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ABSTRACT. In this paper, we consider the zeta function of graphs and the twisted Alexander
polynomials of knots. Since they have been developed separately, we explain the relationship
between them through the notion of knot graphs. We also provide a new volume presentation
of hyperbolic knots using matrix-weighted graphs and Bell polynomials.

1. INTRODUCTION

The zeta function of graphs was defined for regular graphs by Ihara [13]. He showed that
its reciprocal is an explicit polynomial. Hashimoto [12] generalized Ihara’s result on the
zeta function of regular graphs to irregular graphs and showed that its reciprocal is again a
polynomial. Bass [2] presented another determinant expression for the Ihara zeta function of
irregular graphs using adjacency matrices. After Terras’s book [22], Ishikawa, Mitsuhashi,
Morita, and Sato have furthered their research into graph zeta functions, obtaining results
for various types of graphs (see [14], [18], [20] for example). In recent years, they have
started to be applied in several fields, and in this paper we try to lay the foundation of their
application to knot theory. In particular, we focus on the Alexander polynomial, which is the
most fundamental knot invariant, and its extension, the twisted Alexander polynomial. We
will proceed according to Morita’s expressions [18].

Since the study of graph zeta and the study of knot theory have been developed separately,
there is a wall between them. In order to make it easier for researchers in the respective fields
of graph zeta and knot theory to understand, usually omitted terms for graph zeta and knot
theory are described as much as possible. In addition, we provide some examples. Moreover,
previous researches have often considered the idea of a backtrack of a graph, but since it is
not necessary in knot theory, we have reconstructed without this concept. As a result, simpler
examples can be used.

As an application of the relation between zeta functions and twisted Alexander polynomi-
als, we provide a volume presentation of hyperbolic knots in the 3-sphere. More precisely,
we show that the hyperbolic volume of a knot can be expressed in terms of the traces of the
adjacency matrix or the edge matrix of the knot graph through Bell polynomials, which are
often used in the study of set partitions. The idea of this volume presentation comes from
our previous work on a hyperbolic fibered knot [11].

This paper is organized as follows. In Section 2, we prepare several basic notions about
graph zeta functions: Lyndon words, circular products, Foata-Zeilberger’s formula for re-
ciprocal characteristic polynomials, edge matrices, and adjacency matrices of digraphs. In
Section 3, we review two kinds of weighted zeta functions: one weighted by an element
of a commutative Q-algebra, and the other weighted by a matrix whose entries are in a
commutative Q-algebra. In particular, we establish the relationship between three kinds of
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matrix-weighted zeta functions. In Section 4, we explain the notion of knot graphs, and
study the (twisted) Alexander polynomials of knots from the view point of weighted zeta
functions. In the last section, we provide a volume presentation of hyperbolic knots using
Bell polynomials.

Throughout this paper, we use the following notation. Let N be the set of natural numbers.
The ring of integers is denoted by Z, and Q (C resp.) means the rational (complex resp.)
number field. For a finite set X , the number of elements in X is denoted by ♯X . The
Kronecker delta is denoted by δxy, which gives 1 if x = y, 0 if x 6= y.

2. PRELIMINARIES

2.1. Words. According to [18], we review some notations on words. An alphabet is a set of
noncommutative variables. Let A be a set called an alphabet. A finite sequence of elements of
A is called words on A. The set of all words on A is denoted by A∗. Then A∗ is a semigroup,
the multiplication of which is the concatenation of words. Let w = a1a2 · · · aℓ ∈ A∗. The
nonnegative integer ℓ is called the length of w, denoted by |w|. The length of the empty word
is defined to be zero. A word w is called prime if there is no shorter word u ∈ A∗ such that
w = uk for a positive integer k. The cyclic rearrangement class of w = a1a2 · · · aℓ is the
multiset

{a1a2 · · · aℓ, a2a3 · · · aℓa1, . . . , aℓa1 · · · aℓ−1}
of ℓ words and we denote it by Re(w). If w is prime, then any element of Re(w) has
multiplicity 1. Namely, each cyclic rearrangement of w appears just once in Re(w). If a
word u is contained in Re(w), then we write u ≡ w. We can see that ≡ is an equivalence
relation on A∗.

Hereafter, we suppose that an alphabet A is finite and totally ordered. We use the total
order by <. Then A∗ is also totally ordered by the lexicographical order induced by <. We
also denote it by <. If a word w ∈ A∗ is the minimum element in Re(w), w is called a
Lyndon word (see e.g. [16]). The set of Lyndon words on A is denoted by Lyn(A).

Example 2.1. Suppose A = {1 < 2 < 3}. Then 132 is Lyndon, but 321 is not. More-
over, w = 1212 6∈ Lyn(A) since w is not the minimum element in the multiset Re(w) =
{1212, 2121, 1212, 2121}. Thus a Lyndon word is necessarily a prime word.

The concept of Lyndon words was crucial in the foundations of free differential calculus
[4] and pursued in [21] etc.

Example 2.2. For A = {1, 2, 3, 4} and 1 < 2 < 3 < 4, the list of first Lyndon words is as
follows. We will use this list in this paper. For example, 132 implies 1112.

lengh Lyndon words
1 1, 2, 3, 4
2 12, 13, 14, 23, 24, 34
3 112, 113, 114, 122, 123, 124, 132, 133, 134, 142,

143, 144, 223, 224, 233, 234, 243, 244, 334, 344
4 132, 133, 134, 1122, 1123, 1124, 1132, 1133, 1134, 1142,

1143, 1144, 1213, 1214, 123, 1223, 1224, 1232, 1233, 1234,
1242, 1243, 1244, 1314, 1322, 1323, 1324, 1332, 1333, 1334,
1342, 1343, 1344, 1422, 1423, 1424, 1432, 1433, 1434, 1442,

1443, 143, 233, 234, 2233, 2234, 2243, 2244, 2324, 233

2334, 2343, 2344, 2433, 2434, 2443, 243, 334, 3344, 343
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Although it is not difficult to list all the Lyndon words, it might be difficult to determine
whether they are all exhausted. In this case, it is useful to use the Möbius function to display
the number of Lyndon words of a particular length. Specifically, the following formula is
known:

Card(Lyn(A) ∩ Aℓ) =
1

ℓ

∑
ℓ
d

µ(d)[Card(A)]
ℓ
d ,

where µ is the Möbius function. For the details, see [16].
Let R be a commutative ring. Let MatA(R) denote the set of n × n matrices (maa′)a,a′∈A

with maa′ ∈ R for each a, a′, where n = ♯A. For w = a1a2 · · · aℓ ∈ A∗ and M =
(maa′)a,a′∈A ∈ MatA(R), we denote by circM(w) the circular product

ma1a2ma2a3 · · ·maℓ−1aℓmaℓa1

of entries in M along w. Let I denote the identity matrix.

Theorem 2.3 ([7]). (1)

det(I −M) =
∏

l∈Lyn(A)

(1− circM(l)).

