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ABSTRACT. Let g be a non-negative integer, ¥4 a closed orientable surface of
genus g, and My its mapping class group. We classify all the group homo-
morphisms 71(2Xg) — G up to the action of My on 71 (Xy) in the following
cases; (1) G = PSL(2;Z), (2) G = SL(2;Z). As an application of the case (2),
we completely classify orientable T2-bundles over closed orientable surfaces up
to bundle isomorphism. In particular, we show that any orientable T?-bundle
over ¥4 with g > 1 is isomorphic to the fiber connected sum of g pieces of
T2-bundles over T2. Moreover, the classification result in the case (1) can be
generalized into the case where G is the free product of a finite number of
finite cyclic groups. We also apply it to an extension problem of maps from a
closed surface to a connected sum of lens spaces.

1. INTRODUCTION

Let g be a non-negative integer, ¥, a closed orientable surface of genus g, and
Diff; (3,4) and M, denote its orientation preserving diffeomorphism group and
mapping class group, respectively. The aim of this paper is to classify orientable
T?-bundles over X, up to bundle isomorphisms.

Orientable T2-bundles appear in various scenes of geometry as important exam-
ples. For example, elliptic bundles over a complex curve like (some kind of) Hopf
surfaces and primary Kodaira surfaces have been extensively studied as compact
complex surfaces, and they are topologically nothing but orientable T2-bundles
over closed orientable surfaces. In [31], Thurston proved that a primary Kodaira
surface admits non-Ké&hler symplectic structures when regarded as a smooth real 4-
dimensional manifold. This example is called a Kodaira—Thurston manifold. In the
same paper, he also gave a necessary and sufficient condition for a surface bundle
over a surface to admit a compatible symplectic structure. The result was later re-
fined by Geiges [5] and Walczak [35] in the case of T?-bundles (see also [25]). In the
4-dimensional topology, Seifert fibered 4-manifolds, the analogue of Seifert fibered
spaces in dimension 4, have been classified ([36, 32, 33, 14]), where orientable T2-
bundles are treated as the case without multiple fibers. Zieschang’s result [36], the
starting point of the classification, says that the isomorphism class of an orientable
T?-bundle over X, with g > 2 is determined only by the fundamental group of the
total space (see also [12, 11]). This is an important result, but is not worth being
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called the classification of bundle isomorphism classes. For, it is very difficult to
distinguish the isomorphism classes of given two groups in general. Therefore, it is
important to approach from the front to the classification of orientable T2-bundles
in terms of their monodromies and Euler classes.

In general, classification of smooth F-bundles up to bundle isomorphisms is one
of the most fundamental problems in topology, but at the same time, a very difficult
problem. For, the classification problem is reduced to that of homotopy classes of
continuous maps from the base space to the classifying space BDiff(F'), whose
topology is usually hard to analyze. In our case, however, the situation is not so
bad. Indeed, the oriented diffeomorphism group Diff ; (7?), which is the structure
group of an orientable T?-bundle, is known to be homotopy equivalent to the affine
transformation group Aff, (7T?), and in particular, we have

mo(Diff  (T?)) =2 SL(2;Z), 7 (Diff , (T?)) = 72, 7;(Diff . (T?)) = 0 (i > 2).

Then we can show that the isomorphism class of an orientable T2-bundle over Xy
is determined only by a group homomorphism 71 (X,) — SL(2;Z) called the mon-
odromy and a local coefficient cohomology class in H?(3,; {m1(2,)}) called the Eu-
ler class (Proposition 4.6). They are respectively represented by Ay, B, ..., Ag4, By €
SL(2;Z) with [A1, B1] - - [Ag, By] = E2 and (m, n) € Z?2, so we may denote the bun-
dleby M (A1, By, ..., Ag, Bg;m,n) (Proposition 4.3). Once the monodromy is fixed,
we can easily deal with the Euler class, so what we really have to do is to classify
the group homomorphisms m1(X,) — SL(2;Z) representing the monodromies of
T?-bundles up to the action of M, on m (X,) and the conjugate action of SL(2;Z)
on itself.

When the base is S? (g = 0), the monodromy is trivial and hence only the
Euler class is valid. Consequently, the set of isomorphism classes of T2-bundles
is Z>o (§ 5.1). When the base is T? (g = 1), the classification has been settled
by Sakamoto—Fukuhara [27] (Theorem 5.1). On the other hand, when g > 2, the
classification of monodromies has not yet been established though Zieschang’s result
stated above is known.

In this sense, the goal of this paper is to classify all the group homomorphisms

Hom (m1(X4), SL(2;Z)) = {p: m(2y) = SL(2;Z) | p : homomorphism}

up to the action of M, when g > 2. Instead of trying to classify them directly, our
first approach to this problem is to focus on the homomorphism p o p: m(X,) —
PSL(2;Z) obtained from the monodromy homomorphism p by taking the compo-
sition with the quotient map

p: SL(2;Z) — PSL(2;Z) = SL(2;Z)/{+E}.

Namely, our immediate goal is the classification of Hom (71 (X,), PSL(2;Z)). Now
we regard X, as the boundary of a genus-g handlebody V, embedded in R3. This
allows us to equip both V; and its boundary ¥, = 0V, with the canonical orienta-
tions induced by the standard orientation on R3. Let {«;, 8;}1<i<4 be the canonical
generators of m(X,), that is, o; and §; are meridian and longitude, respectively,
for each i with 1 <4 < g (see Figure 1). Then we have

7T-1(2.(]) = <a1a61,' "aagvﬁg | [alaﬂl] [ag7ﬁg]>'

Now we are ready to state our first theorem, which will be a breakthrough to the
classification.
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FIGURE 1. Generators of m1(X,)

Theorem 1.1. For any homomorphism p: m1(X,) — PSL(2;Z), there exists a
mapping class f € Mg such that (po fi)(a;) = e for each i with 1 < i < g, where
e denotes the identity element of PSL(2;Z).

The following is an immediate corollary to Theorem 1.1.

Corollary 1.2. For any homomorphism p: m(3,) — SL(2;Z), there exists a
mapping class f € M, such that (po f.)(e;) = £E5 for each ¢ with 1 <14 < g.

In the proof of Theorem 1.1, the tool called “charts” plays an essential role.
This was originally introduced by Kamada [13] for the study of surface-knots, but
is a very useful tool for describing G-representations of surface groups for a given
finitely presented group G. It also works very well in our case, since PSL(2;Z) is
isomorphic to the free product Zs *Zs3. Then, based on Theorem 1.1 and combining
several known results of group theory and mapping class group of handlebody Vj,
we can obtain the classification of Hom (71 (X,), PSL(2;Z)) as follows. First, any
subgroup H of PSL(2;7Z) = Zs * Z3 is isomorphic to the free product of finite
number of copies of Z, Zs and Zy by Kurosh’s subgroup theorem (Theorem 2.1).
To be more precise, there exist subgroups H; C H (1 < j < m) such that

Hy=--=H, =2, Hopn=---=H =73, Hp1 = =Hp =7o
and
H=(Hy*- % Hp)x (Hgpr %% Hy)x (Hpppx--x Hp),

where k,l and m are integers satisfying 0 < k < [ < m. Then our classification
theorem is as follows.

Theorem 1.3. For any homomorphism p: m1(X,) — PSL(2;Z) = Za * Zs, the
subgroup Im(p) C Za x Z3 can be described as

Im(p) = (Hy * -+ % Hp) x (Hpaq % - x Hy) x (Hjpq %+ % Hy,)

by Kurosh’s subgroup theorem. Then there exists a mapping class f € Mg such
that

leH; 27 (1<i<k),

leH; 275 (k+1<i<1),

1eH; 27y (I+1<i<m),

e (m+1<i<y),

(pofilai)=e (1<i<g), (pofo)(Bi)=
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where e denotes the identity element of PSL(2;Z). In particular, for any two ho-
momorphisms p1,pa: m1(X,) = PSL(2;Z), the following two conditions are equiv-
alent:

(1) Tm(py) = Tm(pa).
(2) There exists a mapping class f € Mg such that ps = p1 0 fu.

We call po f, in Theorem 1.3 the normal form of p with respect to the action of
the mapping class group, or simply, we say that it is of the normal form. Now we
define the map

P« Hom(m1(X,), SL(2;Z)) — Hom(m1(X,), PSL(2;Z))

by p.«(p) = po p. Then for each homomorphism p: 71(X,) — PSL(2;Z), p; ' (p) is
the set of all lifts p of p with respect to p, and we have #p,!(p) = 229. When p
is of the normal form, we obtain the following result about the number of orbits of
the action of M, to all the 229 lifts of p.

Theorem 1.4. Let p € Hom(mi(E,), PSL(2;Z)) be of the normal form. If m > 1,
then there exist just 28 M-orbits in p;1(p) corresponding to the choices of the
signs of
plar) = £E3, -+, play) = £Es.

On the other hand, if m = 1, then there exist 271 orbits in p;1(p), whose details
are as follows; there are 2% orbits with —Ey ¢ Im(p) corresponding to the choices
of p(B1), -+, p(Br), and another 2% orbits with —Ey € Im(p) corresponding to the
choices of the signs of

plan) = £E3, -+, play) = £Es.

The facts obtained by applying the results so far to the monodromies of orientable
T2-bundles over Y, are summarized as follows. First, for any orientable T2-bundle
§ over X, the monodromy

p € Hom(m(X,), SL(2;Z))

is uniquely determined up to the actions of M, and SL(2;Z). Applying Corol-
lary 1.2 to this p, we can show that & is decomposable into the fiber connected sum
of g pieces of T%-bundles over T? (Theorem 4.10). According to Theorem 1.3, the
decomposition as a fiber connected sum can be taken in the form that respects the
free product decomposition of the subgroup Im(pop) < PSL(2;Z). Based on these
results, we have Theorem 1.4, which is the classification of Hom(m(X,), SL(2;Z))
up to the action of M,. Thus, taking into account of the conjugate action of
SL(2;Z), Theorem 1.4 gives the complete classification of monodromies of ori-
entable T2-bundles. Adding a simple consideration about the Euler classes to it, we
obtain the following classification of isomorphism classes of orientable T2-bundles.
This is our main theorem.

Theorem 1.5. Let & and & be any two orientable T?-bundles over $,, and
p1, p2 € Hom(mi(2g), SL(2;Z))

their monodromy representations. Suppose that both p o p1 and p o pa are of the
normal forms in the sense of Theorem 1.3, and that &1 and & are described as

M(51E27 Bla e 759E2,Bg;man)a M(51E27 Cl7 LR 5gE27 Cg; k7 l),
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where k,l,m,n € Z, and for each i, &; and 0; denote either 1 or —1. Then & and
& are isomorphic to each other if and only if there exists QQ € SL(2;Z) satisfying
the following conditions:

(1) Tm(p1) = QIm(p2)Q .

(2) The two lifts p1 and Qp2Q~" of po p1 are in the same Mg-orbit.

