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Abstract. For an algebraic Hecke character defined on a CM field F' of
degree 2d, Katz constructed a p-adic L-function of d+ 1+ dF,;, variables in his
innovative paper published in 1978, where ér , denotes the Leopoldt defect
for F' and p. We shall generalise the result of Katz under several technical
conditions (containing the absolute unramifiedness of F' at p), and construct
a p-adic Artin L-function of d + 1 + 0 variables, which interpolates critical
values of the Artin L-function associated to a p-unramified Artin representa-
tion of the absolute Galois group G of F. Our construction is an analogue
over a CM field of Greenberg’s construction over a totally real field, but there
appear new difficulties which do not matter in Greenberg’s case.
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1. Introduction

The purpose of the present article is to construct p-adic Artin L-functions for (non-
commutative) Artin representations defined over CM fields and verify their integrality
admitting the (abelian) Iwasawa main conjecture for CM fields. As a byproduct, we
obtain equality of the Iwasawa main conjecture for such Artin representations. Before
giving a detailed account of our results, we introduce several basic notation. The absolute
Galois group of a number field K is denoted as Gi throughout this article. Let F' be a
CM field of degree 2d and F its maximal totally real subfield. We write tr and Dp+ for
the ring of integers of ' and the absolute discriminant of F'*, respectively. We fix an odd
prime number p, an algebraic closure Q of the rational number field Q, an embedding
too: Q = C of Q into the complex number field C, and an isomorphism ¢: C — C,
between C and the completion C, of a fixed algebraic closure @p of the p-adic number
field Q,. Suppose that every prime ideal of F'* lying above (p) splits completely in the
quadratic extension F/F+. We fix a p-ordinary CM type X of F, whose choice amounts
to choosing one of 3 or 3¢ for each prime ideal p of F'* lying above (p) if p is decomposed
as prp = PP, see Section 2.1 for its precise definition. Let Fi,.x be the composition of
all Z,-extensions of F (in @) Due to global class field theory, the Galois group I' g max
of Finax/F is known to be a free Z,-module of rank equal to or greater than d + 1; the
equality holds if and only if the Leopoldt conjecture for F' and p holds true.

Let us review historical background on Iwasawa theory for CM fields. We first take
a look at construction of p-adic Hecke L-functions for (p-ordinary) CM fields. Under
certain assumptions, Katz [Kat78, Theorem (5.3.0)] has constructed a p-adic Hecke L-
function over F' as an element of the Iwasawa algebra of I' g max. His p-adic L-function
interpolates the values at 0 of the Hecke L-functions for various algebraic Hecke characters
with appropriate infinity type and conductor dividing a power of p. Later Hida and
Tilouine [HT93, Theorem II.] generalised Katz’s construction, and relaxed constraints
on the conductors of algebraic Hecke characters appearing in the interpolation property.

Now let ¥8: Gp — @; be a finite character which is at most tamely ramified at
every finite place of F' lying above (p), and suppose that the field Fy, corresponding to the
kernel of 48! is linearly disjoint from Fj,., over F. The p-adic Hecke L-function over F is
constructed for such a branch character. We take a finite flat extension O of Z,, containing
the image of ¥#!, and define O™ as the composition of O and Zp = W(F,) (C Oc,),

the Witt ring of the algebraic closure F,, of F,. Let ¢: A%/F* — Q" be the algebraic
Hecke character of F' corresponding to 1%*! via global class field theory. Recall that, for
any algebraic Hecke character x: A%/F* — @X of conductor f,, the Hecke L-function
L(x, s) associated to x is defined as the meromorphic continuation of the Euler product
[Ty, (1— Xt(w)N1~#)~1, where the product is taken over all prime ideals of F relatively
prime to f,. Here, for a prime ideal | of F', we write w, for a uniformiser of the l-adic
completion Fy of F', and N for the absolute norm of [. Throughout the present article,
we are especially concentrated on the case where F is absolutely unramified at (p). In
the case, we may slightly improve the results of Katz and Hida—Tilouine as follows.

THEOREM (=THEOREM 2.5, KATZ, HIDA-TILOUINE).  Assume that F' is abso-
lutely unramified at (p) and take a branch character 1/%% as above. Then there exists a
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unique element Ly, 5. () of O™([r F,max)] satisfying

ngal(Lp,EF (’(/})) _ (t;‘ : t1>;‘+) Z'|_wnt_"n| H Eulv(w,mo) A(l/”%o) (1.1)

Wy t+2r, T od Wy t+2r,
Qe p, F 24V/|Dp+| VESEp Qent o0, F

with

Eul, (1, 0) = {LUC w??,o)_lLv((?ﬁZ?l)v, 1)t %f ¥n 15 unra.nmiﬁed at v,
e((Yn)v, erp, dry) if ¢n is ramified at v,
A(¢na 5) = Lo (1/)777 S)L(WI, 5)

for each algebraic Hecke character n: A% /F* — @X satisfying the following two condi-
tions:

(i) the Galois character n&l: Gp — (C; corresponding to 7 factors through I'p max;

(ii) the infinity type of n satisfies both —w,, —ry, » < —1 and r,, , > 0 for every o € Xp.

There are several notational remarks on the statement of the theorem above. We set
t=(1,1,...,1) € Z*r, and let (wy,r,) € Z x Z** denote the infinity type of n defined
as n((To)oesy) = [loes, 2y trme g e We use multi-index notation in (1.1); refer
to Remark 2.4 for details. The symbols €((¢n)y, €F v, dx,) and Loo(¥n, s) respectively
denote Deligne’s local constant at the p-adic place v and the archimedean local factor
(or the gamma factor) of L(v¢m,s), whose explanations are given in Section 2.3. The
product A(yn,s) of Lo(¢m,s) and L(yn,s) is called the completed Hecke L-function,
which satisfies the functional equation A(ym, s) = e(vn, s)A((¢¥m)~1,1 — s) for an expo-
nential function e(¢n, s) (the global epsilon factor). The modified complex CM period
QMoo r € CFF and the normalised p-adic CM period Qcm,, € (@“r)x’zF will be
defined in Definition 2.1.

Next we shall review the (abelian) Iwasawa main conjecture for CM fields. Let My,
denote the maximal abelian pro-p extension of F},, which is unramified outside all the
finite places lying above ¥ ,. Then the t-isotypic quotient Gal(Ms, Fy/FmaxFy)y of
the X p ,-ramified Iwasawa module Gal(Ms, Fy/FnaxFy) ®z, O is a finitely generated
torsion O[[I'p, max]]-module as is explained in [HT94, Theorem 1.2.2 (iii)], and thus its
characteristic ideal charor, ,...1(Gal(Mx . Fyy / Fnax Fy )y ) is defined as a nontrivial ideal
of O[[I'F, max]]- Under these settings, the multi-variable Iwasawa main conjecture for CM
fields is formulated as follows.

Iwasawa main conjecture for ). Let 1% be a branch character chosen as
above. Then

char gup, . (Gal(Ms, Fy/ FuaxFy s 800™) = (Lys, (1)) (1.2)

holds as an equality of ideals of @‘”[[F F, max]]-

Under several assumptions, Ming-Lun Hsieh has recently verified in [Hsil4, Theo-
rem 8.16] that there exists an inclusion
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g, .y (Cal(Ms, / FuaFy)u@00™) € (Lys, ()

predicted by the Iwasawa main conjecture for ¢ (1.2) when the Leopoldt conjecture for
F and p holds true, adopting the method of Eisenstein congruences on the unitary group
GU(2,1). Note that the Iwasawa algebra @“r[[FF, max)] 18 isomorphic to the ring of formal
power series in d 4 1 variables under the Leopoldt conjecture for F' and p. Meanwhile,
Hida obtains, under other technical assumptions, an equality between the algebraic char-
acteristic ideal and the analytic ideal [Hid06, THEOREM] in the anticyclotomic Iwasawa
algebra, which is a d-variable quotient of the Iwasawa algebra O™ [[T F,max)]- A standard
specialisation argument combined with these two results implies the desired equality
(1.2) in O™ [T F, max)] if the branch character & is anticyclotomic. When the CM field
F under consideration is a composite of a totally real field and an imaginary quadratic
field, Hsieh has another result [Hsil4, Theorem 8.18] on the Iwasawa main conjecture
for a certain branch character ¥8* by using Rubin’s equality of the two-variable Iwasawa
main conjecture for an imaginary quadratic field [Rub91, Theorem 4.1 (i)] in place of
the anticyclotomic main conjecture.

In the present article, we shall construct a p-adic Artin L-function L, s, (M(p))
associated to an Artin representation p: Gr — Autg V, when F' is absolutely unramified
at (p), the field F, corresponding to the kernel of p is also a CM field, and p is unramified
at every finite place of F lying above (p). Since the Galois character 12 of finite order
is an Artin representation of degree 1, Theorem A below can be regarded as an extension
of Katz, Hida and Tilouine’s theorem stated above under such a restricted situation.

THEOREM A (A PART OF THEOREM 4.6). Suppose that F is absolutely unramified
at (p). Let p be an Artin representation of G unramified at every finite place of F' lying
above (p), and suppose that the field F, corresponding to the kernel of p is also a CM
field. Assume that the Iwasawa main conjecture is true for any intermediate field K of
the extension F,/F and any branch character 18 of G factoring through Gal(F,/K).
Then there exists a unique element L, 5, (M (p)) of O[T F,max)| satisfying

ngal(Lp,ZF (M(p))) _ sr(p)|—wnt—ry| A(p & 1, 0)
T A R i nt=ry H Eul,(p ® ”’0)—ant+2rn =) (1.3)
( CNL@F) vEXFp ( CNL@LF)

with

Lye(p®n,0) ' Ly((p®@n)V,1)~! if n is unramified at v,
Eulv(p®n,0):{ (p&m 0 Lu((p@n)*, 1) ifn

((p@n)y, epw, dr,) " if  is ramified at v,
Alp@mn,s) = Loo(p@n,s)L(p@1),s)

for each algebraic Hecke character n satisfying the conditions (i) and (ii) appearing in
THEOREM.

Note that, since both F' and F, are CM fields, each intermediate field K of F,/F
is also a CM field. Here L(p ® n,s) is the Hasse-Weil L-function of the pure motive
M(p) ® M(n), and €((p ® n)v, €F v, dx,) is Deligne’s local constant at v € Xp,; see
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(3.1) and (3.2) for their precise definitions. The completed Artin L-function A(p ® 7, s)
is defined as the product of L(p ® n,s) and the archimedean L-factor Lo (p ® 7, s),
quite similarly to A(¢n, s). According to our construction of the p-adic Artin L-function
L, s.(M(p)), the Iwasawa main conjecture for p shall be simultaneously verified.

THEOREM B (A PART OF THEOREM 4.6). Retain the notation and assumptions
from Theorem A. Then

Char@“f[[l“pw max]] (Gal(MEF/FpFrrlaX)p®00ur) = (L;mEF (M(p)))
holds as an equality of ideals of (5‘”[[1" F, max)], where the subscript p denotes the isotypic
quotient of type p.

Unfortunately we can hardly apply Hsieh’s results [Hsil4, Theorem 8.17, Theorem
8.18] to fulfill the assumption of Theorems A and B on the (abelian) Iwasawa main
conjecture for intermediate fields of F,/F'; see Lemma 3.1 and Remark 4.7 for details.

Strategy of the proof

Let us briefly explain our strategy to prove Theorems A and B. One of the key ingre-
dients is Brauer’s induction theorem [CR81, Theorem (15.9)] appearing in representation
theory of finite groups. Indeed, it provides us with a virtual decomposition

p=3 a Indgij pE (1.4)

Jj=1

of the Artin representation p under consideration, where a; is an integer, Fj is an in-
termediate field of F,/F, and w‘;?’alz GF; — C* is a character of finite order factoring
through Gal(F,/F;) for each j. Using (1.4), we formally define our p-adic Artin L-
function L, 5, (p) as the product [[j_, pr; (LP’ZF]_ (1))% up to multiples of minor con-
stants, where 1; denotes the algebraic Hecke character on F; corresponding to 1/1]g-a1 via
global class field theory, and pr; is the composition

(5ur[[FFj, maXH - 6ur[[Gal(FijaX/Fj)H — @ur[[rF, maxn-

Note that (1.4) is just a virtual decomposition, and the integers a; can be negative. Hence
L, 5. (p) is constructed as an element of the field of fractions of (”)\“r[[FF) max]], and we do
not know a priori whether it is contained in O™ [[T F,max]] Or not; that is, the integrality
of the p-adic Artin L-function is not clear at this stage. Meanwhile, we can verify that,
on the algebraic side, the characteristic ideal has a quite similar decomposition

char 5., (

I'F, max]] <Gal(MEF/Fmeax)p®OOur)
S

= H pr; (Char(’jur[[rpj‘ max]] (Gal(MEp/FjFInax)wj @oour))ﬂj . (15)
=1
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Although the product in the right-hand side of (1.5) is just a fractional ideal, the left-
hand side of (1.5) is indeed an integral ideal of O™ [[T F,max)] by definition. Therefore,
admitting the Iwasawa main conjecture for every branch character 1/Jjgal appearing in
(1.4), we may conclude that the fractional principal ideal (L, 5, (p)) must be integral in
o™ [r F max)]- We also emphasise that, in order to check that our naively constructed
p-adic Artin L-function L, x, (M (p)) satisfies the interpolation property (1.3), we need
to put together the interpolation formula of each Ly x . (1;) into the desired form (1.3).
This tedious task will be achieved in Section 3.

Remarks in comparison with preceding results

The prototype of the present work is Ralph Greenberg’s remarkable study of p-
adic Artin L-functions over totally real number fields F™ [Gre83, Grel4]. He has
constructed a one-variable p-adic L-function associated to a totally even Artin represen-
tation p of Gp+. The construction based upon the Brauer induction principle has already
appeared in [Gre83], and we owe the main strategy of the proof of Theorems A and B
to [Gre83]. There appear, however, several noteworthy difficulties which did not matter
in the case over a totally real field. We shall explain technical difficulties appearing in
our generalisation of Greenberg’s work to the case over a CM field.

Firstly, the Brauer induction argument in Greenberg’s case is covered by one-variable
objects, but in the present work, the number of variables changes drastically throughout
the Brauer induction argument. Here let us admit Leopoldt’s conjecture for simplicity.
Then p-adic Hecke L-functions Lp,gF + (1;) appearing in the construction of the p-adic

J

Artin L-function are of one variable when F j+ is totally real. Contrastingly in our CM
situation, the p-adic Hecke L-functions Lpsp, (¢;) are of d[F; : F|+ 1 variables for
each j. Thus, in order to take the product of p-adic Hecke L-functions, we need to
specialise each L 5 5, (¢j) into the (d + 1)-variable one via the projection pr;, but the
characteristic ideals appearing in the right-hand side of (1.5) do not behave compatibly
in general with respect to such specialisation procedures. To overcome this difficulty,
we adopt techniques developed in our previous work [HO18] on the cyclotomic Iwasawa
main conjecture for Hilbert modular forms with complex multiplication. In particular,
inductive descent arguments developed there play crucial roles in the proof of the key
decomposition formula (1.5) on the algebraic side; see Section 4.3 for details.

