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Abstract. We propose a combinatorial formula for the coproduct in a Hopf algebra of decorated multi-
indices that recently appeared in the literature, which can be briefly described as the graded dual of
the enveloping algebra of the free Novikov algebra generated by the set of decorations. Similarly to
what happens for the Hopf algebra of rooted forests, the formula can be written in terms of admissible
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multi-indices, in terms of a suitable notion of covering subforest.
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1. Introduction

A Hopf algebra of multi-indices appeared in the recent work of P. Linares, F. Otto and M. Tempel-
mayr on regularity structures [28], as a new combinatorial tool for handling rough partial differential
equations. This new approach was continued in [27, 10, 6], and also in [9], where the role of post-
Lie algebras has been highlighted. Multi-indices have also been adapted to the framework of rough
paths and rough differential equations in [26, 7]. We will stick to this somewhat simpler framework,
which permits us to look at A-decorated multi-indices: contrarily to what happens in general with reg-
ularity structures, the set A of decorations does not play an active role in the definition of the coproduct.

Recalling that the free pre-Lie algebra generated by A is the linear span of A-decorated rooted trees
[14, 17], the canonical surjective map Φ from the free pre-Lie algebra PL(A) generated by A onto the
free Novikov algebra N(A) yields, by transposition and multiplicative extension, a canonical embedding
 of the multi-index Hopf algebra HA

LOT
into the Hopf algebra HA

BCK
of A-decorated rooted forests1.

This conceptually simple algebraic fact allows a grouping of the terms in the tree expansion [22] of the
solution of a rough differential equation driven by a Hölder continuous path X : [0;T ] → R

d correspond-
ing to any choice of a rough path or branched rough path X over X [30, 31, 32, 22]. The grouping is
performed according to multi-indices, considering for each multi-index M the set of trees t such that
Φ(t) = M . Along these lines, a multi-index rough path is a two-parameter family of characters of HA

LOT

subject to Chen’s lemma and suitable estimates [28, 34].

The above description as a graded dual, although perfectly rigorous, is not completely explicit, as it
depends on a choice of pairing on the symmetric algebra2 of N(A). We propose here a pairing, carefully
chosen in order to take symmetry factors into account, which yields an explicit formula for the coprod-
uct. The formula (33) thus obtained, reminiscent to the Connes-Kreimer formula for rooted forests,
involves a suitable notion of admissible cut for multi-indices.

Date: April 11th 2024.
1In the undecorated case A = {∗}, the Hopf algebra HA

LOT is a quotient of the original Hopf algebra of [28]. A family
of generators is discarded due to the fact that we do not deal with regularity structures.

2The enveloping algebra is identified with the symmetric algebra by the Guin-Oudom construction [23] associated to
the pre-Lie structure.
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The paper is organised as follows: after a quick reminder on combinatorial Hopf algebras (Paragraph
2.1), we recall the construction of the rooted forest Hopf algebra in Paragraph 2.2. The multi-index
Hopf algebra is introduced in Paragraph 2.3. We introduce the pairing in Paragraph 3.1 and the cor-
responding Hopf algebra embedding in Section 3. Section 4 introduces graftings and cuts for trees and
forests with free edges. The main result of this section is Proposition 12, which carefully counts cuts
and graftings with the help of symmetry factors. We prove a recursive formula for the coproduct in
Paragraph 5.1, and finally state and prove our main result (Theorem 14 and Equation (33)) in the last
Paragraph 5.2. The last section is devoted to a combinatorial formula for the extraction-contraction
coproduct (Theorem 15).

Our work is close in spirit to [25], where an algebraic formula for the coproduct for the full multi-
index Hopf algebra of [28] is given in terms of a different pairing: see (2.16) and (3.12) therein. Our
choice of pairing yields a completely combinatorial interpretation of the coproduct of the multi-index
Hopf algebra HA

LOT
. It would be interesting to see whether such a combinatorial interpretation for the

regularity structure Hopf algebra of [28] and [25] is available.

Let us finally mention that Y. Bruned and Y. Hou [8] were first in giving explicit formulae for both
coproducts. They start from explicit expressions for both corresponding Grossman-Larson products
and dualize them. Their approach also covers the regularity structure case. Their choice of pairing
uses a different notion of symmetry factor for a multi-index: although both approaches give equivalent
results, different coefficients therefore appear in the explicit expressions. Our purely combinatorial in-
terpretation of both coproducts in terms of admissible cuts, and respectively covering subforests, namely
Formulae (33) and (37), however relies on our convention for symmetry factors in an essential way.

Acknowledgements: We thank Lorenzo Zambotti for his careful reading and his most helpful com-
ments on a previous version of this work, as well as the referee for useful remarks and suggestions. We
also thank Yvain Bruned, Pierre Catoire, Löıc Foissy, Yingtong Hou, Jean-David Jacques and Pablo
Linares for illuminating discussions. The first author is supported by the China Scholarship Coun-
cil (File No. 202306180070). The second author is supported by the Natural Science Foundation of
Gansu Province (25JRRA644), Innovative Fundamental Research Group Project of Gansu Province
(23JRRA684), and Longyuan Young Talents of Gansu Province. Work partially supported by Agence
Nationale de la Recherche, ANR-20-CE40-0007 Combinatoire Algébrique, Résurgence, Probabilités Li-
bres et Opérades.

2. The Hopf algebras of decorated multi-indices

2.1. Reminder on combinatorial Hopf algebras. There seems to be no consensus on what a com-
binatorial Hopf algebra is, despite the vitality and fruitfulness of this research topic. The following ad

hoc definition comes from [16]. A combinatorial Hopf algebra is

• A graded connected Hopf algebra on a field K containing the rationals

H =
⊕

n≥0

Hn, H0 = K.1,

• together with a homogeneous linear basis B such that the structure constants κcab and κbca of
both multiplication and comultiplication are non-negative integers:

ab =
∑

c∈B

κcabc, ∆(a) =
∑

b,c∈B

κbca b⊗ c.

Some more requirements can be added, such as
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• Moderate growth condition, e.g.

dimHn ≤ CKn for some C,K > 0.

• Nondegeneracy condition:

(1) B ∩ Prim(H) = B ∩H1,

where Prim(H) is the set of primitive elements. Recall that an element x ∈ H is primitive if
and only if ∆(x) = x⊗ 1+ 1⊗ x.

A morphism between two combinatorial Hopf algebras (H,B) and (H′,B′) is a graded Hopf algebra
morphism ϕ : H → H′ such that, for any b ∈ B, the image ϕ(B) is a finite linear combination of
elements of B′ with nonnegative integer coefficients. This organises those combinatorial Hopf algebras
into a category.