(3) Wheney =---=¢, =1, there exist x1,...,x, € Z* such that
n l — 1 19
and otherwise, there exist o, x1,...,x, € Z* such that
m 7Q k :2.’130+ ; (BleQ):BZ
n l —

Now let us reconsider about the existence of compatible symplectic structures
on a T2%-bundle over a surface under the circumstance that the classification of the
isomorphism classes has been done. Then the condition of Geiges and Walczak that
we mentioned at the beginning can be briefly summarized as follows.

Theorem 1.6 (Theorems 6.4 and 6.5). Let g be a non-negative integer. Then an
orientable T?-bundle

m: M(A1,By,..., Ay, Bgym,n) = %,

admits a compatible symplectic structure if and only if its Euler class is a torsion.
This condition is also equivalent to that m is not isomorphic to

M(Ey, Es, ..., Ey, Ea;m,0) (m #0) nor M(Ey,C*,... Es FEo;m,n) (n #0),
here C = (2 1) and ke z
where = 0 1 an .

Finally, we note that Theorem 1.3 can be generalized to the case where the
range of homomorphisms is the free product of a finite number of finite cyclic
groups Zy, * - - - * Zy, (Theorem 3.1). Namely, Hom(m1(X,), Zg, * - - - % Zy,,) can be
classified in a similar way as in Theorem 1.3. Since Zg, * - -- * Zy, can be seen as
the fundamental group of a connected sum of lens spaces, we obtain the following
application of it.

Theorem 1.7 (Corollary 3.3). For any continuous map o from a closed orientable
surface X4 to the connected sum of a finite number of lens spaces, there exists a
diffeomorphism f € Diff { (¥4) such that g o f can be continuously extended to the
handlebody V.

In such a way, our technique is useful also in a situation apart from T2-bundles,
so it is expected that the range of applications expand in the future.

This paper consists of the former part (§2, 3), the latter part (§4, 5) and the
applications (§6). Most arguments are the fusion of algebraic viewpoints and topo-
logical viewpoints throughout this article, but if we had to say, the former half is the
algebraic part and the latter half is the topological one. The specific organization
is as follows.
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e In §2, as a preliminary to §3, we review some group theory (§2.1), the

mapping class group of handlebody V; (§2.2) and charts for G-monodromies
(82.3). In §3, we prove the classification of Hom(m(X,), PSL(2;Z)) up to
the action of M, (Theorem 1.3) using all the tools prepared in §2. We also
discuss a generalization of Theorem 1.3 and its application.

In §4, as a preliminary to §5, we summarize known results about T?-bundles
over surfaces. After recalling about orientable T%-bundles over S* (§4.1),
we review the monodromy and the Euler class of orientable T2-bundles
(84.2), SL(2;Z)-bundles (§4.3) and fiber connected sums (§4.4). In §4.5, as
an application of Corollary 1.2, we prove that any orientable T2-bundles
over X, is decomposable as the fiber connected sum of g pieces of T?-
bundles over T? (Theorem 4.10). Based on these preparations, in §5, we
first classify Hom(m(X,), SL(2;Z)) up to the action of M, and use it to
prove the classification theorem of isomorphism classes of orientable T°2-
bundles over ¥, (Theorem 1.5).

In §6, we explain the applications to symplectic geometry (Theorems 6.4, 6.5,
6.6 and 6.7).

2. PRELIMINARIES

2.1. Some group theory. We fix the notations as follows.

e Let G be a group and H its subgroup. In this case, we write H < G. If H

is a normal subgroup of GG, then we write H < G.

We denote by F;, the free group generated by n elements aq,...,a,, and
its automorphism group by Aut(F,).

Let G be a group, and S = {s1,..., s} a finite subset of it. In this case, (S)
denotes the subgroup of G generated by S. If there is no fear of confusion
with the presentation of the free group, we also denote it by (s1,..., sk).
On the other hand, we denote the smallest normal subgroup containing S
by N(S) or (s1,...,s:)¢.

First we recall about the group structures of SL(2;Z) and PSL(2;Z). As is well-
known, the special linear group

SL(2;7) = {(Z 2) a,b,c,deZ,adbc_l}

is presented as

where

SL(2;Z) = (s,t | s*, s%t73),

(4 ) ()

Thus SL(2;Z) is isomorphic to the free product with amalgamation Z4 *z, Zg. On
the other hand, the special projective linear group PSL(2;Z) is the quotient of
SL(2;7Z) by its center {+F>}. Let p: SL(2;Z) — PSL(2;Z) be the quotient map
and set @ = p(s), b = p(t). Then the presentation of PSL(2;Z) is given by

PSL(2;7) = (a,b | a®,b*).

Namely, PSL(2;Z) is isomorphic to the free product Zs * Zs.
Next we review known facts about free groups and free product of groups.
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Theorem 2.1 (Kurosh’s subgroup theorem [22]). Let Gy and Gy be groups. Then
any subgroup H of the free product G = G1 * G2 can be described in the form

H = F(X) * (xierg:Aig; ') = (*jleijfjil)’

where F(X) is the free group generated by a subset X C G, and g;, f; € G, A; < G4
and Bj < Gg foranyi €l and j € J.

Theorem 2.2 (Grushko [8], see also [29]). For any surjective homomorphism ¢
from the free group F,, to a free product H = Hy % Ho, there exist subgroups G, and
Gq of F,, such that o(G1) = H1, p(G2) = Hy and G1 x Ga = F,.

Remark 2.3. By Theorem 2.1, the only decomposition of F;, as a free product of
two groups is described as F,, = F; * F,,_; for some i with 0 < ¢ < n. Thus G; and
G5 in Theorem 2.2 are written as Gy = F; and Gy = F,,_;. More precisely, there
exists an element v € Aut(F;,) such that

Gi=~({a1,.., i), G2 =7 ({@is1,.. ., an)).
Theorem 2.4 (Nielsen [26], see also [1]). Let i and j be integers with 1 <1i <n

and 1 < j <n—1. We define three automorphisms o;, 7;, 0 of the free group I,
as follows:

s a,ﬁl aj = Qj41 ay — a;lal
o; ' - ¢ (k1) Tt § G4l > a n: ay—)a;l
a a i
B ’ ar = ap (k#j,j+1), ar — ap (k> 2).

Theno; (1 <i<n), 7; (1<j<n-—1)andn form a generating system of Aut(F,).

Remark 2.5. Theorem 2.4 itself can be deduced from a result of Nielsen [26]. On the
other hand, Armstrong-Forrest—Vogtmann [1] determined all the relations among
0;, 7; and 7 to provide an explicit presentation of Aut(F,).

Since the abelianization of F,, is Z", each element v of Aut(F,) canonically
induces an element 4 of GL(n;Z). Notice that &;, 7;, 7 which are induced by the
generators o;, 7;, 1 obtained in the above theorem generate GL(n;Z), since they
are nothing but the three types of elementary transformations. Therefore, for any
element in GL(n;Z), there exists an element in Aut(F,,) that induces it.

Proposition 2.6. For any surjective homomorphism ¢: F,, — Zj, there exists an
element v € Aut(F,) such that (pov)(a;) =1 and (po~)(a;) =0 (2 <i<n).

Proof. We discuss only the case where the range is Z (k = 0). The Z-linear map
@: 2™ — Z induced by ¢ is represented by a matrix

(p1 P2 -+ pPa).

where p; (1 < i < n) are integers such that their greatest common divisor is 1. It
can be transformed to

(1 0 - 0)
by a finite sequence of elementary column operations. By composing those opera-
tions, we obtain an invertible matrix ¥ € GL(n;Z). Then an element v € Aut(F},)
that induces # satisfies desired conditions. The same argument works even when
k # 0. O



8 N. KASUYA AND I. NODA

2.2. Mapping class group of handlebody of genus g.

Let H, denote the mapping class group of the handlebody V,. Since a self-
diffeomorphism of V; induces that of 3, when restricted to the boundary 0V, = 3,
Hg is naturally embedded into M, because V, is an irreducible 3-manifold. We
denote the subgroup of My obtained as the image by 7.

In this paper, the product of two elements [f1], [f2] € M, is defined by

[f1]lf2] = [f2 o ful-

Accordingly, we regard the action of M, on ¥, as a right action. This convention
is necessary in order to make each monodromy a homomorphism (see § 4). In line
with this, we also define the product on H, and Aut(F,) in the reverse order of
composition, and regard their actions on V; and F,; as right actions. Furthermore,
M, and H,4 also act from the right on m;(X,) and m(V,), respectively. Note that
m1(Vy) is isomorphic to the free group Fy, since V; is homotopy equivalent to the
bouquet of g circles.

Let ¢: 3, — V; be the inclusion and ¢,: m(2,) — m1 (V) = F, the induced
homomorphism. Then ker(c,) is the smallest normal subgroup of 7 (£,) containing
{aa,..., a4}, and ¢, maps B; ' to the element a; of F,.

Proposition 2.7 (Griffiths [7]). For an element f € M,, the following conditions
are equivalent.

(1) fis an element of H.
(2) f« preserves the smallest normal subgroup of 7 (2,) containing {cv, ..., a4}

Now let us see several examples.
Example 2.8. The following three examples all belong to H,.

(1) We take a separating curve -y; as depicted in Figure 2. Then the half twist
k; about ; belongs to Hy, and its action on 7T1(Vg) = F, coincides with
that of o;.

(2) Let ;41 be a separating curve depicted in Figure 3. Then the half twist
d; about it belongs to H,, and its action on (V) = Fy coincides with
that of 0j05417Tj-

(3) Let 6; and 62 be the curves depicted in Figure 4. Then we can define the
half twist ¢; about them, which belongs to H,. Its action on (V) = F,
coincides with that of mo9noaT;.

The next proposition guarantees that the action of Aut(Fy) on m(V,) = Fy is
recovered by that of H,.

Proposition 2.9. For any v € Aut(F}), there exists a mapping class h € H,
such that h,: m(Vy) — m(Vy) coincides with v: F, — F,, under the identification
m(Vg) = Fy.

Proof. When we regard the generators o;, 7,1 of Aut(F,) given in Theorem 2.4 as
actions on 71 (V}), the elements h,,, h,,, h, € H, that realize them are given by

hgi = kii, h-,—j = kjijrldj, hn = k‘ldltldlk‘l,

respectively. [
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FIGURE 2. «; and the half twist k;

FIGURE 3. 7,41 and the half twist d;

FIGURE 4. §1, d and the half twist ¢y
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2.3. G-monodromy and charts.

Definition 2.10. A group homomorphism from a surface group 7 (X,) to a group
G is called a G-monodromy representation.

From now on, let G be a group with a finite presentation G = (X | R). Moreover,
let I be an oriented graph on X, such that each edge is labelled by an element of
X.

Definition 2.11 (Intersection word). Let n: [0,1] — X, be a path transverse to
the edges of I'. The path n transversely intersects with I" at a finite number of
points, say by,bs,...,b,, in this order when the parameter goes from 0 to 1. Let
x; denote the label of the edge containing b;. When the edge intersects with 7
from left to right (resp. right to left), we determine the signature ¢; by ; = +1
(resp. &; = —1). Then we define the word wr(n) consisting of letters in X U X' ~1
by wr(n) = x{*x5? - - 25, which is called the intersection word of 7 with respect
to I

For example, in Figure 5 below, the path [ embedded in ¥, transversely intersects
with three edges of I' labeled as b, b and a, respectively. With respect to the
orientation of path [, the first edge intersects with [ from left to right, the second
one from left to right, and the third one from right to left. Thus the intersection
word of [ with respect to I' is given by wr(l) = b%a™1.

