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Abstract. Let k0 be an algebraic number field of finite degree, S0 be a finite set of primes

and LS0 be the field obtained by adjoining to k0 all primitive q-th roots of unity, where
q runs over all primes not belonging to S0. We shall consider, for an odd prime l, the

maximal unramified pro-l abelian extension of LS0 and investigate the structure of this
Galois group with certain cyclotomic action.
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Introduction

Let k0 be an algebraic number field of finite degree in a fixed algebraic closure and
ζn denote a primitive n-th root of unity, n ≥ 1. Let S0 be a ( possibly empty ) finite set
of primes and LS0 be the field obtained by adjoining all ζq to k0, where q runs over all
primes not belonging to S0. Let l be a prime and Lur(l) and L

ab
ur(l) denote the maximal

unramified pro-l extension and the maximal unramified pro-l abelian extension of LS0 ,
respectively. The structures of the Galois groups Gal(Lur(l)/LS0

) and Gal(Lab
ur(l)/LS0

)
are known. The Galois group Gal(Lur(l)/LS0

) is isomorphic to a free pro-l group on
countably infinite generators, and consequently, the Galois group Gal(Lab

ur(l)/LS0
) is

isomorphic to the direct product of countable number of copies of the additive group
of l-adic integers. This follows from a more general result of Uchida[14], which implies
that the Galois group over LS0 of the maximal unramified solvable extension of LS0 is
isomorphic to the free prosolvable group on countably infinite generators.

The Galois group Gal(LS0
/k0) acts on Gal(Lab

ur(l)/LS0
) naturally, i.e. Gal(Lab

ur(l)/LS0
)

is a Gal(LS0
/k0)-module. However, it seems difficult to describe its Gal(LS0

/k0)-module
structure. Let p be a prime of k0 and assume that it is unramified in LS0

. Let D be
its decomposition group for the extension LS0

/k0. We are interested in the D-module
structure of Gal(Lab

ur(l)/LS0) and our main result in this paper is to determine it under
several assumptions.

Before stating our main result more precisely, we explain the reasons why we
take the field LS0

as a ground field and are interested in the D-module structure of
Gal(Lab

ur(l)/LS0
).
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According to the analogy between algebraic number fields of finite degree and function
fields of one variable over a finite constant field F, adjoining ζn to k0, where n runs
over all positive integers or all powers of a fixed prime, are some of the substitutes of
extending F to its algebraic closure F̄. In addition to these, the field LS0

can also be
regarded as a substitute of extending F to F̄. The reasons are as follows.

For one thing, (a) the algebraic closure F̄ of F is obtained by adjoining primitive q-th
roots of unity, where q runs over all primes except for a finite number. For another thing,

(b) the decomposition group D of p for the extension LS0
/k0 is isomorphic to Ẑ, the

profinite completion of the additive group of rational integers. Further, the extension
LS0

/LD, LD being the decomposition field of p in LS0
/k0, is everywhere unramified

(Lemma 2.1). (These two facts (a), (b) follow from a result of Chevalley[4].) This shows
that the extension LS0/LD is similar to the extension F̄/F in the function field case.

By the reason (a), the Galois groups Gal(Lur(l)/LS0) and Gal(Lab
ur(l)/LS0) may be

regarded as analogues of the pro-l fundamental group and the l-adic Tate module of a
smooth curve over F̄. By the reason (b), the D-module structure of Gal(Lab

ur(l)/LS0
)

might be interesting.
Our result on the Galois group Gal(Lab

ur(l)/LS0
) is the following theorem. Let Al

denote the completed group algebra of D over the ring of l-adic integers Zl. Then, as
Gal(Lab

ur(l)/LS0) is a pro-l abelian group, it is naturally an Al-module.

Theorem (Theorem 4.3). Let l be an odd prime and k0 be an algebraic number field of
finite degree such that l is unramified in k0. Let p be a prime such that p ̸= l and S0

be a finite set of primes containing p and l. Let LS0 be the field obtained by adjoining
ζq to k0, where q runs over all primes not belonging to S0. Let p be a prime of k0 lying
above p and D be its decomposition group for the extension LS0

/k0.
Then the Galois group Gal(Lab

ur(l)/LS0
) is, as an Al-module, isomorphic to the direct

product of a countable number of copies of Al.

Somewhat more generally, for an infinite tamely ramified abelian extension L of k0
satisfying several conditions, we shall investigate the Al-module structure of the Galois
group Gal(Lab

ur(l)/L) and obtain our general result (Theorem 4.2). (Here, Lab
ur(l) denotes

the maximal unramified pro-l abelian extension of L.) Since the field LS0 in the above
theorem satisfies these conditions, the above theorem follows.

The Al-module Gal(Lab
ur(l)/L) we have considered is huge and its structure is inde-

pendent of the ground field k0. One of the reasons why Gal(Lab
ur(l)/L) is huge is that

Lab
ur(l) contains those unramified extensions of L that originate in (tamely) ramified

extensions F of various subextensions k of L/k0. Namely, the ramifications of F/k are
absorbed in L/k so that FL/L is unramified. (Much smaller fields than LS0 are treated
as ground fields in [14], but similar phenomena also occur in those cases.) In the case
of function fields, such phenomena do not occur. Hence it is desirable to remove those
extensions FL from Lab

ur(l) and clarify ”genuine” unramified extensions buried in Lab
ur(l).

But the author does not know how to do this. Further, the above theorem does not
include the case that Lab

ur(l) contains the maximal unramified pro-l abelian extension of
Q(ζl), which seems to be interesting. Nevertheless, our result might be of some interest,
for in the process of obtaining the above theorem, we have investigated structures of
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related Galois groups and clarified, to some extent, which properties affect the structure
of which Galois groups.

We shall briefly explain the method of the proof. There are two arithmetical points
to determine the Al-module structure of the Galois group Gal(Lab

ur(l)/L).
One is to show that the larger Galois group Gal(LSL

(l)/LD) is a projective profinite
group, where LSL

(l) denotes the maximal pro-l extension of L unramified outside l.
This reduces at once to showing that the pro-l group Gal(LSL

(l)/K) is free, where K
is the unique subextension of L/LD such that Gal(L/K) is isomorphic to Zl. Then,
LSL

(l) coincides withKSK
(l), the maximal pro-l extension ofK unramified outside l. In

our previous papers [1],[2], similar situations have arised. But there, the cohomological
dimension (or cohomological l-dimension) of the ground field is 1, whereas that of K
is not. Thus, our task is to show the vanishing of the second Galois cohomology group
H2(Gal(KSK

(l)/K);Z/lZ). This will be carried out by showing that both the kernel and
the image of the localization map of the Galois cohomology group vanish under suitable
assumptions on the extension L/k0. The crucial point here is a result of Neukirch[7]
which shows that the kernel is trivial if and only if certain embedding problem is solvable,
and we shall apply its ”if part”. Another arithmetical point is, after verifying that
Gal(LSL

(l)/K) is a free pro-l group, to show that its quotient Gal(Lur(l)/K) is also a
free pro-l group. As for its proof, we owe the method to [14]. Here, another condition
on the extension L/k0 is needed.

An outline of the paper is as follows. In §1, we shall give a criterion of the vanishing
of the kernel of the localization map. This is a result of [7] combined with a result
of O. Neumann[9]. We shall formulate it over an algebraic number field which is not
necessarily of finite degree. As explained above, we have assumed, at each stage of the
arguments, conditions on the extension L/k0. In §2, we consider an infinite abelian
extension L of an algebraic number field of finite degree k0 satisfying certain conditions
(I1) and (I2) and show that, for such an extension, the kernel of the localization map
vanishes. In §3, we add another conditions (IIl) and (IIIl) to the extension L/k0 and
show that the pro-l groups Gal(LSL

(l)/K) and Gal(Lur(l)/K) are free, under the condi-
tions (I1), (I2) and (IIl) and under the conditions (I1), (I2), (IIl) and (IIIl), respectively.
In §4 we shall prove that, for an extension L of k0 satisfying (I1), (I2), (IIl), (IIIl) and
[L(ζl) : L] = l − 1, the Galois group Gal(Lab

ur(l)/L) is, as an Al-module, isomorphic
to

∏∞
N=1 Al, the direct product of a countable number of copies of Al (Theorem 4.2).

Here we use a characterization of the pro-l Al-module
∏∞

N=1 Al in terms of embedding
problems of Al-modules and a topological condition ([1]). Further, it is verified that
the field LS0

in the main result satisfies all these conditions. This is a consequence of
a result of Chevalley[4]. Applying Theorem 4.2, we thus obtain the main result. As a
consequence of Theorem 4.2, in §5, we show some properties of decomposition groups
for the unramified non-abelian extension Lab

ur(l)/LD.
The author expresses his gratitudes to Professor Akio Tamagawa for valuable in-

formation and stimulating discussions. When the author first obtained Theorem 4.2
(i) (the unramified outside l case), he informed him a result of [4] with the indication
of Propositions 4.1 and 4.2. This enables the author, after several years, to consider
the condition (IIIl) and obtain Theorem 4.2(ii)(the unramified case). The author also
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expresses his gratitudes to the late Professor Akito Nomura for stimulating discussions
about embedding problems of Galois groups.

