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Abstract. For an algebraic Hecke character defined on a CM field F of

degree 2d, Katz constructed a p-adic L-function of d+1+ δF,p variables in his
innovative paper published in 1978, where δF,p denotes the Leopoldt defect

for F and p. We shall generalise the result of Katz under several technical

conditions (containing the absolute unramifiedness of F at p), and construct
a p-adic Artin L-function of d+ 1 + δF,p variables, which interpolates critical
values of the Artin L-function associated to a p-unramified Artin representa-

tion of the absolute Galois group GF of F . Our construction is an analogue
over a CM field of Greenberg’s construction over a totally real field, but there

appear new difficulties which do not matter in Greenberg’s case.
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1. Introduction

The purpose of the present article is to construct p-adic Artin L-functions for (non-

commutative) Artin representations defined over CM fields and verify their integrality

admitting the (abelian) Iwasawa main conjecture for CM fields. As a byproduct, we

obtain equality of the Iwasawa main conjecture for such Artin representations. Before

giving a detailed account of our results, we introduce several basic notation. The absolute

Galois group of a number field K is denoted as GK throughout this article. Let F be a

CM field of degree 2d and F+ its maximal totally real subfield. We write rF and DF+ for

the ring of integers of F and the absolute discriminant of F+, respectively. We fix an odd

prime number p, an algebraic closure Q of the rational number field Q, an embedding

ι∞ : Q ↪→ C of Q into the complex number field C, and an isomorphism ι : C ∼−→ Cp
between C and the completion Cp of a fixed algebraic closure Qp of the p-adic number

field Qp. Suppose that every prime ideal of F+ lying above (p) splits completely in the

quadratic extension F/F+. We fix a p-ordinary CM type ΣF of F , whose choice amounts

to choosing one of P or Pc for each prime ideal p of F+ lying above (p) if p is decomposed

as prF = PPc; see Section 2.1 for its precise definition. Let Fmax be the composition of

all Zp-extensions of F (in Q). Due to global class field theory, the Galois group ΓF,max

of Fmax/F is known to be a free Zp-module of rank equal to or greater than d + 1; the

equality holds if and only if the Leopoldt conjecture for F and p holds true.

Let us review historical background on Iwasawa theory for CM fields. We first take

a look at construction of p-adic Hecke L-functions for (p-ordinary) CM fields. Under

certain assumptions, Katz [Kat78, Theorem (5.3.0)] has constructed a p-adic Hecke L-

function over F as an element of the Iwasawa algebra of ΓF,max. His p-adic L-function

interpolates the values at 0 of the Hecke L-functions for various algebraic Hecke characters

with appropriate infinity type and conductor dividing a power of p. Later Hida and

Tilouine [HT93, Theorem II.] generalised Katz’s construction, and relaxed constraints

on the conductors of algebraic Hecke characters appearing in the interpolation property.

Now let ψgal : GF → C×
p be a finite character which is at most tamely ramified at

every finite place of F lying above (p), and suppose that the field Fψ corresponding to the

kernel of ψgal is linearly disjoint from Fmax over F . The p-adic Hecke L-function over F is

constructed for such a branch character. We take a finite flat extension O of Zp containing
the image of ψgal, and define Ôur as the composition of O and Ẑp = W (Fp) (⊂ OCp),

the Witt ring of the algebraic closure Fp of Fp. Let ψ : A×
F /F

× → Q×
be the algebraic

Hecke character of F corresponding to ψgal via global class field theory. Recall that, for

any algebraic Hecke character χ : A×
F /F

× → Q×
of conductor fχ, the Hecke L-function

L(χ, s) associated to χ is defined as the meromorphic continuation of the Euler product∏
l∤fχ(1−χl($l)N l−s)−1, where the product is taken over all prime ideals of F relatively

prime to fχ. Here, for a prime ideal l of F , we write $l for a uniformiser of the l-adic

completion Fl of F , and N l for the absolute norm of l. Throughout the present article,

we are especially concentrated on the case where F is absolutely unramified at (p). In

the case, we may slightly improve the results of Katz and Hida–Tilouine as follows.

Theorem (=Theorem 2.5, Katz, Hida–Tilouine). Assume that F is abso-

lutely unramified at (p) and take a branch character ψgal as above. Then there exists a
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unique element Lp,ΣF (ψ) of Ôur[[ΓF,max]] satisfying

ηgal(Lp,ΣF (ψ))

Ω
wηt+2rη
CM,p,F

=
(r×F : r×F+)

2d
√
|DF+ |

i|−wηt−rη|
∏

v∈ΣF,p

Eulv(ψη, 0)
Λ(ψη, 0)

Ω
wηt+2rη
CM,∞,F

(1.1)

with

Eulv(ψη, 0) =

{
Lvc(ψη, 0)

−1Lv((ψη)
∨, 1)−1 if ψη is unramified at v,

ε((ψη)v, eF,v, dxv)
−1 if ψη is ramified at v,

Λ(ψη, s) = L∞(ψη, s)L(ψη, s)

for each algebraic Hecke character η : A×
F /F

× → Q×
satisfying the following two condi-

tions:

(i) the Galois character ηgal : GF −→ C×
p corresponding to η factors through ΓF,max;

(ii) the infinity type of η satisfies both −wη−rη,σ ≤ −1 and rη,σ ≥ 0 for every σ ∈ ΣF .

There are several notational remarks on the statement of the theorem above. We set

t = (1, 1, . . . , 1) ∈ ZΣF , and let (wη, rη) ∈ Z × ZΣF denote the infinity type of η defined

as η
(
(xσ)σ∈ΣF

)
=
∏
σ∈ΣF

x
wη+rη,σ
σ x

−rη,σ
σ . We use multi-index notation in (1.1); refer

to Remark 2.4 for details. The symbols ε((ψη)v, eF,v, dxv) and L∞(ψη, s) respectively

denote Deligne’s local constant at the p-adic place v and the archimedean local factor

(or the gamma factor) of L(ψη, s), whose explanations are given in Section 2.3. The

product Λ(ψη, s) of L∞(ψη, s) and L(ψη, s) is called the completed Hecke L-function,

which satisfies the functional equation Λ(ψη, s) = ε(ψη, s)Λ((ψη)−1, 1 − s) for an expo-

nential function ε(ψη, s) (the global epsilon factor). The modified complex CM period

ΩCM,∞,F ∈ C×,ΣF and the normalised p-adic CM period ΩCM,p ∈ (Ôur)×,ΣF will be

defined in Definition 2.1.

Next we shall review the (abelian) Iwasawa main conjecture for CM fields. Let MΣF

denote the maximal abelian pro-p extension of Fmax which is unramified outside all the

finite places lying above ΣF,p. Then the ψ-isotypic quotient Gal(MΣFFψ/FmaxFψ)ψ of

the ΣF,p-ramified Iwasawa module Gal(MΣFFψ/FmaxFψ) ⊗Zp O is a finitely generated

torsion O[[ΓF,max]]-module as is explained in [HT94, Theorem 1.2.2 (iii)], and thus its

characteristic ideal charO[[ΓF,max]](Gal(MΣFFψ/FmaxFψ)ψ) is defined as a nontrivial ideal

of O[[ΓF,max]]. Under these settings, the multi-variable Iwasawa main conjecture for CM

fields is formulated as follows.

Iwasawa main conjecture for ψ. Let ψgal be a branch character chosen as

above. Then

charÔur[[ΓF,max]]
(Gal(MΣFFψ/FmaxFψ)ψ⊗̂OÔur) = (Lp,ΣF (ψ)) (1.2)

holds as an equality of ideals of Ôur[[ΓF,max]].

Under several assumptions, Ming-Lun Hsieh has recently verified in [Hsi14, Theo-

rem 8.16] that there exists an inclusion
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charÔur[[ΓF,max]]
(Gal(MΣF /FmaxFψ)ψ⊗̂OÔur) ⊂ (Lp,ΣF (ψ))

predicted by the Iwasawa main conjecture for ψ (1.2) when the Leopoldt conjecture for

F and p holds true, adopting the method of Eisenstein congruences on the unitary group

GU(2, 1). Note that the Iwasawa algebra Ôur[[ΓF,max]] is isomorphic to the ring of formal

power series in d + 1 variables under the Leopoldt conjecture for F and p. Meanwhile,

Hida obtains, under other technical assumptions, an equality between the algebraic char-

acteristic ideal and the analytic ideal [Hid06, Theorem] in the anticyclotomic Iwasawa

algebra, which is a d-variable quotient of the Iwasawa algebra Ôur[[ΓF,max]]. A standard

specialisation argument combined with these two results implies the desired equality

(1.2) in Ôur[[ΓF,max]] if the branch character ψgal is anticyclotomic. When the CM field

F under consideration is a composite of a totally real field and an imaginary quadratic

field, Hsieh has another result [Hsi14, Theorem 8.18] on the Iwasawa main conjecture

for a certain branch character ψgal by using Rubin’s equality of the two-variable Iwasawa

main conjecture for an imaginary quadratic field [Rub91, Theorem 4.1 (i)] in place of

the anticyclotomic main conjecture.

In the present article, we shall construct a p-adic Artin L-function Lp,ΣF (M(ρ))

associated to an Artin representation ρ : GF → AutE Vρ when F is absolutely unramified

at (p), the field Fρ corresponding to the kernel of ρ is also a CM field, and ρ is unramified

at every finite place of F lying above (p). Since the Galois character ψgal of finite order

is an Artin representation of degree 1, Theorem A below can be regarded as an extension

of Katz, Hida and Tilouine’s theorem stated above under such a restricted situation.

Theorem A (a part of Theorem 4.6). Suppose that F is absolutely unramified

at (p). Let ρ be an Artin representation of GF unramified at every finite place of F lying

above (p), and suppose that the field Fρ corresponding to the kernel of ρ is also a CM

field. Assume that the Iwasawa main conjecture is true for any intermediate field K of

the extension Fρ/F and any branch character ψgal of GK factoring through Gal(Fρ/K).

Then there exists a unique element Lp,ΣF (M(ρ)) of Ôur[[ΓF,max]] satisfying

ηgal(Lp,ΣF (M(ρ)))(
Ω
wηt+2rη
CM,p,F

)r(ρ) = ir(ρ)|−wηt−rη|
∏

v∈ΣF,p

Eulv(ρ⊗ η, 0)
Λ(ρ⊗ η, 0)(
Ω
wηt+2rη
CM,∞,F

)r(ρ) (1.3)

with

Eulv(ρ⊗ η, 0) =

{
Lvc(ρ⊗ η, 0)−1Lv((ρ⊗ η)∨, 1)−1 if η is unramified at v,

ε((ρ⊗ η)v, eF,v, dxv)−1 if η is ramified at v,

Λ(ρ⊗ η, s) = L∞(ρ⊗ η, s)L(ρ⊗ η, s)

for each algebraic Hecke character η satisfying the conditions (i) and (ii) appearing in

Theorem.

Note that, since both F and Fρ are CM fields, each intermediate field K of Fρ/F

is also a CM field. Here L(ρ ⊗ η, s) is the Hasse–Weil L-function of the pure motive

M(ρ) ⊗ M(η), and ε((ρ ⊗ η)v, eF,v, dxv) is Deligne’s local constant at v ∈ ΣF,p; see
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(3.1) and (3.2) for their precise definitions. The completed Artin L-function Λ(ρ⊗ η, s)
is defined as the product of L(ρ ⊗ η, s) and the archimedean L-factor L∞(ρ ⊗ η, s),

quite similarly to Λ(ψη, s). According to our construction of the p-adic Artin L-function

Lp,ΣF (M(ρ)), the Iwasawa main conjecture for ρ shall be simultaneously verified.

Theorem B (a part of Theorem 4.6). Retain the notation and assumptions

from Theorem A. Then

charÔur[[ΓF,max]]
(Gal(MΣF /FρFmax)ρ⊗̂OÔur) = (Lp,ΣF (M(ρ)))

holds as an equality of ideals of Ôur[[ΓF,max]], where the subscript ρ denotes the isotypic

quotient of type ρ.

Unfortunately we can hardly apply Hsieh’s results [Hsi14, Theorem 8.17, Theorem

8.18] to fulfill the assumption of Theorems A and B on the (abelian) Iwasawa main

conjecture for intermediate fields of Fρ/F ; see Lemma 3.1 and Remark 4.7 for details.

Strategy of the proof

Let us briefly explain our strategy to prove Theorems A and B. One of the key ingre-

dients is Brauer’s induction theorem [CR81, Theorem (15.9)] appearing in representation

theory of finite groups. Indeed, it provides us with a virtual decomposition

ρ =

s∑
j=1

aj Ind
GF
GFj

ψgal
j (1.4)

of the Artin representation ρ under consideration, where aj is an integer, Fj is an in-

termediate field of Fρ/F , and ψgal
j : GFj → C× is a character of finite order factoring

through Gal(Fρ/Fj) for each j. Using (1.4), we formally define our p-adic Artin L-

function Lp,ΣF (ρ) as the product
∏s
j=1 prj(Lp,ΣFj (ψj))

aj up to multiples of minor con-

stants, where ψj denotes the algebraic Hecke character on Fj corresponding to ψgal
j via

global class field theory, and prj is the composition

Ôur[[ΓFj ,max]] ↠ Ôur[[Gal(FjFmax/Fj)]] ↪→ Ôur[[ΓF,max]].

Note that (1.4) is just a virtual decomposition, and the integers aj can be negative. Hence

Lp,ΣF (ρ) is constructed as an element of the field of fractions of Ôur[[ΓF,max]], and we do

not know a priori whether it is contained in Ôur[[ΓF,max]] or not; that is, the integrality

of the p-adic Artin L-function is not clear at this stage. Meanwhile, we can verify that,

on the algebraic side, the characteristic ideal has a quite similar decomposition

charÔur[[ΓF,max]]
(Gal(MΣF /FρFmax)ρ⊗̂OÔur)

=

s∏
j=1

prj
(
charÔur[[ΓFj,max]]

(Gal(MΣF /FjFmax)ψj ⊗̂OÔur)
)aj

. (1.5)
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Although the product in the right-hand side of (1.5) is just a fractional ideal, the left-

hand side of (1.5) is indeed an integral ideal of Ôur[[ΓF,max]] by definition. Therefore,

admitting the Iwasawa main conjecture for every branch character ψgal
j appearing in

(1.4), we may conclude that the fractional principal ideal (Lp,ΣF (ρ)) must be integral in

Ôur[[ΓF,max]]. We also emphasise that, in order to check that our naively constructed

p-adic Artin L-function Lp,ΣF (M(ρ)) satisfies the interpolation property (1.3), we need

to put together the interpolation formula of each Lp,ΣFj (ψj) into the desired form (1.3).

This tedious task will be achieved in Section 3.

Remarks in comparison with preceding results

The prototype of the present work is Ralph Greenberg’s remarkable study of p-

adic Artin L-functions over totally real number fields F+ [Gre83, Gre14]. He has

constructed a one-variable p-adic L-function associated to a totally even Artin represen-

tation ρ of GF+ . The construction based upon the Brauer induction principle has already

appeared in [Gre83], and we owe the main strategy of the proof of Theorems A and B

to [Gre83]. There appear, however, several noteworthy difficulties which did not matter

in the case over a totally real field. We shall explain technical difficulties appearing in

our generalisation of Greenberg’s work to the case over a CM field.

Firstly, the Brauer induction argument in Greenberg’s case is covered by one-variable

objects, but in the present work, the number of variables changes drastically throughout

the Brauer induction argument. Here let us admit Leopoldt’s conjecture for simplicity.

Then p-adic Hecke L-functions Lp,Σ
F

+
j

(ψj) appearing in the construction of the p-adic

Artin L-function are of one variable when F+
j is totally real. Contrastingly in our CM

situation, the p-adic Hecke L-functions Lp,ΣFj (ψj) are of d[Fj : F ] + 1 variables for

each j. Thus, in order to take the product of p-adic Hecke L-functions, we need to

specialise each Lp,ΣFj (ψj) into the (d + 1)-variable one via the projection prj , but the

characteristic ideals appearing in the right-hand side of (1.5) do not behave compatibly

in general with respect to such specialisation procedures. To overcome this difficulty,

we adopt techniques developed in our previous work [HO18] on the cyclotomic Iwasawa

main conjecture for Hilbert modular forms with complex multiplication. In particular,

inductive descent arguments developed there play crucial roles in the proof of the key

decomposition formula (1.5) on the algebraic side; see Section 4.3 for details.

Secondly, verification of the desired interpolation property (1.3) becomes much

harder than that dealt with in [Gre83]. Indeed, only L-values concern the interpolation

properties of the p-adic Artin L-functions for totally real fields, and thus one readily

verifies it by just using inductivity of the Artin L-functions. However, there are several

other factors appearing in the interpolation properties of the p-adic Artin L-functions for

CM fields; for example, the gamma factor L∞(ρ ⊗ η, 0), the modified complex CM pe-

riods ΩCM,∞,F , the normalised p-adic CM periods ΩCM,p,F , the modified p-Euler factor

Eulv(ρ⊗ η, 0) and so on. All of these factors do not appear in [Gre83], and the match-

ing of these factors requires intricate computations. Amongst them, the matching of

Deligne’s local constants (or generalised Gauss sums) requires quite delicate arguments

and is not straightforward at all. To establish its matching, we settle in Appendix A

an extension of classical Davenport–Hasse relation [DH35, (0.8)] for Gauss sums to the
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case where the conductor of the multiplicative character is a power of a prime element

(Theorem A.1), which seems to be of independent interest and will play important roles

in the construction of p-adic Artin L-functions for more general motives in future works.

Notation

We mainly use the fraktur r for the ring of integers of an algebraic number field

(which is often regarded as the base field of a certain motive); the calligraphic O is kept

to denote the ring of integers for a p-adic field (which is often regarded as the coefficient

field of the p-adic realisation of a certain motive). The absolute norm of a fractional

ideal a of an algebraic number field is denoted by Na. We fix an algebraic closure Q
of the rational number field Q and regard all algebraic number fields (that is, all finite

extensions of Q) as subfields of Q. For an algebraic number field K, let AK (resp. A×
K )

denote the ring of adèles (resp. the group of idèles) of K. The finite part (resp. the

archimedean part) of the ring of adèles AK is denoted by AK,fin (resp. A∞
K ).