(2) Let s be an indeterminate. The reciprocal characteristic polynomial 1/ det(I − sM)
is written by

1

det(I − sM)
=

∏
l∈Lyn(A)

1

1− circM(l)s|l|
.

See Examples 2.7 and 3.7 for an interpretation of this theorem. In [7], Foata and Zeilberger
provide a short proof of Amitsur’s identity.

Theorem 2.4 ([1]). For square matrices M1,M2, . . . ,Mk,

det(I − (M1 +M2 + · · ·+Mk)) =
∏

l∈Lyn(A)

det(I −Ml),

where the product runs over all Lyndon words in {1, 2, . . . , k} and Ml = Mi1Mi2 · · ·Mip for
l = i1i2 · · · ip.

2.2. Graphs. In this subsection, we define several terminologies and notions on graphs ac-
cording to [14] and [18].

A graph Γ = (V,E) is a pair of a set V and a multiset E, where E consists of 2-subsets of
V . The elements of V and E are called vertex and edge, respectively. A graph Γ = (V,E)
is called finite if both V and E are finite sets. If E contains an edge e = {u, v} with a
multiplicity m, then e is called a multi edge with multiplicity m.

A digraph G = (V,A) is a pair of a set V and a multiset A, where A consists of ordered
pairs a = (u, v) of elements u, v ∈ V . An element of A is called a directed edge or an
arc of G. If a = (u, v) is an arc of G, then u is called the tail of a, and v the head of a,
denoted by t(a) and h(a) respectively. Since A is a multi-set, it may occur that t(a) = t(a′)
and h(a) = h(a′) for distinct a, a′ ∈ A. For a loop l, the vertex n = t(l)(= h(l)) is called
the nest of l. Let Auv = {a ∈ A | t(a) = u, h(a) = v}. If A contains arcs a ∈ Auv with a
multiplicity m, then a is called a multi arc with multiplicity m.

In the many papers on the graph zeta functions, they considered the ‘inverse’ of a, namely
(v, u) for an arc a = (u, v). It is denoted by a−1. They associate to a graph Γ = (V,E) a
digraph G(Γ) which is called the symmetric digraph of Γ. The vertices of G(Γ) is the same
as Γ. If e = {u, v} is an edge of Γ, then two arcs a = (u, v) and a−1 are associated with e.
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The arc set of G(Γ) = (V,A) is given by {(u, v), (v, u) | (u, v) ∈ E}. However, a symmetric
digraph is not obtained from a knot by our method, so we basically do not treat such graphs.
We do not treat the inverse a−1. Thus, we do not use the notions ‘reduce’ nor ‘backtrack’ in
this paper. If there are arcs a = (u, v) and (v, u) in G, we denote the arc (v, u) by another
symbol (alphabet), e.g. b = (v, u). Then, we may treat some basic digraphs as illustrated in
Figure 1.

1

2

3

4v v v1 2 3

1

2v1 v21G 2G

a

a

a

a

a

a

FIGURE 1.

Let G = (V,A) be a digraph. If a sequence c = (a1, a2, . . . , aℓ) satisfies h(ai) = t(ai+1)
for all i = 1, 2, . . . , ℓ− 1, then c is called a path of G, and ℓ is called the length of c, denoted
by |c|. A path c = (a1, a2, . . . , aℓ) is said to be closed if t(a1) = h(aℓ). Let C = CG

be the set of closed paths of G, and Cℓ the set of closed paths of length ℓ. Then we have
a disjoint union C = tℓ≥1Cℓ. Let c = (a1, a2, . . . , aℓ) ∈ C. The cyclic rearrangement
(a2, a3, . . . , aℓ, a1), (a3, a4, . . . , a1, a2), . . . , (aℓ, a1, . . . , aℓ−2, aℓ−1) of c is also a closed path
of lenght ℓ.

For c ∈ C, we denote by ck the closed path obtained by making k times iteration to c.
Hence, if c ∈ Cℓ, then ck ∈ Ckℓ. A prime closed path is a closed path which cannot be
written in the form dk for a shorter d ∈ C. Let P = PG denote the set of prime closed paths
of G. For c ∈ C, there exists p ∈ P such that c = pk for some k ∈ Z>0. Then p is called a
prime section of c. If p is a prime section of c ∈ C, it is denote by π(c). A prime section is
not uniquely determined for c, but its cyclic rearrangement class (see the paragraph below for
the definition of the class) is uniquely determined. Therefore the length of a prime section is
uniquely determined for each c, and we call it the prime length of c ∈ C, which is denoted
by ϖ(c). Let Pℓ be the set of prime closed paths of length ℓ. Since the prime length of c ∈ C
is uniquely determined, we have a disjoint union P = tℓ≥1Pℓ.

For the digraph G1 in Figure 1, set c = (a1, a2, a1, a2, a1, a2) and p = (a1, a2). Then p is
prime, p = π(c), c = p3, and ϖ(c) = |p| = 2.

Let c, d ∈ C. If d is a cyclic rearrangement of c, we write c ∼ d. This binary relation
∼ is an equivalence relation on C. We call it the cyclic equivalence. Let [C] = [CG] be the
quotient C/ ∼, and c̄ the equivalence class with a representative c ∈ C. An element of [C]
is called a cycle of G. If c ∼ d for c, d ∈ C, then c and d have the same length. The length
|γ| of a cycle γ = c̄ ∈ [C] is defined by |c|, and it is well-defined. It also shows that ∼ is
an equivalence relation on Cℓ, so [Cℓ] = Cℓ/ ∼ is the set of cycles of length ℓ, and we have
[C] = tℓ≥1[Cℓ]. A cycle γ, say γ = c̄, is said to be prime if c is prime. The set of prime
cycles is denoted by [P ] = [PG]. We have [P ] = P/ ∼, since ∼ is also an equivalence
relation on P . For each c ∈ C, the equivalence class of the prime sections of c is uniquely
determined since they are mutually cyclic equivalent. It is called the prime section of γ = c̄,
denoted by π(γ) ∈ [P ]. Let γ = c̄ be a cycle with a representative c. The prime length
ϖ(γ) of γ is defined by ϖ(γ) = ϖ(c). It is well-defined since prime sections of c are cyclic
equivalent. Let [Pℓ] be the set of prime cycles of length ℓ. Then we have [P ] = tℓ≥1[Pℓ].

For the digraph G1 in Figure 1, set c = (a1, a2, a1, a2) and d = (a2, a1, a2, a1). Then
c ∼ d, γ = c̄ = (a1, a2, a1, a2), π(γ) = (a1, a2), and ϖ(γ) = ϖ(c) = 2.
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Definition 2.5. Let G = (V,A) be a finite digraph, where A is totally ordered and R is a
ring. Let M = (maa′)a,a′∈A ∈ Mat(♯A;R) be a matrix with the entries which satisfy the
condition that maa′ 6= 0 implies h(a) = t(a′). A matrix satisfying this condition is called an
edge matrix of G.

