VOLUME GROWTH OF KAHLER-EINSTEIN METRIC OVER
QUASI-PROJECTIVE MANIFOLDS WITH BOUNDARY OF
MAXIMAL OR MINIMAL KODAIRA DIMENSION

SHIN KIKUTA

ABSTRACT. In this paper, we make some progress about a boundary behavior
of the almost-complete Kahler-Einstein metric of negative Ricci curvature on a
quasi-projective manifold with semiample log-canonical bundle. First its volume
growth near the boundary is investigated in terms of the Kodaira dimension of the
boundary, and then we characterize the boundary to be of general type via the
volume growth. Moreover the volume growth is determined in the case of a Calabi-
Yau boundary. We also affirmatively solve a modified version of the conjecture
suggested previously by the author about the residue of the Kéhler-Einstein metric
if the boundary is a smooth finite quotient of an abelian variety.

1. INTRODUCTION

This paper is a continuation of our work in [27] about a boundary behavior of
the almost-complete Kahler-Einstein metric of negative Ricci curvature on a quasi-
projective algebraic manifold with semiample log-canonical bundle. Our concrete aim
is to find completely a relation between the boundary behavior of the metric and a
degeneration of positivity for the log-canonical bundle on the boundary divisor. For
such purpose, in [27], we propose a conjecture that the residue of the metric along
the divisor coincides with the generalized Kahler-Einstein metric on the boundary
in the sense of Song-Tian and H. Tsuji, and actually confirmed the truth when the
boundary is of general type. In this paper, we further focus on its volume growth
in the case of a Calabi-Yau boundary as well as a boundary of general type. It
is already known that the volume of the Kahler-Einstein quasi-projective manifold
with a general boundary divisor is explicitly given by the self-intersection number
of the log-canonical divisor. So it is quite necessary to investigate the volume form
of the Kahler-Einstein metric near the boundary. The author hopes that it might
eventually lead to provide useful differential geometric techniques for the theory
of quasi-projective algebraic manifolds in order to find out more applications to
algebraic geometry such as a logarithmic version of Miyaoka-Yau inequality and a
numerical characterization of ball quotients ([28], [42], [45], [3]).
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For an n-dimensional projective algebraic manifold X and a smooth prime divisor
D of X, it was shown by R. Kobayashi [28] that if its log-canonical bundle K<+ D is
ample, there exists the unique complete Kahler-Einstein metric wy of negative Ricci
curvature on the quasi-projective manifold X = X \ D with Poincaré growth near
the boundary D. In his discussion, the volume growth is also determined as follows:
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where V is a continuous nondegenerate volume form on X, ¢ is a canonical section
of D and ||o|| means its norm by a smooth Hermitian metric. Note that the induced
distance from a fixed point is equivalent to the function log(—log ||o]|?). In [37],
G. Schumacher investigated the boundary asymptotics of wx itself. It was proved
there that after the metric is restricted to a (local) complex hypersurface parallel to
D, the limit of the metric equals the Kahler-Einstein metric wp of negative Ricci
curvature on D as the hypersurface approaches D. Even in a more general situation,
we consider the limit and call it the residue of wy along D in this paper if the limit
exists. We also denote the limit by Resp wx as in [53]. Hence the above result due
to G. Schumacher is formulated as

R,GSD wx = wWp.

This is the 0-th order term of the asymptotic behavior, but generalizations to higher
order asymptotics were established by D. Wu [48], [49], Rochon-Zhang [36], Jiang-Shi
[24]. Moreover interesting asymptotic properties were also studied by H. Auvray [2]
for constant scalar curvature or extremal Kéahler metrics of Poincaré type.

On the other hand, Tian-Yau [42], H. Tsuji [45], S. Bando [3] and D. Wu [49] gen-
eralized the existence and uniqueness result of the almost-complete Kahler-Einstein
metric wy to the case when the positivity of the log-canonical bundle K+ D may be
degenerate on the boundary, that is, K5+ D is nef, big and ample modulo D. In this
case, the Kodaira dimension of the canonical bundle K of D actually measures how
degenerate the positivity is because of the adjunction formula (K + D) |p = Kp.
We would like to clarify geometric properties of wy in terms of the Kodaira dimen-
sion such as the completeness, the residue along D and the volume growth near D.
However it is not trivial since the metric may not have bounded geometry.

When D is of general type, the author generalized the above volume formula and
the residue formula by using the normalized Kéhler-Ricci flow in [27]. Precisely
speaking, the usual Kéhler-Einstein metric wp on D never exists in this case, and
so wp has to be replaced with the singular Kéhler-Einstein metric or current of
D. In the volume growth formula, we need to allow V' to be non-smooth and have
zeros in the non-ample locus of Kp. Such a semi-positive top form possibly vanishing
somewhere is said to be a pseudo-volume form, and we do not assume any regularities
for a pseudo-volume form here. In this paper, we prove conversely that this volume
growth formula characterizes the boundary to be of general type as follows.



Theorem 1.1 (Proposition 2.1 in Section 2.1). Let X be a projective manifold of
dimension n and D be a smooth prime divisor on X. Set X = X \ D. Suppose that
the log-canonical bundle K~ + D 1is semiample and ample modulo D.
Assume that the Kdhler-Finstein metric wy has the volume growth near D of the
form
v
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where V is a bounded pseudo-volume form on X whose zero locus is contained in a
proper pluripolar subset of D, o is a canonical section of D and ||o|| means its norm
by a smooth Hermitian metric. Then the Kodaira dimension of the canonical bundle
of D is equal to n — 1, that is, D is of general type.

(wx)"

We will also attempt to generalize these formulae due to R. Kobayashi and G. Schu-
macher to other degenerate cases of positivity on the boundary for the log-canonical
bundle. In this paper, we mainly treat the Calabi-Yau boundary D.

The key point to deal with this case is to construct a suitable reference metric
for the Kahler-Einstein metric wx using a structure of neighborhood of D and the
Calabi-Yau metric on D. A similar construction is also studied in [16]. It is shown
in Proposition 3.1 that the reference metric has bounded geometry in the sense of
Cheng-Yau if and only if D is a finite quotient of an abelian variety or equivalently
flat. The notion of bounded geometry in the sense of Cheng-Yau, which is also
called quasi-bounded geometry, is related to such a property that curvatures are
bounded. Therefore when D is flat, we can apply the technique of analysis for the
complex Monge-Ampere equation, which is developed by G. Schumacher [37], and
can determine the volume growth of wx as
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where the notation is the same as in the nondegenerate case. In fact, when X be a
smooth toroidal compactification of an n-dimensional complex hyperbolic manifold
X, the Kahler-Einstein metric induced from the Poincaré-Bergman metric on the
complex unit ball satisfies this volume growth ([33]). A higher order asymptotics in
a local situation of ours is also established by Fu-Hein-Jiang [18].

Our next result in this paper is that the same volume growth holds for non-flat
Calabi-Yau boundaries.

Theorem 1.2 (Theorem 2.3 in Section 2.1). Let X be an n-dimensional projective
manifold and D be a smooth prime divisor on X. Set X = X \ D. Suppose that the
log-canonical bundle K + D 1is semiample and ample modulo D.
If the Kodaira dimension of D is zero, the Kdhler-Finstein metric wx has the
following volume growth :
0 Vv
lo]]?(—log [|o[?)"**

(wx)



where V' is a bounded volume form on X, o is a canonical section of D and ||o||
means its norm by a smooth Hermitian metric.

Since the reference metric never has bounded geometry in the sense of Cheng-Yau
unless D is flat, we consider to deform the Kahler-Einstein metric by the Kahler-Ricci
flow or the Monge-Ampere flow according to [27], which has bounded geometry in
the sense of Cheng-Yau at any finite time. This deformation corresponds to making
a > 0 approach 0 for K+ D —aD. Since for small a > 0, K+ D —aD is ample on
X, even on the boundary D, the Kihler-Ricci flow at every finite time has the same
volume growth as in the nondegenerate case. It is necessary to estimate the solution
to the Monge-Ampere flow in a uniform manner with respect to a > 0 to establish
the above volume growth. Here we focus on connecting carefully the volume growth
in the nondegenerate case and the expected volume growth stated in this theorem.
In a local situation of ours, several related results are also proved by Datar-Fu-Song
[11], but the author has not known yet that our theorem is derived directly from
their results.

The author hopes that the Kodaira dimension k = k(Kp) of D influences a power
of —log ||o||* in a volume growth of the Kahler-Einstein metric, and some conjecture
will be also suggested in this paper.

Another main goal of this paper is to solve affirmatively a certain stronger version
of the conjecture on the residue, which is proposed in [27], when the boundary is
flat. To be more precise, it is stated as follows:

Theorem 1.3 (Theorem 2.6 in Section 2.2). Let X be a projective manifold of di-
mension n and D be a smooth prime divisor on X. Set X = X \ D. Suppose that
the log-canonical bundle K+ + D is semiample and ample modulo D.