2.2. Pre-Lie algebras and the Butcher–Connes–Kreimer Hopf algebra. A left pre-Lie algebra
(here, over a field K containing the rationals) is a K-vector space P together with a bilinear product �
such that

(2) x� (y � z)− (x� y)� z = y � (x� z)− (y � x)� z

holds for any x, y, z ∈ P . Pre-Lie algebras, which can be traced back to the work of A. Cayley [13], are
sometimes called Vinberg algebras, as they appeared explicitly for the first time in the work of E. B.
Vinberg [37] under the name left-symmetric algebras on the classification of homogeneous cones. They
appeared independently at the same time in the work of M. Gerstenhaber [20] on Hochschild cohomology
and deformations of algebras, under the name “pre-Lie algebras” which is now the standard terminology.
The term chronological algebras has also been sometimes used, e.g. in [1]. Antisymmetrising the pre-Lie
product gives rise to a Lie algebra P , the universal enveloping algebra U(P ) of which is isomorphic (as
a Hopf algebra) to the symmetric algebra S(P ) endowed with the deshuffle coproduct

∆ ⊔⊔ (x1 · · · xn) =
∑

I⊔J={1,...,n}

xI ⊗ xJ

(with the notation xJ := xj1 · · · xjk for J = {j1, . . . , jk}) and the Grossman-Larson product

X ⋆ Y :=
∑

(X)

X1(X2 � Y ),

where the Guin-Oudom product � [23, Proposition 2.7] is the unique extension of the pre-Lie product
to S(P ) such that

• 1�X = X,
• X � Y Z =

∑
(X)(X1 � Y )(X2 � Z),

• (xY )� Z = x� (Y � Z)− (x� Y )� Z

for any X,Y,Z ∈ S(L) and x ∈ L. A key property of the Grossman-Larson product is given by

X � (Y � Z) = (X ⋆ Y )� Z

for any X,Y,Z ∈ S(P ). For a short survey on pre-Lie algebras, see [11, 33].

F. Chapoton and M. Livernet provided the explicit description of the free pre-Lie algebra PL(A) in
terms of A-decorated rooted trees endowed with grafting [14]. Recall that a rooted tree is a connected
oriented graph with a finite number of vertices, one among them being distinguished as the root, such
that any vertex admits exactly one outgoing edge, except the root which has no outgoing edges. Here
is the list of rooted trees up to five vertices, where the edges are tacitly oriented from top to bottom:
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A rooted forest is a finite collection of rooted trees, possibly with repetitions. For any set A, an A-
decorated rooted forest f is a rooted forest together with a map d : V(f) → A, where V(f) is the set of
vertices of f . The pre-Lie product s → t of two rooted trees is obtained by grafting the root of s on a
vertex of t, summing up over all choices of vertices:

(3) s → t =
∑

v∈V(t)

s →v t.

For example,

→ = + .

The symmetric algebra S
(
PL(A)

)
is the linear span of A-decorated rooted forests. Denoting also by →

the Guin-Oudom extension of the grafting product, the corresponding Grossman-Larson product [21] is
given by the graft-or-fall formula

F ⋆ G = B−
(
F → Bc

+(G)
)
.

Here Bc
+(F ) := F → c for some c ∈ A, and B− is the root removal, left inverse to Bc

+.

The Butcher–Connes–Kreimer Hopf algebra ([15, 18], see also [5]) HA
BCK

=
⊕

n≥0

(
HA

BCK

)
n

is a
commutative Hopf algebra of A-decorated rooted forests over K, graded by the number of vertices,
obtained as the graded dual of the cocommutative Grossman-Larson Hopf algebra described above.
Normalising the dual forest basis by the symmetry factor (see e.g. [4, 35]), namely

(4) 〈u, v〉 := σ(u)δvu

where σ(u) is the cardinal of the automorphism group of the forest u, the coproduct on a rooted forest
u is described as follows: the set V(u) of vertices of a forest u is endowed with a partial order defined by
x ≤ y if and only if there is a path from y to a root passing through x. Any subset W of V(u) defines a
subforest u|W

of u in an obvious manner, i.e. by keeping the edges of u which link two elements of W .

The coproduct is then defined by:

(5) ∆BCK(u) =
∑

V∐W=V(u)
W<V

u|V
⊗ u|W

.

Here the notation W < V means that y 6> x for any vertex x in V and any vertex y in W . Such a
couple c = (V,W ) is also called an admissible cut, with crown (or pruning) P c(u) = u|V

and trunk

Rc(u) = u|W
, so that the coproduct often appears under the form

(6) ∆BCK(u) =
∑

c∈Adm(u)

P c(u)⊗Rc(u)

in the literature. We have for example:

∆BCK

( )
= ⊗ 1+ 1⊗ + ⊗

∆BCK

( )
= ⊗ 1+ 1⊗ + 2 ⊗ + ⊗ .

Recall that the symmetry factor of a rooted forest is the cardinal of its automorphism group. For
later use, the symmetry factor of a forest u = tℓ11 · · · tℓnn , where t1, . . . , tn are pairwise distinct trees, can
be expressed in terms of the symmetry factor of its tree components as

(7) σ(u) = ℓ1! · · · ℓn!σ(t1)
ℓ1 · · · σ(tn)

ℓn .

Remark 1. The symmetry factor σ(u) is obtained by multiplying the external symmetry factor

σext(u) := ℓ1! · · · ℓn! by the internal symmetry factor σint(u) := σ(t1)
ℓ1 · · · σ(tn)

ℓn . The internal symme-
try factor is the cardinal of the internal automorphism group, i.e. the normal subgroup of automorphisms
which leaves each connected component unchanged. The external symmetry factor is the cardinal of
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the external automorphism group, which is a subgroup of the permutation group of the connected
components.

2.3. Novikov algebras and the Linares–Otto–Tempelmayr Hopf algebra of multi-indices.

A Novikov algebra [17] is a vector space N over a base field K, together with a bilinear product
� : N ×N → N such that, for any x, y, z ∈ N , the following identities hold:

x� (y � z)− (x� y)� z = y � (x� z)− (y � x)� z,(8)

(x� y)� z = (x� z)� y.(9)

The first is left pre-Lie identity, the second is right-NAP identity3. Novikov algebras seem to appear
for the first time in the article [19] by I. M. Gelfand and I. J. Dorfman in the study of Hamiltonian
operators in the formal calculus of variations (see Equation (6.3) therein, where the left pre-Lie identity
appears in a disguised form). They have been rediscovered by A. A. Balinskii and S. P. Novikov in [2]
(in the right pre-Lie and left NAP form, see Equation (4) therein). The terminology was proposed by
J. M. Osborn in [36]. An important example is given by a commutative associative algebra A endowed
with a derivation D : A → A. From Leibniz’ rule D(xy) = D(x)y + xD(y), it is easily seen that (A,�)
is Novikov with x� y := xD(y).