1. A criterion of the vanishing of the kernel of the localization map

In his investigations on embedding problems on Galois groups over algebraic number
fields, Neukirch[7] has given, among other interesting results, a necessary and sufficient
condition for the kernel of the localization map to be trivial in terms of embedding
problems.

In this section, we shall give a version of this Neukirch’s result. This is obtained
by combining it with a result of Neumann[9] and is formulated for Galois groups over
algebraic number fields which are not necessarily of finite degree.

For an algebraic number fieldK, not necessarily of finite degree, we denote by GK the
absolute Galois group of K. We fix a prime l and denote by SK the set of archimedean
primes of K and the primes of K lying above l. We also denote by GSK

the Galois
group over K of the maximal Galois extension of K unramified outside SK . When K
is totally imaginary, we sometimes say that an extension of K is unramified outside l
instead of unramified outside SK .

LetGK(l) andGSK
(l) denote the maximal pro-l quotient ofGK andGSK

respectively,
i.e. GK(l) and GSK

(l) are the Galois groups over K of the maximal pro-l extension of
K and the maximal pro-l extension of K unramified outside of SK respectively.

We shall consider the following embedding problem

(E)

GK(l)yφ

1 −−−−→ Z/lZ −−−−→ E
α−−−−→ H −−−−→ 1.

Here, the horizontal sequence is an exact sequence of finite l-groups and φ is a surjective
homomorphism. A weak solution of this problem is a homomorphism ψ : GK(l) → E
such that αψ = φ. If the problem has a weak solution, it is called solvable. Note that
Z/lZ is contained in the center of E and hence Z/lZ is naturally a trivial H-module.
In the following, we always assume that in (E) φ factors through GSK

(l).
Let k be an algebraic number field of finite degree contained in K. For each prime v

of k, let kv be the v-completion of k and Gkv
denote the absolute Galois group of kv.

Let fSk
denote the localization map of the Galois cohomology group H2(GSk

;Z/lZ)
of the trivial GSk

-module Z/lZ :

(∗Sk) fSk
: H2(GSk

;Z/lZ) →
⊕
v∈Sk

H2(Gkv
;Z/lZ)

(Cf. Neukirch, Schimidt, Wingberg [8, (8.6.2)].) When k runs over all algebraic number
fields of finite degree contained in K, (∗Sk) are naturally inductive systems. We have
the following criterion of the vanishing of the inductive limit lim

→
KerfSk

of the kernels

of fSk
.
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Theorem 1.1. The following three conditions are equivalent.

(i) Every solvable problem (E) has a weak solution which factors through GSK
(l).

(ii) The inflation homomorphism Inf1 : H2(GSK
(l);Z/lZ) → H2(GK(l);Z/lZ) is injec-

tive.

(iii) We have lim
→

KerfSk
= {0}.

Proof. The proof of the equivalence of (i) and (ii) is purely group-theoretical and will
be done in the same way as that given in [7, (8.1)], and hence is omitted.

We shall show the equivalence of (ii) and (iii). By a result of [9](cf. also [8, (10.4.8)]),
for an algebraic number field k of finite degree, the inflation maps

H2(GSk
(l);Z/lZ) → H2(GSk

;Z/lZ)

H2(Gk(l);Z/lZ) → H2(Gk;Z/lZ)

are isomorphisms.
Since we have GSK

= lim
←
GSk

, by taking inductive limits, we have the following

commutative diagram :

H2(GSK
(l);Z/lZ) −−−−→ H2(GSK

;Z/lZ)

Inf1

y yInf2

H2(GK(l);Z/lZ) −−−−→ H2(GK ;Z/lZ)

Here, vertical homomorphisms are the inflation homomorphisms. Therefore, we first
observe that (ii) is equivalent to that the homomorphism Inf2 is injective.

Let fk denote the localization map of the Galois cohomology group H2(Gk;Z/lZ) of
the trivial Gk-module Z/lZ :

(∗k) fk : H2(Gk;Z/lZ) →
⊕
v

H2(Gkv
;Z/lZ)

Here, v runs over all primes of k. As is verified in the proof of [7, (8.1)], two localization
maps fSk

and fk are connected as the following diagram :

(∗∗)

H2(GSk
;Z/lZ) −−−−→ H2(Gk;Z/lZ)

fSk

y yfk⊕
v∈Sk

H2(Gkv
;Z/lZ) −−−−→

⊕
v H

2(Gkv
;Z/lZ)

Here, the upper horizontal homomorphism is the inflation homomorphism and the lower
one is the inclusion. It is known that fk is injective ([7, (4.7)]).
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When k runs over all algebraic number fields of finite degree contained in K, (∗k)
are also inductive systems. Then one first proves that

lim
→

⊕
v∈Sk

H2(Gkv
;Z/lZ) =

∏
w∈SK

H2(GKw
;Z/lZ),

lim
→

⊕
v

H2(Gkv ;Z/lZ) =
∏
w

H2(GKw ;Z/lZ).

Here, w runs over all primes of SK and all primes of K respectively. For a prime w
of K, Kw denotes the union ∪kkw, where k runs over all algebraic number fields of
finite degree contained in K and kw denotes the completion of k with respect to the
restriction of w to k.

Therefore, by taking inductive limits of (∗∗), we have the commutative diagram :

H2(GSK
;Z/lZ) Inf2−−−−→ H2(GK ;Z/lZ)

fSK

y yfK∏
w∈SK

H2(GKw
;Z/lZ) −−−−→

∏
w H2(GKw

;Z/lZ)

Here fSK
= lim
→
fSk

and fK = lim
→
fk.

Since inductive limit preserves the injectivity, fK is injective. Thus, Inf2 is injective
if and only if fSK

is injective. Therefore, (ii) is equivalent to (iii) and this completes
the proof of Theorem 1.

2. Infinite abelian extensions

(2-1) Let k0 be an algebraic number field of finite degree. We shall consider an infinite
abelian extension L of k0 satisfying the following conditions (I1) and (I2):

(I1) For any finite prime q of k0, its inertia group for the extension L/k0 is a finite
group. Further, for all finite prime q of k0 except for a finite number, the order of its
inertia group is q − 1, where q is a prime such that q ∩ Z = (q).

(I2) There exists a finite prime p of k0 such that p is unramified in L and that the decom-

position group of p for the extension L/k0 is isomorphic to Ẑ, the profinite completion
of the additive group of rational integers.

As before, let l be a fixed prime and LSL
(l) be the maximal pro-l extension of L

unramified outside SL.

Let LD be the decomposition field of p in L/k0. By the condition (I2), there exists
a unique subextension K of L/LD such that the Galois group Gal(L/K) is isomorphic
to Zl, the additive group of l-adic integers.
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Lemma 2.1. (i) The extension L/LD is everywhere unramified.
(ii) The field LSL

(l) is the maximal pro-l extension of K unramified outside SK .

Proof. (i) Since Gal(L/LD) is torsion-free, every inertia group of a prime of k0, which
is finite by the condition (I1), can not be contained in Gal(L/LD). Thus, (i) follows.
(ii) This follows immediately from (i), that Gal(L/K) is isomorphic to Zl, and the
maximality of LSL

(l).

Remark. Let Fpf be the residue field of p, p being a prime and f ≥ 1. Let p′ be a

prime of L lying above p. Then the residue field of p′ is the algebraic closure F̄pf of

Fpf . In fact, let F̃ be the residue field of p′, so that we have Fpf ⊂ F̃ ⊂ F̄pf . By the

condition (I2), Gal(F̃ /Fpf ) is isomorphic to Ẑ. As Gal(F̄pf /Fpf ) is isomorphic to Ẑ and

any quotient of Ẑ which is isomorphic to Ẑ is the trivial one, we have F̃ = F̄pf .

(2-2) Let K be the field defined in (2-1). As in §1, for each algebraic number field
k of finite degree contained in K, let fSk

denote the localization map of the Galois
cohomology group H2(GSk

;Z/lZ). The aim of this section is to prove the following

Theorem 2.1. Let k0 be an algebraic number field of finite degree and L be an abelian
extension of k0 satisfying the conditions (I1) and (I2). Then we have lim

→
KerfSk

= {0},
where k runs over all algebraic number fields of finite degree such that k0 ⊂ k ⊂ K.

Let (E) be the embedding problem defined in §1. By Theorem 1.1, in order to prove
Theorem 2.1, it suffices to verify the statement (i) in Theorem 1.1. The verification will
be done almost in the same way as that of Theorem 4.2 in [2]. We first reduce it to
showing Proposition 2.1 below as follows.