We additionally assume that D is a smooth finite quotinet of an abelian variety.
Then the weighted residue Resp {(—log ||o||?)wx} along D coincides with the Ricci-
flat Kdhler metric on D which corresponds to the (n+ 1)-times tensor product of the
dual of the normal bundle of D. Here o is a canonical section of D and ||o|| means
its norm by a smooth Hermitian metric.

As mentioned above, the additional assumption on D is equivalent to the bounded
geometry condition in the sense of Cheng-Yau so that Schumacher’s technique is also
applicable to get this.
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Throughout this paper, let X be an n-dimensional projective manifold and D its
smooth prime divisor, and set the quasi-projective manifold X = X \ D. We fix a
nonzero holomorphic section o of the line bundle O(D) associated with D such that
div(c) = D. K and Kp denote the canonical bundles of X and D, respectively.



Furthermore in this paper, we always assume the following on positivity of the log-
canonical bundle K+ + D:

K~ + D is semiample, big and ample modulo D.

Here we say that a line bundle L over X is ample modulo D if its non-ample locus
B, (L) is contained in D. Note that the bigness automatically follows from this
condition (refer to Tian-Yau [42], S. Bando [3], Di Cerbo-Di Cerbo [13], [14] for
further properties of positivity modulo D). According to [42, Lemma 2.7], it follows
from the positivity assumption that for an arbitrarily small positive number o > 0,
(K + D) — aD = K+ (1 — a)D is ample on X. We often consider the case
when the Kodaira dimension of D vanishes, namely D is so-called Calabi-Yau, and
then the dual of the normal bundle Np is ample. Moreover Kawamata’s theorem
([25, Theorem 8.2]) implies that (Kp)®™ is a trivial line bundle for some integer
m > 0.

2. PROPERTIES OF KAHLER-EINSTEIN METRIC NEAR THE BOUNDARY

In this section, we summarize several results about a boundary behavior of the
almost-complete Kahler-Einstein metric of negative Ricci curvature on X in our
specific situation, and some of them might be unknown or not written anywhere.
The metric actually exists in more general settings, and see [3], [28], [29], [42], [48],
[49] or [51] for further information on existence results.

2.1. Volume growth of Kahler-Einstein metric. In this subsection, we focus on
a volume growth of the almost-complete Kahler-Einstein metric wx on X, that is, the
growth of the Kéhler-Einstein volume form (wyx)™ near the boundary D. Especially,
our aim is to discover a relation between the growth and the Kodaira dimension
k= k(Kp) € {0,1,---,n — 1} of the variety D. Afterward h denotes a smooth
Hermitian metric of Ox(D) such that p = —log||o||* > 0, where || - || stands for the
norm with respect to h. We use h hereafter also as a coefficient function with respect
to a local trivialization.

We will consider a Kahler-Einstein metric on X as a main subject in this work.
In this paper, we restrict ourselves to the case of negative Ricci curvature and so the
word “Kéahler-Einstein metric” is always used to mean a Kéhler metric w satisfying
the following normalized equation:

—Ric(w) = w,

1 _

where Ric(w) = —2—\/—188 logw™. In fact, Tian-Yau [42], H. Tsuji [45], S. Bando
7r

[3] and D. Wu [49] established the existence of such a canonical metric in our setting,.

Theorem 2.1 (Tian-Yau [42], H. Tsuji [45], S. Bando [3], D. Wu [49]). There ex-
ists a unique almost-complete Kahler-Einstein metric wx whose cohomology class on
X is equal to ci(Kx + D) as a current. Moreover the volume of the non-compact

Riemannian manifold (X, wy) is finite and actually equal to the intersection number
(K + D).



The completeness of the resultant metric wx has not been known to hold yet, al-
though S.-T. Yau [51] provided a very rough and insufficient argument for the proof.
We note that the results of this paper are independent of the completeness.

The proof of the existence of wy due to Tian-Yau [42] and S. Bando [45] only
yields that the Kéhler-Einstein volume form is of the form
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Here V; is a possibly non-smooth pseudo-volume form on X which possibly has zeros
along D owing to the degeneracy of the positivity of K&+ D on D. A crucial point
is that their arguments are not enough to clarify what shape zeros of V| takes. If the
shape is understood well, it is possible to calculate also the residue Respwy along
D, which appeared in [27, Theorem 1.1] as the limit along the directions tangential
to D. Indeed, since

wy = —Ric(wx) = %v—l@glog

= —_18510gﬁ +2
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we can calculate the residue as
-1 - Vi
Resp wx = lim ——090 log -0
e—0 21 h (0=0)

if the limit exists. Refer to Section 2.2 for its definition and more details about the
residue.

First let us present several examples in which a volume growth or a shape of zeros
of V' is adequately known.

Example 2.1 (R. Kobayashi [28], G. Schumacher [37]). When K+ + D is ample
on X, K% + D is nondegenerate and x(Kp) = n — 1. Then it follows that for an
appropriate nowhere vanishing volume form V;, the Kahler-Einstein volume form is

described as
Vo Vo
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As explained in Example 2.6, Respwyxy = %851%%‘ p is the smooth Kahler-
Einstein metric on D.

Example 2.2 (R. Kobayashi [29]). When X is 2-dimensional, it holds whether the
log-canonical bundle K+ + D is ample on X or D is an elliptic curve. The former
case is included in the previous example. In the latter case, i.e., k(Kp) = 0, it is
proved that 2 = pVj is bounded and vanishes nowhere and

\Z Q Q
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Hence €2 will appear again in Example 2.7, and it will be stated there that the residue
Respwy = %8510g% |p = 0 holds.

Example 2.3 (N. Mok [33]). Let X be a smooth toroidal compactification of an n-
dimensional complex hyperbolic manifold with an exceptional divisor D. Then D is
a disjoint union of abelian varieties, namely any component of D satisfies k(Kp) = 0.
Note that this pair (X, D) satisfies our positivity condition on K+ + D (for example
see Main Theorem in [33] or [14]).

Since the Kahler-Einstein metric wy is a metric induced by the Poincaré-Bergman
metric on the complex unit ball, it is possible to calculate explicitly (wx)™ near D.
N. Mok carried out it in [33, Section 1] to show that Q@ = p"~'V} is bounded and
vanishes nowhere, and that the volume form associated with wyx can be written as

O L 2
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Furthermore as mentioned in Example 2.8, Respwx = %8510,@;% | p = 0 and

Resp (pwx) = (n+ 1)%851@; h}D.

Example 2.4 ([27]). Suppose X satisfies that (K + D)|p = Kp is big, namely
k(Kp) =n — 1. In this case, the author approximated wx by a normalized Kéahler-
Ricci flow to obtain a volume growth. In fact, it is proved in the proof of [27,
Theorem 1.1] that Vj degenerates only on the non-ample locus B (Kp) C D of Kp
and the volume form grows as

1% 1%
(wx)" 0 0
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Moreover it will be explained in Example 2.9 that Respwx = %85 logvf
equal to the singular Kahler-Einstein metric wp on D.

Example 2.5 (Wang [47], Yau-Zhang [53]). Let X be a smooth toroidal compact-
ification with simple normal crossing boundary divisor D for the Siegel modular
variety X = H,/T" (¢ > 2). Here H, is the Siegel upper half space of degree g and
I' C Sp(g,Q) is a neat arithmetic group . The compactification of X depends on a
family of fans (or polyhedral decompositions) for the open cones consisting of positive
definite symmetric matrices, which is compatible with the induced group action. It
is known that this pair (X, D) fulfills our positivity condition on K<+ D ([34, The-
orem 3.2]). See [1], [34], [35], [17] for several definitions and fundamental properties
concerning the toroidal compactification. Further the Kahler-Einstein metric wx on
X is a metric induced from the Poincaré-Bergman metric on H,
V=1 =
X Ton 90log (det Im 7)9+1
= g;—rltr (V=1(Im 7)"'dr A (Im 7)7'd7), 7= [ry] € H,.




From the invariance by Sp(g, R), we have

oy (gSJ;l) g(g+1)

(wx) 2 = /\\/ Ldr; A dTij

@! (det Im 7)o+
and also
—Ric (wx) = £(‘9810g (wx)g< d wx.
Notice that the boundary divisor has several components Dy, Do, - -+, Dy and they

possibly intersect each other differently from our situation. A behavior of wx near
intersection points of boundary components is studied in [47], [53] from a combinato-

rial point of view about the family of fans. On the other hand, we consider at present
g(g+1)

a behavior of the Kahler-Einstein volume form (wx)“ only near D;\|J 2i(DiND;)
for each component D;. Let us explain it for readers’ convenience, following [47] and
[53, Section 3.

