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Almost refinement, reaping, and ultrafilter numbers

By Jörg Brendle, Michael Hrušák and Francesco Parente

Abstract. We investigate the combinatorial structure of the set of max-
imal antichains in a Boolean algebra ordered by almost refinement. We also
consider the reaping relation and its associated cardinal invariants, focusing
in particular on reduced powers of Boolean algebras. As an application, we
obtain that, on the one hand, the ultrafilter number of the Cohen algebra is
greater than or equal to the cofinality of the meagre ideal and, on the other
hand, a suitable parametrized diamond principle implies that the ultrafilter
number of the Cohen algebra is equal to ℵ1.

1. Introduction

Let A and B be partitions of ω; let us say that B almost refines A, in symbols
A ≤∗ B, if all but finitely many blocks of A are a union of blocks of B. The relation ≤∗

was first considered by Matet [16] and further investigated in the literature [10, 19, 12,
6], where several “dual” cardinal invariants have been introduced and studied.

In the first part of the paper, we aim to generalize this analysis from partitions
of ω to maximal antichains in c.c.c. Boolean algebras. More precisely, we equip the
set Part(B) of all maximal antichains in a c.c.c. Boolean algebra B with the relation
≤∗, defined analogously as for partitions of ω. We then use generalized Galois-Tukey
connections to study the relational system Part∗(B) = ⟨Part(B),≤∗,Part(B)⟩ and its
associated cardinal invariants.

After some preliminaries on relational systems, which are collected in Section 2, we
prove some basic results about Part∗(B) in Section 3. Among other things, we show that,
if B is a non-atomic σ-finite c.c. Boolean algebra, then there exists a generalized Galois-
Tukey connection from the dominating relation ⟨ωω,≤∗, ωω⟩ to Part∗(B). Subsequently,
we focus on the Cohen algebra Cω and prove that Part∗(Cω) is Galois-Tukey equivalent
to the nowhere dense ideal.

In the second part of this paper, we introduce the reaping relation of a Boolean
algebra B, whose associated cardinal invariants are the well-known reaping and splitting
numbers of B. In Section 4, in particular, we show that the reaping relation of the
reduced power of a Boolean algebra B is related both to Part∗(B) and to the reaping
relation of P(ω)/fin. Furthermore, we completely determine the reaping and splitting
numbers of the reduced power of the Cohen algebra.

Finally, in Section 5 we apply the results established in the previous section to derive
consequences for the ultrafilter number of Boolean algebras. As a result, we obtain that
cof(M) ≤ u(Cω); this stands in parallel with the work of Burke [9] which, for the random
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algebra Bω, gives the lower bound cof(N ) ≤ u(Bω). In addition to that, we extend the
technique of parametrized diamond principles, due to Moore, Hrušák, and Džamonja [18],
to a class of Boolean algebras which we call “Borel-homogeneous”. This yields that, if
the parametrized diamond principle related to the reaping relation of the reduced power
of Cω holds, then u(Cω) = ℵ1.

2. Relational systems and generalized Galois-Tukey connections

In this section, we recall the basic notions and results regarding generalized Galois-
Tukey connections, first introduced by Vojtáš [21] and later systematized by Blass [5]. In
what follows, triples A = ⟨A−, A,A+⟩, with A ⊆ A− ×A+, are called relational systems.

Definition 2.1. Let A be a relational system. If for every x ∈ A− there exists
y ∈ A+ such that ⟨x, y⟩ ∈ A, then we define the dominating number of A as

d(A) = min{|Y | | Y ⊆ A+ and (∀x ∈ A−)(∃y ∈ Y )(⟨x, y⟩ ∈ A)}.

If for every y ∈ A+ there exists x ∈ A− such that ⟨x, y⟩ /∈ A, then we define the
bounding number of A as

b(A) = min{|X| |X ⊆ A− and (∀y ∈ A+)(∃x ∈ X)(⟨x, y⟩ /∈ A)}.

Definition 2.2. A generalized Galois-Tukey connection from a relational system
A to a relational system B consists of two functions φ− : A− → B− and φ+ : B+ → A+

such that for all a ∈ A− and all b ∈ B+

⟨φ−(a), b⟩ ∈ B =⇒ ⟨a, φ+(b)⟩ ∈ A.

If there exists a generalized Galois-Tukey connection from A to B, then we shall write
A ≤T B. Moreover, A and B are Galois-Tukey equivalent, in symbols A ≡T B, if
A ≤T B and B ≤T A.

Due to the following observation, generalized Galois-Tukey connections yield in-
equalities between the corresponding dominating and bounding numbers.

Remark 2.3 (Vojtáš [21, Observation 3.1.2]). If A ≤T B, then d(A) ≤ d(B)

and b(B) ≤ b(A).

Given a relational system A, we denote

Aσ = ⟨A−, A
σ, ωA+⟩,

where ⟨a, f⟩ ∈ Aσ if and only if there exists n < ω such that ⟨a, f(n)⟩ ∈ A. The following
facts are straightforward.

Proposition 2.4. Let A and B be relational systems, then:

• Aσ ≤T A;
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• d(A) ≤ d(Aσ) + ℵ0;

• if A ≤T B then Aσ ≤T Bσ.

We introduce an operation between relational systems which will be useful in Sec-
tion 4.

Definition 2.5 (Blass [3]). Let A and B be relational systems; the sequential
composition of A and B is defined as

A ;B =
〈
A− × A+B−, S,A+ ×B+

〉
where 〈

⟨x, f⟩, ⟨a, b⟩
〉
∈ S ⇐⇒ ⟨x, a⟩ ∈ A and ⟨f(a), b⟩ ∈ B.

By looking at the left and right projections of the Cartesian product, it is easy to
verify that A ≤T A ;B and B ≤T A ;B, respectively.

Proposition 2.6 (Blass [4, Proposition 2]). If A and B are relational systems,
then d(A ;B) = d(A) · d(B) and b(A ;B) = min{b(A), b(B)}.

Lastly, let us recall the parametrized diamond principles of Moore, Hrušák, and
Džamonja [18], which will play a role in Section 5. For the purpose of the next definition,
we stipulate that a relational system A is Borel if

• A−, A, and A+ are Borel subsets of some Polish space;

• for every x ∈ A− there exists y ∈ A+ such that ⟨x, y⟩ ∈ A;

• for every y ∈ A+ there exists x ∈ A− such that ⟨x, y⟩ /∈ A.

Definition 2.7 (Moore, Hrušák, and Džamonja [18, Definition 4.4]). If A is
a Borel relational system, then ♢(A) is the following statement: for every Borel function
F : <ω12 → A− there exists g : ω1 → A+ such that for every f : ω1 → 2 the set {α < ω1 |
⟨F (f ↾ α), g(α)⟩ ∈ A} is stationary.