Secondly, verification of the desired interpolation property (1.3) becomes much
harder than that dealt with in [Gre83]. Indeed, only L-values concern the interpolation
properties of the p-adic Artin L-functions for totally real fields, and thus one readily
verifies it by just using inductivity of the Artin L-functions. However, there are several
other factors appearing in the interpolation properties of the p-adic Artin L-functions for
CM fields; for example, the gamma factor Lo (p ® n,0), the modified complex CM pe-
riods €2cm,c0,F, the normalised p-adic CM periods Qcwm p,r, the modified p-Euler factor
Eul,(p ® n,0) and so on. All of these factors do not appear in [Gre83], and the match-
ing of these factors requires intricate computations. Amongst them, the matching of
Deligne’s local constants (or generalised Gauss sums) requires quite delicate arguments
and is not straightforward at all. To establish its matching, we settle in Appendix A
an extension of classical Davenport—-Hasse relation [DH35, (0.8)] for Gauss sums to the
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case where the conductor of the multiplicative character is a power of a prime element
(Theorem A.1), which seems to be of independent interest and will play important roles
in the construction of p-adic Artin L-functions for more general motives in future works.

Notation

We mainly use the fraktur ¢ for the ring of integers of an algebraic number field
(which is often regarded as the base field of a certain motive); the calligraphic O is kept
to denote the ring of integers for a p-adic field (which is often regarded as the coefficient
field of the p-adic realisation of a certain motive). The absolute norm of a fractional
ideal a of an algebraic number field is denoted by Na. We fix an algebraic closure Q
of the rational number field Q and regard all algebraic number fields (that is, all finite
extensions of Q) as subfields of Q. For an algebraic number field K, let Ak (resp. Ay)
denote the ring of adeles (resp. the group of ideles) of K. The finite part (resp. the
archimedean part) of the ring of adeles Ak is denoted by Ak gn (resp. AR).

We shall fix notion on the standard additive character throughout this article. For
each finite prime v of K, we define ek ,: K, — C* to be

ex,v(z) = exp(—2mv—1Trk o (%)) (1.6)

where 7 is an arbitrary element of | J 7, B, " (regarded as a tx-submodule of K) such
that £ — = is contained in the completion of the ring of integers of K at v. Here 33,
denotes the prime ideal of K corresponding to v.

Let C, be the p-adic completion of the fixed algebraic closure @p of Q, and Oc,
its ring of integers. For a finite flat extension O of Z,, we use the symbol O for
the composite ring OZ;Y, where Z;r = W(F,) denotes the ring of Witt vectors with
coefficients in F,. Throughout the present article, we fix an isomorphism ¢: C — C,,.

We here adopt geometric normalisation of global class field theory. Specifically,
for a finite abelian extension L/K of algebraic number fields, the reciprocity map
(=, L/K): Al — Gal(L/K) is normalised so that it sends a uniformiser w, at a finite
place v of K which does not ramify in L/K to the geometric Frobenius element Frob, in
Gal(L/K). In other words, a@ol/K7 = qa (modB,) holds for each a in tx where ¢,
denotes the cardinality of the residue field at v.

The absolute Galois group Gal(Q/K) of an algebraic number field K is denoted by
Gk. For a place v of K, the decomposition group and the inertia group at v are denoted
by D, and I,, respectively. For a (possibly infinite) abelian Galois extension L/K of K
and the ring of integer O of a finite extension of Q,, we define O[[Gal(L/K)]}* as the free
O[[Gal(L/K)]]-module of rank 1 on which Gk acts via the universal tautological character

Gk — O[[Gal(L/K)]]*; g+ glL.

We also define O™ [[Gal(L/K)]]* in the same manner. Finally, we let M" denote the
Pontrjagin dual Homgz, (M, Q,/Z,) of a Z,-module M.
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2. The p-adic Hecke L-functions for CM fields

In this section, we construct the p-adic Hecke L-function L, s, () following Katz
[Kat78], Hida and Tilouinen [HT93].

2.1. General settings

Let p be an odd prime number and F' a CM field of degree 2d with the maximal
totally real subfield F'*. We use the symbol ¢ for a unique generator of Gal(F/F™),
namely the complex conjugation on F. The composition of all Z,-extensions of F in Q is
denoted as Finax, and we write I'p max for the Galois group of Fiax/F. Then, by using
global class field theory, one readily observes that I'p max is a free Z,-module of rank
equal to or greater than d + 1; as is well known, the equality holds if and only if the
Leopoldt conjecture for F' and p is true.

Hereafter we impose the following two assumptions on F' and p;

(unrp,) the field F is absolutely unramified at (p);
(ordp,) all places of F* lying above (p) split completely in F.

By virtue of the ordinarity condition (ordg ), there exists a p-ordinary CM type X
of F (also called a p-adic CM type in several literature), which is defined as a subset of
the set I of all embeddings of F into the complex number field C satisfying the following
two conditions:

— we have Iy = X pUXS (disjoint union) where X%, is defined as {coc € Ir | 0 € Xp};

— we have {places of I lying above p} = X, U X%  (disjoint union) where ¥r,
denotes the set of prime ideals of F' induced by p-adic embeddings too: F — C,
for all o in ¥, and X%, is defined as X%, := {P° | P € Xp,}

We take a p-ordinary CM type X of F and fix it once and for all.

2.2. Period relations of CM periods

In this subsection, we recall the definition of the complex and p-adic CM periods,
which appear in the interpolation formulae of the p-adic Hecke L-functions for CM fields.
For this purpose, we first construct a Hilbert—Blumenthal abelian variety equipped with
complex multiplication by vz as follows.

Consider a diagonal embedding tr < C*F ;2 +— (0(2))sex, of tr into C¥F with
respect to the fixed p-ordinary CM type ¥p. The image Y p(tp) of this embedding then
forms a Z-lattice of C*F, and thus we can define a complex torus C** /S p(tp). In order
to regard this complex torus as an abelian variety, we equip it with a polarisation by
choosing any element § of F satisfying the following three conditions:

(1s) ¢ is relatively prime to p;
(25) 0 is purely imaginary, that is, it satisfies 6¢ = —;

(35) the imaginary part —io(J) of o(d) € C is positive for all o in X . Here ¢ denotes
the imaginary unit satisfying i2 = —1.
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Using such §, we introduce an alternating pairing ( , )5 := (uv® — uv)/2§ on
tp. The existence of such an alternating pairing implies that there is an abelian va-
riety Xs,.(tr),c over C whose C-valued points are identified with the complex torus
C>r /Y (tr). The details are as follows. Let ¢ be a fractional ideal of F* defined as
¢ = Trp/p+ (0p+ /26)~L. Here d0p+ denotes the absolute different of F'™. Then ¢ is rel-
atively prime to p due to the assumptions (unrg,) and (15), and thus there exists an
abelian variety denoted by Xs, (tr),c ®¢,, ¢ over C whose C-valued points are iden-
tified with the complex torus C** /S (ctr), and the alternating pairing ( , )s induces
a c-polarisation As: Xs,.(tr)ie — Xsp(tr)/c @, ¢ where X5, (vp))c denotes the
dual abelian variety of Xz, (vr),c. Note that 26 is chosen so that its image 26, under
F — Fyg = FpJr generates the absolute different 0 Ff of F; for each place p of F'T lying
above p and a unique P € Xp, satisfying P | p (see [Kat78, (5.3.3) and Lemma (5.7.35)]
for details).

Next recall that Katz and Hida—Tilouine have endowed the c-polarised abelian va-
riety (X5, (vtr)/c, As) With a Doo(p™)-level structure is: (0.} ®z Gp)[p>] = X(vr)/c
with respect to § induced by a composite map

— — 00 (5) — 00
(05t @2Ga)p™)(C) = [ opte > /ep == T 0= /epy
p|ptF+ p|ptF+
I &/t = [ B =/tr < CF /Sr(tr) = X, (t7)(C)
PBEXFp PBEXrp

(see [Kat78, (5.1.11)—(5.1.18)]). Meanwhile we may canonically identify b;} with vy

for every p | ptp+ under the assumption (unrg,). Hence there is another T'go(p™)-level
structure i_: (D;i ®z Gp)[p>] < X(rr)/c defined as the composite

— oo [e’e] (_1) —00
(DF‘lF ®z Gm)[p™] H DFHJ /tF+ 2 H p /tF;'
plpep+ PPt ot
I B /tm = I B =/tr < CF /Sp(tr) = X, (t7)(C).
PBEXFp PEXFp

Both triplets Xy, (tp)5 = (XEF (tF)/(C7 As, i§) and Xs,. (tF), = (XZF (tF)/C, A5, i,) then
have models Xsx, (tr)s and Xs, (vg)_ over the valuation ring W = QN Z;r due to
the theory of complex multiplication combined with Serre and Tate’s criterion for good
reduction and the assumption (unrz,).

The complex uniformisation IT: C** — X (tz)(C) of Xx, (tr), namely the natural
quotient map C¥F —» C*F /S p(tr), induces an isomorphism

*: Fil' Hig (X5, (tr) c) — €D Cdu,,

oEX R

where (uy)sex, denotes the coordinate of C¥#. Now let us define wians(tr) as

(1)~ (dezp dug).

On the other hand, the p-part of the T'go(p™)-level structure i» (for ? € {4,—})
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induces an isomorphism ir: (0,1 ®z (Gm)/@ur)A = (Xsp (tF)/@m)A between the formal
completions along the identity sections over O™ where X, »(tF) JOu denotes the base

extension of X, (tz) to O". Note that, under the assumption (unrg,,), the formal
scheme ((D;i ®z Gm)/@m)/\ is decomposed into [[, 5. Gﬁl/@m corresponding to a nat-

~

ural isomorphism 2.} ®z o =, [lies, O"i2®@ 1+ (too(z))sesy- In summary, the

isomorphism ¢7 above induces

P ~ Aur ATo
: FlllH&R(XZF(tF)/é\“r) — @ O
oEX R 7

where T, denotes the formal parameter of the component G/, /O corresponding to
- dT,
oc ZF' Define wc?an(tF) to be wZan(tF) = (Z:)_l (ZO‘EEF T) .
DEFINITION 2.1.  Let us choose and fix a basis w of FillHle(XgF(tp)/W), which
is a free tp+ ®z W-module of rank one.

(1) We define a complex CM period
CeM,o0,F = (CCM,oo,F,a)UezF € (vp+ ®z (C)X
to be a constant satisfying
w = CoM, 00, F Werans (LF)

as an equation in Fil' Hly(Xs, (tr)/c). We also define a modified complex CM
pe’riOd QCM,oo,F = (QCM,OO,F,U)UEZF by Setting QCM,OO,F,U = (27Ti)_1CCM,OO,F,O'
for each 0 € XF.

(2) We define a §-modified p-adic CM period
C =Ce = (C? ) € (tp+ ®70")"
CM,p,F CM,p,F CM,p,F,0)gexp Tp+ Q7
to be a constant satisfying
s s
W= CCM,p,F wcan(tF)

as an equation in Fil' H} (Xs, (I'F)/@m). We also define a normalised p-adic CM
period Qcm p,r = (QeMp Fo)oeny as a constant satisfying w = Qcm p, FWean (CF)-

Note that both of the complex and p-adic periods do depend on the choice of an

(vp+ @z W)-basis w of Fil' Hig (X, (tr),w), but the “ratio of them” is independent of

w; namely, when w is replaced by aw for a € (tF+ Rz W) X, the resulting (complex and
p-adic) periods are both multiplied by the same constant a.

REMARK 2.2 (ON CM PERIODS). Many authors including Katz [Kat78] and
HidaTilouine [HT94| adopt the pair of CM periods (Com,ee,r; Com,p,r), Whereas we
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shall use (QcM 00,7, 2cM,p,r) to simplify the interpolation formula of the p-adic L-
function under the assumption (unrgy). As we shall mention in Remark 2.7, the normali-
sation of Qom,co,F is initiated by Coates and Perrin-Riou’s conjecture [CPR89, Coa89)].
The normalised p-adic CM period Qcm,p,r essentially appears in [dSh87, 1.5] where the
assumption (unrg,) is also admitted; indeed Qcm,p, 7 coincides with de Shalit’s —Q,(®).
We should remark that Chida and Hsieh also consider in [CH23, Proposition 3.4] a
similar modification of the CM periods when F' is an imaginary quadratic field. We also
emphasise here that, although we implicitly have to choose an auxiliary element ¢ to en-
dow the complex torus Xy . (tp) with a polarisation As, the normalised p-adic CM period
Qcm,p,r does not depend on the choice of §, while Con,o0,r = CéMJ),F does depend on
it; by construction, they are related via the equality

CéM,pﬂcf =100(—20)Qcmp,Fo forevery o € Ep. (2.1)

Later we need to compare (complex and p-adic) CM periods among various CM
fields. Let F’ be a CM field which is absolutely unramified at p and contains F. Then
one readily checks that Xp = {0’ € Ip | o/|p € X} is indeed a p-ordinary CM
type of F'. We say that Xp is induced from Yp. Now let us choose and fix an
(tp+ ®z W)-basis w of Fil' Hip (Xs(vr)w). Since Fil' Hip (Xs(tpr) ) is isomorphic
to FillH(}R(Xz(tF)/W) ®ep tpr, We can choose w @, trr as an (tp,+ ®z W)-basis of
Fil'H Ir(Xs(vp) sw)- This observation implies the following period relation, which plays
an important role in the proof of Theorem 3.2.

LEMMA 2.3 (PERIOD RELATION, SEE ALSO [dSh87, 1.3 (ii)]). Let F, F’, w and
W Ry, tpr be as above. For each 7 € {oo,p}, consider the (complex or p-adic) CM
periods Qcm2F = (QCM,?,F,U)UGEF for F'and Qcom2 rr = (QCM,?,F’,U’)U/GEF, Jor F'
defined with respect to w and w ®., tps, as in Definition 2.1. Then we have an equality
QCM,?,F’,U’ = QCM,?,F,J’\F fOT‘ every o' € Y.

2.3. Construction of the p-adic Hecke L-functions for CM fields

Before stating the interpolation formulae of p-adic Hecke L-functions for CM fields,
we here make a remark concerning purity of infinity types of algebraic Hecke characters.
Let n = (y)y: Ap/F* — Q” be an algebraic Hecke character of a CM field F, and $p
a p-ordinary CM type of F'. Then there exist an integer w, € Z and an integer-valued
vector r, = (ry o )oes, € Z*F satisfying

Moo (Too) = H gWn e g e for 2oo = (To)eex, € F ®g R = C*F (2.2)
oEX R

where ~ is the complex conjugation in C. We refer to (wy,r,) € Z x Z>F as the infinity
type of n. We write for n%!: Gp — C, the continuous character of G corresponding to
7 via global field theory.

REMARK 2.4 (MULTI-INDEX NOTATION). To lighten the notation, we use the fol-
lowing multi-index notation in Theorem 2.5. Let a = (ay)sex, € Z*F be an integer-

valued vector. Then we put |a| := > ao, and for a C-valued or O"-valued vector

oEX R
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W = (Wy)oeny, we write w? for the product [[, .5 wge. Finally let t € ¥ denote a
particular vector whose components are all equal to 1.