Thanks to the resolution of the congruence subgroup problem ([5], [4]), I" contains
the principal congruence subgroup I'y(k) = {y € Sp(9,Z) ; v = I, mod k} of
some level £k > 3 as a subgroup of I' with finite index. Hereafter take k to be
minimal among numbers satisfying this property. Therefore we have a new quotient
Y = H,/T,(k) and its toroidal compactification Y with respect to the same family
of fans. There also exists a natural finite holomorphic maps p : ¥ — X which
extends the canonical étale covering map Y = H,/I';(k) - X = H,/I" across the
boundaries. On the other hand, we have another compactification X* (or Y*) of
X (or Y') which is called the Baily-Borel-Satake compactification. The canonical
étale covering map Y = H,/I';(k) - X = H,/T" can be also extended across the
boundaries and we denote the map by p* : Y* — X*. Then it is known that we have
canonical holomorphic maps 7y : X — X* and 7y : Y — Y* between these different
compactifications. These maps satisfy the commutative diagram :

Y - X
1y Tx | .
vy 5 x
After recalling several facts about the boundary divisor in [47] and [53], we will
investigate the volume growth of wy (and also the residue of wy in Example 2.10).
(i) For each i = 1, 2, ---, N, D; has a fibration structure over the boundary
component M; = wx(D;) of X*. Moreover any singular fiber is contained in
Ui (DiNDj) C D;. Set DY = D; \ U(D’ N D;). We should note that D? and
JF
its open neighborhood does not depend on a choice of families of fans. Thus if
(0 = 0) C D?, the limit lir% wx|(o=¢) can be observed without using families of
€E—

fans. The same notation is also used and the same properties also hold for Y.



(i

(i)

For each boundary component E of Y with N = 7(E), a neighborhood of E°
is constructed as follows: assume that N° = 7(E°) is equal to v - H,_; /I'j_1 (k)
for some v € Sp(g,Z). Here H, ,/I'y_1(k) is the standard cusp with depth
1, that is, H,_; is regarded as a boundary component of H, consisting of all
!/

B ﬂ , 2/ € H,_; under an identification through the Cayley
transformation. Therefore since a neighborhood of E° is induced from that of
H,_1/T'y—1(k) via the action by v, it suffices to consider only the case v = I,
and especially N° = H,_;/T',_1(k). By the same reason, also for X, we only
treat the boundary component corresponding to the standard cusp of depth 1
and denote it by D in the rest of this example for simplicity unless otherwise
stated (D does not mean the whole boundary divisor from now).

Then we consider a holomorphic map to Y defined near H, ; x C9~! x {0} in
H,_; x C9~! x C, which is an extension across o = 0 of

matrices of type

7_/ 7J/

/ 1 —
(7—77- 70-)’_) |:|:t7_// 2ﬂ\’;_—110g0H GY—Hg/Fg(k‘), 07&0
The action on H, by T'y(k) induces the action on the domain H, ; x C/~! x C of
the map by the group I'y_1(k) X (kZ9~")? in the following way: for any element

Y= ([Z 2} , {ZLD i T, (k) x (KZ91)2,

a b m (7 o) = ar’ +b ™" +17m+n .o
c d|l’|n ’ ? T CT’+d’ C’T’-'-d y =Y )

where ¢, € C* is a constant depending on 7. Hence the above map descends on
the quotient space H,_; x C9~1 x C/T',_1 (k) x (kZ9~1)2. Tt is further known that
the resultant map is isomorphic from a neighborhood of the abelian fiber bundle
H,_ 1 x C971 x {0}/Ty—1(k) x (kZ9~1)? to a neighborhood of E°. Through this
isomorphism, H, 1 x CI~' x {0} /T ;1 (k) x (kZ971)* = N° =H,_;/T_1(k) cor-
responds to my : E° — N¢ as fiber bundles. Note again that this isomorphism
does not rely on a choice of a family of fans although the compactification Y of
Y =H,/T,(k) does globally.

On the other hand, as for X = H,/T" and the boundary divisor D corresponding
to the standard cusp of depth 1, we need minor changes in the definitions
of the isomorphism and the neighborhood of E° in (iii). We first consider a
holomorphic map to X defined near H, ; x C9~! x {0} Cc H, ; x C9~! x C
which is an extension across o = 0 of

7_/ 7_//

/ 7
(T » T 70) = |:|:t7_// 27rl\€/’?1 lOgO'
Here k’ is a positive integer by which k is divisible. Secondly, it suffices to replace
[y_1(k) x (kZ971)? with an arithmetic subgroup I of Sp(g — 1,Q) x (Q91)?
containing I';,_1(k) x (kZ9~")? as a subgroup with finite index.

]}EX:HJR o 0.



Among the constructed neighborhoods of E° and D°, the map p : ¥ — X
can be described in terms of the constructed isomorphisms as a canonical finite
covering map H, 1 x C9™' x C/T,_1 (k) x (kZ9~")? — H,_; x CI~' x C/T”" defined
by (7', 7",0) — (7', 7", 0%). Through this description of p over the boundaries
E° and D°, we have the following commutative diagram:

E°=H, , x C* 1T, (k) x (kz#71)? 25 D°=H, , x Co~ YT’
\l/ Ty X \l/
N® = Hy 1Ty 1 (k) T M°=H, /T,

Here T, _; consists of all parabolic elements of T for the standard cusp of depth
1. From this diagram, for any [7'] € N°, 73" (p*([7'])) is a smooth finite quotient
of the (g — 1)-dimensional abelian variety 7' ([7']) ~ C9~'/k7'Z9~' + kZ9~', in
particular a (¢ — 1)-dimensional abelian variety itself.

Let us start to calculate the volume form (wx) 45 pear D¢ = D;i\U,(DiND;)

for every boundary component D; of X. The invariance under Sp(g,R) and the
property (ii) lead that it is sufficient to deal only with the boundary component D
corresponding to the standard cusp of depth 1. On the neighborhood of D¢ defined
in (iii) and (iv), we have

g4l 9(924-1)

(55)

9(g+1) g(gT-H)' —
(wX> 2= Tm 7/ T g+l /\ V —].dTZ‘j VAN dTij
(det [ ; 1) i<5,(4,5)#(9,9)

Im ‘7" —£ log|o|

/\\/_d( \/_loga) /\d(—27r\k//__110g0>

g(g+1)
(k_’)2 (gsifrl) :
2m glg+1)y

= 2 : g1 /\ \Y4 _1d7—ij N d?lj AN vV —1d0' A dE

o2 (—%(det Im 7/)log |o| + H (7, T")> i<4,(i,4) #(9,9)

41 g(g;rl)
T g—l (g_ﬂ') T
(i_/) BQ(QT)' /\ \/ _1d7—ij AN dTij VARV, —1ldo Ndo
2 i<G,(65)#(9:9)

[CESY) (-1
g 92 +1-9 92

(det Tm 7)o |o[2( — log o] + 2% (det Im 7)1 H(r', 7))

Here H(7',7") is a polynomial with variables (7/,7"). Since D° has the fibration
structure 7y : D° = Hy_y x C97/T" — M° = H,_,/I",_, with fibers of (g — 1)-
dimensional abelian variety, we might regard the (logarithmic) Kodaira dimension
of D? as k = @.

10



In a general situation, the degeneration of the positivity for K+ + D is measured
by the Kodaira dimension «(Kp) € {0,1,---,n — 1} since the adjunction formula
(Kx + D)|p = Kp holds. Therefore the above examples lead us to expect that the
Kéhler-Einstein volume form satisfies the following growth with x(Kp):

Conjecture 2.1. For any k € {0,1,--- ,n — 1}, k(Kp) = k if and only if the
Kahler-Einstein volume form has an expression of
" Vv

= o

where h is a smooth Hermitian metric on Ox(D) and V is a bounded pseudo-volume
form on X whose zero locus is contained in a proper pluripolar subset on D.

Here we consider a pluripolar subset rather than an algebraic subset in anticipation
of a generalization to non-projective cases. An algebraic subset might fit our setting
in this paper more.

Next we discuss this conjecture for k = n — 1. Example 2.4 yields one implication
of the conjecture that the Kahler-Einstein volume form has the above expression with
k=n—1if kK(Kp) = n — 1. The next proposition means that the other implication
is also true, and this result is one of main theorems in this paper.

Proposition 2.1 (Theorem 1.1 in Introduction). If the Kdhler-Einstein volume form
1s of the form
v

~ lofi2p?”

then k(Kp) =n — 1, namely D is of general type.