FIGURE 5. Intersection word of [

Definition 2.12 (Charts). A finite oriented graph I' on ¥, is called a chart with
respect to the finitely presented group G = (X | R) if it satisfies the following
conditions:
(1) Each edge is labeled by an element of X, i.e., a generator.
(2) For each vertex v, the intersection word of a small simple closed curve m,,
rotating around v counterclockwise is a cyclic permutation of an element
of RUR™!, i.e., a relator.

However, we allow a loop without vertices (given an orientation and labeled by an
element of X') as an edge of I'. Such an edge is called a hoop.

Remark 2.13. An edge of graph is usually defined as a connection between two
vertices, so a chart with hoops is not a graph in the normal sense.

The graph depicted in Figure 6 is an example of a chart on the 2-torus T2 with
respect to the group G = (a,b | a?,b3), where the square shown in the figure is
regarded as T2 by identifying its opposite edges. Taking a vertex v as in the figure,
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FIGURE 6. Example of " and wr(m,)

then the intersection word wr(m,) of a small loop m, around it is b—3, which is
indeed (a cyclic permutation of) an element of R UR 1.
For a given chart I' on ¥/, we can define a G-monodromy representation

pr:m(Xg,b00) = G

by corresponding a loop ! with [(0) = (1) = by to its intersection word wr(l). Here
we need to slightly perturb the loop [ so that it becomes transverse to I', if necessary.
Now we explain why pr is well-defined. Let [y and [; be two loops such that Iy ~ [y,
and l; a homotopy connecting them. If [; is transverse to I" for each t € [0, 1], then
we have wr(lg) = wr(l1), since l; intersects with ' in topologically the same way for
all t € [0,1]. The way of intersection essentially changes only when the homotopy
l; passes through a vertex v. In this case, the difference between wr(ly) and wr(l1)
is just wr(m,), which is a relator of G = (X | R). Therefore, wr(ly) equals to
wr(l1) as an element of G, and thus, pr is well-defined. (It is clear that pr is
homogeneous.)

Example 2.14. Let us see some examples of a chart I on T2 and the corresponding
homomorphism pr.

(1) First we consider the case where G = Fy = {(a, b). Since there is no relation
between the two generators of the free group Fi, every Fi-chart has no
vertex, but only hoops. The chart on 72 shown in Figure 7 is such an
example. The intersection words of the loops a and [ depicted in the
figure are given by

pr(a) =e, pr(B)=0b""a,

which determine the homomorphism pr: m1(T?%) — F.

(2) Figure 8 describes the same G-chart as that shown in Figure 6, where
G = Zy * Z3 = {a,b | a®,b). The intersection words of the loops a and j3
are

pr(a) =b, pr(B) =ba® =b,
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FIGURE 7. Example of a G-chart on T2 (when G = F, = (a, b))

o)

TN

FIGURE 8. Example of a G-chart on T2 (G = (a,b | a®,b?))

respectively. From these, the homomorphism pr: 71 (T?) — Zo * Z3 is
determined.

Thus, for a given chart I', the corresponding G-monodromy representation pr is
determined. In fact, the converse is also true.

Theorem 2.15 (Kamada [13], Hasegawa [10], see also [4]). For any G-monodromy
representation p, there exists a G-chart I' such that pr = p.

Outline of the proof. For a given p, we construct I' as follows. Let by be the
base point of ¥,. We take a generating system a1, f1, . .., ayg, B4 of the fundamental
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group m1(X4,bo) as depicted in Figure 1, and the standard cell decomposition of
Y4 corresponding to it. Namely, the cell decomposition has by as a unique 0-
cell €% 1-cells e}, el, ..., 6%9717 e%g corresponding to aq, B1, ..., ag, By, respectively,
and a unique 2-cell e? attached along the loop [a1, 1]+ - oy, By]. For each i with
1 <i < g, let w(a;) and w(B;) be the words of letters in X U X~ corresponding
to p(a;) and p(B;), respectively. Then we arrange parallel oriented arcs labelled by
elements of X U X! on a neighborhood of each 1-cell so that they are transverse
to the 1-cell and the intersection word of e}, ; (resp. e};) coincides with w(o;)
(resp. w(f3;)). Since p is a homomorphism, the intersection word of the loop de?
with respect to these arcs represents

[p(1), p(B1)] -+ - [pag), p(Bg)] = p(lonr, Br] - - [ag, By]) = ple) = e

in G. Hence, this word can be transformed into an empty word by a finite iteration
of the following operations;

(1) deletion or insertion of trivial relation z°z~¢ (x € X, e € {£1}),
(2) insertion of a relation r* (r € R,e € {£1}).

The operation (1) corresponds either connecting two adjacent oriented arcs labelled
by the same letter x or inserting a new oriented arc labelled by x. The operation
(2) corresponds to the insertion of a vertex representing the relation r°. Therefore,
we can extend the arcs arranged on a neighborhood of the 1-skeleton according to
the algebraic operations that transform the intersection word of de? into an empty
word. Then there exists a 2-disk D inside the 2-cell e? whose boundary does not
intersect with extended arcs. This implies that we have already obtained a graph
on X, \ D. Now gluing the 2-disk D without any vertex or edge, then we obtain a
chart I" on X,. It is clear by construction that pr = p. (]

Remark 2.16. In fact, operations of a chart that do not change its monodromy,
which are called chart moves of type W, have been completely classified in [13].
Moreover, it has been proven in the same paper that a chart I" satisfying pr = p
uniquely exists up to those operations. In particular, deletion of a contractible loop
from a chart I does not change the monodromy. In what follows, we always assume
that a chart I' does not contain contractible loops.

Remark 2.17. Changing the base point by affects the G-monodromy by conjugate
action of G. When G = Diff(F') and p: m(X,) — Diff(F) is the monodromy of
an F-bundle, such an ambiguity can be recovered by changing the identification
between the fiber over the base point and F. Hence, in the following, we always
omit the base point bg.

When G = PSL(2;7Z) = Zy x Z3 = (a,b | a?,b3), any vertex of a G-chart T’
is either degree-2 or degree-3 according as it represents a? or b>. Since a degree-
2 vertex and a degree-3 vertex are never connected by an edge, the connected
component of a degree-2 vertex always forms a simple closed curve on 4. This
fact plays an important role in the proof of Theorem 1.1.

3. CLASSIFICATION OF Hom(m(X,), PSL(2;Z))

In this section, we first prove Theorem 1.1 by an ingenious usage of charts. Then
we prove Theorem 1.3 and its generalization (Theorem 3.1) by combining several
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known results in group theory and consideration about the mapping class group
Hg4 of the handlebody V.

Proof of Theorem 1.1. We prove it by induction on g. For any homomorphism
p: m(Xg) = PSL(2;Z) = Zy + Zs,

we take a chart I of p with respect to the finite presentation PSL(2;Z) = (a,b | a?,b?).
Let X be the set of simple closed curves on ¥, consisiting of the connected com-
ponents of degree-2 vertices and hoops.
(A) The case g = 1.
(1) If X = 0, then p can be treated as a homomorphism to the abelian group
Zs3, and thus, it can be described as

pla) =0 p(B) =V (i,5 €{0,1,2}),
where b is the canonical generator of Z3. Hence, there exist coprime integers
p and ¢ such that p(aP3?) = e. Then we obtain integers r and s such that
ps — qr = 1 by the Euclidean algorithm. Now taking the mapping class

f € Mj represented by (Z Z) € SL(2;Z), we have

(po fi)(a) = p(fu(a)) = p(a?B?) = e.

(2) If X # 0, we take an element ¢ € X. Then c is a simple closed curve on
T2, which is not contractible by Remark 2.16. Hence, there exist coprime
integers p and ¢ such that ¢ = a?39 € 7 (T?). Since c is a connected
component of a finite graph I', there is a simple closed curve ¢ parallel
to ¢ such that ' N¢’ = . Then the monodromy along ¢’ is trivial, and
we have p(a?B?) = p(¢’) = e. Now by the same argument as in (1), we

obtain 7, s € Z with ](; Z) € SL(2;Z) and the corresponding mapping
class f € Mj so that we have

(po fi)(a) = p(fu(a)) = p(a?B?) = e.
(B) The case g > 2. We are going to prove that the assertion holds for X, under
the assumption that it is true for X,_;. In order for that, it is enough to show the
existence of a separating curve v with p(y) = e that separates 3, into the connected
sum of ¥,_; and T?. We will discuss the following three cases:
(1) X =0,
(2) X # 0 and X contains a non-separating curve,
(3) X # 0 and all the members of X are separating curves.

(1) In this case, p can be treated as a homomorphism into the abelian group
Z3. On the other hand, for any separating curve ~ that separates ¥, into
the connected sum of 3,_; and T2, there exist I1,15 € m1(X4) such that

v = [l o] = Lol MG
Then we have the following by the commutativity of Zs:

p(v) = p(l)p(l2)p(l) " p(la) ™! = e.

(2) Let ¢ € X be a non-separating curve. Since ¢ can be mapped by an element
of Diff ; (£,) to the location as depicted in Figure 9, we may assume that
it is originally in that place. Since ¢ is a connected component of a finite
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FIGURE 10. When all the elements of X are separating curves

graph I', we can take a simple closed curve [; parallel to ¢ and satisfying
I'Nniy = 0. Then it follows that p(l1) = e. Moreover, taking Iy and v as in
Figure 9, we have

p(7) = p([l2.171]) = [p(l2), p(11) ] = [p(la), ] = e.
When all the members ¢y, ...,c, of X are separating curves, there are no
degree-2 vertices nor hoops in the shaded region in Figure 10. Then taking
v as the boundary curve of that region, we have p(y) = e by the same
argument as in (1).

Thus we obtain a desired separating curve vy in any case. If we separates 3, into
T? and ¥,_; along this curve, the homomorphism p can be decomposed into the
two homomorphisms p': 71 (T?) — PSL(2;Z) and p": m(X,-1) — PSL(2;Z).
Therefore, the assertion of this theorem holds for ¥, if it does for ¥,_;. O

Proof of Theorem 1.3. Let p: m(2,) — PSL(2;Z) be any homomorphism. By
Theorem 1.1, there exists a diffeomorphism ¢ € Diff | (¥,) such that (pop.)(a;) =€
for each i. Then the homomorphism p’ = p o p, factorizes so that the following
diagram commutes;

(3.1)

that is, there exists a homomorphism

n: Fg %m(Vg) %PSL(2,Z) gZQ *Zg
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such that p’ = nou,, where ¢: 3, — Vj is the inclusion map. Now applying Kurosh’s
subgroup theorem to the subgroup n(Fy) = p/'(m1(X4)) C Zs * Z3, it turns out that
n(Fy) is isomorphic to the free product of some copies of Zy, Z3 and Z. Namely,
there exist subgroups H; C n(F,) such that

m=...2H0, 27, HeW=2---=2H =23, H4 1=

I

H,, =7

and
n(Fg):(Hl**Hk)*(Hk+1**Hl)*(Hl+1**Hm)

Then we apply Grushko’s theorem to the surjective homomorphism n: F, — n(F})
(m — 1) times, and obtain subgroups G; of Fj; (1 < j < m) such that

n(Gj) = H; and Gy *---% Gy, = F.

