 : j] ∈ P(1, 3, 2, 6) | j2 = Qλ,µ

f (y1, y3, y2)}.
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So the degree of the equation defining Yλ,µ/W
′ (namely, 12) is equal to the sum of the weights

of the projective space (namely, 1 + 3 + 2 + 6). By [BoSa2, Lem. 5.4], this implies that the
smooth locus of X/W ′ is endowed with a symplectic form. Therefore, we have proved the
following lemma, which corresponds to the Fact (A) stated in the proof of Theorem 3.3:

Lemma 3.6. — The smooth locus of V/W ′ admits a symplectic form.

Remark 3.7. — In both cases, the ramification locus of the morphism ω : V/W ′ → V/W is
given by the equation j = 0 (in the models given by equations (3.4) or (3.5)). ■

Remark 3.8. — Let {d1, d2, d3} be a subset of Deg(W ) of cardinality 3 and consider the com-
plete intersection D= Z(fd1 , fd2 , fd3). Then, through the isomorphism (2.10), one can write
D/W ′ as a closed subvariety of P(d′1, d′2, d′3, 36) defined by an equation of degree 72, where
{d′1, d′2, d′3} is the complement of {d1, d2, d3} in Deg(W ). After simplifying the weights of
P(d′1, d′2, d′3, 36) as above, one finds that the degree of the equation of D/W ′ equals the sume
of the weights of the weighted projective space if and only if (d1, d2, d3) is equal to (2, 6, 8),
(5, 6, 8) or (2, 5, 8). However, in this last case, D is a union of 80 projective planes (as follows
from Theorem 2.13(d) applied to the case where e = 3) which sometimes intersect along a
projective line, so this case is uninteresting for our purpose. So the choices of the degrees
of the equations defining X or Yλ,µ are the only ones that have a chance to give rise to a K3
surface after taking the quotient by W ′. ■

3.B. Singularities. — We aim to prove here the following lemma, which corresponds to the
Fact (B) stated in the proof of Theorem 3.3:

Lemma 3.9. — The surface V/W ′ has only ADE singularities.

Proof. — First, as V has only ADE singularities and W ′ has index 2 in W , every point of
V/W ′ lying above a smooth point of V/W is smooth or is an ADE singularity by [BoSa2,
Coro. B.7]. So it remains only to study the points lying above the singular points of V/W .

The singular points of X/W ≃ P(5, 3, 4) are q5 = [1 : 0 : 0], q9 = [0 : 1 : 0] and q12 = [0 :
0 : 1]. The singular points of Yλ,µ/W ≃ P(1, 3, 2) are q9 = [0 : 1 : 0] and q12 = [0 : 0 : 1].
Note that the notation q9 and q12 is consistent with Example 2.14, as they correspond to the
points q9 and q12 defined in this example through the embeddings V/W ↪→ P(V )/W ≃
P(2, 5, 6, 8, 9, 12). Still by Example 2.14, the morphism V/W ′ → V/W is unramified above
q9 and q12. Therefore, the points p9 and p′9 = σ(p9) (resp. p12 and p′12 = σ(p12)) of V/W ′ are
distinct and have the same type of singularities than the point q9 (resp. q12) of V/W . But q9
is a singular point of type A2 of P(5, 3, 4) or P(1, 3, 2) and q12 is a singular point of type A3

(resp. A1) of P(5, 3, 4) (resp. P(1, 3, 2)). This shows that the following results holds:

Lemma 3.10. — We have:
(a) The points p9 and p′9 are A2 singularities of X/W ′ and the points p12 and p′12

are A3 singularities of X/W ′.
(b) The points p9 and p′9 are A2 singularities of Yλ,µ/W

′ and the points p12 and
p′12 are A1 singularities of Yλ,µ/W

′.
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Therefore, it remains to prove that the points of X/W ′ lying above q5 are ADE singularities.
For this, note that

π−1(q5) = {x ∈ P(V ) | f2(x) = f6(x) = f8(x) = f9(x) = f12(x) = 0}.