(wx)"

Proof. We have to show the bigness of Kp, which is equivalent to k(Kp) = n — 1.
Thanks to the Kahler-Einstein equation, we have near D

J—1 _ N/ — |4
wxy = —Ric(wx) = 2—8810g(wx)” = 8810g o2

A Y=1551 h \/—1

=Vl 510 L 4 gz 90708 Op 1 0p
27 h P 27 0>

V- V \/ 1001og h

= —85’1 _—
h T

\/_

+ W(M dlogh A dlogh + cdlogh A de +&do A dlogh + do A dv).
We consider local coordinates (z/,0) = (2!,---2""! o) defined on the unit polydisc

A" near D, where o is also used as a coefﬁc1ent functlon of a sectlon o. Fori, j =1, 2,

ey — L 1 1 v

= 1’ we write Wi = 2x Bz’ﬁzj IOg hp?) Wiz = o7 821T IOg hp?? Woi = 37 90050 log hp??
19?2

|4
27 0005 108 hp?*

Wos =
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From our assumption about the volume growth, it follows that

V . .
W = (wx)" = n(\/—_lwﬁd,zZ Adz) A V—1w,zdo A do

al[?p
+n(n —1)(V-1w;zdz' Adz?)" 7> A (V=1wizd2" A do) A (V=1wydo A dZ')
= n(v —1wi3dzi A dZ)"E AV = 1weedo A do
—V—1In(n — 1)(V—1wzdz' Adz")"2 A (wied2") A (w;dZ) A V/—1do A d&
< n(vV—lwzdz' ANdZ )" AV =1wssdo A do.
The last inequality is related to Hadamard’s determinant inequality ([23]). This
inequality is further changed into

n—1
(U=€)>

Note that this inequality is regarded as an inequality for volume forms on the level
set (o = €) with 0 # 0. For fixed 2/ € A" ! f(2/,0) = loghV? is subharmonic in
o € A. Then by applying the Riesz decomposition theorem in potential theory to
the subharmonic function on A, we know that

f(Z,0)= 2/ G(r,0) il (2, )V —1dr A dT
, TEA ’ oToT ’

1 1% . .
_—— <n|wzdz" A\dZ’
|o|*p?wos h (0=¢) !

(1)

modulo addition of harmonic functions in o € A, where G(7, 0) is the Green function

for the unit disc A. Furthermore one can see from a calculation of aa:—a’; that modulo
addition of smooth functions,

1% D?log(V/h) 20%logh 2 dloghdlogh
log — — 21 =2 -z i = s
087, — e8P /TeA G(T"’){ 0107 o oror 2 or  or
2 dlogh 2 8logh+ 2 }\/—_1d7'/\dT

Tp? OT Tp? 0T |T]2p?

2
:2/ G(T,J)abg—(‘i/h)\/—ldT/\d?
N oToT

20%logh 2 dloghdlogh
2 [ @ ‘ d
- /TeA (T’U){p gror 2 or or
2 Ologh 2 Odlogh
+7’p2 o7 _'_T,OQ or

+2/TEAG(T,U){ 2 2 }\/—_1dr/\d?

7202 J7[2(~log|7]?)?

} v —=1dT AN dT

2
+2/ G(r,o —1dr N dT.
s TR o [
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?{—log(=log|r|*)} _ 1
oroT T |72 (=1log|T|?)2

Since the equality holds, we can apply the formula

/ G —log(—log|T*)} =\ o _ log(— log |o[?)
oroT

to the last term. Then since log % is also smooth in o, we get, modulo addition

of smooth functions,

2
1
logK = 2/ G(r, a)wv—lcﬁ/\cﬁ
h reA oToT

20%logh 2 Ologhdlogh
2 G —
*[@ Ud{p0@7+ﬂ or  or
2 Jlogh 2 0Ologh
Tp? OT Tp? 0T

2 2
+ Q/TEA G(1,0) { EEE 5 2}\/—1d7 A dT.

|7[2(=log |7[?)

} v —=1dr A dT

An important notice is that G(7,0) = — log |7 — | holds modulo addition of bounded
functions when o, 7 sufficiently close to 0. One can observe that the second term on
the right hand side is bounded near the origin ¢ = 0 € A. Furthermore, from the
calculation

2 2 _ —2log h(log h + 2log|T|?)
TPp?  IrP(=loglr?)* [P (= log|7]?)?

Y

the third term on the right hand side is bounded near the origin ¢ = 0 € A because
1/2
0 (logr
functions near the origin,

sdr < co. Combining them, we have that, modulo addition of bounded

Vo, 9?log(V/h) _
log ﬁ(z o) = Q/TGA G(r, U)W(Z ,T)V —1dr N dT.

Denote the zero set of V' by Z which is contained in some proper pluripolar subset
of D. Then for any 2’ € Z, log %(z’, o) is bounded as ¢ — 0, and so

‘Tpp?w

prr =l CRLM g

dr = oco. This successively leads to for 2’ € Z a convergence

1 2] 2]
— (|U|2 20" log(V/h) 2|0|2pm

. 1/2
as 7 — 0 since fo TlogT

2)  |ol*p'wos(?,0) =

27 Jodo llogosed
1 1 1 1
1200 |28 ogh 0 o§h+258 o§h+208 ogh_i_2 1
Jo Jo Oo T
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as ¢ — 0. On the other hand, we have
1 [(0*1log(V/h) N 20%logh 2 dloghdlogh
Ws=— L -—+ = . — .
v 2 0207’ p 0z10z7  p? 0z O0F
It is immediate from the precompactness of plurisubharmonic functions uniformly

bounded above that %85 log(V/h)| , makes sense as a closed semipositive (1,1)-
current on D, and also that passing to a subsequence, we have the weak convergence

V—1lwgdz" A dZ - - \/2—;7185 log(V/h)|D on D as € — 0. Therefore their wedge

product behaves from [6, Proposition 2.1] as

n—1 = n—1
) < (—_185 log 14 >
(0=¢) D/ ac

2 h

e—0

(3) lim sup (\/ —1wﬁdzi A dZ

on D, where ac means the absolutely continuous part. If we take a limit in the
inequality (1) as € — 0, then we find from (2) and (3) that

n—1
< (5 ome] )
D D/ ac

1 _
——00log —
2T ©8 h
on D\ Z. This inequality holds even on the whole boundary D since V' vanishes
on Z. Here %! p can be thought of as a pseudo-volume form, say Vp, on D. Note
that Vp has zeros on Z. Then the above inequality means that the semipositive
(1,1)-current 2£7r185 log Vp € ¢1(Kp) satisfies

— n—1
(4) <2—_135 log VD> > v,
m ac n

Vv
—

h

and this can conclude the bigness of K as desired thanks to the following theorem
due to S. Boucksom:

Theorem 2.2 (Theorem 1.2 in [6]). Let L be a pseudoeffective line bundle on a
compact Kahler manifold M. Then the volume of L satisfies

vol(L) = max/ (Toe)"
T Jum
for T ranging among all closed positive (1,1)-currents in cy(L).

Indeed, if this formula is applied with M = D, L = Kp and T = %85 log Vp,
then (4) implies

n—1
V=1 _
(—8810gVD> > Z/ Vp > 0.
2 ac D

n

vol(Kp) > /

D

Since the condition vol(L) > 0 is equivalent to the bigness of L, we can finally achieve
that Kp is big. dJ
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The inequality (4) can be actually shown to be the equality in [27, Theorem 1.1].

Hence this Vp is the singular Kahler-Einstein volume form, and g@g log Vp is the
singular Kahler-Einstein metric on D.

The main theorem for volume growth mentioned at Introduction provides an af-
firmative solution for one implication of Conjecture 2.1 in the case of kK = 0. We
restate it again with our notation.

Theorem 2.3 (Theorem 1.2 in Introduction). If D is Calabi- Yau, namely the Ko-
daira dimension K(Kp) = 0, then the Kdhler-Einstein volume form is described as
n Vv

lor||?pm+t

where V' is a bounded volume form on X which vanishes nowhere.

(wx)

The proof will be given in Section 4.2. To show the converse statement has not
succeeded yet, and we will investigate it in a forthcoming paper.

2.2. Residue of Kéahler-Einstein metric. In this subsection, we consider the limit
of the Kéahler-Einstein metric after restriction to a complex hypersurface tangent to
the boundary as the hypersurface is made to approach the boundary. This limit is
investigated in [37], [53], [27].

Here and hereafter we use o also as a coefficient function of a section ¢ with
respect to a local trivialization of the line bundle Ox(D). We take any holomorphic
local coordinates (2!, 22, -+, 2""!, 2") of X near D with 2" = o, and denote a local
smooth hypersurface parallel to D by (o =€) = {(2',2%,--- 2" 0); 0 = €} for
every small complex number €. We would like to determine what is the limit of
w X\(Uzﬁ) as € — 0. The limit is called as follows in this paper:

Definition 2.1. If the limit of wx|(y=e) as € — 0 ezists for any holomorphic local
coordinates (z',2%,--+ | 2" 71, 2") of X near D with 2" = o, the limit form or current

on D 1is called the residue along D and denoted by Resp wx.

It is immediate to know that Resp wy is a closed semi-positive (1,1)-form or (1,1)-
current on D. The name of the limit due to Yau-Zhang [53] is the restriction to D
although their notation Respwx is the same as ours. However it is impossible to
restrict wy to D in a usual sense since wy generally diverges along D. The reasons
of our naming are that the restriction map

Oy(Ky—i- D) — OD<KD)

which induces the adjunction formula is called the Poincaré residue, and that the
image of wx is expected to be the limit Resp wx.