2.3. Zeta functions. The zeta function of graphs is known to accept several expressions.
According to [18], three of them are called the Euler product expression E(s), the determi-
nant expression H(s) of Hashimoto type (we call it Hashimoto expression for short) and the
exponential expression Z(s). Morita [18] discussed the relationship between them. Then
he showed that H(s) can always be reformulated into E(s), and that E(s) can always be
reformulated into Z(s). Moreover, he gave conditions from Z(s) to E(s), and E(s) to H(s).
In this subsection, we will leave these conditions aside for the time being and present the
idea of the Ihara Zeta function, the origin of graph zeta functions, and the related results in a
form that is suited to our setting.

The Ihara zeta function for a finite graph is the prototype of combinatorial zeta functions. It
is usually defined by the Euler product expression for a kind of finite graph, i.e. a symmetric
digraph. Here we define the Ihara zeta function to fit our setting.

Definition 2.6. Let G = (V,A) be a finite digraph, and s an indeterminate. The following
formal power series

ZG(s) =
∏

γ∈[PG]

1

1− s|γ|

is called the Ihara zeta function of G. It is called an Euler product expression.

Let us consider the map

θ : A× A −→ {0, 1} : (a, a′) 7→ δh(a)t(a′).

Then we have the edge matrix of G, denoted by MG(θ) = (θ(a, a′))a,a′∈A. It is known that
the equation

ZG(s) =
1

det(I − sMG(θ))

holds, and the expression is called Hashimoto expression, which is a kind of determinant
expression. For proof, see the proof of Proposition 3.5, which is given in a more general
setting.

Example 2.7. Let G1 be the digraph illustrated in Figure 1. It has only one prime cycle a1a2

whose length is 2. Hence ZG1(s) =
1

1− s2
. The edge matrix is MG1(θ) =

(
0 1
1 0

)
. Then

we have det(I − sMG1(θ)) = 1− s2.
Let G2 be the digraph illustrated in Figure 1. Because of the infinite number of prime

cycles, it can be difficult to calculate ZG2(s) from the definition. But, using the edge matrix

MG2(θ) =


0 1 1 0
1 0 0 0
0 0 0 1
0 1 1 0

 ,

we can obtain ZG2(s) =
1

det(I − sMG2(θ))
=

1

1− 2s2
.
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Identify the arc ai ∈ A with the alphabet ai ∈ A in Section 2.1. For l = a1a2 · · · aℓ ∈
Lyn(A), we may suppose

circM(l) = θ(a1, a2)θ(a2, a3) · · · θ(aℓ, a1).
For l such that |l| = 2, circM(12) = m12m21 = 1, circM(34) = m34m43 = 1, and circM(l) =
0 (l 6= 12, 34). For l such that |l| = 4, circM(1342) = m13m34m42m21 = 1, and circM(l) =
0 (l 6= 1342). Similarly, for l such that |l| = 6, circM(121342) = m12m21m13m34m42m21 =
1, circM(134342) = m13m34m43m34m42m21 = 1, and circM(l) = 0 (l 6= 121342, 134342).
The former takes the left cycle twice and the right cycle once, while the latter corresponds to
taking the left cycle once and the right cycle twice.

Here is an interpretation of Theorem 2.3. We have the formal power series:

ZG2(s) =
1

det(I − sMG2(θ))

=
1

1− 2s2

= 1 + 2s2 + 4s4 + 8s6 + 16s8 + 32s10 +O
(
s11
)
.(2.1)

On the other hand, we have:∏
l∈Lyn(A),|l|≤2

1

1− circM(l)s|l|
=

1

(1− s2)2

= 1 + 2s2 + 3s4 + 4s6 + 5s8 + 6s10 +O
(
s11
)
,

where the first two terms match the formula (2.1),∏
l∈Lyn(A),|l|≤4

1

1− circM(l)s|l|
=

1

(1− s2)2(1− s4)

= 1 + 2s2 + 4s4 + 6s6 + 9s8 + 12s10 +O
(
s11
)
,

where the first three terms match the equation (2.1),∏
l∈Lyn(A),|l|≤6

1

1− circM(l)s|l|
=

1

(1− s2)2(1− s4)(1− s6)2

= 1 + 2s2 + 4s4 + 8s6 + 13s8 + 20s10 +O
(
s11
)
,

where the first four terms match the formula (2.1). Theorem 2.3 illustrates this asymptotic
behavior. Thus it can be viewed as the Euler product expression for 1/ det(I − sM) since
the set Lyn(A) gives the primes in A∗.

As we observed in Example 2.7, from the definition we have the following:

(2.2) {Prime cycles in G} 1:1←→ {l ∈ Lyn(A) | circM(l) 6= 0}.
Suppose M is an edge matrix of a digraph G = (V,A). By identifying a path c = (a1, a2, . . . , aℓ)
of G with a word a1a2 · · · aℓ ∈ A∗, one can consider the circular product circM(c) =
ma1a2ma2a3 · · ·maℓa1 . The condition circM(c) 6= 0 implies that the path c is closed.

According to [18], there is one more expression of the zeta function, which is called the
exponential expression. Let Nℓ be the number of closed paths of length ℓ in a digraph G.
Then, it is known that

ZG(s) = exp

(∑
ℓ≥1

Nℓ

ℓ
sℓ

)
.
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We should note the difference between cycles and closed paths. For proof, see the proof of
Proposition 3.5, which is given in a more general setting.

Example 2.8. Let G2 be the digraph illustrated in Figure 1. By the calculations in Example
2.7, we have:

logZG2(s) = log
1

1− 2s2
= 2s2 + 2s4 +

8s6

3
+ 4s8 +

32s10

5
+O

(
s11
)
.

Thus we have: N1 = 0, N2 = 4, N3 = 0, N4 = 8, N5 = 0, N6 = 16. For example, N6 con-
sists of {{(12)3, (21)3}, {(34)3, (43)3}, {121342, 213421, 134212, 342121, 421213, 212134},
{134342, 343421, 434213, 342134, 421343, 213434}}.

Proposition 2.9.
Nℓ = tr (MG(θ))

ℓ.

Proof. This proposition can be proved using the following two facts in linear algebra: log(I+
X) =

∑∞
k=1(−1)k−1 1

k
Xk and tr logX = log detX for an invertible matrix X . Confirm it

and calculate for the case of the digraph G2 in Example 2.7.
In fact, we have the following equations:

log det(I − sMG(θ))
−1 = − log det(I − sMG(θ)) = −tr

∞∑
ℓ=1

(−1)ℓ−11

ℓ
(−sMG(θ))

ℓ

= −tr
∞∑
ℓ=1

(−1)2ℓ−11

ℓ
(MG(θ))

ℓsℓ =
∞∑
ℓ=1

tr (MG(θ))
ℓ

ℓ
sℓ.

Hence, we obtain Nℓ = tr (MG(θ))
ℓ. □

The next lemma plays an important role in our setting. See Section 5 in [14] for the precise
proof.

Lemma 2.10. Let P be an m × n matrix and Q an n × m matrix. Then det(I − PQ) =
det(I −QP ).

