On Galois groups over tamely ramified

cyclotomic extensions of algebraic number fields
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Abstract. Let kg be an algebraic number field of finite degree, Sp be a finite set of primes
and Lg, be the field obtained by adjoining to ko all primitive g-th roots of unity, where
q runs over all primes not belonging to Sp. We shall consider, for an odd prime I, the
maximal unramified pro-/ abelian extension of Lg, and investigate the structure of this
Galois group with certain cyclotomic action.
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Introduction

Let ko be an algebraic number field of finite degree in a fixed algebraic closure and
(n, denote a primitive n-th root of unity, n > 1. Let Sy be a ( possibly empty ) finite set
of primes and Lg, be the field obtained by adjoining all ¢, to kg, where ¢ runs over all
primes not belonging to Sg. Let | be a prime and L,,.(I) and L% (I) denote the maximal
unramified pro-/ extension and the maximal unramified pro-/ abelian extension of Lg,,
respectively. The structures of the Galois groups Gal(Ly..(I)/Ls,) and Gal(L2(1)/Ls,)
are known. The Galois group Gal(L,,(1)/Ls,) is isomorphic to a free pro-/ group on
countably infinite generators, and consequently, the Galois group Gal(L%(l)/Ls,) is
isomorphic to the direct product of countable number of copies of the additive group
of l-adic integers. This follows from a more general result of Uchida[l14], which implies
that the Galois group over Lg, of the maximal unramified solvable extension of Lg, is
isomorphic to the free prosolvable group on countably infinite generators.

The Galois group Gal(Lsg, /ko) acts on Gal(L (1)/Lsg, ) naturally, i.e. Gal(L2(1)/Ls,)
is a Gal(Lg, /ko)-module. However, it seems difficult to describe its Gal(Lg, /ko)-module
structure. Let p be a prime of ky and assume that it is unramified in Lg,. Let D be
its decomposition group for the extension Lg,/ko. We are interested in the D-module
structure of Gal(L%%(1)/Ls,) and our main result in this paper is to determine it under
several assumptions.

Before stating our main result more precisely, we explain the reasons why we

take the field Lg, as a ground field and are interested in the D-module structure of
Gal(L5y(1)/Ls, )-
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According to the analogy between algebraic number fields of finite degree and function
fields of one variable over a finite constant field F, adjoining (,, to kg, where n runs
over all positive integers or all powers of a fixed prime, are some of the substitutes of
extending T to its algebraic closure F. In addition to these, the field Lg, can also be
regarded as a substitute of extending F to F. The reasons are as follows.

For one thing, (a) the algebraic closure F of F is obtained by adjoining primitive g-th
roots of unity, where ¢ runs over all primes except for a finite number. For another thing,
(b) the decomposition group D of p for the extension Lg,/ko is isomorphic to Z, the
profinite completion of the additive group of rational integers. Further, the extension
Ls,/Lp, Lp being the decomposition field of p in Lg,/ko, is everywhere unramified
(Lemma 2.1). (These two facts (a), (b) follow from a result of Chevalley[4].) This shows
that the extension Lg,/Lp is similar to the extension F/F in the function field case.

By the reason (a), the Galois groups Gal(L,,.(I)/Ls,) and Gal(L%.(1)/Ls,) may be
regarded as analogues of the pro-I fundamental group and the [-adic Tate module of a
smooth curve over F. By the reason (b), the D-module structure of Gal(L2%(1)/Ls,)
might be interesting.

Our result on the Galois group Gal(L%(1)/Ls,) is the following theorem. Let A,
denote the completed group algebra of D over the ring of /-adic integers Z;. Then, as
Gal(L2(1)/Ls,) is a pro-l abelian group, it is naturally an .4;-module.

Theorem (Theorem 4.3). Let [ be an odd prime and ko be an algebraic number field of
finite degree such that | is unramified in ko. Let p be a prime such that p # 1 and Sy
be a finite set of primes containing p and l. Let Lg, be the field obtained by adjoining
Cq to ko, where q runs over all primes not belonging to So. Let p be a prime of ko lying
above p and D be its decomposition group for the extension Lg, /ko.

Then the Galois group Gal(L2%(1)/Ls,) is, as an A;-module, isomorphic to the direct
product of a countable number of copies of A;.

Somewhat more generally, for an infinite tamely ramified abelian extension L of kg
satisfying several conditions, we shall investigate the A;-module structure of the Galois
group Gal(L2 (1)/L) and obtain our general result (Theorem 4.2). (Here, L2 (1) denotes
the maximal unramified pro-/ abelian extension of L.) Since the field Lg, in the above
theorem satisfies these conditions, the above theorem follows.

The A;-module Gal(L2 (1)/L) we have considered is huge and its structure is inde-
pendent of the ground field kg. One of the reasons why Gal(L(1)/L) is huge is that
L2 (1) contains those unramified extensions of L that originate in (tamely) ramified
extensions F' of various subextensions k of L/kg. Namely, the ramifications of F'/k are
absorbed in L/k so that F'L/L is unramified. (Much smaller fields than Lg, are treated
as ground fields in [14], but similar phenomena also occur in those cases.) In the case
of function fields, such phenomena do not occur. Hence it is desirable to remove those
extensions F'L from L% (I) and clarify ”genuine” unramified extensions buried in L2 (1).
But the author does not know how to do this. Further, the above theorem does not
include the case that L2 (I) contains the maximal unramified pro-/ abelian extension of
Q((;), which seems to be interesting. Nevertheless, our result might be of some interest,
for in the process of obtaining the above theorem, we have investigated structures of
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related Galois groups and clarified, to some extent, which properties affect the structure
of which Galois groups.

We shall briefly explain the method of the proof. There are two arithmetical points
to determine the A;-module structure of the Galois group Gal(L2%(1)/L).

One is to show that the larger Galois group Gal(Lg, (I)/Lp) is a projective profinite
group, where Lg, (I) denotes the maximal pro-l extension of L unramified outside .
This reduces at once to showing that the pro-l group Gal(Lg, (I)/K) is free, where K
is the unique subextension of L/Lp such that Gal(L/K) is isomorphic to Z;. Then,
Lg, (1) coincides with Kg, (1), the maximal pro-l extension of K unramified outside . In
our previous papers [1],[2], similar situations have arised. But there, the cohomological
dimension (or cohomological I-dimension) of the ground field is 1, whereas that of K
is not. Thus, our task is to show the vanishing of the second Galois cohomology group
H?(Gal(Ks, (I)/K);Z/IZ). This will be carried out by showing that both the kernel and
the image of the localization map of the Galois cohomology group vanish under suitable
assumptions on the extension L/kg. The crucial point here is a result of Neukirch[7]
which shows that the kernel is trivial if and only if certain embedding problem is solvable,
and we shall apply its ”if part”. Another arithmetical point is, after verifying that
Gal(Lgs, (I)/K) is a free pro-l group, to show that its quotient Gal(L,,.(I)/K) is also a
free pro-l group. As for its proof, we owe the method to [14]. Here, another condition
on the extension L/ky is needed.

An outline of the paper is as follows. In §1, we shall give a criterion of the vanishing
of the kernel of the localization map. This is a result of [7] combined with a result
of O. Neumann[9]. We shall formulate it over an algebraic number field which is not
necessarily of finite degree. As explained above, we have assumed, at each stage of the
arguments, conditions on the extension L/kg. In §2, we consider an infinite abelian
extension L of an algebraic number field of finite degree kg satisfying certain conditions
(Iy) and (Iz) and show that, for such an extension, the kernel of the localization map
vanishes. In §3, we add another conditions (II;) and (III;) to the extension L/ky and
show that the pro-l groups Gal(Lg, (I)/K) and Gal(L,,(l)/K) are free, under the condi-
tions (1), (I2) and (II;) and under the conditions (I1), (I2), (II;) and (III;), respectively.
In §4 we shall prove that, for an extension L of kqy satisfying (I;), (I2), (II;), (III;) and
[L(¢) : L] = 1 — 1, the Galois group Gal(L%(1)/L) is, as an A;-module, isomorphic
to [[x—; A, the direct product of a countable number of copies of A; (Theorem 4.2).
Here we use a characterization of the pro-I A;-module [[%_; A; in terms of embedding
problems of A;-modules and a topological condition ([1]). Further, it is verified that
the field Lg, in the main result satisfies all these conditions. This is a consequence of
a result of Chevalley[4]. Applying Theorem 4.2, we thus obtain the main result. As a
consequence of Theorem 4.2, in §5, we show some properties of decomposition groups
for the unramified non-abelian extension L2 (I)/Lp.