Since G is a finitely generated free group and H; is isomorphic to either Z, Z3 or
Zy, we obtain v € Aut(Fy) such that

(nov)(ai) =

by applying Proposition 2.6 repeatedly. Moreover, there exists h € Diff | (V) sat-
isfying h, = 7 by Proposition 2.9. Then we have

(T]O’Y)OL*:T]Oh*OL*:nO(hOL)*:T]O(LOh|§]g)*
ot o (hls, ) = ¢ (hls, ). = po (pohls, ).

Since [h|s,] € Hj, we have (hlg,).(qi) € (al,...,ag>m(29) by Proposition 2.7.
Then it follows that

= {e},

that is, (po (¢ o hls,)«) (@) = e. Now denote the mapping class [ o h|y,] € M,
by f, then the assertion of the theorem follows. Il

(po(pohls,)) (a;) € <(P0 ws)(a1),...,(po go*)(ag)>PSL(2;Z)

Theorem 1.3 can be generalized into the case where the range of homomorphisms
is the free product of finite cyclic groups Zy, ¥Zy, *- - -*Zy,,. The following arguments
(Theorem 3.1 and Corollary 3.3) are due to Masayuki Asaoka’s advice.

By Kurosh’s subgroup theorem, any subgroup H of Zy, * Zy, * - - - x Zy,, can be
described as

H:Hl*HQ*“-*Hg.
Here each Hj is a subgroup of H with H; = Z,(;), where

n
x:{1,2,...,9} — U{positive divisors of k;} | U {0}
j=1

is a map and Zg = Z, Z; = {e}.
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Theorem 3.1. Let ki,ko, ..., k, be integers greater than 1. For any homomor-
phism
p:T1(8g) = Ly, % Ly, % -+ % Ly,

n

the subgroup Im(p) C Zy, * Ly, * - - - * Ly, can be described as

Im(p) = Hy « Hy % --- % Hy
by the same argument above. Then there exists a mapping class f € My such that
le H; = Zyu (x(i) #1),
e (x(@)=1).
In particular, for any two homomorphisms p1,pa: ™ (Xg) = Ly, * Ly, * - -+ * Ly, ,
the following two conditions are equivalent.

(1) Im(p1) = Im(p2).
(2) There exists a mapping class f € Mg such that ps = p1 0 fu.

(pOﬂX%)=e(1Sng%(pOﬂX&)={

Outline of the proof. First we prove the following claim, which is a generaliza-
tion of Theorem 1.1.

Claim 3.2. For any homomorphism p: m1(X,) — Zg, % Zy, *- - - * Ly, , there exists
a mapping class f € M, such that (po f.)(a;) = e for each ¢ with 1 <i < g.

Since Zkl*ZkQ*"'*an = <a1,a2’.._’an | allc17a§1’... akn

N

), a degree-k; vertex
and a degree-k; vertex of a chart I' of p, corresponding to the relators af" and afj
respectively, are never connected by an edge if ¢ # j. Thus, for any ¢ with 1 < i < g,
each connected component of a degree-k; vertex is isolated. Now we take the ribbon
graph obtained by thickening I' and denote the set of its boundary components by
X. Then a parallel argument to the proof of Theorem 1.1 works. However, we
cannot exclude the case where X contains contractible loops, since elements of X
are not, connected components of I' this time. Thus we have to discuss the following
three cases.

(1) All the elements of X are contractible.
(2) X contains a non-contractible separating curve.
(3) X contains a non-separating curve.

In the case (1), it is easily proven that I' is connected. Then p can be seen as
a homomorphism to a single abelian group Z,, and thus, the same argument as
in the proof of Theorem 1.1 works. In the case (2), we take a non-contractible
separating curve ¢ € X. Then it follows that I' N ¢ = (), so we separates X, along c.
Here we have to notice that X, is not necessarily decomposed into T? and Yg—1,
and the assumption of induction should be modified in the form that the assertion
holds for all the closed orientable surfaces of genus smaller than g. In the case (3),
the same argument as in the proof of Theorem 1.1 (B) (2) works. Thus Claim 3.2
is proven. A parallel argument to the proof of Theorem 1.3 works when we replace
Zo % L3 by Ziy, * Ly, * - - - * Ly, , this completes the proof of Theorem 3.1. (]

We obtain the following application as a corollary to this theorem.

Corollary 3.3. For any continuous map ¢ from a closed orientable surface X, to
the connected sum of a finite number of lens spaces, there exists a diffeomorphism
f € Diff ; (£4) such that ¢ o f can be continuously extended to the handlebody V.



18 N. KASUYA AND I. NODA

Proof. The assertion follows from Theorem 3.1 (in fact, Claim 3.2 is enough) and
the fact that the connected sum of lens spaces L(p1,q1),L(p2,q2), - s L(Pn,qn)
satisfies

1 (L(pl, ql)#L(p27 QQ)# te #L(pn, qn)) = Zpl * Z;D2 Fooox Z;Dnv

T2 (L(plaQ1)#L(p27Q2)##L(men)) = 0.

4. ORIENTABLE T?-BUNDLES

In this section, we first review basic facts and known results about orientable
T?-bundles over S! in § 4.1, and about orientable T2-bundles over Y, in §4.2, 4.3,
and 4.4. Moreover, in § 4.5, we show a new result obtained as an application of
Corollary 1.2.

Let B be a connected orientable C'*°-manifold and 7: E — B an orientable
T%-bundle over B. Then its structure group Diff, (T?) is known to be homotopy
equivalent to Aff | (T?) = T? x SL(2;Z) ([9]). In particular, we have

o (Diff  (T%)) = SL(2;Z), m (Diff (T?)) = Z?,

and thus, the mapping class group of T2 is M = SL(2;7Z).

Now we take a base point by on the base space B of the bundle 7 and fix a
diffeomorphism

U: T? = Fy:=n(by).

Let I: [0,1] — B be a loop with {(0) = (1) = bg. Since the pullback of the bundle
7n: E — B by [ is a T?-bundle over [0,1], which is trivial, there exists a bundle
map ¢: [0,1] x T? — E that covers [: [0,1] — B and satisfies ¢y = ¥, where we
set ¢(t,p) = w¢(p). Then the composition =1 o p1: T? — T? is a diffeomorphism
and its isotopy class [ ™1 o ¢;] € M; depends only on the isotopy class of ¥ and
the homotopy class [I] of I. The mapping class [¥' =1 o ¢1] is called the monodromy
along [I] with respect to . The map

p: m(B) - My = SL(2;Z)

defined by sending [I] to [¥'~! o 4] is called the monodromy of 7: E — B with
respect to W. Since we have chosen to regard the action of M; on T? as a right
action (see § 2.2), p becomes a group homomorphism.

Remark 4.1. The mapping class group M(B) acts on m1(B) by «a - [f] = fi«(a),
and SL(2;Z) acts on itself by Q - A = QAQ~!. Notice that the monodromy
representation p: m(B) — SL(2;Z) is uniquely determined by the isomorphism
class of 7 up to these actions of M(B) and SL(2;Z). Here [f] € M(B) and Q €
SL(2;7Z) correspond to the base map of a bundle isomorphism and the ambiguity
of the isotopy class of an identification ¥: T? — Fy, respectively.

Remark 4.2. Since we have decided that the product in SL(2;Z) is defined in the
reverse order of composition and the action of SL(2;Z) on T? is a right action,
one would, strictly speaking, have to rewrite all the notation concerning products
of matrices by taking transposes. That is, conventions such as “vectors are re-
garded as row vectors on which matrices act from the right 7 and “the product
AB of matrices corresponds, under the usual definition, to ‘B*A” would have to



CLASSIFICATION OF TORUS BUNDLES OVER SURFACES 19

be adopted. However, this would be highly confusing. Moreover, since in the sub-
sequent discussion there will be no point at which the order of multiplication in
SL(2;7Z) causes any issue, we shall henceforth employ the standard notation for
products of matrices.

4.1. Orientable T?-bundles over S'. Before dealing with T?-bundles over sur-
faces, we first consider the case B = S'. In this case, the total space of a T?-bundle
is given by a mapping torus. Here the mapping torus M(A) of A € SL(2;Z) is
defined as follows;

M(A) =R xT?/(t,[Az]) ~ (t+ 1, []).

The map 7: M(A) — S' = R/Z defined by = ([t,[x]]) = [f] is indeed a T?-bundle
over S with monodromy A. Conversely, any orientable T2-bundle over S* can be
described in this way, and its isomorphism class is determined by the conjugacy
class of the monodromy A € SL(2;Z) (see Remark 4.1).

Next we review on bundle automorphisms of M (A). The identity map

is clearly a bundle isomorphism covering idg:. On the other hand, for any u € 72,
the map fy: M(A) — M(A) defined by

fu([t,[2]) = [t, [ + tu]]
is also a bundle isomorphism covering idg:. This is nothing but the bundle isomor-
phism that sends the trivial section so: ST — M (A) defined by so([t]) = [, [0]] to
another one s, : ST — M(A) defined by sy ([t]) = [¢, [tu]].

4.2. Monodromy and Euler class (the case B = £,). In the following, we deal
with the case where B = X,. The meaning of the monodromy of an orientable T2-
bundle 7: M* — %, is interpreted as follows. First we take the standard cellular
decomposition
Sg=(e"U(ejUezU---Uey, Ues,))Ue’
used in the proof of Theorem 2.15. Then let
{Uov Ullv U217 e 7U21g—17 U219, Uz}
be its associating open covering of 3, that satisfies the following conditions:
(1) U° is an open neighborhood of by, and U} an open neighborhood of e}, \ U°
for each k£ with 1 < k < 2g.
(2) U°, U? and each U} are all diffeomorphic to an open 2-disk.
(3) BEach U N Uy is the disjoint union of two open 2-disks, and U} N U} =
0 (i # j).
(4) N:=U°U(U{ U---UU,,) is a regular neighborhood of the 1-skeleton.
(5) N NU?is a collar neighborhood of ON.