Proof. If P is a regular matrix, we have det(I − PQ) = detP−1 det(I − PQ) detP =
det(P−1IP − P−1PQP ) = det(I −QP ).

In general, if A is a regular matrix of the size m × m and D is a square matrix, then

det

(
A P
Q D

)
= detA · det(D − QA−1P ). Similarly, if D is a regular matrix of the size

n × n and A is a square matrix, then det

(
A P
Q D

)
= detD · det(A − PD−1Q). Suppose

both A and D are the identity matrices, we have the conclusion. □
Definition 2.11. The matrix AG = (auv)u,v∈V with entries auv = ♯Auv is called the adja-
cency matrix of a digraph G.

Example 2.12. For the digraphs G1 and G2 in Figure 1, AG1 =

(
0 1
1 0

)
, AG2 =

0 1 0
1 0 1
0 1 0

 .

Proposition 2.13. For a finite digraph G = (V,A), we have

ZG(s) =
1

det(I − sAG)
.
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Proof. We have only to prove det(I − sAG) = det(I − sMG(θ)) where MG(θ) is the edge
matrix for G. Let H = (hav)a∈A,v∈V and J = (jua′)u∈V,a′∈A denote the matrices with entries
hav = δh(a)v and jua′ = δut(a′) respectively. One can see that MG(θ) = HJ and AG = JH .
Then we have the conclusion by Lemma 2.10. □

3. WEIGHTED ZETA FUNCTIONS

A natural extension of the definition of the Ihara zeta function is a zeta function for
weighted graphs with positive natural numbers attached to the arcs, e.g. see Section 6 in [22].
However, when considering applications to knot theory, a more general setting is required.
In this section, following [18] and [14], we provide a setting that anticipates applications to
the (twisted) Alexander polynomials.

3.1. A weighted graph. Let G = (V,A) be a digraph. Let R be a commutative Q-algebra,
ω : A → R be a map. Then ω is called a weight, and the pair (G,ω) is called a weighted
graph. Suppose A = A and let W be the diagonal matrix W = (waa′)a,a′∈A such that
waa′ = ω(a)δaa′ . Then, we call W the weight matrix for (G,ω). Let us consider the following
three maps:

θ0 : A× A→ {0, 1} : (a, a′) 7→ δh(a)t(a′)

θ1 : A× A→ R : (a, a′) 7→ ω(a)δh(a)t(a′)

θ2 : A× A→ R : (a, a′) 7→ ω(a′)δh(a)t(a′).

Then, we have the edge matrix MG(θ0) for the digraph G and the edge matrix MG(θi)(i =
1, 2) for the weighted graph (G,ω).

Lemma 3.1. det(I −MG(θ1)) = det(I −MG(θ2)).

Proof. We have det(I −MG(θ1)) = det(I −MG(θ0)W ) = det(I −WMG(θ0)) = det(I −
MG(θ2)) by Lemma 2.10. □

It is not difficult to apply the arguments on θ in Subsection 2.3 to this θ2. According to
[18], we use the edge matrix MG(ω) = MG(θ2) in this paper. Theorem 2.3 holds for the
edge matrix MG(ω).

Definition 3.2. Let s be an indeterminate. The formal power series HG(s;ω) is defined as
follows:

HG(s;ω) =
1

det(I − sMG(ω))
.

Example 3.3. Let G1 and G2 be digraphs as illustrated in Figure 1. We give weights ω1

(ω2 resp.) for G1 (G2 resp.) such that ω1(a1) = t, ω1(a2) = 1 − t (ω2(a1) = t, ω2(a2) =
1− t−1, ω2(a3) = t−1, ω2(a4) = 1− t, resp.).

1

2

3

4v v v

1

1 22 3

1

2v1 v2 G

G

v1 v2

v v v1 2 3

t

1- t

t t

1- t1- t

-1

-1
aa

aa

a

a

FIGURE 2.
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Then we have

MG1(ω1) =

(
0 1− t
t 0

)
, MG2(ω2) =


0 1− t−1 t−1 0
t 0 0 0
0 0 0 1− t
0 1− t−1 t−1 0

 ,

det(I − sMG1(ω1)) = 1 + (−t+ t2)s2, and det(I − sMG2(ω2)) = 1 + (−t−1 + 2− t)s2.

Let c = (a1, a2, . . . , aℓ) be a path of G. We define the weight ω(c) for the path c by
ω(c) = ω(a1)ω(a2) · · ·ω(aℓ). If c is closed, i.e. if c ∈ Cℓ, then we can define the weight of
a cycle γ = c̄ by ω(γ) = ω(c), which is well-defined. For each positive integer ℓ ≥ 1, we
define

(3.1) Nℓ(ω) =
∑
c∈Cℓ

ω(c).

We note that Nℓ(ω) =
∑
γ∈[Cℓ]
ϖ(γ)|ℓ

ϖ(γ)ω(π(γ))ℓ/ϖ(γ) holds.

Definition 3.4. Let s be an indeterminate. The formal power series ZG(s;ω) and EG(s;ω)
are defined as follows:

ZG(s;ω) = exp

(∑
ℓ≥1

Nℓ(ω)

ℓ
sℓ

)
,

EG(s;ω) =
∏

γ∈[PG]

1

1− ω(γ)s|γ|
.

Proposition 3.5.
HG(s;ω) = ZG(s;ω) = EG(s;ω).

Proof. The following proof is essentially the same as the proof of Theorems 12 and 13 in
[18].

Taking the logarithm of EG(s;ω) and using the relation log(1 + x) =
∑

k≥1(−1)k−1 1
k
xk,

we have

logEG(s;ω) = log
∏

γ∈[PG]

1

1− ω(γ)s|γ|
=
∑

γ∈[PG]

∑
k≥1

1

k
ω(γ)ksk|γ|.

Setting ℓ = k|γ|, we see that ω(γ)k = ω(γk) = ω(c) holds for c ∈ Cℓ and γ ∈ PG satisfying
c = γk. Then, the last term equals∑

γ∈[PG]

∑
k≥1

1

k
ω(γ)ksk|γ| =

∑
γ∈PG

∑
k≥1

1

|γ|

(
1

k
ω(γk)

)
sk|γ| =

∑
ℓ≥1

∑
c∈Cℓ

1

ℓ
ω(c)sℓ

=
∑
ℓ≥1

1

ℓ

∑
c∈Cℓ

ω(c)sℓ =
∑
ℓ≥1

Nℓ(ω)

ℓ
sℓ.

Thus EG(s;ω) = ZG(s;ω) holds true.
Next we show that EG(s;ω) = HG(s;ω). Suppose γ = (a1, a2, . . . , aℓ) is a prime cycle

in a digraph G = (V,A). By the correspondence (2.2), there exists only one Lyndon word
l = ai1ai2 · · · aiℓ ∈ Lyn(A) which is a cyclic rearrangement of a1a2 · · · aℓ. By the definitions
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of the edge matrix MG(ω) = MG(θ2) = (maa′)a,a′∈A and the circular product circMG(ω)(l),
we obtain

ω(γ) = ω(a1)ω(a2) · · ·ω(aℓ) = ω(ai1)ω(ai2) · · ·ω(aiℓ)
= maiℓai1

mai1ai2
· · ·maiℓ−1

aiℓ

= circMG(ω)(l).