The author expresses his gratitudes to Professor Akio Tamagawa for valuable in-
formation and stimulating discussions. When the author first obtained Theorem 4.2
(i) (the unramified outside [ case), he informed him a result of [4] with the indication
of Propositions 4.1 and 4.2. This enables the author, after several years, to consider
the condition (III;) and obtain Theorem 4.2(ii)(the unramified case). The author also
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expresses his gratitudes to the late Professor Akito Nomura for stimulating discussions
about embedding problems of Galois groups.

1. A criterion of the vanishing of the kernel of the localization map

In his investigations on embedding problems on Galois groups over algebraic number
fields, Neukirch[7] has given, among other interesting results, a necessary and sufficient
condition for the kernel of the localization map to be trivial in terms of embedding
problems.

In this section, we shall give a version of this Neukirch’s result. This is obtained
by combining it with a result of Neumann[9] and is formulated for Galois groups over
algebraic number fields which are not necessarily of finite degree.

For an algebraic number field K, not necessarily of finite degree, we denote by G the
absolute Galois group of K. We fix a prime [ and denote by Sk the set of archimedean
primes of K and the primes of K lying above [. We also denote by Gg, the Galois
group over K of the maximal Galois extension of K unramified outside Six. When K
is totally imaginary, we sometimes say that an extension of K is unramified outside [
instead of unramified outside Sk.

Let Gk (1) and Gg, (1) denote the maximal pro-I quotient of G and Gg,. respectively,
i.e. Gg(l) and Gg, (1) are the Galois groups over K of the maximal pro-l extension of
K and the maximal pro-/ extension of K unramified outside of Sk respectively.

We shall consider the following embedding problem

Gr(l)
(&) |¢

1 —— ZJIZ y B — H —— 1.

Here, the horizontal sequence is an exact sequence of finite [-groups and ¢ is a surjective
homomorphism. A weak solution of this problem is a homomorphism ¢ : Gk () - E
such that a) = ¢. If the problem has a weak solution, it is called solvable. Note that
Z/IZ is contained in the center of E and hence Z/IZ is naturally a trivial H-module.
In the following, we always assume that in (€) ¢ factors through Gg, (1).

Let k be an algebraic number field of finite degree contained in K. For each prime v
of k, let k, be the v-completion of k and G, denote the absolute Galois group of k.

Let fs, denote the localization map of the Galois cohomology group H?(Gs, ; Z/IZ)
of the trivial Gg,-module Z/IZ :

(xSk) fs, i B*(Gs,; 2/1Z) — € H*(Gy,; Z/1Z)

vESK

(Cf. Neukirch, Schimidt, Wingberg [8, (8.6.2)].) When k runs over all algebraic number

fields of finite degree contained in K, (xSy) are naturally inductive systems. We have

the following criterion of the vanishing of the inductive limit lim Ker fg, of the kernels
—

OffSk'
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Theorem 1.1. The following three conditions are equivalent.
(i) Every solvable problem (£) has a weak solution which factors through Gg, (1).

(ii) The inflation homomorphism Infy : H3(Gs, (1); Z/1Z) — H2(Gk (1); Z/IZ) is injec-
tive.

(iii) We have limKerfs, = {0}.
—

Proof. The proof of the equivalence of (i) and (ii) is purely group-theoretical and will
be done in the same way as that given in [7, (8.1)], and hence is omitted.

We shall show the equivalence of (ii) and (iii). By a result of [9](cf. also [8, (10.4.8)]),
for an algebraic number field k of finite degree, the inflation maps

H*(Gs, (1 Z/1Z) — H*(Gs,; Z/1Z)

H%(G(1); Z/17) — H*(Gy; Z/17)

are isomorphisms.
Since we have Gg, = limGg,, by taking inductive limits, we have the following
%

commutative diagram :

H2(Gs, (1 2/1Z) —— H(Gs,; Z/1Z)

Inf1 J/ llnfé

H2(Gx(1); Z)IZ) —— W2(Gx:Z/IZ)

Here, vertical homomorphisms are the inflation homomorphisms. Therefore, we first
observe that (ii) is equivalent to that the homomorphism Infs is injective.

Let fi denote the localization map of the Galois cohomology group H?(Gy; Z/I7) of
the trivial G-module Z/IZ :

(%) fi : B (Gi; Z/1Z) — @D H* (G, Z/1Z)

Here, v runs over all primes of k. As is verified in the proof of [7, (8.1)], two localization
maps fs, and f; are connected as the following diagram :

H2(Gs,Z)1Z) ——s H2(G Z/IZ)

() fskl lfk

D,ecs, B (Gr,; 2/12) —— @D, H*(Gy,; Z/IZ)

Here, the upper horizontal homomorphism is the inflation homomorphism and the lower
one is the inclusion. It is known that fy is injective ([7, (4.7)]).
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When k runs over all algebraic number fields of finite degree contained in K, (xg)
are also inductive systems. Then one first proves that

lim @ H*(Gw,:2/12) = ] H*(Gk,:Z2/12),

vES} weSK

1131@}12(0%;2/[2) =[Gk, ; 2/12Z).

Here, w runs over all primes of Sx and all primes of K respectively. For a prime w
of K, K, denotes the union Uk,, where k runs over all algebraic number fields of
finite degree contained in K and k,, denotes the completion of k with respect to the
restriction of w to k.

Therefore, by taking inductive limits of (xx), we have the commutative diagram :

H(Gs,: Z/12) M, HY(G;Z/I1Z)

Fox l l fx

[Toes, B2 (G, 2/12) —— 11, H*(Gk,,; Z/IZ)

Here fg, =lim fg, and fx = lim f.
— —
Since inductive limit preserves the injectivity, fx is injective. Thus, Infy is injective
if and only if fg, is injective. Therefore, (ii) is equivalent to (iii) and this completes
the proof of Theorem 1.

2. Infinite abelian extensions

(2-1) Let ko be an algebraic number field of finite degree. We shall consider an infinite
abelian extension L of kg satisfying the following conditions (Iy) and (I3):

(I;) For any finite prime q of kg, its inertia group for the extension L/kq is a finite
group. Further, for all finite prime q of kg except for a finite number, the order of its
inertia group is ¢ — 1, where ¢ is a prime such that qNZ = (q).

(I3) There exists a finite prime p of kg such that p is unramified in L and that the decom-
position group of p for the extension L/kg is isomorphic to Z, the profinite completion
of the additive group of rational integers.

As before, let [ be a fixed prime and Lg, (I) be the maximal pro-I extension of L
unramified outside Sy,.
Let Lp be the decomposition field of p in L/kq. By the condition (I3), there exists
a unique subextension K of L/Lp such that the Galois group Gal(L/K) is isomorphic
to Z;, the additive group of [-adic integers.
6



Lemma 2.1. (i) The extension L/Lp is everywhere unramified.
(ii) The field Lg, (1) is the mazimal pro-l extension of K unramified outside Sk .

Proof. (i) Since Gal(L/Lp) is torsion-free, every inertia group of a prime of kg, which
is finite by the condition (I;), can not be contained in Gal(L/Lp). Thus, (i) follows.
(ii) This follows immediately from (i), that Gal(L/K) is isomorphic to Z;, and the
maximality of Lg, (1).