Here, a function F : <ω12 → A− is “Borel” if and only if for every δ < ω1 the
restriction F ↾ δ2 is Borel.

3. Almost refinement

This section is dedicated to the study of the almost refinement relation. For a
Boolean algebra B, let B+ = B\{0}. Let Part(B) denote the set of all maximal antichains
in B, i.e. maximal sets of pairwise disjoint elements of B+.

Definition 3.1. Let B be a Boolean algebra. Given A,B ∈ Part(B), we say that
B refines A, in symbols A ≤ B, if for all b ∈ B there exists a ∈ A such that b ≤ a. The
corresponding relational system is defined as
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Part(B) = ⟨Part(B),≤,Part(B)⟩.

Inspired by Matet’s relation [16, Section 4] on partitions of ω, we introduce the
relation of almost refinement on Boolean algebras satisfying the countable chain condition
(c.c.c.). First we need some notation: for a maximal antichain A and a finite subset
F ⊆ A, let AF = (A \ F ) ∪ {

∨
F}, which is also a maximal antichain.

Definition 3.2. Let B be a c.c.c. Boolean algebra. Given A,B ∈ Part(B), we say
that B almost refines A, in symbols A ≤∗ B, if there exists a finite subset F ⊆ A such
that AF ≤ B. The corresponding relational system is defined as

Part∗(B) = ⟨Part(B),≤∗,Part(B)⟩.

Remark 3.3. Part(B) equipped with the relation ≤∗ defined above is a directed
set.

For each a ∈ B+, let B ↾ a = {b ∈ B | b ≤ a} be the relative algebra of B with respect
to a.

Lemma 3.4. If B is a c.c.c. Boolean algebra and a ∈ B+, then Part∗(B ↾ a) ≤T

Part∗(B).

Proof. Let φ− : Part(B↾a) → Part(B) be a function such that, if A ∈ Part(B↾a),
then φ−(A) is a maximal antichain in B including A. Let φ+ : Part(B) → Part(B ↾ a) be
defined as follows: if B ∈ Part(B) then φ+(B) = {a ∧ b | b ∈ B} \ {0}.

To see that φ− and φ+ give a generalized Galois-Tukey connection, suppose
φ−(A) ≤∗ B; then there exists a finite subset F ⊆ φ−(A) such that φ−(A)

F ≤ B.
It follows that AF∩A ≤ φ+(B) and therefore A ≤∗ φ+(B). □

Next, we would like to determine when the dominating and bounding numbers of
Part∗(B) are uncountable. This problem is related to the weak distributivity of B.

Definition 3.5 (von Neumann [22]). A Boolean algebra B is weakly ⟨ω, ω⟩-
distributive if for every function a : ω × ω → B, satisfying a(n,m) ≤ a(n,m + 1) for all
n,m < ω, the equality ∧

n<ω

∨
m<ω

a(n,m) =
∨

f∈ωω

∧
n<ω

a(n, f(n))

holds, provided that the relevant suprema and infima exist in B.

For the purpose of Proposition 3.7, we find it more convenient to work with an
equivalent formulation of weak distributivity, stated in the following lemma.

Lemma 3.6 (Traczyk [20]). A Boolean algebra B is weakly ⟨ω, ω⟩-distributive if
and only if for every set {An | n < ω} of countable maximal antichains in B there exists
a maximal antichain B such that each element of B meets only finitely many elements
of each An
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Proposition 3.7. Let B be a c.c.c. Boolean algebra; then

1. d(Part∗(B)) > ℵ0 if and only if B is not atomic;

2. b(Part∗(B)) > ℵ0 if and only if B is weakly ⟨ω, ω⟩-distributive.

Proof. (1) If B is atomic, then B has a maximal antichain consisting of atoms,
which immediately implies d(Part∗(B)) = 1.

To establish the other implication, suppose first B is atomless. Let {Bn | n < ω} be
a set of maximal antichains in B; we shall find a maximal antichain A such that A ̸≤∗ Bn

for all n < ω. Let {an | n < ω} be a fixed antichain; for each n < ω let us choose b ∈ Bn

such that an ∧ b > 0. By atomlessness, let An be an infinite antichain in B ↾ (an ∧ b) and
then let A be a maximal antichain in B including

⋃
n<ω An. Towards a contradiction,

suppose there exists n < ω such that A ≤∗ Bn; by definition there exists a finite subset
F ⊂ A such that AF ≤ Bn. If a ∈ An\F , then a is greater than or equal to some element
of Bn, which is a contradiction. For the general case, if B is not atomic then there exists
a ∈ B+ such that B ↾a is atomless. By what we have shown so far, d(Part∗(B ↾a)) > ℵ0,
but Lemma 3.4 guarantees that d(Part∗(B ↾ a)) ≤ d(Part∗(B)).

(2) The left-to-right implication follows from Lemma 3.6 and the observation that,
if B almost refines A, then each element of B meets only finitely many elements of A.

Conversely, suppose B is weakly ⟨ω, ω⟩-distributive. Let {An | n < ω} be a set of
maximal antichains in B; we shall find a maximal antichain B such that An ≤∗ B for all
n < ω. Without loss of generality, suppose An ≤ An+1 for all n < ω. By Lemma 3.6,
there exists a maximal antichain {bi | i < ω} in B such that for every i < ω and every
n < ω, the element bi meets only finitely many elements of An. Now consider for each
i < ω the finite set

Fi = {a ∧ bi | a ∈ Ai} \ {0}

and let B =
⋃

i<ω Fi, which is a maximal antichain refining {bi | i < ω}. Given n < ω,
we have that for all b ∈

⋃
i≥n Fi there exists a ∈ An such that b ≤ a, from which we can

conclude that B almost refines An. □

We further analyse Part∗(B) using generalized Galois-Tukey connections.

Theorem 3.8. If B is a c.c.c. Boolean algebra, then

⟨B+,≥,B+⟩σ ≤T Part∗(B) ≤T Part(B).

Proof. To establish ⟨B+,≥,B+⟩σ ≤T Part∗(B), we define two functions

φ− : B+ → Part(B) and φ+ : Part(B) → ωB+

such that for every b ∈ B+ and every B ∈ Part(B)

φ−(b) ≤∗ B =⇒ (∃n < ω)
(
φ+(B)(n) ≤ b

)
. (1)

Given b ∈ B+, we distinguish two cases: if B↾b is atomless, let φ−(b) be any maximal
antichain in B such that φ−(b) ∩ B ↾ b is infinite. If not, let φ−(b) be defined arbitrarily.
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On the other hand, let A be the set of atoms of B. Given B ∈ Part(B), by the c.c.c. let
φ+(B) : ω → A∪B be any surjective function. We check that (1) is satisfied: let b ∈ B+

and B ∈ Part(B) and suppose that φ−(b) ≤∗ B. If B ↾ b has an atom, then there exists
a ∈ A such that a ≤ b and we are done. If B ↾ b is atomless, let F ⊂ φ−(b) be a finite
subset such that φ−(b)

F ≤ B. Pick c ∈ (φ−(b) ∩ B ↾ b) \ F and note that c must be
greater than or equal to some element of B, which gives the conclusion.

