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Abstract. We study the embedded topology of certain conic-line ar-
rangements of degree 7. Two new examples of Zariski pairs are given. Fur-
thermore, we determine the number of connected components of the realization
spaces of the conic-line arrangements with prescribed combinatorics. We also
calculate the fundamental groups using SageMath and the package Sirocco in
the appendix.

1. Introduction

In this paper, we consider the embedded topology of reducible plane curves with
irreducible components of low degree. More precisely we study the embedded topology
of certain conic-line arrangements. A collection of a finite number of conics and lines
in the complex projective plane P2 := P2(C) is said to be a conic-line arrangement (a
CL arrangement, for short). If it contains no lines, it is said to be a conic arrangement.
Let CL := {C1, . . . , Cm, L1, . . . , Ln} be a CL arrangement of m-conics and n-lines in P2.
By the combinatorics of CL (see [5, 6] for the definition of the combinatorics), we mean
that of the reduced curve BCL :=

∑m
i=1 Ci +

∑n
j=1 Lj and denote it by CmbCL. More

generally, we denote the combinatorics for a reduced plane curve B by CmbB .
Line arrangements have been studied by many mathematicians from various points

of view. Some results related to our interests are [15, 16, 24], where the connected
components of the moduli spaces of line arrangements are studied. On the other hand,
there have not been so many results for CL arrangements before 2000 except some results
on conic arrangements by Naruki ([23]). Since 2000, they have been studied by various
mathematicians. For example, in [2, 3, 4, 12, 13, 22], the fundamental groups of their
complements are studied. Also, from the viewpoint of free divisors, we find results such
as [11, 18, 26, 27].

In [34], the second author studied the embedded topology of certain CL arrange-
ments of degree 7 and gave examples of Zariski pairs for such arrangements. He also
raised the question (see [34, Remark 6]) whether or not a Zariski triple exists for the
CL arrangements considered in [34]. This is closely related to determining the number
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of connected components of the realization space of plane curves with fixed combina-
torial data. Here, the realization space of CL arrangements with given combinatorics
CmbCL, which we denote by R(CmbCL), means the set of all CL arrangements having
the combinatorics CmbCL. Since all conics and lines are determined by their equations
up to non-zero constants, R(CmbCL) can be regarded as a subset of Pd(d+3)/2, where
d = degBCL. In [1], another Zariski pair was given for a CL arrangement of degree 7

and the number of connected components of its realization space was determined. This
paper can be considered as a continuation of [1] and [34]. We generalize the method of
studying the realization space used in [1] and apply it to a wider range of CL arrange-
ments, which are given by a similar manner to those in [1, 34]. Namely we consider CL
arrangements of degree 7 obtained by gluing two CL arrangements of degree 3 and 4 in a
non-trivial manner, and we completely determine the number of connected components
of the realization spaces. This gives a negative answer to the above mentioned question of
[34, Remark 6]. We also obtain two new Zariski pairs. We now give a precise description
of the CL arrangements CLij of degree 7 considered in this article. We assume that they
have the following combinatorics:

(i) CLij = Pi

⊔
Aj (i, j = 1, 2) where Pi and Aj are subarrangements of degree 4 and

3 respectively such that (P1) P1 = {C,L1, L2}, degC = 2, degLi = 1 (i = 1, 2)

with C ⋔ (L1 +L2) and C ∩L1 ∩L2 = ∅, (P2) P2 = {C1, C2}, degCi = 2 (i = 1, 2)

with C1 ⋔ C2, (A1) A1 = {M1,M2,M3}, non-concurrent three lines, and (A2)
A2 = {D,M},degD = 2,degM = 1 with D ⋔M . We call Pi a plinth for CLij .

(ii) Let M and D be a line and a conic in Aj , respectively. Then any point in M ∩BPi

and D ∩ BPi
gives rise to an ordinary triple point or a tacnode of M + BPi

and
D +BPi

, respectively.

(iii) The singularities of BCLij
are at most nodes, tacnodes or ordinary triple points.

For CL arrangements as above, we have a list as follows: Here Cmbijk denotes the
k-th combinatorics given by the set CLij . Note that D and M meet at two distinct
points, although D ∩M does not appear in some of the real pictures below.

Figure 1. Cmb111 Figure 2. Cmb121 Figure 3. Cmb122
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Figure 4. Cmb123 Figure 5. Cmb124 Figure 6. Cmb125

Figure 7. Cmb211 Figure 8. Cmb212 Figure 9. Cmb213

Figure 10. Cmb221 Figure 11. Cmb222 Figure 12. Cmb223

Figure 13. Cmb224 Figure 14. Cmb225
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Now our main statement is as follows:

Theorem 1.1. Let Cmbijk be the combinatorics as in Figures 1-14. Then the
following statements hold:

(i) The space R(Cmbijk) is connected for ijk = 111, 121, 122, 125, 211, 213, 221,
222, 225.

(ii) Each R(Cmbijk) ijk = 123, 124, 212, 223, 224 has exactly two connected compo-
nents. Moreover, if we choose B1, B2 ∈ R(Cmbijk) so that B1 and B2 belong to
distinct components, (B1, B2) is a Zariski pair.

Remark 1.2.

• Fix a conic in Pi. As we explain in Subsection 2.2, some of the above arrangements
are canonically constructed from 5 points on the conic by using the theory of
rational elliptic surfaces. This fact plays an important role to prove Theorem 1.1.

• Zariski pairs for the combinatorics Cmb123 and Cmb212 are new, while the one for
the case Cmb223 was studied in [1] where the second statement above for this case,
i.e. the fact that there exists a Zariski pair and that the number of connected
components of the realization space is exactly two, was proved.

• Zariski pairs for the cases Cmb124 and Cmb224 were given in [34]. Theorem 1.1
shows that the maximum number of possible Zariski n-tuples is n = 2 for these
cases. Hence, Theorem 1.1 disproves the existence of a Zariski triple for Cmb224,
which was expected in [34, Remark 6].

Acknowledgments: The authors thank the anonymous referee for his/her com-
ments on the first draft of this paper.

2. Preliminaries

2.1. Some rational elliptic surface
In this article, the theory of elliptic surfaces plays an important role in both our

construction of plane curves and our proof of Theorem 1.1. Our main references are
[8, 9, 17, 21, 28, 34] and we make use of the results given there freely. Here we
summarize our convention, notation and terminology. For an elliptic surface φ : S → C

over a smooth projective curve C, we always assume the following:

(i) The fibration φ is relatively minimal.

(ii) There exists a section O : C → S. Here we identify O with its image.

(iii) There exists at least one singular fiber.

Let Co be a smooth conic. Choose five distinct points zo, p1, p2, p3 and p4 on Co. We
denote the line passing through pi and pj by Lij . Consider a pencil of conics {Cλ}λ∈Λ

passing through p1, p2, p3 and p4. There exist three distinct values λ1, λ2 and λ3 in Λ

such that each Cλi
(i = 1, 2, 3) becomes two distinct lines. For each case, we denote the
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intersection point between these two lines by the same label p0. Note that we are abusing
notation and that we are labeling the distinct points L12∩L34, L13∩L24, L14∩L23 with
the same p0. For these values, Co + Cλi

(i = 1, 2, 3) give rise to conic-line arrangements
P1. We may assume that

Cλ1
= L12 + L34, Cλ2

= L13 + L24, Cλ3
= L14 + L23.

For other values of λ, Co+Cλ gives rise to conic arrangements P2. Put Qλ = Co+Cλ, λ ∈
Λ. Likewise we did in our previous articles [8, 9], we associate (Qλ, zo) with the rational
elliptic surface φQλ,zo : SQλ,zo → P1, which comes from the double cover f ′

Qλ
: S′

Qλ
→ P2

branched along Qλ. In the following, we always choose λ and zo such that

(∗) The tangent line to Co at zo meets Cλ at two distinct points.

Also the diagram below is the one introduced in [8, 9]

S′
Qλ

µ←−−−− SQλ

νzo←−−−− SQλ,zo

f ′
Qλ

y yfQλ

yfQλ,zo

P2 ←−−−−
q

P̂2 ←−−−−
qzo

(P̂2)zo ,

where µ is the canonical resolution of singularities, q is a composition of a finite number
of blowing-ups so that the branch locus becomes smooth and fQλ

is the induced double
cover. The pencil of lines through zo gives rise to a pencil Λzo of curves of genus 1 on
SQλ

. We denote the resolution of indeterminacy of Λzo by νzo and qzo is the composition
of two blowing-ups induced by νzo . We also have an induced double cover fQλ,zo :

SQλ,zo → (P̂2)zo . The generic fiber EQλ,zo can be considered as an elliptic curve over
C(P1)(≃ C(t)). It is well known that the set EQλ,zo(C(t)) of C(t) rational points of EQλ,zo

can be endowed with a group structure. The induced double cover fQλ,zo coincides with
the quotient morphism determined by the involution [−1] on SQλ,zo , which is given by the
inversion with respect to the group law on EQλ,zo . Let MW(SQλ,zo) be the set of sections
of φQλ,zo . By an integral section, we mean a section s with s · O = 0. In [28], Shioda
defined a Q-valued bilinear form ⟨ , ⟩ on EQλ,zo(C(t)) called the height pairing, by which
the free part of EQλ,zo(C(t)) becomes a lattice. We make use of this lattice structure
in order to find elements in Aj (j = 1, 2). When we describe EQ,zo(C(t)), we take this
structure into account. It is known that there is a bijection between MW(SQλ,zo) and
EQλ,zo(C(t)). For s ∈ MW(SQλ,zo), we denote the rational point corresponding to s by Ps

and for P ∈ EQλ,zo(C(t)), we denote the section corresponding to P by sP . For P1, P2 ∈
EQλ,zo(C(t)), we denote their sum by P1+̇P2. This group structure induces a group
structure on MW(SQλ,zo) which we also denote by +̇. Under the above correspondence,
we have sP1+̇P2

= sP1+̇sP2 . For an integer m ∈ Z, we put [m]P = P +̇ . . . +̇P (m terms)
for m > 0, [0]P = O and [m]P = [−m]([−1]P ) for m < 0, following the notation in [30].