We shall fix notion on the standard additive character throughout this article. For

each finite prime v of K, we define eK,v : Kv −→ C× to be

eK,v(x) = exp(−2π
√
−1TrK/Q(x̃)) (1.6)

where x̃ is an arbitrary element of
⋃∞
n=1 P

−n
v (regarded as a rK-submodule of K) such

that x̃ − x is contained in the completion of the ring of integers of K at v. Here Pv

denotes the prime ideal of K corresponding to v.

Let Cp be the p-adic completion of the fixed algebraic closure Qp of Qp and OCp
its ring of integers. For a finite flat extension O of Zp, we use the symbol Ôur for

the composite ring OẐur
p , where Ẑur

p = W (Fp) denotes the ring of Witt vectors with

coefficients in Fp. Throughout the present article, we fix an isomorphism ι : C ∼−→ Cp.
We here adopt geometric normalisation of global class field theory. Specifically,

for a finite abelian extension L/K of algebraic number fields, the reciprocity map

(−, L/K) : A×
K → Gal(L/K) is normalised so that it sends a uniformiser $v at a finite

place v of K which does not ramify in L/K to the geometric Frobenius element Frobv in

Gal(L/K). In other words, a(ϖv,L/K)
−1 ≡ aqv (modPv) holds for each a in rK where qv

denotes the cardinality of the residue field at v.

The absolute Galois group Gal(Q/K) of an algebraic number field K is denoted by

GK. For a place v of K, the decomposition group and the inertia group at v are denoted

by Dv and Iv, respectively. For a (possibly infinite) abelian Galois extension L/K of K

and the ring of integer O of a finite extension of Qp, we define O[[Gal(L/K)]]♯ as the free

O[[Gal(L/K)]]-module of rank 1 on which GK acts via the universal tautological character

GK → O[[Gal(L/K)]]×; g 7→ g|L.

We also define Ôur[[Gal(L/K)]]♯ in the same manner. Finally, we let M∨ denote the

Pontrjagin dual HomZp(M,Qp/Zp) of a Zp-module M .
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2. The p-adic Hecke L-functions for CM fields

In this section, we construct the p-adic Hecke L-function Lp,ΣF (ψ) following Katz

[Kat78], Hida and Tilouinen [HT93].

2.1. General settings

Let p be an odd prime number and F a CM field of degree 2d with the maximal

totally real subfield F+. We use the symbol c for a unique generator of Gal(F/F+),

namely the complex conjugation on F . The composition of all Zp-extensions of F in Q is

denoted as Fmax, and we write ΓF,max for the Galois group of Fmax/F . Then, by using

global class field theory, one readily observes that ΓF,max is a free Zp-module of rank

equal to or greater than d + 1; as is well known, the equality holds if and only if the

Leopoldt conjecture for F and p is true.

Hereafter we impose the following two assumptions on F and p;

(unrF,p) the field F is absolutely unramified at (p);

(ordF,p) all places of F+ lying above (p) split completely in F .

By virtue of the ordinarity condition (ordF,p), there exists a p-ordinary CM type ΣF
of F (also called a p-adic CM type in several literature), which is defined as a subset of

the set IF of all embeddings of F into the complex number field C satisfying the following

two conditions:

– we have IF = ΣF tΣcF (disjoint union) where ΣcF is defined as {σ◦c ∈ IF | σ ∈ ΣF };

– we have {places of F lying above p} = ΣF,p t ΣcF,p (disjoint union) where ΣF,p
denotes the set of prime ideals of F induced by p-adic embeddings ι ◦ σ : F ↪→ Cp
for all σ in ΣF , and ΣcF,p is defined as ΣcF,p := {Pc | P ∈ ΣF,p}.

We take a p-ordinary CM type ΣF of F and fix it once and for all.

2.2. Period relations of CM periods

In this subsection, we recall the definition of the complex and p-adic CM periods,

which appear in the interpolation formulae of the p-adic Hecke L-functions for CM fields.

For this purpose, we first construct a Hilbert–Blumenthal abelian variety equipped with

complex multiplication by rF as follows.

Consider a diagonal embedding rF ↪→ CΣF ;x 7→ (σ(x))σ∈ΣF of rF into CΣF with

respect to the fixed p-ordinary CM type ΣF . The image ΣF (rF ) of this embedding then

forms a Z-lattice of CΣF , and thus we can define a complex torus CΣF /ΣF (rF ). In order

to regard this complex torus as an abelian variety, we equip it with a polarisation by

choosing any element δ of F satisfying the following three conditions:

(1δ) δ is relatively prime to p;

(2δ) δ is purely imaginary, that is, it satisfies δc = −δ;

(3δ) the imaginary part −iσ(δ) of σ(δ) ∈ C is positive for all σ in ΣF . Here i denotes

the imaginary unit satisfying i2 = −1.
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Using such δ, we introduce an alternating pairing 〈 , 〉δ := (uvc − ucv)/2δ on

rF . The existence of such an alternating pairing implies that there is an abelian va-

riety XΣF (rF )/C over C whose C-valued points are identified with the complex torus

CΣF /ΣF (rF ). The details are as follows. Let c be a fractional ideal of F+ defined as

c = TrF/F+(dF+/2δ)−1. Here dF+ denotes the absolute different of F+. Then c is rel-

atively prime to p due to the assumptions (unrF,p) and (1δ), and thus there exists an

abelian variety denoted by XΣF (rF )/C ⊗rF+ c over C whose C-valued points are iden-

tified with the complex torus CΣF /ΣF (crF ), and the alternating pairing 〈 , 〉δ induces

a c-polarisation λδ : XΣF (rF )
t
/C

∼−→ XΣF (rF )/C ⊗rF+ c where XΣF (rF )
t
/C denotes the

dual abelian variety of XΣF (rF )/C. Note that 2δ is chosen so that its image 2δp under

F ↪→ FP
∼−→ F+

p generates the absolute different dF+
p

of F+
p for each place p of F+ lying

above p and a unique P ∈ ΣF,p satisfying P | p (see [Kat78, (5.3.3) and Lemma (5.7.35)]

for details).

Next recall that Katz and Hida–Tilouine have endowed the c-polarised abelian va-

riety (XΣF (rF )/C, λδ) with a Γ00(p
∞)-level structure iδ : (d

−1
F+ ⊗Z Gm)[p∞] ↪→ X(rF )/C

with respect to δ induced by a composite map

(d−1
F+ ⊗Z Gm)[p∞](C) ∼=

∏
p|prF+

d−1

F+
p

p−∞/rF+
p

×(2δp)p−−−−−→
∏

p|prF+

p−∞/rF+
p

∼−→
∏

P∈ΣF,p

P−∞/rFP

∼−→
∏

P∈ΣF,p

P−∞/rF ↪→ CΣF /ΣF (rF ) = XΣF (rF )(C)

(see [Kat78, (5.1.11)–(5.1.18)]). Meanwhile we may canonically identify d−1

F+
p

with rF+
p

for every p | prF+ under the assumption (unrF,p). Hence there is another Γ00(p
∞)-level

structure i− : (d−1
F+ ⊗Z Gm)[p∞] ↪→ X(rF )/C defined as the composite

(d−1
F+ ⊗Z Gm)[p∞](C) ∼=

∏
p|prF+

d−1

F+
p

p−∞/rF+
p

×(−1)−−−−−→
∏

p|prF+

p−∞/rF+
p

∼−→
∏

P∈ΣF,p

P−∞/rFP

∼−→
∏

P∈ΣF,p

P−∞/rF ↪→ CΣF /ΣF (rF ) = XΣF (rF )(C).

Both triplets XΣF (rF )δ = (XΣF (rF )/C, λδ, iδ) and XΣF (rF )− = (XΣF (rF )/C, λδ, i−) then

have models XΣF (rF )δ and XΣF (rF )− over the valuation ring W = Q ∩ Ẑur
p due to

the theory of complex multiplication combined with Serre and Tate’s criterion for good

reduction and the assumption (unrF,p).

The complex uniformisation Π: CΣF ↠ X(rF )(C) of XΣF (rF ), namely the natural

quotient map CΣF ↠ CΣF /ΣF (rF ), induces an isomorphism

Π∗ : Fil1H1
dR(XΣF (rF )/C)

∼−→
⊕
σ∈ΣF

C duσ,

where (uσ)σ∈ΣF denotes the coordinate of CΣF . Now let us define ωtrans(rF ) as

(Π∗)−1
(∑

σ∈ΣF
duσ

)
.

On the other hand, the p-part of the Γ00(p
∞)-level structure i? (for ? ∈ {δ,−})
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induces an isomorphism î? : ((d
−1
F+ ⊗Z Gm)/Ôur)

∧ ∼−→ (XΣF (rF )/Ôur)
∧ between the formal

completions along the identity sections over Ôur where XΣF (rF )/Ôur denotes the base

extension of XΣF (rF ) to Ôur. Note that, under the assumption (unrF,p), the formal

scheme ((d−1
F+ ⊗Z Gm)/Ôur)

∧ is decomposed into
∏
σ∈ΣF

G∧
m/Ôur corresponding to a nat-

ural isomorphism d−1
F+ ⊗Z Ôur ∼−→

∏
σ∈ΣF

Ôur ;x⊗ 1 7→ (ι ◦ σ(x))σ∈ΣF . In summary, the

isomorphism î? above induces

î∗? : Fil
1H1

dR(XΣF (rF )/Ôur)
∼−→

⊕
σ∈ΣF

Ôur dTσ
Tσ

where Tσ denotes the formal parameter of the component G∧
m/Ôur corresponding to

σ ∈ ΣF . Define ω?
can(rF ) to be ω?

can(rF ) = (̂i∗?)
−1

(∑
σ∈ΣF

dTσ
Tσ

)
.

Definition 2.1. Let us choose and fix a basis ω of Fil1H1
dR(XΣF (rF )/W), which

is a free rF+ ⊗ZW-module of rank one.

(1) We define a complex CM period

CCM,∞,F =
(
CCM,∞,F,σ

)
σ∈ΣF

∈
(
rF+ ⊗Z C

)×
to be a constant satisfying

ω = CCM,∞,F ωtrans(rF )

as an equation in Fil1H1
dR(XΣF (rF )/C). We also define a modified complex CM

period ΩCM,∞,F = (ΩCM,∞,F,σ)σ∈ΣF by setting ΩCM,∞,F,σ := (2πi)−1CCM,∞,F,σ

for each σ ∈ ΣF .

(2) We define a δ-modified p-adic CM period

CCM,p,F = CδCM,p,F =
(
CδCM,p,F,σ

)
σ∈ΣF

∈
(
rF+ ⊗Z Ôur

)×
to be a constant satisfying

ω = CδCM,p,F ω
δ
can(rF )

as an equation in Fil1H1
dR(XΣF (rF )/Ôur). We also define a normalised p-adic CM

period ΩCM,p,F = (ΩCM,p,F,σ)σ∈ΣF as a constant satisfying ω = ΩCM,p,Fω
−
can(rF ).

Note that both of the complex and p-adic periods do depend on the choice of an

(rF+ ⊗ZW)-basis ω of Fil1H1
dR(XΣF (rF )/W), but the “ratio of them” is independent of

ω; namely, when ω is replaced by aω for a ∈
(
rF+ ⊗ZW

)×
, the resulting (complex and

p-adic) periods are both multiplied by the same constant a.

Remark 2.2 (On CM periods). Many authors including Katz [Kat78] and

Hida–Tilouine [HT94] adopt the pair of CM periods (CCM,∞,F , CCM,p,F ), whereas we
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shall use (ΩCM,∞,F ,ΩCM,p,F ) to simplify the interpolation formula of the p-adic L-

function under the assumption (unrF,p). As we shall mention in Remark 2.7, the normali-

sation of ΩCM,∞,F is initiated by Coates and Perrin-Riou’s conjecture [CPR89, Coa89].

The normalised p-adic CM period ΩCM,p,F essentially appears in [dSh87, 1.5] where the

assumption (unrF,p) is also admitted; indeed ΩCM,p,F coincides with de Shalit’s −Ωp(Φ).
We should remark that Chida and Hsieh also consider in [CH23, Proposition 3.4] a

similar modification of the CM periods when F is an imaginary quadratic field. We also

emphasise here that, although we implicitly have to choose an auxiliary element δ to en-

dow the complex torus XΣF (rF ) with a polarisation λδ, the normalised p-adic CM period

ΩCM,p,F does not depend on the choice of δ, while CCM,∞,F = CδCM,p,F does depend on

it; by construction, they are related via the equality

CδCM,p,F,σ = ι ◦ σ(−2δ)ΩCM,p,F,σ for every σ ∈ ΣF . (2.1)

Later we need to compare (complex and p-adic) CM periods among various CM

fields. Let F ′ be a CM field which is absolutely unramified at p and contains F . Then

one readily checks that ΣF ′ = {σ′ ∈ IF ′ | σ′|F ∈ ΣF } is indeed a p-ordinary CM

type of F ′. We say that ΣF ′ is induced from ΣF . Now let us choose and fix an

(rF+ ⊗Z W)-basis ω of Fil1H1
dR(XΣ(rF )/W). Since Fil1H1

dR(XΣ(rF ′)/W) is isomorphic

to Fil1H1
dR(XΣ(rF )/W) ⊗rF rF ′ , we can choose ω ⊗rF rF ′ as an (rF ′,+ ⊗Z W)-basis of

Fil1H1
dR(XΣ(rF ′)/W). This observation implies the following period relation, which plays

an important role in the proof of Theorem 3.2.

Lemma 2.3 (Period relation, see also [dSh87, 1.3 (ii)]). Let F , F ′, ω and

ω ⊗rF rF ′ be as above. For each ? ∈ {∞, p}, consider the (complex or p-adic) CM

periods ΩCM,?,F =
(
ΩCM,?,F,σ

)
σ∈ΣF

for F and ΩCM,?,F ′ =
(
ΩCM,?,F ′,σ′

)
σ′∈ΣF ′

for F ′

defined with respect to ω and ω ⊗rF rF ′ , as in Definition 2.1. Then we have an equality

ΩCM,?,F ′,σ′ = ΩCM,?,F,σ′|F for every σ′ ∈ ΣF ′ .

2.3. Construction of the p-adic Hecke L-functions for CM fields

Before stating the interpolation formulae of p-adic Hecke L-functions for CM fields,

we here make a remark concerning purity of infinity types of algebraic Hecke characters.

Let η = (ηv)v : A×
F /F

× → Q×
be an algebraic Hecke character of a CM field F , and ΣF

a p-ordinary CM type of F . Then there exist an integer wη ∈ Z and an integer-valued

vector rη = (rη,σ)σ∈ΣF ∈ ZΣF satisfying

η∞(x∞) =
∏
σ∈ΣF

xwη+rη,σσ x−rη,σσ for x∞ = (xσ)σ∈ΣF ∈ F ⊗Q R ∼= CΣF (2.2)

where ·̄ is the complex conjugation in C. We refer to (wη, rη) ∈ Z × ZΣF as the infinity

type of η. We write for ηgal : GF → C×
p the continuous character of GF corresponding to

η via global field theory.

Remark 2.4 (multi-index notation). To lighten the notation, we use the fol-

lowing multi-index notation in Theorem 2.5. Let a = (aσ)σ∈ΣF ∈ ZΣF be an integer-

valued vector. Then we put |a| :=
∑
σ∈ΣF

aσ, and for a C-valued or Ôur-valued vector
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w = (wσ)σ∈ΣF , we write wa for the product
∏
σ∈ΣF

waσσ . Finally let t ∈ ΣF denote a

particular vector whose components are all equal to 1.

Recall from Section 1 that we call ψgal : GF → C× a branch character if it is a finite

character at most tamely ramified at every prime ideal of F lying above (p), and the field

Fψ corresponding to the kernel of ψgal is linearly disjoint from Fmax over F . Let O be a

finite flat extension of Zp containing the image of ψgal and ψ : A×
F /F

× → Q×
the alge-

braic Hecke character corresponding to ψgal via global class field theory. Let L(ψη, s) be

the complex Hecke L-function of ψη defined by
∏

l∤fη (1− (ψη)l($l)N l−s)−1 for Re s > 1,

where we write $l for a uniformiser of Fl. As is well known, it is meromorphically contin-

ued to the whole complex plane C with a possible simple pole at s = 1. To consider the

completed L-function, let us introduce the archimedean L-factors (or the gamma factors)

L∞(ψη, s) := L∞(ResF/QM(ψη)) of L(ψη, s). Suppose that the algebraic Hecke charac-

ter η has the infinity type (wη, rη); namely suppose that η∞ satisfies (2.2). On the Hodge

realisation HB,σ(M(ψη)/F )C of the pure motive associated to ψη with respect to σ ∈ ΣF ,

the real-valued points of Deligne’s torus Sm(R) = C× acts via z 7→ zwη+rη,σ z̄−rη,σ ; this

implies that the Hodge type of HB,σ(M(η)/F )C is (−wη − rη,σ, rη,σ). Here we adopt the

convention in [Del82, Remark 3.3] concerning the Hodge types. The archimedean local

L-factor L∞(ψη, s) :=
∏
σ∈ΣF

Lσ(ψη, s) of L(η, s) is thus described as

L∞(ψη, s) =
∏
σ∈ΣF

ΓC(s+ wη + rη,σ), ΓC(s) = 2 · (2π)−sΓ(s) (2.3)

where Γ(s) denotes the usual gamma function; see [Del79, Section 5.3] for details. The

completed Hecke L-function is then defined as Λ(ψη, s) := L∞(ψη, s)L(ψη, s).

We are now ready to state the existence theorem of the p-adic Hecke L-function

for CM fields, which is deduced from the result of Katz [Kat78] and Hida–Tilouine

[HT93]. For a p-adic place v ∈ ΣF,p, let ε((ψη)v, eF,v, dxv) denote Tate’s local constant

with respect to the standard additive character eF,v defined as (1.6) and a unique Haar

measure dxv on Fv normalised so that the volume of the ring of integers of Fv equals 1.

Theorem 2.5. Let p be an odd prime number, F a CM field of degree 2d and F+

the maximal totally real subfield of F . Assume that F , F+ and p satisfy both (unrF,p)

and (ordF,p). Let ψgal : A×
F /F

× → O× be a branch character at most tamely ramified at

every prime ideal of F lying above (p). Then there exists a unique element Lp,ΣF (ψ) of

Ôur[[ΓF,max]] satisfying

ηgal(Lp,ΣF (ψ))

Ω
wηt+2rη
CM,p,F

=
(r×F : r×F+)

2d
√
|DF+ |

i|−wηt−rη|
∏

v∈ΣF,p

Eulv(ψη, 0)
Λ(ψη, 0)

Ω
wηt+2rη
CM,∞,F

(2.4)

with

Eulv(ψη, 0) =

{
Lvc(ψη, 0)

−1Lv((ψη)
∨, 1)−1 if ψη is unramified at v,

ε((ψη)v, eF,v, dxv)
−1 if ψη is ramified at v,

for each algebraic Hecke character η : A×
F /F

× → Q×
satisfying the following two
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conditions:

(i) the Galois character ηgal : GF −→ C×
p corresponding to η factors through ΓF,max;

(ii) the infinity type (wη, rη) ∈ Z×ZΣF of η satisfies both −wη−rη,σ ≤ −1 and rη,σ ≥ 0

for every σ ∈ ΣF .