By the condition (2), the T%-bundle 7 is trivial over U°, U? and each U. We
take a local trivialization @g: 7= 1(U?) 2 U° x T? so that ¢o|m, = ¥!. Then the
transition function gf; over U’ N U} is defined for each k. By the condition (3), we
have open sets Vj, and W;, diffeomorphic to an open 2-disk such that

U'NUL =V, Wy,

If we take the transition function g, : Vi, UWj — Diff { (F') that coincides with the
constant map to idz over Vi, then g& |, corresponds to the monodromy along e,lg.
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Since a homotopy of transition functions does not change the bundle isomorphism
class, we may retake g&, |, as a constant map valued in my(Diff | (T?)) = SL(2;Z).
Thus we obtain an element in SL(2;Z) for each e}, with 1 < k < 2g. Denote it by
A; if k=2i—1, and by B; if k = 2i. Then we have

plar) = Ay, p(B1) = Bi, -+, plag) = Ag, p(By) = By

and [Ay, By]---[4y,By] = E>. In other words, the restriction of 7 over e} is
isomorphic to M(A;) if k = 2i — 1 and to M(B;) if k = 2i. Since these data
determine the isomorphism class of the T2-bundle 7| z—1(n) over N, the monodromy
p can be considered as the description of nontriviality of the bundle over the 1-
skeleton.

What is left for us is to describe how to glue the trivial bundle U? xT? — U? and
1Ny 7~ Y(N) — N. To do so, we can restore the isomorphism class of the 72-
bundle 7. Since this information of the gluing is described by the transition function
NNU? — Diff 4 (T?), we obtain the corresponding element in m; (Diff . (T?)) = Z?,
say (m,n). Thus the isomorphism class of an orientable 7%-bundle m: M* — X, is
represented by Ay, By,..., Ay, By € SL(2;Z) with [Ay, B1]---[Ag, Bg] = E», and
(m,n) € Z*. Hence, we may denote this 7?-bundle by M (A1, By, ..., Ay, Bg;m,n).
Now the following is obvious.

Proposition 4.3. For any orientable 72-bundle ¢ over X, there exist A, By,
ooy Ay, By € SL(2;Z) with [A1, B1] -+ [Ag, By] = E2 and (m,n) € Z? such that &
is isomorphic to the bundle

w: M(A1,B1,...,Ay,Bg;m,n) — X,
Next, we explain the definition of the Euler class of an orientable T2-bundle
= (M(Ay,By,..., Ay, Byym,n),m,%,,T7).
In order for that, we consider whether the bundle
w: M(Ay, Bi,..., Ay, Bg;m,n) = 3,

admits a cross section. There exists a trivial cross section over the 1-skeleton
corresponding to sg. It extends over the 2-cell €? if and only if (m,n) = (0,0), since
it is necessary and sufficient for a continuous map 9D? — T2 to be extendable over
D? that it is trivial as an element of 71(7?) =2 Z2. In this sense, it seems possible
to consider (m,n) € Z? as the obstruction to the existence of a cross section of
7, but this is inaccurate. For, even when (m,n) # (0,0), if we retake another
cross section over the 1-skeleton, then it might be extendable over e2. Such an
inconvenience is resolved by the local system {m;(T?)}, that is, the locally constant
sheaf associated with the monodromy p whose stalk over each point b € X, is
isomorphic to m; (F}) = Z2. By obstruction theory, the obstruction to the existence
of a cross section of £ is determined as a second cohomology class with coefficients
in {m1(T?%)} (see [30, 23] for details). Denote it by e(£). Then it lies in

H? (3g; {m(T?)}) = 2%/ ~,

where the equivalence relation ~ is defined by

(k1,k2) ~ (l1,12) <= there exists v € m1(X,) such that (2) = o(7) (/ﬁ) .
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Thus the obstruction class e(£) is not an element of Z2, but that of the module
72 ~ represented by (m,n) € Z2. This is the Euler class of an orientable T%-bundle

.

Definition 4.4 (the Euler class). Let ¢ be an orientable 7%-bundle over ;. Then
the local coefficient cohomology class

e(€) € H? (Bg: {m(T?)})

defined as the obstruction class to the existence of a cross section of £ is called the
Euler class of &.

Remark 4.5. As is implied by the notation, the Euler class e(€) is uniquely de-
termined by the isomorphism class of £. Notice that the Euler classes of two ori-
entable T2-bundles ¢ and ¢ are comparable as cohomology classes only when its
monodromies p and p’ coincide. Here we mean by the coincidence of p and p’
that there exist f € Diff ; (3,) and @ € SL(2;Z) such that po f. = Qp'Q ™" (see
Remark 4.1).

Now we are ready to give a necessary and sufficient condition for two orientable
T?-bundles over ¥, to be isomorphic.

Theorem 4.6. Let & = (E,7,3,,T?) and £ = (E',7',5,,T?) be orientable T?-
bundles over ¥4, whose monodromies and Euler classes we denote by p,e(§) and

p',e(€), respectively. Then, the bundles & and ' are isomorphic if and only if there
exist f € Diff  (X,) and Q € SL(2;Z) such that pof. = Qp'Q™" and e(&) = f*e(¢).

Proof. The only if part is obvious from Remarks 4.1 and 4.5, so we will prove
the if part. Since f and @ correspond to the base map of a bundle isomorphism
and the ambiguity of the choice of the mapping class [¥] € M; determined by
an identification diffeomorphism W: T2 — F, respectively, we only have to deal
with the case where p = p’ and e(§) = e(¢’). We construct a bundle isomorphism
between ¢ and & under these assumptions. Since p and p’ coincide, £ and &' can
be described as

m: M(A1,B1,..., Ay, Bg;m,n) = 3,, ' M(Ay,By,..., Ay, Bg;k,l) = X,.

By the condition e(§) = e(¢’), there exists an element v € 7 (3,) such that

(- )

Since p(7) can be described as p(y) = Cy - - - C,., where r is a positive integer and
C; € {Es, Ay,...,Ay,B1,...,By} for cach 1 <14 < r, we have

p(Y) = B2+ (Ci— E3)Ciys---C,.
i=1

m
n

(l;) B (ZZ) + ;(Ci — By)ws.

Putting w; = Cjy1--- C, < ) for each 1 < i < r, then we obtain
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Hence, there exist u;,v; € Z? (1 < i < g) such that

() <) gA = Eo)ui + (B — E2)vi)-

Then we can construct a bundle isomorphism
f: M(Ay, By,..., Ay, Byym,n) — M(Ay, By, ..., Ay, By k1)
covering the identity map ids, by Proposition 4.8 proved later. (|
Putting g = 1 in Theorem 4.6, we obtain the following corollary.
Corollary 4.7. Let
&= (M(A,B;m,n),m,T?T?), ¢ = (M(A,B'ym/,n'), ', T°,T?)
be two orientable T2-bundles over T2. Then they are bundle isomorphic if and only
if there exist P = <§ 7‘) Q € SL(2;Z) and x,y € Z* such that QA'Q~! = AP BY,
QB'Q™' = A"B*® and
(W)= () == Be+ (3~ By

n

4.3. SL(2;Z)-bundles. In this subsection, we introduce a nice model for the T2-
bundle M (A1, By,..., Ay, Bg;m,n) following the manner of Sakamoto-Fukuhara
[27], and complete the proof of Theorem 4.6. First we consider the case (m,n) =
(0,0). In this case, we can reduce the structure group to SL(2;Z), since the transi-
tion function N NU? — Diff  (T?) can be taken as the constant map to idyz. Such
a T?-bundle is called an SL(2;Z)-bundle (in particular, it is a flat 72-bundle). An

SL(2;Z)-bundle M (A1, B, ..., Ay, By;0,0) can be described as follows. Let (Z)

be the standard coordinates on R?, and {ﬂ denote the corresponding point on
T? = R?/72.
(1) The case g = 0. Let F' = T? and M(0,0) = CP! x F. Then the projection
7: M(0,0) — CP! to the first factor is the trivial T2-bundle over S?. In
particular, it is an SL(2;Z)-bundle.
(2) The case g = 1. Let F = T? and A, B € SL(2;Z) satisfy AB = BA. We
define
M(A, B;0,0) =R? x F/ ~,

(C3) L)~ (C)- 1O
() [])~ () ()] )

Then the map 7: M (A, B;0,0 R?/7? defined by

(O -

is an SL(2;Z)-bundle over T2.

where
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(3) The case g > 2. Let D be the Poincaré disk and z the complex coordinate
on it. Since D is the universal cover of 34, m1(X,) acts on it from the right
by the deck transformation. Let ' = T? and Ay, By, ..., Ay, B, € SL(2;Z)
satisfy [A1, B1]---[Ag, By] = E2. We define

M(A1,By,..., Ay, By;0,0) =D x F/ ~,

CE) (b () oem

Then the map 7: M (A1, B1,...,A4,,B,;;0,0) — D/m(X,) defined by

() -+

is an SL(2;Z)-bundle over .

Next, we prepare a model for the case where (m,n) # (0,0). In the following,
we denote M(Ay, Bi,... Ay, By;0,0) by M. Moreover, D denotes a 2-disk of a
sufficiently small radius ¢ that is centered at the origin 0 = [0 : 1] of C C CP!, at
Eg] on the torus 7% = R?/Z?, or at [0] on ¥, = D/m(X,) according as g = 0,1,
or g > 2. Then we define

M(Ay, By, ..., Ay, Bg;m,n) = (My — ' (IntD)) Uy (D x F).

Here h: m=1(0D) — 0D x F is the diffeomorphism given by

(o [1) = (o [(0) e rem (2)])

where 7: S' — D is the map defined by

where

[ee?? :1] (9=0),
r(0) = (1/2+ecosh, 1/2 + esinf) (g =1),
ce?? (g >2).

Now we redefine the map m: M(Ay, By, ..., Ay, Bg;m,n) — X, by
m <[Zl : ZQ], ;j
T s
™ )|t
7
()5 0o

Then it is an orientable T2-bundle over ¥,. Thus we obtain the following conclu-
sion: Any orientable T%-bundle can be obtained from an SL(2;Z)-bundle by some
T?-surgery. In the subsequent sections, we always denote an SL(2;Z)-bundle by
M(Ay, By, ..., Ay, By) omitting (m,n) = (0,0).

> =l[z1:22] (9=0),

Now we are ready to complete the proof of Theorem 4.6.
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Proposition 4.8. The two orientable T?-bundles
m: M(Ay,By,..., Ay, Byym,n) = X,, 7' M(Ay,By,..., Ay, By k1) = 34

are isomorphic if there exist u;, v; € Z2 such that

(IZC) - (:Z) T Eg: ((Ai = Ba)u; + (Bi — Ez)v;) .

i=1
Proof. We explicitly construct a bundle isomorphism
f:M(Ay, By,..., Ay, By k1) = M(Ay, By, ..., Ay, By;m,n).