Put f̃Qλ,zo := f ′
Qλ
◦ µ ◦ νzo and we denote the plane curve obtained as the image

under f̃Qλ,zo of a section s ∈ MW(SQλ,zo) by Cs := f̃Qλ,zo(s) ⊂ P2.
Here are some properties of φQλ,zo : SQλ,zo → P1 (See [8, 9, 25, 34]):
The Case λ = λ1, λ2, λ3
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• There exist 6 singular fibers for φQλ,zo . All of them are of type I2. They arise from
the tangent line lzo at zo and lines connecting zo and pi (0 ≤ i ≤ 4). We denote
them by F∞ and Fi (0 ≤ i ≤ 4), respectively, and their irreducible decomposition
by F• = Θ•,0 +Θ•,1 • =∞, 0, 1, . . . , 4.

• The group ESQλ,zo
(C(t)) is isomorphic to (A∗

1)
⊕2 ⊕ (Z/2Z)⊕2.

• In order to describe explicit generators of EQλ,zo(C(t)), we consider the case λ = λ1

where Cλ1
= L12+L34. In this case, Co and Lij (1 ≤ i < j ≤ 4) give rise to elements

of EQλ,zo(C(t)) as follows:

(i) Co, L12 and L34 give rise to 2-torsions, which we denote by PCo , P12 and P34,
respectively. Note that PCo = [−1]PCo , P12 = [−1]P12 and P34 = [−1]P34.

(ii) For each (i, j) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)}, Lij gives rise to two points
Pij , [−1]Pij ∈ EQλ,zo(C(t)). We denote them by [±1]Pij , for abbreviation.

(iii) We may assume that the free part of EQλ,zo(C(t)) is generated by P13 and
P14, i.e.,

(A∗
1)

⊕2 ∼= ZP13 ⊕ ZP14

and P23 = P14+̇PCo , P24 = P13+̇PCo .

(iv) For each (i, j) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)}, C[2]Pij
= C[−2]Pij

is a conic in-
scribed in Qλ1 such that zo ∈ Qλ1 ∩ C[2]Pij

.

The Case λ ̸= λ1, λ2, λ3

• There exist 5 reducible singular fibers. All of them are of types either I2 or III.
They arise from the tangent line lzo at zo and lines through zo and pi (1 ≤ i ≤ 4).
We denote them by F∞ and Fi (1 ≤ i ≤ 4), respectively, and their irreducible
decomposition by F• = Θ•,0 +Θ•,1 • =∞, 1, . . . , 4.

• The group ESQ,zo
(C(t)) is isomorphic to (A∗

1)
⊕3 ⊕ Z/2Z. The unique 2-torsion

point arises from Co, which we denote by PCo .

• Each Lij gives two elements in EQλ,zo and we denote them by [±1]Pij , which satisfy
the following properties:

(i) Since ⟨P1j , P1j⟩ = 1/2 (2 ≤ j ≤ 4), ⟨P1j , P1k⟩ = 0 (2 ≤ j < k ≤ 4), we may
assume

(A∗
1)

⊕3 ∼= ZP12 ⊕ ZP13 ⊕ ZP23

and Pij+̇PCo = Pkl, where {i, j, k, l} = {1, 2, 3, 4}.
(ii) C[2]Pij

= C[−2]Pij
is a conic inscribed in Qλ such that zo ∈ Qλ ∩ C[2]Pij

.
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2.2. Construction of lines and conics in Aj (j = 1, 2) via SQλ,zo

Here we explain our method in constructing lines and conics in Aj (j = 1, 2). This
method plays a crucial role to consider a member of R(Cmbijk). Choose P ∈ EQλ,zo and
let sP be the corresponding section. In [20], Masuya introduced a line point as follows:

Definition 2.1. P is said to be a line-point if f̃Qλ,zo(sP ) is a line. Also a section
s ∈ MW(SQλ,zo) is said to be a line-section if f̃Qλ,zo(s) is a line.

Any line-point is characterized by the following lemma:

Lemma 2.2 ([10, Lemma 9]). Let s ∈ MW(SQλ,zo) be an integral section with
s ·Θ∞,1 = 1. Then f̃Qλ,zo(s) is a line Ls such that

(i) the intersection multiplicity at every intersection point between Ls and Qλ is even,

(ii) zo ̸∈ Ls.

Conversely, any line satisfying the above two conditions gives rise to two sections sL±

such that sL± ·O = 0 and sL± ·Θ∞,1 = 1.

For an integral section s with s ·Θ∞,0 = 1, we have the following lemma:

Lemma 2.3 ([20, Lemma 2.12]). Let s ∈ MW(SQλ,zo) be an integral section with
s ·Θ∞,0 = 1. Then f̃Qλ,zo(s) is a smooth conic satisfying either

(i) f̃Qλ,zo(s) is the irreducible component of Qλ through zo, or

(ii) f̃Qλ,zo(s) is tangent to Qλ at zo and the intersection multiplicity at every intersec-
tion point between f̃Qλ,zo(s) and Qλ is even.

Conversely, any conic C that satisfies (i) gives rise to a 2-torsion section sC and that
satisfies (ii) gives rise to two integral sections sC± such that s• ·Θ∞,0 = 1 (• = C,C±).

Remark 2.4. Note that although the "converse" part of Lemma 2.3 was not given
in [20], it follows from our construction of SQλ,zo . By Lemmas 2.2 and 2.3, we see that
lines and conics in Aj (j = 1, 2) are canonically obtained from sections described as above
and vice versa. We make use of this construction to obtain desired CL arrangements.

3. Approach to construct CL arrangements with prescribed Cmbijk

In this section, we give rough ideas for the explicit construction of plane curves with
prescribed Cmbijk. We first give a combinatorial classification of lines and a conic in Aj

(j = 1, 2).
The case of P1: We may assume L12, L34 ∈ P1 and put L1 = L12, L2 = L34.
Let M be a line in Aj (j = 1, 2). By our assumption (ii) for Cmbijk given in the

Introduction, we infer that M is L13, L14, L23, L24 or lines L0, L
′
0 through p0 and tangent

to C.
Let D be the smooth conic in A2. Again by our assumption (ii) for Cmbijk, we infer

that D is a conic of one of the following types D(1, j) (j = 0, 1, 2, 4):
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(a) D(1, 0) passes through p1, p2, p3 and p4.

(b) D(1, 1) passes through p0, pi, pj (i ∈ {1, 2}, j ∈ {3, 4}) and is tangent to C.

(c) D(1, 2) passes through p1 and p2 (resp. p3 and p4) and is tangent to L34 (resp.
L12) and C.

(d) D(1, 4) is a conic inscribed by BP1 .

The case of P2: Let M be a line in Aj (j = 1, 2). By our assumption (ii) for Cmbijk
given in the Introduction, we infer that M is a bitangent line Lb to BP2 or Lij (1 ≤ i <

j ≤ 4). Note that there exist four bitangent lines to BP2 .
Let D be the conic in A2. By our assumption (ii) for Cmbijk, we infer that D is a

conic of one of the following types D(2, j) (j = 0, 2, 4):

(a) D(2, 0) passes through p1, p2, p3 and p4.

(b) D(2, 2) passes through pi, pj and is tangent to both C1 and C2.

(c) D(2, 4) is tangent to BP2
at 4 distinct points.

By Remark 2.4, all of the above lines and conics are characterized by rational points
of EQλ,zo . Let s be a section in MW(SQλ,zo) and let Ps be the corresponding point in
EQλ,zo(C(t)). Recall that we describe the group law of C(t)-rational points as ±̇, and
define [2]Ps := Ps+̇Ps. If we choose sections as in Lemma 2.2 and Lemma 2.3, then we
have the table below:

Line or conic Points in EQλ,zo(C(t))
L0 P13±̇P14+̇P34

D(1, 1) P13±̇P12 , P13±̇P34 , P14±̇P12 , P14±̇P34

D(1, 2) P13±̇P14 , P13±̇P23

D(1, 4) [2]P13 , [2]P14

Lb P12±̇P13±̇P23

D(2, 2) P12±̇P23 , P12±̇P13 , P13±̇P23 , P12±̇P14 , P13±̇P14 , P12±̇P24

D(2, 4) [2]P12 , [2]P13 , [2]P23

Table 1. Line points, conic points and their corresponding curves.

Remark 3.1.

• As f̃Qλ,zo(sP ) = f̃Qλ,zo(s[−1]P ), we only give one of the corresponding two points.

• Since Pij = Pkl+̇PCo
, relations P12±̇P23 = P34±̇P14, P12±̇P14 = P34±̇P23, etc

hold. This means that there are several rational points that give a conic of type
D(2, 2).