First, consider the case that the exact sequence in (E) splits. Then, composing φ
with the splitting homomorphism, we obtain a weak solution of (E). By the assumption
on (E), it factors through GSK

(l). Thus, in this case, the statement (i) in Theorem 1.1
holds.

In the following, we consider the case that the exact sequence in (E) does not split.
Assume that (E) has a weak solution ψ : GK(l) → E. Then, as readily seen, ψ is a
proper solution, i.e. ψ is surjective.

Let F and F̃ be the fields corresponding to the kernel of φ and that of ψ respectively.
Thus Gal(F/K) and Gal(F̃ /K) are isomorphic to H and E respectively. Let ζl be a

primitive l-th root of unity. Then, as the extension F̃ (ζl)/F (ζl) is cyclic of degree l,

there exists an element µ of F (ζl)
∗ \ (F (ζl)∗)l such that F̃ (ζl) = F (ζl,

l√µ).
Let ∆ denote the Galois group Gal(K(ζl)/K), n be the order of ∆, and ρ be the

generator of the cyclic group ∆ such that ζρl = ζrl . Here r is an integer such that
1− rn = ls with (l, s) = 1. As in Reichardt[10] (see also Shafarevich[13]), we define an
element T of the group algebra Z[∆] of ∆ by

T = ρn−1 + rρn−2 + ...+ rn−2ρ+ rn−1.

(If ζl ∈ K, then we have n = 1 and ρ and T are the identity element.) Then, for

an arbitrary element a of K(ζl)
∗ such that µaT ̸∈ (K(ζl)

∗)l, F (ζl,
l
√
µaT ) is a Galois
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extension ofK and contains a Galois subextension F̃ ′ ofK which corresponds to another
solution of the embedding problem (E). (Cf. e.g. [2, Prop.3.1].) Further, in order for

the extension F̃ ′/K to be unramified outside SK , it is sufficient that the extension

F (ζl,
l
√
µaT )/F (ζl) is unramified outside SF (ζl), as F/K is unramified outside SK .

Therefore, the verification of (i) in Theorem 1.1, and hence the proof of Theorem 2.1,
is reduced to showing the following

Proposition 2.1. There exists an element a ∈ K(ζl)
∗ such that µaT ̸∈ (F (ζl)

∗)l and

that the extension F (ζl,
l
√
µaT )/F (ζl) is unramified outside l.

(2-3) The proof of Proposition 2.1 is done in the same way as that of Proposition 4.2
in [2]. However, in this subsection, we shall indicate the proof in several steps, for we
need the unramified version of Proposition 2.1 in (3-3).

First, consider the extension F̃ (ζl) = F̃K(ζl) of K. As it is a finite Galois extension,

there exist algebraic number fields K0 and F̃0 of finite degree contained in K and F̃
respectively such that the Galis groups Gal(F̃0(ζl)/K0) and Gal(F̃ (ζl)/K) are canon-

ically isomorphic. We denote by F0 the subextension F ∩ K0 of F̃0/K0. By taking
K0 sufficiently large, we may assume that the extension F0/K0 is unramified outside
SK0

and that µ ∈ F0(ζl). We identify the Galois groups Gal(F0(ζl,
l√µ)/K0(ζl)) and

Gal(F0(ζl)/K0(ζl)) with E and H respectively.
Step 1. As F0(ζl,

l√µ)/K0(ζl) is a central extension of F0(ζl)/K0(ζl), we have µσ ≡
µ mod (F0(ζl)

∗)l for any σ ∈ H. (Cf. e.g. [2, Lemma 3.1].) For the principal ideal
(µ) of F0(ζl), it follows from this that there exist an ideal m of F0(ζl) prime to l which
is H-invariant, an ideal b of F0(ζl) which is a product of primes lying above l, and an
ideal a of F0(ζl) such that (µ) = mbal. As the extension F0(ζl)/K0(ζl) is unramified
outside l, m is an ideal of K0(ζl).
Step 2. Further, there exist an ideal n of K0(ζl), an ideal a1 of F0(ζl), and an ideal b of
F0(ζl) which is a product of primes lying above l such that (µ) = nT bal1.

This is verified completely in the same way of the proof of Lemma 4.3 in [2].
Step 3. Let us consider the ideal class group of K0(ζl) and let c0 be the ideal class to
which n belongs. By the density theorem and the condition (I1) of L/k0, there exists a
prime ideal q in c0 satisfying the following conditions :

(a) q is of absolute degree one, is unramified over Q, and is prime to 2.
(b) The order of the inertia group of the prime q ∩K0 for the extension L/K0 is q − 1,
where (q) = q ∩ Z.

Then we have q = n(a) with some element a of K0(ζl)
∗. Using this a, we consider the

element µaT ∈ F0(ζl)
∗ and the extension F0(ζl,

l
√
µaT ) of F0(ζl).

Lemma 2.2. The extension F0(ζl,
l
√
µaT )/F0(ζl) has the following properties :

(i) it is of degree l.

(ii) it is unramified outside those primes of F0(ζl) lying above l, q, qρ, ..., qρ
n−1

, where ρ
is a generator of Gal(K0(ζl)/K0).
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(iii) F0(ζl,
l
√
µaT ) ∩ F (ζl) = F0(ζl).

Proof. First, the principal ideal (µaT ) of F0(ζl) is decomposed as (µaT ) = qT bal1, where

qT = qρ
n−1

(qρ
n−2

)r...(qρ)r
n−2

qr
n−1

.

From this (ii) follows. By the condition (a) of q, q is prime to l and qρ
n−1

, qρ
n−2

, ..., q
are distinct prime ideals of K0(ζl). As F0(ζl)/K0(ζl) is unramified outside l, it follows
from these that µaT /∈ (F0(ζl)

∗)l, i.e. (i) follows.

We shall verify (iii). Assume that (iii) does not hold. Then F0(ζl,
l
√
µaT ) is con-

tained in F (ζl). As Gal(F (ζl)/K0(ζl)) is the direct product of Gal(F (ζl)/K(ζl)) and

Gal(F (ζl)/F0(ζl)), it follows that Gal(F0(ζl,
l
√
µaT )/K0(ζl)) is isomorphic to H×Z/lZ,

which contradicts with the assumption that the exact sequence in (E) does not split.
Thus (iii) follows.

Step 4. Let q0 = q ∩K0. By the condition (a) of q, the primes of K0(ζl) lying above

q0 are q, qρ, ..., qρ
n−1

. Further, by the condition (b) of q and as L/K is unramified, the
ramification index of q0 in K is q − 1.

Lemma 2.3. There exists a finite subextension K ′0 of K/K0 such that the ramification
index of q0 in K ′0 is q− 1 and that every prime ideal of K ′0 lying above q0 is unramified
in K.

Proof. Let KI be the inertia field of q0 in the abelian extension K/K0. By the remark
before the lemma, K/KI is a finite extension of degree q− 1. Hence there exists a finite
subextension K ′0 of K/K0 such that K = K ′0KI . Then every prime ideal of K ′0 lying
above q0 is unramified in K, and hence the ramification index of q0 in K ′0 is q − 1.

Let F ′0 = F0K
′
0, K

′
0 being a finite subextension of K/K0 satisfying the condition

in Lemma 2.3. Consider the extension F ′0(ζl,
l
√
µaT )/F ′0(ζl), which is, by Lemma 2.2,

of degree l. Finally, we have the following lemma, and this completes the proof of
Proposition 2.1.

Lemma 2.4. The extension F ′0(ζl,
l
√
µaT )/F ′0(ζl) is unramified outside l.

Proof. Let q̃ be any prime ideal of F0(ζl) lying above q. Then q̃ is totally and tamely

ramified in F0(ζl,
l
√
µaT ) with ramification index e1 = l. On the other hand, by Lemma

2.3, q̃ is ramified in F ′0(ζl) with ramification index e2 = q − 1. By the condition (a) of
q, q splits completely in the subfield Q(ζl) of K0(ζl). Hence q ≡ 1 mod l, i.e. e1 divides
e2. Therefore, by Abhyanker’s lemma (cf. e.g. Cornell[5]), any prime ideal of F ′0(ζl)

lying above q̃ is unramified in F ′0(ζl,
l
√
µaT ). Same arguments can also be applied to

any prime ideal of F0(ζl) lying above qρ, ..., qρ
n−1

. Hence the proof of Lemma 2.4 is
completed.

3. Some free pro-l Galois groups
9



(3-1) Let k0 be an algebraic number field of finite degree and l be a fixed prime. Let
L and K be the abelian extensions of k0 defined in (2-1) and LSL

(l) be the maximal
pro-l extension of L unramified outside SL. By Lemma 2.1 (ii), the extension LSL

(l)/K
coincides with KSK

(l)/K, the maximal pro-l extension of K unramified outside SK ,
and we denote its Galois group by GSK

(l).
For the extension L/k0, we shall add the following condition :

(IIl) For any finite subextension k of L/k0 and for any finite l-place v of k, the v-
completion kv does not contain a primitive l-th root of unity.