In the following, we assume g > 2, since the claim is trivial when g = 0 and the
construction has been done in Proposition 2 (3) of [27] when g = 1. The idea of
our construction is as follows. First we construct a bundle isomorphism over the
1-skeleton of the standard cellular decomposition of ¥, so that it coincides with
FBiw,: M(A;) — M(A;) over e, ;, and with few,: M(B;) — M(B;) over el
Then it extends over the 2-cell €2 to become a bundle isomorphism f over Xy

Let us write down fexplicitly by using the above model of orientable T2-bundles.
First we take a fundamental domain P of the action of 71 (X,) which is a hyperbolic
regular 4g-gon centered at 0 € D. Notice that each vertex of P corresponds to the
base point by of ¥, and the boundary 0P is written

OP = [on, Bi][az, Bo] -+ [ong, Byl = a1 ray ' By Lanfaay ' Byt -+ ag Byt B
as an element of m(X,,bg). We take a parametrization w: [0,4g] — 0P = S' so
that for each integer 4i+j (0<i<g, j=0,1,2,3), the interval [4i + j,4i + j + 1]
is mapped to oy, 5, ai_l, 6;1 according as j = 0,1, 2,3, and that

w(u)-6; = w@®+3—u) (4i<u<di+l),
! w(® +5—u) (4i+1<u<4i+2).

w(u) - o

Now we define
frrm Y oP) - '~ (0P)

+ (u — 4i)Bivi” (4’L <u< 4+ 1),

)
-w(u)7 (j) + (4i+2—u)ui” (4i+1<u<4i+2),
)

w(u), <§ + (42’+3—u)'v1-” (4i+2 < u<4i+3),

w(u), <i> + (u—4i — 3)Aiui” (4i +3 <u<4i+4).
This induces a bundle isomorphism over the 1-skeleton and, moreover, specifies a
bundle isomorphism over 9P, which corresponds to an element of 7y (Diff (T?)) =
Z2. In fact, this element is exactly (k —m,[ — n), since

g

S (Bivi — wi — v + Aug) = zg: ((Ai = Ex)ui + (Bi — Ep)vi) = {k - m}

l—n
i=1 i=1
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by assumption. This resolves the difference in the coefficients of the T?-surgeries
corresponding to the two bundles 7 and #n’. Consequently, f extends in a natural
way over the 2-cell P, giving rise to a bundle isomorphism that covers the identity
map of 3. O

4.4. Fiber connected sum. In this section, we explain the fiber connected sum, a
method of constructing a new 7?-bundle from two T?-bundles. Let & = (M, T, X, T?)
and & = (M',7',%,,T?) be orientable T2-bundles. Let by (resp. bf) be a base
point on the surface ¥, (resp. X4). We take local trivializations of £ and ¢ around
each base point, and denote them by

o N U) = UxT? @pn Y (U) = U xT?,

respectively. Now we take 2-disks D and D’ so that by € D C U and b € D' C U'.
Then 0D and 0D’ carry natural orientations derived from those of ¥, and X,
respectively. We take an orientation reversing diffeomorphism f: 9D — 9D’ and
an orientation preserving diffeomorphism h: T2 — T2,

FIGURE 11. Fiber connected sum

Then we obtain an orientable 72-bundle over X, from two bundles 7|: 71 (2,\
D) — ¥,\ D and 7'|: ﬂ’_l(Zg/ \D') = ¥4 \ D’ by the fiberwise gluing along their
boundaries given by

L -1 YU 2 fxh ' o Wy ’
&: 77 (0D) == 0D xT° —— 9D' x T* ———— «n'~(9D").
This is called the fiber connected sum of £ and £/, and denoted by £#£’ or
s M# M — Sgpg.
By this definition, however, the diffeomorphism type of M# M’ depends on the
choices of the local trivializations oy, ¢’y and the diffeomorphism h. In order to

avoid such an ambiguity, we fix oy, ¢';;, and h as follows.
First we describe the two T2-bundles ¢ and &' by

m: M(Ay,By,..., Ay, Bgym,n) = 3,, 7' M(Cy,Dy,...,Cq,Dy;k,1) = Xy,
and take the local trivializations ¢y and ¢, so that oy|r, = U1 and ¢p g =

O'~" where W: T2 — Fy = 7 (bg) and W': T2 — F} = 7/~1(b})) are the diffeo-
morphisms fixed in the definition of the monodromies of m and 7/. Now we fix
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h = idp2, then the fiber connected sum of £ and £’ can be written as
n#n’s M(A1, B1,...,Ag,By,C1,D1,...,Cy,Dgsm+k,n+1) = Zgpg.
In particular,
M(A,B;m,n)#;M(C,D;k,l) = M(A,B,C,D;m+k,n+1)

holds when g = ¢’ = 1. Thus the monodromy and the Euler class of the T2-bundle
E#E' is described by those of € and ¢£’.

4.5. Decomposition theorem. Recall that any orientable 7%-bundle over ¥, can
be described as

m: M(A1,B1,..., Ay, Bg;m,n) — 3,
by (m,n) S ZQ and Al, Bl, ey Ag,Bg S SL(2, Z) with [Al,Bﬂ cee [Ag, Bg} = EQ.
Then, applying Corollary 1.2 and Proposition 4.6 to the monodromy p of 7, we
obtain the following.

Theorem 4.9. Let & be an orientable T?-bundle over Yg. Then there exist
Bi,...,By € SL(2;Z) and (m,n) € Z* such that & is isomorphic to either of
the 29 T?-bundles M (+FEs, By, ...,+F5, By;m,n).

Moreover, the following is obtained as a corollary.

Theorem 4.10. Any orientable T?-bundle over X4 with g > 1 is isomorphic to
the fiber connected sum of g pieces of T?-bundles over T?.

Proof. Since £F5 commute with any element of SL(2;Z),
M(+E,, Bi;m,n), M(+£E,, B2;0,0), ---, M(+E>, By;0,0)
are all orientable T2-bundles over T2. By the consideration in §4.4, it follows that
M (£Es, Byym,n)# ¢ M(£FEs, B2;0,0)# - - - #¢M(+Es, By; 0,0)
= M(+Es, B1,£FE5,Bs,...,£Es, Bg;m,n).

Therefore, by Theorem 4.9, any orientable 7%-bundle over ¥, is isomorphic to the
fiber connected sum of g pieces of T2-bundles over T2. O

5. CLASSIFICATION OF ORIENTABLE T2-BUNDLES OVER Xy

In this section, we prove the classification theorem of orientable T2-bundles over
Y, (Theorem 1.5), which is our main theorem. Since the classification is already
known for the case g = 0,1 (§5.1, 5.2), the main part is the case g > 2 (§5.3).
There, we first classify the Mg-orbits of Hom(m(X,), SL(2;Z)) (Theorem 1.4).
This is equivalent, up to the conjugate action of SL(2;Z), to the classification of
isomorphism classes of SL(2;Z)-bundles over 3,. Hence, we can complete the proof
of the main theorem by adding a simple argument about Euler classes to it.

5.1. The case g = 0. Since S2 is simply-connected, any T2-bundle over S? has
trivial monodromy, and hence, admits a principal T2-bundle structure. The iso-
morphism classes of principal 72-bundles are classified by their Euler classes

(m,n) € my(BT?) = ma(BS* x BS') = my(CP>® x CP™) = 72,
but as orientable T2-bundles, M (m,n) and M (d,0) are isomorphic by Remark 4.5,

where d is the greatest common divisor of m and n. Thus the isomorphism classes
of orientable T2-bundles are classified by d € Z>o.



CLASSIFICATION OF TORUS BUNDLES OVER SURFACES 27

5.2. Theorem of Sakamoto and Fukuhara (the case g = 1). The isomorphism
classes of orientable T2-bundles over 72 have been completely classified as follows.

Theorem 5.1 (Sakamoto-Fukuhara [27]). Let & = (M*, 7, T2 ,T?) be an orientable
T?-bundle over T?. Then there exist B € SL(2;Z) and (m,n) € Z* such that & is
isomorphic to either M (E2, B;m,n) or M(—FEs, B;m,n). Moreover, two orientable
T?-bundles M(cEo, B;m,n) and M(5E,C;k,l) are isomorphic if and only if one
of the following conditions is satisfied, where ,§ = +1.

(1) e =6 = 1 and there exist Q € SL(2;Z) and x € Z? such that QCQ~! =

1 and
()-o(t) -5

(2) e=1,8=—1, ord(B) is either 2, 4 or 6 and there exist Q € SL(2;Z) and
x € 72 such that QCQ~' = £B*! and

(£)-o(t) s

(3) e=—-1,6 =1, ord(C) is either 2, 4 or 6 and there exist Q € SL(2;Z) and
x € 7% such that QBQ™' = £C*! and

(§)-a(p) -

(4) e =6 = —1 and there exist Q € SL(2;Z) and z,y € Z* such that QCQ~1 =

+B*! and
(’Z) -Q (’;) = (B — Ey)x +2y.

The former claim is nothing but a special case of Theorem 4.9. On the other
hand, we need another lemma for the proof of the latter claim. As is well known,
the order of B in SL(2;Z) is either 1, 2, 3, 4, 6 or co. Hence, the cyclic subgroup
(B) of SL(2;Z) generated by B contains —FE» if and only if ord(B) is either 2, 4 or
6. In these cases, the following holds.

Proposition 5.2. If the order of B € SL(2;Z) is equal to 4, all the four T2-
bundles M (+£F, £B;m,n) are isomorphic to each other. If it is equal to 2 or 6,
the following holds;

M(E2,Bym,n) 2 M(—Ey, B;m,n) &2 M(—FE2,—B;m,n) % M(Ey,—B;m,n),
where 2 and 2 mean “isomorphic” and “non-isomorphic” as T2-bundles, respec-
tively.

Proof. In each case, we will construct a bundle isomorphism using Corollary 4.7.
Since (m,n) = (m/,n’), we may assume that QQ = Ey and = y = 0. Thus, what
we only have to do is to find out an appropriate P € SL(2;Z) for each case.
(1) The case where ord(B) = 4. Since we have B? = —F,, an isomorphism
M(EZaB;man) = M(fEQaBﬂna n)

. . . 10 - . -1 -1 11
is obtained by setting P = (2 1). Similarly, setting P = ( i 3 > , (2 3

we obtain isomorphisms

M(E27B;mvn) = M(E27 7B;man)> M(E27B;man) = M(*EZa*B§mvn)a

)
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respectively.

(2) The case where ord(B) = 6. Since we have B3> = —FE5, we obtain isomor-
phisms

M(Ey, Bym,n) 2 M(—Es, B;m,n), M(E2,B;m,n) = M(—FEy,—B;m,n)
by setting P = :1)) (1) , :12’ 1) respectively. On the other hand, since

—E,; ¢ (—B) and —FE5 € (B), we have

(B2, —B) = (—B) # (B) = (E», B) .
Then it follows that

M<EQaB;ma 'I’L) % M(EQa _B;m,n)a

since their monodromy groups are different.
(3) The case where ord(B) = 2, that is, B = —F5. In this case, we obtain
isomorphisms

M(E27 _EQ;m7n) = M(_EQa _EQ;man)a M(E27 _E2;m7n) = M(_E2aE2;m7n)

by setting P = (} (1)> , <(1) _01>, respectively. On the other hand, the

two bundles M (FEs, —FE2;m,n) and M (Es, E2;m,n) are not isomorphic to
each other, since they have different monodromy groups.

O
By using this proposition, we prove the theorem of Sakamoto and Fukuhara.

Proof of Theorem 5.1. The former claim of Theorem 5.1 follows by putting g =
1 in Theorem 4.9.