With our conventions, the free Novikov algebra N(A) generated by a set A is described as follows
[17, Definition 7.7]: let N(A) be the commutative algebra of polynomials with variables xaj , (a, j) ∈

A× {−1, 0, 1, 2, . . .}, let ∂ be the unique derivation of N(A) such that ∂xaj = xaj+1. The integer j ≥ −1
is the weight of the variable xaj .

A basis of N(A) is given by the monomials

xk :=
∏

j≥−1, a∈A

(xaj )
kaj ,

where the exponents kaj are non-negative integers, equal to zero except a finite number of them. The

weight induces a unique Z-grading of the algebra N(A), for which the derivation ∂ is homogeneous of
degree one. By Leibniz’ rule, the expression of the derivation ∂ is given by

(10) ∂xk =
∑

j≥−1, a∈A

kajx
k−eaj+eaj+1 ,

where eaj is the multi-index in which all coordinates are equal to zero except the one in position (j, a)

which is equal to one. In other words, xeaj = xaj . We have for example in the undecorated case A = {∗}:

∂(x−1)
2 = 2x−1x0, ∂(x0x1) = (x1)

2 + x0x2,

and in the decorated case

∂
(
(xa1)

2xb1
)
= 2xa1x

a
2x

b
1 + (xa1)

2xb2.

The bilinear product P � Q := P.∂Q endows N(A) with a Novikov structure, and the free Novikov
algebra N(A) turns out to be the homogeneous component of N(A) of weight −1. This is Theorem 7.8
in [17], recently generalised to multi-Novikov algebras [6, Theorem 3.3]. The embedding of A into N(A)
is given by a 7→ xa−1.

We shall also use the unique derivation ∂ : N(A) → N(A) defined on the variables by

(11) ∂xaj = xaj−1 if j ≥ 0, ∂xa−1 = 0.

3NAP for Non-Associative Permutative [29]. Novikov algebras are right pre-Lie and left NAP in the definition given in
[17] (right-symmetric and left-commutative in the terminology employed therein).
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Its expression on the basis of monomials is given by

(12) ∂xk =
∑

j≥0, a∈A

kajx
k−eaj+e

a
j−1 .

We have for example

∂(x2x3) = (x2)
2 + x1x3, ∂(x−1x0x1) = (x−1)

2x1 + x−1(x0)
2.

The canonical surjective map Φ from PL(A) to N(A) is the unique pre-Lie morphism extending the
embedding of the generators, and can be understood as the fertility map: for any A-decorated rooted
tree t, we have

(13) Φ(t) =
∏

v∈V(t)

x
d(v)
f(v)−1 ,

where d(v) ∈ A is the decoration of vertex v, and where f(v) is its fertility, i.e. its number of incoming
edges. The map Φ is obviously surjective. From (13) and (3), it is easily seen to be a pre-Lie morphism,
namely

(14) Φ(s → t) = Φ(s).∂Φ(t)

for any rooted trees s, t, due to the fact that grafting any tree at vertex v increases its fertility by 1,
leaving the fertility of the other vertices unchanged4 [7, Proposition 2.9].

Remark 2. Recall that C∞(Rd,Rd), identified with the set of vector fields on R
d, is a pre-Lie algebra

on the base field K = R, with pre-Lie product
(

d∑

i=1

fi∂i

)
�




d∑

j=1

gj∂j


 =

d∑

i=1

fi




d∑

j=1

∂igj


 ∂j .

When d = 1, this product specialises to the Novikov product

f � g = f.∂g

where ∂g stands for the derivative of g. By freeness universal property, for any family f := (fa)a∈A
of vector fields on R, there is a unique Novikov algebra morphism Ff : N(A) → C∞(R,R) such that
Ff (x

a
−1) = fa. This is the starting point of multi-index B-series introduced in [7]:

Bf (α) =
∑

k,wt(xk)=−1

α(xk)

σ(xk)
Ff (x

k),

where α is any linear map from N(A) into R. Our convention for the symmetry factor σ(xk) is given in
Paragraph 3.1 below.

As to any pre-Lie algebra, the Guin-Oudom procedure applies to both N(A) and PL(A). In particular,
the multiplicative extension

Φ : S
(
PL(A)

)
−→ S

(
N(A)

)

of the fertility map to symmetric algebras is a Hopf algebra morphism from
(
S
(
PL(A)

)
, ⋆,∆ ⊔⊔ ,1, ε

)

onto
(
S
(
N(A)

)
, ⋆,∆ ⊔⊔ ,1, ε

)
, where both Grossman-Larson products are denoted by ⋆, and where ∆ ⊔⊔

is the usual deshuffle coproduct. The Hopf algebra of multi-indices is defined by

HA
LOT

=
(
S
(
N(A)

)
, ⋆,∆ ⊔⊔ ,1, ε

)◦
,

4We have adopted the same conventions for the fertility map than [7, Definition 2.12] (called counting map and denoted
by Ψ therein). Our conventions for the derivation ∂, denoted by D in [7], are also the same. The fertility map often
appears in the recent literature with extra symmetry factors, e.g. [10, Paragraph 2.5], due to a different normalisation of
the derivation ∂. See Remark 7 below.
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where (−)◦ stands for the graded dual. A basis of S
(
N(A)

)
is given by monomials of monomials

M = M⊙m1
1 ⊙ · · · ⊙M⊙mk

k , where the Mj’s are distinct monomials in N(A) (we use the notation ⊙ for
the commutative “external” product in the symmetric algebra, not to be confused with the commutative
“internal” product of N(A)). The explicit formula for the coproduct depends on the choice of a pairing.
A proposal will be given in the next section.

3. Pairing and embedding

3.1. The pairing. The symmetry factor of any monomial

M = xk =
∏

a∈A, j≥−1

(xaj )
kaj ,

where k stands for the multi-index (kaj )a∈A, j≥−1, is given by

σ(M) = k! =
∏

a∈A, j≥−1

kaj ! .

The degree of the monomial xk is

|k| :=
∑

a∈A, j≥−1

kaj .

Its weight is defined by

wt(xk) :=
∑

a∈A, j≥−1

jkaj ,

which we also will denote by wt(k). Now let us define a symmetric nondegenerate pairing on S
(
N(A)

)

as follows: let M = M⊙ℓ11 ⊙ · · · ⊙M⊙ℓnn be a monomial of monomials, and let M′ be another one, and
set

〈M, M′〉 := σ(M)δM
′

M ,

where the symmetry factor is given by a formula similar to (7):

(15) σ(M) := ℓ1! · · · ℓn!σ(M1)
ℓ1 · · · σ(Mn)

ℓn .

Under this pairing, the dual of the deshuffle coproduct is the commutative product ⊙. It remains to
compute the dual coproduct of the Grossman-Larson product.