We next explain our setting about an explicit Weierstrass equation for EQλ,zo , which
gives an affine equation of SQλ,zo . This setting plays an important role to prove The-
orem 1.1. Let Co and zo, p1, . . . , p4 be the smooth conic and distinct 5 points on it
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as in Subsection 2.1. We take homogeneous coordinates [T,X,Z] of P2 such that Co is
given by XZ − T 2 = 0 and zo = [0, 1, 0]. Note that lzo is given by Z = 0. Let (t, x),
t = T/Z, x = X/Z be affine coordinates of P2\lzo . Put pi := (ti, t

2
i ), ti ∈ C (i = 1, 2, 3, 4).

Let t = (t1, t2, t3, t4) and λ ∈ C. We define M as follows:

M := {τ = (λ, t) ∈ C× C4 | ti ̸= tj (i ̸= j)}.

Under these settings, we consider the pencil of conics passing through p1, p2, p3, p4 and
denote it by Λt. A general member Cτ of this pencil is given by

Cτ : cτ (t, x) := λ(x− t2) + (x− (t1 + t2)t+ t1t2)(x− (t3 + t4)t+ t3t4), (λ, t) ∈M.

Let Qτ = Co+Cτ . With the above equation, EQτ ,zo is given by the Weierstrass equation:

EQτ ,zo : y2 = fτ (t, x), fτ (t, x) = (x− t2)cτ (t, x)

Note that Qτ and explicit generators of EQτ ,zo(C(t)) are determined by Co and
zo, p1, . . . , p4 by Subsection 2.1.

Remark 3.2. Let Acτ be a symmetric matrix of the quardratic form corresponding
to cτ (t, x). The conic Cτ becomes two lines if and only if detAcτ = 0. It means that Cτ

consists of two lines precisely when λ = 0,−(t1 − t4)(t2 − t3),−(t1 − t3)(t2 − t4).

Now let us explain how we construct CL arrangements with Cmbijk. First we may
assume that quartics BP1

, BP2
are given by Qτ defined by the equation of the form

fτ (t, x) = 0, τ ∈ M. Also we keep our notation for lines and conics in Aj (j = 1, 2) as
in the beginning of this section.

The quartics having CmbBP1
are given by λ1 = 0, λ2 = −(t1 − t4)(t2 − t3) and

λ3 = −(t1 − t3)(t2 − t4) for a fixed t where we have P1 = {Co, L12, L34}, {Co, L13, L24}
and {Co, L14, L23}, respectively. On the other hand, once we choose one of the three
values λ1, λ2, λ3 and fix it, by interchanging the coordinates of t continuously, the pair
of lines {Lij , Lkl} i < j, k < l, {i, j, k, l} = {1, 2, 3, 4} are also continuously interchanged.
Hence we may assume that P1 is given by λ1 = 0 and BP1

= Co + L12 + L34. Here are
some more remarks:

• BP1
is determined by a 2-partition of {1, 2, 3, 4}. Since p0 is determined by this

2-partition, two tangent lines to Co that pass through p0 are also canonically de-
termined by t.

• Fix t. Then, smooth conics of type D(1, 0), D(2, 0) which pass through p1, p2, p3
and p4 are given by Cλ for some λ.

In order to describe R(Cmbijk), we define four disjoint subsets, M0 and Mi (i =
1, 2, 3), of M as follows:

M0 := {τ = (λ, t) ∈M | λ ̸= λ1, λ2, λ3},
Mi := {τ = (λ, t) ∈M | λ = λi} (i = 1, 2, 3).

Note that eachMi (i = 0, 1, 2, 3) is path connected.
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In the following, we explain how we construct conic-line arrangements with Cmbijk.
For P1, we may assume that P1 = {Co, L12, L34} for some fixed τ = (0, t) ∈M1.
Cmb111: In this case, A1 is one of the following

{L13, L24, L0}, {L13, L24, L
′
0}, {L14, L23, L0}, {L14, L23, L

′
0}

Cmb121: Any conic of type D(1, 0) is given by cτ ′(t, x) = 0 for some τ ′ = (λ′, t) ∈
M0, which we denote by D. Hence we may assume A2 is given by {L0, D} or {L′

0, D}.
Cmb122: The conic in A2 is of type D(1, 1). We denote a conic of type D(1, 1)

passing through pi, pj by Dij . Hence A2 is one of the following:

{L13, D24}, {L14, D23}, {L23, D14}, {L24, D13}.

We may assume that Dij is tangent to Co at zo. Since Dij is a conic through p0, pi, pj
that is tangent to Co at zo, it is uniquely determined. Hence any CL arrangement with
Cmb122 is determined by p1, p2, p3, p4 and zo.

Cmb123: The conic in A2 is of type D(1, 2). We denote a conic of type D(1, 2)

passing through pi, pj by Dij . We may assume that Dij is tangent to Co at zo. Hence
we see that A2 is one of the following:

{L0, D12}, {L′
0, D12}, {L0, D34}, {L′

0, D34}.

Note that L0, L
′
0, and Dij are obtained from sections of SQτ ,zo as in Table 1. Hence,

every CL arrangement with Cmb123 is determined by p1, p2, p3, p4 and zo.
Cmb124: The conic in A2 is of type D(1, 4), which we denote by D. We may assume

that D is tangent to Co at zo. Hence we see that A2 is one of the following:

{L13, D}, {L14, D}, {L23, D}, {L24, D}.

Note that Lij , D as above are obtained from sections of SQτ ,zo as in Table 1. Hence,
every CL arrangement with Cmb124 is determined by p1, p2, p3, p4 and zo.

Cmb125: The conic in A2 is of type D(1, 4), which we denote by D. We may assume
that D is tangent to Co at zo. Hence we see that A2 = {L0, D}, {L′

0, D}. Note that
L0, L

′
0, D are obtained from sections of SQτ ,zo as in the table in this section. Hence,

every CL arrangement with Cmb125 is determined by p1, p2, p3, p4 and zo.
For P2, we may assume that P2 = {Co, Cτ} for some fixed τ ∈ M0. From Table 1,

we see that there exist four bitangent lines for BP2
, which we denote by Lbi (1 ≤ i ≤ 4).

Table 1 shows that all bitangent lines of BP2
are determined by p1, p2, p3, p4 and are

canonically constructed if we choose zo.
Cmb211: A1 consists of three lines as follows: {L12, L34, Lb}, {L13, L24, Lb},

{L14, L23, Lb}, where there are four possibilities for Lb. By Table 1, every bitangent
line is given by three line points. Hence, every CL arrangement with Cmb211 is deter-
mined by τ .

Cmb212: A1 consists of a pair of four bitangent lines and Lij . There are 36 possi-
bilities for such collections. Yet, likewise Cmb211, every CL arrangement with Cmb212 is
determined by τ .
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Cmb213: A1 consists of three of four bitangent lines. Likewise Cmb211, every CL
arrangement with Cmb213 is determined by τ .

Cmb221: A2 consists of a bitangent line and a smooth conic of type D(2, 0). Every
CL arrangement with Cmb221 is determined by τ = (λ, t), τ ′ = (λ′, t) having the same t

but λ ̸= λ′ that give two smooth conics cτ (t, x), cτ ′(t, x) in the pencil Λt.
Cmb222: A2 consists of a line Lij and a conic of type D(2, 2). We denote a conic

of type D(2, 2) passing through pi, pj by Dij . Then we infer that A2 is of the form
{Lij , Dkl}, {i, j, k, l} = {1, 2, 3, 4}. We may assume that Dkl is tangent to Co at zo.
By Table 1, every CL arrangement with Cmb222 is determined by τ and zo with an
appropriate choice of Pij ’s.

Cmb223: A2 consists of a bitangent line Lb and a conic of type D(2, 2). We denote
a conic of type D(2, 2) passing through pi, pj by Dij . Then we infer that A2 is of the
form {Lb, Dij}. We may assume that Dij is tangent to Co at zo. By Table 1, every CL
arrangement with Cmb223 is determined by τ and zo with an appropriate choice of Pij ’s.

Cmb224: A2 consists of a line Lij and a conic D of type D(2, 4), which we denote by
D. We may assume that D is tangent to Co at zo. By Table 1, every CL arrangement
with Cmb224 is determined by τ and zo with an appropriate choice of Pij ’s.

Cmb225: A2 consists of a bitangent line Lb and a conic of type D(2, 4), which we
denote by D. We may assume that D is tangent to Co at zo. By Table 1, every CL
arrangement with Cmb225 is determined by τ and zo with an appropriate choice of Pij ’s.

4. Proof of Theorem 1.1

4.1. Our strategy
Let us explain our strategy to prove Theorem 1.1. Our approach is similar to that

we take in [1, Section 3]. As we see in Section 3, we first choose homogeneous coordinates
[T,X,Z] so that zo = [0, 1, 0] and Co is given by XZ − T 2 = 0. Next we choose τ . Then
we are able to construct CL arrangements with Cmbijk in a canonical way via sections
of SQλ,zo except those involving conics of type D(1, 0) and D(2, 0). Our basic idea to
prove Theorem 1.1 is to connect two CL arrangements with fixed Cmbijk by moving
τ , which is done in [1, Lemma 3.1, Remark 3.2, Corollary 3.3]. Let us explain it more
precisely. Let M and Mi (i = 0, 1, 2, 3) be as defined in Section 3. We first choose
zo. The deformation of the CL arrangements can be described by moving τ = (λ, t)

in Mi which can be described by giving a continuous path in Mi as in Section 3. We
consider γ : [0, 1] → Mi, s 7→ γ(s) = (λ(s), (t1(s), t2(s), t3(s), t4(s))) as such a path.
Let τo = (λo, (a1, a2, a3, a4)), τ

′
o = (λ′

o, (a
′
1, a

′
2, a

′
3, a

′
4)) ∈ Mi, γ(0) = τo and γ(1) = τ ′

o.
If ti(0) = ai and ti(1) = a′j , we say “ai goes to a′j along a path in Mi” and denote it
by ai ⇝ a′j . Note again that each Mi (i = 0, 1, 2, 3) is path connected. In our proof
of Theorem 1.1, we exploit M1 to describe connected components of R(Cmbijk) for
ijk = 111, 122, 123, 124, 125, while we exploit M0 to describe connected components of
R(Cmbijk)) ijk = 121, 211, 212, 213, 224. In this section, we keep the same notation
for lines and conics as those given in Section 3. Now we prove Theorem 1.1 based on
case-by-case arguments.
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4.2. Cmb111

Let Co be the conic as before and choose τ = (0, t) ∈ M1. We put two elements
Bτ , B

′
τ ∈ R(Cmb111) as follows:

Qτ = Co + L12,τ + L34,τ

Bτ := Qτ + Li1j1,τ + Li2j2,τ + L0,τ ,

B′
τ := Qτ + Li1j1,τ + Li2j2,τ + L′

0,τ .