But, by (2.11) and Theorem 2.13(d) applied to the case where e = 5, we get that V (5) is a
line in V , so may be viewed as a point of P(V ) and π−1

f (q5) is the W -orbit of V (5). Now,
δ∗(5) = 2 > δ(5) = 1, so it follows from Theorem 2.13(f) that W pt

V (5) ̸= 1. By Steinberg’s

Theorem (see for instance [Bro, Theo. 4.7]), this shows that W pt
V (5) contains a reflection, and

so the stabilizer G of V (5) in W contains a reflection. In particular, G is not contained in W ′.
This proves that the morphism X/W ′ → X/W is ramified above q5: we denote by p5 the
unique point of X/W ′ lying above q5.

Now, Example 2.15 shows that the stabilizer of V (5) in W ′ is ⟨w5⟩. So, in order to determine
the type of singularity of X/W ′ at p5, we only need to determine the two eigenvalues of w5

for its action on TV (5)(X). This is easily done thanks to Corollary 1.4: the two eigenvalues
are ζ5 and ζ−1

5 . We have thus proved the following result:

Lemma 3.11. — The point p5 is an A4 singularity of X/W ′.

This completes the proof of Lemma 3.9.

3.C. Euler characteristic. — Since V is a complete intersection which is smooth or has
only ADE singularities, its cohomology (with coefficients in C) is concentrated in even de-
gree [Dim, Theo. 2.1, Lem. 3.2 and Example 3.3]. Now, Hk(V/W ′,C) ≃ Hk(V,C)W ′

, so the
cohomology of V/W ′ is concentrated in even degree. This implies the next lemma, which
corresponds to the Fact (C) stated in the proof of Theorem 3.3, and completes the proof of
Theorem 3.3:

Lemma 3.12. — The Euler characteristic of V/W ′ is positive.

Notation. The minimal smooth resolution of the surface X/W ′ will be de-
noted by ρ : X̃ → X/W ′. Theorem 3.3 says that X̃ is a smooth projective
K3 surface.

4. Some numerical data for the surface X/W ′

We complete here the qualitative result given by Theorem 3.3 with some concrete results
concerning the surface X/W ′ (type of singularities, equation, coordinates of singular points,
cohomology,...). These informations will be used in the next section to obtain further prop-
erties of the K3 surface X̃ (Picard lattice, elliptic fibration,...).
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4.A. Singularities. — In the course of the proof of Theorem 3.3, we have obtained some
quantitative results (see Lemmas 3.10 and 3.11). We complete them by determining all the
singularities of X/W ′:

Proposition 4.1. — The surface X/W ′ admits A4 + 2A3 + 3A2 + 2A1 singularities.

Proof. — Note that we have already found A4 + 2A3 + 2A2 singularities in X/W ′ (see
Lemma 3.10 and 3.11), given by the points p5, p9, p′9, p12 and p′12 lying respectively above
the points q5 = [1 : 0 : 0], q9 = [0 : 1 : 0] and q12 = [0 : 0 : 1] of X/W ≃ P(5, 3, 4).

To determine the other singularities, one must study the fixed points schemes Xw, for w ∈
W \ {1} (note that Xw is in fact smooth because X is smooth). The details of the arguments
and of the computer calculations can be found in [Arxiv, Proof of Prop. 4.1 and App. I.B] and
are summarized as follows (note that some of the arguments make use of Corollary 1.4):

• There is only one conjugacy class of W ′ consisting of elements of order 2 whose list of
eigenvalues is {{1, 1, 1, 1,−1,−1}}: if v2 is a representative of this class, then the image
of Xv2 in X/W ′ consists of two points p1 and p′1 which are singular points of type A1.

• There is one conjugacy class of W ′ consisting of elements of order 3 whose list of eigen-
values is {{1, 1, 1, 1, ζ3, ζ−1

3 }}: if u3 is a representative of this class, then the image of Xu3

in X/W ′ consists of smooth points and one singular point p2 of type A2. Moreover, p2
is different from p9 and p′9.

• If w ̸= 1 does not belong to one of the above two conjugacy classes, then the image of Xw

in X/W ′ consists of smooth points or points belonging to {p1, p′1, p2, p5, p9, p′9, p12, p′12}.
They give rise to no new singularity in X/W ′.