Proof. Let f(p) denote the prime-to-p part of the conductor of ψgal, and decom-

pose f(p) into the product FFcI of integral ideals satisfying the following three conditions;

• both F and Fc are the products of prime ideals which split completely over F+;

• I is the product of prime ideals which inert or ramify over F+;

• F and Fc are relatively prime and satisfy Fcc ⊃ F.

Furthermore choose a purely imaginary element δ of F so that it is relatively prime to

the conductor of ψgal and satisfies all the conditions (1δ), (2δ) and (3δ) at the beginning

of Section 2.2. Fixing such a decomposition of f(p) and δ, Hida and Tilouine have con-

structed in [HT93, Theorem II] the p-adic L-function LKHT
p,ΣF ,δ

(F ) as a unique element

of Ôur[[Gal(Ff(p)p∞/F )]], where Ff(p)p∞ denotes the ray class field modulo f(p)p∞ of F .

Meanwhile, for each place v | prF of F , let δv denote the image of δ ∈ F into the v-adic

completion Fv of F , which we identify with the v|F+ -adic completion F+
v|F+

of F+. Then,

since 2δv generates the absolute different of F+
v|F+

due to [Kat78, Lemma (5.7.35)], it

is a v-adic unit under the assumption (unrF,p). Let f(p) =
∏
v∤p∞ l

ev(f
(p))

v be the prime

ideal decomposition of f(p) and set Uf(p)pk :=
∏
v∤p∞ U

(ev(f
(p)))

Fv
×
∏
v|prF U

(k)
Fv
×
∏
v|∞ C×

for each k ≥ 1, where U
(n)
Fv

denotes the n-th higher unit group of Fv for every natural

number n. We then define γΣF2δ as the image of (2δv)v∈ΣF,p under the composite map∏
v∈ΣF,p

r×Fv ↪→ A×
F −→ lim←−

k→∞
A×
F /F

×Uf(p)pk
∼−−→ Gal(Ff(p)p∞/F ), (2.5)

where the third isomorphism is induced by the global Artin reciprocity map due to global

class field theory. Now let us consider the ψgal-twisting map

Twψgal : Ôur[[Gal(Ff(p)p∞/F )]]→ Ôur[[ΓF,max]]; g 7→ ψgal(g)g

where g denotes the image of g under the natural surjection Gal(Ff(p)p∞/F ) ↠ ΓF,max,

and define Lp,ΣF (ψ) to be Twψgal

((
γΣF2δ

)−1
LKHT
p,ΣF ,δ

)
∈ Ôur[[ΓF,max]]. We shall check in

the rest of the proof that Lp,ΣF (ψ) satisfies the desired interpolation formula (2.4), from

which the uniqueness of Lp,ΣF (ψ) readily follows; see [Kat78, Proposition (4.1.2)].

Let η : A×
F /F

× → Q×
be an algebraic Hecke character satisfying (i) and (ii) of the

statement; we then have

ηgal
(
Twψgal

(
γΣF2δ

)−1)
=

∏
v∈ΣF,p

(ψη)v(2δv)
−1

∏
σ∈ΣF

(ι ◦ σ(2δ))−wη−rη,σ
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by the construction of γΣF2δ and local-global compatibility of the Artin reciprocity maps;

note that the right-hand side is none other than evaluation of the p-adic avatar of ψη at(
(2δv)

−1
)
v∈ΣF,p

(see [HO18, Section 2.1.1] for details). Combining this with (2.1), we

can calculate as

ηgal(Lp,ΣF (ψ))

Ω
wηt+2rη
CM,p,F

= (−1)wηd
∏

v∈ΣF,p

(ψη)v(2δv)
−1

∏
σ∈ΣF

(
ι ◦ σ(2δ)

)rη,σ (ψη)gal(LKHT
p,ΣF ,δ

(F ))

C
wηt+2rη
CM,p,F

.

Applying the interpolation formula of LKHT
p,ΣF

(F ) proposed at [HT93, Theorem II] at the

right-hand side, we obtain

ηgal(Lp,ΣF (ψ))

Ω
wηt+2rη
CM,p,F

= (r×F : r×F+)
(−1)wηd√
|DF+ |

(−1)wηd
∏

v∈ΣF,p

(ψη)v(2δv)
−1

∏
σ∈ΣF

σ(2δ)rη,σ

·

 ∏
v∈ΣF,p

Eulδv(ψη, 0)
∏
σ∈ΣF

πrη,σΓ(wη + rη,σ)(
−iσ(δ)

)rη,σ
 L(ψη, 0)

C
wηt+2rη
CM,∞,F

=
(r×F : r×F+)√
|DF+ |

L(ψη, 0)

{
Ω
wηt+2rη
CM,∞,F

∏
σ∈ΣF

(2πi)wη+2rη,σ

}−1

·
∏

v∈ΣF,p

(ψη)v(2δv)
−1Eulδv(ψη, 0)

∏
σ∈ΣF

(2πi)rη,σΓ(wη + rη,σ),

where Eulδv(ψη, 0) is defined as

Eulδv(ψη, 0) =

{
Lvc(ψη, 0)

−1Lv((ψη)
∨, 1)−1 if ψη is unramified at v,

ε((ψη)v, eF,v((2δv)
−1−), dxv)−1 if ψη is ramified at v.

See also Remark 2.8 on comparison between Eulδv(ψη, 0) and the local term appearing in

[Kat78, (5.7.28)] and [HT93, (0.10)]. One then readily obtains the desired interpolation

formula taking the equalities∏
σ∈ΣF

(2π)−wη−rη,σΓ(wη + rη,σ) = 2−dL∞(ψη, 0),

{
(ψη)v(2δv)ε

(
(ψη)v, eF,v((2δv)

−1−), dxv
)}−1

= ε
(
(ψη)v, eF,v, dxv

)−1

(see [Del73, (3.3.3)] for example)

into accounts. □

Remark 2.6 (Independency of the polarisation parameter δ). Under the

assumption (unrF,p), we have succeeded in getting rid of the dependency of the p-adic

Hecke L-function Lp,ΣF (ψ) on the auxiliary element δ satisfying the conditions (1δ), (2δ)

and (3δ) at the beginning of Section 2.2; note that Katz’ and Hida–Tilouine’s original

p-adic Hecke L-function LKHT
p,ΣF ,δ

(F ) does depend on the choice of δ. It seems hard to

remove δ-dependency of the p-adic Hecke L-function when F+ is ramified at (p).
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Remark 2.7 (Relation with Coates and Perrin-Riou’s conjecture). We

clarify that our p-adic Hecke L-function Lp,ΣF (ψ) is compatible with Coates and Perrin-

Riou’s conjecture [CPR89, Coa89]. The term i|−wηt−rη|L∞(ψη, 0) is regarded as

the modified ∞-Euler factor L(i)
∞ (ResF/QM(ψη)) introduced in [Coa89, p. 103], and

Ω
wηt+2rη
CM,∞,F amounts to the modified period

Ω(i)(ResF/QM(ψη)) = C+(ResF/QM(ψη))(2πi)τ(ResF/QM(ψη))

defined in [Coa89, p. 107]; indeed τ(ResF/QM(ψη)) is calculated as |−wηt − rη|, and
algebraicity of the right-hand side of (2.4) verified in [Kat78, (5.3.5)] implies that

Deligne’s period C+(ResF/QM(ψη)) should coincide up to non-zero algebraic multiples

with (2πi)|−rη|C
wηt+2rη
CM,∞,F . Furthermore p is ordinary for the motive ResF/QM(ψη) in the

sense of [CPR89, Definition 4.1] or [Coa89, Section 3], and
∏
v∈ΣF,p

Eulv(ψη, s) is just

the modified p-Euler factor L(i)
p (ResF/QM(ψη)) introduced in [Coa89, Section 2] (di-

vided by the usual p-Euler factor Lp(ResF/QM(ψη))); compare with [Coa89, Lemma 3].

Remark 2.8 (On local epsilon factors). For completeness, we here verify

that the product
∏
v∈ΣF,v

ε
(
(ψη)v, eF,v

(
(2δv)

−1−
)
, dxv)

−1 of Tate’s local constants co-

incides with the local term Local(ψη, v’s) introduced by Katz [Kat78, (5.7.28)] and

Wp(ψη) introduced by Hida and Tilouine [HT93, (0.10)]. Fix a p-adic place v ∈ ΣF,p.

The functional equation of the local constant [Del73, (5.7.1)] and the behaviour under

unramified twists [Del73, (5.5.3)] imply the equality

ε
(
(ψη)v, eF,v

(
(2δv)

−1−
)
, dxv

)−1
= ε((ψη)−1

v |−|Fv , eF,v
(
(−2δv)−1−

)
, dxv)

= ε
(
(ψη)−1

v , eF,v
(
(−2δv)−1−

)
, dxv

)
N v−ev(ψη),

where |−|Fv denotes the normalised valuation on Fv and ev(ψη) is the exponent of the

conductor of (ψη)v. Note that dxv is a self-dual measure since Fv is unramified over Qp.
Applying [Del73, (3.4.3.2)] to the right-hand side, we obtain

ε
(
(ψη)v, eF,v

(
(2δv)

−1−
)
, dxv

)−1
= N v−ev(ψη)ε

(
(ψη)−1

v , eF,v
(
(−2δv)−1−

)
, dxv

)
= N v−ev(ψη)

∫
ϖ

−ev(ψη)
v rFv

(ψη)v(x)eF,v
(
(−2δv)−1x

)
dxv

= N v−ev(ψη)
∫
rFv

(ψη)v($
−ev(ψη)
v x)eF,v

(
−$−ev(ψη)

v (2δv)
−1x

) (
N vev(ψη)dxv

)
=

∑
x∈(rF,v/ϖ

ev(ψη)
v )×

(ψη)v($
−ev(ψη)
v x)eF,v(−$−ev(ψη)

v (2δv)
−1x)

∫
1+ϖ

ev(ψη)
v rFv

dxv

=
(
N v (ψη)v($v)

)−ev(ψη) ∑
x∈(rFv/ϖ

ev(ψη)
v )×

(ψη)v(x) exp(2πiTrFv/Qp($
−ev(ψη)
v (2δv)

−1x)),

which completely concides with the generalised Gauss sum ρv((ψη)v) appearing in

[Kat78, (5.7.15)] (the local factor N v−ev(ψη)G((2δv), (ψη)v) introduced in [HT93,

(0.10)] seems to contain a typo on the sign of the additive character).
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3. Constructing the p-adic Artin L-function in the field of fractions of

the Iwasawa algebra

We construct a p-adic Artin L-function as a unique element of the field of fractions

of the Iwasawa algebra Ôur[[ΓF,max]]. The integrality of the p-adic Artin L-function thus

constructed will be discussed in the next section.

3.1. Local L-factors and local ϵ-factors

Before presenting the construction of p-adic Artin L-functions, we here sum-

marise basic notion on local L-factors and local ε-factors. For a CM field F , let

η = (ηv)v : A×
F /F

× → Q×
be an algebraic Hecke character and ρ : GF → AutQ Vρ

an Artin representation of degree r(ρ). As is well known, both η and ρ are defined

on a number field E of sufficiently large degree over Q. Furthermore η corresponds

to a unique continuous character ηgal : GF → E× via global class field theory, where

E is an appropriate finite extension of Qp containing ι ◦ ι∞(E). For each finite place

v of F , let WFv ⊂ GFv (resp. ′WFv ) denote the Weil group (resp. the Weil–Deligne

group) of Fv. Following Fontaine’s recipe proposed in [Fon94, Section 2.3.7], we as-

sociate with Vρ ⊗E η
gal a Weil–Deligne representation WD̂pst,v(Vρ ⊗E η

gal) of ′WFv .

It is defined over Êur, the completion of the maximal unramified extension of E if v

lies above p, and over E otherwise. Define WD̂pst,v(Vρ ⊗E η
gal)C as the scalar exten-

sion of WD̂pst,v(Vρ ⊗E η
gal) to C via ι−1. One readily observes by construction that

WD̂pst,v(Vρ ⊗E η
gal)C ∼= Vρ ⊗C WD̂pst,v(η

gal)C is a complex vector space of dimension

r(ρ) on which γ ∈WFv acts as ι∞
(
ρ(γ)ηv(rec

−1
F,v(γ

ab))
)
, where ηv is the v-component of

the Hecke character η = (ηv)v, γ
ab is the image of γ in the abelianisation W ab

Fv
of WFv ,

and recF,v : F
×
v

∼−→W ab
Fv

denotes the local Artin reciprocity map at v.

Under these settings, the local L-factor and the local ε-factor of the pure motive

M(ρ)⊗E M(η) at a finite place v of F are defined as follows:

Lv(ρ⊗ η, s) := det
(
1− FrobvN v−s |

(
WD̂pst,v(Vρ ⊗E η

gal)C
)Iv,N=0)−1

, (3.1)

ε((ρ⊗ η)v, eF,v, dxv) := ε(WD̂pst,v(Vρ ⊗E η
gal)C, eF,v, dxv). (3.2)

The right-hand side of (3.2) denotes Deligne’s local constant defined as in [Del73,

Théorèm 4.1] with respect to the standard additive character eF,v and the normalised

Haar measure dxv of Fv. In particular, if both η and ρ are unramified at v, we have

Lv(ρ⊗ η, s) = det(1− ηv($v)ρ(Frobv)N v−s)−1

where $v denotes a uniformiser of Fv and ε((ρ⊗ η)v, eF,v, dxv) is equal to 1. We define

the Hasse–Weil L-function of the motive M(ρ)⊗E M(η) by

L(ρ⊗ η, s) :=
∏

v : finite places of F

Lv(ρ⊗ η, s).

Concerning the archimedean local L-factor, let (wη, rη) ∈ Z × ZΣF be the infinity

type of η as in Section 2.3. Then the Hodge realisation of M(ρ)⊗EM(η) with respect to

σ ∈ ΣF is an r(ρ)-dimensional C-vector space of Hodge type {(−wη − rη,σ, rη,σ)}σ∈ΣF ,
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and thus the archimedean local L-factor L∞(ρ⊗ η, s) of M(ρ)⊗E M(η) is described as

L∞(ρ⊗ η, s) =
∏
σ∈ΣF

Lσ(ρ⊗ η, s) =
∏
σ∈ΣF

ΓC(s+ wη + rη,σ)
r(ρ). (3.3)

The completed L-function is then defined as Λ(ρ⊗ η, s) = L∞(ρ⊗ η, s)L(ρ⊗ η, s).

3.2. Artin representations cutting out CM fields

Here after we consider an Artin representation ρ : GF → AutE(Vρ) such that the

field Fρ corresponding to the kernel of ρ is also a CM field. This condition imposes a

rather strict Galois-theoretic constraint, as the following lemma implies.

Lemma 3.1. Let K ′/K be a finite Galois extension of a CM field K. Suppose that

K ′ is also a CM field, and let c denote the complex conjugation on K ′. Then K ′/K+

is a Galois extension with Galois group isomorphic to Gal(K ′/K) × 〈c〉. In particular,

K ′,+/K+ is also a Galois extension and Gal(K ′/K) is isomorphic to Gal(K ′,+/K+).

Roughly speaking, every Galois extension of CM fields is derived from the corre-

sponding Galois extension of maximal totally real subfields.

Proof. The complex conjugation c of the CM field K ′ is characterised as an

automorphism of K ′ of order 2 satisfying ·̄ ◦ σ = σ ◦ c for any complex embedding

σ : K ′ ↪→ C, where ·̄ denotes the complex conjugation on C; see [Shi61, Lemma 18.2

(i)] for example. Using this fact, one readily observes that c commutes with any element

of Aut(K ′/Q), and that c|K coincides with the complex conjugation of the CM field K.

Then one finds 2[K ′ : K] distinct elements of Aut(K ′/K+), namely g ∈ Gal(K ′/K) and

c ◦ g for g ∈ Gal(K ′/K); note that g ∈ Gal(K ′/K) acts trivially on K whereas c acts

on K nontrivially as the complex conjugation. This implies that K ′/K+ is a normal

extension, as desired. The other assertions immediately follow from this fact. □

3.3. Gluing p-adic Hecke L-functions

Now let us state the main result of this section. Refer to Remark 2.4 for multi-index

notation used in the statement.

Theorem 3.2. Let p be an odd prime number, F a CM field of degree 2d and F+

the maximal totally real subfield of F . Assume that F , F+ and p satisfy both (unrF,p) and

(ordF,p). In addition, let ρ : GF → AutE(Vρ) be an Artin representation of degree r(ρ)

unramified at any prime ideals lying above (p), and assume that the field Fρ corresponding

to the kernel of ρ is a CM field, as in Section 3.2. Then, for each p-ordinary CM type

ΣF of F , there exists a unique element Lp,ΣF (M(ρ)) of Frac(Ôur[[ΓF,max]]) satisfying

ηgal(Lp,ΣF (M(ρ)))(
Ω
wηt+2rη
CM,p,F

)r(ρ) = ir(ρ)|−wηt−rη|
∏

v∈ΣF,p

Eulv(ρ⊗ η, 0)
Λ(ρ⊗ η, 0)(
Ω
wηt+2rη
CM,∞,F

)r(ρ) (3.4)

with
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Eulv(ρ⊗ η, 0) =

{
Lvc(ρ⊗ η, 0)−1Lv((ρ⊗ η)∨, 1)−1 if η is unramified at v,

ε((ρ⊗ η)v, eF,v, dxv)−1 if η is ramified at v

for any algebraic Hecke character η : A×
F /F

× → Q×
such that

(a) the associated Galois character ηgal factors through ΓF,max;

(b) the infinity type (wη, rη) ∈ Z×ZΣF of η satisfies both −wη−rη,σ ≤ −1 and rη,σ ≥ 0

for every σ ∈ ΣF .