Note that once we choose Li1j1,τ , the second line Li2j2,τ is automatically determined.
Choose a = (−2,−1, 1, 2), τo = (0,a) ∈ M1. In this case, L12,τo

: x + 3t + 2 = 0,
L34,τo

: x− 3t+ 2 = 0, L13,τo
: x+ t− 2 = 0, L24,τo

: x− t− 2 = 0 and p0 = (0,−2). As
for L0,τo

and L′
0,τo

, we have

L0,τo : x+ 2
√
2t+ 2 = 0, L′

0,τo
: x− 2

√
2t+ 2 = 0.

Define Bτo
, B′

τo
∈ Cmb111 to be

Bτo := Qτo + L13,τo + L24,τo + L0,τo ,

B′
τo

:= Qτo
+ L13,τo

+ L24,τo
+ L′

0,τo
.

Note that B′
τo

is transformed to Bτo
by (t, x) 7→ (−t, x). Now choose B ∈ R(Cmb111)

arbitrarily. By taking suitable coordinates of P2 so that the conic in B is given by Co

as before, we may assume that B is realized as Bτ for some τ ∈ M1. Consider a path
γ : [0, 1] → M1 so that (i) γ(0) = τ , γ(1) = τo, (ii) Bγ(s) ∈ R(Cmb111) for ∀s ∈ [0, 1]

and (iii) ti1 ⇝ −2, ti2 ⇝ −1, tj1 ⇝ 1 and tj2 ⇝ 2. Then B = Bτ is deformed to Bτo or
B′

τo
. As we remark above, Bτo

is transformed to B′
τo

. This shows that B is continuously
deformed to Bτo

in R(Cmb111). Hence R(Cmb111) is connected.

4.3. Cmb121

For τ = (λ, t) ∈M0, we define two elements Bτ , B
′
τ in R(Cmb121) by

Bτ := Co + L12,τ + L34,τ +Dτ + L0,τ , B
′
τ := Co + L12,τ + L34,τ +Dτ + L′

0,τ .

Here Dτ is the conic given by cτ (t, x) = 0. Put a = (−2,−1, 1, 2) and choose τo =

(λo,a) ∈M0 so that both of

Bτo
= Co + L12,τo

+ L34,τo
+Dτo

+ L0,τo
, B′

τo
= Co + L12,τo

+ L34,τo
+Dτo

+ L′
0,τo

are in R(Cmb121). Now choose B ∈ R(Cmb121) arbitrarily. By taking suitable co-
ordinates of P2 so that the conic in B is given by Co as before, we may assume that
B is realized as Bτ for some τ ∈ M0. Consider a path γ : [0, 1] → M0 so that (i)
γ(0) = τ , γ(1) = τo, (ii) Bγ(s) ∈ R(Cmb121) for ∀s ∈ [0, 1] and (iii) t1 ⇝ −2, t2 ⇝ −1,
t3 ⇝ 1 and t4 ⇝ 2. Then B = Bτ is deformed to Bτo or B′

τo
. As Dτo is invariant under

(t, x) 7→ (−t, x) for any λo, Bτo
is transformed to B′

τo
. This shows that B is continuously

deformed to Bτo
in R(Cmb121). Hence R(Cmb121) is connected.
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4.4. Cmb122

Let B be an arbitrary element in R(Cmb122). By choosing coordinates of P2 so that
the conic in P1 is given by Co and D is tangent to Co at zo, we may assume that B is
deformed to an element in R(Cmb122) of the form

Bτ = Co + L12,τ + L34,τ + Li1j1,τ +Di2j2,τ ,

for some τ ∈ M1, where {i1, i2} = {1, 2}, {j1, j2} = {3, 4}. Take a = (−2,−1, 1, 2),
τo = (0,a) ∈M1 and consider

Bτo
= Co + L12,τo

+ L34,τo
+ L14,τo

+D23,τo
,

where D23,τo
is given by x− 3t2+2 = 0. Now consider a path γ : [0, 1]→M1 so that (i)

γ(0) = τ , γ(1) = τo, (ii) Bγ(s) ∈ R(Cmb122) for ∀s ∈ [0, 1] and (iii) t1 ⇝ −2, t2 ⇝ −1,
t3 ⇝ 1 and t4 ⇝ 2. Then we infer that B is deformed to Bτo in R(Cmb122). Hence
R(Cmb122) is connected.

4.5. Cmb123

As for notation and terminology of this subsection about elliptic surfaces, we use
those in Section 2.

We first show that there exists a Zariski pair (B1, B2) for the combinatorics Cmb123.
Let CL123 := P1 ⊔ A2 (P1 = {C,L1, L2},A2 = {D,M}) be a CL arrangement with
Cmb123. Let Q := BP1 and choose the tangent point between C and D as zo. We
assume that D is tangent to L1 and L1 = L12, L2 = L34. Let SQ,zo be the rational
elliptic surface as before. Then D and M give rise to a conic point PD and a line point
PM . By Table 1, we have

PD = [±1](P13+̇P14) or [±1](P13−̇P14),

PM = [±1](P13+̇P14+̇P34) or [±1](P13−̇P14+̇P34).

Our tool to distinguish the embedded topology of CL arrangement with Cmb123 is the
so called splitting types introduced in [7] as follows:

Definition 4.1 ([7, Definition 2.3]). Let ϕ : X → P2 be a double cover branched
at a plane curve B, and let D1, D2 ⊂ P2 be two irreducible curves such that ϕ∗Di

are reducible and ϕ∗Di = D+
i + D−

i . For integers m1 ≤ m2, we say that the triple
(D1, D2;B) has splitting type (m1,m2) if for a suitable choice of labels D+

1 · D
+
2 = m1

and D+
1 ·D

−
2 = m2.

The following proposition enables us to distinguish the embedded topology of plane
curves by the splitting type.

Proposition 4.2 ([7, Proposition 2.5]). Let ϕi : Xi → P2 (i = 1, 2) be two
double covers branched along plane curves Bi, respectively. For each i = 1, 2, let Di1

and Di2 be two irreducible plane curves such that ϕ∗
iDij are reducible and ϕ∗

iDij =

D+
ij + D−

ij. Suppose that Di1 ∩ Di2 ∩ Bi = ∅, Di1 and Di2 intersect transversally, and
that (D11, D12;B1) and (D21, D22;B2) have distinct splitting types. Then there is no
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homeomorphism h : P2 → P2 such that h(B1) = B2 and {h(D11), h(D12)} = {D21, D22}.

Under these conditions, we have the following lemma:

Lemma 4.3. (D,M ;Q) = (0, 2) if and only if PD+̇PM +̇P34 = O with a suitable
choice of PD and PM .

Proof. Let sD and sM be the sections corresponding to PD and PM , respectively.
By [8, Lemma 2.3],

sD · sM = −⟨PD, PM ⟩+ 1.

Hence (D,M ;Q) = (0, 2) if and only if (⟨PD, PM ⟩, ⟨PD, [−1]PM ⟩) = (1,−1) or (−1, 1).
Now our statement follows from Table 2. □

PD PM ⟨PD, PM ⟩ sD · sM
P13±̇P14 P13±̇P14+̇P34 1 0

P13±̇P14 [−1](P13±̇P14+̇P34) −1 2

P13±̇P14 P13∓̇P14+̇P34 0 1

P13±̇P14 [−1](P13∓̇P14+̇P34) 0 1
Table 2. The values of height pairings and intersection numbers.

For Cmb123, we can also take {D,M,L34} (resp. {C,L12}) as P1 (resp. A2). Put
Q′ = D +M + L34. Then we can also consider (C,L12;Q′) and the next lemma holds.

Lemma 4.4. (C,L12;Q′) = (0, 2) if and only if (D,M : Q) = (0, 2).

Proof. We choose homogeneous coordinates of P2 as before. If (D,M ;Q) =

(0, 2), then we may assume that PD+̇PM +̇P34 = O. Put PD = (xPD
, yPD

), PM =

(xPM
, yPM

). Since the x-coordinates of PD and PM give defining equations of D and M ,
respectively, we may assume that xPD

, xPM
∈ C[t], deg xPD

= 2,deg xPM
= 1 and there

exist mx+n ∈ C(t)[x] such that three points PD, PM and P34 are on the line y = mx+n

in A2
C(t). Put

fQ′,zo := (x− xPM
)(x− xPD

)(x− (t3 + t4)t− t3t4).

Then we have

fτ (t, x)− (mx+ n)2 = fQ′,zo , τ = (0, t) ∈M1.