This is the expected result.

For the singular points of X/W ′, we keep the notation of the proof of Proposition 4.1:
• The two singular points of type A1 are denoted by p1 and p′1. Note that they are both σ-

fixed because they lie above smooth points of X/W (so they must lie on the ramification
locus of ω : X/W ′ → X/W ).

• The singular point of type A2 coming from the fixed point locus Xu3 , where u3 has order
3 and satisfies dimV u3 = 4, is denoted by p2. Again, σ(p2) = p2.

• The singular points p5, p9, p′9, p12 and p′12 involved in Lemma 3.9 are of type A4, A2, A2,
A3 and A3 respectively. We have σ(p5) = p5, p′9 = σ(p9) and p′12 = σ(p12).

4.B. Two smooth rational curves. — Recall that V (3) is the eigenspace of w3 for the eigen-
value ζ3 and denote by V −(3) the eigenspace of w3 for the eigenvalue ζ−1

3 . By (2.11), they
both have dimension 3 and so

(4.2) V = V (3)⊕ V −(3).

Let C+ = P(V (3))∩Xand C− = P(V −(3))∩X. By Theorem 2.13(f), w3 and w−1
3 are conjugate

in W , but it follows from Remark 2.12 that they are not conjugate in W ′. Fix g ∈ W be such
that w−1

3 = gw3g
−1. Then g ̸∈ W ′ and g(V (3)) = V −(3). This shows that

(4.3) C− = g(C+).

Lemma 4.4. — The schemes C+ and C− are smooth irreducible curves of genus 10.
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Proof. — By (4.2), P(V )w3 = P(V (3)) ∪̇ P(V −(3)), where ∪̇ means a disjoint union. So

(4.5) Xw3 = C+ ∪̇ C−.

Since Xw3 is smooth, this implies that C+ and C− are smooth. Now, by Lemma 1.1, the
restriction of f2, f5 and f8 to V (3) are equal to 0. Therefore,

C+ = {x ∈ P(V (3)) | f6(v) = 0}.

This shows that C+ is a connected curve of P(V (3)). Since it is smooth, it must be irreducible.
Moreover, it is of degree 6, so its genus is equal to 10.

Let C+
5 (resp. C−

5 ) denote the image of C+ (resp. C−) in X/W ′ and let C5 denote the
image of C+ in X/W ≃ P(5, 3, 4). Note that C5 is also the image of C− by (4.3). Moreover,

(4.6) C5 = {[y5, y3, y4] ∈ P(5, 3, 4) | y5 = 0} = P(3, 4) = P1(C).

Indeed, C5 is irreducible, of dimension 1 and contained in {[y5 : y3 : y4] ∈ P(5, 3, 4) | y5 = 0}
by Lemma 1.1 (see also Theorem 2.13(d)).

Proposition 4.7. — We have C−
5 = σ(C+

5 ) ̸= C+
5 . Moreover, C+

5 and C−
5 are both isomorphic to

P1(C), intersect transversely along only one point and satisfy

C+
5 ∪ C−

5 = {[y5 : y3 : y4 : j] ∈ X/W ′ | y5 = 0}.

Proof. — The fact that C−
5 = σ(C+

5 ) follows from (4.3). Now, the irreducibility of C+ and
C− implies the irreducibility of C+

5 and C−
5 . Also, by (4.6),

C+
5 ∪ C−

5 ≃ {[y3 : y4 : j] ∈ P(3, 4, 12) | j2 = Qf (0, y3, y4)}.

But P(3, 4, 12) = P(3, 1, 3) = P(1, 1, 1) = P2(C), so there exists a polynomial Q3 ∈ C[T3, T4],
which is homogenous of degree 2 (with Tk of degree 1) and such that Qf (0, y3, y4) = Q3(y

4
3, y

3
4).

Therefore,
C+
5 ∪ C−

5 ≃ {[t3 : t4 : j] ∈ P2(C) | j2 = Q3(t3, t4)}.
It just remains to prove that the polynomial Q3 is the square of a linear form: in other words,
we only need to prove that C+

5 ̸= C−
5 .