Here we use the symbol Lp,ΣF (M(ρ)) to emphasise that it is a right object which

should be called the p-adic L-function of the Artin motive M(ρ). Note that the in-

terpolation formula (3.4) complies the general formulation of Coates and Perrin-Riou

[CPR89, Coa89]; see also Remark 2.7.

Proof. Set G = Gal(Fρ/F ) = GF /Ker(ρ), which is a finite group by definition.

Then, by Brauer’s induction theorem [CR81, Theorem (15.9)], the Artin representation

ρ is decomposed (as a virtual representation of G) into

ρ =

s∑
j=1

aj Ind
G
Gjψ

gal
j , (3.5)

where Gj = Gal(Fρ/Fj) is a subgroup of G, ψgal
j is an abelian character of Gj and aj is

an integer for each j. Each Fj is then a CM field because it is an intermediate field of the

extension Fρ/F of CM fields; see [Shi61, Lemma 18.2 (iv)] for details. Furthermore since

the dimensions of the both sides of (3.5) obviously coincide, we obtain a basic equality

r(ρ) =

s∑
j=1

aj(G : Gj) dimψgal
j =

s∑
j=1

aj [Fj : F ]. (3.6)

For each 1 ≤ j ≤ s, the p-ordinary CM type ΣF induces a unique p-ordinary CM

type ΣFj := {τ ∈ IFj | τ |F ∈ ΣF } of Fj . Due to Theorem 2.5, the p-adic L-function

Lp,ΣFj (ψj) with respect to the p-ordinary CM type ΣFj uniquely exists as an element of

Ôur[[ΓFj ,max]]. It is characterised by the interpolation property

ξgal(Lp,ΣFj (ψj))

Ω
wξtj+2rξ
CM,p,Fj

=
(r×Fj : r

×
F+
j

)

2d[Fj :F ]
√
|DF+

j
|
i|−wξtj−rξ|

∏
ṽ∈ΣFj,p

Eulṽ(ψjξ, 0)
Λ(ψjξ, 0)

Ω
wξtj+2rξ
CM,∞,Fj

(3.7)

for any algebraic Hecke character ξ : A×
Fj
/F×

j → Q×
satisfying both (i) and (ii) in The-

orem 2.5; note that [Fj : Q] = 2d[Fj : F ]. Here tj denotes (1, 1, . . . , 1) ∈ ZΣFj . Now let

us consider the composite map

prj : Ôur[[ΓFj ,max]] ↠ Ôur[[Gal(FjFmax/Fj)]] ↪→ Ôur[[ΓF,max]]
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where the former map is the ring homomorphism induced by the quotient map of the

Galois group ΓFj ,max = Gal(Fj,max/Fj) ↠ Gal(FjFmax/Fj), and the latter one is the

ring homomorphism induced by the inclusion Gal(FjFmax/Fj) ⊂ Gal(Fmax/F ) = ΓF,max.

Now we define Lp,ΣF (M(ρ)) as

Lp,ΣF (M(ρ)) =

s∏
j=1

prj

2d[Fj :F ]
√
|DF+

j
|

(r×Fj : r
×
F+
j

)
Lp,ΣFj (ψj)

aj

, (3.8)

which is a priori an element of the field of fractions of Ôur[[ΓF,max]]; note that both the

absolute discriminant DF+
j

and the unit index (r×Fj : r×
F+
j

) are p-adic units due to the

assumption (unrF,p) and unramifiedness of ρ at p. In the rest of the proof, we assemble

the interpolation formulae of the p-adic Hecke L-functions appearing in the right hand

side of (3.8), and deduce the desired interpolation property of Lp,ΣF (M(ρ)).

▶ Infinity types of ψjηj. Let η : A×
F /F

× → C× be an algebraic Hecke character satisfying

the conditions (a) and (b) in Theorem 3.2. The restriction ηgal|GFj of ηgal then corre-

sponds to ηj := η ◦ NormFj/F via global class field theory. Let ψj denote the algebraic

Hecke character corresponding to ψgal
j via global class field theory. Since the Norm map

NormFj/F induces

A∞,×
Fj

= (C×)ΣFj → A∞,×
F = (C×)ΣF ; (xτ )τ∈ΣFj

7→

 ∏
τ |F=σ

xτ


σ∈ΣF

,

one readily observes that the infinity type (wηj , rηj ) ∈ Z×ZΣFj of ψjηj satisfies equalities

wηj = wη and rηj ,τ = rη,τ |F for each τ ∈ ΣFj . From these formulae, we see that ηj
satisfies the condition (ii) of Theorem 2.5 for Fj . The condition (i) of Theorem 2.5 is

obviously fulfilled for ηj by assumption, and hence we have

ηgal(Lp,ΣF (M(ρ)))∏s
j=1

(
Ω
wηtj+2rηj
CM,p,Fj

)aj =

s∏
j=1

2d[Fj :F ]
√
|DF+

j
|

(r×Fj : r
×
F+
j

)

ηgal|Gal(F/Fj)
(Lp,ΣFj (ψj))

Ω
wηtj+2rηj
CM,p,Fj

aj

=

s∏
j=1

i|−wηtj−rηj |
∏

ṽ∈ΣFj,p

Eulṽ(ψjηj , 0)
L∞(ψjηj , 0)L(ψjηj , 0)

Ω
wηtj+2rηj
CM,∞,Fj

aj

(3.9)

by (3.7) and (3.8). Here we have already substituted wηj = wη. We shall modify each

term of (3.9) and show that (3.9) is equivalent to the desired interpolation formula (3.4).

▶ L-values. For each j = 1, 2, . . . , s, Mackey’s decomposition theorem [CR81, Theorem

(10.13)] provides a decomposition of IndGGj ψ
gal
j appearing in (3.5) as GFv -representations

IndGGj ψ
gal
j |GFv =

⊕
[g]∈GFj \GF /GFv

Ind
GFv
GgFj

∩GFv
(ψgal
j )g (3.10)
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where GgFj denotes the conjugate g
−1GFjg of GFj and the character (ψgal

j )g is defined as

(ψgal
j )g(x) = ψgal

j (gxg−1) for x ∈ GgFj ∩GFv . Combining (3.10) with the Tensor Product

Theorem [CR81, Corollary (10.20)], we obtain an eqality of virtual representations:

WD̂pst,v(ρ⊗E η
gal)C

=

s∑
j=1

aj
∑

[g]∈GFj \GF /GFv

(
Ind

WFv

GgFj
∩WFv

(ψgal
j )g

)
⊗C WD̂pst,v(η

gal)C

=

s∑
j=1

aj
∑

[g]∈GFj \GF /GFv

Ind
WFv

GgFj
∩WFv

(
(ψgal
j )g ⊗C WD̂pst,v(η

gal)C|GgFj∩WFv

)
. (3.11)

Now let ṽ0 denote a unique place of Fj fixed by GFv (we supress j by abuse of no-

tation). Set WFj,ṽg0
:= GFj ∩ W

g−1

Fv
, which is indeed regarded as the Weil group of

Fj,ṽg0 . If we regard (ψgal
j )g ⊗C WD̂pst,v(η

gal)C|GgFj∩WFv
as a representation of WFj,ṽg0

via

the isomorphism WFj,ṽg0

∼−→ GgFj ∩ WFv ; γ 7→ g−1γg, we see that it is isomorphic to

ψgal
j ⊗C WD̂pst,v(η

gal)C|WF
j,ṽ
g
0

. We thus obtain

s∏
j=1

∏
ṽ|v

L((ψjηj)ṽ, s)
aj =

s∏
j=1

∏
ṽ|v

L(ψgal
j ⊗C WD̂pst,v(η

gal)C|WFj,ṽ
, s)aj

=

s∏
j=1

∏
[g]

L((ψgal
j )g ⊗C WD̂pst,v(η

gal)C|GgFj∩WFv
, s)aj

=

s∏
j=1

∏
[g]

L

(
Ind

WFv

GgFj
∩WFv

(
(ψgal
j )g ⊗C WD̂pst,v(η

gal)C|GgFj∩WFv

)
, s

)aj

= L

 s∑
j=1

aj
∑
[g]

Ind
WFv

GgFj
∩WFv

(
(ψgal
j )g ⊗C WD̂pst,v(η

gal)C|GgFj∩WFv

)
, s


= Lv(ρ⊗ η, 0) (3.12)

where
∏
ṽ|v means the product over all the finite places ṽ of Fj lying above v and∏

[g] (resp.
∑

[g]) means the product (resp. the summation) over all double cosets

[g] of GFj\GF /GFv . The third equality follows due to inductivity of local L-fuctors

(see [Del73, Proposition 3.8 (ii)]) and the last equality follows from (3.11). By tak-

ing the product over all the finite places of F and substituting s = 0, we obtain∏s
j=1 L(ψjηj , 0)

aj = L(ρ⊗ η, 0) as desired.

▶ Modified ∞-Euler factors. By (2.3), the product of the modified ∞-Euler factors in

the left-hand side of (3.9) is rewritten as

s∏
j=1

iaj |−wηtj−rηj |L∞(ψjηj , 0)
aj =

s∏
j=1

∏
τ∈ΣFj

iaj(−wη−rη,τ )ΓC(wη + rηj ,τ )
aj
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=

s∏
j=1

∏
σ∈ΣF

∏
τ∈ΣFj
τ |F=σ

i−wη−rη,τ {ΓC(wη + rηj ,τ )}aj .

Since the number of τ ∈ ΣFj satisfying τ |F = σ equals [Fj : F ] for any σ ∈ ΣF , we have

s∏
j=1

iaj |−wηtj−rηj |L∞(ψjηj , 0)
aj =

s∏
j=1

∏
σ∈ΣF

∏
τ∈ΣFj
τ |F=σ

{i−wη−rη,τ|F ΓC(wη + rη,τ |F )}
aj

=
∏
σ∈ΣF

{i−wη−rη,σΓC(wη + rη,σ)}
∑s
j=1 aj [Fj :F ],

which coincides with ir(ρ)|−wηt−rη|L∞(ρ⊗ η, 0) by (3.3) and (3.6).

▶ Periods. Similarly to the computation of the modified ∞-Euler factors, we have

s∏
j=1

(
Ω
wηtj+2rηj
CM,?,Fj

)aj
=

s∏
j=1

∏
τ∈ΣFj

(
Ω
wη+2rηj,τ

CM,?,Fj ,τ

)aj
=

s∏
j=1

∏
σ∈ΣF

∏
τ∈ΣFj
τ |F=σ

(
Ω
wη+2rηj,τ

CM,?,Fj ,τ

)aj

=

s∏
j=1

∏
σ∈ΣF

∏
τ∈ΣFj
τ |F=σ

(
Ω
wη+2rη,τ|F
CM,?,F,τ |F

)aj
=
∏
σ∈ΣF

(
Ω
wη+2rη,σ
CM,?,F,σ

)∑s
j=1 aj [Fj :F ]

for each ? ∈ {∞, p}, which is equal to
(
Ω
wηt+2rη
CM,?,F

)r(ρ)
due to (3.6). The third equality

follows from Lemma 2.3.

▶ Modified p-Euler factors at unramified places. Let v ∈ ΣF,p be a place of F lying

above (p) and suppose that η is unramified at v. Then, since Eulṽ(ψjηj , 0) is defined as

Lṽc(ψjηj , 0)
−1Lṽ((ψjηj)

−1, 1)−1 for each ṽ ∈ ΣFj ,p lying above v, we have

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

Eulṽ(ψjηj , 0)
aj =

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

Lṽc(ψjηj , 0)
−ajLṽ((ψjηj)

−1, 1)−aj

= L((ρ⊗ η)vc , 0)−1L((ρ⊗ η)∨v , 1)−1 = Eulv(ρ⊗ η, 0)

due to (3.12); note that (3.5) implies (ρ⊗ η)∨ =
∑s
j=1 aj Ind

G
Gj (ψ

gal
j ηgalj )−1.

▶ Modified p-Euler factors at ramified places. Let v ∈ ΣF,p be a place of F lying above

(p) and suppose that η is ramified at v. In this situation, Eulv(ρ⊗η, 0) and Eulṽ(ρ⊗η, 0)
for ṽ ∈ ΣFj ,p lying above v are defined as ε((ρ⊗ η)v, eF,v, dxv) and ε((ψjηj)ṽ, eFj ,ṽ, dxṽ)
respectively. In the following, we shall verify the equality among the local constants

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

ε((ψjηj)ṽ, eFj ,ṽ, dxṽ)
aj = ε((ρ⊗ η)v, eF,v, dxv), (3.13)
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which implies the desired equality

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

Eulṽ(ψjηj , 0) = Eulv(ρ⊗ η, 0). (3.14)

Now let us prove (3.13). Note that ψgal
j is unramified at each ṽ ∈ ΣFj ,p since F/Fj is

unramified at ṽ by construction. Hence, if we let P
e(ηj,ṽ)
ṽ denotes the conductor of the ṽ

component of ηj = η ◦NormFj/F , the left-hand side of (3.13) is calculated as

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

ε((ψjηj)ṽ, eFj ,ṽ, dxṽ)
aj

=

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

ε((ηj)ṽ, eFj ,ṽ, dxṽ)
ajψj,ṽ($

e(ηj,ṽ)
v )aj

=

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

ψj,ṽ($
e(ηj,ṽ)
v )aj

(∫
P

−e(ηj,ṽ)

ṽ

η−1
j,ṽ (x)eF,v(x)dxṽ

)aj

=

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

ψj,ṽ($
e(ηj,ṽ)
v )aj

·

(∫
rFj,ṽ

η−1
j,ṽ ($

−e(ηj,ṽ)
v x)eF,v($

−e(ηj,ṽ)
v x)d($−e(ηj,ṽ)

v xṽ)

)aj

=

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

ψj,ṽ($
e(ηj,ṽ)
v )ajηj,ṽ($

e(ηj,ṽ)
v )aj

·

 ∑
x∈(rFj /P

e(ηj,ṽ)

ṽ )×

η−1
j,ṽ (x)eFj ,ṽ($

−e(ηj,ṽ)
v x)


aj

. (3.15)

Here $v is a uniformiser of Fv and we also regard it as a uniformiser of Fj,ṽ using

unramifiedness of Fj,ṽ/Fv. The first equality follows from [Del73, (5.5.3)], and the

second equality follows from [Del73, (3.4.3.2)]. Note that e(ηj,ṽ) coincides with e(ηv),

the exponent of the conductor of ηv, since the norm map NormFj,ṽ/Fv induces a surjection

1 +Pk
ṽ ↠ 1 +Pk

v for every natural number k. See [Ser04, Chapitre V, Proposition 3];

recall again that Fj,ṽ/Fv is unramified.

We may calculate the product concerning ηj,ṽ’s further by using a generalisation of

Hasse and Davenport’s relation for characters with prime power conductor, whose proof

shall be given in Appendix A. Indeed, we may apply Theorem A.1 by setting
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s = fṽ|v, Fq = rF /Pv, Fqs = rFj/Pṽ,

χ = ηv, n = e(ηv), Wn(Fq) = rF /P
e(ηv)
v ,

Wn(Fqs) = rFj/P
e(ηv)
ṽ , ψn,Fq (x) = eF,v($

−e(ηv)
v x)

where fṽ|v = [Fj,ṽ : Fv] denotes the inertia degree of ṽ|v. Note that eFj ,ṽ($
−e(ηv)
v x)

coincides with eF,v($
−e(ηv)
v TrFj,ṽ/Fv (x)) since $v is contained in Fv, and thus one may

regard eFj ,ṽ($
−e(ηv)
v x) as ψn,Fqs (x) appearing in Appendix A. Applying Theorem A.1,

we have

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

ηv ◦NormFj,ṽ ($
e(ηv)
v )aj

 ∑
x∈(rFj /P

e(ηv)
ṽ )×

η−1
j,ṽ (x)eFj ,ṽ($

−e(ηv)
v x)


aj

=

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

ηv($
e(ηv)
v )ajfṽ|v

·

(−1)e(ηv)(fṽ|v−1)

 ∑
x∈(rF /P

e(ηv)
v )×

η−1
v (x)eF,v($

−e(ηv)
v x)

fṽ|v

aj

(by Theorem A.1)

= (−1)
∑s
j=1 aj

∑
ṽ|v e(ηv)(fṽ|v−1)

·

ηv($e(ηv)
v )

∑
x∈(rF /P

e(ηv)
v )×

η−1
v (x)eF,v($

−e(ηv)
v x)


∑s
j=1 aj

∑
ṽ|v fṽ|v

= (−1)
∑s
j=1 aj

∑
ṽ|v e(ηv)(fṽ|v−1)ε(ηv, eF,va, dxv)

r(ρ), (3.16)

where
∑
ṽ|v denotes the summation over ṽ ∈ ΣFi,p lying above v. The last equality

follows from [Del73, (5.5.3)] and the basic equality on extension degrees

r(ρ) =

s∑
j=1

aj [Fj : F ] =

s∑
j=1

∑
ṽ|v

ajfṽ|v,

which follows from unramifiedness of Fj,ṽ/Fv. Although there appears an unexpected

signature (−1)
∑s
j=1 aj

∑
ṽ|v e(ηv)fṽ|v , it will be finally cancelled out with the signature

appearing in the computation of the product concerning ψj ’s.