Recall from Section 1 that we call 181 : Gp — C* a branch character if it is a finite
character at most tamely ramified at every prime ideal of F' lying above (p), and the field
F,, corresponding to the kernel of 18! is linearly disjoint from Fy,.x over F. Let O be a
finite flat extension of Z, containing the image of &% and ¢: AX/F* — @X the alge-
braic Hecke character corresponding to 1% via global class field theory. Let L(vm, s) be
the complex Hecke L-function of ¢n defined by []y; (1— (Yn) (@ )NT1=*)~1 for Res > 1,
where we write oy for a uniformiser of Fy. As is well known, it is meromorphically contin-
ued to the whole complex plane C with a possible simple pole at s = 1. To consider the
completed L-function, let us introduce the archimedean L-factors (or the gamma factors)
Loo (11, 8) := Loo(Resp g M (¢n)) of L(vm, s). Suppose that the algebraic Hecke charac-
ter 1 has the infinity type (wy, r,)); namely suppose that 1. satisfies (2.2). On the Hodge
realisation Hg , (M (¢n),r)c of the pure motive associated to ¢n with respect to o € X,
the real-valued points of Deligne’s torus S,,,(R) = C* acts via z — 2¥nt"moz7 .o this
implies that the Hodge type of Hg (M (n),/r)c is (—wy —7y,0,79,0). Here we adopt the
convention in [Del82, Remark 3.3] concerning the Hodge types. The archimedean local
L-factor Loo(ym, s) := [I,ex, Lo(¥n,s) of L(n,s) is thus described as

Loc(¥n,s) = [] Tels+wy+740),  Tels) =2-(2m) " T(s) (2.3)

oEX R

where I'(s) denotes the usual gamma function; see [Del79, Section 5.3] for details. The
completed Hecke L-function is then defined as A(vn, s) := Lo (¢m, s)L(v¥n, s).

We are now ready to state the existence theorem of the p-adic Hecke L-function
for CM fields, which is deduced from the result of Katz [Kat78] and Hida—Tilouine
[HT93]. For a p-adic place v € X, let €((¥n)y, €F 0, dz,) denote Tate’s local constant
with respect to the standard additive character ep, defined as (1.6) and a unique Haar
measure dx, on F, normalised so that the volume of the ring of integers of F), equals 1.

THEOREM 2.5. Let p be an odd prime number, F' a CM field of degree 2d and F'+
the mazimal totally real subfield of F. Assume that F, F* and p satisfy both (unrp )
and (ordpy). Let 1&8: AX/F>* — O be a branch character at most tamely ramified at
every prime ideal of F' lying above (p). Then there exists a unique element Ly s, (v) of
O[T, max]] satisfying

gal(T, TSR s A(ym, 0
e L
Qo F 29V/|Dp+| VESEp Qent, 00, F

with

Lye (1/1777 0)71[/1;((¢77)va 1)71 Zf 1;[}77 is unmmiﬁed at v,

P {e«wn)v,em, dz,)”! i is ramified at v,

or each algebraic Hecke character n: — Q° satis ying the following two
h algeb Hecke ch t AX/F* Q
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conditions:
(i) the Galois character n®: Gp — C, corresponding to n factors through T p max;

(ii) the infinity type (w,,r,) € ZxZ¥F of n satisfies both —w, —1, » < —1 and ry, , > 0
for every o € Xp.

PrOOF. Let f(®) denote the prime-to-p part of the conductor of 42 and decom-
pose f(p) into the product §§.J of integral ideals satisfying the following three conditions;

e both ¥ and §. are the products of prime ideals which split completely over F'T;
e Jis the product of prime ideals which inert or ramify over F'*;
o § and §. are relatively prime and satisfy §¢ D §.

Furthermore choose a purely imaginary element 6 of F' so that it is relatively prime to
the conductor of 18 and satisfies all the conditions (15), (25) and (3;) at the beginning
of Section 2.2. Fixing such a decomposition of §*) and §, Hida and Tilouine have con-
structed in [HT93, Theorem II] the p-adic L-function LE%? 5(F) as a unique element

of (51“[[G‘ral(Ff(p)pao /F)]], where Fj) e denotes the ray class field modulo §P)p> of F.
Meanwhile, for each place v | ptp of F, let §, denote the image of § € F into the v-adic
completion F, of F, which we identify with the v|p+-adic completion F  of F. Then,

U|F+
since 24, generates the absolute different of F;T . due to [Kat78, Lemma (5.7.35)], it
F

ey (
vipoo U

ideal decomposition of f?) and set Usrpr = [otpoo Ul(:i“(f(p))) X Lojper Ul(fli) X T ©

for each k£ > 1, where U 1(;:) denotes the n-th higher unit group of F;, for every natural

number n. We then define 'y§ 5 as the image of (20,)ex,, under the composite map

. s . . (p) — f(p)) .
is a v-adic unit under the assumption (unrpgp). Let ) = [] be the prime

H t;‘v — A;i — @1 A;/FXUf(p)pk = Gal(Ff(p)poo/F), (2.5)
vEXFp k=00

where the third isomorphism is induced by the global Artin reciprocity map due to global
class field theory. Now let us consider the 1% -twisting map

Tw et : O™ [[Gal(Fjio oo / F)]] = O[T pmasd); g 95 (9)7

where g denotes the image of g under the natural surjection Gal(Ff@)poo /F) = T Fmax;

and define L, s, (1) to be Tw g ((7225)71[/5,%16) € @“r[[I‘F’ max]]- We shall check in
the rest of the proof that L, 5, (1) satisfies the desired interpolation formula (2.4), from
which the uniqueness of L, s, (¢) readily follows; see [Kat78, Proposition (4.1.2)].

Let n: AR /F* — Q" be an algebraic Hecke character satisfying (i) and (ii) of the
statement; we then have

ngal(TWd}gal (’YQX:(;F)_l) _ H (wn)v(26v)_l H (LOO’(Q(S))_M”_T”"

VEXF,p oEXFR
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by the construction of 72251” and local-global compatibility of the Artin reciprocity maps;

note that the right-hand side is none other than evaluation of the p-adic avatar of ¥n at

((26,)71) esp (see [HO18, Section 2.1.1] for details). Combining this with (2.1), we
v .

can calculate as

gal . gal [KHT ([
PR )yt T mats) ™ T (eooten) &2 Cfun’:f;f( ).

CM,p,F VESF cEXR CM,p,F

Applying the interpolation formula of Lzlfg:{ (F) proposed at [HT93, Theorem II] at the
right-hand side, we obtain

15 (L, (1)) NN G O P 1 r
e W) (e (—1=d T @me@s) " I o(20)
QCNE;F' V|1)F+| vEXF p cEX R

H Euli(lﬁn,O) H ﬂhrn,ar(w”—"_rn,o) L(W%O)

(—io(8))"" [ C&ritin

vEX R p cEXF

(vp: ths) wat42r 2 -
= =L L(¥n,0) § Qi o o (273)Wnt2rme

\% |DF+| oEX R
IT wn)w(26,) " Euld(ym, 0) T] @) T (w, +14.0),

vEXF p oEXF
where Eul’ (41, 0) is defined as

Lye(¥n,0) 7 L, ((¢n)V, 1)1 if ¢n is unramified at v,

4 —
Bt = {e<<wn>mem<<25v>-1—>, dro)™" i g s ramified at v.

See also Remark 2.8 on comparison between Eul’ (¢, 0) and the local term appearing in
[Kat78, (5.7.28)] and [HT93, (0.10)]. One then readily obtains the desired interpolation
formula taking the equalities

H (2m) " e Dwy + 1y.0) = Q_dLoo@/m, 0),
oEX R
{(wn)q)@(;v)e((@[m)va eF,v((de)ilf)vdxv)}il = 6((1/’77)1”9F7mdxv)7
(see [Del73, (3.3.3)] for example)

1

into accounts. O

REMARK 2.6 (INDEPENDENCY OF THE POLARISATION PARAMETER 6). Under the
assumption (unrg,), we have succeeded in getting rid of the dependency of the p-adic
Hecke L-function L, 5, () on the auxiliary element § satisfying the conditions (15), (2s)
and (35) at the beginning of Section 2.2; note that Katz’ and Hida-Tilouine’s original
p-adic Hecke L-function Lﬁ%f, 5(F) does depend on the choice of ¢. It seems hard to

remove §-dependency of the p-adic Hecke L-function when F'* is ramified at (p).
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REMARK 2.7 (RELATION WITH COATES AND PERRIN-RIOU’S CONJECTURE). We
clarify that our p-adic Hecke L-function Ly 5, (¢) is compatible with Coates and Perrin-
Riou’s conjecture [CPR89, Coa89]. The term il=“nt="lL_ (¢n,0) is regarded as
the modified co-Euler factor £%) (Resp/q M(2pn)) introduced in [Coa89, p.103], and

ng\/}zr} amounts to the modified period

QO (Respjg M(¢¥n)) = C*(RespyoM (yn))(2mi)™Resr/oM (W)

defined in [Coa89, p.107]; indeed 7(Resp/q M (1)) is calculated as |—wyt —r,|, and
algebraicity of the right-hand side of (2.4) verified in [Kat78, (5.3.5)] implies that
Deligne’s period CT(Resp /@ M (1)) should coincide up to non-zero algebraic multiples
with (27i)!~ r"|Cw"t+2r" Furthermore p is ordinary for the motive Resp,q M (¢n) in the
sense of [CPR89 Deﬁnltlon 4.1] or [Coa89, Section 3], and ][, ¢y, Euly(¢n,s) is just

the modified p-Euler factor EI(,)(RGSF/Q M (3n)) introduced in [Coa89, Section 2] (di-
vided by the usual p-Euler factor L,(Resg,qo M (11))); compare with [Coa89, Lemma 3].

REMARK 2.8 (ON LOCAL EPSILON FACTORS). For completeness, we here verify
that the product [T ey, €((¥n)y,ery((26,) ' =), da,) " of Tate’s local constants co-
incides with the local term Local(vn,v’s) introduced by Katz [Kat78, (5.7.28)] and
W, (¢n) introduced by Hida and Tilouine [HT93, (0.10)]. Fix a p-adic place v € Xp.
The functional equation of the local constant [Del73, (5.7.1)] and the behaviour under
unramified twists [Del73, (5.5.3)] imply the equality
—1

e((¥n)v, er ((26,) 7" =), day)

e((¥n)y 1 ry, ere ((—26,) 1), dzy)
6((¢77);17 eF,v((_Qév)_l—),d.qjv)_/\[v_ev(wn),

where |—|p, denotes the normalised valuation on F, and e,(1n) is the exponent of the
conductor of (¢n),. Note that dz, is a self-dual measure since F,, is unramified over Q,.
Applying [Del73, (3.4.3.2)] to the right-hand side, we obtain

(Mo, ery ((20,) 71 =), day) = No~@De((yn); L epo ((—20,) 7 ~), da,)
_ NU—evwm/ (Wn)o(2)ery ((—26,)"'z) dz,

w;Ev(wn)tF
:Nv_ev(wﬂ)/ (¢n)v(w;ev(¢n)x)eﬂv (_w;eu(wn)(%v)—lx) (Nveu(wn)dxv)
TRy
- Y e e cm i) [ s,
ey (PN
2E(p,0 /i () X e

Wo (@n)u() " ST (m)u(@) exp(2ri Trp, g, (w0, (26,) a)),

zE€(tp, /wev(wn))x

which completely concides with the generalised Gauss sum p,((¥n),) appearing in
[Kat78, (5.7.15)] (the local factor Nv—¢*(¥MG((26,), (¢¥n),) introduced in [HTI3,
(0.10)] seems to contain a typo on the sign of the additive character).
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3. Constructing the p-adic Artin L-function in the field of fractions of
the Iwasawa algebra

We construct a p-adic Artin L-function as a unique element of the field of fractions
of the Iwasawa algebra O"[[['r, max]]- The integrality of the p-adic Artin L-function thus
constructed will be discussed in the next section.

3.1. Local L-factors and local e-factors

Before presenting the construction of p-adic Artin L-functions, we here sum-
marise basic notion on local L-factors and local e-factors. For a CM field F, let
n = ()e: AR/F* — @X be an algebraic Hecke character and p: Gr — AutgV,
an Artin representation of degree 7(p). As is well known, both 1 and p are defined
on a number field F of sufficiently large degree over Q. Furthermore 7 corresponds
to a unique continuous character 78 : Gy — £ via global class field theory, where
€ is an appropriate finite extension of Q, containing ¢ o 1o (E). For each finite place
v of F, let Wg, C Gp, (resp. 'Wpg,) denote the Weil group (resp. the Weil-Deligne
group) of F,. Following Fontaine’s recipe proposed in [Fon94, Section 2.3.7], we as-
sociate with V, ®¢ 7% a Weil-Deligne representation WﬁPSt,U(Vp ®e 7)) of 'Wh,.
It is defined over f‘“, the completion of the maximal unramified extension of & if v
lies above p, and over £ otherwise. Define Wﬁpstvv(Vp ®e 7% ¢ as the scalar exten-
sion of Wf)psw(Vp Re ngal) to C via ¢~!. One readily observes by construction that
Wﬁpstﬂ,(vp ®e 1% 2V, ®¢ Wﬁpsw(ngal)c is a complex vector space of dimension
r(p) on which v € W, acts as o (p(7)10 (rec, (¥*"))), where 1, is the v-component of
the Hecke character 7 = (1,),, ¥® is the image of 7 in the abelianisation Wf,{’ of Wg,,
and recp,,: F) = W2" denotes the local Artin reciprocity map at .

Under these settings, the local L-factor and the local e-factor of the pure motive
M (p) @ M(n) at a finite place v of F are defined as follows:

L,(p®n,s) = det(l — Frob, Nv™% | (Wﬁpst,U(Vp Qe ngal)c)l“’N:O)_l, (3.1)

6((9 & n)vveF,vadl'v) = 6(‘/Vﬁpst,v(vp Q¢ ngal)CaeF,va dfv)- (32)
The right-hand side of (3.2) denotes Deligne’s local constant defined as in [Del73,

Théorém 4.1] with respect to the standard additive character ep, and the normalised
Haar measure dx, of F,,. In particular, if both 1 and p are unramified at v, we have

Ly(p®n,s) = det(1 —n,(w,)p(Frob,)Nv=*)~!

where w, denotes a uniformiser of F;, and €((p ® 1)y, €p,dx,) is equal to 1. We define
the Hasse-Weil L-function of the motive M(p) ® g M (n) by

Lp@n,s) = 11 Ly(p®n,s).

v: finite places of F

Concerning the archimedean local L-factor, let (wy,r,) € Z x Z*F be the infinity
type of 7 as in Section 2.3. Then the Hodge realisation of M (p) ® g M (n) with respect to
o € ¥ is an r(p)-dimensional C-vector space of Hodge type {(—wy, — ry,0,7n,0) }oess,
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and thus the archimedean local L-factor Lo (p ® 1, s) of M(p) @ M (n) is described as

La(p@n,s) = [ Lolp@n,s) = [] Tcls+wy+ryq)". (3.3)

TEXF cEXF
The completed L-function is then defined as A(p ®n,s) = Loo(p @1, 8)L(p @1, 5).

3.2. Artin representations cutting out CM fields

Here after we consider an Artin representation p: Gp — Autg(V,) such that the
field F,, corresponding to the kernel of p is also a CM field. This condition imposes a
rather strict Galois-theoretic constraint, as the following lemma implies.

LEMMA 3.1.  Let K'/K be a finite Galois extension of a CM field K. Suppose that
K' is also a CM field, and let ¢ denote the complex conjugation on K'. Then K'/K™
is a Galois extension with Galois group isomorphic to Gal(K'/K) x (¢). In particular,
K"t /K™ is also a Galois extension and Gal(K'/K) is isomorphic to Gal(K"*/K™).

Roughly speaking, every Galois extension of CM fields is derived from the corre-
sponding Galois extension of maximal totally real subfields.