Then we can determine the structure of the Galois group GSK
(l). Namely we have the

following

Theorem 3.1. Let l be an odd prime. Let L be an abelian extension of k0 satisfying
the conditions (I1), (I2) in (2-1) and the condition (IIl). Then the Galois group GSK

(l)
is a free pro-l group.

Proof. Let k be a finite subextension of L/k0. We have an exact sequence

0 −→ KerfSk
−→ H2(GSk

;Z/lZ)
fSk−−→

⊕
v∈Sk

H2(Gkv ;Z/lZ),

where fSk
denotes, as before, the localization map. By the local Tate duality ([8,

(7.2.6)], Serre[12, Ch II 5.2]), H2(Gkv
;Z/lZ) is the dual of H0(Gkv

;µl), µl being the
group of l-th roots of unity. By the condition (IIl), we have H0(Gkv

;µl) = {0} and
hence H2(Gkv

;Z/lZ) = {0} for all v ∈ Sk. By Theorem 2.1 we have lim
→

KerfSk
= {0}.

Hence lim
→

H2(GSk
;Z/lZ) = {0}, i.e. H2(GSK

;Z/lZ) = {0}. As H2(GSK
(l);Z/lZ) is

isomorphic to H2(GSK
;Z/lZ) ([9]), we have H2(GSK

(l);Z/lZ) = {0}. Hence GSK
(l) is

a free pro-l group ([8, (3.5.17)], [12, Ch I 4.2]).

Let LD be the field defined in (2-1). By the maximality of LSL
(l), it is a Galois

extension of LD.

Corollary. Let the assumptions be the same as in Theorem 3.1. Then the Galois group
Gal(LSL

(l)/LD) is a projective profinite group.

Proof. It suffices to show that for every prime q, the q-Sylow subgroups of Gal(LSL
(l)/LD)

are free pro-q groups ([12, Ch I 5.9]). As Gal(L/LD) is isomorphic to Ẑ =
∏
q

Zq, this

follows immediately from Theorem 3.1.

(3-2) Let Lur(l) be the maximal unramified pro-l extension of L. It follows from Lemma
2.1 (i) that Lur(l) is also the maximal unramified pro-l extension ofK. For the extension
K/k0, let us further add the following condition :

(IIIl) For any l-place of K, its residue field is the algebraic closure of the prime field Fl.

Then we can determine the structure of the Galois group Gal(Lur(l)/K). Namely we
have the following

10



Theorem 3.2. Let l be an odd prime. Let L be an abelian extension of k0 satisfying
the conditions (I1), (I2) in (2-1), the condition (IIl) in (3-1) and the condition (IIIl).
Then the Galois group Gal(Lur(l)/K) is a free pro-l group.

Similarly to the case of LSL
(l), Lur(l) is also a Galois extension of LD and we have

the following

Corollary. Let the assumptions be the same as in Theorem 3.2. Then the Galois group
Gal(Lur(l)/LD) is a projective profinite group.

(3-3) In the rest of this section, we shall give the proof of Theorem 3.2.
Let us consider the following embedding problem for the Galois group Gal(Lur(l)/K)

:

(P )

Gal(Lur(l)/K)yφ

1 −−−−→ Z/lZ −−−−→ E
α−−−−→ H −−−−→ 1

Here, the horizontal sequence is an exact sequence of finite l-groups and φ is a surjective
homomorphism. As explained in [1, (2-3)], to prove Theorem 3.2, it suffices to show that
the embedding problem (P ) has always a solution in the case that the exact sequence
in (P ) is non-split.

Assume that the exact sequence in (P ) is non-split. Let KSK
(l) be the maximal pro-l

extension of K unramified outside SK and φ̃ : Gal(KSK
(l)/K) → H be the composite

of φ and the projection Gal(KSK
(l)/K) → Gal(Lur(l)/K). Consider the embedding

problem (P̃ ) obtained from (P ) by replacing Gal(Lur(l)/K) and φ with Gal(KSK
(l)/K)

and φ̃, respectively. By Theorem 3.1, Gal(KSK
(l)/K) is a free pro-l group and hence

the embedding problem (P̃ ) has a solution, which we denote by ψ̃.

Let F and F̃ be the fields corresponding to the kernel of φ̃ and ψ̃ respectively. Note
that F is also the field corresponding to the kernel of φ. There exists an element
µ ∈ F (ζl)

∗ \ (F (ζl)∗)l such that F̃ (ζl) = F (ζl,
l√µ).

As explained in (2-2), for an arbitrary element a of K(ζl)
∗ such that µaT ̸∈ (K(ζl)

∗)l,

F (ζl,
l
√
µaT ) is a Galois extension of K and contains a Galois subextension F̃ ′ of K

which corresponds to another solution of the embedding problem (P̃ ). Here, T is the
element of the group algebra Z[∆], ∆ = Gal(K(ζl)/K), defined in (2-2). In order for the

extension F̃ ′/K to be unramified, it is sufficient that the extension F (ζl,
l
√
µaT )/F (ζl)

is unramified. This is because F/K is unramified, K(ζl)/K is unramified ouside SK and
tamely ramified at l, and l ̸= 2. Therefore, showing that the embedding problem (P )
has a solution, and hence the proof of Theorem 3.2, is reduced to proving the following

Proposition 3.1. There exists an element a ∈ K(ζl)
∗ such that µaT ̸∈ (F (ζl)

∗)l and

that the extension F (ζl,
l
√
µaT )/F (ζl) is unramified.

(3-4) Proposition 3.1 is an unramified version of Proposition 2.1. The proof requires,
in addition to that of Proposition 2.1, eliminating the ramifications above l. This part

11



is given as the following Proposition 3.2. We owe its proof to that of Theorem 1 in
Uchida[14]. For the sake of completeness, we shall give details.

First, as F/K is a finite unramified Galois extension, there exist a finite subextension
K0 of K/Q and a finite unramified Galois extension F0/K0 such that F0 ∩ K = K0,
F0K = F and µ ∈ F0(ζl). Further, by the condition (IIIl), taking K0 sufficiently large,
we may assume that the following condition is satisfied :

(SC)K0 every l-place of K0 splits completely in F0.

Then we have the following

Proposition 3.2. There exists an element α ∈ K0(ζl)
∗ such that µ/αT ̸∈ (F0(ζl)

∗)l

and that every l-place of F0(ζl) splits completely in the extension F0(ζl,
l
√
µ/αT ).

We first note that, as F0(ζl,
l√µ)/F0(ζl)/K0(ζl) is a central extension, there exist

elements ν, ξ of F0(ζl)
∗ such that µ = νT ξl. (Cf. e.g. [2, Lem. 3.2].)

To prove Proposition 3.2, we need several lemmas. Let l1, ..., lr be all primes ofK0(ζl)
lying above l.

Lemma 3.1. For each i, 1 ≤ i ≤ r, there exists a prime Li of F0(ζl) lying above li
such that the set {L1, ...,Lr} is ∆-invariant, ∆ being identified with Gal(K0(ζl)/K0) ( ≃
Gal(F0(ζl)/F0) ).

Proof. The group ∆ acts on the set {l1, ..., lr}. By decomposing it into orbits, it suffices
to prove the lemma assuming that the action of ∆ is transitive. As ∆ is a cyclic group
generated by ρ, we may also assume that lρ1 = l2, l

ρ
2 = l3, ..., l

ρ
r = l1. Let L1 be a prime

of F0(ζl) lying above l1 and set L2 = Lρ
1,L3 = Lρ

2, ...,Lr = Lρ
r−1. Then Li is lying above

li, 1 ≤ i ≤ r, and the set {L1, ...,Lr} is ∆-invariant.

Let L1, ...,Lr be primes of F0(ζl) satisfying the condition in Lemma 3.1.

Lemma 3.2. There exists an element α ∈ K0(ζl)
∗ such that α/ν is an l-th power in

the Li-adic completion F0(ζl)Li for 1 ≤ i ≤ r.

Proof. By the condition (SC)K0
, the relative degree of Li in the extension F0(ζl)/K0(ζl)

is 1. Thus, for any positive number ε and for each i, 1 ≤ i ≤ r, there exists an element
ai ∈ K0(ζl) such that |ν − ai|i < ε, | |i being the Li-adic absolute value. By the
approximation theorem, there exists an element α ∈ K0(ζl) such that |α − ai|i < ε for
1 ≤ i ≤ r. As |ν − α|i < |ν − ai|i + |α− ai|i < 2ε, we have, for sufficiently small ε > 0,
α ̸= 0. Furthere, as |α/ν − 1|i ≤ 2ε/|ν|i ≤ 2ε/A,A = Min{|ν|i}, for sufficiently small
ε > 0, α/ν has the property stated in Lemma 3.2.