Finally, to establish Part∗(B) ≤T Part(B), it is sufficient to observe that the relation
of refinement is stronger than the relation of almost refinement, hence the identity gives
a generalized Galois-Tukey connection. □

In particular, we obtain that the relational systems Part(B) and Part∗(B), despite
not being necessarily Galois-Tukey equivalent, always have the same dominating number.

Corollary 3.9. If B is a c.c.c. Boolean algebra, then d(Part∗(B)) = d(Part(B)).

Proof. The inequality d(Part∗(B)) ≤ d(Part(B)) follows already from Re-
mark 2.3 and Theorem 3.8.

To prove the converse inequality, if B is atomic then clearly d(Part(B)) = 1 and
we are done. Hence, we may assume that B is not atomic. Let B∗ ⊆ Part(B) be a set
of cardinality d(Part∗(B)) such that for all A ∈ Part(B) there exists B ∈ B∗ such that
A ≤∗ B. Similarly, let D ⊆ ωB+ be a set of cardinality d

(
⟨B+,≥,B+⟩σ

)
such that for

every b ∈ B+ there exists d ∈ D such that b ≥σ d. This condition implies that the set
D = {d(n) | d ∈ D and n < ω} is dense in B.

For every B ∈ B∗ and every finite antichain F ⊂ D, we define a maximal antichain

BF = F ∪
{
b ∧ ¬

∨
F

∣∣∣ b ∈ B
}
\ {0}

and then we let

B = {BF |B ∈ B∗ and F is a finite antichain in D}.

Now, let A be an arbitrary maximal antichain; by density we may assume that A ⊆ D.
By the choice of B∗, there exists B ∈ B∗ such that A ≤∗ B, which means there exists a
finite subset F ⊆ A such that AF ≤ B, therefore A ≤ BF , as desired.

In conclusion, we have shown that

d(Part(B)) ≤ |B| ≤ d(Part∗(B)) + d
(
⟨B+,≥,B+⟩σ

)
+ ℵ0.

However, Proposition 3.7.(1) gives that ℵ0 < d(Part∗(B)) and Theorem 3.8 gives
that d(⟨B+,≥,B+⟩σ) ≤ d(Part∗(B)), whence we can conclude that d(Part(B)) ≤
d(Part∗(B)). □

We move on to discuss the relation with a strong form of the countable chain con-
dition.
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Definition 3.10 (Horn and Tarski [13]). A Boolean algebra B is σ-finite c.c.
if there are subsets Sn ⊆ B+, for n < ω, such that every antichain in Sn is finite and
B+ =

⋃
n<ω Sn.

As usual, for functions f, g ∈ ωω, we write f ≤∗ g to mean than f(n) ≤ g(n) for all
but finitely many n < ω.

Theorem 3.11. If B is a non-atomic σ-finite c.c. Boolean algebra, then

⟨ωω,≤∗, ωω⟩ ≤T Part∗(B).

Proof. By Lemma 3.4, we may further assume that B is atomless. We aim to
construct two functions

φ− : ωω → Part(B) and φ+ : Part(B) → ωω

such that for every f : ω → ω and every B ∈ Part(B) we have

φ−(f) ≤∗ B =⇒ f ≤∗ φ+(B). (2)

By hypothesis, there exists a decomposition B+ =
⋃

n<ω Sn such that every antichain in
Sn is finite. Without loss of generality, for each n < ω we may further assume that if
b ∈ Sn and b ≤ a then a ∈ Sn. Finally, we also fix a maximal antichain {ai | i < ω} in B
throughout.

Given f : ω → ω, we proceed to define φ−(f). First, it is easy to see that for each
i < ω the set B+ \

⋃
n<f(i) Sn is dense. Indeed, let a ∈ B+; by atomlessness, there exists

an infinite antichain B such that a =
∨
B. Since all antichains in Sn are finite, there

must be some b ∈ B \
⋃

n<f(i) Sn, as desired. Consequently, we can choose for each i < ω

an antichain Ai
f such that ai =

∨
Ai

f and Ai
f ∩

⋃
n<f(i) Sn = ∅; then we define

φ−(f) =
⋃
i<ω

Ai
f .

On the other hand, let B be a maximal antichain in B. We define φ+(B) ∈ ωω as
follows: given i < ω, let

φ+(B)(i) = min{n < ω | there exists b ∈ B ∩ Sn such that b ≤ ai}

if there is such an n, otherwise let φ+(B)(i) = 0.
To establish (2), suppose that φ−(f) ≤∗ B. This implies the existence of i0 < ω

such that if i ≥ i0 then every element of Ai
f is the supremum of a subset of B. Let

i ≥ i0; as we are in the first case of the definition of φ+(B), there exists b ∈ B∩Sφ+(B)(i)

such that b ≤ ai. By the assumption on i, we can find a ∈ Ai
f with b ≤ a. By upwards

closure we have a ∈ Sφ+(B)(i), but a /∈
⋃

n<f(i) Sn, hence f(i) ≤ φ+(B)(i) as we wanted
to show. □

Remark 3.12. If S is a Suslin algebra, then d(Part∗(S)) = ℵ1. Such an algebra
exists in the Cohen model, where d = 2ℵ0 . Thus, the conclusion of Theorem 3.11 does
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not hold in general for non-atomic c.c.c. Boolean algebras.

Let B(ω2) be the σ-algebra generated by the clopen subsets of the Cantor space ω2.
We consider the nowhere dense ideal nwd(ω2) and the meagre ideal M over ω2. The
Cohen algebra is the quotient Boolean algebra Cω = B(ω2)/M, thus elements of Cω are
represented as equivalence classes [X]M for X ∈ B(ω2).

For the remainder of this section, we focus on Part∗(Cω). First, we fix some standard
notation: for every s ∈ <ω2, let

Ns = {f ∈ ω2 | s ⊂ f}.

Furthermore, for every n < ω we denote

⟨0n⟩ =
〈
0, . . . , 0︸ ︷︷ ︸
n times

〉
∈ n2 and ⟨0n1⟩ =

〈
0, . . . , 0︸ ︷︷ ︸
n times

, 1
〉
∈ n+12.

Lemma 3.13. For every A ∈ Part(Cω) there exists S ⊆ <ω2 such that:

1. {[Ns]M | s ∈ S} is a maximal antichain refining A;

2. for every t ∈ <ω2, if Nt ⊆
⋃

s∈S Ns then there exists s ∈ S such that s ⊆ t.