The cohomology class ¢1(Kp) is known to contain the canonical metric, so called
the generalized Kahler-Einstein metric in the sense of Song-Tian and H. Tsuji. Let
k = k(Kp) € {0,1,--- ,n — 1} be the Kodaira dimension of Kp, which measures
how the positivity of Kp degenerates. For sufficiently large m, the pluri-log-canonical
morphism &y = <I>|m(K7+D)| is isomorphism on X, and the restriction ®x|p to D

15



of ®x coincides with the pluri-canonical morphism ®p = @i 1 D — Dean ([27,
Lemma 2.1]), where Dy, is the canonical model of D whose dimension is actually .
Define a smooth (1,1)-form 8y = ® ¢ x € ¢;(Kx + D) for some smooth Kéhler form
x on ®x(X), and then 6 is semipositive on X and positive on X.

Theorem 2.4 (Theorem 3.1 in [40], [46]). There exists a unique closed semipositive
(1,1)-current wp € ¢1(Kp) on D which is expressed as wp = P wean for some
closed semipositive current Wean = X|Deay + V=100Ucan 0N Dean with the following
conditions:

(o]

(1) Wean @5 @ smooth Kdhler form on DS, = Dean \ S, where S is an analytic subset
of Dean consisting of singular values of ®p and the singular locus of Dean,
(i) Wean Satisfies the equation on D

can-
_Ric(wcan) + wwp = Wean

where wwp 1s the Weil-Petersson metric on Dg,, associated with the Ricci-flat
fibration ®p,
(iil) Ucan @5 continuous on Deyy.
In the present paper, this current Wean and also wp = P wean are both called the
generalized Kdahler-FEinstein metric of Dea, and D, respectively.

They call weay the canonical metric or the canonical Kéhler current in [40] or [46],
respectively.

As we said, we expect that the residue Resp wy is also a representative of ¢1(Kp),
and it seems likely that Respwx should be canonical. Comparing with the gener-
alized Kahler-Einstein metric, we make a conjecture concretely about canonicity of
the residue of the Kahler-Einstein metric, which appears also in [27] without use of
the residue.

Conjecture 2.2 (Conjecture in [27]).
Resp wx = wp.
There exist several examples supporting the truth of this conjecture.

Example 2.6 (G. Schumacher [37]). G. Schumacher investigated this problem in
[37] when K+ + D is ample on X, namely its positivity is nondegenerate even on D.
He did not use the terminology “residue” there. Note that in this case, there also
exists the usual Kahler-Einstein metric wp on D thanks to the adjunction formula
(K% + D) |p = Kp and the resolution of the Calabi conjecture due to T. Aubin and

S.-T. Yau. Schumacher’s theorem is stated as follows:

Theorem 2.5 (Theorem 1 in [37]). If K5+ D is ample on the whole space X, then
we have Resp wx = wp.

His proof is based on analysis of the corresponding complex Monge-Ampere equation
for decay estimates of the potential function. Needless to say, Theorem 2.5 assures
that the above conjecture for the residue would be true.
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Example 2.7 (R. Kobayashi [29]). When X is 2-dimensional, it holds whether the
log-canonical bundle K+ + D is ample on X or D is an elliptic curve. The former
case is included in the previous example. In the latter case, there exists a smooth
Hermitian metric h of Ox(D) such that %85 log h|p is a flat metric on D which
represents c1(—D|p) = ¢1(—Np), where Np means the normal bundle of D in X.
| - || stands for the norm with respect to h and set p = —log ||o||*>. Then it is proved
that wyx can be written as
V=1 0 Y=19dlogh /—1

_ —1 _
wX:—ﬁﬁlog—qLB( 2z + 610gp/\810g,0)
2m h p 2m

for some bounded volume form Q on X. This representation leads to the existence
of the limit Resp wx, and the equality

V=1 Q
ResDwX = —8810g— =0
2 hlp
holds indeed because of Op(Kp) = Op. The last equation means that Conjecture 2.2
is correct for this example since 0 can be thought of as the generalized Kéahler-Einstein

metric in this case. Moreover if we apply Theorem 1.3, we find more strongly
V=1 _
Resp (pwx) = 32—88 logh|p € c1(—3Np).
™

Example 2.8 (N. Mok [33]). Let X be a smooth toroidal compactification of an
n-dimensional complex hyperbolic manifold with a boundary divisor D.

In this case, as in Example 2.7, there exists a smooth Hermitian metric h of Ox(D)
such that %85 log h|p is a flat metric on D which represents ¢;(—D|p) = ¢1(—Np),
where Np means the normal bundle of D in X. || - || stands for the norm with
respect to h and set p = —log||o||?>. N. Mok proved in [33, Section 1.2, 1.3] by
examining carefully the explicit construction of toroidal compactification that wx
can be expressed as near the boundary D,

Y=19dlogh +/—1
WX_(nH)(% % .

1 _
+ dlog p A dlogp
p 2
From this formula, we observe

Respwyx =0,

V=1 _
Resp (pwx) = (n+ 1)?8alog hlp € c1(—(n+1)Np).
Note that as in Example 2.7, the first equation supports the truth of Conjecture 2.2.

According to Example 2.7 and 2.8, it is plausible to replace Conjecture 2.2 in the
case of a Calabi-Yau boundary with the following stronger version:

Conjecture 2.3. When D is Calabi-Yau, then Resp (pwx) coincides with the Ricci-
flat Kdhler metric in ¢1(—(n+ 1)Np), where Np is the normal bundle of D in X.
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Next we consider the residue in several cases when K+ D is not ample on X and
the Kodaira dimension x = k(Kp) is positive.

Example 2.9 ([27]). Suppose X satisfies that (K + D)|p = Kp is big, namely
D is of general type, in addition to our positivity assumption. In this case, the
generalized Kéhler-Einstein metric wp is also called the (canonical) Kéhler-Einstein
current in [44] or the singular K&hler-Einstein metric in [43], [15]. Moreover it is
older and has been studied more than the other cases. Let us provide a definition
of this object again tailored to the present situation. A closed semipositive (1,1)-
current wp € ¢1(Kp) on D is said to be the singular Kéhler-Einstein metric if
wp = b|p + V/—100up, satisfies the following:

(i) wp is a smooth Ké&hler form outside the non-ample locus B (Kp),
(ii) wp satisfies the usual Kahler-Einstein equation —Ric(wp) = wp outside B4 (Kp),

(iii) the potential function up is continuous on D.

In this case, the author approximated wy by a normalized Kéahler-Ricci flow to
compare the residue of wy with that of the Kahler-Ricci flow. Consequently, it is
proved in [27, Theorem 1.1, Theorem 2.5] that

Respwx = wp.

This also solves Conjecture 2.2 affirmatively in this case.

Example 2.10 (cf. Wang [47], Yau-Zhang [53]). Let X = H,/T" (¢ > 2) be a Siegel
modular variety given by a neat arithmetic group I' C Sp(g,Q). Take a smooth
toroidal compactification X with a simple normal crossing boundary divisor with
respect to an admissible family of fans. Since D has generally several components
and they possibly intersect each other, instead of the residue along the whole bound-
ary, we consider the residue Respo wy for each component D. Yau-Zhang [53] and
W. Wang [47] investigate the boundary behavior of wx and obtain various properties
about the Hodge structure, the log-canonical bundle and an explicit description of
the volume form near an intersection point of boundary components. However it is
not explored at all there what the residue actually is, and so we will calculate the
residue here with the same notation as in Example 2.5.

By the same reason as in Example 2.5, it suffices to deal with the boundary
component D corresponding to the standard cusp with depth 1. For the purpose,
we use the coordinates (7/,7”,0) € H,_; x C/~! x C near D° introduced in (iii) and
(iv) to describe Respo wy. First we find a relation between two residues Respo wy
and Resgo wy as

(p)"Respo wx = lim(p)*wx|(g=e) = iMmwy |(s=c) = Resgo wy.
e—0 e—0
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So we calculate Resgo wy to have

1tr (V=1(Im 7)~'dr(Im 7)~"'d7)

) . g
Respo wy = lim wy |(g—¢ = lim
e—0 e—0 T

- (9+ 1)\/—_1tr <[Im7” Im 7" ]_1 [ dr’ dT”]

=l Im'r" —LElog|e| dtr" 0

e—0 S
" Im 7’ Imr” 1 '[dr dr"
Im'r” —L£log|e| dir" 0 '

If we use the Landau symbol O(1) as € — 0 and denote by A’ the adjugate matrix
of Im 7/, then

(o=€)

. (g+1)v/-1 1
Respo wy = lim -
e—0 8 (5= log |e] x det Im 7" + O(1))?

xtrq—%loglem’+0(1) 0(1)} {dw dq

o(1) o) |dtr" 0
—Zlogle|]A'+0(1) O] [ dr’ dr”
% [ g0(1) 0(1)} [dﬁ 0 )