PRrROOF. The complex conjugation ¢ of the CM field K’ is characterised as an
automorphism of K’ of order 2 satisfying o o = o o ¢ for any complex embedding
o: K’ — C, where ~ denotes the complex conjugation on C; see [Shi61l, Lemma 18.2
(i)] for example. Using this fact, one readily observes that ¢ commutes with any element
of Aut(K’/Q), and that ¢|k coincides with the complex conjugation of the CM field K.
Then one finds 2[K’ : K| distinct elements of Aut(K’/K™), namely g € Gal(K’/K) and
cog for g € Gal(K'/K); note that g € Gal(K'/K) acts trivially on K whereas ¢ acts
on K nontrivially as the complex conjugation. This implies that K’/K™ is a normal
extension, as desired. The other assertions immediately follow from this fact. O

3.3. Gluing p-adic Hecke L-functions
Now let us state the main result of this section. Refer to Remark 2.4 for multi-index
notation used in the statement.

THEOREM 3.2. Let p be an odd prime number, F' a CM field of degree 2d and F'+
the mazimal totally real subfield of F. Assume that F, FT and p satisfy both (unrp,) and
(ordpyp). In addition, let p: Grp — Autg(V,) be an Artin representation of degree r(p)
unramified at any prime ideals lying above (p), and assume that the field F,, corresponding
to the kernel of p is a CM field, as in Section 3.2. Then, for each p-ordinary CM type
Xr of F, there exists a unique element Ly 5. (M(p)) of Frac(@“r[[ljp, max)]) Satisfying

15 Ly 2 (M(p)))

(@)

Alp®n,0)

(i)

_ ,L'T(P)\*wntfrﬂ‘ H Eulq,(p XN, 0)

UEZF,p

(3.4)

with
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Lyc(p@n,0) L, ((p@n)V, 1)~ ifn is unramified at v,

Eul,(p®n,0) =
(p@n,0) {e((p@n)v,epﬁv,dmv)_l if m 1is ramified at v

for any algebraic Hecke character n: AR /F* — Q such that
(a) the associated Galois character n¥ factors through T'r max;

(b) the infinity type (wy, 1) € ZxZ¥F of n satisfies both —w, —1y » < —1 and ry , >0
for every o € Xp.

Here we use the symbol L, . (M (p)) to emphasise that it is a right object which
should be called the p-adic L-function of the Artin motive M(p). Note that the in-
terpolation formula (3.4) complies the general formulation of Coates and Perrin-Riou
[CPR89, Coa89]; see also Remark 2.7.

PROOF. Set G = Gal(F,/F) = Gr/Ker(p), which is a finite group by definition.
Then, by Brauer’s induction theorem [CR81, Theorem (15.9)], the Artin representation
p is decomposed (as a virtual representation of G) into

p=>_a;Indg &, (3.5)

Jj=1

where G; = Gal(F,/F}) is a subgroup of G, wfal is an abelian character of G and a; is
an integer for each j. Each Fj is then a CM field because it is an intermediate field of the
extension Fj,/F of CM fields; see [Shi61, Lemma 18.2 (iv)] for details. Furthermore since
the dimensions of the both sides of (3.5) obviously coincide, we obtain a basic equality

ZGJG G; chmwga‘1 ZaJF F). (3.6)

j=1

For each 1 < j < s, the p-ordinary CM type ¥ induces a unique p-ordinary CM
type Xp, := {7 € I, | 7|r € ¥} of F;. Due to Theorem 2.5, the p-adic L-function
L, 7, (¥j) with respect to the p-ordinary CM type ¥p, uniquely exists as an element of

@ur[[F Fj,max)]- It is characterised by the interpolation property

X X
&Ly, (15)) (7, vpr) r A€, 0)
—gEt T d—ﬁl‘ el I Buls(036,0) G (37)
CM,p, F; 2 ‘D ‘ UGEF p CM,OO,Fj

for any algebraic Hecke character £: Afj [Fj — Q" satisfying both (i) and (ii) in The-
orem 2.5; note that [F; : Q] = 2d[F} : F]. Here t; denotes (1,1,...,1) € Z*". Now let
us consider the composite map

pr;: O [[Lry, max)] = O [[Gal(F; Frax/F))]] < O[T p, max]]
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where the former map is the ring homomorphism induced by the quotient map of the
Galois group I'p, max = Gal(Fj max/Fj) — Gal(FjFnax/F}), and the latter one is the
ring homomorphism induced by the inclusion Gal(F}; Finax/F;) C Gal(Fmax/F) = I'rmax-

Now we define L, s, (M(p)) as
9d[Fj:F] /\DFJ.+| !
-V iy (3.8)

Ly (M(p) = [ [ pr; p.5e, (V5) |
j=1

(tlfy : t;f )

which is a priori an element of the field of fractions of OUF[[I F, max]]; Dote that both the
absolute discriminant D B and the unit index (t?,j : t;+) are p-adic units due to the
J

assumption (unrg,) and unramifiedness of p at p. In the rest of the proof, we assemble
the interpolation formulae of the p-adic Hecke L-functions appearing in the right hand
side of (3.8), and deduce the desired interpolation property of L, s, (M(p)).

» Infinity types of y;n;. Let n: A% /F* — C* be an algebraic Hecke character satisfying
the conditions (a) and (b) in Theorem 3.2. The restriction 12| 5, Of 7%l then corre-
sponds to n; := n o Normp, /p via global class field theory. Let t; denote the algebraic
Hecke character corresponding to zpfal via global class field theory. Since the Norm map
Normp, ,r induces

AR = (C)5 = AT = (©)%; @r)rene, = | [T 2]

Tlp=0 cESp

F

one readily observes that the infinity type (wy,;,r,,) € Zx ZFF5 of 1;n; satisfies equalities
wy; = wy and 1, » = 1, -, for each 7 € ¥p,. From these formulae, we see that 7;
satisfies the condition (ii) of Theorem 2.5 for F;. The condition (i) of Theorem 2.5 is
obviously fulfilled for n; by assumption, and hence we have

a;

R d[F;:F] o
Ly (M) _ 1Y 285 P gy (Lo, (1)

wpt; +2r,.\ a.; X WX wpt;+2r, .
Hj‘zl(QCl\]/pr,anJ) b= (tFj .th) anpr’Fj ’
a;
S
e Lo (5, 0)L (5,0
= (7o II Bula(ng.0) <l Ji:,tj)mgmj =
=1 TESE, p QCM,OO,Fj
(3.9)

by (3.7) and (3.8). Here we have already substituted w;,, = w,. We shall modify each
term of (3.9) and show that (3.9) is equivalent to the desired interpolation formula (3.4).

» L-values. For each j =1,2,... s, Mackey’s decomposition theorem [CR81, Theorem
(10.13)] provides a decomposition of Indgj wjg-al appearing in (3.5) as G g, -representations

G
ndg, 5o, = @ Indiyag, 05 (3.10)

9]€Gr;\Gr/Gr,
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where G%j denotes the conjugate ¢~ 'G F;9 of GF,; and the character (wfal)g is defined as
(wjg»al)g(x) = wjgal(gxg_l) for x € G%j N Gr,. Combining (3.10) with the Tensor Product
Theorem [CR81, Corollary (10.20)], we obtain an eqality of virtual representations:

Wﬁpstﬂ) (P Q¢ Ugal)c

=>a >0 (ndgyy, W5)?) ®c W Dpw ()

=1 [g]€GFr,\GF/GF,

. W, a ) a
= Z aj Z IndGJF“mWF ((w;g 1)9 ®C WDpSt,U(T]g I)C|Gi‘jﬁWF1;) . (311)
=1 [gleGr\Gr/Gr,

Now let ¥y denote a unique place of Fj fixed by G, (we supress j by abuse of no-
tation). Set ijjg = Gg; N Wﬁ;l, which is indeed regarded as the Weil group of
F} 5o. If we regard (¢g.a1)g ®c Wﬁpst,v(ngal)ch%jﬂWFv as a representation of WFMS via
the isomorphism Wr , — GgFj N Wg, ;v — g 'vg, we see that it is isomorphic to

JUO

wjg.al Rc WDPSM, (n*™)clwp. _, - We thus obtain

FICH

ITIT Z(@ms 9)® =TT ] E@5 @c Wﬁpst,v(ngal)CIWFM ,8)"

j=1 v =1 dlv
al AN : a;
= H H L g ®(C WDpst,v (ngdl)C|G%jﬁWF,u 9 S) ’
J=1 [g]
S W " R a a]’
— TTTTE (1, (G5 5 WDy v, ) -
J=1 [g] ! ’

w 1
=L ZaJZInd L owe, (57 @ WD o5 el v, ) 5
Jj=1

= L(p® n,o> (3.12)

where Hﬁ‘v means the product over all the finite places ¥ of Fj; lying above v and
I, (vesp. >°(,;) means the product (resp. the summation) over all double cosets
l9] of Gr,\GFr/GF,. The third equality follows due to inductivity of local L-fuctors
(see [Del73, Proposition 3.8 (ii)]) and the last equality follows from (3.11). By tak-
ing the product over all the finite places of F' and substituting s = 0, we obtain
[[j=1 L(jm;,0)% = L(p ®n,0) as desired.

» Modified co-FEuler factors. By (2.3), the product of the modified oo-Euler factors in
the left-hand side of (3.9) is rewritten as

Hzajl wyt;— r,,J\L (4;m;,0) H H ;a wn—rn,r)l“«;(wn—i—rnjﬁ)aj

j=1 Jj= 1T€EF
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s

=TT IT II i ety + g, 003,
J=lo€Xp TETF;
T|p=0

Since the number of 7 € X, satisfying 7|r = o equals [F; : F] for any o € ¥, we have

S

Hia”_w"’tﬂ'_r"j‘L (¥5n5,0) H H H {i = mrle De(wy + 1,700 ) 19

j=1 j=loeXp TGEF
TlF:O'

= H {Z’iwnf’l"n,o'rc(wn + TY],U)}Z;ZI O‘]'[F‘j:]:‘]7

oEX R
which coincides with i"(?)I=wit=mlL_ (p®n,0) by (3.3) and (3.6).

» Periods. Similarly to the computation of the modified co-Euler factors, we have

s
(antj +2r77] wn+2r,,j w,7+2rn] aj
CM,?,F; CM,?,Fj ‘r CM ?7,F; -r

j=1 j= 17-62F j=lo€XFp TGEF
T|F:0
S
:H H H (an+2mﬂp)% _ H (an+2rn,g)2§=1aj[Fj:F]
CM,?,F\7|p CM,?,F,o
j=loeXp T€Epj oEX R
Tlp=0

Wy t+2ry,

for each ? € {oo,p}, which is equal to (QCM;_,’F )T(p) due to (3.6). The third equality
follows from Lemma 2.3.

» Modified p-Euler factors at unramified places. Let v € ¥, be a place of F' lying
above (p) and suppose that n is unramified at v. Then, since Eul;(1);7n;,0) is defined as
Lie(¥m;,0) " Ly ((;m;) 71, 1) ! for each & € ¥ F; p lying above v, we have

IT II Bws@yn, 0% =T T Le(win;,0) % La((wim;) " 1)~
j=11~1€2F],p J':lﬁeEF]-,p
ol olv

= L((p @ )ve,0) "' L((p® 1), 1)" = Euly(p @ 1,0)
due to (3.12); note that (3.5) implies (p® 7)Y = 3°7_, a; Ind& (¢ga1 gal)

» Modified p-Euler factors at ramified places. Let v € ¥, be a place of F' lying above
(p) and suppose that 7 is ramified at v. In this situation, Eul,(p®mn,0) and Eul; (p®mn, 0)
for o € ¥, , lying above v are defined as €((p ® )., €p,v, dz,) and €((1jn;)s, €F, 5, drs)
respectively. In the following, we shall verify the equality among the local constants

H H 7/1377] 75 €F; vadfcv) 5((p®n)v>eF,v,dxv)a (3'13)

j= IUGZF P

ﬁ\v
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which implies the desired equality

S

II I] Ewsn;,0) =Eul,(p@n,0). (3.14)
J=19€ZF; p
olv

Now let us prove (3.13). Note that wjg-al is unramified at each © € X, ;, since F/Fj is

5,

unramified at © by construction. Hence, if we let ‘Bg( ) denotes the conductor of the @

component of 7; = 7o Normp, /p, the left-hand side of (3.13) is calculated as

H H (V). er, 5, dwg)®

J=13€Zr, p

»

»

»

aj

Yo ma@er (@, ey | (3.15)

e(nj,5)
z€(vr; /B; 99y x

Here w, is a uniformiser of F, and we also regard it as a uniformiser of F}; using
unramifiedness of Fj;/F,. The first equality follows from [Del73, (5.5.3)], and the
second equality follows from [Del73, (3.4.3.2)]. Note that e(n; ) coincides with e(n,),
the exponent of the conductor of 7,, since the norm map Normpg, _/r, induces a surjection
1+PB% — 1+ P~ for every natural number k. See [Ser04, Chapitre V, Proposition 3];
recall again that Fj;/F, is unramified.

We may calculate the product concerning 7; 3’s further by using a generalisation of
Hasse and Davenport’s relation for characters with prime power conductor, whose proof
shall be given in Appendix A. Indeed, we may apply Theorem A.1 by setting
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82f73|v7 Fq:tF/g'Bvu ]Fqs :tFj/gpr
X = Mo, n = e(ny), Wi(Fy) = tF/;qu;(nv)a
Wa(Fge) = tr /P57, iz, (2) = ey (w, <))

e(nw)

where f3, = [F}5 : F,] denotes the inertia degree of ¥|v. Note that er; ;(wwy x)

coincides with ep,, (wy e(nu)Ter.ﬁ /F, (x)) since @, is contained in F,, and thus one may

regard ep; (. e("“)x) as nr,. (x) appearing in Appendix A. Applying Theorem A.1,
we have
a;
S
IT II meoNomg, , (wit™))® > m;.0 (@)er, o(@, ")
j=1 'DEZFj,p zE(tp, /mg(m}))x
o|v ’
— H H 77 3(’71; a;j f5)v
j= 1v€2F P
f}|v
f’D\'u @

(=1)em)(fo10=1) Z ny H(x)ep, (wy <))
2 (er /Po"))
(by Theorem A.1)
- (_1)Z§:1 a3 351w €M) (fop—1)
225=145 g folw
(g ™)) Z ny H(x)ep (wy €M)
e (er/P) "
— (_1)2;’?:1 aj Xs)e e(nu)(fm@—l)e(nv’ erya, dxv)r(p), (3.16)

where Zﬂv denotes the summation over v € X, ) lying above v. The last equality
follows from [Del73, (5.5.3)] and the basic equality on extension degrees

ZajF F]= ZZanv‘v,

j=1 o|v

which follows from unramifiedness of Fj;/F,. Although there appears an unexpected
signature (—1)%i=1% 2w €M) S5l it will be finally cancelled out with the signature
appearing in the computation of the product concerning ;’s

Next, in order to calculate the product concerning v;’s in (3.15), we study the action
of Frob, on each component

Gry

dgi g, (45" = Homgiay g, (QUGR] QWS™)?)