Remark 3. The symmetry factor σ(M) is obtained by multiplying the external symmetry factor

σext(M) := ℓ1! · · · ℓn! by the internal symmetry factor σint(M) := σ(M1)
ℓ1 · · · σ(Mn)

ℓn .

Proposition 4. Considering the restriction of the above pairing to the polynomial algebra N(A), the
derivation ∂ is the transpose of the derivation ∂.

Proof. By direct computation:

〈∂xk,xℓ〉 =
∑

j≥−1, a∈A

kaj 〈x
k+e

a
j+1−e

a
j ,xℓ〉

=
∑

j≥−1, a∈A

kaj ℓ! 11(k+eaj+1−e
a
j=ℓ)

=
∑

j≥−1, a∈A

(ℓ+ eaj )! 11(k+eaj+1=ℓ+eaj )
.
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Now

〈xk, ∂̄xℓ〉 =
∑

j≥0, a∈A

ℓaj 〈x
k,xℓ+eaj−1−e

a
j 〉

=
∑

j≥0, a∈A

ℓaj (ℓ+ eaj−1 − eaj )! 11(k=ℓ+eaj−1−e
a
j )

=
∑

j≥0, a∈A

(ℓ+ eaj−1)! 11(k+eaj =ℓ+eaj−1)
,

hence both expressions coincide. �

For any multi-index k, let us denote by
←
k the corresponding left-shifted multi-index, with coordinates

←
k

a

j := kaj+1. In particular, we have
←

eaj = eaj−1.

Proposition 5. For any integer r ≥ 0 and for any multi-index k we have

(16) ∂̄rxk =
∑

|ℓ|=r

Ck,ℓx
k−ℓ+

←

ℓ ,

where the coefficients Ck,ℓ are given by Ck,0 = 1 and the recursive formula below:

(17) Ck,ℓ =
∑

j≥−1, a∈A, ℓj≥1

Ck,ℓ−eaj
(kaj − ℓaj + 1 + ℓaj+1).

Proof. The definition of ∂ immediately yields

(18) Ck,eaj
= kaj .

We therefore can proceed inductively and compute:

∂
r+1

xk =
∑

|ℓ′|=r

Ck,ℓ′∂x
k+
←

ℓ′ −ℓ′

=
∑

|ℓ′|=r

∑

j≥0, a∈A

Ck,ℓ′(k
a
j + ℓ′

a
j+1 − ℓ′

a
j )x

k+
←

(ℓ′ +
←

e
a
j )−(ℓ

′+e
a
j )

=
∑

|ℓ|=r+1

∑

(ℓ′,j,a), ℓ′+eaj=ℓ

Ck,ℓ−eaj
(kaj + ℓaj+1 − ℓaj + 1)xk+

←

ℓ −ℓ,

which proves the claim. �

Proposition 6. Let (M1, . . . ,Mr) be an r-tuple of monomials in N(A), and let M = M1 ⊙ · · · ⊙ Mr

be the monomial of monomials obtained by multiplying the Mj’s together. Let F be a rooted decorated
forest such that Φ(F ) = M, and let A be the set of r-tuples of decorated rooted trees given by

A := {(t1, . . . , tr), t1 · · · tr = F and Φ(tj) = Mj for any j = 1, . . . , r}.

Then we have

|A| =
σext(M)

σext(F )
.

Proof. The external automorphism group of M acts transitively on A. The stabiliser of the r-tuple
(t1, . . . , tr) is the external automorphism group of the forest F . One concludes by the orbit-stabiliser
theorem. �
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Remark 7. An alternative choice of symmetry factors is frequently used in the literature: in [8] (see
also [28, Lemma 6.1] and [7, Section 2]), the authors use (translated in our notations and context)

σ̃(xk) =
∏

a∈A, j≥−1

(
(j + 1)!

)kaj .

Considering that a variable xaj corresponds to a vertex decorated by a with j + 1 edges above it, one

may consider that it has an intrinsic symmetry factor (j+1)!. For a multi-index k = (kaj )a∈A, j≥−1, the
symmetry factor above can therefore be considered as the internal part of a symmetry factor

σ̂(xk) := σ(xk)σ̃(xk) = k!
∏

a∈A, j≥−1

(
(j + 1)!

)kaj ,

our k! being the external part. Let us recall that our definition of the derivation ∂ on N(A) coincides
with the one adopted in [7], but differs from [28, Paragraph 3.2], where the authors choose

∂xaj = (j + 1)xaj+1.

3.2. The embedding. Define the embedding  : HA
LOT

−֒→HA
BCK

by transposing the multiplicatively
extended fertility map Φ. This is an injective Hopf algebra morphism. From 〈Φ(t),xk〉 = 〈t, (xk)〉 for
any rooted tree t and any monomial xk of weight −1, and considering the definitions of both pairings,
we easily get

(19) (xk) =
∑

t,Φ(t)=xk

σ(xk)

σ(t)
t.

For example,

(x−1x0) = , (x2−1x1) = , (x2−1x0x1) = 2 + , (x3−1x0x2) = + 3 .

Lemma 8.

(20) (∂
r
xk) =

∑

|ℓ|=r

∑

t,Φ(t)=xk+
←
ℓ −ℓ

Dk,ℓ

σ(t)
t,

with Dk,ℓ = Ck,ℓ(k+
←
ℓ −ℓ)!. The coefficients Dk,ℓ are given by Dk,0 = k! and the recursive formula

(21) Dk,ℓ =
∑

j≥−1, a∈A,ℓaj≥1

Dk,ℓ−eaj
(kaj−1 − ℓaj−1 + ℓaj ).

Proof. Equation (20) is a direct consequence of (16) and (19). From (17) and the expression of Dk,ℓ in
terms of Ck,ℓ, we can compute:

Dk,ℓ =
∑

j≥−1, a∈A, ℓaj≥1

Ck,ℓ−eaj
(kaj − ℓaj + 1 + ℓaj+1)(k+

←
ℓ −ℓ)!

=
∑

j≥−1, a∈A, ℓaj≥1

Dk,ℓ−eaj

(k+
←
ℓ −ℓ)!

(k+
←
ℓ −eaj−1 − ℓ+ eaj )!

(kaj − ℓaj + 1 + ℓaj+1)

=
∑

j≥−1, a∈A,ℓa
j
≥1

Dk,ℓ−eaj
(kaj−1 − ℓaj−1 + ℓaj ).

�
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3.3. Cocycles and mock-cocycles. Recall the cocycle operator Ba
+ : S

(
PL(A)

)
→ PL(A) for any

a ∈ A, which grafts all trees of a given forest on a common root decorated by a. Any A-decorated
rooted tree t is uniquely given by t = Ba

+(F ), where F is the forest obtained from t by removing the

root, and where a is the decoration of the root of t. Its transpose Ba
− : HA

BCK
→ HA

BCK
is given by

Ba
−(t) = F if t = Ba

+(F ), and by Ba
−(t) = 0 if the decoration of the root of t is different from a.