Now consider a rational elliptic surface SQ′,zo whose Weierstrass equation of EQ′,zo

is given by y2 = fQ′,zo . From the above relation, the three points R1, R2 and R3 given
by

R1 := (t2,
√
−1(mt2+n)), R2 := (xP13 ,

√
−1(mxP13+n)), R3 := (xP34 ,

√
−1(mxP34+n)),

where xPij
= (ti + tj)t − titj , are on y =

√
−1(mx + n). Hence R1+̇R2+̇R3 = O

(By abuse of notation, we use O for the identity element of EQ′,zo). By Lemma 4.3,
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(C,L12;Q′) = (0, 2). The converse statement follows by the same argument. □
Now put

B1 := Q+D + L0, B2 := Q+D + L′
0

where D = f̃Q,z0(sP13+̇P14
), L0 = f̃Q,zo(sP13+̇P14+̇P34

) and L′
0 = f̃Q,zo(sP13−̇P14+̇P34

).
Then we have

Proposition 4.5. (B1, B2) is a Zariski pair.

Proof. Suppose that there exists a homeomorphism h : (P2, B1) → (P2, B2).
Then either h(Q) = Q or h(Q′) = Q holds. Since (D,L0;Q) = (C,L1;Q′) = (0, 2),
(D,L′

0;Q) = (1, 1), both cases are impossible by [7, Proposition 2.5]. □

Remark 4.6. The mx + n in our proof of Lemma 4.3 is in C[t, x] and its total
degree is 2 as fτ (t, x)− (mx+ n)2 = fQ′,zo . Since p3, p4 and p0 are on both L34 and the
conic C̃ given by mx+ n = 0 in the (t, x)-plane, we see that C̃ contains L34. Hence we
infer that the three tangent points between D +M and C + L12 are collinear.

Here we give an explicit example of a Zariski pair for Cmb123. We keep the previous
notation.

Example 4.7. Let Qτo
be a plane quartic given by fτo

= 0 as before where
a = (−2,−1, 1, 2), τo = (0,a) ∈ M1. Let SQτo ,zo

be the rational elliptic surface given
by the Weierstrass equation y2 = fQτo ,zo

and zo = [0, 1, 0]. In this case, we have

P13 = (−t+ 2, 2
√
2(t− 1)(t+ 2)), P14 = (4, 3(t− 2)(t+ 2))

and PDτo
:= P13+̇P14, PD′

τo
:= P13−̇P14, PMτo

:= PDτo
+̇P34 and PM ′

τo
:= PD′

τo
+̇P34 as

follows:

PDτo
= (xDτo

, yDτo
)

xDτo
= (−12

√
2 + 18)t2 + (36

√
2− 51)t+ 34− 24

√
2,

yDτo
= 6(t− 2)(12

√
2t− 17

√
2− 17t+ 24)(t− 1),

PD′
τo

= (xD′
τo
, yD′

τo
),

xD′
τo

= (12
√
2 + 18)t2 + (−36

√
2− 51)t+ 34 + 24

√
2,

yD′
τo

= 6(t− 2)(12
√
2t− 17

√
2 + 17t− 24)(t− 1)

PMτo
= (xMτo

, yMτo
) = (−2

√
2t− 2,−t2 −

√
2t)

PM ′
τo

= (xM ′
τo
, yM ′

τo
) = (2

√
2t− 2, t2 −

√
2t)

Note that lines given by x−xMτo
and x−xM ′

τo
coincide with L0,τo and L′

0,τo
, respectively.

Now put

B1,τo
:= Qτo

+Dτo
+ L0,τo

, B2,τo
:= Qτo

+Dτo
+ L′

0,τo
,
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where Dτo
is a conic of type D(1, 2) given by x − xDτo

= 0. We can easily check that
B1,τo

, B2,τo
∈ R(Cmb123) using a computer algebra system. Hence (B1,τo

, B2,τo
) is an

explicit example of a Zariski pair given in Proposition 4.5.

We now go on to study the connected components of R(Cmb123).

Proposition 4.8. Any element B ∈ R(Cmb123) is deformed to either B1,τo or
B2,τo in Example 4.7, i.e., R(Cmb123) has just two connected components.

Proof. By Example 4.7, R(Cmb123) has at least two connected components. Let
B be an element in R(Cmb123). We show that B is continuously deformed to B1,τo or
B2,τo in Example 4.7. By taking homogeneous coordinates suitably, we may assume that
B is of the form

B = Bτ = Qτ +Dτ +Mτ , Qτ = Co + L12,τ + L34,τ

for some τ = (0, t) ∈M1 and Dτ and Mτ are the conic and line described in Section 3.
We may also assume that Dτ passes through p3 and p4 and is tangent to L12,τ . Now
consider a path γ : [0, 1]→M1 such that (i) γ(0) = τ , γ(1) = τo, (ii) Bγ(s) ∈ R(Cmb123)

for ∀s ∈ [0, 1] and (iii) t1 ⇝ −2, t2 ⇝ −1, t3 ⇝ 1 and t4 ⇝ 2. Then Bγ(0) = B and

Bγ(1) = Qτo +D12,γ(1) +Mγ(1),

where

Dγ(1) = Dτo
or D′

τo
, Mγ(1) = L0,τo

or L′
0,τo

,

where D′
τo

is the conic given by x− xD′ = 0.
Case (i): Dγ(1) = Dτo

. In this case, Bγ(1) is either B1,τo
or B2,τo

.
Case (ii): Dγ(1) = D′

τo
. In this case, Bγ(1) is either Qτo

+D′
τ +L0,τo

or Qτo
+D′

τ +

L′
0,τo

. Consider families of lines and parabolas as follows:

Lu1u2 : x− (u1 + u2)t+ u1u2 = 0, (u1, u2) ∈ C2, u1 ̸= u2,

Dµ: x− µt2 − (3− 3µ)t− 2µ+ 2 = 0, µ ∈ C×.

Namely, Lu1u2 is a line intersecting Co at (u1, u
2
1) and (u2, u

2
2) and Dµ is a parabola

passing (1, 1) and (2, 4). Note that Dµ = Dτo (resp. D′
τo

) when µ = 18 − 12
√
2 (resp.

µ = 18 + 12
√
2). It can be easily checked that the condition for Lu1u2

and Dµ to be
tangent is that (u1, u2, µ) satisfies

(∗) µ2 − 4u1u2µ+ 6(µ− 1)(u1 + u2) + (u1 + u2)
2 − 10µ+ 9 = 0.

Note that the surface given by (∗) in the (u1, u2, µ)-space is irreducible and connected.
Now consider a path γ̄ : [0, 1] → M1 × C×, γ̄(s) = (0, u1(s), u2(s), 1, 2, µ(s)) such that
(i) (u1(s), u2(s), µ(s)) satisfies (∗) and (ii) γ̄(0) = (0,−2,−1, 1, 2, 18+ 12

√
2) and γ̄(1) =

(0,−2,−1, 1, 2, 18 − 12
√
2). Since (i) Dµ(s) is tangent to Lu1u2

and (ii) the line Mγ̄(s)

is determined by Lu1u2
∩ L34,a and the initial line Mγ̄(0), we infer that there exists
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a continuous family Bγ̄(s) (0 ≤ s ≤ 1) in R(Cmb123) such that Bγ̄(0) = Bγ(1) and
Bγ̄(1) = B1,τo

or B2,τo
. Thus our statement follows. □

4.6. Cmb124

In [34], we have seen that there exists a Zariski pair for Cmb124. Hence R(Cmb124)

has at least two connected components. In this subsection, we will show that there exist
only two components. Let us start with the following example.

Example 4.9. Let τo = (0,a) ∈M1 and Qτo
be as before. We label p1, p2, p3 and

p4 in the same way. Namely, the lines contained in Qτo
are L12,τo

and L34,τo
. In this

case, we have

[2]P13 =

(
9

8
t2,

√
2

32
(−9t3 + 16t)

)
, [2]P14 =

(
t2 +

1

4
,
1

2
t2 − 9

8

)
.

Now put

Dτo
: f̃Qτo ,zo

(s[2]P13
) = x− 9

8
t2 = 0, L13,τo

: f̃Qτo ,zo
(sP13

) = x+ t− 2 = 0,

L14,τo : f̃Qτo ,zo
(sP14) = x− 4 = 0.

Now define B1 and B2 to be

B1,τo := Qτo +Dτo + L13,τo , B2,τo := Qτo +Dτo + L14,τo .

Then by [34, Theorem 5], (B1,τo
, B2,τo

) is a Zariski pair.

Now we show the following proposition.

Proposition 4.10. Let B be an arbitrary member in R(Cmb124). Then B is
continuously deformed to either B1,τo or B2,τo in Example 4.9. In particular, R(Cmb124)

has just two connected components.