Proof. Given A ∈ Part(Cω), by density there exists R ⊆ <ω2 such that {[Nr]M |
r ∈ R} is a maximal antichain refining A. Now let

S = {r⌢⟨0n1⟩ | r ∈ R and n < ω}.

It is clear that for each r ∈ R

[Nr]M =
∨
n<ω

[
Nr⌢⟨0n1⟩

]
M

in Cω, hence condition (1) is satisfied. To prove (2), suppose Nt ⊆
⋃

s∈S Ns for some
t ∈ <ω2. Let c0 ∈ ω2 be the sequence with constant value 0; since t⌢c0 ∈ Nt, there
exists s ∈ S such that s ⊂ t⌢c0. But s is a finite sequence ending in 1, hence s ⊆ t as
desired. □

The next theorem establishes an equivalence between maximal antichains in Cω and
nowhere dense subsets of ω2.

Theorem 3.14. ⟨nwd(ω2),⊆,nwd(ω2)⟩ ≡T Part∗(Cω) ≡T Part(Cω).

Proof. First, we define a function φ− : nwd(ω2) → Part(Cω). Let X ∈ nwd(ω2);
then by definition DX = {[Nt]M |Nt ∩X = ∅} is a dense subset of Cω. So we let φ−(X)

be any maximal antichain included in DX .
Next, we define a function φ+ : Part(Cω) → nwd(ω2). Let A ∈ Part(Cω); by

Lemma 3.13 there exists S ⊆ <ω2 such that:

• {[Ns]M | s ∈ S} is a maximal antichain refining A;



9

• for every t ∈ <ω2, if Nt ⊆
⋃

s∈S Ns then there exists s ∈ S such that s ⊆ t.

Then we let

φ+(A) =
ω2 \

⋃
s∈S

Ns,

which is clearly nowhere dense.
To establish ⟨nwd(ω2),⊆,nwd(ω2)⟩ ≤T Part∗(Cω), we verify that for all X ∈

nwd(ω2) and all A ∈ Part(Cω)

φ−(X) ≤∗ A =⇒ X ⊆ φ+(A).

By definition, φ+(A) =
ω2\

⋃
s∈S Ns and {[Ns]M |s ∈ S} is a maximal antichain refining

A. Given s ∈ S, there exists a finite subset F ⊆ φ−(X) such that [Ns]M ≤
∨
F . But

φ−(X) ⊆ {[Nt]M |Nt ∩X = ∅} and therefore Ns ∩X = ∅.
Secondly, Part∗(Cω) ≤T Part(Cω) follows from Theorem 3.8.
Finally, to prove that Part(Cω) ≤T ⟨nwd(ω2),⊆,nwd(ω2)⟩, we have to show that

φ+(A) ⊆ X =⇒ A ≤ φ−(X).

Let t ∈ <ω2 be such that [Nt]M ∈ φ−(X); this implies that

Nt ⊆ ω2 \X ⊆
⋃
s∈S

Ns.

By the property of S, there exists s ∈ S such that s ⊆ t, hence [Nt]M ≤ [Ns]M ≤ a for
some a ∈ A. □

Corollary 3.15. cof(M) = d(Part∗(Cω)) and add(M) = b
(
Part∗(Cω)

σ).
Proof. This follows from Proposition 2.4, Theorem 3.14, and the theorem, due

to Fremlin [11, Theorem 3B.(b)], that ⟨nwd(ω2),⊆,nwd(ω2)⟩σ ≡T ⟨M,⊆,M⟩. □

It would be interesting to determine Part∗(B) for other c.c.c. forcings on the reals.
For the random algebra Bω = B(ω2)/N , we remark that ⟨N ,⊆,N⟩ ≤T Part∗(Bω); this
follows from Theorem 3.8 and the fact, again due to Fremlin [11], that ⟨B+

ω ,≥,B+
ω ⟩

σ ≡T

⟨N ,⊆,N⟩. In analogy with Corollary 3.15, we may ask:

Question 3.16. Is cof(N ) = d(Part∗(Bω))?

4. Reaping

In this section, we investigate the reaping relation, focusing in particular on reduced
powers of Boolean algebras.

Definition 4.1. Given a Boolean algebra B, the reaping relation of B is defined
as

R(B) = ⟨B, R,B+⟩,



10

where b R r if and only if either r ≤ b or r ∧ b = 0.
Let r(B) = d(R(B)) be the reaping number of B, also known in the literature [9] as

the weak density of B. In case the algebra B is atomless, we also define s(B) = b(R(B))
to be the splitting number of B. Following common usage, instead of r(P(ω)/fin) and
s(P(ω)/fin), we write simply r and s to denote the classic reaping and splitting numbers.

A result of Monk shows that the reaping and splitting numbers of the Cohen algebra
are both countable.

Proposition 4.2 (Monk [17, Proposition 26]). r(Cω) = s(Cω) = ℵ0.

Reduced powers of Boolean algebras have been studied, e.g. by Brendle [7] and more
recently by Kurilić [15]. We recall some relevant terminology. Given a Boolean algebra
B, the infinite product ωB is also a Boolean algebra with the pointwise operations. Let

Fin = {f ∈ ωB | the set {n < ω | f(n) > 0} is finite},

which is easily seen to be an ideal on ωB. The reduced power of B is the quotient algebra
ωB/Fin.

Balcar and Hrušák [2, Proposition 2.1] showed that P(ω)/fin can be completely
embedded into ωB/Fin for every Boolean algebra B. In the next lemma, we elaborate on
this idea to derive a consequence for the reaping relation.

Proposition 4.3. If B is a Boolean algebra, then R(P(ω)/fin) ≤T R(ωB/Fin).

Proof. We define a homomorphism φ− : P(ω)/fin → ωB/Fin as follows: for each
X ⊆ ω, let χX : ω → B be the characteristic function of X, that is,

χX(n) =

{
1 if n ∈ X

0 if n /∈ X
.

Then we let φ−([X]fin) = [χX ]Fin. On the other hand, let φ+ : (ωB/Fin)+ → (P(ω)/fin)
+

be defined as follows: if f ∈ ωB \ Fin, then φ+([f ]Fin) = [{n < ω | f(n) > 0}]fin.
For all X ⊆ ω and f ∈ ωB \ Fin, we have

χX ∧ f ∈ Fin =⇒ {n ∈ X | f(n) > 0} ∈ fin,

which easily implies that φ− and φ+ give a generalized Galois-Tukey connection from
R(P(ω)/fin) to R(ωB/Fin). □

Next, we establish a general upper bound which involves the almost refinement
relation discussed in the previous section.