Now consider, for any a ∈ A, the operator La : S
(
N(A)

)
→ N(A) defined by

La(xk1
⊙ · · · ⊙ xkr

) := xk1+···+kr

xar−1.

We obviously have

(22) Φ ◦Ba
+ = La ◦ Φ.

Its transpose L
a
: HA

LOT
→ HA

LOT
is given by

L
a
(xk) =

∑

M, La(M)=xk

σ(xk)

σ(M)
M.

From (22) we immediately get

(23)  ◦ L
a
= Ba

− ◦ .

4. Free edges, graftings and cuts

4.1. Rooted trees and forests with free edges. The free Novikov N(A) is included inside a wider
Novikov algebra N(A). Similarly, the free pre-Lie algebra PL(A) is included in a wider pre-Lie algebra
PL(A) defined as the linear span of rooted trees with free edges, i.e. edges without upper vertex. It can
be seen as the free pre-Lie algebra generated by A×N0, where the second component of the decoration
of a given vertex indicates the number of free edges attached to it. The idea of considering free edges is
borrowed from the Feynman diagrams designed to describe interactions between elementary particles.
These graphs contain free edges, also known as external edges, excepted the so-called vacuum graphs
describing creation-annihilation of virtual particles. The reader can refer to any textbook in quantum
field theory, see also [3].

The linear span of rooted forests with free edges will be denoted by H
A
BCK

. The weight wt(t) of t is
given by the total number of edges minus the number of vertices. The pairing is naturally extended to

H
A
BCK

, where the symmetry factor of a forest with free edges is understood as the symmetry factor of
the corresponding A× N0-decorated forest. We obviously have wt(t) = −1 for an ordinary rooted tree
without free edges.

A rooted tree of weight 3, with four free edges.

Formula (13) extends the fertility map Φ to a map Φ : PL(A) → N(A) which respects the weight.
Similarly, by transposing the map Φ, Formula (19) extends the embedding  to a map

 : H
A
LOT

−→ H
A
BCK

,

where H
A
LOT

stands for the commutative algebra S
(
N(A)

)◦
. We remark that  is not an embedding, as

it sends any monomial xk of weight ≤ −2 to zero.
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Let δ : PL(A) → PL(A) be the map given by

δ(t) =
∑

v∈V(t)

δv(t),

where δv adds a free edge to vertex v. For example,

δ
( )

= + + + .

Let us use the symbol δ for the map given by

δ(t) =
∑

v∈V(t)

δv(t),

where δv removes a free edge at vertex v, and returns zero if v has no free edge. For example,

δ
( )

= + + .

Proposition 9. The map δ is the transpose of δ, and we have

(24) Φ ◦ δ = ∂ ◦ Φ.

Proof. Choosing a vertex v (resp. w) in a tree t (resp. u), and considering both sets

P := {v ∈ V(t), δv(t) = u}, Q := {w ∈ V(u), δw(u) = t},

the orbit-stabiliser theorem states

P ≃ Aut(t)/Autv(t), Q ≃ Aut(u)/Autw(u),

where v (resp. w) is any choice of element in P (resp. Q), and where Autv(t) is the stabiliser of v in
Aut(t) (and similarly for Q). If two trees t and u are such that u = δv(t) for some v ∈ V(t), then both
sets of vertices V(t) and V(u) can be naturally identified. In that case, from the obvious isomorphism
Autv(t) ≃ Autv(u) we get

σ(u)|P | = σ(t)|Q|.

We therefore have

〈δ(t), u〉 = |P |σ(u)

= |Q|σ(t)

= 〈t, δ(u)〉,

which proves the first assertion. The second assertion comes from the fact that adding a free edge to a
vertex corresponds to shifting the variable associated to it. �

By transposing (24), we immediately get

Corollary 10.

(25) δ ◦  =  ◦ ∂.

Proposition 11. Let t be a rooted A-decorated tree with r free edges. Let rv be the number of free edges
at a given vertex v of t. The formula for the r-th power of δ is

δ
r
(t) =

r!
∏

v∈V(t) rv!
t0,

where t0 is the tree t with all free edges removed.
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Proof. We have

δ
r
(t) =

∑

(v1,...,vr)∈V(t)r

δv1 ◦ · · · ◦ δvr(t).

A term in the right-hand side is equal to t0 if and only if each vertex v ∈ V(t) appears exactly rv times
in the tuple (v1, . . . , vr), otherwise the term is equal to zero. The number of such r-tuples is equal to
the multinomial coefficient above. �

For any admissible cut c of a tree t ∈ PL(A), let Rc(t) be the associated full trunk, which is given
by the trunk Rc(t) together with each cut edge replaced by a free edge. The weight of the full trunk is
therefore equal to r − 1, where r is the number of edges belonging to the cut. In view of Proposition
11, we have

(26) δ
r(
R

c
(t)
)
= ‖t‖Rc(t),

where t is a shorthand for R
c
(t), and

(27) ‖t‖ :=
r!

∏
v∈V(t) rv!

.

4.2. Graftings and cuts.

Definition 1. Let r be a positive integer, let F be an A-decorated rooted forest with r connected compo-
nents without free edges, and let t be an A-decorated rooted tree with rv free edges at vertex v, and a total
number of r free edges. A grafting of F on t consists in grafting a choice of rv connected components
of F on the vertex v for any v ∈ V(t), and by removing the free edges.

Denoting by G(F, t) the set of graftings of F on t, we obviously have

(28)
∣∣G(F, t)

∣∣ = ‖t‖.

For any vertex x ∈ V(t) and for any grafting b ∈ G(F, t), let us denote by Fb(x) the subforest of F
attached to x via b.

Proposition 12. Let r be a positive integer, let F and t as in Definition 1, and let t be an A-decorated
rooted tree without free edges. Let G(t, F, t) be the set of graftings of F on t resulting in the tree t. Let
C(t, F, t) be the set of admissible cuts of t such that P c(t) = F and R

c
(u) = t. Then

|C(t, F, t)| =
σ(t)

σ(F )σ(t)
|G(t, F, t)|.

Proof. The group Aut t acts transitively on C(t, F, t). The stabiliser of a cut c will be denoted by Autc t,
and its cardinal by σc(t). On the other hand, the group Aut t×AutF acts transitively on G(t, F, t). To
see this, consider two graftings b, b′ ∈ G(t, F, t): there exists a permutation α of V(t) such that Fb(x)
and Fb′

(
α(x)

)
are isomorphic, and the permutation α necessarily comes from an automorphism of the

tree t. The stabiliser of b is Autb t×Autb F , where Autb t is the subgroup of those α ∈ Aut t such that
Fb

(
α(x)

)
and Fb(x) are isomorphic for any vertex x of t, and where Autb F =

∏
x∈V(t)AutFb(x) is the

subgroup of AutF which respects the subforests Fb(x). By the orbit-stabiliser theorem, we therefore
have

|C(t, F, t)|

|G(t, F, t)|
=

σ(t)

|Autc(t)|

|Autb(t)|.|Autb(F )|

σ(F )σ(t)

We conclude by noticing the obvious isomorphism

Autc(t) ∼ Autb(t)×Autb(F ).