Proof. After taking a suitable coordinate change, we may assume that B is of
the form

B = Bτ = Qτ +Dτ + L13,τ ,

for some τ = (0, t) ∈M1. Here Dτ is either f̃Qτ ,zo(s[2]P13,τ
) or f̃Qτ ,zo(s[2]P14,τ

).
Case Dτ = f̃Qτ ,zo(s[2]P13,τ

). Consider a path γ : [0, 1]→M1 such that (i) γ(0) = τ ,
γ(1) = τo, (ii) Bγ(s) ∈ R(Cmb124) for ∀s ∈ [0, 1] and (iii) t1 ⇝ −2, t2 ⇝ −1, t3 ⇝ 1

and t4 ⇝ 2. This shows that B is continuously deformed to B1,τo
while keeping the

combinatorics.
Case Dτ = f̃Qτ ,zo(s[2]P14,τ

). Consider a path γ : [0, 1]→M1 such that (i) γ(0) = τ ,
γ(1) = τo, (ii) Bγ(s) ∈ R(Cmb124) for ∀s ∈ [0, 1] and (iii) t1 ⇝ −2, t2 ⇝ −1, t3 ⇝ 2

and t4 ⇝ 1. Then L13,τ (resp. L14,τ ) is deformed to L14,τo
(resp. L13,τo

) and Dτ is
deformed to f̃Qτ ,zo(s[2]P13,τo

) accordingly. Hence B is continuously deformed to B2,τo

while keeping the combinatorics. □
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4.7. Cmb125

Choose B ∈ R(Cmb125) arbitrarily. By taking appropriate coordinates of P2, we may
assume that C1 = Co, D is tangent to Co at zo = [0, 1, 0] and there exists τ = (0, t) ∈M1

such that B is of the form

Bτ = Co + L12,τ + L34,τ +Dτ + L0,τ .

By Table 1, Dτ is given by the image of s[2]Pij
under f̃Qτ ,zo . Take a = (−2,−1, 1, 2),

τo = (0,a) ∈M1 and consider an element of R(Cmb125) given by

Bτo = Co + L12,τo + L34,τo +Dτo + L0,τo ,

where Dτo
is given by [2]P23. By [34, Example 5.2], Dτo

is given by x − t2 − 1/4 = 0.
Now we choose a path γ : [0, 1] → M1 such that (i) γ(0) = τ , γ(1) = τo, (ii) Bγ(s) ∈
R(Cmb125) for ∀s ∈ [0, 1] and (iii) ti ⇝ −1, tj ⇝ 1. By the deformation along γ, Lij is
deformed to L23. Hence Dτ is deformed to Dτo

. If L0,τ is deformed to L0,τo
, we see that

B is deformed to Bτo . If L0,τ is deformed to L′
0,τo

, then we apply the transformation
(t, x) 7→ (−t, x) and see that B is deformed to Bτo . Thus R(Cmb125) is connected.

4.8. Cmb211

Let us start with the following remark.

Remark 4.11. Let BP2
be a quartic given by a conic arrangement P2. It is

known that there exist four bitangent lines for BP2
. When we deform the conics in P2

continuously, these bitangents are also deformed along with the conics. Note that this
observation follows by considering the dual curves of the conics in P2. We make use of
this observation repeatedly in the rest of this article.

Consider two conics Co1 and Co2 given by

Co1 : t2 + x2 + tx− 27

4
= 0, Co2 : t2 + x2 − tx− 27

4
= 0.

We write Co1 ∩ Co2 by p = {p1, p2, p3, p4} whose affine coordinates are given by

p1 =

(
0,

3

2

√
3

)
, p2 =

(
3

2

√
3, 0

)
, p3 =

(
0,−3

2

√
3

)
, p4 =

(
−3

2

√
3, 0

)
.

The bitangent lines of Co1 + Co2 are

Lb1,p : t = 3, Lb2,p : t = −3, Lb3,p : x = 3, Lb4,p : x = −3.

Now put

Boi := Co1 + Co2 + L13,p + L24,p + Lbi,p, i = 1, 2, 3, 4.

Then Boi ∈ R(Cmb211) and all of them are transformed by some projective transforma-
tion each other.

Hence it is enough to show that an arbitrary element B ∈ R(Cmb211) can be con-
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tinuously deformed to Boi ∈ R(Cmb211) for some i.
We may assume that B is given in the following form:

Bτ = Qτ + L13,τ + L24,τ + Lb1,τ ,

where Qτ = Co + Cτ for some τ = (λ, t) ∈ M0. Let ϕ : P2 → P2 be a projective
transformation such that ϕ(Co) = Co1. Then there exists τc = (λc, c) ∈ M0 such that
ϕ(Cτc) = Co2 and points in Co ∩ Cτc are labeled so that Lij,τc = Lij,p holds. Now we
choose a path γ : [0, 1]→M0 such that (i) γ(0) = τ , γ(1) = τc, (ii) Bγ(s) ∈ R(Cmb211)

for ∀s ∈ [0, 1] and (iii) ti ⇝ ci (i = 1, 2, 3, 4). We see that B can be continuously deformed
along γ in R(Cmb211) to B1 := Co + Cτc + L13,τc + L24,τc + Lb,τc . Here Lb,τc denotes
a bitangent to Co + Cτc . As ϕ(B1) = Boi for some i, we infer that B is continuously
deformed to Boi and that R(Cmb211) is connected.

4.9. Cmb212

We first show that there exists a Zariski pair for Cmb212. Let Qτ = Co + Cτ and
B = Qτ + Lij + Lbk + Lbl ∈ R(Cmb212). Choose zo ∈ Co so that the tangent line at zo
meets Cτ at two distinct points. Let φQτ ,zo : SQτ ,zo → P1 and f̃Qτ ,zo : SQτ ,zo → P2 as
in Subsection 2.1. As we have seen in Table 1 or [8, Section 3.2], if we put

Q1 := P12+̇P13+̇P23, Q2 := [−1]P12+̇P13+̇P23,

Q3 := P12+̇[−1]P13+̇P23, Q4 := P12+̇P13+̇[−1]P23,

then we may assume that Lbi := f̃Qτ ,zo(sQi
) (i = 1, 2, 3, 4) are the four bitangent lines

of Qτ . Then by [34, Theorem 3.2 and 3.3] and the argument in p.629-630 in [34], we
have the following proposition:

Proposition 4.12. Let p be an odd prime. There exists a D2p-cover of P2 branched
at 2Qτ + p(Lij +Lbk +Lbl) if and only if the images of Pij , Qk, Ql in EQλ,zo are linearly
dependent over Z/pZ.

By Proposition 4.12, we have:

Corollary 4.13. Let Bkl := Qτ + L13 + Lbk + Lbl. Then (B13, Bkl)

(resp.(B24, Bkl)) is a Zariski pair where (k, l) ̸= (2, 4) (resp.(k, l) ̸= (1, 3)).

Proof. If a homeomorphism h : (P2, B13)→ (P2, Bkl) exists, it satisfies h(Qτ ) =

Qτ . Hence our statement follows from Proposition 4.12. □

Remark 4.14. We may use the connected number for L13+Lbk+Lbl with respect
to f ′

Qτ
to prove our statement. In fact, for example, the connected number is 2 for

(k, l) = (1, 3), while it is 1 for (k, l) = (1, 2). This shows (B12, B13) is a Zariski pair. As
for connected numbers, see [29] for details.

Let us now consider an explicit example.

Example 4.15. Let Qτo
= Co + Cτo

be a plane quartic given by fQτo
= 0 where

τo = (λo,a) = (−10,−2,−1, 1, 2) ∈ M0. Let SQτo
be the rational elliptic surface given
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by the Weierstrass equation y2 = fQτo
and zo = [0, 1, 0]. In this case, we have

P12 =
(
−3t− 2,−i

√
10t2 − 3i

√
10t− 2i

√
10
)
,

P13 =
(
−t+ 2,−i

√
2t2 − i

√
2t+ 2i

√
2
)
,

P23 =
(
1,−i t2 + i

)
.

Under this setting, PLb1
:= P12+̇P13+̇P23, PLb2

:= P12+̇P13−̇P23, PLb3
:=

P12−̇P13+̇P23 and PLb4
:= [−1]P12+̇P13+̇P23 are given as follows:

PLb1
=

(
√
2(
√
5 + 3)t− 3

√
5− 7, (2

√
5 + 3)it2 −

√
2

2
(15
√
5 + 29)it+ 2(7

√
5 + 15)i

)
,

PLb2
=

(
−
√
2(
√
5 + 3)t− 3

√
5− 7, (2

√
5 + 3)it2 +

√
2

2
(15
√
5 + 29)it+ 2(7

√
5 + 15)i

)
,

PLb3
=

(
√
2(
√
5− 3)t+ 3

√
5− 7,−(2

√
5− 3)it2 −

√
2

2
(15
√
5− 29)it− 2(7

√
5− 15)i

)
,

PLb4
=

(
−
√
2(
√
5− 3)t+ 3

√
5− 7,−(2

√
5− 3)it2 +

√
2

2
(15
√
5− 29)it− 2(7

√
5− 15)i

)
.

Now put Lbi,τo : fQτo ,zo(sPbi
) = 0. Then we have

Lb1,τo : x−
√
2(
√
5 + 3)t+ 3

√
5 + 7 = 0, Lb2,τo : x+

√
2(
√
5 + 3)t+ 3

√
5 + 7 = 0,

Lb3,τo : x−
√
2(
√
5− 3)t− 3

√
5 + 7 = 0, Lb4,τo : x+

√
2(
√
5− 3)t− 3

√
5 + 7 = 0.

We put

Bij,τo
:= Qτo

+ L13,τo
+ Lbi,τo

+ Lbj,τo
, i, j = 1, 2, 3, 4, i ̸= j.

Then (B13,τo
, Bij,τo

) (resp.(B24,τo
, Bij,τo

)) are Zariski pairs for (i, j) ̸= (2, 4)

(resp.(i, j) ̸= (1, 3)) by Corollary 4.13.

We give another example of a CL arrangement in Cmb212, which plays an important
role to study the connectivity for R(Cmb212).

Example 4.16. Let Co1 and Co2 be conics given by

Co1 : t2 + x2 + tx− 27

4
= 0, Co2 : 676t2 + 764tx+ 676x2 − 4563 = 0.