Remark. Let F,; be the residue field of p, p being a prime and f > 1. Let p’ be a
prime of L lying above p. Then the residue field of p’ is the algebraic closure F,; of
F,s. In fact, let F' be the residue field of p’, so that we have F,; C F' C F,s. By the
condition (I,), Gal(F"/ IF,r) is isomorphic to Z. As Gal(F,s /F,s) is isomorphic to Z and
any quotient of 7, which is isomorphic to 7 is the trivial one, we have F' = I_Fp -

(2-2) Let K be the field defined in (2-1). As in §1, for each algebraic number field
k of finite degree contained in K, let fg, denote the localization map of the Galois
cohomology group H%(G's,;Z/IZ). The aim of this section is to prove the following

Theorem 2.1. Let kg be an algebraic number field of finite degree and L be an abelian
extension of ko satisfying the conditions (1) and (I2). Then we have lim Ker fg, = {0},
_)

where k runs over all algebraic number fields of finite degree such that kg C k C K.

Let (€) be the embedding problem defined in §1. By Theorem 1.1, in order to prove
Theorem 2.1, it suffices to verify the statement (i) in Theorem 1.1. The verification will
be done almost in the same way as that of Theorem 4.2 in [2]. We first reduce it to
showing Proposition 2.1 below as follows.

First, consider the case that the exact sequence in (€) splits. Then, composing ¢
with the splitting homomorphism, we obtain a weak solution of (£). By the assumption
on (€), it factors through Gg, (I). Thus, in this case, the statement (i) in Theorem 1.1
holds.

In the following, we consider the case that the exact sequence in (€) does not split.
Assume that (£) has a weak solution ¢ : Gk () — E. Then, as readily seen, 1 is a
proper solution, i.e. v is surjective.

Let F and F be the fields corresponding to the kernel of ¢ and that of ¢ respectively.
Thus Gal(F/K) and Gal(F/K) are isomorphic to H and E respectively. Let ¢; be a
primitive I-th root of unity. Then, as the extension F(¢;)/F(¢) is cyclic of degree I,
there exists an element p of F(()* \ (F(¢)*)! such that F(() = F((,' /i)

Let A denote the Galois group Gal(K((;)/K), n be the order of A, and p be the
generator of the cyclic group A such that ¢ = (/. Here r is an integer such that
1 —7r" =1ls with (I,s) = 1. As in Reichardt[10] (see also Shafarevich[13]), we define an
element T of the group algebra Z[A] of A by

T=p"t4rp" 24+ . 1" 2p4+r" L,

(If {; € K, then we have n = 1 and p and T are the identity element.) Then, for
an arbitrary element a of K((;)* such that ua®l ¢ (K(()*)!, F(¢, /pa®) is a Galois
7



extension of K and contains a Galois subextension F” of K which corresponds to another
solution of the embedding problem (£). (Cf. e.g. [2, Prop.3.1].) Further, in order for
the extension F’/K to be unramified outside Sk, it is sufficient that the extension
F(¢,'\/pa®)/F({) is unramified outside Sp((,), as /K is unramified outside Sk-.

Therefore, the verification of (i) in Theorem 1.1, and hence the proof of Theorem 2.1,
is reduced to showing the following

Proposition 2.1. There exists an element a € K(¢)* such that pa® ¢ (F()*)! and
that the extension F((,'\/ua®)/F(() is unramified outside .

(2-3) The proof of Proposition 2.1 is done in the same way as that of Proposition 4.2
in [2]. However, in this subsection, we shall indicate the proof in several steps, for we
need the unramified version of Proposition 2.1 in (3-3).

First, consider the extension F(¢;) = FK({;) of K. As it is a finite Galois extension,
there exist algebraic number fields Ky and F, of finite degree contained in K and F
respectively such that the Galis groups Gal(Fy(¢;)/Ko) and Gal(F((;)/K) are canon-
ically isomorphic. We denote by Fy the subextension F N Ky of Fj /Ko. By taking
K sufficiently large, we may assume that the extension Fy/Kj is unramified outside
Sk, and that u € Fy(¢;). We identify the Galois groups Gal(Fo(¢,'/R)/Ko(()) and
Gal(Fy(¢;)/Ko(¢;)) with E and H respectively.

Step 1. As Fy((,'/1)/Ko(G) is a central extension of Fy(¢;)/Ko((;), we have p7 =
p mod (Fy(¢;)*)! for any o € H. (Cf. e.g. [2, Lemma 3.1].) For the principal ideal
() of Fy((;), it follows from this that there exist an ideal m of Fy((;) prime to [ which
is H-invariant, an ideal b of F;(¢;) which is a product of primes lying above [, and an
ideal a of Fy(¢;) such that (1) = mbal. As the extension Fy((;)/Ko(¢;) is unramified
outside [, m is an ideal of K((;).

Step 2. Further, there exist an ideal n of Ky((;), an ideal a; of Fy((;), and an ideal b of
Fu(¢;) which is a product of primes lying above [ such that (1) = nTbal.

This is verified completely in the same way of the proof of Lemma 4.3 in [2].

Step 3. Let us consider the ideal class group of K(((;) and let ¢y be the ideal class to
which n belongs. By the density theorem and the condition (Iy) of L/kg, there exists a
prime ideal q in ¢y satisfying the following conditions :

(a) q is of absolute degree one, is unramified over Q, and is prime to 2.
(b) The order of the inertia group of the prime q N Ky for the extension L/Kj is ¢ — 1,
where (q) = qNZ.

Then we have q = n(a) with some element a of Ky((;)*. Using this a, we consider the
element pa’ € Fy(¢;)* and the extension Fy((p, v/ paT) of Fo(().

Lemma 2.2. The extension Fo((p,'\/puaT)/Fy((;) has the following properties :
(i) it is of degree l.

(ii) it is unramified outside those primes of Fo(¢) lying above 1,q,4°,...,q°  , where p
is a generator of Gal(Ko((;)/Ko).
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(ili) Fo(¢r, '/ pa™) N F(G) = Fo(&)-

Proof. First, the principal ideal (ua®) of Fy((;) is decomposed as (pua’) = q¥'bal, where

2

From this (ii) follows. By the condition (a) of g, q is prime to [ and q*" ,q" ,...,q
are distinct prime ideals of Ko((;). As Fo((;)/Ko((;) is unramified outside [, it follows
from these that ua® ¢ (Fy(¢;)*)!, ie. (i) follows.

We shall verify (iii). Assume that (iii) does not hold. Then Fy(¢;,'/paT) is con-
tained in F(¢;). As Gal(F((;)/Ko(¢)) is the direct product of Gal(F((;)/K((;)) and
Gal(F(¢;)/Fo(()), it follows that Gal(Fy(¢;, v/ pa®)/Ko(¢;)) is isomorphic to H x Z /1Z,
which contradicts with the assumption that the exact sequence in (£) does not split.
Thus (iii) follows.

Step 4. Let qo = q N Ky. By the condition (a) of q, the primes of Ky((;) lying above
qo are q,q”,...,q° . Further, by the condition (b) of q and as L/K is unramified, the
ramification index of qo in K is ¢ — 1.

Lemma 2.3. There exists a finite subextension K|, of K/Kq such that the ramification
index of qo in K|, is ¢ — 1 and that every prime ideal of K|, lying above qo is unramified
mn K.

Proof. Let K1 be the inertia field of qq in the abelian extension K/Ky. By the remark
before the lemma, K /K7 is a finite extension of degree ¢ — 1. Hence there exists a finite
subextension K{, of K /Ky such that K = K|K;. Then every prime ideal of K| lying
above (g is unramified in K, and hence the ramification index of qo in K| is ¢ — 1.

Let F} = FyK{, K| being a finite subextension of K/K, satisfying the condition
in Lemma 2.3. Consider the extension F}(¢;,'\/ua®)/F}(¢;), which is, by Lemma 2.2,
of degree [. Finally, we have the following lemma, and this completes the proof of
Proposition 2.1.

Lemma 2.4. The extension F)(¢;,'\/ua®)/Fy(¢) is unramified outside .