Hence, we have

EG(s;ω) =
∏

γ∈[PG]

1

1− ω(γ)s|γ|

=
∏

l∈Lyn(A)

1

1− circMG(ω)(l)s|l|

=
1

det(I − sMG(ω))
= HG(s;ω)

by Theorem 2.3. This completes the proof of Proposition 3.5. □
By the same argument as in the proof of Proposition 2.9, we have:

Proposition 3.6.
Nℓ(ω) = tr (MG(ω))

ℓ.

Example 3.7. Let G2 be the digraph with weight ω2 as illustrated in Figure 2. Then, using
Example 3.3, we have:

HG2(s;ω2) =
1

det(I − sMG2(ω2))
=

1

1 + (−t−1 + 2− t)s2
=

1

1− (t−1)2

t
s2

= 1 +
(t− 1)2

t
s2 +

(t− 1)4

t2
s4 +

(t− 1)6

t3
s6(3.2)

+
(t− 1)8

t4
s8 +

(t− 1)10

t5
s10 +O

(
s11
)
.

On the other hand, we have:∏
γ∈[P2]

1

1− ω(γ)s|γ|
=

1

1− t(1− t−1)s2
· 1

1− t−1(1− t)s2

= 1 +
(t− 1)2

t
s2 +

(t− 1)2 (t2 − t+ 1)

t2
s4 +

(t− 1)4 (t2 + 1)

t3
s6

+
(t− 1)4 (t4 − t3 + t2 − t+ 1)

t4
s8 +

(t− 1)6 (t4 + t2 + 1)

t5
s10 +O

(
s11
)
,

where the first two terms match the formula (3.2),∏
γ∈[P2]∪[P4]

1

1− ω(γ)s|γ|
= 1 +

(t− 1)2

t
s2 +

(t− 1)4

t2
s4 +

(t− 1)4 (t2 − t+ 1)

t3
s6

+
(t− 1)4 (t2 − t+ 1)

2

t4
s8 +

(t− 1)6 (t4 − t3 + 2t2 − t+ 1)

t5
s10 +O

(
s11
)
,

where the first three terms match the equation (3.2),∏
γ∈[P2]∪[P4]∪[P6]

1

1− ω(γ)s|γ|
= 1 +

(t− 1)2

t
s2 +

(t− 1)4

t2
s4 +

(t− 1)6

t3
s6
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+
(t− 1)4 (t4 − 3t3 + 5t2 − 3t+ 1)

t4
s8

+
(t− 1)6 (t4 − 2t3 + 4t2 − 2t+ 1)

t5
s10 +O

(
s11
)
,

where the first four terms match the equation (3.2). Moreover, Proposition 3.5 implies that

logZG2(s;ω) =
(t− 1)2

t
s2 +

(t− 1)4

2t2
s4 +

(t− 1)6

3t3
s6 +

(t− 1)8

4t4
s8

+
(t− 1)10

5t5
s10 +O

(
s11
)
.

On the other hand, by a direct calculation of matrices, we have

tr (MG(ω2))
2 =

2(t− 1)2

t
, tr (MG2(ω2))

3 = 0, tr (MG2(ω2))
4 =

2(t− 1)4

t2
,

tr (MG2(ω2))
5 = 0, tr (MG2(ω2))

6 =
2(t− 1)6

t3
, tr (MG2(ω2))

7 = 0,

tr (MG2(ω2))
8 =

2(t− 1)8

t4
, tr (MG2(ω2))

9 = 0, tr (MG2(ω2))
10 =

2(t− 1)10

t5
.

Definition 3.8. Let (G,ω) be a weighted graph where G = (V,A) and ω : A → R is a
weight. The weighted adjacency matrix AG(ω) is defined as follows:

(i) AG(ω) = (auv)u,v∈V ;
(ii) auv =

∑
a∈Auv

ω(a).

Proposition 3.9.

HG(s;ω) =
1

det(I − sAG(ω))
.

Proof. The idea of the proof is the same as that of Proposition 2.13. We have only to prove
det(I − sAG(ω)) = det(I − sMG(ω)) where MG(ω) is the edge matrix for G. Let H =
(hav)a∈A,v∈V and J = (jua′)u∈V,a′∈A denote the matrices with entries hav = δh(a)v and jua′ =
ω(a′)δut(a′) respectively. One can see that MG(ω) = HJ and AG(ω) = JH . Then we have
the conclusion by Lemma 2.10. □
Example 3.10. Let G1 and G2 be weighted digraphs as illustrated in Figure 2. Then, we
obtain

AG1(ω1) =

(
0 t

1− t 0

)
and AG2(ω2) =

 0 t 0
1− t−1 0 t−1

0 1− t 0

 .

Hence, det(I−sAG1(ω1)) = 1+(−t+ t2)s2 and det(I−sAG2(ω2)) = 1+(−t−1+2− t)s2.
Comparing with Example 3.3, we see that the equalities det(I − sMGi

(ωi)) = det(I −
sAGi

(ωi)) (i = 1, 2) hold.

3.2. The matrix-weighted graph. In this subsection, we state a matrix-weighted zeta func-
tion of a digraph G = (V,A). It was introduced in [24] and [20], and has been developed in
[17] and [6]. Our setting here is different from them, so we introduce the one that suits our
setting.

Suppose V = {v1, v2, . . . , vm} and (n1, n2, . . . , nm) ∈ Nm. Set nvi = ni (1 ≤ i ≤ m).
Then, for each a ∈ Avivj , let Ω(a) be an ni × nj matrix whose entries are in a commutative
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Q-algebra. The set {Ω(a) | a ∈ A} is called the matrix-weight of a digraph G. For a closed
path c = (ai1 , ai2 , . . . , aiℓ), set

Ω(c) = Ω(ai1)Ω(ai2) · · ·Ω(aiℓ).
The weights obtained by cyclic rearrangement are different, but the following definition is
well-defined according to Lemma 2.10.

Definition 3.11.
EG(s; Ω) =

∏
γ∈[PG]

1

det(I − s|γ|Ω(γ))
.

By the same idea as in Subsection 3.1, we can have the map

Θ: A× A→ Mat(R) : (a, a′) 7→ δh(a)t(a′)Ω(a
′),

and the edge matrix MG(Θ) whose (a, a′)-entry is the n′
i × n′

j block matrix for a′ ∈ Av′iv
′
j
.

Similarly, we have the adjacency matrix AG(Ω) =
(∑

a∈Auv
Ω(a)

)
u,v∈V . As in Subsection

3.1, we use the notation MG(Ω) = MG(Θ).