Since C+ is irreducible of degree 6, it cannot be contained in a union of projective lines
of P(V (3)). Since moreover δ∗(3) = δ(3) = 3, Theorem 2.13(f) thus implies that there exists
v ∈ V (3) \ {0} such that [v] ∈ C+ and Wv = 1. We now only need to prove that π′

f ([v]) ̸∈ C−.
So assume that π′

f ([v]) ∈ C−. This would imply that there exists w ∈ W ′ such that w(v) ∈
V −(3). Consequently,

w−1w3ww3(v) = v,

and so w−1w3ww3 = 1 since Wv = 1. Hence, w3 and w−1
3 are conjugate in W ′, which is

impossible by Remark 2.12.

By exchanging p9 and p′9 (resp. p12 and p′12) if necessary, we may assume that

p9, p12 ∈ C+
5 and p′9, p

′
12 ∈ C−

5 .
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4.C. Singular points, equation. — Of course, the equation giving X/W ′ and the coordi-
nates of the singular points depend on a model for W and on a choice of fundamental invari-
ants. With the choices made in [Arxiv, App. I] (see Remark 3.1), we get:

Lemma 4.8. — The coordinates of the singular points in P(5, 3, 4, 12) are given by

p5 = [1 : 0 : 0 : 0], p9, p
′
9 = [0 : 1 : 0 : ±27

64

√
−3], p12, p

′
12 = [0 : 0 : 1 : ± 16

243

√
−3]

p1, p
′
1 = [19(η536

√
19 + 2336) : 1

9(−η60
√
19− 260) : 1

3(η130
√
19 + 565) : 0], with η = ±1,

p2 = [4/9 : 10/9 : −5/12 : 0].

Proof. — The details of this calculation are given in [Arxiv, Proof of Lem. 4.15].

The computation of the coordinates of the intersection point p of C+
5 and C−

5 is done
in [Arxiv, §4.C]:

(4.9) p = [0 : 2/9 : 1/4 : 0].

As explained in [Arxiv, §4.C], knowing that X/W ′ contains p and the singular points given
in Lemma 4.8 is sufficient for obtaining an explicit equation of X/W ′:

(4.10) X/W ′={[y5 : y3 : y4 : j] ∈ P(5, 3, 4, 12) | j2 = −3(2764 y
4
3 − 16

243 y
3
4)

2 − y5R(y5, y3, y4)}

with

(4.11) R = y3y4(
207
32 y43 +

800
729 y

3
4) +

1375
81 y5y

2
3y

2
4 − 3125

864 y25y
3
3 − 3125

108 y35y4.

Remark 4.12. — With this equation, it is easy to describe the union C+
5 ∪ C−

5 , namely

C+
5 ∪ C−

5 = {[y3 : y4 : j] ∈ P(3, 4, 12) | j2 = −3(2764 y
4
3 − 16

243 y
3
4)

2}.

But P(3, 4, 12) ≃ P(1, 4, 4) ≃ P(1, 1, 1) = P2(C) and, through these isomorphisms,

C+
5 ∪ C−

5 = {[Y3 : Y4 : j] ∈ P2(C) | j2 = −3(2764 Y3 −
16
243 Y4)

2},

which is indeed a union of two smooth rational curves. ■

4.D. Two other smooth rational curves in X/W ′. — For k ∈ {3, 4}, we set

Ck = {[y5 : y3 : y4 : j] ∈ X/W ′ | yk = 0}.

Proposition 4.13. — The schemes C3 and C4 are reduced, irreducible and are smooth rational
curves. They intersect transversely at p5 = [1 : 0 : 0 : 0].
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Proof. — From the equation (4.10), we get that

C3 ≃ {[y5 : y4 : j] ∈ P(5, 4, 12) | j2 = −28

39
y64 +

3125
108 y45y4}.

But P(5, 4, 12) = P(5, 1, 3), so

C3 ≃ {[y5 : y4 : j] ∈ P(5, 1, 3) | j2 = −28

39
y64 +

3125
108 y5y4}.

The open subset of C3 defined by y4 ̸= 0 is clearly isomorphic to A1(C).
Similary, from the equation (4.10), we get that

C4 ≃ {[y5 : y3 : j] ∈ P(5, 3, 12) | j2 = − 37

212
y63 +

3125
864 y35y

3
3}.