Lemma 3.3. Let α ∈ K0(ζl)
∗ be as in Lemma 3.2. Then, for 1 ≤ i ≤ r, (ν/α)T is an

l-th power in F0(ζl)Li
.

Proof. As {L1, ...,Lr} is ∆-invariant, (ν/α)ρ is an l-th power in F0(ζl)Li
. The lemma

follows immediately from this.

12



Lemma 3.4. Let α ∈ K0(ζl)
∗ be as in Lemma 3.2. Then, for 1 ≤ i ≤ r and for every

σ ∈ Gal(F0(ζl)/K0(ζl)), ν
T /αT is an l-th power in F0(ζl)Lσ

i
.

Proof. As α ∈ K0(ζl) and T commutes with σ, we have

(νT /αT )σ = νT (σ−1)νT /αT = (µξ−l)σ−1νT /αT = µσ−1(ξσ−1)−lνT /αT .

As µσ−1 ∈ (F0(ζl)
∗)l, we have (νT /αT )σ(νT /αT )−1 ∈ (F0(ζl)

∗)l. Hence, by Lemma
3.3, (νT /αT )σ is an l-th power in F0(ζl)Li

and the lemma follows from this.

Proof of Proposition 3.2. Let α be as in Lemma 3.2. We first verify that µ/αT /∈
(F0(ζl)

∗)l. Assume that µ/αT ∈ (F0(ζl)
∗)l so that there exists an element µ0 ∈

(F0(ζl)
∗)l such that µ = αTµl

0. Then we have F0(ζl,
l√µ) = F0(ζl,

l
√
αT ). As

αT ∈ K0(ζl)
∗, Gal(F0(ζl,

l√µ)/K0(ζl)) is isomorphic to H × Z/lZ. This contradicts
with the assumption that the exact sequence in (P ) is non-split. Hence we have

µ/αT /∈ (F0(ζl)
∗)l. As µ/αT = (νT /αT )ξl, we have F0(ζl,

l
√
µ/αT ) = F0(ζl,

l
√
νT /αT ).

Since {Lσ
i }i,σ are all l-places of F0(ζl), Proposition 3.2 follows from Lemma 3.4.

(3-5) Now we shall prove Proposition 3.1. Let α ∈ K0(ζl) be as in Proposition 3.2 and

replace F0(ζl,
l√µ) with F0(ζl,

l
√
µ/αT ). Denoting µ/αT newly by µ, we may assume

that, for every l-place of F0(ζl), µ is locally an l-th power. The rest of the proof proceeds
parallel to that of Proposition 2.1.
Step 1. Similarly to the Step 1 of the proof of Proposition 2.1, we first have µσ ≡
µ mod(F0(ζl)

∗)l for any σ ∈ H. It follows from this that there exist an ideal m of F0(ζl)
which is H-invariant and an ideal a of F0(ζl) such that (µ) = mal. As the extension
F0(ζl)/K0(ζl) is everywhere unramified, m is an ideal of K0(ζl).

Further, we may assume that the ideal m is prime to l. Indeed, as any l-place l̃ of
F0(ζl) is unramified in F0(ζl,

l√µ), the exponent of l̃ in (µ), and hence that in m, is a

multiple of l. Thus, convolving the l̃-component of m in al, we may assume that m is
prime to l.
Step 2. We claim that there exist an ideal n of K0(ζl) prime to l and an ideal a1 of
F0(ζl) such that (µ) = nT al1, T being an element of Z[∆] defined in (2-2).

Though this is verified in the same way of the proof of [2, Lemma 4.3], to clarify that
n can be taken to be prime to l, we shall explain details.

First, we have µρ−r ∈ (F0(ζl)
∗)l. This follows from the fact that the extension

F0(ζl,
l√µ)/F0 is abelian. Then, as (µ)ρ−r = mρ−r(aρ−r)l, mρ−r is an l-th power of an

ideal of F0(ζl). As F0(ζl)/K0(ζl) is an unramified extension, there exist an ideal m1 of
K0(ζl) such that mρ−r = ml

1. By using that (ρ− r)T = 1− rn = ls, it follows from this
that ms = mT

1 . As m is prime to l, so is m1. As (s, l) = 1, we can take integers x, y such
that sx + ly = 1. Then we have m = (mx

1)
T (my)l. Letting n = mx

1 , a1 = amy, we see
that n is prime to l and the claim is settled.
Step 3. Instead of the absolute ideal class group, we consider the ray class group modulo
l2 of K0(ζl). Let c0 be its ideal class to which n belongs. There exists a prime ideal q
in c0 satisfying the same conditions (a), (b) in the proof of Proposition 2.1. We have
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q = n(β) with some element β of K0(ζl)
∗ such that β ≡ 1 mod l2. Using this β, we

consider the extension F0(ζl,
l
√
µβT ) of F0(ζl). This extension has the same properties

(i), (ii), (iii) in Lemma 2.2, the proof being the same as that of Lemma 2.2.
Further, it has the following property :

(SC)F0(ζl) every l-place of F0(ζl) splits completely in F0(ζl,
l
√
µβT ).

In fact, let L be any prime ideal of F0(ζl) lying above l with absolute ramification index
e. As β ≡ 1 mod l2, we have βT ≡ 1 mod l2, hence βT ≡ 1 mod L2e. Thus, as l > 2,
βT is an l-th power in F0(ζl)L. (Cf. e.g. Serre[11, XIV Prop. 9].) As µ is also an l-th
power in F0(ζl)L, the property (SC)F0(ζl) follows.
Step 4. Let q0 = q∩K0 andK

′
0 be a finite subextension ofK/K0 satisfying the condition

in Lemma 2.3. Let F ′0 = F0K
′
0 and consider the extension F ′0(ζl,

l
√
µβT )/F ′0(ζl), which

is of degree l. Finally we have the following lemma, and this completes the proof of
Proposition 3.1.

Lemma 3.5. The extension F ′0(ζl,
l
√
µβT )/F ′0(ζl) is everywhere unramified.

Proof. The proof that the extension is unramified outside l is the same of that of Lemma
2.4. By the property (SC)F0(ζl) in Step 3, the extension is also unramified at every l-
place of F ′0(ζl).

4. Pro-l abelian Galois groups

(4-1) Let k0 be an algebraic number field of finite degree and l be a fixed prime. Let
L be an abelian extension of k0 satisfying the conditions (I1) and (I2) in (1-2) and LD

be the decomposition field of p in L/k0. Let D = Gal(L/LD) and Al be the completed
group algebra of D over Zl.

Let M be a pro-l abelian extension of L such that M/LD is also a Galois extension.
Then D acts on the Galois group Gal(M/L) in the obvious manner. As Gal(M/L) is
naturally a Zl-module, this makes Gal(M/L) into an Al-module. In this section, we
shall investigate the structures as Al-modules of various pro-l abelian Galois groups
over L.

For each n ≥ 1, let Cn denote the unique quotient of D such that Cn is cyclic of order
n. Let Fl[Cn] denote the group algebra of Cn over the prime field Fl of characteristic l.
Via the projection D → Cn, Fl[Cn] is naturally regarded as a D-module, and hence as
an Al-module. We denote this module by En(l).

We shall first prove the following

Theorem 4.1. Let l be an odd prime. Let L be an abelian extension of k0 satisfying
the conditions (I1) and (I2) such that [L(ζl) : L] = l − 1. Let m and n be any positive
integers. Then there exists a finite unramified abelian extension M of L which is a
Galois extension of LD such that the Galois group Gal(M/L) is isomorphic to En(l)

⊕m

as Al-modules.

(4-2) In this subsection we shall give the proof of Theorem 4.1. The proof proceeds
similarly to that of Proposition 5.1 in [2].
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Let Ln be the unique subextension of L/LD such that [Ln : LD] = n so that we have
Cn = Gal(Ln/LD). Let K ′0/k

′
0 be a finite Galois extension of algebraic number fields

of finite degree such that k0 ⊂ k′0 ⊂ K ′0, LD ∩K ′0 = k′0, and LDK
′
0 = Ln. As Ln/LD is

unramified, we may assume that K ′0/k
′
0 is unramified. We may also assume that k′0 is

a proper extension of k0.
Let us consider the extension K ′0(ζl)/k

′
0(ζl). As [L(ζl) : L] = l−1, Gal(K ′0(ζl)/k

′
0(ζl))

is canonically isomorphic to Gal(K ′0/k
′
0), and hence to Cn ; Gal(K ′0(ζl)/k

′
0(ζl)) ≃

Gal(K ′0/k
′
0) ≃ Cn.