_(g+Dv=T 1 (TA 0] [dr dr'] [A 0] [dr dr”
B 8w (detImT’)2r 0 0| (dv" 0 0 0| |dtr” 0

_Mtr({am')—l 0] {dw dT"} [(Imr’)‘l o} [cm dr”)

8 0 0| |[dt7” 0 0 Of [dtr" 0

1 _
= —g; tr (v=1(Im7")"'d7'(Im ') ~"dr’)
m

= () (L)

Here wyo = %85 log m is the Poincaré-Bergman metric on the Siegel mod-

ular variety N° = H,_;/I';_;(k) of low degree. Notice that wyo = (p*)*wye holds
for the Poincaré-Bergman metric wyo on M° = H, 1 /T%, ;. Hence from the commu-
tative diagram of maps and the relation between two residues, we finally conclude
that the residue Respo wx is written as

1
Respowyx = (mx)" (&wMo) .
g

On the other hand, it easily follows from (iv) that the Weil-Petersson metric wywp
for mx : D° — M? is given by

v—1_= 1
wWwp — —?aﬁlog(kg_ldet Im T/) = gwMo.
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Therefore we obtain
) +1 1 +1
_RIC (g—WMo> + Wwp — Wpje + —Wpe = g—(A}MO.
g g g

Namely this means that the residue wpo = Respo wx satisfies the generalized Kahler-
FEinstein equation
—Ric (wDo) + Wwp — Wpo

if we neglect the pull-back by mx. We should remark that Respo. wx is not generally
the generalized Kéhler-Einstein metric of D since Respo wx ¢ ¢1(Kp) might happen.
The author guesses Respo wx € ¢1(Kp + ZD#D D N Dj). Note further that there
does not always exist the generalized Kahler-Einstein metric on /N since E' is rational
for k =3 or K3 for k =4 in the case that g = 2 ([39, Example 5.4, 7.7]).

The main theorem for residue stated at Introduction treats the special case of
Conjecture 2.2 and 2.3. We restate it again with our notations.

Theorem 2.6 (Theorem 1.3 in Introduction). If D is a smooth finite quotient of
an abelian variety, then the residue Respwx = 0 holds, and moreover the weighted
residue Resp (pwx) is the Ricci-flat Kdhler metric in ¢i(—(n+ 1)Np) of D.

A proof will be given in Section 4.1.

3. COMPLEX MONGE-AMPERE EQUATION FOR CALABI-YAU BOUNDARY

We assume hereafter that D is Calabi-Yau. In this section, we construct a nice
complete Kahler metric which will be regarded as a reference metric for the Kahler-
Einstein metric wy, and some important property is provided to get suitable esti-
mates of a potential function of wy with respect to the reference metric.

3.1. Construction of reference complete Kahler metric. Take a positive inte-
ger m such that (Kp)®™ is a trivial line bundle. From our assumption on positivity
of Kv+ D and Kodaira’s lemma, (K + D) —aD = K¢+ (1 — «)D is ample on the
whole space X for an arbitrarily small positive number a > 0 . Therefore the ad-

1
junction formula yields that the normal bundle Np = D|p = ——(Kx+ (1 —a)D)|p
a

is negative. Then from Grauert’s theorem ([21]), there is a neighborhood N of D
which is holomorphically isomorphic to a neighborhood of the zero section in Np.
Note that at any point on D (which is identified with the zero section), we can take
a holomorphic local coordinate system (z!,22,---,2""1 2") of Np near the point
such that 2!, 22, ---, 2" ! are local coordinates of D and 2" is a fiber coordinate
of the line bundle Np. We denote 2’ = (2!, 2%,--- | 2" 1) for simplicity. Further 2"
becomes a local expression of o, and so we write ¢ = 2™ as before. Therefore via
Grauert’s isomorphism, this coordinate system (21,22, .-+ 2"71 2") = (2/,0) can be
considered on X near D.

Next we take a special smooth volume form €2p on D and a special smooth Her-
mitian metric hp on Ox(D)|p using the Calabi-Yau structure of D. Since (Kp)®™
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is a trivial bundle, there exists a nowhere vanishing m-ple holomorphic volume form
n—1)2m (m m m

an) on D, and it induces a smooth volume form 2p = (\/—1( Y QE:) A ng ))1/

on D. This notation means that if QU = w(dz! Adz2 A --- A dz"")®™ locally, then

n—1)2
Qp = VoI WM A2 A AT A AR A A dE

We may assume that after some constant multiple with Qp,

n(n —+ 1)nCl<—ND>n71 = 27T/ QD-
D

Then thanks to the resolution of the Calabi conjecture due to S.-T. Yau ([50]), there
exists a unique Kéhler metric wp € ¢1(—Np) on D such that

(5) n(n+1)"(wp)" ' = 270p.

Then since —88 logQ2p = 0, one can easily find that wp is a Ricci-flat Kahler
metric. Moreover we can take a smooth Hermitian metric hp on Ox(D)|p = Op(Np)
such that %85 log hp = wp, where hp is also regarded as a local smooth function
hp = hp(zt, -+, 2" 1). We also treat Qp similarly.

We consider to extend these objects p and hp to the whole X appropriately. First
remark that hp can be regarded as a smooth metric of Ox(D) on a neighborhood N.
It means that hp = hp(z!,---,2"7!) is thought of simply as a metric independent
of 2" = o in the above special coordinates. We extend further the metric to X
arbitrarily, and denote by h the resultant metric of O« (D) on X. Then the curvature
form © = ﬁaglogh is semipositive on N, and further © > 0 in the directions
parallel to D over N, i.e., in the subspace spanned by %, cee %. As for Qp,
Q%n) can be also considered as a holomorphic section of m(K++ D) on N. From our
assumption on positivity of K+ + D, there is a smooth (1, 1)-form 0y € ¢;(Kx + D)
satisfying 6y > 0 on X and 6y|p = 0. In fact, if we write 6y = %8{_ﬂog Qx for
a Hermitian metric Qx on —(K+ + D), then Qyx is obtained as follows. We can
produce holomorphic sections {Ql(km)}f\il of km(K++ D) for sufficiently large k such
that they separate points and tangent vectors in X and all the restrictions to D

coincide with (Q( ))®k Let Q2x be a Bergman kernel composed of them

ST o\ L/
NZ( . QFm A QlF )> .

It has an important property that

N

N
_ 1 (n=12m ) )™ 1 _
QX\D_NZ<\/—1 Qv /\QD) _N;QD_QD,

i=1

which implies 0y|p = %6510g Qx|p=0.
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We set a smooth volume form € = Qxh on X which means the product of their
coefficients in a local expression. We define the following reference Kéahler form on
X with h and Q (after a suitable small constant multiple of ¢ if necessary):

Q Q

o

lollP(=log [lo %)+ lof2pm

=1 _ ¢S] v—1 =
wo = =5 —00log Ry = 0 + (n+ 1); + (n+ 1)2—810gpA810gp
T T

(6)

where p = —log||o]|? > 0 and || - || stands for the norm with respect to h. This wy is

a complete Kahler metric on X. The reason is that first wy is positive away from D

because 0y is strictly positive there. wy also keeps positive even on N \ D because 6
e

is positive there, the semipositive form r is strictly positive in the parallel directions

to D and v/—10logp A dlogp is strictly positive in the normal directions to D.
Furthermore this argument enables us to get the completeness since wy dominates
vV—101og p A dlog p near D. A similar construction was introduced first by Carlson-
Griffiths [8, Proposition 2.1], H. Tsuji [45, Lemma 3.1]. In a local situation of ours,
an almost same reference Kéahler metric appears in [16], [18], [11].

We explore the curvature of this metric wg. The next property is also mentioned
in [16] and [11] without any rigorous argument, but we provide a detailed proof here
for the convenience of the readers.

Proposition 3.1. The reference metric wy has bounded geometry in the sense of
Cheng- Yau ([42, Definition 1.3], [10, Definition 1.1]), which is sometimes called quasi-
bounded geometry, if and only if D is a smooth finite quotient of an abelian variety.

Proof. First we suppose that D is a smooth finite quotient of an abelian variety.
By taking the pull-back by a finite covering map, we may assume that D is an
abelian variety. Then it is easy to check in the same manner with [29, Lemma 4],
[16, Section 3] that a neighborhood of D is isomorphic to a neighborhood of a
boundary component in a toroidal compactification of a complex hyperbolic man-
ifold. Furthermore as in Example 2.8, the metric h of Ox(D) can be written as
h = e*'" for some constant a > 0 where 2/ = (z',22,--- 2" is the standard
coordinate system of the universal cover of D, namely C*!. Especially, © =
azzzll v/ —1dz' A dZ' and this is the Euclidean metric multiplied by a. Since the
last two terms (n + 1)% +(n+ 1)§8logp A Olog p in wp is just a metric induced
by the Poincaré-Bergman metric and the first term 6y in wy does not destroy the
boundedness of the curvature, it follows that wy has bounded geometry in the sense
of Cheng-Yau. In fact, the quasi-coordinate system near D is given by holomorphic
maps¢n:W—>7forO<n<1,

(7) (2,22, 2" o) = ( #wl, _1 LR ,\/—1+nwn—1,ebm}+27> .
=1 -1 -7
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Here W = {(v',7) = (w!, - L) eC| |t — V-1 + 4 )? < RYr+ V-11*}

for some fixed R € (0,1) and b is some real constant. Then we can calculate

1
) Gy = (@ m T~ alu'P)

n—1

1)
B = 0y + =T Z V=Tdw' A di

2bIm 7 — a|w'|? &

n+1 V-1 i —
+(261m7‘—a|w’| )2 27 < dT—adew> <_ )

Thanks to 0y|p = 0, all derivatives of coefficients of ¢jwy in (w’,7) are bounded on
Ww.