Next, in order to calculate the product concerning ψj ’s in (3.15), we study the action

of Frobv on each component

Ind
GFv
GgFj

∩GFv
(ψgal
j )g := HomQ[GgFj

∩GFv ]
(Q[GFv ],Q((ψgal

j )g))

appearing in the right-hand side of (3.10). Let ṽ0 be a unique place of Fj fixed by GFv ,
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as before. Then GgFj ∩GFv is naturally regarded as the conjugate GgFj,ṽgo
of the decompo-

sition subgroup GFj,ṽg0
of GFj at ṽ

g
0 ; in particular, the degree of Ind

GFv
GgFj

∩GFv
(ψgal
j )g coin-

cides with the inertia degree fṽg0 |v, and g
(
Frob

fṽg0 |v
v

)
g−1 is identified with Frobṽg0 . Now,

for k = 0, 1, . . . , fṽg0 |v, define φk : Q[GFv ] → Q((ψgal
j )g) as a Q[GgFj ∩ GFv ]-equivariant

homomorphism sending Frob−k
v to 1 and Frob−k

′

v to 0 for k′ = 0, 1, . . . , fṽg0 |v − 1 with

k′ 6= k. Then φ0, φ1, . . . , φfṽg0 |v−1 forms a basis of Ind
GFv
GgFj

∩GFv
(ψgal
j )g, and the matrix

presentation of the action of Frobv on it is given by[
(ψgal
j )g(Frob

fṽg0 |v
v )

Ifṽg0 |v−1

]
=

[
ψgal
j (Frobṽg0 )

Ifṽg0 |v−1

]

where Ifṽg0 |v−1 denotes the identity matrix of degree fṽg0 |v − 1. Taking the determinant,

we obtain an equality

det
(
Frobv; Ind

GFv
GgFj

∩GFv
(ψgal
j )g

)
= (−1)fṽg0 |v−1

ψj,ṽg0 ($v). (3.17)

Combining (3.17) with Mackey decomposition (3.10), we may calculate as

s∏
j=1

∏
ṽ∈ΣFi,p
ṽ|v

ψj,ṽ($
e(ηv)
v )ai =

s∏
j=1

∏
[g]∈GFj \GF /GFv

ψj,ṽg0 ($
e(ηv)
v )aj

=

s∏
j=1

∏
[g]∈GFj \GF /GFv

{
(−1)e(ηv)(fṽg0 |v−1)

det(Frobe(ηv)v ; Ind
GFv
GgFj

∩GFv
(ψgal
j )g)

}aj
(by (3.17))

= (−1)
∑s
j=1 aj

∑
ṽ|v e(ηv)(fṽ|v−1)

· det

Frobe(ηv)v ;

s∑
j=1

aj
∑

[g]∈GFj \GF /GFv

Ind
GFv
GgFj

∩GFv
(ψgal
j )g


= (−1)

∑s
j=1 aj

∑
ṽ|v e(ηv)(fṽ|v−1) det

(
Frobe(ηv)v ; Vρ|GFv

)
. (3.18)

The last equality follows from (3.5) and (3.10). We here emphasise that the signature

appearing in (3.18) completely coincides with that in (3.16). Therefore, by putting (3.15),

(3.16) and (3.18) together, we finally obtain

s∏
j=1

∏
ṽ∈ΣFj,p

ṽ|v

ε((ψjηj)ṽ, e
−1
Fj ,ṽ

, dxṽ)
aj = ε(ηv, e

−1
F,v, dxv)

r(ρ) det
(
Frobe(ηv)v ; Vρ

)
= ε((ρ⊗ η)v, e−1

F,v, dxv),

due to [Del73, (5.5.3)].
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We thus complete the proof of Theorem 3.2. □

Remark 3.3 (Uniqueness of the p-adic L-function). The interpolation for-

mula (3.4) uniquely characterises the p-adic Artin L-function Lp,ΣF (M(ρ)) due to the

p-adic identity theorem [Kat78, Theorem (4.1.2)]; indeed we may readily extend [Kat78,

Theorem (4.1.2)] to elements of the field of fractions of the Iwasawa algebra Ôur[[ΓF,max]].

In particular Lp,ΣF (M(ρ)) does not depend on any Brauer decomposition (3.5) of ρ which

we choose in the proof of Theorem 3.2, because the interpolation formula (3.4) does not

contain any data concerning a particular choice of the decomposition (3.5).

The integrality conjecture below is regarded as a p-adic counterpart of Artin’s con-

jecture for (complex) Artin L-functions.

Conjecture 3.4 (p-adic Artin conjecture). The p-adic Artin L-function

Lp,ΣF (M(ρ)) ∈ Frac(Ôur[[ΓF,max]]) constructed in Theorem 3.2 is indeed an element

of Ôur[[ΓF,max]].

4. Integrality of the p-adic Artin L-function and the Iwasawa main con-

jecture

In Section 4.1, we formulate the Iwasawa main conjecture for Artin representations

on CM fields and state the main result of the present article (Theorem 4.6). After

studying several algebraic properties of Selmer groups in Section 4.2, we shall give the

proof of Theorem 4.6 in Section 4.3.

4.1. Iwasawa main conjectures and main results

First of all, let us introduce the notion of several Selmer groups concerning Artin

motives. Let ρ : GF → AutE(Vρ) be an Artin representation, and take a finite extension

E of Qp containing ι ◦ ι∞(E). In the following, we use the same symbol Vρ for its scalar

extension Vρ ⊗E E and regard it as a p-adic representation for simplicity. Let O be the

ring of integers of E . Choose a GF -stable O-lattice T of Vρ and set A = T⊗ZpQp/Zp. Let
SF be the set of places of F consisting of all the archimedean places, the places dividing

(p) and those at which ρ ramifies. For any algebraic extension F ′ of F , let SF ′ be the

set of places of F ′ lying above those contained in SF . When [F ′ : F ] is finite, we define

the (ΣF,p-ramified) Selmer group SelA(F
′) of A as

SelA,ΣF (F
′) = Ker

locA : H1(F ′
SF ′ /F

′, A)→
∏

w∈SF ′\ΣF ′,p, w∤∞

H1(F ′ ur
w , A)

 , (4.1)

where F ′
SF ′ is the maximal Galois extension of F ′ unramified outside the places of SF ′ ,

F ′ ur
w is the maximal unramified extension of F ′

w and ΣF ′,p is the set of places of F ′ lying

above those contained in ΣF,p. When F ′ is an algebraic extension of F of infinite degree,

we define SelA,ΣF (F
′) by taking the inductive limit of the Selmer groups defined over

intermediate extensions of finite degree over F . Similarly, when F ′ is a finite extension

of F , we define the (ΣF,p-ramified) strict Selmer group of A as
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SelstrA,ΣF (F
′) = Ker

locstrA : H1(F ′
SF ′ /F

′, A)→
∏

w∈SF ′\ΣF ′,p, w∤∞

H1(F ′
w, A)

 . (4.2)

By taking the inductive limit, we may also define the strict Selmer group SelstrA,ΣF (F
′)

even when F ′ is an algebraic extension of F of infinite degree. Using Shapiro’s lemma

[NSW00, Proposition (1.6.4)], we readily observe that SelA,ΣF (Fmax) and SelstrA,ΣF (Fmax)

are respectively isomorphic to the corresponding Selmer groups

SelA,ΣF (F ) = Ker

H1(FSF /F,A)→
∏

v∈SF \ΣF,p, v∤∞

H1(F ur
v ,A)

 , (4.3)

SelstrA,ΣF (F ) = Ker

H1(FSF /F,A)→
∏

v∈SF \ΣF,p, v∤∞

H1(Fv,A)

 (4.4)

of A := T ⊗O[[ΓF,max]] O[[ΓF,max]]
∨, where T is defined as T ⊗O O[[ΓF,max]]

♯ on which

GF acts diagonally; refer to Section 1 for the definition O[[ΓF,max]]
♯.

Remark 4.1. The strict Selmer groups defined as (4.2) (or (4.4)) is the same as

those proposed at [HO18, Definition 3.19], although their definition looks a bit different.

See also the proof of Lemma 4.9.

The cotorsionness of Selmer groups is one of the fundamental problem in Iwasawa

theory, but in our situation this is always fulfilled.

Proposition 4.2 (Cotorsionness of Selmer groups). For any Artin repre-

sentation ρ : GF → AutE Vρ, both the Selmer groups SelA,ΣF (Fmax) and SelstrA,ΣF (Fmax)

are cofinitely generated cotorsion O[[ΓF,max]]-modules.

Proof. Since SelstrA,ΣF (Fmax) is a submodule of SelA,ΣF (Fmax), it suffices to

verify the cotorsionness of SelA,ΣF (Fmax). Let Fρ denote the field corresponding to

the kernel of ρ, as before. Since FmaxFρ/Fmax is a finite extension, the restriction

map SelA,ΣF (Fmax) → SelA,ΣF (FmaxFρ) has an O-cofinitely generated kernel. Hence

SelA,ΣF (Fmax)
∨ is O[[ΓF,max]]-torsion if SelA,ΣF (FmaxFρ)

∨ is O[[Gal(FmaxFρ/Fρ)]]-

torsion. Since GFmaxFρ trivially acts on A by definition, we observe by taking the Pontrja-

gin dual of (4.1) that SelA,ΣF (FmaxFρ)
∨ is isomorphic to Gal(Mρ

ΣF
/FmaxFρ), the Galois

group of the maximal abelian pro-p extension of FmaxFρ unramified outside the places ly-

ing above those contained in ΣF,p. The Galois group Gal(Mρ
ΣF
/FmaxFρ) is then a torsion

module over O[[Gal(FmaxFρ/Fρ)]] by [HT94, Theorem 1.2.2 (iii)], as desired. □

Now let us fomulate the Iwasawa main conjecture for CM fields. We first consider

the case where the Artin representation ρ is abelian.

Conjecture 4.3 (Iwasawa main conjecture for ψ). Let F be a CM field and

ψgal : GF → AutE Vψ a character of finite order such that the field Fψ corresponding to

the kernel of ψgal is linearly disjoint from Fmax. Choosing a E-basis eψ of Vψ ∼= E , define
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the standard GF -stable O-lattice of Vψ by Tψ := Oeψ, and set Aψ = Tψ ⊗Zp Qp/Zp. Let
SelAψ,ΣF (Fmax) be the Selmer group defined as above. Then the equality

(Lp,ΣF (ψ)) = charÔur[[ΓF,max]]

(
SelAψ,ΣF (Fmax)

∨⊗̂OÔur
)

of principal ideals of Ôur[[ΓF,max]] should hold where the p-adic Hecke L-function

Lp,ΣF (ψ) is defined as in Theorem 2.5.

Note that the Pontrjagin dual of the Selmer group SelAψ,ΣF (Fmax) is pseudo-

isomorphic to Gal(MΣFFψ/FmaxFψ)ψ introduced in Section 1 under the situation of

Conjecture 4.3 (see [HO18, Proposition 3.16] for example), and thus Conjecture 4.3 is

equivalent to Main conjecture proposed by Hida and Tilouine in [HT94]. The follow-

ing conjecture is a direct generalisation of Conjecture 4.3 for higher-dimensional Artin

representations.

Conjecture 4.4 (Iwasawa main conjecture for ρ). Let F be a CM field and

ρ : GF → AutE(Vρ) an Artin representation of GF such that the field Fρ corresponding

to the kernel of ρ is linearly disjoint from Fmax. Let O be the ring of integers of E .
Choose a GF -stable O-lattice T of Vρ and set A = T ⊗Zp Qp/Zp. Let SelA,ΣF (Fmax) be

the Selmer group defined as above. Then the equality

(Lp,ΣF (M(ρ))) = charÔur[[ΓF,max]]

(
SelA,ΣF (Fmax)

∨⊗̂OÔur
)
. (4.5)

of principal fractional ideals of Ôur[[ΓF,max]] should hold.

Remark 4.5. 1. The left-hand side of (4.5) is defined independently of the

choice of a lattice T , but the right-hand side of (4.5) a priori depends on the choice

of T . In fact, we can check that the right-hand side of (4.5) is independent of the

choice of a lattice T by Lemma 4.11.

2. A variant of Conjecture 4.4 formulated for SelstrA,ΣF (Fmax) in place of SelA,ΣF (Fmax)

is equivalent to Conjecture 4.4 by Lemma 4.9.

3. Note that, in Theorem 3.2, the p-adic Artin L-function Lp,ΣF (M(ρ)) is constructed

as an element of Frac(Ôur[[ΓF,max]]). Since the right-hand side of (4.5) is an integral

ideal of Ôur[[ΓF,max]], the validity of (4.5) implies that Lp,ΣF (M(ρ)) is an integral

element of Ôur[[ΓF,max]].

We are now ready to state the main result of the present article.

Theorem 4.6 (Main Theorem). Let M(ρ) be the Artin motive corresponding to

an Artin representation ρ of GF which is unramified at any prime ideal lying above (p),

and suppose that the field Fρ corresponding to the kernel of ρ is also a CM field. Assume

further that the Iwasawa main conjecture (Conjecture 4.3) is true for any intermediate

field K of Fρ/F and branch characters factoring through Gal(Fρ/K). Then Conjectures

3.4 and 4.4 hold true for ρ.
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Remark 4.7 (On the assumption of Theorem 4.6). Concerning Conjec-

ture 4.3 for an intermediate field K of Fρ/F and a branch character ψgal factoring

through Gal(Fρ/K), the known results which we may apply are only [Hsi14, Theorem

8.17] and [Hsi14, Theorem 8.18] at the present. However, the former result [Hsi14, The-

orem 8.17] does not work at all in our situation since the branch character ψgal will never

become anticyclotomic; indeed ψgal(cgc−1) = ψgal(g) holds for every g ∈ Gal(Fρ/K)

by Lemma 3.1. Meanwhile, the latter result [Hsi14, Theorem 8.18] requires that F is a

composite field of a totally real field and an imaginary quadratic field M, and the field Kψ

corresponding to the kernel of ψgal should be abelian over M. This too strict constraint

makes it difficult to apply [Hsi14, Theorem 8.18] to characters ψgal
j appearing in the

Brauer decomposition (3.5). After all it seems hard to give an explicit non-commutative

Artin representation ρ satisfying Conjectures 3.4 and 4.4 with current knowledge of the

(abelian) Iwasawa main conjecture of CM fields.

Remark 4.8 (On the case p = 2). Although we assume that the prime number

p is odd throughout the present article, we would like to briefly explain here the situation

of the case p = 2. Indeed, the only issue concerning the prime 2 is that, due to Hasse’s

unit index theorem [Has85, Satz 14], both the numerator and the denominator of the

modification factor
2d[Fj :F ]

√
|D
F

+
j

|

(r×Fj
: r×
F

+
j

)
appearing in (3.8) might be divisible by 2 even if F is

assumed to be absolutely unramified at (2). Therefore we can still verify by the same

proof that the 2-adic Artin L-function L2,ΣF (M(ρ)) is an element of Ôur[[ΓF,max]]⊗Z Q
and the main conjecture (4.5) holds true up to µ-invariants if Conjecture 4.3 holds true

for p = 2.

4.2. Algebraic preliminaries

Before proving Theorem 4.6, we prepare several notation and lemmas.

Lemma 4.9. As before, choose a GF -stable O-lattice T of the Artin representation

Vρ and set A = T ⊗Zp Qp/Zp. Then the natural surjection

SelA,ΣF (Fmax)
∨ ↠ SelstrA,ΣF (Fmax)

∨

is a pseudo-isomorphism of O[[ΓF,max]]-modules. Also for any finite extension F ′ of F ,

the natural surjection

SelA,ΣF (F
′Fmax)

∨ ↠ SelstrA,ΣF (F
′Fmax)

∨

(resp. SelA,ΣF (F
′
max)

∨ ↠ SelstrA,ΣF (F
′
max)

∨ )

is a pseudo-isomorphism of O[[Gal(F ′Fmax/F
′)]]-modules (resp. a pseudo-isomorphism

of O[[ΓF ′,max]]-modules).

To prove Lemma 4.9, we introduce notation
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LociM (K) =
∏

w∈SK\ΣK,p
w∤p

Hi(Kur
w ,M), Locstr,iM (K) =

∏
w∈SK\ΣK,p

w∤p

Hi(Kw,M)

on local conditions for i = 0, 1 and 2, where K is an intermediate field of Fmax/F and

M is an arbitrary Gal(FS/F )-subquotient of A.

Proof of Lemma 4.9. Consider the commutative diagram with exact rows:

0 −−−−→ SelA,ΣF (Fmax) −−−−→ H1(FS/Fmax, A)
locA−−−−→ Loc1A(Fmax)

f

x x =

xh
0 −−−−→ SelstrA,ΣF (Fmax) −−−−→ H1(FS/Fmax, A) −−−−→

locstrA

Locstr,1A (Fmax).

(4.6)

The maps locA and locstrA are the restriction morphisms. By construction, the left vertical

map f is injective. In order to verify the assertion for SelA,ΣF (Fmax)
∨ ↠ SelstrA,ΣF (Fmax)

∨,

it suffices to show that (Coker f)∨ is a pseudonull O[[ΓF,max]]-module. The right vertical

map h is also induced by the restriction maps and thus has the kernel isomorphic to

Ker(h) ∼=
∏
v∈SF
v∤p∞

∏
w|v

w: place of Fmax

H1
ur(Fmax,w, A)×

∏
v∈ΣcF,p

H1
ur(Fv,A).

Here we rewrite the local condition at v ∈ ΣcF,p as in (4.3) and (4.4). Then the unramified

cohomology H1
ur(Fmax,w, A) = H0(F

ur
v /Fmax,w, A

Iw) is trivial for any v ∈ SF with v ∤ p∞
because Gal(F ur

v /Fmax,w) ∼=
∏
ℓ ̸=p Zℓ is a pro-prime-to-p group whereas AIw is a discrete

p-group. Now consider the case v ∈ ΣcF,p. Then the Zp-rank of the decomposition

subgroup of ΓF,max at v is equal to or greater than 2 by [BCG+22, Lemma 3.1 (i)],

which acts trivially on H1
ur(Fv,A) by the very definition H0(F

ur
v /Fmax,w, A

Iw) of the

unramified cohomology group. Therefore H1
ur(Fv,A) admits two coprime annihilators in

O[[ΓF,max]], which implies that (Ker h)∨ is O[[ΓF,max]]-pseudonull. Then (Coker f)∨ is

also O[[ΓF,max]]-pseudonull as required since it is a subquotient of (Ker h)∨. One may

similarly the other assertions, also using [BCG+22, Lemma 3.1 (i)]. □

Recall that FS denotes the maximal Galois extension of F unramified outside the

places contained in SF .

Lemma 4.10 (Surjectivity of the localisation map). Let F ′ be a finite

extension of F contained in FS, and suppose that F ′ is also a CM field. For a p-adic

Artin representation τ : GF ′ → AutE Vτ of GF ′ , let O denote the ring of integers of

E. Choose a GF ′-stable O-lattice T and set A = Vτ/T . Then the localisation map

locstrA : H1(FS/F
′
max, A)→ Locstr,1A (F ′

max) defining SelstrA,ΣF ′ (F
′
max) is surjective.

Proof. For any finite extension K of F ′ contained in FS , set

Locstr,1A (K) =
∏
λ∈SK
λ∤p∞

H1(Kλ, A)

H1
ur(Kλ, A)div

×
∏

p∈Σcp,K

H1(Kp, A)



30 CONTENTS

where H1
ur(Kλ, A)div denotes the maximal divisible subgroup of H1

ur(Kλ, A). We intro-

duce a similar local condition

Locstr,1A∗ (K) =
∏
λ∈SK
λ∤p∞

H1(Kλ, A
∗)

H1
ur(Kλ, A∗)div

×
∏

p∈Σp,K

H1(Kp, A
∗)

for the Kummer dual A∗ = HomZp(T, µp∞) of T . We define a Bloch–Kato type Selmer

group SelBK
A,ΣK (K) (resp. SelBK

A∗,ΣcK
(K)) to be the kernel of the localisation map

H1(KS/K,A)
loc

str
A−−−−→ Locstr,1A (K) (resp. H1(KS/K,A

∗)
loc

str
A∗−−−−→ Locstr,1A∗ (K)).