Let l1, ..., lg be all prime ideals of K ′0(ζl) lying above l. For each i, 1 ≤ i ≤ g, fix

a positive integer Ni such that every element α of K ′0(ζl) satisfying α ≡ 1 mod lNi
i is

locally an l-th power, i.e. α is an l-th power in the li-adic completion of K ′0(ζl). Let m

be an integral ideal of K ′0(ζl) such that lNi
i |m for all i, 1 ≤ i ≤ g, and that m is invariant

by the action of Gal(K ′0(ζl)/k
′
0).

Let Cm be the ray class group of K ′0(ζl) modulo m. By the density theorem and the
condition (I1) of L, there exist principal prime ideals Q1, ...,Qm, Qi = (αi), 1 ≤ i ≤ m,
in the principal class of Cm satisfying the following conditions :

(a) Every Qi is of absolute degree one, is unramified over Q, and is prime to 2. Further,
let Qi ∩Q = (qi). Then q1, ..., qm are distinct primes.
(b) The order of the inertia group of the prime Qi ∩ k0 for the extension L/k0 is qi − 1.

By the assumption on l, the Galois group Gal(K ′0(ζl)/K
′
0) is cyclic of order l − 1. Let

ρ be its generator such that ζρl = ζrl with rl−1 = 1 + ls, (l, s) = 1, and as in (2-2), let

T = ρl−2 + rρl−3 + ...+ rl−3ρ+ rl−2,

which is an element of the group algebra Z[Gal(K ′0(ζl)/K
′
0)].

For each i, 1 ≤ i ≤ m, and σ ∈ Gal(K ′0(ζl)/k
′
0(ζl)), consider the element αTσ

i of
K ′0(ζl). The principal ideal (αTσ

i ) = QTσ
i is decomposed as

(∗)i,σ (αTσ
i ) = Qσρl−2

i (Qσρl−3

i )r · · · (Qσ
i )

rl−2

.

Let Fi,σ be the field obtained by adjoining to K ′0(ζl) an l-th root of αTσ
i ; Fi,σ =

K ′0(ζl,
l
√
αTσ
i ). Let Hi,σ be the subgroup of K ′0(ζl)

∗/(K ′0(ζl)
∗)l generated by the class

of αTσ
i .

Lemma 4.1. The extension Fi,σ/K
′
0(ζl) has the following properties :

(i) Fi,σ/K
′
0(ζl) is of degree l.

(ii) Fi,σ/K
′
0(ζl) is unramified outside Qσ

i ,Q
σρ
i , ...,Qσρl−2

i and Qσ
i ,Q

σρ
i , ...,Qσρl−2

i are
totally ramified in Fi,σ. The primes l1, ..., lg split completely in Fi,σ.

(iii) Fi,σ/K
′
0 is an abelian extension.

Proof. We first note that, by the condition (a) of Qi, the righthand side of (∗)i,σ is the
product of powers of mutually distinct primes of K ′0(ζl). As (r, l) = 1, the property (i)
and the first half of (ii) follow immediately from this.
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As αi ≡ 1 mod m and m is invariant by the action of Gal(K ′0(ζl)/k
′
0), we have

αTσ
i ≡ 1 mod m. Hence l1, ..., lg split completely in Fi,σ.

For the property (iii), we observe that, as (ρ− r)T = ρl−1 − rl−1 = −ls,

(αTσ
i )ρ ≡ (αTσ

i )r mod (K ′0(ζl)
∗)l.

This shows first that Hi,σ is invariant by the action of Gal(K ′0(ζl)/K
′
0). Hence Fi,σ

is a Galois extension of K ′0. It also shows that Gal(K ′0(ζl)/K
′
0) acts on Hi,σ via the

cyclotomic character. From this, as the degrees [Fi,σ : K ′0(ζl)] and [K ′0(ζl) : K ′0] are
coprime, it follows that Fi,σ is an abelian extension of K ′0. (Cf. e.g. [2, Lemma 3.1].)

Let Fi be the composite of Fi,σ for all σ ∈ Gal(K ′0(ζl)/k
′
0(ζl)). Then Fi is a Galois

extension of k′0(ζl) and is an abelian extension of K ′0 by Lemma 4.1 (iii). Hence Fi is a
Galois extension of k′0. The Galois group Gal(Fi/K

′
0) is naturally a Gal(K ′0/k

′
0)-module

and the Galois group Gal(Fi/K
′
0(ζl)) is naturally a Gal(K ′0(ζl)/k

′
0(ζl))-module. Thus

these are both Cn-modules. As the degree [K ′0(ζl) : K
′
0] is l − 1, there exists a unique

subextension F ′i of Fi/K
′
0 such that [Fi : F

′
i ] = l − 1.

Lemma 4.2. (i) The extension F ′i/k
′
0 is Galois so that Gal(F ′i/K

′
0) is naturally a Cn-

module.

(ii) As Cn-modules, Gal(F ′i/K
′
0) is isomorphic to Gal(Fi/K

′
0(ζl)).

Proof. (i) The Galois group Gal(Fi/F
′
i ) is the subgroup of the Cn-module Gal(Fi/K

′
0)

consisting of those elements whose orders are prime to l. Hence it is a Cn-submodule
of Gal(Fi/K

′
0), which shows that F ′i/k

′
0 is Galois.

(ii) By the proof of (i), as Cn-modules, Gal(Fi/K
′
0) is the direct product of Gal(Fi/F

′
i )

and Gal(Fi/K
′
0(ζl)) and (ii) follows from this.

As Fi/K
′
0(ζl) is a Kummer extension with exponent l, Gal(Fi/K

′
0(ζl)) is an Fl[Cn]-

module.

Lemma 4.3. The Cn-module Gal(Fi/K
′
0(ζl)) is regular, i.e. it is isomorphic to Fl[Cn].

Proof. Let Hi be the subgroup of K ′0(ζl)
∗/(K ′0(ζl)

∗)l generated by Hi,σ for all σ ∈
Gal(K ′0(ζl)/k

′
0(ζl)). Then Hi is the direct product of Hi,σ for all σ, for, by the condition

(a) of Qi, there are no common primes in the righthand side of (∗)i,σ1
and (∗)i,σ2

if
σ1 ̸= σ2. From this it follows that, as Cn-modules, Hi is isomorphic to Fl[Cn].

Now Gal(Fi/K
′
0(ζl)) is isomorphic to Hom(Hi, µl), the group of homomorphisms from

Hi to µl, not only as abelian groups but as Cn-modules. As Cn acts trivially on µl,
this shows that Gal(Fi/K

′
0(ζl)) is contragredient to Hi. As is well-known, the regular

representation is self-contragredient. Hence Gal(Fi/K
′
0(ζl)) is isomorphic to Fl[Cn].

Let F be the composite of Fi for all i, 1 ≤ i ≤ m, and H be the subgroup of
K ′0(ζl)

∗/(K ′0(ζl)
∗)l generated by Hi,σ for all σ ∈ Gal(K ′0(ζl)/k

′
0(ζl)) and for all i, 1 ≤

i ≤ m.
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Lemma 4.4. (i) The Cn-module Gal(F/K ′0(ζl)) is isomorphic to Fl[Cn]
⊕m.

(ii) We have F ∩ L(ζl) = K ′0(ζl).

Proof. (i) By the condition (a) of Qi, 1 ≤ i ≤ m, there are no common primes in the
righthand side of (∗)i1,σ1

and (∗)i2,σ2
if (i1, σ1) ̸= (i2, σ2). Thus, H is the direct product

of Hi,σ for all σ and all i, i.e. H is the product of the subgroups Hi, 1 ≤ i ≤ m, Hi being
as in the proof of Lemma 4.3. Hence, as Cn-modules, Gal(F/K ′0(ζl)) is isomorphic to
the direct product of Gal(Fi/K

′
0(ζl)), 1 ≤ i ≤ m, and (i) follows from Lemma 4.3.

(ii) We first claim that F/K ′0(ζl) contains no non-trivial unramified subextension. In
fact, F is the composite of Fi,σ for all i, 1 ≤ i ≤ m, and all σ ∈ Gal(K ′0(ζl)/k

′
0(ζl)).

Further, each Fi,σ/K
′
0(ζl) has the properties (i) and (ii) in Lemma 4.1, and there are

no common primes in {Qσ1ρ
j

i1
}j and {Qσ2ρ

j

i2
}j if (i1, σ1) ̸= (i2, σ2). From this the claim

follows easily.
Now let F ∩ L(ζl) = K ′ and assume that K ′ ̸= K ′0(ζl). By the above claim, there

exists at least one prime of K ′0(ζl) ramfied in K ′, which must be Qσ′

i for some i and

σ′ ∈ Gal(K ′0(ζl)/k
′
0). Let Q = Qσ′

i ∩ k0 and Q0 = Qσ′

i ∩ k′0. As Qσ′

i is of absolutely
degree one and is unramified over Q, and as k′0 ̸= k0, there exists a prime Q′0 of k′0 lying

above Q such that Q′0 ̸= Q0. Let Q̃ be a prime of K ′0(ζl) lying above Q′0. Then, we see

easily that Q̃ is, over k′0, neither conjugate to Qi nor to Qj for j ̸= i. Thus, by Lemma

4.1(ii), Q̃ is unramified in F , and hence in K ′. As Qσ′

i and Q̃ are both lying above Q,
and as K ′ is abelian over k0, this is a contradiction. Thus we have F ∩ L(ζl) = K ′0(ζl).