�
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5. Explicit description of the coproduct

5.1. A recursive formula for the coproduct. Recall that the coproduct in HA
BCK

admits a recursive
definition, with respect to the degree, in terms of the cocycle operators Ba

+. This can be rewritten in
terms of the operators Ba

− as follows:

(29) ∆BCK(t) =
∑

a∈A

(I ⊗Ba
+)∆BCK

(
Ba
−(t)

)
+ t⊗ 1.

We can now compute, using the Hopf algebra morphism property for :

(⊗ ) ◦∆LOT(x
k) = ∆BCK ◦ (xk)

=
(29)

∑

a∈A

(I ⊗Ba
+)∆BCK

(
Ba
− ◦ (xk)

)
+ (xk)⊗ 1

=
(23)

∑

a∈A

(I ⊗Ba
+)∆BCK ◦ 

(
L
a
(xk)

)
+ (xk)⊗ 1

=
∑

a∈A

(I ⊗Ba
+) ◦ (⊗ ) ◦∆LOT

(
L
a
(xk)

)
+ (xk)⊗ 1.(30)

Remark: The map Ba
+ ◦  cannot be easily expressed like (23) with  on the left: the above recursive

expression therefore cannot be further simplified.

5.2. An explicit formula for the coproduct. Let us first define an admissible cut of the monomial
xk as a choice of cutting k into r+1 multi-indices k1, . . . ,kr,k for some integer r ≥ 0, with wt(kj) = −1
for any j = 1, . . . , r and wtk = r − 1, so that

xk = xk1
· · · xkr

xk.

In analogy with rooted forests, we set

P c(xk) := xk
1
⊙ · · · ⊙ xk

r

, Rc(xk) := ∂
r
xk.

In view of this, we shall denote by |c| the set of admissible cuts c′ such that P c
′

(xk) = P c(xk) (and

therefore Rc
′

(xk) = Rc(xk)), and by ‖c‖ the cardinal of this class. We clearly have

‖c‖ =
k!

k!σ(xk1 ⊙ · · · ⊙ xkr)
=

k!

k1! · · · kr!k!σext(xk1 ⊙ · · · ⊙ xkr)
,

whenever P c(xk) = xk1
⊙ · · · ⊙ xkr

, where σext is the external symmetry factor (see Remark 3). In
analogy with trees containing free edges, the full trunk will be defined by

R
c
(xk) := xk.

Definition 2. Let c be an admissible cut of the monomial xk, and let c be an admissible cut of the
decorated rooted tree t. We say that c matches c and write c ∼ c whenever

• xk = Φ(t),
• P c(xk) = Φ

(
P c(t)

)
.

An admissible cut c matches c if and only if it matches any element c′ ∈ |c|. Note that the second

condition implies R
c
(xk) = Φ

(
R

c
(t)
)
.

Lemma 13. For any monomial xk in N(A) and for any admissible cut c of xk, the following holds:

(31) ‖c‖( ⊗ )
(
P c(xk)⊗Rc(xk)

)
=

∑

t,Φ(t)=xk

∑

c∈Adm(t), c∼c

σ(xk)

σ(t)
P c(t)⊗Rc(t).
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Proof. Fix an admissible cut c of the monomial xk. Denoting the left-hand side and the right-hand side
of (31) by L and R respectively, we can compute:

L =
k!

k1! · · · kr!k!σext(xk1 ⊙ · · · ⊙ xkr)
(xk1

) · · · (xkr

)⊗  ◦ ∂
r
(xk)

= (Id⊗δ
r
)

(
k!

k1! · · · kr!k!σext(xk1 ⊙ · · · ⊙ xkr)
(xk1

) · · · (xkr

)⊗ (xk)

)
(from Corollary 10)

=
k!

k1! · · · kr!k!σext(xk1 ⊙ · · · ⊙ xkr)
(Id⊗δ

r
)




∑

(tj)1,...,r,

Φ(tj)=xk
j

∑

t,Φ(t)=xk

k1!

σ(t1)
· · ·

kr!

σ(tr)

k!

σ(t)
t1 · · · tr ⊗ t




=
k!

σext(xk1 ⊙ · · · ⊙ xkr)
(Id⊗δ

r
)




∑

F,Φ(F )=xk1⊙···⊙xkr

∑

t,Φ(t)=xk

σext(xk1
⊙ · · · ⊙ xkr

)

σext(F )

1

σint(F )σ(t)
F ⊗ t




(from Proposition 6)

= k!(Id⊗δ
r
)


 ∑

F,Φ(F )=xk1⊙···⊙xkr

∑

t,Φ(t)=xk

1

σ(F )σ(t)
F ⊗ t


 .

From (26), (28) and Proposition 12, we therefore get

L = k!
∑

F,Φ(F )=xk1⊙···⊙xkr

∑

t,Φ(t)=xk

‖t‖
1

σ(F )σ(t)
F ⊗ t0

= k!
∑

F,Φ(F )=xk1⊙···⊙xkr

∑

t,Φ(t)=xk

|G(F, t)|

σ(F )σ(t)
F ⊗ t0

= k!
∑

t,Φ(t)=xk

∑

F,Φ(F )=xk1⊙···⊙xkr

∑

t,Φ(t)=xk

|G(t, F, t)|

σ(F )σ(t)
F ⊗ t0

= k!
∑

t,Φ(t)=xk

∑

F,Φ(F )=xk1⊙···⊙xkr

∑

t,Φ(t)=xk

|C(t, F, t)|

σ(t)
F ⊗ t0

=
∑

t,Φ(t)=xk

k!

σ(t)

∑

c∈Adm(t), c∼c

P c(t)⊗Rc(t)

= R.

�

Theorem 14. The coproduct ∆LOT : HA
LOT

→ HA
LOT

⊗ HA
LOT

is the unique unital algebra morphism
defined on the monomials by

(32) ∆LOT(x
k) =

∑

r≥0

∑

k=k1+···+kr+k,wt(kj)=−1

k!

σ(xk1 ⊙ · · · ⊙ xkr)k!
xk

1
⊙ · · · ⊙ xk

r

⊗ ∂
r
xk,

where the inner sum runs over multisets {k1, . . . ,kr} of multi-indices such that wt(kj) = −1 for any

j = 1, . . . , r and such that the remainder k, of weight r − 1, has only nonnegative components k
a
j .