appearing in the right-hand side of (3.10). Let 99 be a unique place of F} fixed by Gp,,
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as before. Then G%. NG, is naturally regarded as the conjugate G¥.  of the decompo-
J v 53

sition subgroup G, , of G, at 03; in particular, the degree of InngvaG (wga )9 coin-
ECh)
ff; v P .
cides with the inertia degree fzo,, and g(Frob, 6! )g~! is identified with Frobgs. Now,
for k = 0,1,..., fag),, define ¢p: Q[GF,] — @((¢Jgal)9) as a Q[G%, N G, ]-equivariant
homomorphism sending Frobfl€ to 1 and Frobfk, to 0 for ¥’ = 0,1,.. .,fﬁgw — 1 with
k' # k. Then ¢o,d1,...,¢r. 7,1 forms a basis of IndGF“mGF (wjg-al)g7 and the matrix

presentation of the action of Frob, on it is given by

f{,g v ra.
(45)9 (Froby ™ >] [ U5 (Frobgy)
F59,—1

Ifragh;*l

where [ R denotes the identity matrix of degree fﬁg‘q, — 1. Taking the determinant,
5d1v
we obtain an equality

det(Frobv,IndGF”ﬂGFU (@8)9) = (~1)T8 N, o (a). (3.17)

Combining (3.17) with Mackey decomposition (3.10), we may calculate as

H IT wis(@im)e :H II Vo (@g ™)

Jj=1 ’fieiFi,p Jj=1 [g]EGFj\GF/GFU
s .
— H H (_l)e(UU)(fag\v )det(Frobe("”) IndGFUmGF (’wgal) )}

Jj=1 [g]EGFj \Gr/GF,

(by (3.17))
— (71)2:;:1 aj 3510 €M) (f510—1)

el S Gr, al
det [ Frobs™); 3 q 3 IndSr g, (pEhye
i=1  [9]€GFr;\GF/GF,

= (_1)2;:1 aj 250 €(M0) (fo10=1) et <Fr0bf;("“) : VP‘GFv) ) (3.18)
The last equality follows from (3.5) and (3.10). We here emphasise that the signature

appearing in (3.18) completely coincides with that in (3.16). Therefore, by putting (3.15),
(3.16) and (3.18) together, we finally obtain

H H e((vin))s, e, U,dxv) e(nv,e;}wdwv)r(p) det(Frobf;("v); V,)
Jj= 1v€2p ™
5|v

= 6((p ® 77)117 e;“,lva dl‘v),

due to [Del73, (5.5.3)].
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We thus complete the proof of Theorem 3.2. O

REMARK 3.3 (UNIQUENESS OF THE p-ADIC L-FUNCTION). The interpolation for-
mula (3.4) uniquely characterises the p-adic Artin L-function L, s, (M(p)) due to the
p-adic identity theorem [Kat78, Theorem (4.1.2)]; indeed we may readily extend [Kat78,
Theorem (4.1.2)] to elements of the field of fractions of the Iwasawa algebra O™ [T £, max]]-
In particular L, 5. (M (p)) does not depend on any Brauer decomposition (3.5) of p which
we choose in the proof of Theorem 3.2, because the interpolation formula (3.4) does not
contain any data concerning a particular choice of the decomposition (3.5).

The integrality conjecture below is regarded as a p-adic counterpart of Artin’s con-
jecture for (complex) Artin L-functions.

CONJECTURE 3.4 (p-ADIC ARTIN CONJECTURE). The p-adic Artin L-function
L,s.(M(p)) € Frac(O"|[[I'F, max]]) constructed in Theorem 3.2 is indeed an element
of O"[[I'p max]]-

4. Integrality of the p-adic Artin L-function and the Iwasawa main con-
jecture

In Section 4.1, we formulate the Iwasawa main conjecture for Artin representations
on CM fields and state the main result of the present article (Theorem 4.6). After
studying several algebraic properties of Selmer groups in Section 4.2, we shall give the
proof of Theorem 4.6 in Section 4.3.

4.1. Iwasawa main conjectures and main results

First of all, let us introduce the notion of several Selmer groups concerning Artin
motives. Let p: Ggp — Autg(V,) be an Artin representation, and take a finite extension
€ of Q, containing ¢ o 1o (E). In the following, we use the same symbol V, for its scalar
extension V, ®g £ and regard it as a p-adic representation for simplicity. Let O be the
ring of integers of £. Choose a G'p-stable O-lattice T' of V, and set A = T'®z,Q,/Z,. Let
Sr be the set of places of F' consisting of all the archimedean places, the places dividing
(p) and those at which p ramifies. For any algebraic extension F’ of F, let Sgs be the
set of places of F’ lying above those contained in Sp. When [F’ : F] is finite, we define
the (X g p-ramified) Selmer group Sela(F") of A as

Sel s, (F') = Ker |loca: H'(F§ ,/F', A) — 11 HYE™ A)|,  (4.1)

wESE\Xfs ,, wioo

where F éF, is the maximal Galois extension of F’ unramified outside the places of Sp,
F/"™ is the maximal unramified extension of F,, and X, is the set of places of F’ lying
above those contained in X ,. When F” is an algebraic extension of F' of infinite degree,
we define Sels y,. (F') by taking the inductive limit of the Selmer groups defined over
intermediate extensions of finite degree over F. Similarly, when F” is a finite extension
of F', we define the (X g p-ramified) strict Selmer group of A as
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Selyf's., (F') = Ker |locy": H'(F§_,/F', A) — 11 HYF! A . (42

wESE\Zps ,,, wioo

By taking the inductive limit, we may also define the strict Selmer group Seljfz - (F")

even when F” is an algebraic extension of F' of infinite degree. Using Shapiro’s lemma
[NSWO00, Proposition (1.6.4)], we readily observe that Sela s, (Fimax) and Sel’y’s; . (Finax)
are respectively isomorphic to the corresponding Selmer groups

Selus, (F) = Ker | H'(Fs,./F, A) — I[I =@, (4.3)

vESF\ZF,p, vfoo

Sel’{’s,, (F) = Ker | H' (Fs,. /F, A) — 11 HY(F,, A) (4.4)

vESF\XF,p, vico

of A:=T Qo[ maxl] OlLF, max]]", where T is defined as T ®o O[['F, max)]? on which
Gr acts diagonally; refer to Section 1 for the definition O[[I'F, max]]*-

REMARK 4.1.  The strict Selmer groups defined as (4.2) (or (4.4)) is the same as
those proposed at [HO18, Definition 3.19], although their definition looks a bit different.
See also the proof of Lemma 4.9.

The cotorsionness of Selmer groups is one of the fundamental problem in Iwasawa
theory, but in our situation this is always fulfilled.

PROPOSITION 4.2 (COTORSIONNESS OF SELMER GROUPS).  For any Artin repre-
str

sentation p: Gp — Autg V), both the Selmer groups Sela s, (Fmax) and Selys (Fiax)
are cofinitely generated cotorsion O[[I'p, max|]-modules.

PROOF. Since Seli{fEF(Fmax) is a submodule of Selg », (Fmax), it suffices to

verify the cotorsionness of Sela s, (Fax). Let F), denote the field corresponding to
the kernel of p, as before. Since FaxF,/Fmax is a finite extension, the restriction
map Sela s, (Frnax) — Sela s, (FmaxF),) has an O-cofinitely generated kernel. Hence
Sela s, (Fmax)” 18 O[[I'F, max|]-torsion if Sela s, (FmaxFy)Y is O[[Gal(FinaxF,/F,)])-
torsion. Since G, r, trivially acts on A by definition, we observe by taking the Pontrja-
gin dual of (4.1) that Sela s, (FinaxF},)" is isomorphic to Gal(MEpF/Fmapr), the Galois
group of the maximal abelian pro-p extension of Fi,.xF), unramified outside the places ly-
ing above those contained in X5 ,. The Galois group Gal(Mg, /FnaxF)) is then a torsion
module over O[[Gal(FnaxF,/F,)]] by [HT94, Theorem 1.2.2 (iii)], as desired. O

Now let us fomulate the Iwasawa main conjecture for CM fields. We first consider
the case where the Artin representation p is abelian.

CONJECTURE 4.3 (IWASAWA MAIN CONJECTURE FOR ). Let F' be a CM field and
P&l Gp — Aute Vi a character of finite order such that the field F; corresponding to
the kernel of 48! is linearly disjoint from Fy.. Choosing a £-basis ey of Viy =2 &£, define
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the standard G p-stable O-lattice of Vy, by Ty := Oey, and set Ay = Ty ®z, Q,/Z,. Let
Sela, = (Fmax) be the Selmer group defined as above. Then the equality

(Lp s, () = char@“r[[FE ] (SelAw,gF (Fmax)v@)o(’)ur)

of principal ideals of @“r[[FF, max|] should hold where the p-adic Hecke L-function
L, 5. (¥) is defined as in Theorem 2.5.

Note that the Pontrjagin dual of the Selmer group Sela, s (Fmax) is pseudo-
isomorphic to Gal(Ms, Fy/FmaxFy)y introduced in Section 1 under the situation of
Conjecture 4.3 (see [HO18, Proposition 3.16] for example), and thus Conjecture 4.3 is
equivalent to Main conjecture proposed by Hida and Tilouine in [HT94]. The follow-
ing conjecture is a direct generalisation of Conjecture 4.3 for higher-dimensional Artin
representations.

CONJECTURE 4.4 (IWASAWA MAIN CONJECTURE FOR p). Let F' be a CM field and
p: Gp — Autg(V,) an Artin representation of G such that the field F, corresponding
to the kernel of p is linearly disjoint from Fi,ax. Let O be the ring of integers of &.
Choose a G p-stable O-lattice T' of V,, and set A =T ®z, Q,/Z,. Let Sela s, (Fax) be
the Selmer group defined as above. Then the equality

(LP7EF (M(p))) = Char@ur[[pp) max]] (SelA,Zp (Fmax)v®06ur). (4.5)

of principal fractional ideals of @ur[[f‘ F, max)] should hold.

REMARK 4.5. 1. The left-hand side of (4.5) is defined independently of the
choice of a lattice T, but the right-hand side of (4.5) a priori depends on the choice
of T. In fact, we can check that the right-hand side of (4.5) is independent of the
choice of a lattice T' by Lemma 4.11.

2. A variant of Conjecture 4.4 formulated for SelsjfEF (Fmax) in place of Selg s, (Fnax)

is equivalent to Conjecture 4.4 by Lemma 4.9.

3. Note that, in Theorem 3.2, the p-adic Artin L-function L, s, (M (p)) is constructed
as an element of Frac(O™ [[T F.max)]). Since the right-hand side of (4.5) is an integral
ideal of @“r[[FR max]], the validity of (4.5) implies that L, 5, (M(p)) is an integral
clement of O [[T F, max)]-

We are now ready to state the main result of the present article.

THEOREM 4.6 (MAIN THEOREM). Let M(p) be the Artin motive corresponding to
an Artin representation p of Gp which is unramified at any prime ideal lying above (p),
and suppose that the field F,, corresponding to the kernel of p is also a CM field. Assume
further that the Iwasawa main conjecture (Conjecture 4.3) is true for any intermediate
field K of F,/F and branch characters factoring through Gal(F,/K). Then Conjectures
3.4 and 4.4 hold true for p.
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REMARK 4.7 (ON THE ASSUMPTION OF THEOREM 4.6). Concerning Conjec-
ture 4.3 for an intermediate field K of F,/F and a branch character 8 factoring
through Gal(F,/K), the known results which we may apply are only [Hsil4, Theorem
8.17] and [Hsil4, Theorem 8.18] at the present. However, the former result [Hsil4, The-
orem 8.17] does not work at all in our situation since the branch character 1#* will never
become anticyclotomic; indeed 18 (cge™) = ¢8%(g) holds for every g € Gal(F,/K)
by Lemma 3.1. Meanwhile, the latter result [Hsil4, Theorem 8.18] requires that F is a
composite field of a totally real field and an imaginary quadratic field M, and the field Ky
corresponding to the kernel of 182! should be abelian over M. This too strict constraint
makes it difficult to apply [Hsil4, Theorem 8.18] to characters wfal appearing in the
Brauer decomposition (3.5). After all it seems hard to give an explicit non-commutative
Artin representation p satisfying Conjectures 3.4 and 4.4 with current knowledge of the
(abelian) Iwasawa main conjecture of CM fields.

REMARK 4.8 (ON THE CASE p = 2). Although we assume that the prime number
p is odd throughout the present article, we would like to briefly explain here the situation
of the case p = 2. Indeed, the only issue concerning the prime 2 is that, due to Hasse’s
unit index theorem [Has85, Satz 14], both the numerator and the denominator of the
modification factor W appearing in (3.8) might be divisible by 2 even if F is

J F.

assumed to be absolutely uriramiﬁed at (2). Therefore we can still verify by the same
proof that the 2-adic Artin L-function Lo 5. (M(p)) is an element of @‘”[[FR max]] ®z Q
and the main conjecture (4.5) holds true up to p-invariants if Conjecture 4.3 holds true
for p = 2.

4.2. Algebraic preliminaries
Before proving Theorem 4.6, we prepare several notation and lemmas.

LEMMA 4.9.  As before, choose a Gp-stable O-lattice T' of the Artin representation
V, and set A=T ®z, Q,/Zy. Then the natural surjection

SelAl]p (Fmax)v - Sels,;)rZF (Fmax)\/

is a pseudo-isomorphism of O[[L'r, max]]-modules. Also for any finite extension F' of F,
the natural surjection
Sela s, (F' Fipax)Y — SeljfEF(F’Fmax)v

(resp. Sela sy, (Flax)” — Seljfzp(ﬁllllax)v )

max

is a pseudo-isomorphism of O[|Gal(F'Fiax/F")|]-modules (resp. a pseudo-isomorphism
of O[[T'p/, max]]-modules).

To prove Lemma 4.9, we introduce notation
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Loci,(K)= [[ H'(&Ky, M), Locii'(K)= [ H'(Kuw,M)
weSK\XK,p wESK\XK,p
wip wip

on local conditions for ¢ = 0,1 and 2, where K is an intermediate field of Fyax/F and
M is an arbitrary Gal(Fgs/F)-subquotient of A.

PrROOF OF LEMMA 4.9. Consider the commutative diagram with exact rows:

0 — Selus, (Fuax) —— HY(Fs/Fuae A) —225  Lock (Fuax)

fT TH Th (4.6)

0 — Selif's, (Fiax) — H'(Fs/Fmax, A) — Loc%"" (Fiax).

str
loc%y

The maps loc4 and IOCSAtr are the restriction morphisms. By construction, the left vertical
map f is injective. In order to verify the assertion for Sela s, (Fiax)” — Seljsz (Fmax) ",
it suffices to show that (Coker f)V is a pseudonull O[[I'F, max]]-module. The right vertical
map h is also induced by the restriction maps and thus has the kernel isomorphic to

Ker(h) = [] H H(Faxas A) X [[ Hi(Fo, A).

vESF vEDE ,
VPO w: place of Fax

Here we rewrite the local condition at v € X%, asin (4.3) and (4.4). Then the unramified
cohomology H}, (Fuaxw, A) = Ho(FY / Finaxw, AT*) is trivial for any v € Sp with v { poo
because Gal(F)" / Finax,w) = [ [z, Ze is a pro-prime-to-p group whereas Alv is a discrete
p-group. Now consider the case v € X% . Then the Z,rank of the decomposition
subgroup of I'r max at v is equal to or greater than 2 by [BCG+22, Lemma 3.1 (i)],
which acts trivially on H} (F,,.A) by the very definition Ho(F™ /Fmaxw, A*) of the
unramified cohomology group. Therefore H! (F,, A) admits two coprime annihilators in
O|[L'F, max]], which implies that (Ker h)¥ is O[[I'p, max)]-pseudonull. Then (Coker f)¥

also O[[I'p, max]]-pseudonull as required since it is a subquotient of (Ker h)Y. One may
similarly the other assertions, also using [BCG+22, Lemma 3.1 (i)]. O

Recall that Fg denotes the maximal Galois extension of F' unramified outside the
places contained in Sp.