Theorem 4.4. If B is a c.c.c. Boolean algebra, then

R(ωB/Fin) ≤T Part∗(B) ;R(P(ω)/fin).
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Proof. If B is finite, then B = P(n) for some n < ω and therefore ωB/Fin is
isomorphic to P(ω)/fin. It follows that R(ωB/Fin) ≡T R(P(ω)/fin), from which the
conclusion is immediate. If B is infinite, let us fix a maximal antichain {an | n < ω}
in B. Furthermore, for every B ∈ Part(B) and n < ω, choose B(n) ∈ B such that
an ∧B(n) > 0.

Given g : ω → B, we define a maximal antichain

Ag =
⋃
n<ω

{an ∧ g(n), an ∧ ¬g(n)} \ {0}

and a function

βg : Part(B) −→ P(ω)/fin

B 7−→ [{n < ω |B(n) ≤ g(n)}]fin
;

then, we let

φ− : ωB/Fin −→ Part(B)× Part(B)P(ω)/fin

[g]Fin 7−→ ⟨Ag, βg
〉 .

On the other hand, given B ∈ Part(B) and an infinite X ⊆ ω, we define a function
fB,X : ω → B such that for each n < ω

fB,X(n) =

{
B(n) if n ∈ X

0 if n /∈ X
;

then, we let

φ+ : Part(B)× (P(ω)/fin)
+ −→ (ωB/Fin)+

⟨B, [X]fin⟩ 7−→ [fB,X ]Fin
.

To show that φ− and φ+ form indeed a generalized Galois-Tukey connection, we
prove that for all g : ω → B, B ∈ Part(B), and infinite X ⊆ ω

Ag ≤∗ B and βg(B) R [X]fin =⇒ [g]Fin R [fB,X ]Fin.

Since Ag ≤∗ B, there exists a finite subset F ⊂ Ag such that AF
g ≤ B. Let k < ω be

sufficiently large that for every a ∈ F there exists n < k such that a ≤ an. Then it is
clear that

(∀n ≥ k)(B(n) ≤ g(n) or B(n) ∧ g(n) = 0). (3)

Since βg(B) R [X]fin, we have two possibilities: if [X]fin ≤ βg(B), then [fB,X ]Fin ≤ [g]Fin
and we are already done. If not, then the set {n ∈ X | B(n) ≤ g(n)} is finite which,
combined with (3), yields that the set {n ∈ X |B(n)∧ g(n) > 0} is also finite. Therefore
[fB,X ]Fin ∧ [g]Fin = 0, as desired. □

For the remainder of this section, we shall be concerned with the topological space
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of the rationals which, for convenience, we identify with the binary tree <ω2. More
precisely, it is possible to define a dense linear ordering < on <ω2 as follows: s < t if
and only if t ⊂ s and s(|t|) = 0; or s ⊂ t and t(|s|) = 1; or s and t are incompatible
and s(k) < t(k), where k is their first point of difference. In the space ⟨<ω2, <⟩ equipped
with the order topology, we have that:

• D ⊆ <ω2 is dense if and only if for all s ∈ <ω2 there exists t ∈ D such that s ⊆ t;

• N ⊆ <ω2 is nowhere dense if and only if there exists a maximal antichain A ⊆ <ω2

such that for all s ∈ N there exists t ∈ A such that s ⊆ t.

For further details, we refer the reader to [1, Fact 1.1].

Definition 4.5. Let Dense(<ω2) be the set of dense subsets of <ω2 and let
nwd(<ω2) be the ideal of nowhere dense subsets of <ω2. We define the relational system

D(<ω2) = ⟨nwd(<ω2),⊥∗,Dense(<ω2)⟩,

where N ⊥∗ D if and only if N ∩D is finite.

The bounding number of D(<ω2) has been computed by Keremedis [14]; nine years
later, Balcar, Hernández-Hernández, and Hrušák [1] computed the dominating number
of D(<ω2). We summarize both in the next theorem.

Theorem 4.6 (Keremedis [14, Theorem 2]; Balcar, Hernández-Hernández,
and Hrušák [1, Theorem 1.6]). cof(M) = d(D(<ω2)) and add(M) = b(D(<ω2)).

Instead of dense sets of rationals, we may equivalently use divergent sequences. More
precisely, let

Seq(<ω2) =
{
⟨xi | i < ω⟩ ∈ ω

(<ω2)
∣∣ (∀s ∈ <ω2)(∃k < ω)(∀i ≥ k)(xi < s)

}
and, in analogy with Definition 4.5, consider the relational system ⟨nwd(<ω2),⊥∗,

Seq(<ω2)⟩, where N ⊥∗ ⟨xi | i < ω⟩ if and only if {i < ω | xi ∈ N} is finite. Then,
we have the following Galois-Tukey equivalence.

Lemma 4.7. ⟨nwd(<ω2),⊥∗, Seq(<ω2)⟩ ≡T D(<ω2).

Proof. First, it is easy to see that ⟨nwd(<ω2),⊥∗, Seq(<ω2)⟩ ≤T D(<ω2). Indeed,
we can construct a pair of functions

φ− : nwd(<ω2) → nwd(<ω2) and φ+ : Dense(<ω2) → Seq(<ω2)

as follows: let φ− be the identity function. Given D ∈ Dense(<ω2), for each i < ω choose
xi ∈ D such that ⟨0i⟩ ⊆ xi and define φ+(D) = ⟨xi | i < ω⟩, which belongs to Seq(<ω2)

by construction. If N ∩D is finite, then {i < ω | xi ∈ N} is finite, as we wanted.
Secondly, we prove that D(<ω2) ≤T ⟨nwd(<ω2),⊥∗, Seq(<ω2)⟩. Let <ω2 = {sn |

n < ω} be a fixed enumeration of the rationals and define a function
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ψ− : nwd(<ω2) −→ nwd(<ω2)

N 7−→
⋃
n<ω

{
s ∈ <ω2

∣∣ ⟨0n⟩ ⊆ s and s⌢n s ∈ N
} .

To see that ψ−(N) is indeed nowhere dense, first note that for each k < ω the set

ψ−(N) ∩
{
s ∈ <ω2

∣∣ ⟨0k1⟩ ⊆ s
}
=

⋃
n≤k

{
s ∈ <ω2

∣∣ ⟨0k1⟩ ⊆ s and s⌢n s ∈ N
}

is nowhere dense, being a finite union of nowhere dense sets. It follows that ψ−(N) ∩⋃
k<ω

{
s ∈ <ω2

∣∣ ⟨0k1⟩ ⊆ s
}

is also nowhere dense, being a union of nowhere dense sets
separated by disjoint open sets. But since

⋃
k<ω

{
s ∈ <ω2

∣∣ ⟨0k1⟩ ⊆ s
}

is open dense in
<ω2, we conclude that ψ−(N) itself is nowhere dense.