For a finite Galois module A∗[pm], we define Locstr,1A∗[pm](K) as

Locstr,1A∗[pm](K) =
∏
λ∈SK
λ∤p∞

H1(Kλ, A
∗[pm])

ι−1
m (H1

ur(Kλ, A∗)div)
×

∏
p∈Σp,K

H1(Kp, A
∗[pm])

using the natural map ιm : H1(Kλ, A
∗[pm]) → H1(Kλ, A

∗) induced by the inclusion

A∗[pm] ↪→ A∗. Then we define SelBK
A∗[pm],ΣcF

(K) to be the kernel of the localisation

map locstrA∗[pm] : H
1(KS/K,A

∗[pm])→ Locstr,1A∗[pm](K). By the Poitou–Tate global duality

theorem [Neu92, (8.6.10)], we have the following exact sequence:

SelBK
A,ΣF (F

′
max) −→ H1(FS/F

′
max, A)

loc
str
A−−−−→

lim−→
K

Locstr,1A (K) −→

(
lim←−
K,m

SelBK
A∗[pm],ΣcK

(K)

)∨

. (4.7)

Here K runs through all finite extensions of F ′ contained in F ′
max. Note that there is a

natural surjection q : lim−→K
Locstr,1A (K) ↠ Locstr,1A (F ′

max) satisfying locstrA = q ◦ locstrA by

definition. Hence, for surjectivity of locstrA , it suffices to verify that loc
str

A is surjective, or

in other words, that the last term of (4.7) vanishes. Furthermore we have an isomorphism(
lim←−
K,m

SelBK
A∗[pm],ΣcK

(K)

)∨

∼= HomO[[ΓF ′,max]]

(
(SelBK

A∗,ΣcF
(F ′

max)
∨)ι,O[[ΓF ′,max]]

)
(4.8)

concerning the last term of (4.7), where the symbol ( )ι denotes the twisted O[[ΓF ′,max]]-

module on which each g ∈ ΓF ′,max acts via g−1. The verification of (4.8) goes in the

same way as [Och06, Lemma 4.11] if one replaces the ring R/(pn,H) in loc. cit. with

O/($n)[ΓF ′,max/U ], where$ is a uniformiser of O and U is an open subgroup of ΓF ′,max.

From (4.8), we readily observe that the triviality of the last term of (4.7) is deduced from

the O[[ΓF ′,max]]-cotorsionness of SelBK
A∗,ΣcF

(F ′
max) because O[[ΓF ′,max]] has no torsion.

Meanwhile SelBK
A∗,ΣcF

(F ′
max) is a submodule of SelA∗,ΣcF

(F ′
max) by construction, and thus

the cotorsionness of the former module follows from the cotorsionness of the latter mod-
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ule. Similarly to Proposition 4.2, we may deduce the cotorsionness of SelA∗,ΣcF
(F ′

max)

from [HT94, Theorem 1.2.2 (iii)] noting that F ′
maxF

′
τ (µp)/F

′
max is a finite extension and

GF ′
maxF

′
τ (µp)

acts trivially on A∗. We thus complete the proof. □

We define the µ-invariant µ(X) of a finitely generated torsion O[[ΓF,max]]-module X

to be the length of the O[[ΓF,max]](ϖ)-module X(ϖ), where $ is a uniformiser of O and

( )(ϖ) denotes the localisation at the prime ideal of O[[ΓF,max]] generated by $. The

next lemma plays an important role in the algebraic part of our arguments, since most

GF -stable lattices T of an Artin representation Vρ are not preserved under the virtual

decomposition (1.4).

Lemma 4.11 (lattice invariance of the µ-invariant). Let ρ : GF → AutE Vρ
be a p-adic Artin representation of GF and O the ring of integers of E. For two GF -stable
O-lattices T and T ′ of Vρ, consider A = T ⊗Zp Qp/Zp and A′ = T ′⊗Zp Qp/Zp. Then the

µ-invariant of SelA,ΣF (Fmax) coincides with that of SelA′,ΣF (Fmax).

Before the proof of Lemma 4.11, we define

Xi(K,S,M) = Ker

[
Hi(KS/K,M) −→

⊕
w∈S

Hi(Kw,M)

]
(i = 1, 2)

for a number field K, a finite set S of places of K, and a discrete GK-module M .

By taking the inductive limit, we extend the definition of Xi(K,S,M) to an algebraic

extention K of Q of infinite degree, as before.

Proof. By Lemma 4.9, it suffices to prove the anologous assertion for the µ-

invariants of SelstrA,ΣF (Fmax) and SelstrA′,ΣF (Fmax). Replacing T with an appropriate ho-

mothetic lattice, we may assume without loss of generality that there is a GF -equivariant

surjection A↠ A′. Then we obtain the following fundamental commutative diagram with

exact rows:

0 −−−−→ SelstrA,ΣF (Fmax) −−−−→ H1(FS/Fmax, A)
locstrA−−−−→ Locstr,1A (Fmax)

fA|Sel
y yfA ygA

0 −−−−→ SelstrA′,ΣF (Fmax) −−−−→ H1(FS/Fmax, A
′) −−−−→

locstr
A′

Locstr,1A′ (Fmax).

(4.9)

Here the vertical maps fA and gA are induced from the surjection A ↠ A′. Applying

Lemma 4.10 to the case where F ′ = F and τ = ρ, we observe that both the right-

most horizontal arrows locstrA and locstrA′ in (4.11) are surjective. Note that, since both

SelstrA,ΣF (Fmax) and SelstrA′,ΣF (Fmax) are O[[ΓF,max]]-cotorsion by Proposition 4.2, the ker-

nel and the cokernel of fA|Sel are also O[[ΓF,max]]-cotorsion. Furthermore, since both

fA ⊗ E and gA ⊗ E induces isomorphisms, all of Ker fA, Coker fA, Ker gA and Coker gA
are p-cotorsion. Hence we obtain an equality among µ-invariants

µ(SelstrA,ΣF (Fmax)
∨)− µ(SelstrA′,ΣF (Fmax)

∨) = µ((Ker fA|Sel)∨)− µ((Coker fA|Sel)∨)
= µ((Ker fA)

∨)− µ((Coker fA)∨)− µ((Ker gA)
∨) + µ((Coker gA)

∨) (4.10)
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by applying the snake lemma to the fundamental diagram (4.9), taking the Pontr-

jagin dual and localisation at ($), and taking the µ-invariants. Now let us study

µ((Coker fA)
∨)− µ((Ker fA)

∨) and µ((Coker gA)
∨)− µ((Ker gA)

∨).

▶ The kernel and cokernel of fA. The vertical map fA in (4.9) fits into the long exact

sequence

H0(FS/Fmax, A) H0(FS/Fmax, A
′)

H1(FS/Fmax, C) H1(FS/Fmax, A) H1(FS/Fmax, A
′)

H2(FS/Fmax, C) H2(FS/Fmax, A)

f0
A

fA (4.11)

where C denotes the kernel of A ↠ A′; note that it is a finite GF -module. Since

bothH0(FS/Fmax, A) andH
0(FS/Fmax, A

′) are cofinitely generatedO-modules of corank

dimEH
0(FS/Fmax, Vρ), the cokernel of the top horizontal map f0A in (4.11) is O-cofinitely

generated and O-cotorsion. In particular it is finite O[[ΓF,max]]-module, and thus its

localisation at ($) is trivial. Combining this observation with (4.11), we have

(Ker fA)
∨
(ϖ) = H1(FS/Fmax, C)

∨
(ϖ). (4.12)

Next we shall prove that H2(FS/Fmax, A) is a trivial module to deduce

(Coker fA)
∨ = H2(FS/Fmax, C)

∨. (4.13)

To achieve this purpose, we will observe that H2(FS/Fmax, A) is both cotorsion free and

cotorsion over O[[ΓF,max]]. For cotorsion freeness, recall that Shapiro’s lemma [NSW00,

Proposition (1.6.4)] implies an isomorphism

H2(FS/Fmax, A) ∼= H2(FS/F, T ∨), (4.14)

where T ∨ is the Pontrjagin dual of a free O[[ΓF,max]]-module T := T ⊗O O[[ΓF,max]]
♯.

Using the fact that the p-cohomological dimension of Gal(FS/F ) is less than or equal to

2 [NSW00, Proposition (8.3.18)], we readily observe that the multiplication-by-x map

on the divisible module T ∨ induces an surjective endomorphism of H2(FS/F, T ∨) for

any non-zero x ∈ O[[ΓF,max]]. Taking the Pontrjagin dual and using (4.14), we conclude

that H2(FS/Fmax, A)
∨ is O[[ΓF,max]]-torsion free, as desired.

For cotorsionness of H2(FS/Fmax, A), note that H2(FS/Fmax, A) is isomorphic to

X2(Fmax, Smax, A) for a finite set Smax of all the places of Fmax lying above those con-

tained in SF . Indeed, we have an exact sequence

0 −→X2(Fmax, Smax, A) −→ H2(FS/Fmax, A) −→
∏

w∈Smax

H2(Fmax,w, A) (4.15)

by the very definition of X2(Fmax, Smax, A), but the last term of (4.15) vanishes since the
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p-cohomological dimension of the absolute Galois group of Fmax,w is 1 for every w ∈ Smax.

We may deduce this from [Ser97, Chapitre II, Proposition 12] noting that the abso-

lute Galois group of the residue field of Fmax,w is isomorphic to a pro-prime-to-p group∏
ℓ ̸=p Zℓ for finite every w ∈ Smax. Therefore it suffices to verify that X2(Fmax, Smax, A)

is cotorsion, which follows from cotorsionness of X1(Fmax, Smax, A
∗) for the Kummer

dual A∗ := Homcts(T, µp∞) due to [Gre06, Proposition 4.4]. We may indeed deduce

O[[ΓF,max]]-cotorsionness of X1(Fmax, Smax, A
∗) from the fact that SelA∗,ΣF (Fmax) is

cotorsion (Proposition 4.2), based upon an argument similar to the proof of Lemma 4.10.

▶ The kernel and cokernel of gA. By a similar argument using the long exact sequence

corresponding to (4.11), we readily obtain isomorphisms

(Ker gA)
∨
(ϖ)
∼= Locstr,1C (Fmax)

∨
(ϖ), (Coker gA)

∨ ∼= Locstr,2C (Fmax)
∨. (4.16)

Indeed, we may deduce the triviality of Locstr,2A (Fmax) directly from the fact that the

p-cohomological dimension of GFmax,w
is equal to 1 for every finite w ∈ Smax, as we have

seen.

▶ Analysis of the difference of µ-invariants. Combining (4.10) with (4.12), (4.13) and

(4.16), we obtain

µ(SelstrA (Fmax))− µ(SelstrA′ (Fmax)) = µ(H1(FS/Fmax, C))− µ(H2(FS/Fmax, C))

−
(
µ(Locstr,1C (Fmax))− µ(Locstr,2C (Fmax))

)
.

(4.17)

In order to verify that the right-hand side of (4.17) is equal to 0, it suffices to check

that the ratio of #H1(FS/K,C)
#H2(FS/K,C) to

#Locstr,1C (K)

#Locstr,2C (K)
is bounded when K runs through the set

of finite extensions of F contained in Fmax. Take such a finite extension K/F . Then the

global Euler–Poincaré characteristic formula of the Galois cohomology [NSW00, (8.7.4)]

implies

#H1(FS/K,C)

#H0(FS/K,C)#H2(FS/K,C)
=

∏
v:finite place of K

v|∞

#H0(Kv, C) = #C
[K:Q]

2 . (4.18)

Meanwhile the local Euler–Poincaré characteristic formula of the Galois cohomology

[NSW00, Theorem (7.3.1)] implies

#Locstr,1C (K)

#Locstr,0C (K)#Locstr,2C (K)
=

∏
v∈ΣcK,p

#H1(Kv, C)

#H0(Kv, C)#H2(Kv, C)

=
∏

v∈ΣcK,p

#C [Kv :Qp] = #C
[K:Q]

2 . (4.19)

Compairing (4.18) with (4.19), we have
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1

#C
≤ #H1(FS/K,C)

#H2(FS/K,C)

(
#Locstr,1C (K)

#Locstr,2C (K)

)−1

=
#Locstr,0C (K)

#H0(FS/K,C)
≤ #C#Smax ,

which implies that the ratio under consideration is bounded with respect to K, as desired.

□

4.3. Integrality of the p-adic Artin L-function

Recall that we have defined Lp,ΣF (M(ρ)) by using a Brauer decomposition (3.5) as

in (3.8).

Proposition 4.12. The characteristic ideal of the Pontrjagin dual of the Selmer

group SelA,ΣF (Fmax) admits a decomposition

charO[[ΓF,max]]SelA,ΣF (Fmax)
∨ =

s∏
j=1

(
charO[[Gal(FjFmax/Fj)]]SelAψj ,ΣFj (FjFmax)

∨
)aj
(4.20)

corresponding to (3.8). Here the product of the characteristic ideals appearing in the

right-hand side of (4.20) is taken in the field of fractions of O[[ΓF,max]] via natural

inclusions O[[Gal(FjFmax/Fj)]] ↪→ O[[ΓF,max]].

Proof. Taking Shapiro’s lemma [NSW00, Proposition (1.6.4)] into accounts, we

may rewrite (4.20) as

charO[[ΓF,max]]SelA,ΣF (Fmax)
∨ =

s∏
j=1

(
charO[[ΓF,max]]SelIndGFGFj

Aψj ,ΣF
(Fmax)

∨
)aj

.

(4.21)

Without loss of generality, we may rearrange the subindices {j | 1 ≤ j ≤ s} so that

a1, . . . , as′ (s
′ ≤ s) are positive and as′+1, . . . , as are negative. Then the equality (4.21)

is rewritten as

charO[[ΓF,max]]SelA⊕
⊕s
j=s′+1

Ind
GF
GFj

A
⊕(−aj)
ψj

,ΣF
(Fmax)

∨

= charO[[ΓF,max]]Sel⊕s′
j=1 Ind

GF
GFj

A
⊕aj
ψj

,ΣF
(Fmax)

∨. (4.22)

Here recall that the discrete representation A appearing in the left-hand side of (4.22) is

defined for a chosen GF -stable O-lattice T of Vρ, whereas each IndGFGFj
Aψj appearing in

the both sides of (4.22) is defined for the GF -stable O-lattice IndGFGFj
Tψj of IndGFGFj

Vψj
induced by a standard lattice Tψj = Oeψj of the 1-dimensional representation Vψj .

Then we firstly observe that (4.22) holds true up to µ-invariants since the both sides

of (4.22) are characteristic ideals corresponding to the Selmer groups of the same rep-

resentation Vρ′ :=
⊕s′

j=1 Ind
GF
GFj

V
⊕aj
ψj

with respect to the different GF -stable O-lattices

T ⊕
⊕s

j=s′+1 Ind
GF
GFj

T
⊕(−aj)
ψj

and
⊕s′

j=1 Ind
GF
GFj

T
⊕aj
ψj

. But Lemma 4.11 guarantees that
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the equality (4.22) holds true even without the ambiguity of µ-ivvariants. We thus obtain

(4.20), as desired. □

Proof of Theorem 4.6. Recall that we assume the validity of Conjecture 4.3

(Lp,ΣFj (ψj)) = charÔur[[ΓFj,max]]

(
SelAψj,ΣFj

(Fj,max)
∨⊗̂OÔur

)
(4.23)

for each j. Combining (4.23) with the defining equality (3.8) of Lp,ΣF (M(ρ)), we have

(Lp,ΣF (M(ρ))) =

s∏
j=1

prj

(
charÔur[[ΓFj,max]]

(
SelAψj ,ΣFj (Fj,max)

∨⊗̂OÔur
))aj

. (4.24)

Thus, to prove the assertion, it suffices to verify the descent equality

charO[[Gal(FjFmax/Fj)]]SelAψj ,ΣFj (FjFmax)
∨

= charO[[Gal(Fj,max/Fj)]]SelAψj ,ΣFj (Fj,max)
∨ mod Arj (4.25)

of the characteristic ideal for each j, where Arj denotes the kernel of prj . Indeed we can

deduce the main equality (4.5) of Conjecture 4.4 combining (4.25) with Proposition 4.12

and (4.24). Furthermore (4.25) is equivalent to

charO[[Gal(FjFmax/Fj)]]Sel
str
Aψj ,ΣFj

(FjFmax)
∨

= charO[[Gal(Fj,max/Fj)]]Sel
str
Aψj ,ΣFj

(Fj,max)
∨ mod Arj (4.26)

by Lemma 4.9, and thus we shall verify (4.26) in the rest of the proof.

In order to study specialisation of strict Selmer groups effectively, we hereafter

use the presentation SelstrAj ,ΣF (Fj) of the strict Selmer group introduced in (4.4) in-

stead of SelstrAψj ,ΣFj
(Fj,max); recall that Aj is defined as Tj ⊗O[[ΓFj,max]] O[[ΓFj ,max]]

∨

for Tj := Tψj ⊗O O[[ΓFj ,max]]
♯. By construction, the Galois group Gal(Fj,max/FjFmax)

is a free Zp-module of rank rj := d([Fj : F ] − 1) + δFj − δF ; here δF and δFj respec-

tively denote the Leopoldt p-defects of F and Fj . Note that δFj ≥ δF holds because

Fj is an extension of F . Let us take a Zp-basis γ1, . . . , γrj of Gal(Fj,max/FjFmax), and

set xν = γν − 1 for ν = 1, . . . , rj . Then x1, x2, . . . , xrj forms a regular sequence of

O[[ΓFj ,max]] generating the kernel of prj , or equivalently, the kernel of the quotient map

O[[ΓFj ,max]] ↠ O[[Gal(FjFmax/Fj)]]. For each ν = 1, . . . , rj , let Aν denote the ideal of

O[[ΓFj ,max]] generated by x1, . . . , xν , and write Aj [Aν ] for the maximal Aν-torsion sub-

module of Aj . We can define the strict Selmer group SelstrAj [Aν ],ΣFj
(Fj) for the discrete

representation Aj [Aν ] of GFj . In order to verify (4.26), it suffices to show that there ex-

ists a Zp-basis γ1, . . . , γrj of Gal(Fj,max/FjFmax) satisfying the following two conditions

for each ν = 1, 2, . . . , rj (put A0 = (0) as convention);

[I] (control theorem) the kernel and the cokernel of the map

sν : Sel
str
Aj [Aν ],ΣFj

(Fj) −→ SelstrAj [Aν−1],ΣFj
(Fj)[xν ]
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induced by the inclusion Aj [Aν−1] ↪→ Aj [Aν ] are both copseudonull (as

O[[ΓFj ,max]]/Aν-modules);

[II] the Pontrjagin dual SelstrAj [Aν ],ΣFj
(Fj)

∨ of the strict Selmer group has no nontrivial

pseudonull O[[ΓFj ,max]]/Aν-submodules.