Proof. Let q be any prime ideal of Fy((;) lying above q. Then q is totally and tamely

ramified in Fy((;,'\/pua®) with ramification index e; = [. On the other hand, by Lemma
2.3, q is ramified in Fj(¢;) with ramification index es = ¢ — 1. By the condition (a) of
q, g splits completely in the subfield Q({;) of K¢(¢(;). Hence ¢ = 1 mod [, i.e. e; divides
eo. Therefore, by Abhyanker’s lemma (cf. e.g. Cornell[5]), any prime ideal of F}((;)

lying above q is unramified in F}((;,'y/pua®). Same arguments can also be applied to

any prime ideal of Fy((;) lying above ¢*, ..., qpnil. Hence the proof of Lemma 2.4 is
completed.

3. Some free pro-/ Galois groups



(3-1) Let kp be an algebraic number field of finite degree and [ be a fixed prime. Let
L and K be the abelian extensions of kg defined in (2-1) and Lg, (I) be the maximal
pro-l extension of L unramified outside Sr. By Lemma 2.1 (ii), the extension Lg, (I)/K
coincides with Kg, (I)/K, the maximal pro-l extension of K unramified outside Sk,
and we denote its Galois group by Gg, (1).

For the extension L/kg, we shall add the following condition :

(IT;) For any finite subextension k of L/kg and for any finite [-place v of k, the v-
completion k, does not contain a primitive [-th root of unity.

Then we can determine the structure of the Galois group Gg, (I). Namely we have the
following

Theorem 3.1. Let | be an odd prime. Let L be an abelian extension of ko satisfying
the conditions (11), (Ia) in (2-1) and the condition (11;). Then the Galois group Gg, (1)
is a free pro-l group.

Proof. Let k be a finite subextension of L/ky. We have an exact sequence

0 — Kerfs, — H2(Gs,; Z/1Z) 2% @ W2 (Gy,: 2/12),
vESK

where fg, denotes, as before, the localization map. By the local Tate duality (8,
(7.2.6)], Serre[12, Ch II 5.2]), H?(Gg,;Z/IZ) is the dual of HY(Gy,; ), w being the
group of I-th roots of unity. By the condition (II;), we have H°(Gy,; ;) = {0} and
hence H?(GYy,,; Z/1Z) = {0} for all v € Si. By Theorem 2.1 we have li_r>n Kerfs, = {0}.

Hence lim H*(G's, ;Z/1Z) = {0}, i.e. H*(Gs,;Z/IZ) = {0}. As H*(Gs, (1);Z/IZ) is
—

isomorphic to H2(Gg,.; Z/IZ) ([9]), we have H?(Gs, (1); Z/IZ) = {0}. Hence Gg, (I) is

a free pro-l group ([8, (3.5.17)], [12, Ch I 4.2]).

Let Lp be the field defined in (2-1). By the maximality of Lg, (1), it is a Galois
extension of Lp.

Corollary. Let the assumptions be the same as in Theorem 3.1. Then the Galois group
Gal(Lg, (I)/Lp) is a projective profinite group.

Proof. 1t suffices to show that for every prime ¢, the ¢-Sylow subgroups of Gal(Lg, (I)/Lp)

are free pro-q groups ([12, Ch I 5.9]). As Gal(L/Lp) is isomorphic to Z = HZq, this

q
follows immediately from Theorem 3.1.

(3-2) Let Ly, (1) be the maximal unramified pro-/ extension of L. It follows from Lemma
2.1 (i) that Ly, (1) is also the maximal unramified pro-l extension of K. For the extension
K /ky, let us further add the following condition :

(I11;) For any I-place of K, its residue field is the algebraic closure of the prime field F;.

Then we can determine the structure of the Galois group Gal(L,,(I)/K). Namely we
have the following
10



Theorem 3.2. Let | be an odd prime. Let L be an abelian extension of ko satisfying
the conditions (1), (I2) in (2-1), the condition (11;) in (3-1) and the condition (I11;).
Then the Galois group Gal(L,,(1)/K) is a free pro-l group.

Similarly to the case of Lg, (1), L. (l) is also a Galois extension of Lp and we have
the following

Corollary. Let the assumptions be the same as in Theorem 3.2. Then the Galois group
Gal(Ly,-(1)/Lp) is a projective profinite group.

(3-3) In the rest of this section, we shall give the proof of Theorem 3.2.
Let us consider the following embedding problem for the Galois group Gal(L,,(1)/K)
Gal(Lur(1)/K)
(P) l¢

1 —— ZJIZ y B —2 H — 1

Here, the horizontal sequence is an exact sequence of finite I-groups and ¢ is a surjective
homomorphism. As explained in [1, (2-3)], to prove Theorem 3.2, it suffices to show that
the embedding problem (P) has always a solution in the case that the exact sequence
in (P) is non-split.

Assume that the exact sequence in (P) is non-split. Let Kg, (I) be the maximal pro-I
extension of K unramified outside Sk and ¢ : Gal(Kgs, (1)/K) — H be the composite
of ¢ and the projection Gal(Kg, (I)/K) — Gal(L,,(I)/K). Consider the embedding
problem (P) obtained from (P) by replacing Gal(L.,(1)/K) and ¢ with Gal(Ks, (1)/K)
and @, respectively. By Theorem 3.1, Gal(Kg, (I)/K) is a free pro-l group and hence
the embedding problem (P) has a solution, which we denote by 1.

Let F and F be the fields corresponding to the kernel of @ and " respectively. Note
that F' is also the field corresponding to the kernel of ¢. There exists an element
€ F(Q)*\ (F(G)) such that F(G) = F (G, '/m)-

As explained in (2-2), for an arbitrary element a of K({;)* such that pa” & (K(¢)*),
F(¢,"/paT) is a Galois extension of K and contains a Galois subextension F” of K
which corresponds to another solution of the embedding problem (P) Here, T is the
element of the group algebra Z[A], A = Gal(K((;)/K), defined in (2-2). In order for the
extension F’/K to be unramified, it is sufficient that the extension F(¢;, \/pua®)/F (&)
is unramified. This is because F'/K is unramified, K(¢;)/K is unramified ouside Sk and
tamely ramified at [, and [ # 2. Therefore, showing that the embedding problem (P)
has a solution, and hence the proof of Theorem 3.2, is reduced to proving the following

Proposition 3.1. There ezists an element a € K({;)* such that pa® & (F({)*)! and
that the extension F((,'\/ua®T)/F(() is unramified.

(3-4) Proposition 3.1 is an unramified version of Proposition 2.1. The proof requires,
in addition to that of Proposition 2.1, eliminating the ramifications above [. This part
11



is given as the following Proposition 3.2. We owe its proof to that of Theorem 1 in
Uchida[14]. For the sake of completeness, we shall give details.

First, as F//K is a finite unramified Galois extension, there exist a finite subextension
Ky of K/Q and a finite unramified Galois extension Fy/Kjy such that Fy N K = K,
FoK = F and p € Fy((;). Further, by the condition (I11;), taking K sufficiently large,
we may assume that the following condition is satisfied :

(SC)k, every l-place of Ky splits completely in Fp.

Then we have the following

Proposition 3.2. There exists an element o € Ko(¢)* such that pu/a® & (Fo(G)*)!
and that every l-place of Fo((;) splits completely in the extension Fo((p,'\/u/aT).

We first note that, as Fo((,'/i)/Fo(G)/Ko({) is a central extension, there exist
elements v, £ of Fy((;)* such that u = vT¢l. (Cf. e.g. [2, Lem. 3.2].)

To prove Proposition 3.2, we need several lemmas. Let [y, ..., [, be all primes of K ((;)
lying above [.

Lemma 3.1. For each i, 1 < i < r, there exists a prime £; of Fy((;) lying above |;
such that the set {£4, ..., £,} is A-invariant, A being identified with Gal(Ky((;)/Ko) ( =~
Gal(Fo(G)/Fo) )-

Proof. The group A acts on the set {ly, ..., [, }. By decomposing it into orbits, it suffices
to prove the lemma assuming that the action of A is transitive. As A is a cyclic group
generated by p, we may also assume that [{ = 15,5 = [5,...,1P = ;. Let £, be a prime
of Fy(¢;) lying above [; and set £o = £7, €5 = £5, ..., £, = £°_,. Then £, is lying above
l;, 1 <i<r, and the set {£4,..., £} is A-invariant.