We prove the latter claim by using Corollary 4.7. First we deal with the cases
(2) and (3), but it suffices to argue about (2) since (3) can be replaced by (2) by ex-
changing the roles of B and C. The images of the monodromies of M(Es, B;m,n)
and M(—FEs,C;k,l) are (B) and —Fy € (—Es, C), respectively. Hence, it is nec-
essary for the two bundles to be isomorphic that these subgroups of SL(2;Z) co-
incide up to conjugation. In particular, (B) must contain —FEs. Therefore, the
order of B should be 2, 4 or 6. Moreover, there exists @Q € SL(2;Z) such that
QCQR™' = £B*!, since C' must coincide with a power of B up to conjugation.
Applying Proposition 5.2, we can find an appropriate P € SL(2;Z) for each case
so that the monodromies of the two bundles coincide. Finally, we consider about
the Euler class. Since the Euler class of M (Fs, B;m,n) belongs to the Z-module

H? (Sg;{mi(T?)}) = Z°/ (B — Ez)es1, (B — Ey)es)

the condition that the Euler classes of the two bundles coincide can be written as
k
<m) -Q <l> € ((B— Ey)ei, (B — Ex)es) = {(B — Ex)x | x € Z*}.

This completes the proof of the cases (2) and (3).

What is left to us is to deal with the cases (1) and (4), but they are rather simple.
If the monodromies of the two bundles coincide up to conjugation, then there exists
Q € SL(2;7Z) satisfying QCQ~' = B*! in the case of (1), and QCQ~' = £B*! in
the case of (4). Conversely, in all these cases, we can easily find P € SL(2;Z) that
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FIGURE 12. Simple closed curves a, b and ¢

makes the monodromies of the two bundles coincide. Finally, the Euler class of the
T2-bundle belongs to the Z-module
H? (243 {m(T%)}) 2 2%/ (B — Ex)er. (B — Ep)es)
in the case of (1), and to
H? (24 {m(T?)}) 2 Z*/ (2e1,2e3, (B — Es)ey, (B — Es)es)

in the case of (4). Then we can write down the condition that the Euler classes of
the two bundles coincide as that on integers k, I, m, n. Thus we have proven the
latter claim. g

5.3. Main Theorem (the case g > 2). When g > 2, the classification of mon-
odromies becomes more complicated since the fundamental group m;(X,) is non-
commutative. Based on Theorem 1.3, however, M g-orbits of Hom(m (%), SL(2;Z))
can be classified (Theorem 1.4), and then, we obtain the main theorem (Theo-
rem 1.5). Before going into the detail of the arguments, we first prepare some
propositions needed later.

Proposition 5.3. For any B,C € SL(2;Z), the following isomorphism holds;
M(—Es,B,Ey,C) = M(—Es, B, Es, —C).

Proof. Let f: X9 — Y5 be the product of the right-handed Dehn twists about a
and ¢ and the left-handed Dehn twist about b, where a, b and ¢ are the simple closed
curves depicted in Figure 12. The homomorphism f,: 71 (22) — 71 (22) satisfies

folen) = a1, fo(B1) = aitag ' Braa, fulaz) = as, fu(B2) = a5 'ai ! Beas.

Hence we have

(po f)lan) = —Es, (po f)(B1) = B, (po fi)(az) = Ea, (po fi)(B2) = —C.
Therefore, pulling back the T2-bundle 7: M(—Es, B, E5,C) — 35 by f, we obtain
the T2-bundle f*n: M(—FEs, B, By, —C) — 5. Since f is a self-diffeomorphism of
Y9, we have an isomorphism f*m = . (]

For any homomorphism p: m(3,) — PSL(2;Z), there are 229 choices of taking
a lift p: m(Xy) — SL(2;Z) of p with respect to the projection p: SL(2;Z) —
PSL(2;Z). We want to determine which two lifts are transformed to each other
by the action of the mapping class group M. From now on, we suppose that p is
of the normal form in the sense of Theorem 1.3. Put p(a;) = A; and p(8;) = B;.
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Then we have A; = E5 or A; = —FE5 for each i with 1 < ¢ < g, so this can be
described as A; = ¢; F», where ¢; is equal to either +1 or —1 for each 3.

Proposition 5.4. The monodromy group of M(e1Es, B1,...,e4E2, By) does not
contain —Fy if and only if ¢; = 1 and the order of B; is neither 2, 4 nor 6 for each
twith 1 <i<g.

Proof. The only if part is obvious. On the other hand, the if part follows from the
condition that p is of the normal form. The proof is as follows. Since ord(B;) # 2,
we have B; = E5 for each ¢ with m+1 < ¢ < g. Now suppose that the monodromy
group Im(p) contains —F5. Then we can write —FEy = B} B2 --- BJ", where r is
a positive integer and o; € {1,2,...,m} for each i. Then we have

p(Bo,)"'p(Bo,)"* - - p(B,,)"" = e € Im(p) C PSL(2;Z).

Since each p(B;) (1 < i < m) is a generator of the factor H; of the free product
decomposition of Im(p), it follows that n; = ng = --- = n,, = 0. Thus we have
E5 = —F5, which is a contradiction. Therefore, Im(p) does not contain —FE,. O

We note that the monodromy group Im(p) contains an element of order 4 if and
only if I < m, since the condition that B € SL(2;Z) is of order 4 is equivalent to
the one that p(B) € PSL(2;Z) is of order 2. Moreover, if | < m, then we have
ord(B;) = 4 for any ¢ with {+1 < i < m. Then, applying Proposition 5.2 and using
the isomorphisms

M(Es, B;) 2 M(—F3,B;) & M(Fs,—B;) 2 M(—FEs, —B;),
we can freely switch e; and the sign of B; without changing the isomorphism class of
the T%-bundle M (1 Es, B, ...,£,F2, By). Similarly, we can exclude the elements
of order 2 and 6 from By, ..., B, preserving the isomorphism class of the T2-bundle.

For, if B; is of order 2 or 6, then B; can be replaced by —B; (of order 1 or 3) by
using the bundle isomorphisms

M(FEs3, B;) 2 M(—FEs,—B;), M(—Fs, B;) 2 M(—FEs,—B;).

Therefore, we don’t have to deal with all the 229 possibilities of lifts of p, but only
those satisfying the following three conditions;

(a) it k+1 <4</, then ord(B;) =3,

(b) ifl+1<4i<m,thene; =—1, and

(c) if m+1<i<g,then B; = Es.
In what follows, we assume that the monodromy p of M(e1Es, B1,...,£4E2, By)
satisfies these conditions.

Proposition 5.5. The following assertions hold.

(1) When the monodromy group of M(e1Ea, B,...,e4F2, By) contains —Es,
all the 29 T%-bundles M (e1E2, £B1,...,e4E2, £By) are isomorphic to each
other.

(2) When the monodromy group of M(Es, By, ..., Es, By) does not contain
—Es, the 28 T2-bundles M (Es,+By, ..., Ey, 4By, B2, Bry1, ..., Eo, By) are
pairwise non-isomorphic.

Proof. (1) By assumption, there exists ¢ with 1 <4 < g such that ; = —1. For,
if e; = 1 for all ¢, then by Proposition 5.4 and conditions (a) and (c), there
must be B; of order 4, and hence, we have ¢; = —1 by the condition (b),
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which contradicts to the assumption that ¢; = 1 for all i. Hence, we can
take i (1 < i < g) with ¢; = —1. Then, it follows from the isomorphisms
M(—EQ, Bz) = ]\4'(—.E27 _Bz) and

M(—Ey, B;)# ;M (Es, Bj) = M(—Ey, B;)# M (E>, —Bj)

(see Propositions 5.2 and 5.3) that replacing B; by —B; (1 < j < g) does
not change the isomorphism class of T2-bundle.

(2) Let us denote the monodromy group p(mi(X,)) C SL(2;Z) by H. Since H
does not contain — F5, it is impossible for H to contain both +B; for any
i with 1 < i < k. Hence, by replacing B; by —B; or vice versa, we can
switch whether B; € H or —B; € H preserving the condition that H does
not contain —Fs. Therefore, the 28 T2-bundles

M(Es,£B1,...,Ey, By, E3, By, ..., Ea, By)

are indeed pairwise non-isomorphic, since they have different monodromy
groups.
|

Proposition 5.6. The two T2-bundles

M(61E2, Bl, N ,e’:‘kEQ, Bk,8k+1E2, Bk+1, e ,EgEg,Bg)
M(61E27 Bl) sy 6kE27 Bkn 6k+1E27 Bk}+17 ey 6gE2aBg>

are not isomorphic to each other if (e1,...,ex) # (61, .., 0k).

Proof. We will prove the assertion by reduction to the absurd, that is, we suppose
(e1,...,€x) # (01,...,0) and the two bundles are isomorphic, and then lead a
contradiction. Without loss of generality we may assume that e; = 1 and §; = —1,
so it is enough to consider the case where there exists a bundle isomorphism

95: M(EQ,Bla52E27B25 s aEgE27Bg) - M(_EQaB1,52EQaBQ7 s ,5gE2aBg)

covering the base diffeomorphism ¢: ¥; — 3,. Denote the monodromy represen-
tation of M(—FEs, B1,02FE2, B, ...,04E2, By) by p. Then we have

(pow)(an) =Es, (pop)(a;) =By (2<i<g), (pow.)(B;) =B,

where a;, 8; (1 < j < g) are the canonical generators of m1(X,). Then, for each ¢
(2 < i <g), the loops ¢(a;), ¢(B;) are contained in the smallest normal subgroup
N generated by a1, a9, ..., a4, B2, ..., By, because p(p(a;)) = g, Ea, p((Bi)) = B;
are contained in p(N) = (—Fy, Ba, ..., By)™) and the homomorphism

7 (Sg) N 2 (B1) 2 Z— p(ma(Sy)) /p(N) = (B1) 2 Z

induced by p: m1(X,) — SL(2;Z) is an isomorphism. Here we note that By does not
belong to p(N), since po p is of normal form and p(By) is a generator of one factor
of the free product decomposition of Im(p o p), where p: SL(2;Z) — PSL(2;Z) is
the canonical projection. Since the loops ¢(a;) and ¢(5;) (2 <14 < g) are elements
of N, their intersection numbers with a; are all 0. Hence, the loop ¢~ !(aj) has
intersection number 0 with any of a; and §; (2 < ¢ < g). Recalling that the
first homology group is the abelianization of the fundamental group, ¢~ !(aq) is
homologous to an integral linear combination of o; and (31. Since popop, =pop
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is of the normal form and (p o ¢.)(¢ (1)) = p(a1) = —Fs, the coefficient of 3;
must be 0. Thus we have

P~ (o) = afs,
where n is an integer and s is an element of the commutator subgroup [m(2), 71 (24)].
Then we obtain that

(pop)(s) = (pow.)(ar"e™ (o)) = (pops)(a1) " plon) = —Ea.

This implies that —Fs belongs to the commutator subgroup [SL(2;Z),SL(2;Z)],
which is a contradiction. Thus we have obtained that

M(Eg, B1,€2E2,B2, e 7€gE2, Bg) ?/:0 M(—EQ,Bl, 62E2, BQ, ey 6QE27B9).
This completes the proof. O

Based on these propositions, we can prove Theorem 1.4 as follows.