Indeed, after verifying existence of such tuples γ1, . . . , γrj , we may deduce

charO[[ΓFj,max]]/Aν−1
SelstrAj [Aν−1],ΣFj

(Fj)
∨ mod (xν , xν+1, . . . , xrj )

[II]
= charO[[ΓFj,max]]/AνSel

str
Aj [Aν−1],ΣFj

(Fj)[xν ]
∨ mod (xν+1, . . . , xrj )

[I]
= charO[[ΓFj,max]]/AνSel

str
Aj [Aν ](Fj)

∨ mod (xν+1, . . . , xrj )

for each ν = 1, 2, . . . , rj by inductively applying [Och05, Lemma 3.1]; see also the expla-

nation given in [HO18, Section 3.4.5]. The desired equality (4.26) is just a combination

of all these equalities; recall that SelstrAj [Arj ],ΣFj
(Fj) is isomorphic to SelstrAψj ,ΣFj

(FjFmax).

▶ [I] for every regular sequence. Here we shall show that the assertion [I] holds true for

every regular sequence x1, . . . , xrj ∈ O[[ΓFj ,max]] of the form xν = γν−1 (ν = 1, 2, . . . , rj)

generating the kernel Arj of prj . Let us consider the commutative diagram

H1(Fj, SFj ,Aj [Aν ])
locstrAj [Aν ]

//

tν
����

Locstr,1Aj [Aν ],ΣFj
(Fj)

uν
����

H1(Fj,SFj /Fj ,Aj [Aν−1])[xν ]
locstrAj [Aν−1]

// Locstr,1Aj [Aν−1],ΣFj
(Fj)[xν ]

where Locstr,1Aj [Aν ](Fj) denotes
∏
w∈SFj \ΣFj,p, w∤∞H1(Fj, w,Aj [Aν ]) as in Section 4.2. Re-

call from (4.2) that SelstrAj [Aν ],ΣFj
(Fj) is defined as the kernel of locstrAj [Aν ]. Both tν and

uν are induced by the the short exact sequence

0 // Aj [Aν ] // Aj [Aν−1]
×xν // Aj [Aν−1] // 0 , (4.27)

and sν is just a morphism induced by tν . In order to verify the control theorem [I], it

suffices to show that both Ker tν and Keruν are copseudonull O[[ΓFj ,max]]/Aν-modules

because the snake lemma implies that Ker sν is a submodule of Ker tν and Coker sν is a

subquotient of Ker uν .

Firstly, the Pontrjagin dual (Ker tν)
∨ of the kernel of tν is described as(

H0(Fj,SFj /Fj , Aj [Aν−1])/xν

)∨ ∼= H0(Fj,SFj /Fj , Tj/Aν−1Tj)[xν ]

by the long exact sequence associated with (4.27) and the Pontrjagin duality. Now take a

sufficiently small open subgroup U of Gal(Fj,SFj /Fj) so that it acts trivially on Tψj , and

let FU be an intermediate field of Fj,max/Fj corresponding to U/
(
Gal(Fj,SFj /Fj,max)∩U

)
.
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ThenH0(Fj,SFj /Fj , Tj/Aν−1Tj)[xν ] is, by definition, realised as a subquotient of a finitely

generated O-module Tψj ⊗O O[Gal(FU/Fj)]
♯. This observation implies that (Ker tν)

∨ is

O[[ΓFj ,max]]/Aν-pseudonull since the Krull dimension of O[[ΓFj ,max]]/Aν is greater than

or equal to 2.

Next, the Pontrjagin dual (Ker uν)
∨ of the kernel of uν is described as∏

w∈SFj \ΣFj,p
w∤∞

(
H0(Fj,w,Aj [Aν−1])/xν

)∨ ∼= ∏
w∈SFj \ΣFj,p

w∤∞

H0(Fj,w, Tj/Aν−1Tj)[xν ] (4.28)

in the same way as (Ker tν)
∨. We claim that the w-component of (4.28) is trivial if w

is not contained in ΣcFj ,p. Note that Frobw forms part of a Zp-basis of Gal(FjFmax/Fj)

since FjFmax/Fj is unramified at w. In particular x1, x2, . . . , xν , x
F
w forms a regular se-

quence of O[[ΓFj . max]] for every ν = 1, 2, . . . , rj if we set x
F
w := Frobw− 1. Now let xIwO

denote the ideal of O generated by ψgal
j (g) − 1 for all g ∈ Iw. If xIw is a unit, the Iw-

coinvariant of Tj/Aν−1Tj vanishes and so does H0(Fj,w, Tj/Aν−1Tj)[xν ]. Otherwise we

readily observe that x1, x2, . . . , xν , x
F
w , x

I
w forms a regular sequence of O[[ΓFj ,max]] con-

tained in its maximal ideal, and thus x1, . . . , xν−1, x
I
w, x

F
w , xν is also a regular sequence.

Then, since H0(Fj,w, Tj/AνTj) is isomorphic to O[[ΓFj ,max]]/(x1, . . . , xν−1, x
I
w, x

F
w) as an

O[[ΓFj ,max]]-module, we conclude that its xν-torsion part should vanish, due to regularity

of the sequence x1, . . . , xν−1, x
I
w, x

F
w , xν .

To complete verification of the pseudonullity of (Ker uν)
∨, we finally prove that

H0(Fj,w, Tj/Aν−1Tj)[xν ] is O[[ΓFj ,max]]/Aν-pseudonull for each w ∈ ΣcFj ,p. Let F
(ν)
j,max

denotes the subfield of Fj,max corresponding to 〈γ1, γ2, . . . , γν〉. Recall that, for the unique
place v of F lying below w, the decomposition subgroup of ΓF,max at v has Zp-rank equal

to or greater than 2 by [BCG+22, Lemma 3.1 (i)]. This readily implies that the Zp-rank
of the decomposition subgroup of Gal(F

(ν)
j,max/Fj) at w is also equal to or greater than

2, which acts trivially on the Dw-coinvariant H0(Fj,w, Tj/AνTj) of Tj/AνTj . Therefore

H0(Fj,w, Tj/AνTj) is O[[Gal(Fj,max/Fj)]]/Aν-pseudonull for each ν = 0, 1, . . . , rj . Then,

by [Och05, Lemma 3.1], we have

charO[[ΓFj,max]]/Aν

(
H0(Fj,w, Tj/Aν−1Tj)[xν ]

)
= charO[[ΓFj,max]]/Aν

(
H0(Fj,w, Tj/Aν−1Tj)/xνH0(Fj,w, Tj/Aν−1Tj)

)
= charO[[ΓFj,max]]/Aν

(
H0(Fj,w, Tj/AνTj)

)
= 0.

Thus H0(Fj,w, Tj/Aν−1Tj)[xν ] is O[[ΓFj ,max]]/Aν-pseudonull, as desired.

▶ Inductive choice of γν satisfying [II]. Now let us discuss how to choose a Zp-basis
γ1, γ2, . . . , γrj of Gal(Fj,w/FjFmax) so that the resulting sequence x1, x2, . . . , xrj satisfies

[II] (and also [I]). We here follow the argument of [HO18, Section 3.4.5]. It suffices to

choose γ1, γ2, . . . , γrj so that both the conditions (Γ1)ν and (Γ2)ν introduced in [HO18,

p.68] are fulfilled for each ν = 1, 2, . . . , rj ; indeed we have verified in [HO18, Proposi-

tion 3.35] that the conditions (Γ1)ν and (Γ2)ν for each ν imply the assertion [II], the

proof of which is heavily based upon [Gre16, Theorem 4.1.1]. But if a part of Zp-
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basis γ1, γ2, . . . , γν−1 of Gal(Fj,max/FjFmax) satisfies the conditions (Γ1)1 to (Γ1)ν−1

(resp. the conditions (Γ2)1 to (Γ2)ν−1), any γ1, γ2, . . . , γν forming a part of Zp-basis of

Gal(Fj,max/FjFmax) satisfies the condition (Γ1)ν (resp. (Γ2)ν) except for finitely many

choices of γν by [Gre06, Lemma 4.1.1 and Remark 2.1.3] (resp. [HO18, Proposition

3.37]). Since there are infinitely many choices for Zp-bases of Gal(Fj,max/FjFmax), we can

find γ1, γ2, . . . , γrj so that x1, x2, . . . , xrj forms a regular sequence of O[[Gal(Fj,max/Fj)]]

satisfying both the conditions [I] and [II]. This completes the proof of Theorem 4.6. □

Remark 4.13. In the final step of the specialisation procedures, we have used

the assumption on the nontriviality of the cyclotomic p-adic L-function Lcyc
p (fη) in

[HO18, Section 3.4.6]. However, the nontriviality of the corresponding p-adic L-function

Lp,ΣFj (ψj) mod Arj follows from the interpolation formula (2.4), and thus we do not

need any assumption like (NVLcyc
p (fη)).

A. Davenport–Hasse relation over rings of truncated Witt vectors

In the appendix, we extend so-called Davenport–Hasse relation of Gauss sums over

finite fields [DH35, (0.8)] to rings of truncated Witt vectors. For a finite field F and a

positive integer n, let Wn(F) denote the ring of n-truncated Witt vectors of F. Then, for
a finite extension E/F, the norm map NrE/F : E× → F× and the trace map TrE/F : E→ F
respectively induce NrE/F : Wn(E)× →Wn(F)× and TrE/F : Wn(E)→Wn(F) in a functo-

rial way. Hereafter we always identifyWn(Fp) with Z/pnZ via the canonical isomorphism

between them.

We hereafter fix a finite field Fq of characteristic p and consider its extension Fqs of

degree s for a natural number s. Let χ : Wn(Fq)× → C× be an arbitrary multiplicative

character. For each n ∈ N, we fix a standard additive character ψ◦
n : Wn(Fp) −→ C×

sending x ∈Wn(Fp) = Z/pnZ to ζxpn = exp(2πi/pn), a primitive pn-th root of unity. For

each ν ∈ N, we define a multiplicative character χFqν : Wn(Fqν )× → C× to be χ◦NrFqν /Fq .

Now we define the Gauss sum τ(χ) over Wn(Fq) to be

τ(χ) =
∑

x∈Wn(Fq)

χ(x)ψn,Fq (x), (A.1)

where we extend χ to whole Wn(Fq) by setting χ(x) = 0 if x ∈Wn(Fq) is not invertible.
We also define the Gauss sum τ(χFqs ) over Wn(Fqs) in a similar manner replacing χ and

ψn with χFqs and ψn,Fqs , respectively. The claim which we shall verify in the appendix

is the following.

Theorem A.1. Let the notation be as above. Then we have the following equality

of Gauss sums:

τ(χFqs ) = (−1)n(s−1)τ(χ)s. (A.2)

Theorem A.1 is an extension of the classical theorem due to Davenport and Hasse

[DH35, (0.8)] in the sense that the special case n = 1 of Theorem A.1 recovers their

original statement. The first-named author leaned from Mahiro Atsuta that Daichi
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Takeuchi has also verified Theorem A.1 independently when the base field is a prime

field (that is, the case where q equals p); see [ADK25, Appendix B].

We here summarise basic ingredients which we use throughout the appendix.

– Let F be a finite extension of Fp. For each r = 1, . . . , n− 1, we obtain a short exact

sequence

1 1 + pn−rWn(F) Wn(F)× Wn−r(F)× 1
prnn−r

(A.3)

induced from the projection prnn−r : Wn(F) ↠ Wn−r(F). Moreover there is a bijec-

tion Wr(F) → 1 + pn−rWn(F) ; w 7→ 1 + pn−rw̃ for a lift w̃ of w with respect to

prnr : Wn(F) ↠ Wr(F). As is well known, the value 1 + pn−rw̃ does not depend on

the choice of lifts w̃; indeed, we have

1 + pn−rw̃ = 1 + (0, 0, . . . , 0︸ ︷︷ ︸
n−r

, wp
n−r

0 , wp
n−r

1 , . . . , wp
n−r

r−1 )

for w = (w0, w1, . . . , wr−1) ∈ Wr(F). Now let us fix a lift z̃ of each z ∈ Wn−r(F) to
Wn(F). This enables us to describe Wn(Fqs)× as

Wn(Fqs)× = {z̃(1 + pn−rw̃) | w ∈Wr(F), z ∈Wn−r(F)×}. (A.4)

For later convenience, we choose a lift z̃ of z so that it is contained in Wn(F′) if z is

an element of Wn−r(F′) for a subfield F′ of F.

– For each r = 1, 2, . . . , n − 1, let ψr : Wr(Fp) ∼= Z/prZ → C× denote an additive

character defined as w 7→ ζwpr for ζpr := exp(2πi/pr). For a finite extension F of

Fp, set ψr,F := ψr ◦ TrF/Fp . Then any additive character of Wr(F) is described as

x 7→ ψr,Fq (αx) for a unique element α ∈Wr(F). This is a consequence of perfectness

of the trace pairing; see the following Lemma A.2. By definition we have an equality

ψn,F(p
n−rw̃) = ψr,F(w) for any r = 1, 2, . . . , n− 1 and any w ∈Wr(F).

Lemma A.2. Let F be a finite extension of Fp and r a natural number. Then the

trace pairing

〈 , 〉r : Wr(F)×Wr(F) −→Wr(Fp) ; (x, y) 7→ TrF/Fp(xy)

is a perfect pairing of Wr(Fp)-modules.

Proof. When r is equal to 1, perfectness of 〈 , 〉1 is a consequence of separability

of F/Fp (see, for example, the proof of [Neu92, Proposition 2.8]). For r > 1, consider a

commutative diagram
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pr−1Wr(F)� _

��

× Wr(F)/pWr(F) // pr−1Wr(Fp)� _

��
Wr(F)

����

× Wr(F)

OOOO

⟨ , ⟩r // Wr(Fp)

Wr(F)/pr−1W (F) × pWr(F)
?�

OO

// pWr(Fp).
?�

OO

Here the left and middle colums are exact, and the top and bottom horizontal arrows

denote the pairings induced by 〈 , 〉r. But for any natural number j satisfying 1 ≤ j ≤ r,
we have isomorphismsWr(F)/pjWr(F) ∼=Wj(F) andWj(F)

∼−→ pr−jWr(F) ; w 7→ pr−jw̃,

where w̃ is an arbitrary lift of w to Wr(F). Via these isomorphisms, the top and bottom

pairings in the diagram are identified with 〈 , 〉1 and 〈 , 〉r−1, respectively.

Now let Φj : Wj(F) → Wj(F)∗ := HomWj(Fp)(Wj(F),Wj(Fp)) be a Wj(Fp)-
homomorphism induced by the pairing 〈 , 〉j . By the discussion above, we have a

commutative diagram of abelian groups with exact rows

0 // F //

Φ1

��

Wr(F) //

Φr

��

Wr−1(F) //

Φr−1

��

0

0 // F∗ // Wr(F)∗ // Wr−1(F)∗ // 0.

By induction hypothesis, the left and right vertical maps are isomorphisms, and thus the

five lemma implies that Φr is also an isomorphism. □

Let us prove Theorem A.1. Since the case where n = 1 is nothing but the original

Davenport–Hasse relation [DH35, (0.8)], it suffices to prove the statement assuming

n > 1. Contrary to the original proof of Davenport and Hasse for the case n = 1 (using

a product decomposition of a certain generating function), we explicitly evaluate the

Gauss sums τ(χFqs ) and τ(χ) utilising Lamprecht’s techniques [Lam53, Sektionen 2.3–

2.5], and directly compare them. A similar calculation is also developed by Mauclaire

[Mau83-1, Mau83-2] for Gauss sums over Wn(Fp) = Z/pnZ (see also an exposition of

[BEW98, Section 1.6], especially Theorem 1.6.4).

Proof of Theorem A.1. The proof goes in a different way depending on the

parity of n.

Case 1. n: even Firstly, we assume that n is even and set n = 2r with a positive

integer r. Using (A.4), we have

τ(χFqs ) =
∑

z∈Wr(Fqs )×

∑
w∈Wr(Fqs )

χFqs (z̃(1 + prw̃))ψn,Fqs (z̃(1 + prw̃))

=
∑

z∈Wr(Fqs )×
χFqs (z̃)ψn,Fqs (z̃)

∑
w∈Wr(Fqs )

χ ◦NrFqs/Fq (1 + prw̃)ψn,Fqs (p
r z̃w̃)

=
∑

z∈Wr(Fqs )

χFqs (z̃)ψn,Fqs (z̃)
∑

w∈Wr(Fqs )

χ(1 + prTrFqs/Fq (w̃))ψr,Fqs (zw).
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Here the first equality is just the definition of τ(χFqs ), and the middle equality follows

from multiplicativity of χFqs and additivity of ψn,Fqs . At the last equality, we use the

fact that χFqs (z̃) = 0 if z is not a unit of Wr(Fqs), and the equality

NrFqs/Fq (1 + prw̃) =
∏

σ∈Gal(Fqs/Fq)

(1 + prw̃σ)

= 1 + pr
∑

σ∈Gal(Fqs/Fq)

w̃σ = 1 + prTrFqs/Fq (w̃)

which holds because p2r = pn = 0 in Wn(Fqs). By the same reason, we readily observe

that x 7→ χ(1 + prx̃) is an additive character of Wr(Fq). Thus, by Lemma A.2, there

exists a unique element −εχ ∈Wr(Fq) satisfying

τ(χFqs ) =
∑

z∈Wr(Fqs )

χFqs (z̃)ψn,Fqs (z̃)
∑

w∈Wr(Fqs )

ψr,Fq (−εχTrFqs/Fq (w))ψr,Fqs (zw)

=
∑

z∈Wr(Fqs )

χFqs (z̃)ψn,Fqs (z̃)
∑

w∈Wr(Fqs )

ψr,Fqs ((z − εχ)w).