Let £, ..., £, be primes of Fy((;) satisfying the condition in Lemma 3.1.

Lemma 3.2. There exists an element o € Ko((;)* such that a/v is an l-th power in
the £;-adic completion Fo(()e, for 1 <i<r.

Proof. By the condition (SC)g,, the relative degree of £; in the extension Fy(¢;)/Ko ()
is 1. Thus, for any positive number € and for each 7,1 < i < r, there exists an element
a; € Ko((;) such that |v — a;|; < €, | |; being the £;-adic absolute value. By the
approximation theorem, there exists an element o € K(((;) such that | — a;|; < e for
1<i<r. As|v—al; <|v—a; + |a — a;|; < 2e, we have, for sufficiently small € > 0,
a # 0. Furthere, as |a/v — 1|; < 2¢/|v|; < 2e/A, A = Min{|v|;}, for sufficiently small
e > 0, a/v has the property stated in Lemma 3.2.

Lemma 3.3. Let a € Ko((;)* be as in Lemma 3.2. Then, for 1 <i <r, (v/a)T is an
I-th power in Fy(()e,-

Proof. As {£4,...,£,} is A-invariant, (v/a)? is an [-th power in Fy((;)e,. The lemma
follows immediately from this.

12



Lemma 3.4. Let a € Ko((;)* be as in Lemma 3.2. Then, for 1 <i <r and for every
o € Gal(Fo(¢)/Ko(G)), v /a™ is an I-th power in Fo(() e .

Proof. As a € Ky((;) and T' commutes with o, we have
(I/T/OéT)g — VT(J—I)VT/aT — (,u,f_l)g_lle/OéT — ,U,U_l(fg_l)_lVT/aT.

As po=t € (Fo(&)*)Y, we have (v /a®)?(vT/a®)~1 € (Fu(¢)*)!. Hence, by Lemma
3.3, (vT'/aT)? is an I-th power in Fy((;)e, and the lemma follows from this.

Proof of Proposition 3.2. Let a be as in Lemma 3.2. We first verify that u/al ¢
(Fo(¢)*)!.  Assume that p/a? € (Fy((;)*)! so that there exists an element po €
(Fo(G)*)! such that p = apb. Then we have Fo(¢,' /i) = Fo(¢,'VaT). As
ol € Ko(¢)*, Gal(Fo(G,'/i)/Ko({)) is isomorphic to H x Z/IZ. This contradicts
with the assumption that the exact sequence in (P) is non-split. Hence we have

p/al ¢ (Fo(Q)*). As p/al = (v /aT)El, we have Fu(¢, '/ p/aT) = Fo(¢, '\/vT /aT).

Since {£7}; » are all [-places of Fy((;), Proposition 3.2 follows from Lemma 3.4.

(3-5) Now we shall prove Proposition 3.1. Let a € K(((;) be as in Proposition 3.2 and
replace Fy((,'y/m) with Fo(¢,'y/p/a™). Denoting p/a” newly by p, we may assume
that, for every [-place of Fy((;), p is locally an [-th power. The rest of the proof proceeds
parallel to that of Proposition 2.1.
Step 1. Similarly to the Step 1 of the proof of Proposition 2.1, we first have pu% =
1 mod(Fy(¢;)*)! for any o € H. It follows from this that there exist an ideal m of Fy((;)
which is H-invariant and an ideal a of Fy((;) such that (u) = ma’. As the extension
Fo(¢1)/Ko(() is everywhere unramified, m is an ideal of Ky((;).

Further, we may assume that the ideal m is prime to [. Indeed, as any l-place [ of

Fy(¢;) is unramified in Fy(¢;,'\/p), the exponent of [ in (1), and hence that in m, is a

! we may assume that m is

multiple of [. Thus, convolving the [-component of m in a
prime to .

Step 2. We claim that there exist an ideal n of Ky((;) prime to [ and an ideal a; of
Fo(¢;) such that (u) = nTa’, T being an element of Z[A] defined in (2-2).

Though this is verified in the same way of the proof of [2, Lemma 4.3], to clarify that
n can be taken to be prime to [, we shall explain details.

First, we have u?~" € (Fy(¢;)*)!. This follows from the fact that the extension
Fo(G,'\/m)/ Fy is abelian. Then, as (u)?~" =m?~"(a?~")!, m#~" is an [-th power of an
ideal of Fy((;). As Fo(¢1)/Ko(¢;) is an unramified extension, there exist an ideal my of
Ko(¢) such that mP~" = m}. By using that (p —7)T = 1 —r™ = s, it follows from this
that m® = m?. As m is prime to [, so is m;. As (s,l) = 1, we can take integers z,y such
that sz + Iy = 1. Then we have m = (m¥)7(m¥)!. Letting n = m¥, a; = am¥, we see
that n is prime to [ and the claim is settled.

Step 3. Instead of the absolute ideal class group, we consider the ray class group modulo
I? of Ko((;). Let ¢ be its ideal class to which n belongs. There exists a prime ideal g
in ¢y satisfying the same conditions (a), (b) in the proof of Proposition 2.1. We have
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q = n(B) with some element 3 of K((;)* such that 8 = 1 mod [2. Using this 3, we
consider the extension Fy((7,'\/uBT) of Fy(¢;). This extension has the same properties
(1), (ii), (iii) in Lemma 2.2, the proof being the same as that of Lemma 2.2.

Further, it has the following property :

(SC) py(c) every I-place of Fy(¢;) splits completely in Fy(¢, '/ pupT).

In fact, let £ be any prime ideal of Fy((;) lying above | with absolute ramification index
e. As B =1 mod [?, we have 7 = 1 mod [?, hence 87 = 1 mod £2¢. Thus, as [ > 2,
BT is an I-th power in Fy((;)e. (Cf. e.g. Serre[11, XIV Prop. 9].) As yu is also an I-th
power in Fy((;)e, the property (SC)pgy(c,) follows.

Step 4. Let qo = qN K, and K, be a finite subextension of K /K| satisfying the condition
in Lemma 2.3. Let F, = Fy K}y and consider the extension Fj (¢, v/uBT)/F§((;), which
is of degree [. Finally we have the following lemma, and this completes the proof of
Proposition 3.1.

Lemma 3.5. The extension (¢, \/uBT)/F() is everywhere unramified.

Proof. The proof that the extension is unramified outside [ is the same of that of Lemma
2.4. By the property (SC)p,(¢,) in Step 3, the extension is also unramified at every I-
place of F{((;).

4. Pro-l/ abelian Galois groups

(4-1) Let kp be an algebraic number field of finite degree and [ be a fixed prime. Let
L be an abelian extension of kg satisfying the conditions (I;) and (I2) in (1-2) and Lp
be the decomposition field of p in L/ky. Let D = Gal(L/Lp) and A; be the completed
group algebra of D over Z,.

Let M be a pro-l abelian extension of L such that M/Lp is also a Galois extension.
Then D acts on the Galois group Gal(M/L) in the obvious manner. As Gal(M/L) is
naturally a Z;-module, this makes Gal(M /L) into an A;-module. In this section, we
shall investigate the structures as .4;-modules of various pro-I abelian Galois groups
over L.

For each n > 1, let C,, denote the unique quotient of D such that C, is cyclic of order
n. Let F;[C,,] denote the group algebra of C,, over the prime field F; of characteristic .
Via the projection D — C,,, F;[C},] is naturally regarded as a D-module, and hence as
an A;-module. We denote this module by E,,(1).

We shall first prove the following

Theorem 4.1. Let | be an odd prime. Let L be an abelian extension of ko satisfying
the conditions (I1) and (Iz) such that [L((;) : L] =1 — 1. Let m and n be any positive
integers. Then there exists a finite unramified abelian extension M of L which is a
Galois extension of Lp such that the Galois group Gal(M/L) is isomorphic to E,(1)®™
as A;-modules.