Proof of Theorem 1.4. (1) The case where m > [. For any lift p of p, the
monodoromy group Im(p) contains —Fs, since each B; (I4+1 <14 < m) is of
order 4. In this case, replacing B; by —B; does not change the isomorphism
class of the T2-bundle by Propositions 5.5 (1). Moreover, by applying
Proposition 5.2, we can change the signs e; (k+1<i<Il, m+1<i<yg)
preserving the isomorphism class of the T2-bundle (recall that ¢; is fixed
to be —1 when [ + 1 < ¢ < m). Therefore, by Proposition 5.6, there
are just 2% isomorphism classes of T?-bundles M (e1Es, Bi,...,e4F2, By)
corresponding to the choices of g; (1 <7 < k).

(2) The case where m = [. In this case, the order of B; is not 4, so each B;
with &k + 1 < ¢ < g is uniquely determined by the conditions (a) and (c).
Moreover, if —F5 € Im(p), then there exists an integer ¢ with 1 < ¢ < g
and ¢; = —1. Now we argue the following three cases.

(i) If there exists an integer ¢ with 1 < ¢ < k and &; = —1, then the
isomorphism class depends only on the choices of ¢; (1 < i < k) by
the same argument as in (1). By Proposition 5.6, there are just 2% — 1
isomorphism classes corresponding to such choices.

(ii) If &1 = -+ = ex = 1 and there exists an integer ¢ with k+1 <4i<g
and &; = —1, then such 7%-bundles are all isomorphic to each other by
the same argument as in (1). Hence, the isomorphism class is unique
in this case.

(iii) If —E5 ¢ Im(p), then we have e; = --- = ¢, = 1. In this case, there is
no ambiguity other than the choices of the signs of B; (1 <i < k). By
Proposition 5.5 (2), the 2* choices yield different isomorphism classes.
Therefore, there are 2F isomorphism classes.

Thus there are just 25*! isomorphism classes of T2-bundles.

|

Proof of Theorem 1.5. The conditions (1) and (2) in Theorem 1.5 are equivalent
to that there exist f € M, and Q € SL(2;Z) such that

QprQ ' =pio fu
Moreover, the Euler class e(&1) of M(e1Es, By, ...,e4E2, Bg;m,n) lies in
72/ (B, — Ex)ey, (By — Ex)es, -+, (By — Ez)er, (By — E2)es)
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ifegr=--=¢4=1,and in
72/ (2e1,2es, (B1 — Ez)er, (By — Ez)ea, -, (By — Es)er, (By — Es)es)

otherwise. Hence the condition (3) in Theorem 1.5 is equivalent to the one that
e(&1) = f*e(&2) for the above f € My and Q € SL(2;Z). Hence, by Proposition 4.6,
the conditions (1), (2), (3) in Theorem 1.5 give a necessary and sufficient condition
for & and & to be isomorphic. O

We obtain the following as a corollary to Theorem 1.5.

Corollary 5.7. Let & and & be orientable T2-bundles whose monodromy groups
coincide with SL(2;Z). Then & and & are bundle isomorphic.

Proof. We set By = (01 1), By = (01 (1)) Then the SL(2;Z)-bundle

M(E27B17E27-827E27E27 .. '7E27E2)

satisfies the condition, so it is enough to argue the case where £; is isomorphic to
this bundle. Let p; and ps denote the monodromies of £ and &s, respectively. We
assume that p o py is of the normal form in the sense of Theorem 1.3 (notice that
p o pp is automatically so). Then the condition (1) is fulfilled by the assumption
Im(p1) = Im(p2) = SL(2;Z). Since Im(p o p1) = Im(p o p2), we may assume that
pop1 = po ps holds by Theorem 1.3. Putting p = pop; = pops, then p; and p; are
both lifts of p with respect to p. Since Im(p) = PSL(2;Z) = Zy % Z3, the integers
k, 1, m in Theorem 1.3 are determined as k = 0, [ = 1, m = 2. Therefore, the M-
orbit of lifts of p is unique by Theorem 1.4, and in particular, the condition (2) is
fulfilled. Then SL(2;Z)-bundles corresponding to lifts of p are all isomorphic to each
other. In particular, & is isomorphic to M (FEs, By, Es, By, B2, Es, ..., FEs, Ea;m,n)
for some (m,n) € Z2. Finally, we can check the condition (3) as follows. Since the
four column vectors of the two matrices

-1 1 -1 1

generates Z2, there are indeed ; and x5 € Z2 such that

0
(O) - (T:> = (B1 — Ea)x1 + (B2 — E2)xa,
which means that the condition (3) is fulfilled. Therefore, by Theorem 1.5, the
T?-bundles &; and & are isomorphic. [

6. T2-BUNDLES WITH COMPATIBLE SYMPLECTIC STRUCTURES

Let m: M* — Y4 be an orientable ¥;-bundle over a closed orientable surface 3.
A symplectic structure w on M? is said to be compatible with 7 if its restriction
to each fiber 771(b) (b € ;) is also a symplectic form. Whether a given surface
bundle over a surface admits a compatible symplectic structure is determined by
the following result.

Theorem 6.1 (Thurston [31]). A ¥p-bundle m: M* — X, admits a compatible
symplectic structure if and only if the homology class represented by a fiber ¥y is
nonzero in Hy(M*;R).
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When h # 1, a compatible symlectic struture always exists since the above
condition is automatically fulfilled. When h = 1, namely, in the case of T2-bundles,
the situation is a little more complicated. First we consider when g = 0. In this
case, no nontrivial 72-bundle admits a compatible symplectic structure nor even
a symplectic form on the total space. For, the second Betti number of the total
space of a T?-bundle over S? is 0 unless its Euler class is (0,0). When g = 1,
Geiges has given the following answer based on Sakamoto-Fukuhara’s classification
(Theorem 5.1).

Theorem 6.2 (Geiges [5]). An orientable T?-bundle 7: M* — T? admits a com-
patible symplectic structure if and only if it is not isomorphic to

M (Ey, Ea;m,0) (m # 0) nor M(FE,, C¥;m,n) (n #0),

where C' = ((1) D and k € Z. On the other hand, every orientable T?-bundle over
T? admits a symplectic structure on the total space.

The case where g > 2 has been settled by Walczak as follows.

Theorem 6.3 (Walczak [35]). An orientable T?-bundle
w: M(Ay, Bi,..., Ay, Bg;m,n) — 3,

with g > 2 admits a compatible symplectic structure if and only if its total space
M* admits a symplectic structure. Moreover, such T?-bundles are classified by thesr
monodromies and FEuler classes as follows.
(1) A;=B; =Fs foralli (1 <i<g) and (m,n)=(0,0).
(2) The monodromy is nontrivial and there exists a nonzero vector x = (x1,22) €
72 such that A;x = =, Bix = x for alli (1 <i<g) and nxy — mxy = 0.
(3) There is not a nonzero vector x € Z*> such that A;x = = and B;x = x for
all i.

Thus the problem of determining which surface bundle over a surface admits a
symplectic structure has already been solved. However, the statements of Theo-
rems 6.2 and 6.3 on the existence of compatible symplectic structures can be briefly
summarized as follows. This was pointed out by Yoshihiko Mitsumatsu.
Theorem 6.4. Let g be a non-negative integer. Then an orientable T?-bundle

m: M(A1,B1,..., Ay, Bgym,n) = %,

admits a compatible symplectic structure if and only if its FEuler class is a torsion.

Proof. We put My = M(A1,B1,...,Ay, By) and C = (1) 1 . Let X be a2 x4g
matrix consisting of 4g column vectors of the following 2¢g matrices;
Ay —Es, By — By, ..., Aj — Es, By — Es.

Then the first Betti number of My can be described as by (Mp) = 2g + 2 — rank(X).
Hence, the three cases b1(My) = 2g + 2, 2g + 1, 2g can be interpreted to the
following three conditions, respectively.
(1) Ay=B,=---=A, = By = Es.
(2) there exist Q € SL(2;7Z) and k;,l; € Z such that A; = QC*Q~!, B; =
QCH Q.
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(3) otherwise.

Then the necessary and sufficient condition that Geiges and Walczak gave can be
rephrased as follows, where g, denotes the first column vector of Q.

(1) and (m,n) = (0,0).

(2) and (’:) e (qy).
(3) and (m,n) is arbitrary.

This condition is equivalent to the one that the Euler class [(m,n)] € Z2/Im(X) is
a torsion element. Indeed, if (1), Im(X) = {0}, if (2),

Im(X) = (k1q1,l1qy, - -, kgqy, lg‘]1> = (dq,),

where d is the greatest common divisor of k1,11, ..., kg, 1y, and if (3), Z*/ Im(X) is
a finite group. This completes the proof of the theorem. O

From the viewpoint of our main theorem, Theorem 6.4 can be interpreted as
follows, which seems a natural generalization of Geiges’ condition (the former part
of Theorem 6.2).

Theorem 6.5. Let g be a non-negative integer. An orientable T?-bundle m: M* —
Y4 admits a compatible symplectic structure if and only if it is not isomorphic to

M(E27E27"'aE27E2;m7O) (m 7& O) nor M(E27Ck7"'7E27E2;man) (’ﬂ 7& 0)7
where C' = (é }) and k € Z.

Combining it with the former part of Theorem 6.2 and the latter part of Theo-
rem 6.3, we also obtain the following.

Theorem 6.6. Let m: M* — ¥, and C be as in Theorem 6.5. Then M* admits
a symplectic structure if and only if ™ is not isomorphic to either of the following.
(1) M(E27E27- . -aE27E2;m70) (g 7é 17 m 7& 0)
(2) M(E27Cka"'7E27E2;man) (g > 27 ke Za Tl?éO)

On the other hand, Ue ([32, 33, 34]) clarified which orientable T2-bundle admits
a complex structure on its total space. Comparing Theorem 6.6 with his result, we
obtain the following theorem.

Theorem 6.7. Let m: M* — ¥, and C be as in Theorem 6.5. Then M* admits
a non-Kdahler symplectic structure if © is not isomorphic to either of the following;

(1) trivial bundle,

(2) hyperelliptic bundles (see [32], List I. 1 — 3(a)),

(3) M(E2, Ea, ..., Ez, E2;m,0) (g #1, m#0),

(4) M(E3,C*, ..., By, Eo;m,n) (9>2, k€Z, n#0),

(5) M(Es,B,...,E2, FEa;m,n) (g >2, ord(B) =2,3,4,6).

By this theorem, we can reconfirm the fact that there exist infinitely many non-
Kahler closed symplectic 4-manifolds with even first Betti number, which is known
as a corollary to Gompf’s result [6]. This is in a good contrast with the fact that a
compact complex surface admits a Kéher metric if and only if its first Betti number
is even ([15, 16, 17, 18, 19, 20, 21, 24, 28]).
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Remark 6.8. A non-compact complex surface does not necessarily admit a Kéher
metric even if its first Betti number is even. Indeed, there exist uncountably
many non-Kéhler complex structures on R* ([2]). Moreover, any orientable open
4-manifold admits both Kéhler structures and non-Kéhler complex structures ([3]).
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