LEMMA 4.10 (SURJECTIVITY OF THE LOCALISATION MAP). Let F' be a finite
extension of F contained in Fg, and suppose that F' is also a CM field. For a p-adic
Artin representation 7: Gpr — Auteg V. of Gps, let O denote the ring of integers of
E. Choose a Gp/—stable O-lattice T and set A = V;/T. Then the localisation map
locS™: HY(Fs/Fl ey A) — Loch ™' (F!.,..) defining SelffEF,( F) .x) is surjective.

PRrROOF. For any finite extension K of F’ contained in Fg, set

K

strl )\7 1

Loc,™ /\elsl LKy, A )dw X Il H(K,,A)
Atpoo
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where H! (K, A)qiv denotes the maximal divisible subgroup of H! (K, A). We intro-
duce a similar local condition

CHY(K AY)
strl )\a 1 *
Loci () = [] Hl i 1 )
))\\fs PEX, K
pPoo

for the Kummer dual A* = Homg, (T, pp) of T'. We define a Bloch-Kato type Selmer
group Selﬁ%}( (K) (resp. Selt¥ s:_(K)) to be the kernel of the localisation map

str
Toc

HY(Ks/K, A) 20 Lo ™ (K)  (resp. H'(Ks/K, A*) “<2 Loc ™ (K)).

For a finite Galois module A*[p™], we define Locm[1 |(K) as

TSl HY(K, A*[p™)
Lochto .. (K) = ][] ’ < [ H'(K,, A*[p™)
*[ m] -1 *\ .. ps
’ xSk M (Hr (K, A%)aiv) PED, K
Afpoo

using the natural map u,,: H'(Ky, A*[p™]) — H'(K,, A*) induced by the inclusion
A*[p™] < A*. Then we define SelfBlIf m),m: (K) to be the kernel of the localisation
map locﬁi[pm] : HY(Ks/K, A*[p™]) — Locjr [1 m](K'). By the Poitou—Tate global duality
theorem [Neu92, (8.6.10)], we have the following exact sequence:
Tocyy”

) — H'(Fs/Fpa A)

max

SelA S (FI
\%
lgLocjr Loc®™ 1 (K) — <££n Se1§¥[p7,L]72§<(K)> .4

K,m

Note that there is a
satisfying locs“ go Tocy" by
A

Here K runs through all finite extensions of F” contained in F, ..

natural surjection ¢: lim Loc" (K) — Loc%"" (F,

max

definition. Hence, for surjectivity of loc%", it suffices to verify that Toc, A is surjective, or
in other words, that the last term of (4.7) vanishes. Furthermore we have an isomorphism

\%
(1&11 Selg{’«{[p'm,]VZCK (K)) = Homo[[pF,’mx” ((SelA* e (Félax) ) ,O[[FF/,maxH) (4.8)
K,m

concerning the last term of (4.7), where the symbol ( )* denotes the twisted O[[T'#, max]]-
module on which each g € I'p/ max acts via g~ '. The verification of (4.8) goes in the
same way as [Och06, Lemma 4.11] if one replaces the ring R/(p", H) in loc. cit. with
O/(w"™)[I Fr, max/U], where w is a uniformiser of O and U is an open subgroup of I' p_pax.
From (4.8), we readily observe that the triviality of the last term of (4.7) is deduced from

the O[[I'#’, max]]-cotorsionness of SelA* se (Finax) because O[[I'p/, max]] has no torsion.

Meanwhile SelA*,Ep (Fax) 1s a submodule of Sel 4+ sie (F],,,) by construction, and thus

the cotorsionness of the former module follows from the cotorsionness of the latter mod-
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ule. Similarly to Proposition 4.2, we may deduce the cotorsionness of Sela« s (Fj.x)
from [HT94, Theorem 1.2.2 (iii)] noting that F} . F!(ip)/Fl.y is a finite extension and
Gr:. Fr(u,) acts trivially on A*. We thus complete the proof. O

We define the p-invariant p1(X) of a finitely generated torsion O[[I' g max|]-module X
to be the length of the O[[I'F, max]](w)-module X ), where w is a uniformiser of O and
( )(w) denotes the localisation at the prime ideal of O[[I'F max]| generated by w. The
next lemma plays an important role in the algebraic part of our arguments, since most
G p-stable lattices T' of an Artin representation V), are not preserved under the virtual
decomposition (1.4).

LEMMA 4.11 (LATTICE INVARIANCE OF THE fi-INVARIANT). Let p: Gp — Autg V,
be a p-adic Artin representation of Gg and O the ring of integers of £. For two G p-stable
O-lattices T and T of V,, consider A =T ®z, Q,/Z, and A" =T ®z, Q,/Z,. Then the
p-invariant of Sela s, (Fmax) coincides with that of Selas ;. (Fimax)-

Before the proof of Lemma 4.11, we define

II'(K, S, M) = Ker | H'(Ks/K,M) — @ H' (K, M)| (i=1,2)
weS

for a number field K, a finite set S of places of K, and a discrete Gx-module M.
By taking the inductive limit, we extend the definition of III*(K, S, M) to an algebraic
extention K of Q of infinite degree, as before.

Proor. By Lemma 4.9, it suffices to prove the anologous assertion for the u-
invariants of Seli{fE - (Finax) and Selj’ﬂz +(Fuax). Replacing T' with an appropriate ho-
mothetic lattice, we may assume without loss of generality that there is a G p-equivariant
surjection A — A’. Then we obtain the following fundamental commutative diagram with
exact rows:

0 —— Sel¥ls, (Fia) —— H'(Fs/Fuax A) —2 Lo ™ (Finax)

falsar | 2 s (4.9)

0 —— Sel’ll ¢, (Finax) — H'(Fs/Fmax, A) ——— Loc%," (Fnax)-

locstr

Here the vertical maps f4 and g4 are induced from the surjection A — A’. Applying
Lemma 4.10 to the case where F/ = F and 7 = p, we observe that both the right-
most horizontal arrows loc®" and loc%, in (4.11) are surjective. Note that, since both
Self}sz (Finax) and Self},r,ZF (Fimax) are O[[I'r max]]-cotorsion by Proposition 4.2, the ker-
nel and the cokernel of falsel are also O[[I'f, max]]-cotorsion. Furthermore, since both
fa®E& and g4 ® &€ induces isomorphisms, all of Ker f4, Coker f4, Ker g4 and Coker g4

are p-cotorsion. Hence we obtain an equality among p-invariants

/”'(SeljfZF (Fmax)v) - M(Selj’r,ﬁlp (Fmax)v) = M((Ker fA|Sel)v) - M((COker fA‘Sel)\/)
= pu((Ker f)") — u((Coker f)") — u((Ker ga)”) + u((Coker ga)*)  (4.10)



32 CONTENTS

by applying the snake lemma to the fundamental diagram (4.9), taking the Pontr-
jagin dual and localisation at (w), and taking the p-invariants. Now let us study

p((Coker f4)") — p((Ker f4)") and p((Cokerga)") — p((Ker ga)”).

» The kernel and cokernel of fa. The vertical map fa in (4.9) fits into the long exact
sequence

HO(FS/FmaxyA) L) HO(FS/FmaszI)

[» H'Y(Fs/Fuax, O) —— H'(Fs/Fuax, A) —22% H'(Fg/Foax, A) (4.11)

[_) HQ(FS/Enaxvc) — H2(FS/Fmax7A)

where C' denotes the kernel of A — A’; note that it is a finite G p-module. Since
both H(Fs/Fpax, A) and H°(Fg/Fyax, A’) are cofinitely generated O-modules of corank
dimg H°(Fs/Finax, V), the cokernel of the top horizontal map f9 in (4.11) is O-cofinitely
generated and O-cotorsion. In particular it is finite O[[I'p max|]-module, and thus its
localisation at (w) is trivial. Combining this observation with (4.11), we have

(Ker fa)(my = H' (Fs/Fuax; C) () (4.12)
Next we shall prove that H?(Fgs/Fpyax, A) is a trivial module to deduce
(Coker f4)Y = H*(Fs/Fpax, C)". (4.13)

To achieve this purpose, we will observe that H?(Fs/Fpax, A) is both cotorsion free and
cotorsion over O[[['r, max]]. For cotorsion freeness, recall that Shapiro’s lemma [NSWO0O,
Proposition (1.6.4)] implies an isomorphism

HZ(FS/FmaxaA)gH2(FS/FaTV)7 (414)

where TV is the Pontrjagin dual of a free O[[['r, mayx]]-module T := T ®¢ O[[['F, max]*-
Using the fact that the p-cohomological dimension of Gal(Fs/F) is less than or equal to
2 [NSWO00, Proposition (8.3.18)], we readily observe that the multiplication-by-z map
on the divisible module 7V induces an surjective endomorphism of H?(Fs/F,T") for
any non-zero £ € O[[I'r max|]. Taking the Pontrjagin dual and using (4.14), we conclude
that H?(Fgs/Fmax, A)V is O[[['F, max]]-torsion free, as desired.

For cotorsionness of H?(Fs/Fyax, A), note that H?(Fs/Fpax, A) is isomorphic to
r? (Finaxs Smax, A) for a finite set Syax of all the places of Fi,.x lying above those con-
tained in Sp. Indeed, we have an exact sequence

0 — II*(Fax, Smaxs A) — H?(Fs/Funa, A) — [ H*(Fuaxaw, ) (4.15)

WE Smax

by the very definition of H_I2(Fmax, Smaxs A), but the last term of (4.15) vanishes since the
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p-cohomological dimension of the absolute Galois group of Fiyax v is 1 for every w € Spax.
We may deduce this from [Ser97, Chapitre II, Proposition 12] noting that the abso-
lute Galois group of the residue field of Fiyax . iS isomorphic to a pro-prime-to-p group
H#p 7y for finite every w € Syax. Therefore it suffices to verify that 112 (Finaxs Smax, 4)
is cotorsion, which follows from cotorsionness of Hll(Fmax,Smax,A*) for the Kummer
dual A* := Homys(T, ptpee) due to [Gre06, Proposition 4.4]. We may indeed deduce
O[T F, max]]-cotorsionness of I (Fraxs Smax, A*) from the fact that Selas 51, (Finax) is
cotorsion (Proposition 4.2), based upon an argument similar to the proof of Lemma 4.10.

» The kernel and cokernel of ga. By a similar argument using the long exact sequence
corresponding to (4.11), we readily obtain isomorphisms

(Ker ga) () = Locsctr’l(Fmax)E/w), (Coker g4)¥ = Lociy"* (Finax) " (4.16)
Indeed, we may deduce the triviality of LocSAfr’Q(FmaX) directly from the fact that the
p-cohomological dimension of Gr,,,. ., is equal to 1 for every finite w € Spax, as we have

seemn.

» Analysis of the difference of p-invariants. Combining (4.10) with (4.12), (4.13) and
(4.16), we obtain

M(Seljr(FmaX)) - N(Seljf(Fmax» = M(Hl(FS/FmaXa Q) - M(H2(FS/FmaX7 C))

- (N(Locsct'r’l(FmaX)) - N(LOCSCH’Q(FmaX)))’
(4.17)

In order to verify that the right-hand side of (4.17) is equal to 0, it suffices to check

. #H'(Fs/K,C) #LocH (K) .
that the ratio of T (FeKO) to Lo (K) is bounded when K runs through the set

of finite extensions of F' contained in F,,x. Take such a finite extension K/F. Then the
global Euler—Poincaré characteristic formula of the Galois cohomology [NSWO00, (8.7.4)]
implies

[K:Q]

#H(K,,C)=#C= . (4.18)

#H'(Fs/K,C) _ I1
#HO (FS/K7 C)#H2 (FS/K’ C) v:finite place of K
v|oo

Meanwhile the local Euler—Poincaré characteristic formula of the Galois cohomology
[NSWO00, Theorem (7.3.1)] implies

#Loc (K) T #HY(K,,C)
#Locg ™ (K)#Loci (K)o #HO(Ky, C)# H?(Ky, C)
- 1I 4Ol — w052 (4.19)
UEE;{‘;D

Compairing (4.18) with (4.19), we have
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< :,%.gcséﬁSmax7

L #H (F/K,C) (#Loct ()| #Loc(K)
#C = #H*(Fs/K,C) \ #Loct(K) ) — #H(Fs/K,C)

which implies that the ratio under consideration is bounded with respect to K, as desired.
O

4.3. Integrality of the p-adic Artin L-function
Recall that we have defined Ly, 5.,. (M (p)) by using a Brauer decomposition (3.5) as
in (3.8).

ProproOSITION 4.12.  The characteristic ideal of the Pontrjagin dual of the Selmer
group Sela s, (Fnax) admits a decomposition

S

charo(r,, .g19€14, 5, (Finax) " = H (CharO[[Gal(FjFmax/Fj)]]Selij,EFJ. (Fijax)v) ’
j=1

(4.20)

corresponding to (3.8). Here the product of the characteristic ideals appearing in the
right-hand side of (4.20) is taken in the field of fractions of O[[L'r max|] via natural
inclusions O[[Gal(Fj Fimax/F;)]] = O[[I'F, max)]-

Proor. Taking Shapiro’s lemma [NSWO00, Proposition (1.6.4)] into accounts, we
may rewrite (4.20) as

S

charofr,, . Sela sy (Fnax)” = [ | (Charourp, mocllSelingSr 4, v, (B maX)v) '
(4.21)

Without loss of generality, we may rearrange the subindices {j | 1 < j < s} so that
ay,...,ay (8" < s) are positive and ag 41, ...,as are negative. Then the equality (4.21)
is rewritten as

char@[[pFY max]] Sel G Fmax)v

D(—ay)
AeD_. ., Inng ij i

»EF(

= charo[[pn max]]Sel Fmax)v. (4.22)

@i, Indg?j Aff:j oy (

Here recall that the discrete representation A appearing in the left-hand side of (4.22) is

defined for a chosen G g-stable O-lattice T' of V,,, whereas each Indgi Ay, appearing in
J

the both sides of (4.22) is defined for the G g-stable O-lattice Indg? Ty, of Indgivij
J J

induced by a standard lattice Ty, = Oey, of the 1-dimensional representation V..
Then we firstly observe that (4.22) holds true up to p-invariants since the both sides
of (4.22) are characteristic ideals corresponding to the Selmer groups of the same rep-

’

resentation V, := @;:1 Indgi ‘ VJE % with respect to the different G p-stable O-lattices
J

To®j—y Indgij Tfj(_aj) and @5;1 Indgg Tfjﬂj. But Lemma 4.11 guarantees that
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the equality (4.22) holds true even without the ambiguity of p-ivvariants. We thus obtain
(4.20), as desired. O

PRrROOF OF THEOREM 4.6. Recall that we assume the validity of Conjecture 4.3

(L r, (0) = harguge, oy (Selay, vy, (Frmw) /B00™)  (423)

for each j. Combining (4.23) with the defining equality (3.8) of L, x, (M (p)), we have

(Lp,sr(M(p))) = H pr; (char@m[[erymax” (SelA#,j,sz (F}, max)\/@o@“r))aj . (4.24)

j=1

Thus, to prove the assertion, it suffices to verify the descent equality

charo((Gal(F, Fua /1)) S€L Ay, S, (F) Finax)

= Charo[[gal(pjy max/Fj)]]SelA'de 7§]Fj (Fj7 max)\/ mod Q[rj (425)

of the characteristic ideal for each j, where 2l,.; denotes the kernel of pr;. Indeed we can
deduce the main equality (4.5) of Conjecture 4.4 combining (4.25) with Proposition 4.12
and (4.24). Furthermore (4.25) is equivalent to

charo((cal(F; Fuax/F;)]) Self}fbj S, (FjFax)"

= Charo[[Gal(Fj,1nax/F‘_j)]]Selsz4tz,j,2Fj (Fj, max)v mod 917«]. (4.26)

by Lemma 4.9, and thus we shall verify (4.26) in the rest of the proof.