Formula (32) for the coproduct admits the following alternative presentation:

(33) ∆LOT(x
k) =

∑

c∈Adm(xk)

P c(xk)⊗Rc(xk),
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Proof. By applying Lemma 13 and summing over all classes |c| of admissible cuts c of the monomial xk,
the coproduct defined by (32), or equivalently by (33), which we denote temporarily by ∆′

LOT
, verifies

(⊗ ) ◦∆′
LOT

= ∆BCK ◦ .

In view of the injectivity of , it therefore coincides with ∆LOT, and the theorem is proven. �

Let us illustrate Theorem 14 on an example: applying (32) to the monomial x2−1x0x1 yields

∆LOT(x
2
−1x0x1) = x2−1x0x1 ⊗ 1+ 1⊗ x2−1x0x1 + 2x−1 ⊗ ∂(x−1x0x1) + 2x−1x0 ⊗ ∂(x−1x1)

+x2−1x1 ⊗ ∂x0 + x−1 ⊙ x−1 ⊗ ∂
2
(x0x1) + 2x−1 ⊙ x−1x0 ⊗ ∂

2
x1

= x2−1x0x1 ⊗ 1+ 1⊗ x2−1x0x1 + 2x−1 ⊗ x2−1x1 + 2x−1 ⊗ x−1x
2
0 + 2x−1x0 ⊗ x−1x0

+x2−1x1 ⊗ x−1 + 3x−1 ⊙ x−1 ⊗ x−1x0 + 2x−1 ⊙ x−1x0 ⊗ x−1.

We leave it to the reader to check that a repeated application of the recursive formula (30), starting
from

∆LOT(x−1) = x−1 ⊗ 1+ 1⊗ x−1

and computing successively the coproducts of x−1x0, x−1x
2
0, x

2
−1x1 and x2−1x0x1, gives the same result.

The reader is invited to compare with Example 3.2 in [8]. The differences between their coefficients and
ours comes from the different convention for the symmetry factor.

6. Extraction-contraction

After recalling from [12] the extraction-contraction coproduct of (undecorated) rooted forests, we de-
fine in this section an extraction-contraction coproduct for multi-indices by Formula (37) below, and we
prove (Theorem 15) that the injection  previously defined is a coalgebra morphism for both extraction-
contraction coproducts. As a consequence  is a morphism of comodule-bialgebras, i.e. respects both
extraction-contraction coproducts in addition to both Hopf algebra structures.

6.1. Reminder on extraction-contraction of rooted forests. Recall from [12] that a second co-
product Γ on the algebra of (non-decorated) rooted forests makes it a commutative bialgebra, on which

the Hopf algebra H
{∗}
BCK

is a comodule-bialgebra. In particular, both coproducts are linked by a coint-
eraction diagram, dual to left distributivity. It is given by

(34) Γ(t) =
∑

s⊆t

s⊗ t/s,

where the sum runs over the covering subforests of the forest t. A covering subforest is a partition of the
set of vertices of t into connected blocks, i.e. blocks in which any vertex can be reached from another
by following edges of t. The notation t/s stands for the corresponding contracted forest, obtained from
s by shrinking each block to a single vertex. A decorated version of this picture is available provided a
commutative semigroup structure on the set of decorations is given, in order to decide how to decorate
the vertices of the contracted forest.

6.2. Free edges and extraction-contraction for multi-indices. Formula (34) can be precised as
follows: the extraction of a covering subforest s ⊆ t with r(s) + 1 connected components gives rise to a
forest F (s) with r(s) free edges, which are naturally in bijection with the edges of the contracted forest
t/s. Note that two different covering subforests can give rise to the same forest after extraction. We
denote by F0(s) the same forest without its free edges, given by

F0(s) =
1

‖F (s)‖
δ
r(s)

F (s),
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where the coefficient ‖F (s)‖ is given by the recipe (27). Formula (34) therefore takes the following form:

(35) Γ(t) =
∑

s⊆t

F0(s)⊗ t/s.

Such a coproduct Γ does exist on the multi-index Hopf algebra [26]: we give in this section an explicit
combinatorial formula for it, similar to (34) the same way (33) is similar to the Connes-Kreimer formula
(6). We stick to the nondecorated setting A = {∗} for simplicity, but a decorated version of this picture is
also available when A is endowed with a commutative semigroup structure. Details are left to the reader.

A covering subforest of a monomial xk =
∏

j≥−1 x
kj
j (of weight −1) is a partition π of the corre-

sponding multiset of variables into several multisets of total weight ≥ −1, each of them giving rise to

a monomial xβj
for j = 1, . . . , r(π) + 1. Here r(π) + 1 is the number of multisets involved. We write

π ⊆ xk for π being a covering subforest of xk. The corresponding monomial of monomials can be
written as

M(π) = xβ1
⊙ · · · ⊙ xβr(π)+1

,

with β1 + · · · + βr(π)+1 = k. Its reduced form is defined by

M0(π) :=
1

‖π‖
∂
r(π)

M(π),

with

(36) ‖π‖ = ‖M(π)‖ :=
r(π)!

∏r(π)+1
j=1 (wt βj + 1)!

.

Our educated guess for the extraction-contraction coproduct on monomials is, on the model of (35):

(37) Γ(xk) =
∑

π⊆xk

M0(π)⊗ xk/π,

where the contracted monomial, of weight −1, is given by

xk/π = xk/M(π) :=

r(π)+1∏

j=1

xwt βj .

Theorem 15. The injection  is a coalgebra morphism with respect to both extraction-contraction co-
products (34) and (37).

The proof of Theorem 15 is postponed to Paragraph 6.4 below.

Corollary 16. The Hopf algebra (H
{∗}
LOT

, .,∆) is a comodule-bialgebra over the bialgebra (H
{∗}
LOT

, .,Γ).

Proof. From Theorem 15 and from the fact that  is an algebra morphism, the comodule-bialgebra

structure of (H
{∗}
BCK

, .,∆) over the bialgebra (H
{∗}
BCK

, .,Γ) restricts to a comodule-bialgebra structure on
the image of  (endowed with the restriction of the Connes-Kreimer admissible cut coproduct ∆) over
itself (endowed with the restriction of the extraction-contraction coproduct Γ). �

6.3. Insertion and extraction of forests revisited.

Definition 3. Let F be a rooted forest with r(F ) free edges and r(F ) + 1 connected components, and
let t be a rooted tree with r(F ) + 1 vertices and r(F ) edges (hence without free edges). An insertion of
F inside t is a class of bijections

τ : {edges of t} −→ {free edges of F}

that induces a bijection τ̃ from V(t) onto the set of connected components of F , in the sense that the
restriction of τ to Ev(t) (the latter denoting the set of edges of t with bottom vertex v) is the set of free
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edges of some connected component of F . Two such bijections τ and τ ′ are in the same class if and

only if τ̃ = τ̃ ′ and τ ′ = ε ◦ τ , where ε is a permutation of the free edges of F that does not change their
vertex.