On the other hand, we define

ψ+ : Seq(<ω2) −→ Dense(<ω2)

⟨xi | i < ω⟩ 7−→
⋃
n<ω

{s⌢n xi | i < ω and ⟨0n⟩ ⊆ xi} .

We observe that ψ+(⟨xi | i < ω⟩) is dense because, for all n < ω, there exists i < ω such
that ⟨0n⟩ ⊆ xi; hence s⌢n xi ∈ ψ+(⟨xi | i < ω⟩) and obviously sn ⊆ s⌢n xi.

The proof is complete once we show that, for all N ∈ nwd(<ω2) and ⟨xi | i < ω⟩ ∈
Seq(<ω2),

{i < ω | xi ∈ ψ−(N)} is finite =⇒ N ∩ ψ+(⟨xi | i < ω⟩) is finite. (4)

If the set on the left-hand side of (4) is finite, then in particular for each n < ω the
set N ∩ {s⌢n xi | i < ω and ⟨0n⟩ ⊆ xi} must be finite, for otherwise there would exist
infinitely many i < ω such that ⟨0n⟩ ⊆ xi and s⌢n xi ∈ N , which results in xi ∈ ψ−(N), a
contradiction. Now, let k < ω be sufficiently large that for all i < ω, if xi ∈ ψ−(N) then
|xi| ≤ k. It follows that

N ∩ ψ+(⟨xi | i < ω⟩) =
⋃
n≤k

N ∩ {s⌢n xi | i < ω and ⟨0n⟩ ⊆ xi},

hence the set on the right-hand side of (4) is finite, being a finite union of finite sets. □

The next theorem, together with Proposition 4.3, essentially determines the reaping
relation of the reduced power of Cω.

Theorem 4.8. D(<ω2) ≤T R(ωCω/Fin) ≤T D(<ω2) ;R(P(ω)/fin).

Proof. First, we prove that D(<ω2) ≤T R(ωCω/Fin). By Lemma 4.7, we
may equivalently prove that ⟨nwd(<ω2),⊥∗, Seq(<ω2)⟩ ≤T R(ωCω/Fin). For each
N ∈ nwd(<ω2), choose a maximal antichain AN ⊆ <ω2 such that:

• for all s ∈ N there exists t ∈ AN such that s ⊆ t;

• for all t ∈ AN there exists n < ω such that ⟨0n1⟩ ⊆ t.
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For every N ∈ nwd(<ω2), we define a function

gN : ω −→ Cω

n 7−→
∨{[

Nr⌢⟨0⟩
]
M

∣∣ r ∈ <ω2 and ⟨0n1⟩⌢r ∈ AN

}
and finally let

φ− : nwd(<ω2) −→ ωCω/Fin

N 7−→ [gN ]Fin
.

On the other hand, given f ∈ ωCω \ Fin, pick an increasing sequence ⟨ki | i < ω⟩ of
natural numbers such that f(ki) > 0 for all i < ω. By density, for each i < ω we can
choose xi ∈ <ω2 such that [Nxi ]M ≤ f(ki). Then, we define

φ+ : (ωCω/Fin)
+ −→ Seq(<ω2)

[f ]Fin 7−→
〈
⟨0ki1⟩⌢xi

∣∣ i < ω
〉 .

The key point is that, for all N ∈ nwd(<ω2), f ∈ ωCω \ Fin, and i < ω

f(ki) ≤ gN (ki) or f(ki) ∧ gN (ki) = 0 =⇒ ⟨0ki1⟩⌢xi /∈ N. (5)

Indeed, if ⟨0ki1⟩⌢xi ∈ N , then there exists t ∈ AN such that ⟨0ki1⟩⌢xi ⊆ t. Let
r ∈ <ω2 be such that t = ⟨0ki1⟩⌢r; then easily 0 <

[
Nr⌢⟨0⟩

]
M ≤ f(ki) ∧ gN (ki) and

0 <
[
Nr⌢⟨1⟩

]
M ≤ f(ki) ∧ ¬gN (ki). Using (5), it is immediate to deduce that for all

N ∈ nwd(<ω2) and f ∈ ωCω \ Fin

[gN ]Fin R [f ]Fin =⇒
{
i < ω

∣∣ ⟨0ki1⟩⌢xi ∈ N
}

is finite,

which means that φ− and φ+ give the desired generalized Galois-Tukey connection.
Secondly, to show that R(ωCω/Fin) ≤T D(<ω2) ;R(P(ω)/fin), let {an |n < ω} be a

fixed maximal antichain in Cω. Moreover, for every D ∈ Dense(<ω2) and n < ω, choose
D(n) ∈ D such that

[
ND(n)

]
M ≤ an.

Given g : ω → Cω, we define a nowhere dense set

Ng =
{
s ∈ <ω2

∣∣ ¬(∃n < ω)
(
[Ns]M ≤ an ∧ g(n) or [Ns]M ≤ an ∧ ¬g(n)

)}
and a function

γg : Dense(<ω2) −→ P(ω)/fin

D 7−→ [{n < ω |D(n) ≤ g(n)}]fin
;

then, we define

ψ− : ωCω/Fin −→ nwd(<ω2)× Dense(<ω2)P(ω)/fin

[g]Fin 7−→ ⟨Ng, γg
〉 .

On the other hand, given D ∈ Dense(<ω2) and an infinite X ⊆ ω, we define a
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function fD,X : ω → Cω as follows: for all n < ω

fD,X(n) =

{[
ND(n)

]
M if n ∈ X

0 if n /∈ X
;

then, we let

ψ+ : Dense(<ω2)× (P(ω)/fin)
+ −→ (ωCω/Fin)

+

⟨D, [X]fin⟩ 7−→ [fD,X ]Fin
.

To show that ψ− and ψ+ form indeed a generalized Galois-Tukey connection, we
have to show that for all g : ω → Cω, D ∈ Dense(<ω2), and infinite X ⊆ ω

Ng ∩D is finite and γg(D) R [X]fin =⇒ [g]Fin R [fD,X ]Fin. (6)

However, if Ng ∩D is finite, then there exists k < ω such that

(∀n ≥ k)
([
ND(n)

]
M ≤ g(n) or

[
ND(n)

]
M ∧ g(n) = 0

)
,

from which (6) follows as in the conclusion of Theorem 4.4. □

Remark 4.9. The structure of the second part of the proof of Theorem 4.8 is
similar to that of Theorem 4.4, however using the density gives a sharper bound. In fact,
Theorem 4.4 is enough for the inequality r(ωCω/Fin) ≤ r+ cof(M), but not enough for
s(ωCω/Fin) ≥ min{s, add(M)}.

Corollary 4.10. r(ωCω/Fin) = r+ cof(M) and s(ωCω/Fin) = min{s, add(M)}.