But P(5, 3, 12) = P(5, 1, 4), so

C4 ≃ {[y5 : y3 : j] ∈ P(5, 1, 4) | j2 = − 37

212
y63 +

3125
864 y5y

3
3}.

The open subset of C4 defined by y3 ̸= 0 is clearly isomorphic to A1(C).
So C3 and C4 are rational curves, and it remains to prove that C3 and C4 are smooth and

intersect transversely. Both questions are local around the point p5 = [1 : 0 : 0 : 0], so we
must work in the affine chart of X/W ′ defined by y5 ̸= 0. The computation is somewhat
involved and details are given in [Arxiv, Proof of Prop. 4.22].

5. The K3 surface X̃

Recall that ρ : X̃ −→ X/W ′ denotes the minimal smooth resolution. We will deduce
several properties of X̃ (Picard lattice, elliptic fibration,...) from the list of properties of X/W ′

given in the previous section. Note that since X̃ is obtained from X/W ′ by successively
blowing-up the singular locus, the automorphism σ of X/W ′ lifts to an automorphism of X̃
(which will still be denoted by σ).

We denote by ∆1 and ∆′
1 the two smooth rational curves of X̃ lying above p1 and p′1

respectively. For e ∈ {2, 5, 9, 12}, we denote by ∆1
e,. . . , ∆re

e the smooth rational curves of X̃
lying above pe (here, re is the Milnor number of the singularity pe

(†)), and we assume that
they are numbered in such a way that ∆k

e ∩∆k+1
e ̸= ∅. For e ∈ {9, 12}, the smooth rational

curves of X̃ lying above p′e are then given by σ(∆1
e),. . . , σ(∆re

e ).
Finally, we denote by C̃±

5 the strict transform of C±
5 in X̃. Of course, C̃−

5 = σ( C̃+
5 ). As

X̃ is obtained from X/W ′ by successive blow-ups of points, C̃+
5 and C̃−

5 are smooth rational
curves. Also, we denote by C̃3 and C̃4 the strict transforms of C3 and C4: for the same reason,
they are also smooth rational curves.

One of the aims of this section is to determine the intersection graph of the 22 smooth
rational curves C̃3, C̃4, C̃±

5 , ∆1, ∆′
1, (∆k

e)e∈{2,5,9,12},1 ⩽ k ⩽ re and (σ∆k
e)e∈{9,12},1 ⩽ k ⩽ re . For

this, we will use the construction of an elliptic fibration on X̃.
Recall that, for a K3 surface, an elliptic fibration is just a morphism to P1(C) such that at least

one fiber is a smooth elliptic curve. Since X/W ′ has A4 + 2A3 + 3A2 + 2A1 singularities, its
Picard number is greater than or equal to 1 + (4 + 2 · 3 + 3 · 2 + 1) = 19 (in fact, we will see
later that it has Picard number 20). Therefore, it admits an elliptic fibration (because every

(†)For the definition of the Milnor number of an isolated hypersurface singularity, see [Mil, §7]: recall that the
Milnor number of a singularity of type Ak, Dk or Ek is equal to k.
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K3 surface with Picard number ⩾ 5 admits an elliptic fibration [Huy, Chap. 11, Prop. 1.3(ii)]).
Another aim of this section is to contruct at least one such fibration. For this, let

φ : (X/W ′) \ {p5} −→ P1(C)
[y5 : y3 : y4 : j] 7−→ [y43 : y34].

Then φ is a well-defined morphism of varieties, so the map φ ◦ ρ : X̃ \ ρ−1(p5) −→ P1(C)
is also a well-defined morphism of varieties. We are now ready to prove the second main
result of our paper:

Theorem 5.1. — With the above notation, we have:
(a) The morphism φ ◦ ρ : X̃\ ρ−1(p5) −→ P1(C) extends to a unique morphism

φ̃ : X̃→ P1(C),
which is an elliptic fibration whose singular fibers are of type E7 + E6 +A2 + 2A1.