(4-2) In this subsection we shall give the proof of Theorem 4.1. The proof proceeds
similarly to that of Proposition 5.1 in [2].
14



Let L,, be the unique subextension of L/Lp such that [L,, : Lp] = n so that we have
Cp, = Gal(L,,/Lp). Let K{/k{ be a finite Galois extension of algebraic number fields
of finite degree such that ky C k, C K{,Lp N K = k{,, and Lp K = L,,. As L,,/Lp is
unramified, we may assume that K| /k{ is unramified. We may also assume that k is
a proper extension of k.

Let us consider the extension K{((;)/k{((¢). As [L(¢) : L] = 1—1, Gal(K{(G)/kG(¢)
is canonically isomorphic to Gal(K(/k{), and hence to C, ; Gal(K{(()/k((¢)) =~
Gal(K|/k}) ~ Cp.

Let [y,...,[; be all prime ideals of K{({;) lying above [. For each i,1 < i < g, fix
a positive integer N; such that every element a of K}(¢;) satisfying a = 1 mod [ is
locally an [-th power, i.e. « is an I-th power in the [;-adic completion of K{({;). Let m
be an integral ideal of K}((;) such that [Yi|m for all 4,1 < i < g, and that m is invariant
by the action of Gal(K(((;)/k().

Let Cy, be the ray class group of K()(¢;) modulo m. By the density theorem and the
condition (I;) of L, there exist principal prime ideals Q1, ..., Qm, Qi = (a;),1 < i < m,
in the principal class of CY, satisfying the following conditions :

(a) Every £; is of absolute degree one, is unramified over Q, and is prime to 2. Further,
let Q; NQ = (g;). Then ¢, ..., g, are distinct primes.
(b) The order of the inertia group of the prime ; Nk( for the extension L/kg is ¢; — 1.

By the assumption on I, the Galois group Gal(K((¢(;)/K]() is cyclic of order I — 1. Let
p be its generator such that ¢/ = ¢ with =1 =1+1s,(l,s) = 1, and as in (2-2), let

T=p"2 43 4 43 42

which is an element of the group algebra Z[Gal(K{({;)/K{)]-
For each i,1 < i < m, and o € Gal(K}((;)/kb(¢)), consider the element al“ of
K{(¢;). The principal ideal (al9) = Q77 is decomposed as

3

(V)i (afe)y =7 (7" "y @)

Let F;, be the field obtained by adjoining to K{({;) an I-th root of af? ; F;, =
K§(¢,'/al?). Let H; , be the subgroup of K{(¢;)*/(K§(¢)*)! generated by the class
of al“.

Lemma 4.1. The extension F; ,/K{((;) has the following properties :
(i) Fio/Ko(G) is of degree l.
(i) F;o/K{(C) is unramified outside QF, Q7" ...,Q?pl% and QF,Q7°, ...,Q;’pliz are
totally ramified in F; 5. The primes Iy, ..., [, split completely in F; .
(iii) F; /K| is an abelian extension.
Proof. We first note that, by the condition (a) of Q;, the righthand side of (x); , is the
product of powers of mutually distinct primes of K{((;). As (r,1) = 1, the property (i)
and the first half of (ii) follow immediately from this.
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As a; = 1 mod m and m is invariant by the action of Gal(K(((;)/k}), we have

al” = 1 mod m. Hence [y, ..., [, split completely in F; ,.
For the property (iii), we observe that, as (p — r)T = p'=t — rl=1 = s,
(] )" = ()" mod (Kp(G)™)"-

This shows first that H;, is invariant by the action of Gal(K(((;)/K{). Hence F;,
is a Galois extension of K. It also shows that Gal(K{((;)/K) acts on H; , via the
cyclotomic character. From this, as the degrees [F;, : K(((;)] and [K{(¢;) = K{] are
coprime, it follows that F; , is an abelian extension of K. (Cf. e.g. [2, Lemma 3.1].)

Let F; be the composite of F; , for all o € Gal(K(((;)/k((()). Then F; is a Galois
extension of k{((;) and is an abelian extension of K, by Lemma 4.1 (iii). Hence F; is a
Galois extension of k(. The Galois group Gal(F;/K|)) is naturally a Gal(K{/k{)-module
and the Galois group Gal(F;/K(((;)) is naturally a Gal(K{({;)/k{(¢;))-module. Thus
these are both C),-modules. As the degree [K(((;) : K{] is | — 1, there exists a unique
subextension F} of F;/K( such that [F;: F/] =1— 1.

Lemma 4.2. (i) The extension F/k{, is Galois so that Gal(F]/K|)) is naturally a C,-
module.

(ii) As C,-modules, Gal(F]/K{) is isomorphic to Gal(F;/K{(()).

Proof. (i) The Galois group Gal(F;/F}) is the subgroup of the C,-module Gal(F;/K{)
consisting of those elements whose orders are prime to [. Hence it is a C),-submodule
of Gal(F;/K]), which shows that F//k{ is Galois.

(ii) By the proof of (i), as C),-modules, Gal(F;/K) is the direct product of Gal(F;/F))
and Gal(F;/K(({;)) and (ii) follows from this.

As F;/K(((;) is a Kummer extension with exponent [, Gal(F;/K{(((;)) is an F;[C),]-
module.

Lemma 4.3. The C,-module Gal(F;/K{((;)) is reqular, i.e. it is isomorphic to F[Cy,].

Proof. Let H; be the subgroup of K{(¢)*/(K{(¢)*)! generated by H;, for all o €
Gal(K((¢1)/k((¢)). Then H; is the direct product of H; , for all o, for, by the condition
(a) of 9Q;, there are no common primes in the righthand side of (x); ,, and (%);, if
01 # 02. From this it follows that, as C,-modules, H; is isomorphic to F;[C,].

Now Gal(F;/K{((;)) is isomorphic to Hom(H;, y;), the group of homomorphisms from
H; to u;, not only as abelian groups but as C,-modules. As (), acts trivially on py,
this shows that Gal(F;/K(((;)) is contragredient to H;. As is well-known, the regular
representation is self-contragredient. Hence Gal(F;/K(((;)) is isomorphic to F;[C,,].

Let F' be the composite of F; for all 7, 1 < ¢ < m, and H be the subgroup of
K)(G)*/(K)(G)*)! generated by H; , for all o € Gal(K((¢;)/k((¢;)) and for all 4, 1 <
< m.
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Lemma 4.4. (i) The Cy,-module Gal(F/K{((;)) is isomorphic to F;[C,,]®™.
(ii) We have F N L(¢) = K{(().

Proof. (i) By the condition (a) of Q;,1 < i < m, there are no common primes in the
righthand side of (x);, o, and (%), o, if (i1,01) # (i2,02). Thus, H is the direct product
of H; , for all 0 and all 7, i.e. H is the product of the subgroups H;, 1 < i < m, H; being
as in the proof of Lemma 4.3. Hence, as Cj,-modules, Gal(F/K{((;)) is isomorphic to
the direct product of Gal(F;/K(((;)), 1 <i <m, and (i) follows from Lemma 4.3.

(ii) We first claim that F'/K{((;) contains no non-trivial unramified subextension. In
fact, F' is the composite of F; , for all i, 1 < i < m, and all o € Gal(K{(¢;)/ky(¢1))-
Further, each F; ,/K(((;) has the properties (i) and (ii) in Lemma 4.1, and there are
no common primes in {D;-TllpJ }; and {ijpg }j if (i1,01) # (i2,02). From this the claim
follows easily.