For each i, 1 ≤ i ≤ m, let qi = Qi ∩ k′0.

Lemma 4.5. There exists a finite extension k′i of k′0 contained in LD such that for
every prime of k′i lying above qi, its ramification index in k′i/k

′
0 is qi − 1.

Proof. Let LI be the inertia field of Qi in LD. By Lemma 2.1 (i), L/LD is unramified.
Thus, by the condition (I1), LD/LI is a finite extension of degree qi − 1. Hence there
exists a finite extension k′i/k

′
0 such that k′iLI = LD and this k′i satisfies the condition

in Lemma 4.5.

Let us consider the composite of k′i, 1 ≤ i ≤ m, in Lemma 4.5 and denote it newly
by k′1. Then k

′
1 is a finite extension of k′0 contained in LD such that for every prime of

k′1 lying above qi, 1 ≤ i ≤ m, its ramification index in k′1/k
′
0 is qi − 1.

We extend k′0 to k′1 and let K ′1 = k′1K
′
0. We have k′1 ⊂ K ′1, LD ∩ K ′1 = k′1 and

LDK
′
1 = Ln. Consider the extension FiK

′
1 of K ′1(ζl). It is the composite of Fi and

K ′1(ζl), and by Lemma 4.4 (ii), we have Fi ∩K ′1(ζl) = K ′0(ζl).

Lemma 4.6. The extension FiK
′
1/K

′
1(ζl) is unramified.

Proof. It follows from Lemma 4.1 (ii) that Fi/K
′
0(ζl) is unramified outside Qσρj

i , j =

0, 1, ..., l − 2, and the ramification index of Qσρj

i is l. On the other hand, as qi is

unramified in K ′0(ζl), by Lemma 4.5, the ramification index of Qσρj

i in K ′1(ζl) is qi − 1.
By noting that qi splits completely in the subfield Q(ζl) of K

′
0, the proof is done in the

same way as that of Lemma 2.4.
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Now we shall complete the proof of Theorem 4.1. By Lemma 4.2 (ii) and Lemma
4.3, the Cn-module Gal(F ′i/K

′
0) is isomorphic to Fl[Cn]. Let F ′ be the composite

of F ′1, ..., F
′
m. Then we have F ′K ′0(ζl) = F and it follows from Lemma 4.4 (i) that

Gal(F ′/K ′0) is isomorphic to Fl[Cn]
⊕m. Consider the extension M = F ′L of L. We

have M(ζl) = FL(ζl) and, by Lemma 4.4 (ii), it follows that Gal(FL(ζl)/L(ζl)) is, as
an Al-module, isomorphic to En(l)

⊕m. Hence Gal(M/L) is isomorphic to En(l)
⊕m. It

remains to show that M/L is unramified. It follows from Lemma 4.6 that FL(ζl)/L(ζl)
is unramified. For the extension L(ζl)/L, it is unramified outside l and the ramification
index of any l-place is l − 1. As M/L is an l-extension, it is unramified.

(4-3) Let Lab
SL

(l) and Lab
ur(l) denote the maximal pro-l abelian extension of L unramified

outside SL and the maximal unramified pro-l abelian extension of L respectively. These
are both Galois extensions of LD. Hence, as explained in (4-1), the Galois groups
Gal(Lab

SL
(l)/L) and Gal(Lab

ur(l)/L) are Al-modules.
Our main result in this paper is the following

Theorem 4.2. Let l be an odd prime. Let L be an abelian extension of k0 satisfying
the conditions (I1) and (I2) such that [L(ζl) : L] = l − 1.
(i) Assume that the condition (IIl) is satisfied. Then the Al-module Gal(Lab

SL
(l)/L) is

isomorphic to the direct product of a countable number of copies of Al.
(ii) Assume that the conditions (IIl) and (IIIl) are satisfied. Then the Al-module
Gal(Lab

ur(l)/L) is isomorphic to the direct product of a countable number of copies of
Al.

Proof. By Corollaries to Theorems 3.1 and 3.2, Gal(LSL
(l)/LD) and Gal(Lur(l)/LD)

are both projective profinite groups. By the argument given in [1, 3.1], it follows from
this that Gal(Lab

SL
(l)/L) and Gal(Lab

ur(l)/L) are projective Al-modules. By Theorem 4.1,

Gal(Lab
ur(l)/L), and hence Gal(Lab

SL
(l)/L) also, have quotient Al-modules isomorphic to

En(l)
⊕m for any m,n ≥ 1. Further Gal(Lab

SL
(l)/L) and Gal(Lab

ur(l)/L) are both pro-l
Al-modules with countable open Al-submodules. Therefore, by a characterization of
such Al-modules ([1, Theorems 1.2, 1.3]), these Galois groups are isomorphic to the
direct product of a countable number of copies of Al.

Let L′ be the maximal unramified abelian extension of LD in Lab
ur(l). Then we

have L ⊂ L′ ⊂ Lab
ur(l) and the Galois group Gal(Lab

ur(l)/L
′) is an Al-submodule of

Gal(Lab
ur(l)/L). For the structure of this submodule, we have the following

Corollary. Assumptions being as in Theorem 4.2 (ii), Gal(Lab
ur(l)/L

′) is isomorphic to
the direct product of a countable number of copies of ID, where ID denotes the augmen-
tation ideal of Al.

Proof. Let Xl = Gal(Lab
ur(l)/L) and σ be a topological generator of D = Gal(L/LD).

Then Xl/(σ − 1)Xl is the maximal quotient of Xl on which D acts trivially. Let L′′ be
the subextension of Lab

ur(l)/L such that Gal(L′′/L) = Xl/(σ − 1)Xl. Obviously, L′ is
contained in L′′. Consider the exact sequence

1 −→ Gal(L′′/L) −→ Gal(L′′/LD) −→ D −→ 1.
18



Since D is isomorphic to Ẑ, the sequence splits. As D acts on Gal(L′′/L) triv-
ially, Gal(L′′/LD) is isomorphic to the direct product of Gal(L′′/L) and D. Let
Gal(L′′/LD) = Gal(L′′/L) × D′, D′ being a subgroup of Gal(L′′/LD) isomorphic to
D, and L1 be the subextension of L′′/LD corresponding to D′. Then L1/LD is an un-
ramified pro-l abelian extension. Hence L1 is contained in L′ and we have LL1 ⊂ L′. As
LL1 = L′′, we have L′′ ⊂ L′, and hence L′′ = L′. Thus we have Gal(Lab

ur/L
′) = (σ−1)Xl

and the corollary follows from Theorem 4.2 (ii).

(4-4) Let k0 be an algebraic number field of finite degree and l be a fixed prime. In the
following, we shall verify that the field obtained by adjoining to k0 primitive q-th roots of
unity, where q runs over all primes except for certain primes of a finite number, satisfy
the assumptions of Theorem 4.2 (ii). Thus, by that theorem, we can determine the
structure of the Galois groups as Al-modules of the maximal unramified pro-l abelian
extensions of those algebraic number fields.

Let S0 = {p1, ..., ps} be a finite set of distinct primes with s ≥ 1. Let LS0 be the field
obtained by adjoining to k0 all primitive q-th root of unity, where q does not belong to

S0. For each i, 1 ≤ i ≤ s, let pi be a prime of k0 lying above pi and let Npi = pfii ,
fi ≥ 1. Let Di be the decomposition group of pi for the extension LS0

/k0. Then we
have the following

Proposition 4.1. (i) The group Di is isomorphic to Ẑ, the profinite completion of the
additive group of rational integers.
(ii) If s ≥ 2, we have Di ∩ ⟨Dj⟩j ̸=i = {1}, where ⟨Dj⟩j ̸=i denotes the closed subgroup of
Gal(LS0

/k0) generated by Dj , j ̸= i.

This proposition is verified by using a theorem of Chevalley, which we shall recall.
(Cf. also Bass[3].)

Let k be an algebraic number field of finite degree and E be a finitely generated
subgroup of the multiplicative group k∗ of k. For any integers a,m ≥ 1, let

Em = { xm | x ∈ E },

Ea = { x ∈ E | x ≡ 1 mod a }.

Then Chevalley[4] proved the following

Theorem. Given any integers m, b ≥ 1, there exists a squarefree integer a ≥ 1 such
that (a, b) = 1 and Ea ⊂ Em.