In order to study specialisation of strict Selmer groups effectively, we hereafter
use the presentation Selﬁ;EF(Fj) of the strict Selmer group introduced in (4.4) in-
stead of Selﬁz,j,zﬁ, (F}, max); recall that A; is defined as 7; QO[T r,, maxl] O[[TF;, max] Y
for T; := Ty, ®o O[[ij7nlax]]ﬁ. By construction, the Galois group Gal(F}, max/F;jFmax)
is a free Z,-module of rank r; := d([F; : F] — 1) + dp, — ép; here 0r and dp,; respec-
tively denote the Leopoldt p-defects of F' and Fj. Note that 6, > dr holds because
F; is an extension of F'. Let us take a Z,-basis v1,...,7,, of Gal(Fj max/FjFmax), and
set x, = v, — 1 for v = 1,...,r;. Then xy,7s,...,7,, forms a regular sequence of
O[[l'F;, max]] generating the kernel of pr;, or equivalently, the kernel of the quotient map
O[[l'F;, max]] = O[[Gal(FjFrax/Fj)]]. For each v =1,...,7;, let 2, denote the ideal of
O[[I'F;, max]] generated by w1, ...,z,, and write A;[2,] for the maximal 2l,-torsion sub-
module of A4;. We can define the strict Selmer group Selj; 20,]. 5, (F;) for the discrete
representation A;[2l,] of Gr;. In order to verify (4.26), it suffices to show that there ex-
ists a Zp-basis 71, ..., 7, of Gal(F} max /FjFiax) satisfying the following two conditions
for each v =1,2,...,r; (put Ay = (0) as convention);

[I] (control theorem) the kernel and the cokernel of the map

str

su: Selggpar, 0, (F5) — Seljﬁ[my_l],mj (F)[z.]
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induced by the inclusion A;[A,_1] < A;[2,] are both copseudonull (as
O[[T'F;, max)]/A-modules);

[II] the Pontrjagin dual Seli{: i, 1,55 (Fj)" of the strict Selmer group has no nontrivial
pseudonull O[Tk, max]] /A, -submodules.

Indeed, after verifying existence of such tuples v1,...,7;,, we may deduce
charo[[rpjﬂmx]]/gly_lSelfﬁz[mwl]z% (F;)Y mod (zy,%y41,...,2r,)
(1 str
= charo[[ijy max]] /2y Seljj [mu—l],sz (FJ>[,’17V]V mod (m,,+1, - 7.’1,‘7~j)
{1 str
= Chal‘(g[[ij’max]]/g{ysel‘/&_ [21,] (Fj)v mod (3;‘,,_;,.1, R ,l‘rj)

for each v = 1,2,...,r; by inductively applying [Och05, Lemma 3.1]; see also the expla-
nation given in [HO18, Section 3.4.5]. The desired equality (4.26) is just a combination
of all these equalities; recall that Seli';“j 20,,]. 5, (F}) is isomorphic to Seli{fbj Er, (Fj Fmax)-
» [I] for every regular sequence. Here we shall show that the assertion [I] holds true for
every regular sequence 21, . .., Tr; € O[[['F; max]] of the form 2, = v, —1 (v =1,2,...,7;)
generating the kernel 2., of pr;. Let us consider the commutative diagram

str
lock] )

H'(Fj, 55,5 Aj120]) Loc% i, . (F5)

]

Ay —1] str,
HY (s, [ Fj Aj[y—1])[20] 1 Loc% [1%,1],2% (£)[.]

where Locjj’[lmy](Fj) denotes [] HY(F} ., A;[2,]) as in Section 4.2. Re-

call from (4.2) that Sel%" ,],5p (£) is defined as the kernel of locfir,[m |- Both ¢, and
g4 F g2y
u,, are induced by the the short exact sequence

wESF, \ZFj,p, wtoo

Xy

0 ——= AR —— A;[A, 1] — A;[A, 1] —0, (4.27)

and s, is just a morphism induced by ¢,. In order to verify the control theorem [I], it
suffices to show that both Kert, and Kerwu, are copseudonull O[[I'r; max]]/2l,-modules
because the snake lemma implies that Ker s, is a submodule of Kert, and Coker s, is a
subquotient of Ker u,.

Firstly, the Pontrjagin dual (Kert,)" of the kernel of ¢, is described as

(HOE s, /By, AR 2) 2 Ho(Fy s, [F, T /20T

by the long exact sequence associated with (4.27) and the Pontrjagin duality. Now take a
sufficiently small open subgroup U of Gal(Fj,s,, /Fj) so that it acts trivially on Ty, , and
let Fy be an intermediate field of F)j max/F; corresponding to U/ (Gal(Fj,SFj /F;, max)ﬂU).
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Then HO(Fj,SFj JF;,T;/2,-1T;)[x,] is, by definition, realised as a subquotient of a finitely
generated O-module Ty, ®o O[Gal(Fy /F;)]*. This observation implies that (Kert,)Y is
O[T F;, max]] /™A-pseudonull since the Krull dimension of O[[I'F;, max]] /2L, is greater than
or equal to 2.

Next, the Pontrjagin dual (Keru, )" of the kernel of u, is described as

[T H@EwAR)/z) = [ HoFjw T/%T)w]  (4.28)
weSFj\EFj,p weSFj\EFj»P
wfoo wioo

in the same way as (Kert,)Y. We claim that the w-component of (4.28) is trivial if w
is not contained in Z%j p- Note that Frob,, forms part of a Z, —basis of Gal(F;Fiax/F})
since FjFuyax/F; is unramified at w. In particular z1, s, ..., 2.,z P forms a regular se-
quence of O[[I'p;. max]] for every v =1,2,...,7; if we set zf := Frob,, — 1. Now let z},0
denote the ideal of O generated by wjgal(g) —1for all g € I,. If zL is a unit, the I,,-
coinvariant of 7; /2, _17; vanishes and so does Ho(F}w, T;/U,—1T;)[z,]. Otherwise we
readily observe that 1, xa,..., 2,25 2! forms a regular sequence of O[[T F;, max]] con-
tained in its maximal ideal, and thus z1,...,2,_1,2 fu xi x, is also a regular sequence.
Then, since Hy(F} ., T;/A.T;) is isomorphic to O[[L gy max)l/ (@1, - -, Tp—1, 2L, 2h) as an
O[[I'F;, max]]-module, we conclude that its x,-torsion part should vanish, due to regularity
of the sequence z1,...,z, 1,z xf,
To complete verification of the pseudonullity of (Kerw,)Y, we finally prove that
Ho(Fjw, Tj/A0-1T;)[z,] is O[[I'p;, max]]/2Ay-pseudonull for each w € Xf . Let Fj(l;zax

denotes the subfield of F}j 1,ax corresponding to (y1,72,- - ., V). Recall that for the unique

Ty-

place v of F' lying below w, the decomposition subgroup of I' 7, max at v has Z,-rank equal
to or greater than 2 by [BCG+22, Lemma 3.1 (i)]. This readily implies that the Z,-rank
of the decomposition subgroup of Gal( J(an /F;) at w is also equal to or greater than
2, which acts trivially on the D,,-coinvariant Ho(F} ., T; /2., T;) of T; /A, T;. Therefore
Ho(Fj 0, T; /2A,T;) is O[[Gal(Fj max/F;)]] /U, -pseudonull for each v = 0,1,...,r;. Then,
by [Och05, Lemma 3.1], we have

charofry, )/t (Ho(Ejuw, T3 /-1 T;) [2])
= charo(ry. ud)/2t, (Ho(Fjw, Tj /Av-1T5) /0 Ho(Fjw, T /%0-1T5))

)

= Charo[[pleuax]]/mV (HO( Jyws /Q[ T))
Thus Ho(Fjw, T;/%0-1T5)[2,] is O[[L'F;, max]]/2A,-pseudonull, as desired.

» Inductive choice of v, satisfying [II]. Now let us discuss how to choose a Z,-basis
V1,725 - - -5 Vr; Of Gal(F)j o/ Fj Finax) so that the resulting sequence 1, 2o, . .., x,; satisfies
[II] (and also [I]). We here follow the argument of [HO18, Section 3.4.5]. It suffices to
choose 71,72, ..., 7, 50 that both the conditions (I'l), and (I'2), introduced in [HO18,
p.68] are fulfilled for each v = 1,2,...,r;; indeed we have verified in [HO18, Proposi-
tion 3.35] that the conditions (I'l), and (I'2), for each v imply the assertion [II], the
proof of which is heavily based upon [Grel6, Theorem 4.1.1]. But if a part of Z,-
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basis v1,72, ..., —1 of Gal(Fjmax/FjFmax) satisfies the conditions (I'l); to (I'l),_;
(resp. the conditions (I'2); to (I'2),—1), any v1,72,...,7, forming a part of Z,-basis of
Gal(F}j max/FjFmax) satisfies the condition (I'l), (resp. (I'2),) except for finitely many
choices of 7, by [Gre06, Lemma 4.1.1 and Remark 2.1.3] (resp. [HO18, Proposition
3.37]). Since there are infinitely many choices for Z,-bases of Gal(F}, max/FjFmax), we can
find v1,72, ..., 7, so that x1, 22, ..., 2., forms a regular sequence of O[[Gal(F}, max/Fj)]]
satisfying both the conditions [I] and [II]. This completes the proof of Theorem 4.6. O

REMARK 4.13. In the final step of the specialisation procedures, we have used
the assumption on the nontriviality of the cyclotomic p-adic L-function L£Y°(f,) in
[HO18, Section 3.4.6]. However, the nontriviality of the corresponding p-adic L-function
Lpsp, (¥;) mod 2, follows from the interpolation formula (2.4), and thus we do not
need any assumption like (NV zove(s ).

A. Davenport—Hasse relation over rings of truncated Witt vectors

In the appendix, we extend so-called Davenport—Hasse relation of Gauss sums over
finite fields [DH35, (0.8)] to rings of truncated Witt vectors. For a finite field F and a
positive integer n, let W,,(F) denote the ring of n-truncated Witt vectors of F. Then, for
a finite extension E/F, the norm map Nrg/r: E* — F* and the trace map Trg/p: E — F
respectively induce Nrgp: W, (E)* — W, (F)* and Trg/p: Wy, (E) — W, (F) in a functo-
rial way. Hereafter we always identify W,,(F,) with Z/p™Z via the canonical isomorphism
between them.

We hereafter fix a finite field F, of characteristic p and consider its extension Fgs of
degree s for a natural number s. Let x: W, (F,)* — C* be an arbitrary multiplicative
character. For each n € N, we fix a standard additive character ¢;: W, (F,) — C*
sending x € W,,(F,) = Z/p"Z to (5. = exp(2mi/p™), a primitive p"-th root of unity. For
each v € N, we define a multiplicative character xg_., : Wy (Fgr)* — C* tobe xoNrF,_, /F, -

Now we define the Gauss sum 7(x) over W, (F,) to be

)= Y. X@)ng,(2), (A1)

zeW, (Fq)

where we extend x to whole W, (FF,) by setting x(z) = 0 if z € W,,(F,) is not invertible.
We also define the Gauss sum 7(xr,.) over W;,(F¢s) in a similar manner replacing x and
Y with xp . and ¢, ., respectively. The claim which we shall verify in the appendix
is the following.

THEOREM A.1. Let the notation be as above. Then we have the following equality
of Gauss sums:

T(xr,.) = (1" D7(x)%. (A.2)

Theorem A.1 is an extension of the classical theorem due to Davenport and Hasse
[DH35, (0.8)] in the sense that the special case n = 1 of Theorem A.l recovers their
original statement. The first-named author leaned from Mahiro Atsuta that Daichi
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Takeuchi has also verified Theorem A.l independently when the base field is a prime
field (that is, the case where g equals p); see [ADK25, Appendix B].

We here summarise basic ingredients which we use throughout the appendix.

— Let I be a finite extension of IF,. For each r =1,...,n — 1, we obtain a short exact
sequence
1 —— 1+ p" "W (F) —— Wy (F)* 2225 W (F)X —— 1 (A.3)

induced from the projection pr?’_,.: W, (F) — W,,_,.(F). Moreover there is a bijec-
tion W,.(F) — 1 +p" "W,(F); w — 1+ p" "w for a lift w of w with respect to
pr’: W, (F) — W,(F). As is well known, the value 1 + p"~"w does not depend on

the choice of lifts w; indeed, we have

n—r n—r n—r

1+p""w=14(0,0,...,0,wy ,wl ... 0wl ;)
——

n—r

for w = (wg, w,...,wr—1) € W,.(F). Now let us fix a lift Z of each z € W,,_.(F) to
W, (F). This enables us to describe W,,(Fy:)* as

Wo(Fge)* = {ZA+p" @) | w € Wy (F), 2 € W, (F)*}. (A4)

For later convenience, we choose a lift Z of z so that it is contained in W, (IF’) if z is
an element of W,,_,.(F') for a subfield F of F.

— For each r = 1,2,...,n — 1, let ¢,: W,(Fp) = Z/p"Z — C* denote an additive
character defined as w — (5 for (- := exp(27i/p"). For a finite extension F of
Fp, set ¢, 5 := 1, o Trp/p,. Then any additive character of W,.(F) is described as
x — ., (o) for a unique element o € W,.(IF). This is a consequence of perfectness
of the trace pairing; see the following Lemma A.2. By definition we have an equality
Y p(P" W) = Y p(w) for any r =1,2,...,n— 1 and any w € W,.(F).

LEMMA A2, Let T be a finite extension of F, and v a natural number. Then the
trace pairing

< ) >r: WT(]F) X WT(]F) — WT(FP)§ (ff,y) = Tr]F/]Fp(xy)
is a perfect pairing of W,.(F,)-modules.

PrROOF. When r is equal to 1, perfectness of { , ); is a consequence of separability
of F/IF,, (see, for example, the proof of [Neu92, Proposition 2.8]). For r > 1, consider a
commutative diagram
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P W (F) x Wi (F)/pWy(F) ——p" ' W, (Fp)

| |

W, (F) x W, (F) —————— W, (F,)

| ]

Wo(F)/p" =W (F) x  pW(F) —————pW,(Fp).

Here the left and middle colums are exact, and the top and bottom horizontal arrows
denote the pairings induced by (, ),. But for any natural number j satisfying 1 < j <7,
we have isomorphisms W,.(F) /p? W,.(F) = W;(F) and W;(F) — p" I W,.(F); w — p" I w,
where @ is an arbitrary lift of w to W,.(F). Via these isomorphisms, the top and bottom
pairings in the diagram are identified with (, }; and (, ),_1, respectively.

Now let cbji W](F) — Wj (]F)* = HOI’HWj(]Fp)(Wj (F), Wj (Fp)) be a Wj (]Fp)—
homomorphism induced by the pairing ( , );. By the discussion above, we have a
commutative diagram of abelian groups with exact rows

0—>F— W, (F) ——= W, 1(F) ——=0

0——TF —— W, (F)* ——= W,_1(F)* ——0.