Now let F' N L((;) = K’ and assume that K’ # K{((;). By the above claim, there
exists at least one prime of K}((;) ramfied in K’, which must be Q7" for some i and
o' € Gal(K}(¢)/ky). Let Q = Q7 Nko and Qo = Q7 Nkj). As Q7 is of absolutely
degree one and is unramified over Q, and as k{, # ko, there exists a prime 9, of k{ lying
above Q such that Qf # Q. Let 9 be a prime of K{(¢;) lying above 9. Then, we see
easily that  is, over kj, neither conjugate to £; nor to ; for j #i. Thus, by Lemma
4.1(ii), Q is unramified in F, and hence in K’. As Q;’/ and 9 are both lying above £,
and as K’ is abelian over kg, this is a contradiction. Thus we have F'N L((;) = K{(().

For each i, 1 <i <m, let q; = Q; N k.

Lemma 4.5. There exists a finite extension k. of k{ contained in Lp such that for
every prime of k; lying above q;, its ramification index in k;/k{ is ¢; — 1.

Proof. Let L be the inertia field of Q; in Lp. By Lemma 2.1 (i), L/Lp is unramified.
Thus, by the condition (1), Lp /Ly is a finite extension of degree ¢; — 1. Hence there
exists a finite extension k;/k{ such that k;L; = Lp and this k] satisfies the condition
in Lemma 4.5.

Let us consider the composite of k}, 1 < i < m, in Lemma 4.5 and denote it newly
by k7. Then k] is a finite extension of k, contained in Lp such that for every prime of
k| lying above q;, 1 <14 < m, its ramification index in k}/kj is ¢; — 1.

We extend k{ to k] and let K| = k1 K(. We have k| € K|, Lp N K| = Kk} and
LpK] = L,. Consider the extension F;K] of K{((;). It is the composite of F; and
K{(¢i), and by Lemma 4.4 (ii), we have F; N K{(¢;) = K{(()-

Lemma 4.6. The extension F;K|/K{((;) is unramified.

Proof. Tt follows from Lemma 4.1 (ii) that F;/Kj((;) is unramified outside 07" g j =
0,1,...,1 — 2, and the ramification index of Qgpj is [. On the o_ther hand, as gq; is
unramified in K}(¢;), by Lemma 4.5, the ramification index of Q7% in K7 (¢;) is ¢; — 1.
By noting that g; splits completely in the subfield Q((;) of K, the proof is done in the
same way as that of Lemma 2.4.

17



Now we shall complete the proof of Theorem 4.1. By Lemma 4.2 (ii) and Lemma
4.3, the C,-module Gal(F!/K]) is isomorphic to F;[C,]. Let F’ be the composite
of F{,..,F! . Then we have F'K(((;) = F and it follows from Lemma 4.4 (i) that
Gal(F'/K}) is isomorphic to F;[C,]®™. Consider the extension M = F'L of L. We
have M((;) = FL((;) and, by Lemma 4.4 (ii), it follows that Gal(FL((;)/L({)) is, as
an A;-module, isomorphic to F, (1)®™. Hence Gal(M/L) is isomorphic to E,(1)®™. Tt
remains to show that M /L is unramified. It follows from Lemma 4.6 that F'L({;)/L({;)
is unramified. For the extension L((;)/L, it is unramified outside | and the ramification
index of any [-place is [ — 1. As M/L is an [-extension, it is unramified.

(4-3) Let LY (1) and L2 (1) denote the maximal pro-l abelian extension of L unramified
outside Sy, and the maximal unramified pro-/ abelian extension of L respectively. These
are both Galois extensions of Lp. Hence, as explained in (4-1), the Galois groups
Gal(LE (1)/L) and Gal(Lg2(1)/L) are A;-modules.

Our main result in this paper is the following

Theorem 4.2. Let | be an odd prime. Let L be an abelian extension of ko satisfying
the conditions (11) and (Iz) such that [L((;) : L] =1 — 1.

(i) Assume that the condition (11;) is satisfied. Then the A;-module Gal(L¥ (1)/L) is
isomorphic to the direct product of a countable number of copies of Aj.

(ii) Assume that the conditions (II;) and (I1I;) are satisfied. Then the A;-module
Gal(L2(1)/L) is isomorphic to the direct product of a countable number of copies of
A

Proof. By Corollaries to Theorems 3.1 and 3.2, Gal(Lg, (I)/Lp) and Gal(L,(l)/Lp)
are both projective profinite groups. By the argument given in [1, 3.1], it follows from
this that Gal(L¥ (1)/L) and Gal(L2%(1)/L) are projective A;-modules. By Theorem 4.1,
Gal(L2b(1)/L), and hence Gal(L¥ (1)/L) also, have quotient 4;-modules isomorphic to
E,(1)®™ for any m,n > 1. Further Gal(L% (I)/L) and Gal(L%(l)/L) are both pro-l
A;-modules with countable open A;-submodules. Therefore, by a characterization of
such A;-modules ([1, Theorems 1.2, 1.3]), these Galois groups are isomorphic to the
direct product of a countable number of copies of A;.

Let L' be the maximal unramified abelian extension of Lp in L2 (l). Then we
have L C L' C L%(l) and the Galois group Gal(L2%(l)/L’) is an A;-submodule of
Gal(L%(1)/L). For the structure of this submodule, we have the following

Corollary. Assumptions being as in Theorem 4.2 (ii), Gal(L2%(1)/L’) is isomorphic to
the direct product of a countable number of copies of Ip, where Ip denotes the augmen-
tation ideal of A;.

Proof. Let X; = Gal(L2(l)/L) and o be a topological generator of D = Gal(L/Lp).
Then X;/(c —1)X; is the maximal quotient of X; on which D acts trivially. Let L” be
the subextension of L2 (1)/L such that Gal(L"”/L) = X;/(c — 1)X;. Obviously, L’ is
contained in L”. Consider the exact sequence

1 — Gal(L"/L) — Gal(L"/Lp) — D — 1.
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Since D is isomorphic to Z, the sequence splits. As D acts on Gal(L”/L) triv-
ially, Gal(L"”/Lp) is isomorphic to the direct product of Gal(L”/L) and D. Let
Gal(L"/Lp) = Gal(L"/L) x D', D’ being a subgroup of Gal(L”/Lp) isomorphic to
D, and Ly be the subextension of L' /Lp corresponding to D’. Then L,/Lp is an un-
ramified pro-I abelian extension. Hence L; is contained in L’ and we have LL; C L'. As
LLy = L", wehave L C L', and hence L” = L'. Thus we have Gal(L% /L) = (¢—1)X;
and the corollary follows from Theorem 4.2 (ii).

(4-4) Let kg be an algebraic number field of finite degree and [ be a fixed prime. In the
following, we shall verify that the field obtained by adjoining to ko primitive g-th roots of
unity, where ¢ runs over all primes except for certain primes of a finite number, satisfy
the assumptions of Theorem 4.2 (ii). Thus, by that theorem, we can determine the
structure of the Galois groups as A;-modules of the maximal unramified pro-l abelian
extensions of those algebraic number fields.

Let So = {p1,...,ps } be a finite set of distinct primes with s > 1. Let Lg, be the field
obtained by adjoining to kg all primitive ¢-th root of unity, where ¢ does not belong to
Sp. For each 7, 1 < i < s, let p; be a prime of ky lying above p; and let Np; = p{",
fi > 1. Let D; be the decomposition group of p,; for the extension Lg,/ko. Then we
have the following

Proposition 4.1. (i) The group D; is isomorphic to 7, the profinite completion of the
additive group of rational integers.

(ii) If s > 2, we have D; N (Dj);2; = {1}, where (D;);x; denotes the closed subgroup of
Gal(Lg,/ko) generated by Dj;, j # i.

This proposition is verified by using a theorem of Chevalley, which we shall recall.
(Cf. also Bass|[3].)

Let k be an algebraic number field of finite degree and F be a finitely generated
subgroup of the multiplicative group k£* of k. For any integers a, m > 1, let

E"={z"|z€cE},

E,={zeF|xz=1moda }.
Then Chevalley[4] proved the following

Theorem. Given any integers m,b > 1, there exists a squarefree integer a > 1 such
that (a, b) =1 and E, C E™.

Remark. The proof shows that the integer a can be taken to be squarefree, though it
is not explicitly stated.