Remark. The proof shows that the integer a can be taken to be squarefree, though it
is not explicitly stated.

Proof of Proposition 4.1. The cyclotomic character induces an embedding

Gal(LS0
/k0) →

∏
q/∈S0

(Z/(q))∗
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of the Galois group Gal(LS0/k0). The image of the subgroup Di is the closed subgroup

generated by the diagonal element (pfii ). Let E be the subgroup of Q∗, the multiplicative

group of rationals, generated by all pfii , 1 ≤ i ≤ s. Consider the diagonal embedding

E →
∏
q/∈S0

(Z/(q))∗.

Applying Chevalley’s theorem to the case that K = Q and b = p1...ps, we see that the
closure of the image of E is isomorphic to the profinite completion Ê of E. As E is a
free abelian group of rank s, Ê is isomorphic to Ẑ⊕s. From this the proposition follows.

Now we shall assume that s ≥ 2 and p, l be distinct primes in S0. Let p and l be
primes of k0 lying above p and l respectively. Let Dp be the decomposition group of p
for the extension LS0/k0 and LDp

be the decomposition field of p.

Proposition 4.2. Let l′ be a prime of LDp
lying above l. Then the residue field of l′

is the algebraic closure F̄l of the prime field Fl.

Proof. Let Dl be the decomposition group of l for the extension LS0
/k0 and LDl

be the
decomposition field of l. By Proposition 4.1 (ii), we have Dp ∩ Dl = {1}. As l splits
completely in LDl

, l′ splits completely in LS0 . By the remark after Lemma 2.1, the
residue field of an extension of l to LS0 is F̄l. Hence the residue field of l′ is also F̄l.

Let Lab
ur(l) be the field as in the beginning of (4-3) for L = LS0 . Then the Galois

group Gal(Lab
ur(l)/LS0

) is naturally an Al-module and we have the following

Theorem 4.3. Assume that l is odd and is unramified in k0. Let p be a prime different
from l and assume that S0 contains p and l. Then the Galois group Gal(Lab

ur(l)/LS0
) is

isomorphic to the direct product of a countable number of copies of Al.

Proof. It suffices to verify that the assumptions in Theorem 4.2 (ii) are satisfied. Obvi-
ously, LS0 satisfies the condition (I1) in (2-1). By Proposition 4.1 (i), LS0 with pi, for
any i, satisfies the condition (I2) in (2-1). By Proposition 4.2, LS0

with p being given,
l satisfies the condition (IIIl) in (3-2). By the assumption that l is unramified in k0,
the condition (IIl) in (3-1) is satisfied. Further, we have [LS0

(ζl) : LS0
] = l − 1 and the

proof is completed.

5. Decomposition groups

(5-1) Let k0 be an algebraic number field of finite degree and l be an odd prime. Let L
be an abelian extension of k0 satisfying the conditions (I1) and (I2) in §2 and LD be the
decomposition field of p in L/k0. Let Lab

ur(l) be the maximal unramified pro-l abelian
extension of L. As L/LD is unramified by Lemma 2.1 (i), Lab

ur(l)/LD is an umramified
Galois extension. Assume that [L(ζl) : L] = l−1 and that the conditions (IIl) and (IIIl)
in §3 are satisfied.

In this section, by using Theorem 4.2 (ii), we shall give some remarks on the decom-
position group for the extension Lab

ur(l)/LD of a prime of Lab
ur(l) lying above p.
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We fix a prime p0 of LD lying above p. Let p′0 be the unique prime of L lying above
p0 and p∗0 be a prime of Lab

ur(l) lying above p′0. Let D
∗
0 be the decomposition group of p∗0

for the extension Lab
ur(l)/LD. By the remark after Lemma 2.1, the residue field of p′0 is

F̄p. Hence p
′
0 splits completely in Lab

ur(l). Thus we have D
∗
0 ∩ Gal(Lab

ur(l)/L) = {1} and
the projection Gal(Lab

ur(l)/LD) → Gal(L/LD) = D induces an isomorphism D∗0 ≃ D.
Namely D∗0 gives a splitting of the exact sequence

1 −→ Gal(Lab
ur(l)/L) −→ Gal(Lab

ur(l)/LD) −→ D −→ 1

and we have the semi-direct decomposition of Gal(Lab
ur(l)/LD) ; Gal(Lab

ur(l)/LD) =
Gal(Lab

ur(l)/L) ·D∗0 .
The following two propositions are direct consequences of the properties of the sub-

group Gal(Lab
ur(l)/L) of Gal(Lab

ur(l)/LD).
Let p∗∗0 be a prime of Lab

ur(l) lying above p′0 other than p∗0 and D∗∗0 be the decompo-
sition group of p∗∗0 for the extension Lab

ur(l)/LD. We have the following

Proposition 5.1. If p∗0 ̸= p∗∗0 , then we have D∗0 ̸= D∗∗0 .

For the proof, we first recall the following. Let G be a group which is the semi-direct
product of a normal subgroup H and a subgroup K. Let NG(K) and CH(K) denote
the normalizer of K in G and the centralizer of K in H respectively ;

NG(K) = {σ ∈ G | σKσ−1 = K},
CH(K) = {h ∈ H | hk = kh for any k ∈ K}.

As is easily verified, we have the direct product NG(K) = CH(K)×K.
Let G = Gal(Lab

ur(l)/LD), H = Gal(Lab
ur(l)/L), and K = D∗0 . As we have seen above,

G = H ·K.

Lemma 5.1. We have CH(K) = {1}, and hence NG(K) = K.

Proof. The group K acts on H by conjugation, so that H is a K-group. By Theorem 4.2
(ii), H is isomorphic to

∏∞
N=1 Zl[[K]] as K-groups. For an element h of H, let (fN )N

be the element of
∏∞

N=1 Zl[[K]] corresponding to h. Assume that h ∈ CH(K). Then
we have k(fN ) = (fN ), i.e. (k − 1)fN = 0 for all k ∈ K. Take k to be a topological
generator of K. As the order of k is divisible by a supernatural number l∞, k− 1 is not
a zero-divisor of Zl[[K]] (Ihara[6, Lemma 3.1]). Hence fN = 0 for N ≥ 1, i.e. h is the
identity.

Proof of Proposition 5.1. As p∗0 and p∗∗0 are both lying above p0, there exists an element
σ of G such that p∗∗0 = p∗σ0 , and hence D∗∗0 = σ−1D∗0σ. By the assumption that
p∗0 ̸= p∗∗0 , we have σ /∈ D∗0 . As NG(K) = K by Lemma 5.1, we conclude that D∗∗0 ̸= D∗0 .

(5-2) As in (4-3), let L′ be the maximal unramified abelian extension of LD in Lab
ur(l).

Let D′0 be the image of D∗0 under the projection Gal(Lab
ur(l)/LD) → Gal(L′/LD) and L′0

be the intermediate field of L′/LD corresponding to D′0. Then L
′
0 is the decomposition

field of p0 in the abelian extension L′/LD, i.e. L′0 is the maximal subextension of L′/LD

in which p0 splits completely.
Let L′′0 be the maximal subextension of Lab

ur(l)/LD in which p0 splits completely.
Obviously L′′0 contains L′0, but we have the following

21



Proposition 5.2. The field L′′0 coincides with L′0.

Again, in general, let G be a group which is the semi-direct product of a normal
subgroup H and a subgroup K. The group K acts on H by conjugation. Let U = {U}
be the set of all normal subgroups of G satisfying

(1) U is contained in H.
(2) K acts on the quotient H/U trivially.

On the other hand, let N = {N} be the set of all normal subgroups of G containing K.

Then we have the following

Lemma 5.2. (i) Let U be an element of U . Then UK = { uk | u ∈ U, k ∈ K } belongs
to N . The correspondence U → UK gives a bijection between U and N .
(ii) Let NK be the normal subgroup of G generated by K. Then we have NK = UKK,
where UK is the element of U such that H/UK is the maximal quotient group of H on
which K acts trivially.

Proof. (i) This does not seem to be well-known but the proof is elementary, and hence
we omit the details here.
(ii) As NK is the smallest normal subgroup of G containing K, this follows from (i).

Note that this lemma is also valid in the category of profinite groups.

Proof of Proposition 5.2. Again, let G = Gal(Lab
ur(l)/LD), H = Gal(Lab

ur(l)/L), and
K = D∗0 , so that we have G = H ·K. Let NK be the normal subgroup of G generated
by K. Then L′′0 is the intermediate field of Lab

ur(l)/LD corresponding to NK . By Lemma
5.2 (ii), we have NK = UKK, where UK being the subgroup of G as in that lemma.
The proof of Corollary to Theorem 4.2 shows that UK = Gal(Lab

ur(l)/L
′). Thus the

intermediate field of Lab
ur(l)/LD corresponding to NK is L′0. Hence L′′0 coincides with

L′0.
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