By induction hypothesis, the left and right vertical maps are isomorphisms, and thus the
five lemma implies that ®,. is also an isomorphism. O

Let us prove Theorem A.1. Since the case where n = 1 is nothing but the original
Davenport-Hasse relation [DH35, (0.8)], it suffices to prove the statement assuming
n > 1. Contrary to the original proof of Davenport and Hasse for the case n = 1 (using
a product decomposition of a certain generating function), we explicitly evaluate the
Gauss sums 7(xr,.) and 7(x) utilising Lamprecht’s techniques [Lam53, Sektionen 2.3~
2.5], and directly compare them. A similar calculation is also developed by Mauclaire
[Mau83-1, Mau83-2] for Gauss sums over W,,(F,) = Z/p"Z (see also an exposition of
[BEW98, Section 1.6], especially Theorem 1.6.4).

PrROOF OF THEOREM A.1. The proof goes in a different way depending on the
parity of n.

Case 1. n: even Firstly, we assume that n is even and set n = 2r with a positive
integer r. Using (A.4), we have

)= Y Y X GO P @), GO+ D))

2EW,(Fgs )X weW,.(Fys)

= Y xe(Dnp,. (3 Y. xoNrg. s, (14 p D)y, (p"70)

2E€EWy (Fgs)™ wEWr (Fys)

= > Xeu Dnr,.(B) DY x(L+p Trp,. v, (B)) g, (20).

2EW,.(Fys) WEW, (Fys)
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Here the first equality is just the definition of 7(xr,.), and the middle equality follows
from multiplicativity of xr,. and additivity of ¢, .. At the last equality, we use the
fact that xr,.(2) = 0 if 2 is not a unit of W,.(F4s), and the equality

Nig,.pe,(L+p'0) = [[  (Q+p"a7)
oceGal(Fgs /Fq)
=1+p" > @7 =1+4p Trs,.p, (@)

oc€Gal(Fgs /Fq)

which holds because p*” = p™ = 0 in W,,(F,s). By the same reason, we readily observe
that @ — x(1 4+ p"z) is an additive character of W,.(F,;). Thus, by Lemma A.2, there
exists a unique element —e, € W,.(F,) satisfying

T(XF,) = Z XF,s (2)n,F,s (2) Z Vrw, (—ex Trr o /r, (W) Y7 F,s (2w0)

2€W,(Fgs) weEW,.(Fys)
= Y X @nr. () Y e (- e w).
2€W,.(Fys) weW,.(Fys)

Note that the character sum with respect to w equals #W,.(Fy<) = ¢"* when z coincides
with €, and vanishes otherwise. We thus have

T(xF,e ) = 4" XF,e (Ex)Unr,e (Bx) = (€ XE)Unr, (Ex)) (A.5)

Here recall that the lift &, of e, € W,.(F,) is chosen so that &, € W,(F,). By a very
similar calculation, we also have

)= Y xOWur, () D Yer,(—exw)inr, (z0)

ze€W,(Fy) weW,.(Fq)
= Y X@ar,® D ter,((z—e)w) = X EJYr, G- (A6)
z€W,(Fy) weW,.(Fq)

Comparing (A.5) with (A.6), we obtain the desired equality (A.2); note that we have
(=1)*(s=1) =1 in Case 1 because n is assumed to be even.

Case 2. n: odd We next assume that n is odd and set n = 2r + 1 with a positive
integer r. Let v be any natural number satisfying 1 < v < s. Similarly to Case 1, we
have

)= S ey GO A 5@, (B(1+ p @) (by (A4))

2€EW, 41 (Fgrv )X weW, (Fgv)

= Y e s, ()

ZGWT+1(FqV)X

Z x o Nrg,_, /r, (1 + pr+1@)1/)n,]1rqy (p"t'zw)
weEW,.(Fgv)
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= Y XFe (D ()
2€Wrq1(Fgv)
ST X5 T e, () (017 (2)u0)

weEW,(Fgv)

Here pritl: W, 1(Fgr) — W, (Fgv) is the natural projection. As in Case 1, a map
sending = — x(1 + p"'7) defines an additive character of W,.(F,). There thus exists a
unique element —e, € W,.(F,) by Lemma A.2, and we have

X)) = D, Xep (D¥nr,(3)

2€EWrq1(Fgv)
Z wr,Fq(_ngrquu/]F( ))¢7JF (p r+1( Jw)
weEW, (Fqv)
= Y e s )Y e () — £ )
2€EWrq1(Fgv) weW, (Fgv )

=¢" Y. xep OVnr, (3)

ZEW7-+1(Fqu)
pr T (2)=ex

Note that, if ¢, is not a unit of W, (F,), we have xr_, (2) = 0 for any z € W, 1(Fg)
satisfying prit1(z) = e,. In the case, the desired equality (A.2) trivially holds because
the both sides of (A.2) are reduced to 0. We thus assume in the following that e, is
a unit. Due to (A.3) with n and r replaced by r + 1 and 1 respectively, we obtain an
equality of sets

{ZeW,(Fp) | 2 € Wop1(F), priti(2) = e} = {E,(1 +p"[0]) | § € Fyo },

where [-]: F — W,,(F,)* denotes the Teichmiiller lift. Therefore we have

T(xep) =@ Y XF Ex (147 [0)) bz, (Ex(1+p7[6]))

5€]Fq1/
= ¢ X E)UnFe ) Y Xe (1407 [0)¢nr,. (078 [0])
S€F v
(q X(Ex)¥nr,( EX Z XFg (1 + P [0])¢r 11,7, (Ex[6]). (A7)
5€F v
Here we use the same symbol [-] for the Teichmiiller lift with values in W, 41 (F,») by

abuse of notation. To verify the desired equality (A.2), it suffices to prove the followmg
claim.

Claim: Let the notation be as above. Then the following equality holds:
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> X, "[8)) 4 1,ge (Bx[6]) = (=1)*7 (D XL+ P[] 1.k, (Ex[6])
SEF s SEF,
(A.8)

Indeed, if we admit the equality (A.8), we can deduce (A.2) as

T(XF,e) = (" XE)Unr,E)° Y XE,e (1 +D[6)ri15,. (Ex[0])

0€Fys

= (=1 @' XE)Ynr, ED)* | D X+ [0)¢rs1r, (Er[0])

S€F,
= (-1 r(x).

Here the first (resp. the third) equality is nothing but (A.7) for v = s (resp. v = 1) and
the second equality follows from (A.8). Note that we have (—1)™*=1 = (~1)*~! in Case
2 because n is assumed to be odd.

To prove the claim, we shall observe that the both sides of (A.8) are described in
terms of quadratic Gauss sums over finite fields (or their variants when p equals 2), and
then apply the classical Davenport—Hasse relation [DH35, (0.8)] (or explicitly evaluate
the partial sums when p equals 2) to obtain the equality (A.8).

ProOF oOF Claim. As before, let v be any integer satisfying 1 < v < s. First note
that, for any d,,d2 € Fyv, we have

(1+p"[61])(1 + p"[d2])
= 14 p"[61 + 82] + p"([61] + [02] — [61 + J2]) + p*"[6102]
= (L+p"[01 +02)) (1 +p" es, 6, + 07 [0162])  in Wy (Fgv)

where €5, 5, is an element of W, (Fgv) satisfying [01] + [d2] — [01 + 2] = pes, 5,- Using
this equality, we can calculate as

XE (1+ P [01])Yrs1r, (Ex[01])xr,w (1 + " [62])tor 41,7, (Ex[02])
= Xr,. (1+p"[61 + 62]) rs1 5, (Ex[01 + 02])
xE (L0 (65,6, + 0" [0162])) 017, (DEyes, 6,)
= XF,» (1 +p"[01 + 52])¢r+1,]1«‘q,/ (5X[51 + 52])
rr,. (—Ex(€sy.6, + P71 [6102])) Urr,. (ExEs) 62)
= XF,v (1 +p"[61 + 52])¢7-+1,Fqu (gx[51 + 52])%1,1@ (—prf(ey)d162). (A.9)
Here the first equality follows from the calculation above and the second equality follows

from the definition of £, ; namely x(1+p"*'2) = 9,5, (—£y ) holds for any z € W,.(F,).
Set w, := pri(ey) € Fy for brevity.

Case 2-a. p: odd For any 61,92 € Fgv, we have
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P1r,e (27w 001, (27 wy63) = P1r,. (27 wy (61 + 02)%) Y1k, (—wy6102)  (A.10)

because we have 67405 = (01402)>—20102 and ¢1 5, is an additive character. Comparing
(A.9) with (A.10), one observes that

§ = XE,e (1+ P [0)¢rs1 ., Ex[6])Y1r,. (27 wy %) ™"

defines an additive character of .. Hence, due to Lemma A.2, there exists a unique
element b(,) € Fyv satisfying

XF, (1+ P[00 15,0 Ex[0)) 1 r,, (27 wy6?) ™ = Y1 r,. (b)d). (A.11)

We now verify that b, coincides with b(;) and thus is an element of IE‘qX. Let o denote
the ¢-th power Frobenius automorphism. Then we have

XFo (14 P 107D Urr1p,0 Ex 07D Y1 r, 27wy (67)3) 7 = 1 p, (b)87) = Y1 p,. (b?u_)lis)
(A.12)

for each § € Fgv by replacing 6 with 67 in (A.11). Furthermore the left-hand side of
(A.12) coincides with that of (A.11); indeed we have

XEye (1 9" 07D 1 5,0 (B [07]) e, (27 0y (67)2) 7
= xe,0 (L4 9" [6)7) e, (Bl b, (27w (8%)7)
= xo, (L4 P [0 Wrs1m, B 601z, <<2flwx>f’”62>*1
= XF, (14 p"[0)¥rs1,7,0 (Ex[0])11F, ((2 fwy)6%) 7!

Hence, by (A.11) and (A.12), we have 1, (b(u 8) = Y1, (bu)6), or equivalently

U1 F, ((b(,,) bfy) )5) =1 for each § € Fpv. This implies the equality bE‘V) = by, and
thus b, is in particular an element of F,. Next note that

XF,v (1+p" [5])¢T+I,Fqu (ex [5])¢1,]Fqu (_2_1“])(52)_1
= (X(L+p"[O]) 1,5, Ex[8)rr, (=27 i 6%) 1)

holds for each ¢ € F,. Thus, substituting (A.11) into the both sides of the equality above,
we obtain ¥ r_, (b()0) = 91, (b1)0)", or equlvalently ¥y r, ((Tr[pq,, JE, (b)) — sb(l))é) is
equal to 1 for each § € F;. We thus have Trp , /r, (by — be1y) = 0 and, since b,y — b()
is indeed an element of [, as we have seen, we finally obtain the equality b,y = b(1).
Hereafter we set b = b(,) = b(y) for brevity.

Now let us return to the proof of (A.8). We can calculate as

D b (L4 )15, (B [0))

0€F v

= Z P15, (27 wy %)Y g, (B6) Z Y1 r,. (27 1wy 6° + b6)

6€F v 6€F v
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=Y1F,. (—2_1w;1b2) Z V17, (2_1wx(52) (replace § by 6 — w;lb).
G€F,v

Here the first equality follows from (A.11), whereas the second and the third equalities
follow rather straightforward calculation using additivity of the character ¢, 11, . The
sum Zéquy (R (2_1wx(52) appearing above is known as the quadratic Gauss sum over
the finite field Fgv. As is well known, the quadratic Gauss sum is presented as a usual
Gauss sum for an appropriate quadratic character. In fact, it is rewritten as

Urp, (—27 w0 '0?) D Y, (27w, 67)

5EF v

=15, (—27 w b)) S Yrp,. (27w, - 0) 42 Z Y1r,. (27 wy)
2

re(Fy )’

o Nrg , /r, (7) _

= 1, (=2 1u)leQ) 1+ Z (1+ (Eﬁ)) Y1r,. (2 Ywy )
a:EIF;l,
* _ _ NI‘]F v /Fp (ZIJ) -
) Yre,, (27w 1b) Z (qé) V1m0 (2 wy )
CEG]F:,,

1, 152 Nrg,, /5, 2wy @) -1

=15, (27w, b%) Z ’ Y1, () (replace x by 2w, ')

zeJFun

F,v

q

Here (;) denotes the Legendre symbol modulo p. At the third equality (x), we

subtract a trivial exponential sum Zm@pqy Y1, (27 wyz) = 0 from the summation.

Since T ((W) ) is a Gauss sum over the finite field Fsv, we can apply the
Fov

original result of Davenport and Hasse [DH35, (0.8)] to it and obtain an equality
T <(N”‘?/;"(_))F ) = (-1)*"1r ((%)) , which deduces validity of the desired
equality (A.8). '

Case 2-b. p =2 Consider ¢y, (—[wyd?]2) for § € Fgv, where [-]z: Fovo — Wa(Fgv)
denotes the Teichmiiller lift. By definition, we have
V2, (—[wy 07 ]2) Y25, (—[wy03]2) = Yap,. (—[wydi]2 — [wyd3]2)
= V25, (—[wy (01 + 82)%]2) Yo, ([wy]([61 + 62]3 — [67]2 — [63]2)).

Using the law of addition (zo, 1) + (yo,¥1) = (zo + Yo, 1 + y1 — Toyo) in Wa(F,») and
multiplicativity of [ ]2, we readily obtain an equality [61 + 82)3 — [6%]2 — [03]2 = —2[6152]2
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as
[61 + 623 + 2[6102]2 = (67 + 65,0) + (0, —6765) = (67 + 05, —6165)
= (61,0) + (33,0) = [67]2 + [63]2.
We thus have
Va0 (—[Wy03)2) V2, (—[Wy03]2) = Yok, (—[wy (61 + 62)%]) 1, (—wy6102). (A.13)

Therefore, by (A.9) and (A.13), we see that there exists a unique element b € F satisfying

XE, (14 P 0D Vrs15,0 (B [0]) 25,0 (—[wy8*]) ™" = Y25, (2[b3]2)

similarly to the case where p is odd. Now we define

o (~ = > tor, (~[w %),

S€EF v

a partial sum of the quadratic Gauss sum Zéewz(qu)¢27qu(—[wxé2]2). Note that

o',(,2)(—[wx]2) does not change even if we replace [§2], with an arbitrary lift of §2 to

W(Fgv) in each summand. Taking this fact into accounts, we can calculate as

Z XF v (1427 [0])Yr 17,0 (Ex [0 Z V2.5, (—[wy6%]2 + 2[bS)2)
S€F v S€F v
= > dam (lwda(9)z — g ') + [BPwy 2)
P
= Yo F,. 2) Y Yar, (—[wyd]z)  (replace []p by [0]2 + [bwy']2)
SEF,.
= o, ([DPwy ' ]2)ol? (—[wyl2) = o, (BPwy o) ol (—[wy]2). (A.14)

At the third equality, the summation does not change after we replace [d]z by
[0]2 + [bw ]2 because {[d]z + [bw ']z | 6 € Fyv} gives a complete set of represen-
tatives of Wa(Fqv)/2W5(F,v). The partial sum O'l(/2)(—[’wx]2) has been calculated as
—{—(1+4)}7 o9 (9 (see [Lam53, (6.30)] for example), and we thus obtain an equality

(—052)(—[111)(]))3 = —ng)(—[wxh), or equivalently
o) (~lwnde) = (=)o (< [wla)”. (A.15)
The desired equality (A.8) easily follows from (A.14) and (A.15). O

Now we have verified (A.2) in all cases, which completes the proof of Theorem A.1.
O
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