Proof of Proposition 4.1. The cyclotomic character induces an embedding
Gal(Ls,/ko) = | [ (Z/(a))"

q¢So
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of the Galois group Gal(Ls,/ko). The image of the subgroup D; is the closed subgroup
generated by the diagonal element (p{ ). Let E be the subgroup of Q*, the multiplicative

group of rationals, generated by all p;*,1 < i < s. Consider the diagonal embedding

E— []@/()"

q¢So

Applying Chevalley’s theorem to the case that K = Q and b = p;...ps, we see that the
closure of the image of E is isomorphic to the profinite completion F of E. As F is a
free abelian group of rank s, F is isomorphic to Z®*. From this the proposition follows.

Now we shall assume that s > 2 and p,! be distinct primes in Sy. Let p and [ be
primes of kg lying above p and [ respectively. Let D, be the decomposition group of p
for the extension Lg,/ko and Lp, be the decomposition field of p.

Proposition 4.2. Let " be a prime of Lp, lying above . Then the residue field of I
is the algebraic closure F; of the prime field F;.

Proof. Let Dy be the decomposition group of [ for the extension Lg,/ko and Lp, be the
decomposition field of I. By Proposition 4.1 (ii), we have D, N Dy = {1}. As [ splits
completely in Lp,, ' splits completely in Lg,. By the remark after Lemma 2.1, the
residue field of an extension of [ to Lg, is IF;. Hence the residue field of ' is also F;.

Let L2 (1) be the field as in the beginning of (4-3) for L = Lg,. Then the Galois
group Gal(L%(1)/Ls,) is naturally an A;-module and we have the following

Theorem 4.3. Assume that | is odd and is unramified in ky. Let p be a prime different
from | and assume that Sy contains p and l. Then the Galois group Gal(L%(1)/Ls,) is
isomorphic to the direct product of a countable number of copies of A;.

Proof. 1t suffices to verify that the assumptions in Theorem 4.2 (ii) are satisfied. Obvi-
ously, Lg, satisfies the condition (I;) in (2-1). By Proposition 4.1 (i), Ls, with p;, for
any i, satisfies the condition (I2) in (2-1). By Proposition 4.2, Lg, with p being given,
[ satisfies the condition (III;) in (3-2). By the assumption that [ is unramified in ko,
the condition (II;) in (3-1) is satisfied. Further, we have [Lg, ((;) : Ls,] =1 — 1 and the
proof is completed.

5. Decomposition groups

(5-1) Let ko be an algebraic number field of finite degree and [ be an odd prime. Let L
be an abelian extension of kg satisfying the conditions (I;) and (I2) in §2 and Lp be the
decomposition field of p in L/kg. Let L (l) be the maximal unramified pro-I abelian
extension of L. As L/Lp is unramified by Lemma 2.1 (i), L% (l)/Lp is an umramified
Galois extension. Assume that [L((;) : L] = [—1 and that the conditions (II;) and (III;)
in §3 are satisfied.

In this section, by using Theorem 4.2 (ii), we shall give some remarks on the decom-
position group for the extension L2 (1)/Lp of a prime of L% (1) lying above p.
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We fix a prime py of Lp lying above p. Let p{, be the unique prime of L lying above
po and pj; be a prime of L2 (1) lying above pjy. Let D{ be the decomposition group of p
for the extension L (I)/Lp. By the remark after Lemma 2.1, the residue field of p}) is
F,. Hence p}, splits completely in L2%(1). Thus we have D§ N Gal(L%.(1)/L) = {1} and
the projection Gal(L2(l)/Lp) — Gal(L/Lp) = D induces an isomorphism D} ~ D.
Namely Dg gives a splitting of the exact sequence

1 — Gal(L®(1)/L) — Gal(L(1)/Lp) — D — 1

and we have the semi-direct decomposition of Gal(L2(1)/Lp) ; Gal(L%(l)/Lp) =
Gal( L2 (1)/L) - Dg.

The following two propositions are direct consequences of the properties of the sub-
group Gal(L2%(1)/L) of Gal(L2%(1)/Lp).

Let p3* be a prime of L (1) lying above pj, other than p$ and Dg* be the decompo-
sition group of pi* for the extension L?%(1)/Lp. We have the following

Proposition 5.1. If pj # pi*, then we have Dg # Dg*.

For the proof, we first recall the following. Let G be a group which is the semi-direct
product of a normal subgroup H and a subgroup K. Let Ng(K) and Cy(K) denote
the normalizer of K in G and the centralizer of K in H respectively ;

Ng(K)={0c€G|oKs ' =K},
Cuy(K)={he€ H | hk=kh for any k € K}.

As is easily verified, we have the direct product Ng(K) = Cy(K) x K.
Let G = Gal(L(l)/Lp), H = Gal(L2(1)/L), and K = D}. As we have seen above,
G=H- K.

Lemma 5.1. We have Cy(K) = {1}, and hence Ng(K) = K.

Proof. The group K acts on H by conjugation, so that H is a K-group. By Theorem 4.2
(ii), H is isomorphic to [[x—_; Zi[[K]] as K-groups. For an element h of H, let (fn)n
be the element of [Jx_; Z[[K]] corresponding to h. Assume that h € Cy(K). Then
we have k(fy) = (fn), i.e. (k—1)fy =0 for all k € K. Take k to be a topological
generator of K. As the order of k is divisible by a supernatural number [*°, £ — 1 is not
a zero-divisor of Z;[[K]] (Ihara[6, Lemma 3.1]). Hence fy = 0 for N > 1, i.e. h is the
identity.

Proof of Proposition 5.1. As p§ and p§* are both lying above pg, there exists an element
o of G such that p3* = pi?, and hence D* = o7 'Djo. By the assumption that
po # po*, we have 0 ¢ Djj. As Ng(K) = K by Lemma 5.1, we conclude that D§* # Dyg.

(5-2) As in (4-3), let L’ be the maximal unramified abelian extension of Lp in L (1).
Let D}, be the image of D§ under the projection Gal(L%.(1)/Lp) — Gal(L'/Lp) and L},
be the intermediate field of L'/Lp corresponding to D{. Then L{ is the decomposition
field of pg in the abelian extension L'/Lp, i.e. L is the maximal subextension of L'/Lp
in which pg splits completely.

Let Ly be the maximal subextension of L (l)/Lp in which po splits completely.

Obviously L{ contains L, but we have the following
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Proposition 5.2. The field L{ coincides with Ly,.

Again, in general, let G be a group which is the semi-direct product of a normal
subgroup H and a subgroup K. The group K acts on H by conjugation. Let U = {U}
be the set of all normal subgroups of G satisfying

(1) U is contained in H.
(2) K acts on the quotient H/U trivially.

On the other hand, let N'= {N} be the set of all normal subgroups of G' containing K.

Then we have the following

Lemma 5.2. (i) Let U be an element of U. Then UK ={ uk | u € U,k € K } belongs
to N'. The correspondence U — UK gives a bijection between U and N .

(ii) Let Nk be the normal subgroup of G generated by K. Then we have Ny = Ux K,
where Uy is the element of U such that H/U is the mazimal quotient group of H on
which K acts trivially.

Proof. (i) This does not seem to be well-known but the proof is elementary, and hence
we omit the details here.
(ii) As Nk is the smallest normal subgroup of G containing K, this follows from (i).

Note that this lemma is also valid in the category of profinite groups.

Proof of Proposition 5.2. Again, let G = Gal(L%(l)/Lp), H = Gal(L%(l)/L), and
K = Dg, so that we have G = H - K. Let N be the normal subgroup of G generated
by K. Then Lj is the intermediate field of L2 (1)/Lp corresponding to Nx. By Lemma
5.2 (ii), we have Nx = Ug K, where Uk being the subgroup of G as in that lemma.
The proof of Corollary to Theorem 4.2 shows that Ux = Gal(L2(I)/L'). Thus the
intermediate field of L (I)/Lp corresponding to Ny is L). Hence Lj coincides with
L.
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