Proof. The two equalities follow from Proposition 4.3, Theorem 4.6, and The-
orem 4.8. □

5. Ultrafilter numbers

This section contains some applications to the ultrafilter number of Boolean algebras,
which follow from the results of the previous section, in particular Corollary 4.10, as well
as from the parametrized diamond principle of Definition 2.7.

The following definition is standard: see, for instance, Monk [17, Definition (H)].

Definition 5.1. If B is an infinite Boolean algebra, let

u(B) = min{cof(⟨U,≥⟩) | U is a non-principal ultrafilter on B}

be the ultrafilter number of B. Following the usual notation, let u = u(P(ω)/fin).

Remark 5.2. It is immediate from the definitions that r(B) ≤ u(B) whenever B is
infinite.

The next proposition implies that, in many cases, the ultrafilter number is preserved
by reduced powers.
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Proposition 5.3. If B is a Boolean algebra, then u ≤ u(ωB/Fin). If, in addition,
B is complete, atomless, and c.c.c., then u(ωB/Fin) = u(B).

Proof. First, to show that u ≤ u(ωB/Fin), consider the functions
φ− : P(ω)/fin → ωB/Fin and φ+ : (ωB/Fin)+ → (P(ω)/fin)

+ defined in the proof of
Proposition 4.3. Given an ultrafilter U on ωB/Fin, it is easy to check that φ−1

− [U ] is
a non-principal ultrafilter on P(ω)/fin and that, if C is cofinal in ⟨U,≥⟩, then φ+[C] is
cofinal in

〈
φ−1
− [U ],≥

〉
.

We assume henceforth that B is a complete atomless c.c.c. Boolean algebra and
deduce that u(ωB/Fin) = u(B). For the inequality u(B) ≤ u(ωB/Fin), consider the
homomorphism of Boolean algebras

ê : B −→ ωB/Fin
b 7−→ [⟨b | n < ω⟩]Fin

.

If U is any ultrafilter on ωB/Fin, then ê−1[U ] is an ultrafilter on B, since ê is a homo-
morphism. Moreover, ê−1[U ] is not principal, since B is atomless. Finally, if C is cofinal
in ⟨U,≥⟩, then the set {∨

{f(n) | n ≥ k}
∣∣∣ [f ]Fin ∈ C and k < ω

}
is cofinal in

〈
ê−1[U ],≥

〉
. This argument establishes that u(B) ≤ u(ωB/Fin) + ℵ0 but,

since the latter is clearly infinite, we can conclude that u(B) ≤ u(ωB/Fin).
Lastly, we prove that u(ωB/Fin) ≤ u(B). If V is a non-principal ultrafilter on B,

then there exists a maximal antichain in B disjoint from V , which we can enumerate as
{an | n < ω}. It follows that

U =
{
[f ]Fin ∈ ωB/Fin

∣∣∣ ∨{f(n) ∧ an | n < ω} ∈ V
}

is a non-principal ultrafilter on ωB/Fin. Furthermore, if D is cofinal in ⟨V,≥⟩, then
clearly

{[⟨d ∧ an | n < ω⟩]Fin | d ∈ D}

is cofinal in ⟨U,≥⟩. □

Recall that a Boolean algebra B is Borel if the domain of B is a Borel subset of ω2

and, moreover, the order relation ≤ and the incompatibility relation ⊥ are Borel subsets
of ω2×ω2. For the purpose of the next theorem, however, we shall need a stronger notion
which we call “Borel-homogeneity”.

Definition 5.4. A Boolean algebra B is Borel-homogeneous if:

• B is a Borel Boolean algebra,

• the meet operation ∧ : B× B → B is a Borel function,

• for each b ∈ B+ the relative algebra B ↾ b is isomorphic to B via a Borel function.
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Moore, Hrušák, and Džamonja [18, Theorem 7.8] showed, in particular, that
♢(R(P(ω)/fin)) implies u = ℵ1. We generalize their argument from P(ω)/fin to reduced
powers of Borel-homogeneous Boolean algebras.

Theorem 5.5. If B is a Borel Boolean algebra, then R(ωB/Fin) is a Borel re-
lational system. If, in addition, B is Borel-homogeneous, then ♢(R(ωB/Fin)) implies
u(ωB/Fin) = ℵ1.

Proof. The first assertion is straightforward from the definitions. Suppose in
addition that B is Borel-homogeneous and fix, for each b ∈ B+, a Borel isomorphism
φb : B → B ↾ b. For convenience, for each ω ≤ δ < ω1 fix also a bijection eδ : δ → ω. Let
us assume ♢(R(ωB/Fin)) holds: in order to define a Borel function F : <ω12 → ωB, it
will be sufficient to define F on a Borel subset of δ2 for every ω ≤ δ < ω1, then extend
F to <ω12 by assigning a constant value elsewhere.

Following the notation of the proof of [18, Theorem 7.8], the domain of F consists
of pairs ⟨U⃗ , C⟩, where:

• U⃗ = ⟨Uξ | ξ < δ⟩ for some ω ≤ δ < ω1;

• for all ξ < δ, Uξ ∈ ωB \ Fin;

• for all ξ < η < δ, [Uη]Fin ≤ [Uξ]Fin;

• C ∈ B.

For every such U⃗ , construct recursively an increasing sequence ⟨ki | i < ω⟩ of natural
numbers such that

∧
j≤i Ue−1

δ (j)(ki) > 0 for all i < ω, and define

B(U⃗)(ki) =
∧
j≤i

Ue−1
δ (j)(ki). (7)

Next, for every pair ⟨U⃗ , C⟩ in the domain of F , we let

F (U⃗ , C) : ω −→ B

i 7−→ φ−1

B(U⃗)(ki)

(
B(U⃗)(ki) ∧ C(ki)

) .
By ♢(R(ωB/Fin)), there exists g : ω1 → ωB \ Fin such that for every f : ω1 → 2

the set {α < ω1 | [F (f ↾ α)]Fin R [g(α)]Fin} is stationary. Now, using the function g, we
construct recursively a sequence ⟨Uξ | ξ < ω1⟩ such that:

1. for all ξ < ω1, Uξ ∈ ωB \ Fin;

2. for all ξ < δ < ω1, [Uδ]Fin ≤ [Uξ]Fin.

First of all, let U0 : ω → B be the function with constant value 1 and, for each n < ω,
let Un+1 = ⟨0⟩⌢Un. For the general case, suppose ω ≤ δ < ω and let U⃗ = ⟨Uξ | ξ < δ⟩
denote the sequence constructed so far. We define Uδ : ω → B as follows: for every i < ω,

Uδ(ki) = φB(U⃗)(ki)
(g(δ)(i)),
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where B(U⃗)(ki) is defined as in (7) for the sequence U⃗ . If n ∈ ω \ {ki | i < ω}, then
we let Uδ(n) = 0. Since g(δ) ∈ ωB \ Fin, there exist infinitely many i < ω such that
g(δ)(i) > 0; for every such i, we also have Uδ(ki) > 0, as φB(U⃗)(ki)

is injective. Therefore
Uδ ∈ ωB \ Fin and condition (1) is preserved. To check condition (2), take ξ < δ and
observe that for all i ≥ eδ(ξ)

Uδ(ki) ≤ B(U⃗)(ki) ≤ Uξ(ki),

hence [Uδ]Fin ≤ [Uξ]Fin. This completes the recursive construction of the sequence ⟨Uξ |
ξ < ω1⟩.