Proposition 17. Let F be a rooted forest with r(F ) free edges and r(F ) + 1 connected components, let
t be a rooted tree with r(F ) + 1 vertices and r(F ) edges, and let I(F, t) be the set of insertions of F
inside t. Let us denote by ev (resp. rw) the number of edges of t with bottom vertex v ∈ V(t) (resp. the
number of free edges of F attached to vertex w ∈ V(F )). The following formula holds:

|I(F, t)| =

∏
v∈V(t) ev !∏
w∈V(F ) rw!

σ
(
Φ(t)

)
.

Proof. The product in the numerator is the total number of bijections associated to a particular bijec-
tion from V(t) onto the set of connected components of F . The denominator is the cardinal of each
equivalence class, and the factor σ

(
Φ(t)

)
is the number of permutations of V(t) leaving invariant the

fertility of each vertex. Proposition 17 follows. �

Proposition 18. Let F be a rooted forest with r(F ) free edges and r(F ) + 1 connected components, let
t be a rooted tree with r(F ) + 1 vertices and r(F ) edges, and let t be a rooted tree without free edges.
Let I(t, F, t) be the set of insertions of F inside t such that the resulting tree is isomorphic to t, and let
E(t, F, t) be the set of extractions of F from t with contraction t, i.e. covering subforests s ⊆ t such that
F (s) ∼ F and t/s ∼ t. Then we have

E(t, F, t)

I(t, F, t)
=

σ(t)

σ(F )σ(t)
.

Proof. The group Aut t acts transitively on E(t, F, t). On the other hand, the group AutF ×Aut t acts
transitively on I(t, F, t). Any insertion ι obviously gives rise to a covering subforest s = s(ι) of t. The
stabilizer of s ∈ E(t, F, t) is isomorphic to IntF (s)×Auts t, where IntF is the group of automorphisms
of F (s) leaving each connected component fixed, and where Auts t is the group of automorphisms τ of
t = t/s such that, for any v ∈ V(t), both connected components of s corresponding to v and τ(v) are
isomorphic. This is precisely the stabilizer of ι. By the orbit-stabilizer theorem we therefore get

E(t, F, t)

I(t, F, t)
=

σ(t)/|Stab s|

σ(F )σ(t)/|Stab ι|

=
σ(t)

σ(F )σ(t)
.

�

6.4. Proof of Theorem 15. We have

R := Γ
(
(xk)

)
=

∑

t,Φ(t)=xk

k!

σ(t)
Γ(t)

=
∑

t,Φ(t)=xk

k!

σ(t)

∑

s⊆t

1

‖F (s)‖
δ
r(s)

F (s)⊗ t/F (s).

On the other hand,

L := (⊗ )
(
Γ(xk)

)
=

∑

π⊆xk

1

‖π‖

(
∂
r(π)

M(π)
)
⊗ (xk/π)

=
∑

M

∑

π⊆xk,M(π)=M

1

‖π‖

(
∂
r(π)

M
)
⊗ (xk/M).
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Here, the external sum runs over monomials of monomials M = xβ1
⊙ · · ·⊙xβr(M(π))+1

, with wtβj ≥ −1
and β1 + · · ·+ βr(M)+1 = k. Using r(M) = r(π) whenever M = M(π) and following the same lines than
in the proof of Lemma 13, we compute:

L =
∑

M

k!

σ(M)

1

‖M‖

(
∂
r(M)

M
)
⊗ (xk/M)

=
∑

M

k!

σ(M)

1

‖M‖
δ
r(M)

(M)⊗ (xk/M)

=
∑

M

k!

σ(M)

1

‖M‖
δ
r(M)

(
(xβ1

) · · · (xβr(M)+1)
)
)
⊗ (xk/M)

=
∑

M

k!

σ(M)‖M‖
δ
r(M) ∑

t1,...,tr(M)+1,t,Φ(tj )=xβj
,Φ(t)=xk/M

β1! · · · βr(M)+1!σ(xk/M)

σ(t1) · · · σ(tr(M)+1)σ(t)
t1 · · · tr(M)+1 ⊗ t

=
∑

M

k!

σ(M)‖M‖
δ
r(M) ∑

F,t,Φ(F )=M,Φ(t)=xk/M

β1! · · · βr(M)+1!σ(xk/M)

σ(t1) · · · σ(tr(M)+1)σ(t)

σext(M)

σext(F )
F ⊗ t

=
∑

M

k!

‖M‖
δ
r(M) ∑

F,t,Φ(F )=M,Φ(t)=xk/M

σ(xk/M)

σ(F )σ(t)
F ⊗ t.

From Proposition 17 and Proposition 18 we therefore get

L =
∑

M

k!

‖M‖
δ
r(M) ∑

F,t,Φ(F )=M,Φ(t)=xk/M

I(F, t)

∏
w∈V(F ) rw!(∏

v∈V(t) ev!
)
σ
(
Φ(t)

)
σ(xk/M)

σ(F )σ(t)
F ⊗ t

=
∑

t,Φ(t)=xk

∑

M

k!

‖M‖
δ
r(M) ∑

F,t,Φ(F )=M,Φ(t)=xk/M

I(t, F, t)

∏
w∈V(F ) rw!(∏

v∈V(t) ev!
)
σ
(
Φ(t)

)
σ(xk/M)

σ(F )σ(t)
F ⊗ t

=
∑

t,Φ(t)=xk

∑

M

k!

‖M‖
δ
r(M) ∑

F,t,Φ(F )=M,Φ(t)=xk/M

E(t, F, t)

∏
w∈V(F ) rw!∏
v∈V(t) ev!

1

σ(F )σ(t)

σ(F )σ(t)

σ(t)
F ⊗ t

=
∑

t,Φ(t)=xk

k!

σ(t)

∑

M

1

‖M‖
δ
r(M) ∑

F,t,Φ(F )=M,Φ(t)=xk/M

E(t, F, t)

∏
w∈V(F ) rw!∏
v∈V(t) ev!

F ⊗ t.

From (27) and (36), we finally get

L =
∑

t,Φ(t)=xk

k!

σ(t)

∑

M

∏r(M)+1
j=1 (wt βj + 1)!

r(M)!
δ
r(M) ∑

F,t,Φ(F )=M,Φ(t)=xk/M

r(F )!∏
w∈V(F ) rw!

1

‖F‖
E(t, F, t)

∏
w∈V(F ) rw!∏
v∈V(t) ev !

F ⊗ t

=
∑

t,Φ(t)=xk

k!

σ(t)

∑

M

δ
r(M) ∑

F,t,Φ(F )=M,Φ(t)=xk/M

1

‖F‖
E(t, F, t)F ⊗ t

= R,

which proves Theorem 15.
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