(b) There exists a way of numbering the smooth rational curves lying above singular points of
X/W ′ such that the intersection graph of the 22 smooth rational curves C̃3, C̃4, C̃±

5 , ∆1, ∆′
1,

(∆k
e)e∈{2,5,9,12},1 ⩽ k ⩽ re and (σ∆k

e)e∈{9,12},1 ⩽ k ⩽ re is given by(‡)

i∆1
9

yC̃+
5 i∆1

12

i∆2
12

i∆3
12i∆2

9
i∆4

5

iC̃4
i

∆3
5

iu
∆2

5

i
∆1

5

i C̃3

iσ∆2
9

iσ∆1
9

ỹ
C−
5

i
σ∆1

12

i
σ∆2

12

i
σ∆3

12

i∆1
2 i∆2

2

i∆1

i∆′
1

' $

& %

(⋆)

In this graph:
(b1) The union of the singular fibers of φ̃ of type E7 and E6 is given by the white disks in the

big connected subgraph of (⋆).
(b2) The singular fibers of φ̃ of type A1 are C̃1 ∪ ∆1 and C̃′

1 ∪ ∆′
1 for some smooth rational

curves C̃1 and C̃′
1.

(b3) The singular fiber of φ̃ of type A2 is C̃2 ∪∆1
2 ∪∆2

2 for some smooth rational curve C̃2.
(b4) The curves marked with full black disks in (⋆) are sections of φ̃.
(b5) The curve ∆2

5 is a double section of φ̃.
(c) The 22 smooth rational curves in this intersection graph generate the Picard lattice Pic(X̃).

More precisely, Pic(X̃) is generated by the list obtained from these 22 smooth rational curves by
removing ∆2

5 and ∆4
5. Its discriminant is −228 = −22 · 3 · 19.

(d) The Mordell-Weil group of φ̃ is isomorphic to Z2.

(e) The transcendental lattice is given by the matrix
(
2 0
0 114

)
.

(‡)This means that two smooth rational curves C and C′ in this list intersect if and only if they are joined by an
edge in the above graph, and that, if so, then C · C′ = 1.
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Remark 5.2. — There are several possible types of singular fibers of type A1 (resp. A2) in
elliptic fibrations. In the above Theorem 5.1, singular fibers of type A1 (resp. A2) are of type
I2 (resp. I3) in Kodaira’s classification. ■

Proof. — The details of the (very computational) proof of the statements (a) and (b) is given
in [Arxiv, App. III].

For (c), let M denote the incidence matrix of the 18 smooth rational curves belonging to
the big connected subgraph of (⋆). Then M has rank 16 and the greatest common divi-
sor of the diagonal minors of M is equal to 19 by [Arxiv, Comput. IV.1]. Moreover, the
diagonal minor corresponding to the curves C̃3, C̃4, C̃±

5 , ∆1
5, ∆3

5, (∆k
e)e∈{9,12},1 ⩽ k ⩽ re and

(σ∆k
e)e∈{9,12},1 ⩽ k ⩽ re is equal to −19 (see [Arxiv, Comput. IV.1]). So, if we denote by Λ the

lattice generated by these 16 curves together with ∆1, ∆′
1, ∆1

2 and ∆2
2, then Λ has rank 20 and

discriminant −228 = −22 · 3 · 19. This shows that Pic(X̃) has rank ⩾ 20, and so has rank 20

as a K3 surface has always Picard number ⩽ 20. If we denote by n the index of Λ in Pic(X̃),
then n2 divides 228, which shows that n ∈ {1, 2}.

But if we denote by T(X̃) the transcendental lattice of X̃, then T(X̃) has rank 22− 20 = 2,
is even and definite positive, with discriminant 228/n2. Hence it can be represented by a
matrix of the form (

2a b
b 2c

)
with a, c > 0 and 4ac − b2 = 228/n2. But 4ac − b2 ≡ 0 or 3 mod 4, so 4ac − b2 ̸= 57. This
shows that n = 1 and that Pic(X̃) is generated by C̃3, C̃4, C̃±

5 , ∆1
5, ∆3

5, (∆k
e)e∈{9,12},1 ⩽ k ⩽ re

and (σ∆k
e)e∈{9,12},1 ⩽ k ⩽ re , as expected. This concludes the proof of (c).