Now, we define

U = {[f ]Fin ∈ ωB/Fin | there exists ξ < ω1 such that [Uξ]Fin ≤ [f ]Fin}.

It is easy to see that U is a filter on ωB/Fin; to verify that U is in fact an ultrafilter, let
C : ω → B. Unravelling the coding, choose a function f : ω1 → 2 such that f ↾α =

〈
⟨Uξ |

ξ < α⟩, C
〉

for each α < ω1. By stationarity, there exists some δ < ω1 such that, denoting
for simplicity U⃗ = ⟨Uξ | ξ < δ⟩, we have

[g(δ)]Fin ≤
[
F (U⃗ , C)

]
Fin

or [g(δ)]Fin ∧
[
F (U⃗ , C)

]
Fin

= 0.

In case [g(δ)]Fin ≤
[
F (U⃗ , C)

]
Fin

, then for all but finitely many i < ω

g(δ)(i) ≤ φ−1

B(U⃗)(ki)

(
B(U⃗)(ki) ∧ C(ki)

)
.

Applying the isomorphism φB(U⃗)(ki)
to both sides of the above inequality, we get

Uδ(ki) ≤ B(U⃗)(ki) ∧ C(ki)

and, consequently, [Uδ]Fin ≤ [C]Fin. A completely analogous argument shows that, if
[g(δ)]Fin ∧

[
F (U⃗ , C)

]
Fin

= 0, then [Uδ]Fin ≤ ¬[C]Fin. In conclusion, U is an ultrafilter
on ωB/Fin which, by construction, contains a cofinal subset of cardinality ℵ1. It follows
that u(ωB/Fin) ≤ ℵ1.

For the reverse inequality, it is enough to use Proposition 5.3 and conclude that
ℵ1 ≤ u ≤ u(ωB/Fin). □

We would like to show that Cω satisfies the hypothesis of Theorem 5.5.

Proposition 5.6. The Cohen algebra is Borel-homogeneous.

Proof. Since the result follows from standard arguments, we only sketch the main
ideas. Fix a recursive enumeration <ω2 = {sn | n < ω}. Let us say that x ∈ ω2 is a
canonical code if:

1. for all n,m < ω, if x(n) = 1 and sn ⊆ sm, then x(m) = 1;

2. for all n < ω, if for every s ∈ <ω2 with sn ⊆ s there exists m < ω such that s ⊆ sm
and x(m) = 1, then x(n)=1.
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The following claim is an immediate consequence of the definition.

Claim 1. The set {x ∈ ω2 | x is a canonical code} is Borel.

Now, for every canonical code x, let

Ox =
⋃

{Nsn | x(n) = 1}

be the open subset of ω2 coded by x. This way, each element of Cω is represented by a
canonical code, as in the following claim.

Claim 2. For every X ∈ B(ω2) there exists a canonical code x ∈ ω2 such that the
symmetric difference X △Ox is meagre.

Proof of Claim 2. Given X ∈ B(ω2), define x : ω → 2 by:

x(n) = 1 ⇐⇒ Nsn \X is meagre.

To check that x is a canonical code, condition (1) is easy: if Nsn \ X is meagre and
sn ⊆ sm, then of course Nsm \ X is meagre. Towards condition (2), suppose Nsn \ X
is not meagre: we shall find an extension s ⊇ sn such that for every further extension
sm ⊇ s the set Nsm \X is not meagre. By the Baire property of Nsn \X, there exists
an open set A ⊆ ω2 such that (Nsn \X)△ A is meagre. Since Nsn \X is not meagre,
in particular Nsn ∩ A cannot be empty, hence there exists s ∈ <ω2 such that sn ⊆ s

and Ns ⊆ A. It follows that Ns ∩X is meagre and, therefore, for every sm ⊇ s the set
Nsm \X is not meagre, as we wanted to show.

Finally, we prove that both Ox \X and X \Ox are meagre. The first set is meagre
since, by construction, it is a countable union of meagre sets. For the second, we use the
Baire property of X to find an open set O ⊆ ω2 such that X△O is meagre. Then easily
O ⊆ Ox, which gives that X \Ox ⊆ X △O, whence the conclusion follows. □

Next, we prove that the order relation on Cω corresponds to the pointwise order
relation on canonical codes.

Claim 3. If x and y are canonical codes, then

(∀n < ω)(x(n) ≤ y(n)) ⇐⇒ Ox \Oy is meagre.

Proof of Claim 3. The left-to-right implication is clear. For the reverse im-
plication, suppose there exists n < ω such that x(n) = 1 but y(n) = 0. Since y is a
canonical code, by condition (2) there exists an extension s ⊇ sn such that for every
further extension sm ⊇ s we have y(m) = 0. Combined with condition (1), this implies
that for all m < ω, if y(m) = 1 then sm and s are incompatible. Hence Ns ⊆ Ox \ Oy,
and so Ox \Oy is not meagre. □

It is also possible to obtain the incompatibility relation on Cω, by means of the
following equivalence for canonical codes x and y:
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(∀n < ω)(x(n) = 0 ∨ y(n) = 0) ⇐⇒ Ox ∩Oy is meagre.

Without extra effort, the meet operation, and in fact all Boolean operations on Cω, can
be coded as operations on canonical codes.

Finally, Borel-homogeneity follows from the observation that the Boolean algebra of
clopen subsets of the Cantor space is homogeneous and, furthermore, the isomorphisms
witnessing homogeneity can be taken to be Borel. By a density argument, which we leave
to the reader, this extends to the whole algebra Cω. □

The main consequences for the ultrafilter number of Cω are summarized in the
following corollary.

Corollary 5.7.

1. cof(M) ≤ u(Cω);

2. R(ωCω/Fin) is a Borel relational system, and ♢(R(ωCω/Fin)) implies that
u(Cω) = ℵ1.

Proof. The first point follows from Corollary 4.10, Remark 5.2, and Proposi-
tion 5.3. The second point follows from Proposition 5.3, Theorem 5.5, and Proposi-
tion 5.6. □

From previous work [8, Section 3], we already knew that u ≤ u(Cω) and that consist-
ently u(Cω) < non(N ). Therefore, the relation between u(Cω) and the cardinal invariants
in Cichoń’s diagram is now completely determined.
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