Next we show the converse implication. At any point (o, U) € N, we directly
calculate the curvature tensor R;;;(0,0) of wy for i, j € {1,2,---,n — 1}. Here
2 = (2',2%,---,2"1) is taken to be a normal holomorphic coordinate system of D

at o for the Calabi-Yau metric wp, and Rgﬁ(o) denotes the curvature tensor of wp.

T —a

We express wy = /—1g,;d2* A dz' and its inverse by g¥, and use o also as an index

regarding the coordinate o, for instance §*. If we use the Landau symbol O <pik>,

@) (W), etc ... as 0 — 0, then

G5 — ik 991 99,3
Rﬁj;(07 0) - 8,2]8? ( ) U) + o g (07 0) 02k ( ’ ) Zl (07 U)
n—1 ~ ~ n—1 ~ ~
. o)y 09,7 _ )i 09,7
~lo 7 7 ~Tk 7
+ (lz;g (0,0) = (o, )azf(O,U)Jr;g (O,U)a]k (o, )_8—](0’ ))
oo 9]7 8913
+7(0,0) 22 0,0) 23 0,0)

= P = \n+
+O(|0‘p2)0<%) O(fﬁ I) " f‘ipj (1 " O(%)) O(/Jiﬂ) O(p21!0\)
2 oft).

Since gm(o, o) =(n+1p~+0(p7?),

and 57 - at (0,0) becomes

D
an] (O U) o Rﬁﬁ(o)

gig(ou 0>gj3(07 J) a n+1 P 0(1)
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If D is not a smooth finite quotient of an abelian variety, then Rgﬁ(o) # 0 for some

point o € D. Thus we conclude from this formula that this bisectional curvature of
wp at (0,0) diverges at a rate equal to p as o — 0. O

3.2. Complex Monge-Ampere equation with a reference metric wy. The
Kahler-Einstein metric wx on X satisfies the equation —Ric(wx) = wx. In our
setting, this equation can be reduced to the complex Monge-Ampere equation

(9) (wx)" = (wg + ga&m)n = e Q)

for a potential uy of wy with wx = wg + %85%. Tian-Yau [42] and S. Bando [3]
indeed obtained the existence of ug applying a certain modified continuity method
with 2 parameters. D. Wu [49] developed the e-approximation method due to S.-
T. Yau to show the existence of ug. Notice that the power of p in )y is actually 2
in their papers and their potential is ug — (n — 1)log p. In order to investigate the
residue and the volume growth, we need to get suitable estimates near the boundary
D for uy. The reason is that the right hand side of (9) expresses the growth and we
have from (6)

—1 _
Resp wx = lim ———00ug|(s=e),
e—0 27
(10) =
Resp(pwx) = (n+ 1)wp + £%p788u0|(gze).
For such estimates, the following property is important.

Proposition 3.2. The reference metric wy is close to the Kahler-Einstein metric

(o) , then F = O (||o||p) holds near D. FEspe-

near D. Namely if we set F' = log

cially, the following convergence holds :

(wo)"”
Qo

Proof. By a direct calculation, we have near D

(2) =1 (z— D).

@ n @ n—1 /—_1 .
(Wo)n=<90+(n+1);) +n(n+1) (90+(n+1);> /\7810gp/\810gp

o\" e
= (90—|—(n+1);) +n(n+1)(pho + (n+1)0)" ' A
vV/—19logh A dlog h n \/—1d0/\510gh+ v—10log h N do
27Tpn+1 27T0'p"+1 27T5p"+1

N V—1do A dﬁ}

o7|o|2pnt!
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We should remark that all the terms other than the last one become O (||o]|p) after
multiplied by ||o||?p" ™! because 6y|p = 0. The last term is expanded as

v —1do N do

o7|o|2pnt

n—1
v —1do N do
1) (pfo)" A neywtta X —— " 2
D S A N
n(n+1)"@"! AV ldo A do
o o[2pntl
and also note that the first term becomes O (||o||p) after multiplied by ||o|*p"*!
because 6y|p = 0 and any components of 6y containing do or do never appear there.
The Calabi-Yau equation (5) is applied for the last term to get
(wo)" n(n+ 1)"e"1
= O([lollp) +
QO 27TQX
Therefore we get the desired equality. O

n(n+1) (phy + (n+1)0)" " A

ANV —=1do ANda = O (|lo]lp) + 1

When D is a smooth finite quotient of an abelian variety, it is possible from
Proposition 3.1 to analyze (9) in the same way with [37, Theorem 1]. Otherwise,
there are no general methods to estimate ug directly. According to [42, Theorem 5.1],
[3, Theorem 2.1}, we consider to replace wy with a Kéhler metric w, of bounded
geometry in the sense of Cheng-Yau for sufficiently small o« > 0. Set actually

VT,
0o = o 00 log o
whose crucial property is to be positive in the parallel directions to D. A singular
volume form €, on X and a complete Kéhler metric w, on X is defined as

Q

[

)

_ e v/ —1 —
Wo = ——0010gQy =0, + (n+1)— + (n+1)——0log p A 0log p.
2 p 2

=6y +ab € Cl(Ky—F (1 — Od)D),

Qo =

Then it is well-known that (X, w,) has bounded geometry in the sense of Cheng-Yau
(see, for example, [28, Lemma 2] or [3, Lemma 2.1]). It is thus useful to replace wy
with w, in (9) to have

(11) (W + V—=100uy)"™ = e" Q,

for a potential u, of wx with wy = wy + vV/—100u,. Namely 1y = u, + alog ||o]?
holds. In fact, the equation (11) for o > 0 is investigated in [42], [3] by the stan-
dard analysis of bounded geometry in the sense of Cheng-Yau to show that wu, and
automatically ug exist.

In order to get an estimate of ug via that of u, as @ — 0, we introduce the Kahler-
Ricci flow which corresponds to taking v — 0 in (11) according to [32], [27]. In these

25



papers, they always discuss metrics and volume forms in which the power of p is 2
in a denominator of a singular volume form. So we denote

Qa = Qapn_la

W = —_16510g Q. = wo + (n— 1)—_18510g p.
2m 2m
Hence ~ means that the power of p is 2 in the denominator of the volume form. The
(normalized) K&hler-Ricci flow wx(t) is a smooth 1-parameter family of complete
Kahler metrics on X satisfying the following partial differential equation:
Owx (t)
(12) ot

wX(O) = (;)a.

— “Riclwx (1) —wx(t), >0,

General results are obtained by Lott-Zhang and the author as follows. One might
be able to obtain a similar consequence for an initial condition of wx(0) = w, and it
might fit for our situation, but we refer to their result as it is.

Theorem 3.1 (Theorem 4.1 of [32], Theorem 3.3 in [27]). The solution wx(t) exists
forever and (X,wx(t)) has bounded geometry in the sense of Cheng-Yau for any
t > 0. Moreover it satisfies the following :

o wx(t) € ci(Kx+ (1 —ae™)D),
e wx(t) has uniformly bounded k-th covariant derivatives with respect to @, for
all k on any finite time interval,

e wy(t) is uniformly quasi-isometric to w, on any finite time interval,

o

> -topology and actually coin-

o The limit wx(o0) = 1tlim wx (t) exists in the
— 00
cides with the Kdahler-Einstein metric wx.

Indeed, the equation (12) is reduced to the flow for a potential function u,(t) if we
write wx () = Wpe—t + vV —100uy(t) :
(ace + 1 00ua(t))”
(13) Ua(t) = log ~ —un(t), t>0,
Uq

Qo
0) = 0.

(
Here u,(t) = augt(t)

ties of u,(t) corresponding to the above properties of wx (t). Note that the equality
Ua(00) + (n — 1) log p = ug holds.

. Theorem 3.1 is actually proved by estimating u,(t) for proper-

4. PROOFS OF THEOREM 1.2 AND 1.3

In this section, we will prove Theorem 1.3 and 1.2 in Introduction. Note that
a positive constant, say C or C,,, might be different from place to place in what
follows.
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4.1. Residue of Kahler-Einstein metric for flat boundary. In this subsection,
we will show Theorem 1.3 or Theorem 2.6 along the line of the proof of Theorem 2.5.