(d) Since we have determined the Picard lattice of X̃ in (c), the structure of the Mordell-
Weil group follows (note that it has no torsion, as expected by [Shi, Table 1, entry 2420]).

(e) The transcendental lattice of X̃ is given by a matrix of the form
(
2a b
b 2c

)
whose under-

lying quadratic form is definite positive and has discriminant 228 by (c). The classification
of even integral binary quadratic forms [Bue, Theo. 2.3], shows that there are only four such
matrices, up to equivalence, namely:

M1 =

(
2 0
0 114

)
, M2 =

(
6 0
0 38

)
, M3 =

(
4 2
2 58

)
and M4 =

(
12 6
6 22

)
.

Let P = Pic(X̃) and T = T(X̃). Let

P⊥ = {v ∈ Q⊗Z P | ∀ v′ ∈ P, ⟨v, v′⟩ ∈ Z}
and let us define T⊥ similarly. Then the quadratic forms on Q ⊗Z P and Q ⊗Z T induce
well-defined maps

qP : P⊥/P −→ Q/2Z and qT : T⊥/T −→ Q/2Z.

Since H2(X̃,Z) is unimodular of signature (3, 19), it turns out that there is an isomorphism
ι : T⊥/T

∼−→ P⊥/P such that qT = −qP ◦ ι (see [Nik, Prop. 1.6.1]). In particular, the set
of values of qT and −qP coincide: the subset −qP (P

⊥/P ) of Q/2Z can easily be computed
thanks to (b) and (c) using MAGMA, and we only need to compare the corresponding sets for
the four rank 2 lattices determined by M1, M2, M3 and M4. This comparison gives the result
(see [Arxiv, §IV.B] for detailed computations).
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Remark 5.3. — Theorem 5.1(e) shows that the K3 surface X̃ is not a Kummer surface [Huy,
Chap. 14, Cor. 3.20]. It also shows that X̃ is not isomorphic to any of the singular K3 surfaces
constructed by Barth-Sarti in [BaSa] or to any of the singular K3 surfaces constructed by
Brandhorst-Hashimoto in [BrHa] (see also [BoSa1] for a description of some of these). ■

6. Complement: action of W on the cohomology of X

The group W acts on X so it acts on the cohomology groups Hk(X,C). Since X is a com-
plete intersection in P5(C), with defining equations of degree 2, 6, and 8, we have:

(6.1) dimCHk(X,C) =


1 if k ∈ {0, 4},
9502 if k = 2,
0 otherwise.

The action of W on H0(X,C) and H4(X,C) is trivial. The aim of this subsection is to deter-
mine the character of the representation of W afforded by H2(X,C).

For this, we first need to parametrize the irreducible characters of W . If χ ∈ Irr(W ), we
denote by bχ the minimal number k such that χ occurs in the character of the symmetric
power Symk(V ) of the natural representation V of W . For instance, if we denote by 1W the
trivial character of W and by χV the character afforded by the natural representation V , then

(6.2) b1W = 0, bχV = 1 and bε = |A| = 36

(recall that ε denotes the restriction of the determinant to W ). Indeed, the first two equalities
are immediate from the definition and the last one follows from [Bou, Chap. V, §5, Prop. 5]
and (2.7). Recall from Molien’s formula that the number bχ an be computed as follows: let t
be an indeterminate and let

Fχ(t) =

∏
d∈Deg(W )(1− td)

|W |
∑
w∈W

χ(w−1)

det(1− tw)
∈ C(t).

It is a classical fact [Bro, §4.5.2] that Fχ(t) ∈ N[t], that Fχ(1) = χ(1) and

(6.3) bχ = valFχ(t).

The polynomial Fχ(t) is called the fake degree of χ.
A particular feature of the Weyl group of type E6 is that the map

(6.4) DB : Irr(W ) −→ N× N
χ 7−→ (χ(1), bχ)

is injective (see for instance [Arxiv, Comput. II.2]). We denote by DB(W ) the image of DB.
If (d, b) ∈ DB(W ), let ϕd,b denote its inverse image in Irr(W ). Note that ϕd,b is the character
afforded by an irreducible representation of dimension d. For instance, by (6.2), we get

(6.5) ϕ1,0 = 1W , ϕ6,1 = χV and ϕ1,36 = ε.