Note that the character sum with respect to w equals #Wr(Fqs) = qrs when z coincides

with εχ, and vanishes otherwise. We thus have

τ(χFqs ) = qrsχFqs (ε̃χ)ψn,Fqs (ε̃χ) =
(
qrχ(ε̃χ)ψn,Fq (ε̃χ)

)s
. (A.5)

Here recall that the lift ε̃χ of εχ ∈ Wr(Fq) is chosen so that ε̃χ ∈ Wn(Fq). By a very

similar calculation, we also have

τ(χ) =
∑

z∈Wr(Fq)

χ(z̃)ψn,Fq (z̃)
∑

w∈Wr(Fq)

ψr,Fq (−εχw)ψr,Fq (zw)

=
∑

z∈Wr(Fq)

χ(z̃)ψn,Fq (z̃)
∑

w∈Wr(Fq)

ψr,Fq ((z − εχ)w) = qrχ(ε̃χ)ψn,Fq (ε̃χ). (A.6)

Comparing (A.5) with (A.6), we obtain the desired equality (A.2); note that we have

(−1)n(s−1) = 1 in Case 1 because n is assumed to be even.

Case 2. n: odd We next assume that n is odd and set n = 2r + 1 with a positive

integer r. Let ν be any natural number satisfying 1 ≤ ν ≤ s. Similarly to Case 1, we

have

τ(χFqν ) =
∑

z∈Wr+1(Fqν )×

∑
w∈Wr(Fqν )

χFqν (z̃(1 + pr+1w̃))ψn,Fqν (z̃(1 + pr+1w̃)) (by (A.4))

=
∑

z∈Wr+1(Fqν )×
χFqν (z̃)ψn,Fqν (z̃)

·
∑

w∈Wr(Fqν )

χ ◦NrFqν /Fq (1 + pr+1w̃)ψn,Fqν (p
r+1z̃w̃)
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=
∑

z∈Wr+1(Fqν )

χFqs (z̃)ψn,Fqν (z̃)

·
∑

w∈Wr(Fqν )

χ(1 + pr+1TrFqν /Fq (w̃))ψr,Fqν (pr
r+1
r (z)w).

Here prr+1
r : Wr+1(Fqν ) ↠ Wr(Fqν ) is the natural projection. As in Case 1, a map

sending x 7→ χ(1 + pr+1x̃) defines an additive character of Wr(Fq). There thus exists a

unique element −εχ ∈Wr(Fq) by Lemma A.2, and we have

τ(χFqν ) =
∑

z∈Wr+1(Fqν )

χFqν (z̃)ψn,Fqs (z̃)

·
∑

w∈Wr(Fqν )

ψr,Fq (−εχTrFqν /Fq (w))ψr,Fqν (pr
r+1
r (z)w)

=
∑

z∈Wr+1(Fqν )

χFqν (z̃)ψn,Fqν (z̃)
∑

w∈Wr(Fqν )

ψr,Fqν ((pr
r+1
r (z)− εχ)w)

= qrν
∑

z∈Wr+1(Fqν )
prr+1
r (z)=εχ

χFqν (z̃)ψn,Fqν (z̃).

Note that, if εχ is not a unit of Wn(Fq), we have χFqν (z̃) = 0 for any z ∈ Wr+1(Fqν )
satisfying prr+1

r (z) = εχ. In the case, the desired equality (A.2) trivially holds because

the both sides of (A.2) are reduced to 0. We thus assume in the following that εχ is

a unit. Due to (A.3) with n and r replaced by r + 1 and 1 respectively, we obtain an

equality of sets

{z̃ ∈Wn(Fqν ) | z ∈Wr+1(Fqν ), prr+1
r (z) = εχ} = {ε̃χ(1 + pr[δ]) | δ ∈ Fqν},

where [ · ] : F×
q →Wn(Fq)× denotes the Teichmüller lift. Therefore we have

τ(χFqν ) = qrν
∑
δ∈Fqν

χFqν (ε̃χ(1 + pr[δ]))ψn,Fqν (ε̃χ(1 + pr[δ]))

= qrνχFqν (ε̃χ)ψn,Fqν (ε̃χ)
∑
δ∈Fqν

χFqν (1 + pr[δ])ψn,Fqν (p
r ε̃χ[δ])

=
(
qrχ(ε̃χ)ψn,Fq (ε̃χ)

)ν ∑
δ∈Fqν

χFqν (1 + pr[δ])ψr+1,Fqν (ε̃χ[δ]). (A.7)

Here we use the same symbol [ · ] for the Teichmüller lift with values in Wr+1(Fqν ) by

abuse of notation. To verify the desired equality (A.2), it suffices to prove the following

claim.

Claim: Let the notation be as above. Then the following equality holds:
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∑
δ∈Fqs

χFqs (1 + pr[δ])ψr+1,Fqs (ε̃χ[δ]) = (−1)s−1

∑
δ∈Fq

χ(1 + pr[δ])ψr+1,Fq (ε̃χ[δ])

s

.

(A.8)

Indeed, if we admit the equality (A.8), we can deduce (A.2) as

τ(χFqs ) = (qrχ(ε̃χ)ψn,Fq (ε̃χ))
s
∑
δ∈Fqs

χFqs (1 + pr[δ])ψr+1,Fqs (ε̃χ[δ])

= (−1)s−1(qrχ(ε̃χ)ψn,Fq (ε̃χ))
s

∑
δ∈Fq

χ(1 + pr[δ])ψr+1,Fq (ε̃χ[δ])

s

= (−1)s−1τ(χ).

Here the first (resp. the third) equality is nothing but (A.7) for ν = s (resp. ν = 1) and

the second equality follows from (A.8). Note that we have (−1)n(s−1) = (−1)s−1 in Case

2 because n is assumed to be odd.

To prove the claim, we shall observe that the both sides of (A.8) are described in

terms of quadratic Gauss sums over finite fields (or their variants when p equals 2), and

then apply the classical Davenport–Hasse relation [DH35, (0.8)] (or explicitly evaluate

the partial sums when p equals 2) to obtain the equality (A.8).

Proof of Claim. As before, let ν be any integer satisfying 1 ≤ ν ≤ s. First note
that, for any δ1, δ2 ∈ Fqν , we have

(1 + pr[δ1])(1 + pr[δ2])

= 1 + pr[δ1 + δ2] + pr([δ1] + [δ2]− [δ1 + δ2]) + p2r[δ1δ2]

=
(
1 + pr[δ1 + δ2]

)
(1 + pr+1εδ1,δ2 + p2r[δ1δ2]) in Wn(Fqν )

where εδ1,δ2 is an element of Wn(Fqν ) satisfying [δ1] + [δ2] − [δ1 + δ2] = pεδ1,δ2 . Using

this equality, we can calculate as

χFqν (1 + pr[δ1])ψr+1,Fqν (ε̃χ[δ1])χFqν (1 + pr[δ2])ψr+1,Fqν (ε̃χ[δ2])

= χFqν
(
1 + pr[δ1 + δ2]

)
ψr+1,Fqν

(
ε̃χ[δ1 + δ2]

)
· χFqν

(
1 + pr+1(εδ1,δ2 + pr−1[δ1δ2])

)
ψr+1,Fqν (pε̃χεδ1,δ2)

= χFqν
(
1 + pr[δ1 + δ2]

)
ψr+1,Fqν

(
ε̃χ[δ1 + δ2]

)
· ψr,Fqν

(
−εχ(εδ1,δ2 + pr−1[δ1δ2])

)
ψr,Fqν (εχεδ1,δ2)

= χFqν
(
1 + pr[δ1 + δ2]

)
ψr+1,Fqν

(
ε̃χ[δ1 + δ2]

)
ψ1,Fqν (−pr

r
1(εχ)δ1δ2). (A.9)

Here the first equality follows from the calculation above and the second equality follows

from the definition of εχ; namely χ(1+ pr+1x) = ψr,Fq (−εχx) holds for any x ∈Wr(Fq).
Set wχ := prr1(εχ) ∈ F×

q for brevity.

Case 2-a. p: odd For any δ1, δ2 ∈ Fqν , we have
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ψ1,Fqν (2
−1wχδ

2
1)ψ1,Fqν (2

−1wχδ
2
2) = ψ1,Fqν

(
2−1wχ(δ1 + δ2)

2
)
ψ1,Fqν

(
−wχδ1δ2

)
(A.10)

because we have δ21+δ
2
2 = (δ1+δ2)

2−2δ1δ2 and ψ1,Fqν is an additive character. Comparing

(A.9) with (A.10), one observes that

δ 7→ χFqν (1 + pr[δ])ψr+1,Fqν (ε̃χ[δ])ψ1,Fqν (2
−1wχδ

2)−1

defines an additive character of Fqν . Hence, due to Lemma A.2, there exists a unique

element b(ν) ∈ Fqν satisfying

χFqν (1 + pr[δ])ψr+1,Fqν (ε̃χ[δ])ψ1,Fqν (2
−1wχδ

2)−1 = ψ1,Fqν (b(ν)δ). (A.11)

We now verify that b(ν) coincides with b(1) and thus is an element of F×
q . Let σ denote

the q-th power Frobenius automorphism. Then we have

χFqν (1 + pr[δσ])ψr+1,Fqν (ε̃χ[δ
σ])ψ1,Fqν (2

−1wχ(δ
σ)2)−1 = ψ1,Fqν (b(ν)δ

σ) = ψ1,Fqν (b
σ−1

(ν) δ)

(A.12)

for each δ ∈ Fqν by replacing δ with δσ in (A.11). Furthermore the left-hand side of

(A.12) coincides with that of (A.11); indeed we have

χFqν (1 + pr[δσ])ψr+1,Fqν (ε̃χ[δ
σ])ψ1,Fqν (2

−1wχ(δ
σ)2)−1

= χFqν
(
(1 + pr[δ])σ

)
ψr+1,Fqν (ε̃χ[δ]

σ)ψ1,Fqν (2
−1wχ(δ

2)σ)−1

= χFqν (1 + pr[δ])ψr+1,Fqν (ε̃
σ−1

χ [δ])ψ1,Fqν ((2
−1wχ)

σ−1

δ2)−1

= χFqν (1 + pr[δ])ψr+1,Fqν (ε̃χ[δ])ψ1,Fqν ((2
−1wχ)δ

2)−1.

Hence, by (A.11) and (A.12), we have ψ1,Fqν (b
σ−1

(ν) δ) = ψ1,Fqν (b(ν)δ), or equivalently

ψ1,Fqν
(
(b(ν) − bσ

−1

(ν) )δ
)
= 1 for each δ ∈ Fqν . This implies the equality bσ(ν) = b(ν), and

thus b(ν) is in particular an element of Fq. Next note that

χFqν (1 + pr[δ])ψr+1,Fqν (ε̃χ[δ])ψ1,Fqν (−2
−1wχδ

2)−1

=
(
χ(1 + pr[δ])ψr+1,Fq (ε̃χ[δ])ψ1,Fq (−2−1wχδ

2)−1
)ν

holds for each δ ∈ Fq. Thus, substituting (A.11) into the both sides of the equality above,

we obtain ψ1,Fqν (b(ν)δ) = ψ1,Fq (b(1)δ)
ν , or equlvalently ψ1,Fq

(
(TrFqν /Fq (b(ν))− sb(1))δ

)
is

equal to 1 for each δ ∈ Fq. We thus have TrFqν /Fq (b(ν) − b(1)) = 0 and, since b(ν) − b(1)
is indeed an element of Fq as we have seen, we finally obtain the equality b(ν) = b(1).

Hereafter we set b = b(ν) = b(1) for brevity.

Now let us return to the proof of (A.8). We can calculate as∑
δ∈Fqν

χFqν (1 + pr[δ])ψr+1,Fqν (ε̃χ[δ])

=
∑
δ∈Fqν

ψ1,Fqν (2
−1wχδ

2)ψ1,Fqν (bδ) =
∑
δ∈Fqν

ψ1,Fqν (2
−1wχδ

2 + bδ)
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= ψ1,Fqν (−2
−1w−1

χ b2)
∑
δ∈Fqν

ψ1,Fqν
(
2−1wχδ

2
)

(replace δ by δ − w−1
χ b).

Here the first equality follows from (A.11), whereas the second and the third equalities

follow rather straightforward calculation using additivity of the character ψr+1,Fqν . The

sum
∑
δ∈Fqν ψ1,Fqν

(
2−1wχδ

2
)
appearing above is known as the quadratic Gauss sum over

the finite field Fqν . As is well known, the quadratic Gauss sum is presented as a usual

Gauss sum for an appropriate quadratic character. In fact, it is rewritten as

ψ1,Fqν (−2
−1w−1

χ b2)
∑
δ∈Fqν

ψ1,Fqν
(
2−1wχδ

2
)

= ψ1,Fqν (−2
−1w−1

χ b2)

ψ1,Fqν (2
−1wχ · 0) + 2

∑
x∈
(
F×
qν

)2 ψ1,Fqν (2
−1wχx)


= ψ1,Fqν (−2

−1w−1
χ b2)

1 +
∑
x∈F×

qν

(
1 +

(
NrFqν /Fp(x)

p

))
ψ1,Fqν (2

−1wχx)


(∗)
= ψ1,Fqν (−2

−1w−1
χ b2)

∑
x∈F×

qν

(
NrFqν /Fp(x)

p

)
ψ1,Fqν (2

−1wχx)

= ψ1,Fqν (−2
−1w−1

χ b2)
∑
x∈F×

qν

(
NrFqν /Fp(2w

−1
χ x)

p

)
ψ1,Fqν (x) (replace x by 2w−1

χ x)

= ψ1,Fq (−2−1w−1
χ b2)ν

(
NrFq/Fp(2w

−1
χ )

p

)ν
τ

((
NrFq/Fp(−)

p

)
Fqν

)
.

Here
(

−
p

)
denotes the Legendre symbol modulo p. At the third equality (∗), we

subtract a trivial exponential sum
∑
x∈Fqν ψ1,Fqν (2

−1wχx) = 0 from the summation.

Since τ

((
NrFq/Fp (−)

p

)
Fqν

)
is a Gauss sum over the finite field Fqν , we can apply the

original result of Davenport and Hasse [DH35, (0.8)] to it and obtain an equality

τ

((
NrFq/Fp (−)

p

)
Fqs

)
= (−1)s−1τ

((
NrFq/Fp (−)

p

))s
, which deduces validity of the desired

equality (A.8).

Case 2-b. p = 2 Consider ψ2,Fqν (−[wχδ2]2) for δ ∈ Fqν , where [ · ]2 : Fqν → W2(Fqν )
denotes the Teichmüller lift. By definition, we have

ψ2,Fqν (−[wχδ
2
1 ]2)ψ2,Fqν (−[wχδ

2
2 ]2) = ψ2,Fqν (−[wχδ

2
1 ]2 − [wχδ

2
2 ]2)

= ψ2,Fqν
(
−[wχ(δ1 + δ2)

2]2
)
ψ2,Fqν

(
[wχ]([δ1 + δ2]

2
2 − [δ21 ]2 − [δ22 ]2)

)
.

Using the law of addition (x0, x1) + (y0, y1) = (x0 + y0, x1 + y1 − x0y0) in W2(Fqν ) and
multiplicativity of [ · ]2, we readily obtain an equality [δ1+ δ2]

2
2− [δ21 ]2− [δ22 ]2 = −2[δ1δ2]2
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as

[δ1 + δ2]
2
2 + 2[δ1δ2]2 = (δ21 + δ22 , 0) + (0,−δ21δ22) = (δ21 + δ22 ,−δ21δ22)

= (δ21 , 0) + (δ22 , 0) = [δ21 ]2 + [δ22 ]2.

We thus have

ψ2,Fqν (−[wχδ
2
1 ]2)ψ2,Fqν (−[wχδ

2
2 ]2) = ψ2,Fqν

(
−[wχ(δ1 + δ2)

2]
)
ψ1,Fqν (−wχδ1δ2). (A.13)

Therefore, by (A.9) and (A.13), we see that there exists a unique element b ∈ Fq satisfying

χFqν (1 + pr[δ])ψr+1,Fqν (ε̃χ[δ])ψ2,Fqν (−[wχδ
2])−1 = ψ2,Fqν (2[bδ]2)

similarly to the case where p is odd. Now we define

σ(2)
ν (−[wχ]2) :=

∑
δ∈Fqν

ψ2,Fqν (−[wχδ
2]2),

a partial sum of the quadratic Gauss sum
∑
δ∈W2(Fqν ) ψ2,Fqν (−[wχδ2]2). Note that

σ
(2)
ν (−[wχ]2) does not change even if we replace [δ2]2 with an arbitrary lift of δ2 to

W2(Fqν ) in each summand. Taking this fact into accounts, we can calculate as∑
δ∈Fqν

χFqν (1 + 2r[δ])ψr+1,Fqν (ε̃χ[δ]) =
∑
δ∈Fqν

ψ2,Fqν (−[wχδ
2]2 + 2[bδ]2)

=
∑
δ∈Fqν

ψ2,Fqν
(
−[wχ]2([δ]2 − [bw−1

χ ]2)
2 + [b2w−1

χ ]2
)

= ψ2,Fqν ([b
2w−1

χ ]2)
∑
δ∈Fqν

ψ2,Fqν
(
−[wχδ2]2

)
(replace [δ]2 by [δ]2 + [bw−1

χ ]2)

= ψ2,Fqν ([b
2w−1

χ ]2)σ
(2)
ν (−[wχ]2) = ψ2,Fq ([b

2w−1
χ ]2)

νσ(2)
ν (−[wχ]2). (A.14)

At the third equality, the summation does not change after we replace [δ]2 by

[δ]2 + [bw−1
χ ]2 because {[δ]2 + [bw−1

χ ]2 | δ ∈ Fqν} gives a complete set of represen-

tatives of W2(Fqν )/2W2(Fqν ). The partial sum σ
(2)
ν (−[wχ]2) has been calculated as

−{−(1 + i)}ν ordp(q) (see [Lam53, (6.30)] for example), and we thus obtain an equality

(−σ(2)
1 (−[wχ]))s = −σ(2)

s (−[wχ]2), or equivalently

σ(2)
s (−[wχ]2) = (−1)s−1σ

(2)
1 (−[wχ]2)s. (A.15)

The desired equality (A.8) easily follows from (A.14) and (A.15). □

Now we have verified (A.2) in all cases, which completes the proof of Theorem A.1.

□
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