In the present case of a flat boundary, wy has bounded geometry in the sense
of Cheng-Yau. So the standard continuity method leads to the existence of the
solution ug for (9) with bounded covariant derivatives at any order with respect to

the reference metric wy. It also follows that wx = wy + é—?é@uo is equivalent to wy.
In addition, we have the volume growth as

V
(wx)" =e"Qy = ————,
lor]|?pm+t

where V' = €% is a bounded volume form on X. This means that Conjecture 2.1 is
true for boundaries of smooth finite quotients of abelian varieties. For our purpose
on residue, it is enough from (10) to estimate uniformly the weighted potential w :=
%p)‘ ug with some appropriate exponent 0 < A < 1.

Proposition 4.1. If we choose X to be sufficiently small, then for any integer m > 0,
there exists a positive constant C,, such that

[VTw| < Cy,
holds on X. Here ¥V denotes the covariant derivative with respect to wy

In fact, if this is true, then using the quasi-coordinate map ¢, in (7), we have that
for any integer m > 0, there exists a positive constant C,, such that

| Dur g {(pM10) © 99} < Crn
holds for any derivative D,z of order m with respect to w’ and w’. This can be
translated into an expression with the original coordinates as

1479\ 2
(_n> Dz/,g/<p)‘u0)0 n

< C,,
1—n -

where D,z means such a derivative that w’ is replaced with 2’ in D, z. Moreover
taking (8) into this inequality, we have

Applying the last inequalities for m > 2, we can consequently show that in (10),
the limits lim become 0 in the C'"*°-topology, and we get the desired residue formulas

€E—
stated in Theorem 1.3 and 2.6.
It is possible to prove Proposition 4.1 in the same manner as a proof of Theorem 2.5,
[26, Theorem 1.3] or [27, Theorem 1.1], and so we give only a sketch of proof.

Proof. From (9) and the inequality in [28, page 408], we have

I o <w0 + _\/2;18511@) o
— < — — < —
wx o =10 °8 (wo)™ - 0 or’
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where [, or [, is the Laplacian of wy or wy, respectively. This inequality can be

made translate into the following two inequalities for the weighted function w = % Up:

V—=1(0p A Ow+ 0w A Ip) A (wx )"~}

—Uuyw+ An o (wx)" + (277 —p* 0y p ) w > pF,
V—1(0p N Ow+ ow A Op) A (wo)™

Proposition 3.2 implies that p* F' and also other coefficients in these inequalities have
bounded covariant derivatives at any order. Further similarly to [37, Lemma 5], it
is possible to take A so small that |p* O, p~*| < 7 and |p* O, p~*| < 7 hold on X.
This fact enables us to achieve uniform C%estimates for w by using Yau’s generalized
maximum principle.

From similar calculations as in [37, Section 6], or [26, Section 4.4] for an orbifold
version, or [27, Section 5.2] for a Kéhler-Ricci flow version, it follows that (9) becomes

n—2
Jv—1 _

VA (W)t A Y00y
1 uy newo l:O 2

S o P ~F,
G G (@wx)" o

v
where G = g(uy — F') for a smooth function g(z) = nler = 1) of a real variable .
x

Moreover an equation for w = %uo translated from the last equation is given by

n—2
) P (wX)n—l—l A (WO)Z VARV, —185'11)
ne''"" 15,
-0 —
G @ (wx )"
n—2
\ ( )n_l (wX)n—l—l A (OJ())Z
n ) up—F =0 = 3
— | —— +e™ AV—=1(0p NOw+ 0w A Jd
0G| () ox)” vV—=1(9p p)
n—2
, Z n 1— l ) A [ aap
_ - ug— Fl= — A
e Uuwep ~ + ne (x) w+ 2w = p F.

Since all the coefficients of this linear elliptic partial differential equation for w have
bounded m-th covariant derivatives for all m > 0, then the interior Schauder esti-
mates (cf. [20]) can be applied to obtain higher order uniform bounds for w. O
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Remark 4.1. In a local situation of ours, Fu-Hein-Jiang states a complete asymp-
totics for ug near D in [18, Theorem 3.1] such as there exists a constant ¢ € R such

that
uo + (n + 1) log (1+f) ) (i)
p pr

for any m > 0. This is a quite stronger result, and this formula directly leads to our
conclusion since pug converges to a constant —(n + 1)c as p — oo.

4.2. Volume growth of Kahler-Einstein metric for Calabi-Yau boundary.
This subsection is devoted to a proof of Theorem 1.2 or Theorem 2.3. Our proof
is based on an approximation by the Ké&hler-Ricci flow (12). However it seems
likely that the same result is established more straightforwardly and easily by the e-
approximation method, introduced by S.-T. Yau [50], for the complex Monge-Ampere
equation (9).

To clarify the growth of the Ké&hler-Einstein volume form, it suffices from (9) to
determine the behavior of uy = u,(00) + (n — 1) log p near D. We can show that the
potential u,(t) of the Kéhler-Ricci flow has the following uniform C%-estimate:

Proposition 4.2. There exists a positive constant C' such that

U (t) — (n — 1) log (ae_t + %) <C

holds on X x [0, 00).

As t — oo, this estimate gives the boundedness of uy = uy(c0) + (n — 1) log p over
X and consequently the desired volume growth in Theorem 1.2 or Theorem 2.3.

Remark 4.2. In [11], they make a similar observation on the Kéhler-Einstein volume
form near an isolated log-canonical singularity in a local but more general situation.

Finally, we provide a proof of Proposition 4.2.

2
Proof. Set w,(t) = ua(t) — (n — 1) log (ae‘t + —). w, (t) satisfies the equation
p

- gaéwa(t))

. R 92 n—1 n
%8 log | Qpe-t (ae‘t + —) )
p
. R 2 n—1 n
%88 log | Qpe-t <ae_t + —>
an—1)e™" P
— wy(t) + ——5 + log — )
et 4 — Qo (et + 2
P p
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We can see that the last term, denoted by F(¢), in this equation is uniformly
bounded on X x [0,00). In order to check it, we denote a new Ké&hler metric

— ~ n—1
w(t) = %88 log [Qaet (ae*t + %) } and calculate it in detail as

1 . /__1 . 2 n—1
logp Adlogp+ ~—~——00log [ ae™ + =
27 27 p

wupﬁw+cwt+%)6+2

p

2 —1
=+ e +=+ z 0

2
P (aet + —) p
\ P

dn—1) dn—1) _1810gp/\510gp.

N

9 _
+ 2\ 2 + 2 2
(ae‘t + —) p? ae™t +— | p

\ P p

Hence it is immediate to observe that @(t) is a complete Kéhler metric on X of
bounded geometry in the sense of Cheng-Yau for any ¢ > 0. Notice that &(t) converge
to wp as t — oo although wy and @(t) at a finite time ¢ have different volume growths.
Indeed, we calculate the volume form of w(t) at a finite time ¢ as

n

—1 2
Ot)" = 0g+ | ae "+ =+ n N ©
(oze‘t + —) pp
p
n—1
—1 2
+n o+ | ae+ =+ n N S
(ae‘t—i-—) pp
p
4(n—1 4in—1 =
ANl2— (n=1) (n=1) Vv —10log p A 0log p.

+
t 2\ 2 —t 2
aet+—] p ae™t+—|p
P p

Since 0y + (ae‘t + % + ("—_l)pi) © is strictly positive near D, the first term in

ae—t+2

P
this formula is bounded on X and the second term is of the same form with €2y, that
is, the power of p is 2. From these growth properties, we know that the growth of
w(t)" is actually the same with €y, that is, the power of p is 2. We further proceed
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to calculate F'(t) as

|o|]?p? 2 n—1

2
F(t) = log NG Op + | et + =+ N o )
Q (aet + —) (ae_t + —) pp
P p
\ n—1
0 2(n—1
tn ———5+ |1+ (n ; )2
ae 4+ — -t = 2
P (ae ! p) ")
4(n—1) 4(n—1) |o]|2p?v/—101log p A Dlog p
A2- — +
) ., 2 Q
(&et + —) p? O e
p P
2(n—1)

A crucial point is that the second term in this description has 1 + as a

(a6*t+2>2p2
coefficient of O, which is away from 0 uniformly in ¢t. So we can see from this reason
that F'(t) is uniformly bounded on X x [0,00). Moreover, it follows from (14) and
the inequality in [28, page 408] that

(15)
0 a(n—1)e™? 9,
— — Oarar) | wa(t) < —wa(t) + % + F(t) < | 57 — Donwx) | walt)
ot 4 ot
ae™" + —
P
holds. Therefore combined with the fact that w,(0) = —(n — 1)log (a + %) is
bounded on X, the parabolic maximum principle (cf. [38, Lemma 4.7]) is applied for
(15) to derive the uniform boundedness of w,(t). This completes the proof. O
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