By [Arxiv, Comput. II.2], we have that | Irr(W )| = 25 and that

(6.6)
DB(W ) = {(1, 0); (1, 36); (6, 1); (6, 25); (10, 9); (15, 17); (15, 4); (15, 16); (15, 5);

(20, 20); (20, 10); (20, 2); (24, 6); (24, 12); (30, 3); (30, 15); (60, 11);
(60, 8); (60, 5); (64, 13); (64, 4); (80, 7); (81, 6); (81, 10); (90, 8)}.
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For i ⩾ 0, let χ(i)
X denote the character afforded by the W -module Hi(X,C). We set

χX =
∑
i ⩾ 0

(−1)iχ
(i)
X .

By (6.1), we have

(6.7) χX = χ
(0)
X + χ

(2)
X + χ

(4)
X = 2 · 1W + χ

(2)
X .

The character χ(2)
X is given by the following formula:

(6.8)
χ
(2)
X = 1W + 3 ε+ 8ϕ6,25 + 2ϕ10,9 + 7ϕ15,17 + ϕ15,4 + 9ϕ15,16 + ϕ15,5

+14ϕ20,20 + 4ϕ20,10 + 2ϕ24,6 + 8ϕ24,12 + 14ϕ30,15 + 18ϕ60,11 + 12ϕ60,8

+4ϕ60,5 + 26ϕ64,13 + 2ϕ64,4 + 12ϕ80,7 + 7ϕ81,6 + 21ϕ81,10 + 12ϕ90,8.

Proof. — Since X is smooth and W is finite, it follows from Lefschetz fixed point formula that
χX(w) is equal to the Euler characteristic of the fixed point subvariety Xw. If dim(Xw) ⩾ 1,
then w is conjugate to 1, s1 or w3 (see [Arxiv, Comput. II.3]). But:

• χX(1) = 9504 by (6.1).
• Note that P(V )s1 = [e1] ∪ P(V s1). Since [e1] ̸∈ X by Remark 2.6, we have that Xs1 =
X∩ P(V s1). So Xs1 is a smooth complete intersection in P(V s1) ≃ P4(C) defined by
equations of degree 2, 6 and 8 (the restrictions of f2, f6 and f8 to V s1), so it has Euler
characteristic −2 · 6 · 8 · (2 + 6 + 8− 4− 1) = −1056. Hence, χX(s1) = −1056.

• By Lemma 4.4 (and its proof), χX(w3) = −36.
If dim(Xw) ⩽ 0, then χX(w) is just the cardinality of Xw (which might be equal to 0). These
last values of χX as well as the decomposition of χX as a sum of irreducible characters are
computed in [Arxiv, Comput. II.4]. The result then follows from (6.7).

To be fair, knowing the exact character is not that interesting, but at least we will use it for
making a sanity check for Proposition 4.1. Indeed, Hk(X,C)W ′

is the direct sum of Hk(X,C)W
and the ε-isotypic component of Hk(X,C). Then (6.8) and (6.1) show that∑

k∈Z
(−1)k dimCHk(X,C)W

′
= 6.

In other words, the Euler characteristic of X/W ′ is equal to 6. But the fiber of the map X̃→
X/W ′ above an Ak singularity is the union of k smooth rational curves in Ak-configuration,
and this union has Euler characteristic k + 1. So the Euler characteristic of X̃ is the Euler
characteristic of X/W ′ plus the sum of all the Milnor numbers of singularities of X/W ′. So,
by Proposition 4.1, the Euler characteristic of X̃ is

6 + 2 · 1 + 3 · 2 + 2 · 3 + 4 = 24,

as expected for a K3 surface.

Remark 6.9. — Since X is a smooth complete intersection, its Hodge numbers can be com-
puted from the degrees of the equations and we get that

h2,0(X) = h0,2(X) = 1591 and h1,1(X) = 6320.

However, we do not know how to compute the character of the representations Hp,q(X,C). ■
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