We write Co1 ∩ Co2 by p = {p1, p2, p3, p4} whose affine coordinates are given by

p1 =

(
3

2

√
3, 0

)
, p2 =

(
0,−3

2

√
3

)
, p3 =

(
−3

2

√
3, 0

)
, p4 =

(
0,

3

2

√
3

)
.

The bitangent lines of Co1 + Co2 are
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Lb1,p : 15t+ 8x− 39 = 0, Lb2,p : 8t+ 15x+ 39 = 0,

Lb3,p : 15t+ 8x+ 39 = 0, Lb4,p : 8t+ 15x− 39 = 0.

Now put

Bij,p := Co1 + Co2 + L13,p + Lbi,p + Lbj,p, i, j = 1, 2, 3, 4.

Then Bij,p ∈ R(Cmb212).

Now we show the following proposition.

Proposition 4.17. The curve B13,p can be continuously deformed to B24,p while
preserving the combinatorics Cmb212.

Proof. Let β be a parameter and Co2,β be a conic defined by

Co2,β : 4
(
β2 + β + 1

)2
t2 + 4

(
2β4 + 4β3 − 6β2 − 8β − 1

)
tx

+4
(
β2 + β + 1

)2
x2 − 27

(
β2 + β + 1

)2
= 0.

The conic Co2,β passes through p1, p2, p3, p4 and furthermore, Co2,β = Co2 for β =

−4,− 5
7 ,−

2
7 , 3. Note that L13,p is fixed since pi does not depend on the parameter β.

Also, Co2,β = Co1 if (β2 + 4β + 1)(β2 − 2β − 2) = 0 and Co2,β has singular points if
(β2 + β + 1)(2β2 + 2β − 1)(2β + 1) = 0.

The three lines L13,p, Lbi,p,β , Lbj,p,β (i, j ∈ {1, 2, 3, 4}) intersect at one point if β =

−2,−1, 0, 1. Now we have the following bitangent lines Lbi,p,β of Co1 + Co2,β when
β(β − 1)(β +1)(β +2)(β2 +4β +1)(β2 − 2β − 2)(β2 + β +1)(2β2 +2β − 1)(2β +1) ̸= 0:

Lb1,p,β : (β2 + 2β)t+ (β2 − 1)x− (3β2 + 3β + 3) = 0

Lb2,p,β : (β2 − 1)t+ (β2 + 2β)x+ (3β2 + 3β + 3) = 0

Lb3,p,β : (β2 + 2β)t+ (β2 − 1)x+ (3β2 + 3β + 3) = 0

Lb4,p,β : (β2 − 1)t+ (β2 + 2β)x− (3β2 + 3β + 3) = 0.

For β = −4,− 5
7 ,−

2
7 , 3, we have the following table:

β −4 − 5
7 − 2

7 3

Lb1,p,β Lb4,p Lb3,p Lb2,p Lb1,p

Lb2,p,β Lb3,p Lb4,p Lb1,p Lb2,p

Lb3,p,β Lb2,p Lb1,p Lb4,p Lb3,p

Lb4,p,β Lb1,p Lb2,p Lb3,p Lb4,p

By considering Co1 + Co2,β + L13,p + Lb1,p,β + Lb3,p,β and Co1 + Co2,β + L13,p +

Lb2,p,β + Lb4,p,β for β = −4,− 5
7 ,−

2
7 , 3, we see that

Co1 + Co2 + L13,p + Lb1,p + Lb3,p ⇝ Co1 + Co2 + L13,p + Lb2,p + Lb4,p
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since we can deform while avoiding the finite number of exceptional values of β where
the combinatorics becomes degenerated. Hence our statement follows. □

Remark 4.18. By the proof in the above proposition, we see that there also exists
deformations Bij,p ⇝ Bkl,p that preserves the combinatorics for (i, j, k, l) = (1, 2, 3, 4),
(1, 4, 2, 3) or (1, 3, 2, 4).

Corollary 4.19. The curve B12,p can be continuously deformed to B14,p while
preserving the combinatorics Cmb212.

Proof. We use the same example in Proposition 4.17. We put

B12,p,β := Co1 + Co2,β + L13,p + Lb1,p,β + Lb2,p,β ,

B14,p,β := Co1 + Co2,β + L13,p + Lb1,p,β + Lb4,p,β .

By letting β′ = 0, we see that C ′
o2 := Co2,β′ is given by

C ′
o2 : t2 + x2 − tx− 27

4
= 0.

and the bitangent lines of Co1 + C ′
o2 are

Lb1,p,β′ : x− 3 = 0, Lb2,p,β′ : t+ 3 = 0, Lb3,p,β′ : x+ 3 = 0, Lb4,p,β′ : t− 3 = 0.

Then B12,p,β′ , B14,p,β′ ∈ R(Cmb212) are transformed to each other by [T,X,Z] 7→
[−T,X,Z]. Hence B12,p can be deformed to B14,p, and our assertion follows. □

We are now in position to prove the following proposition:

Proposition 4.20. Any element B ∈ R(Cmb212) is deformed to either B12,p or
B13,p in Example 4.16, i.e., R(Cmb212) has exactly two connected components.

Proof. Our proof consists of two steps:

(I) Any element B ∈ R(Cmb212) is deformed to Bij,τo (i, j ∈ {1, 2, 3, 4}, i ̸= j) in
Example 4.15.

(II) Bij,τo
is deformed to either B12,p or B13,p in Example 4.16.

Since B12,p and B13,p belong to distinct connected components of R(Cmb212), Steps (I)
and (II) imply Proposition 4.20.

Step (I): After taking a suitable coordinate change and labeling the intersection
points C1 ∩ C2, we may assume that B is given as follows:

There exists τ ∈M0 such that

B = Bτ = Qτ + Li1i2,τ + Lbj1,τ + Lbj2,τ , i1, i2, j1, j2 ∈ {1, 2, 3, 4}, i1 ̸= i2, j1 ̸= j2

where Lbj1,τ and Lbj2,τ are given by f̃Qτ ,zo(Qj1) and f̃Qτ ,zo(Qj2), respectively.
Now consider a path γ : [0, 1] →M0 such that (i) γ(0) = τ , γ(1) = τo (ii) Bγ(s) ∈

R(Cmb212) for ∀s ∈ [0, 1], and (iii) t1 ⇝ −2, t2 ⇝ −1, t3 ⇝ 1, t4 ⇝ 2. Then B is
deformed to Bij,τo

. Hence we have the assertion in Step (I).



The realization spaces of certain conic-line arrangements of degree 7 23

Step (II): Let Bij,τo
be the CL-arrangement as in Example 4.15. By Corollary 4.13,

R(Cmb212) has at least two connected components. Here we show that any Bij,τo
which

has 6 possibilities can be continuously deformed to either B12,p or B13,p.
Let ϕ : P2 → P2 be a projective transformation such that ϕ(Co) = Co1. We choose

c = (c1, c2, c3, c4) and τc = (λc, c) ∈M0 such that ϕ(Qτc) = Co1+Co2. Now we choose a
path γ inM0 as in Step (I) such that γ(0) = τc and γ(1) = τo. Then we infer that Bij,τo

is continuously deformed to Bi1j1,τc in R(Cmb212). Since ϕ(Bi1j1,τc) = Bi2j2,p for some
i2, j2, we see that Bij,τo

is continuously deformed to Bi2j2,p. Now by Proposition 4.17
and Corollary 4.19, Bij,p is deformed to either B12,p or B13,p and we have the assertion
in Step (II). □

4.10. Cmb213

We keep our notation in Cmb211. Let B be an arbitrary element in R(Cmb213) and
we may assume that B is given in the form

B = Bτ = Qτ + Lb1,τ + Lb2,τ + Lb3,τ

for some τ = (λ, t) ∈ M0. In other words, B is determined by the residual bitangent
Lb4,τ . Hence we infer that it is enough to show that Qτ + Lb4,τ can be continuously
deformed to Co1 +Co2 +Lbi,p with keeping the combinatorics. This is done in the same
way as in Cmb211. Hence R(Cmb213) is connected.

4.11. Cmb221

Let B = C1 + C2 + D + M ∈ R(Cmb221). As we have seen in Subsection 4.10,
C1 + C2 + M can be continuously deformed to Co1 + Co2 + Lbi,p while keeping the
combinatorics. Since D is a member of the pencil generated by C1 and C2, such a conic
is deformed simultaneously with keeping Cmb221. Hence we infer that B is continuously
deformed to Co1+Co2+C ′+Lbi,p, where C ′ is a member of the pencil generated by Co1

and Co2. Hence R(Cmb221) is connected.

4.12. Cmb222

For Cmb222, any element B = C1 + C2 + D + M ∈ R(Cmb222) is determined by
C1 +C2 +D. As we have seen in [1, Lemma 3.1], R(CmbC1+C2+D) is connected and so
is R(Cmb222).

4.13. Cmb223

This case was discussed in [1] and R(Cmb223) has exactly two connected compo-
nents.

4.14. Cmb224

Choose C1 + C2 +D +M ∈ Cmb224. Let us start with the following lemma.

Lemma 4.21. Let C1 + C2 + D be a conic arrangement as above. Then
R(CmbC1+C2+D) is connected.

Proof. We label the four tangent points between (C1 + C2) ∩ D by C1 ∩ D =

{q1, q3} and C2 ∩ D = {q2, q4}. Let Lq1q3 (resp. Lq2q4) be a line connecting q1 and q3
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(resp. q2 and q4). Then C1 (resp. C2) is a member of the pencil generated by D and
2Lq1q2 (resp. D and 2Lq2q4).