Example 3.12. Let G2 be the digraph as in Figure 1. Then we have:

MG2(Ω) =


O Ω(a2) Ω(a3) O

Ω(a1) O O O
O O O Ω(a4)
O Ω(a2) Ω(a3) O

 , AG2(Ω) =

 O Ω(a1) O
Ω(a2) O Ω(a3)
O Ω(a4) O

 ,

where O denotes the zero matrix.

Definition 3.13. Let s be an indeterminate. The formal power series HG(s; Ω) is defined as
follows:

HG(s; Ω) =
1

det(I − sMG(Ω))
.

Example 3.14. Let G2 be the digraph as in Figure 1 with the following matrix-weight:

Ω(a1) =

(
0 1

2
(1−

√
3i)t

−1
2
(1 +

√
3i)t 2t

)
, Ω(a2) =

(
−1

t
+ 1

2
(1 +

√
3i) −1

1
2t
(−1 +

√
3i) + 1

2
(1−

√
3i) −1

t
+ 1

)
,

Ω(a3) =

(
1
t

0
1
2t
(1−

√
3i) 1

t

)
, Ω(a4) =

(
1− 1

2
(1 +

√
3i)t t

1
2
(1 +

√
3i)t 1 + 1

2
(−3 +

√
3i)t

)
.

Then, HG2(s; Ω)
−1 = det(I − sMG2(Ω)) = 1 +

(
−2t+ 3− 2

t

)
s2 +

(t− 1)4

t2
s4 holds.

Recently, the following amount were introduced in [6] and [17]. This is a generalization
of (3.1). We set

Nℓ(Ω) =
∑
c∈Cℓ

tr Ω(c).

Here, if a closed path d ∈ Cℓ is a cyclic rearrangement of c ∈ Cℓ, then it holds tr Ω(d) =
trΩ(c).

Definition 3.15. Let s be an indeterminate. The formal power series ZG(s; Ω) is defined as
follows:

ZG(s; Ω) = exp

(∑
ℓ≥1

Nℓ(Ω)

ℓ
sℓ

)
.
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Theorem 3.16.
HG(s; Ω) = ZG(s; Ω) = EG(s; Ω).

Proof. First, we show EG(s; Ω) = ZG(s; Ω). This proof is a hybrid of the proofs of Proposi-
tions 2.9 and 3.5.

Taking the logarithm of EG(s; Ω), we have:

logEG(s; Ω) = log
∏

γ∈[PG]

1

det(I − s|γ|Ω(γ))
=
∑

γ∈[PG]

log
1

det(I − s|γ|Ω(γ))

= −
∑

γ∈[PG]

log det(I − s|γ|Ω(γ)) = −
∑

γ∈[PG]

tr log(I − s|γ|Ω(γ))

= −
∑

γ∈[PG]

tr
∑
k≥1

(−1)k−1 1

k
(−s|γ|Ω(γ))k =

∑
γ∈[PG]

∑
k≥1

1

k
sk|γ|tr (Ω(γ))k.

Set ℓ = k|γ|. Then, as in the proof of Proposition 3.5, the last term is equal to∑
ℓ≥1

1

ℓ

∑
c∈Cℓ

sℓtr Ω(c) =
∑
ℓ≥1

Nℓ(Ω)

ℓ
sℓ.

This means EG(s; Ω) = ZG(s; Ω).
Next, we show EG(s; Ω) = HG(s; Ω). Let MG(Ω) be the edge matrix of the digraph

G = (V,A) with matrix-weights. Its (a, a′)-entry consists of the n′
i × n′

j block matrix for
a′ ∈ Av′iv

′
j
. Let Bj be the matrix whose a′-column is the same as that of MG(Ω) and other

columns are all O. (Refer to the next example.) Then MG(Ω) = B1 +B2 + · · ·+B♯A and∏
γ∈[PG]

det(I − s|γ|Ω(γ)) =
∏

l∈Lyn(A)

det(I − s|l|Bl)

where Bl = Bi1Bi2 · · ·Bip for a Lyndon word l = i1i2 · · · ip. By Theorem 2.4, the righthand
side of the equation is equal to det(I − sMG(Ω)). This completes the proof of Theorem
3.16. □
Example 3.17. We use the data in Examples 3.12 and 3.14. We denote the edge matrix of
the digraph G2 by MG2(Ω) = B1 +B2 +B3 +B4, where

B1 =


O O O O

Ω(a1) O O O
O O O O
O O O O

 , B2 =


O Ω(a2) O O
O O O O
O O O O
O Ω(a2) O O

 ,

B3 =


O O Ω(a3) O
O O O O
O O O O
O O Ω(a3) O

 and B4 =


O O O O
O O O O
O O O Ω(a4)
O O O O

 .

As in Example 3.14, det(I − sMG2(Ω)) = 1 +
(
−2t+ 3− 2

t

)
s2 + (t−1)4

t2
s4. Set

f(k) = det(I − sMG2(Ω))−
∏

l∈Lyn(A),|l|≤k

det(I − s|l|Bl).

Note that if |l| = 2, Bl = B1B2 or B3B4. If |l| = 4, Bl = B1B3B4B2. Then the coefficient
of si(0 ≤ i ≤ 3) of f(2) is 0. Similarly, we can confirm that the coefficient of si(0 ≤ i ≤ 5)
of f(4) is 0, the coefficient of si(0 ≤ i ≤ 7) of f(6) is 0, and so on. Theorem 2.4 assures
that limk→∞ f(k) = 0.
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By a similar argument to the proof of Proposition 3.9, we have:

Proposition 3.18.

HG(s; Ω) =
1

det(I − sAG(Ω))
.

Proposition 3.19.
Nℓ(Ω) = tr (MG(Ω))

ℓ = tr (AG(Ω))
ℓ.

Proof. A similar argument to the proofs of Propositions 2.9 and 3.9 yields this proposition.
□

Example 3.20. Let G2 be the digraph illustrated in Figure 1, and we use the data in Examples

2.8 and 3.14. We have tr (MG2(Ω))
6 = tr (AG2(Ω))

6 =
4

t3
− 6

t2
+6− 6t2+4t3 by the direct

calculation. On the other hand,

tr Ω((a1a2)
3) =

4t3 − 3
(
1− 3

√
3i
)
t2 − 12

(
1 +
√
3i
)
t+ 3

(
3 +
√
3i
)

2
,

tr Ω((a3a4)
3) =

3
(
3−
√
3i
)
t3 − 12

(
1−
√
3i
)
t2 − 3

(
1 + 3

√
3i
)
t+ 4

2t3
,

tr Ω(a1a2a1a3a4a2) = −
(
1 + 3

√
3i
)
t3 − 8t2 + 2

(
1− 4

√
3i
)
t+ 4

(
1 +
√
3i
)

2t
,

tr Ω(a1a3a4a3a4a2) = −
4
(
1−
√
3i
)
t3 + 2

(
1 + 4

√
3i
)
t2 − 8t+ 1− 3

√
3i

2t2
.

Thus, we have:

N6(Ω) =
∑
c∈C6

tr Ω(c)

= 2trΩ((a1a2)
3) + 2trΩ((a3a4)

3) + 6trΩ(a1a2a1a3a4a2) + 6trΩ(a1a3a4a3a4a2)

=
4

t3
− 6

t2
+ 6− 6t2 + 4t3.

Accordingly, we see that the equalities N6(Ω) = tr (MG2(Ω))
6 = tr (AG2(Ω))

6 hold for the
digraph G2.

4. THE ALEXANDER POLYNOMIAL

There has been some work on (twisted) Alexander polynomials and graphs, but here we
summarize the previous work in a way that makes it applicable to future applications.

4.1. The knot graph. The idea of the knot graph can be found in [15]. It was later formal-
ized by [8] and named arc graph. In [10], the first author of the present paper formulated the
idea of Lin and Wang [15] without knowing [8] and named it knot graph, but it is essentially
the same as the one formulated by [8]. In this paper, we adopt a hybrid of the two and call it
knot graph.

We consider a diagram of an oriented knot K with no kink, together with a base point
decorated with ∗. A knot graph GK is constructed by the following steps (see Figure 3). We
denote by K again a diagram of K.

(i) Decompose K into overpaths k1, k2, . . . , km along the orientation of K from ∗.
(ii) A vertex vi of G̃K corresponds to the arc ki.

(iii) An edge of G̃K corresponds to a transition of K one to one: when we walk along K,
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• if we go under at a crossing along the orientation of K, we draw a corresponding
blue arc (depicted with a small circle on it);
• if we jump up at a crossing along the orientation of K, we draw a corresponding

red arc.
Then G̃K has vertices v1, . . . , vm and m blue arcs (vi, vi+1) (mod m) and m red arcs
(vi, vj).

(iv) Each vertex is labelled with the sign corresponding to that of the crossing.
(v) The knot graph GK is obtained from G̃K by deleting the vertex vm and arcs associ-

ated with vm.

k i

i

i+1

i+1

j

v+ i

vv

v

vv

i-

i+1

i+1

j

j

k

k

k
jk

k

FIGURE 3.

Example 4.1. We put the cases of the trefoil and the figure-eight knot in Figure 4.

*
k

k
k

1

2
3

v1 v2v2

v1

v2v3

*k1

k3
k 2 k4

v1

v2

v3

v4
v v v1 2 3

1G

2G

2G

1G
～

～

FIGURE 4.

Remark 4.2. (1) The assumption of no kink assures that a knot graph does not have a
loop and multi arcs.

(2) Each vertex of G̃K has two arcs whose tails are the vertex.

4.2. The classical Alexander polynomial. The fundamental group of a knot complement
has a Wirtinger presentation. It can be obtained as follows. Let K be an oriented knot and we
also denote by K its diagram. We decompose K into overpaths k1, k2, . . . , km along the ori-
entation of K. We denote by ci the crossing which corresponds to the terminal of the path ki
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(i = 1, 2, . . . ,m). Let ν(K) be an open tubular neighborhood of K and EK = S3 \ν(K) the
exterior of K in the 3-sphere S3. We take a generator xi of π1(EK) associated with the over-
path ki. If sign(ci) = +1, then we take the relator ri : xixjx

−1
i+1x

−1
j . If sign(ci) = −1, then

we take the relator ri : xix
−1
j x−1

i+1xj . See Figure 5. It is known that the relator rm can be ob-
tained from others, so we have a presentation of π1(EK): 〈x1, x2, . . . , xm | r1, r2, . . . , rm−1〉,
which is called a Wirtinger presentation.

k

i
i

i+1 i+1jk

k
k

jk k

i

i

j

j

j

j i+1

i+1

x

x
x
x

x

x
x
x

FIGURE 5.

Example 4.3. Let K be the figure-eight knot as illustrated in Figure 4. Then we may have
the Wirtinger presentation of π1(EK):

〈x1, x2, x3, x4 | r1 = x1x4x
−1
2 x−1

4 , r2 = x2x
−1
1 x−1

3 x1, r3 = x3x2x
−1
4 x−1

2 〉.

We denote by Fm the free group 〈x1, x2, . . . , xm〉 of degree m, and let Z[Fm] be the group
ring associated with Fm. Let ∂

∂xj
: Z[Fm]→ Z[Fm] (j = 1, 2, . . . ,m) be the free differential.

It is characterized by the following properties:

(i)
∂

∂xj

is linear on Z

(ii) For any i and j,
∂xi

∂xj

= δij ,

(iii) For any y, y′ ∈ Fm,
∂

∂xj

(yy′) =
∂y

∂xj

+ y
∂y′

∂xj

.

Then we can have
∂1

∂xj

= 0 and
∂y−1

∂xj

= −y−1 ∂y

∂xj

. Moreover, let

α : π1(EK)→ H1(EK ;Z) ∼= Z = 〈t〉

be the abelianization homomorphism, which is given by α(xi) = t. This map α naturally
induces the ring homomorphism α̃ from Z[π1(EK)] to Z[t±1].

For a Wirtinger presentation 〈x1, x2, . . . , xm | r1, r2, . . . , rm−1〉 of π1(EK), we denote by
ϕ : Z[Fm]→ Z[t±1] the composition of the surjection Z[Fm]→ Z[π1(EK)] induced naturally
and the map Z[π1(EK)]→ Z[t±1] given by α̃.

Let us consider the crossings in Figure 5. In case of sign(ci) = +1, for ri = xixjx
−1
i+1x

−1
j ,

we have:
∂ri
∂xi

= 1
ϕ7−→ 1,

∂ri
∂xi+1

= −xixjx
−1
i+1

ϕ7−→ −t,

∂ri
∂xj

= xi − xixjx
−1
i+1x

−1
j

ϕ7−→ t− 1,
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because ri = 1 holds in Z[π1(EK)]. Similarly, in case of sign(ci) = −1, for ri = xix
−1
j x−1

i+1xj ,
we have:

∂ri
∂xi

= 1
ϕ7−→ 1,

∂ri
∂xi+1

= −xix
−1
j x−1

i+1

ϕ7−→ −t−1,

∂ri
∂xj

= −xix
−1
j + xix

−1
j x−1

i+1

ϕ7−→ −1 + t−1.

Definition 4.4. The Alexander polynomial ∆K(t) of a knot K is defined as follows:

∆K(t) = det

(
ϕ

(
∂ri
∂xj

))
1≤i,j≤m−1

.

Omitting the m-th column of the matrix
(
ϕ
(

∂ri
∂xj

))
1≤i≤m−1
1≤j≤m

corresponds to deleting the

vertex vm and its associated edges in G̃K . The Alexander polynomial is an invariant of a
knot up to multiplication by ±tk (k ∈ Z).

Example 4.5. Let K be the figure-eight knot as illustrated in Figure 4, and we have the
Wirtinger presentation of π1(EK) as in Example 4.3. A direct calculation shows that(

ϕ

(
∂ri
∂xj

))
1≤i,j≤3

=

 1 −t 0
−1 + t−1 1 −t−1

0 t− 1 1

 .