Now consider a projective transformation ϕ : P2 → P2 such that ϕ(D) = Do where
Do is a conic given by T 2 +X2 = Z2. Put qoi = ϕ(qi) (i = 1, 2, 3, 4). Then ϕ(Lq1q3) =

Lqo1qo3 and ϕ(Lq2q4) = Lqo2qo4 . Now we move qoi (i = 1, 2, 3, 4) continuously so that

qo1 ⇝ (1, 0), qo2 ⇝ (0, 1), qo3 ⇝ (−1, 0), qo4 ⇝ (0,−1).

Since the two pencils of conics are also continuously deformed along with qoi (i =

1, 2, 3, 4), we infer that C1 + C2 +D is continuously deformed to C1a + C2a +Do while
keeping the combinatorics CmbC1+C2+D, where

C1a :

(
t

a

)2

+ x2 = 1, C2a : t2 +
(x
a

)2
= 1, (a ∈ R>1).

□

In [34], we have seen there exists a Zariski pair for Cmb224. Hence R(Cmb224) has
at least two connected components. In this subsection, we will show that R(Cmb224) has
just two connected components. We denote a member ofR(Cmb224) by B = BP2+D+M ,
where D is a conic of type D(2, 4). Next, we consider an explicit example, which gives
‘base points’ in R(Cmb224).

Example 4.22. Let Qτo and SQτo ,zo
(τo = (λo,a)) be the quartic and the rational

elliptic surface considered in Example 4.15. In this case, we have

P12 =
(
−3t− 2,−i

√
10t2 − 3i

√
10t− 2i

√
10
)
,

P13 =
(
−t+ 2,−i

√
2t2 − i

√
2t+ 2i

√
2
)
,

P14 =
(
4,−i t2 + 4i

)
.

and by using the duplication formula of the group law on EQτo ,zo

[2]P12 =

(
1

10
t2,− 3

100
i
√
10(t2 + 20)t

)
,

[2]P13 =

(
1

2
t2,−1

4
i
√
2(t+ 2)(t− 2)t

)
,

[2]P14 =

(
t2 − 9

4
,−3

2
i(t2 +

19

4
)

)
.

Now put

D24,τo
: f̄Qτo,zo

(s[2]P12
) = x− 1

10
t2 = 0,

L12,τo : f̄Qτo,zo
(sP12) = x+ 3t+ 2 = 0,

L13,τo
: f̄Qτo,zo

(sP13
) = x+ t− 2 = 0,

L14,τo : f̄Qτo,zo
(sP14) = x− 4 = 0.
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We define B1,τo
, B2,τo

and B3,τo
to be

B1,τo
:= Qτo

+D24,τo
+L12,τo

, B2,τo
:= Qτo

+D24,τo
+L13,τo

, B3,τo
:= Qτo

+D24,τo
+L14,τo

.

Then by [33], (B1,τo , B2,τo) and (B1,τo , B3,τo) are Zariski pairs.

Proposition 4.23. The curve B2,τo can be deformed to B3,τo while preserving the
combinatorics Cmb224.

Proof. Let C1a + C2a + Do be the one as in the proof of Lemma 4.21. By
Lemma 4.21, Qτo

+ D24,τo
is continuously deformed to C1a + C2a + Do while keeping

CmbQτo+D24,τo
such that the points pi ∈ C1 ∩ C2 go to pj,a ∈ C1a ∩ C2a. Here we label

pj,a’s counterclockwisely so that p1 goes to p1,a. Let Lj,a be lines passing though p1,a
and another point pj,a in C1a ∩ C2a. Since there is a projective transformation ϕ′ such
that ϕ′(L2,a) = L4,a and ϕ′(C1a+C2a+Do) = C1a+C2a+Do, the curve C1a+C2a+Do

can be deformed to C1a + C2a +Do.
Now we show that L12,τo

⇝ L3,a. In fact, suppose that L12,τo
⇝ L2,a. As

either L13,τo
⇝ L4,a or L14,τo

⇝ L4,a, this means that there exists a homeomor-
phism from (P2, B1,τo

) to (P2, B2,τo
) or (P2, B3,τo

), but this is impossible. By a
similar argument, L12,τo

⇝ L4,a is also impossible. Hence L12,τo
⇝ L3,a. Thus

{L13,τo
, L14,τo

}⇝ {L2,a, L4,a}. Therefore our statement follows. □

Proposition 4.24. Let B be an arbitrary member in R(Cmb224). Then B is con-
tinuously deformed to either B1,τo

or B2,τo
in Example 4.22. In particular, R(Cmb224)

has exactly two connected components.

Proof. After taking a suitable coordinate change, we may assume that B is given
as follows:

There exists τ ∈M0 such that

B = Bτ = Qτ +Dτ + L12,τ

where Dτ is either f̃Qτ ,zo(s[2]P12,τ
), f̃Qτ ,zo(s[2]P13,τ

) or f̃Qτ ,zo(s[2]P23,τ
).

Case Dτ=f̃Qτ ,zo(s[2]P12,τ
). Consider a path γ : [0, 1] →M0 such that (i) γ(0) = τ ,

γ(1) = τo, (ii) Bγ(s) ∈ R(Cmb224) for ∀s ∈ [0, 1], and (iii) t1 ⇝ −2, t2 ⇝ −1, t3 ⇝
1, t4 ⇝ 2. Then shows that B is continuously deformed to B1,τo

while keeping the
combinatorics.

Case Dτ=f̃Qτ ,zo(s[2]P13,τ
). Consider a path γ : [0, 1] →M0 such that (i) γ(0) = τ ,

γ(1) = τo, (ii) Bγ(s) ∈ R(Cmb224) for ∀s ∈ [0, 1], and (iii) t1 ⇝ −2, t2 ⇝ 1, t3 ⇝ −1,
t4 ⇝ 2. Note that such that p2 and p3 are interchanged under this operation. Then
L12,τ (resp.Dτ ) is deformed to L13,τo

(resp.Dτo
). Hence B is continuously deformed to

B2,τo while keeping the combinatorics.
Case Dτ=f̃Qτ ,zo(s[2]P23,τ

). Consider a path γ : [0, 1] →M0 such that (i) γ(0) = τ ,
γ(1) = τo (ii) Bγ(s) ∈ R(Cmb224) for ∀s ∈ [0, 1],and (iii) t1 ⇝ −2, t2 ⇝ 2, t3 ⇝ 1, t4 ⇝
−1. Note that such that p2 and p4 are interchanged under this operation. Then L12,τ

is deformed to L14,τo
. Since [2]P34,τo

= [2]P12,τo
, Dτ is deformed to f̃Qτo ,zo

(s[2]P34,τo
) =
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f̃Qτo ,zo
(s[2]P12,τo

) = Dτo
. Hence B is continuously deformed to B3,τo

, while preserving
the combinatorics.

By Proposition 4.23, B2,τo
can be deformed to B3,τo

while keeping the combinatorics.
Hence our statement follows. □

4.15. Cmb225

Take B = C1 +C2 +D+M ∈ R(Cmb225) arbitrarily. By Remark 4.11 and Lemma
4.21, C1 + C2 + D + M is continuously deformed to C1a + C2a + Do + Mo keeping
with Cmb225 where C1a,C2a,Do are as in the proof of Lemma 4.21 and Mo is one of
x = t±

√
a2 + 1, x = −t±

√
a2 + 1. Since C1a +C2a +Do + (a bitangent) is transformed

to each other by some projective transformation, R(Cmb225) is connected.

A. A remark on the fundamental groups

In this section, we study the fundamental groups of the arrangements in the Zariski
pairs given in Theorem 1.1. We calculate a presentation of the fundamental group for
each case using SageMath 10.4 [31] and the package Sirocco [19]. Then we calculate
the number of epimorphisms from the fundamental groups to S3, the symmetric group of
degree 3, using GAP [14]. The existence of such epimorphisms implies that the group is
non-abelian, and the difference in the number of epimorphisms allows us to distinguish
non-isomorphic fundamental groups. We use the following commands:

• ProjectivePlaneCurveArrangements()

This command constructs projective plane curve arrangements as a SageMath ob-
ject.

• fundamental_group()

This command computes the fundamental group of the projective plane curve ar-
rangement in terms of generators and relations. The package Sirocco must be
enabled.

• meridian()

This command returns the information of the meridians of the irreducible compo-
nents of the arrangement in terms of the generators of the fundamental groups.
The package Sirocco must be enabled.

• GQuotients()

This is a GAP command that computes epimorphisms from a group to a given finite
group. The output is given in terms of the images of the generators.

and the results are summarized in the following table:
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Combinatorics Arrangement abelian/non-abelian Num. of epi. to S3

Cmb123
B1,τo non-abelian 5
B2,τo non-abelian 3

Cmb124
B1,τo

non-abelian 7
B2,τo non-abelian 6

Cmb212
B13,p non-abelian 7
B12,p non-abelian 6

Cmb223 B1, B2 free abelian of rank 3 0

Cmb224
B1,τo non-abelian 7
B2,τo non-abelian 6

Remark A.1.

(i) The fundamental groups for Cmb124 and Cmb224 were computed in [3]. Also the
fundamental groups for Cmb223 were calculated in [1].

(ii) For each epimorphism to S3, the orders of the images of the meridians of the
irreducible components can be read off from the output of GQuotients(). We can
construct S3-covers of P2 with the corresponding branch data using the methods
in [32, 33] which support the correctness of the above calculations.
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