Further, we obtain ∆K(t) = −
1

t
+3−t. Note that

(
ϕ

(
∂ri
∂xj

))
1≤i,j≤3

= I − AG2(ω) holds,

where AG2(ω) is the weighted adjacency matrix in Example 3.10.

Let GK = (V,A) be a knot graph of a knot K and recall that GK does not have a loop and
multi arcs (see Remark 4.2). We define the Alexander weight as follows ([10, 15, 8]).

Definition 4.6. Let ω : A→ R = Q[t±1] be

ω(a) = ω(vi, vj) =

{
tsign(vi) if j = i+ 1,

1− tsign(vi) otherwise.

Then we call the map ω the Alexander weight. See Figure 6.

t 1-t t -11-t-1

+ -

vv

v

v v

v ii

i+1 i+1j j

FIGURE 6.

The first equality of the following theorem is proven in [15] and [8].

Theorem 4.7 (Theorem 4.3 in [15], Theorem 1 in [8]). Let ω be the Alexander weight for a
knot graph GK . Then we have:

∆K(t) = det(I − AGK
(ω)) = det(I −MGK

(ω)).
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Proof. By the definition of the Alexander weight, we see that

AGK
(ω) = I −

(
ϕ

(
∂ri
∂xj

))
1≤i,j≤m−1

holds. Hence the assertion follows from the proof of Proposition 3.9 immediately. □

Example 4.8. The knot graphs for the trefoil knot and the figure-eight knot are given in
Example 4.1. In Examples 3.3 and 3.10, the Alexander weights for these knots and the
Alexander polynomials are provided, if we substitute s = 1 for det(I − sMGi

(ωi)) and
det(I − sAGi

(ωi)).

4.3. The twisted Alexander polynomial. We use the notation from the previous subsection
and Wada’s original paper [23].

Let ρ : π1(EK) → SL(n;C) be a linear representation. This map naturally induces the
ring homomorphism ρ̃ from Z[π1(EK)] to Mat(n;C). Then, ρ̃ ⊗ α̃ defines a ring homo-
morphism Z[π1(EK)] → Mat(n;C[t±1]). As in Subsection 4.2, we denote by Φ: Z[Fm] →
Mat(n;C[t±1]) the composition of the surjection Z[Fm]→ Z[π1(EK)] induced naturally and
the map Z[π1(EK)]→ Mat(n;C[t±1]) given by ρ̃⊗ α̃.

Let us consider the crossings in Figure 5 in the same way as for the Alexander polynomi-
als. Set Xi = ρ(xi). In case of sign(ci) = +1, for ri = xixjx

−1
i+1x

−1
j , we have:

Φ

(
∂ri
∂xi

)
= I, Φ

(
∂ri

∂xi+1

)
= −tXj, Φ

(
∂ri
∂xj

)
= tXi − I.

Similarly, in case of sign(ci) = −1, for ri = xix
−1
j x−1

i+1xj , we have:

Φ

(
∂ri
∂xi

)
= I, Φ

(
∂ri

∂xi+1

)
= −t−1X−1

j , Φ

(
∂ri
∂xj

)
= −XiX

−1
j + t−1X−1

j .

The twisted Alexander polynomial ∆K,ρ(t) is defined as follows:

Definition 4.9.

∆K,ρ(t) =
det
(
Φ
(

∂ri
∂xj

))
1≤i,j≤m−1

detΦ(xm − 1)
.

The twisted Alexander polynomial is well-defined up to multiplication by tk(k ∈ Z) if n
is even and by ±tk if n is odd. For simplicity, we denote the numerator (denominator resp.)
of the twisted Alexander polynomial by ∆1

K,ρ(t) (∆0
K,ρ(t) resp.).

According to [10], we define the following weight. See Figure 7.

Definition 4.10. The twisted Alexander weight is defined as follows:

Ω(a) = Ω(vi, vj) =


tsign(vi)X

sign(vi)
j if j = i+ 1,

I − tXi if j 6= i+ 1 and sign(vi) = +1,

XiX
−1
j −

1

t
X−1

j if j 6= i+ 1 and sign(vi) = −1.

Theorem 4.11 ([10]). Let Ω be the twisted Alexander weight for a knot graph GK . Then we
have:

∆1
K,ρ(t) = det(I − AGK

(Ω)) = det(I −MGK
(Ω)).
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+ -

-

vv

v

v v

v

I- tX tX  X 1
t- X 1

t
- -1

 X 
-1

X 
-1

ii

i

i+1 i+1j

j jj j

j

i

FIGURE 7.

Proof. By the definition of the twisted Alexander weight, we see that

AGK
(Ω) = I −

(
Φ

(
∂ri
∂xj

))
1≤i,j≤m−1

holds. Hence we obtain the desired formula using Proposition 3.18. □

Example 4.12. We use the data in Examples 3.14, 4.1 and 4.3. Let K be the figure-eight knot
as illustrated in Figure 4 and the presentation of π1(EK) as in Example 4.3. Set

X1 =

(
1 0

−1
2
(1−

√
3i) 1

)
, X2 =

(
1 −1
0 1

)
, X3 =

(
1
2
(1 +

√
3i) −1

−1
2
(1 +

√
3i) 1

2
(3−

√
3i)

)
,

and X4 =

(
0 1

2
(1−

√
3i)

−1
2
(1 +

√
3i) 2

)
.

Define a map ρ : π1(EK) → SL(2;C) by ρ(xi) = Xi. Then one can confirm that ρ satisfies
the relators ri (1 ≤ i ≤ 3), so it is a representation of π1(EK). Moreover, we can confirm
that Ω(a1) = tX4,Ω(a2) = X2X

−1
1 − 1

t
X−1

1 ,Ω(a3) =
1
t
X−1

1 , and Ω(a4) = I − tX3. Hence

∆1
K,ρ(t) =

(t− 1)2(t2 − 4t+ 1)

t2
= HG2(1; Ω)

−1. Since ∆0
K,ρ(t) = detΦ(x4−1) = (t−1)2,

we have ∆K,ρ(t) =̇ t2 − 4t+ 1.

Using the results from the previous section, we can obtain some expressions for (the nu-
merator of) the twisted Alexander polynomial in terms of three kinds of matrix-weighted
zeta functions evaluated at s = 1.

Corollary 4.13. For the twisted Alexander weight Ω of a knot graph GK , we have

∆1
K,ρ(t) = HGK

(1; Ω)−1 = ZGK
(1; Ω)−1 = EGK

(1; Ω)−1.

In the next section, as an application of Theorem 4.11, we provide a volume presentation
of a hyperbolic knot in S3 using Bell polynomials.

5. A VOLUME PRESENTATION OF A HYPERBOLIC KNOT

In our previous paper [11], we provided a volume presentation of a hyperbolic fibered
knot, whose complement in S3 admits the complete hyperbolic metric of finite volume and
fibers over the circle. More precisely, we showed that the hyperbolic volume of a fibered
knot can be expressed in terms of the traces of powers of a monodromy matrix through Bell
polynomials. In this section, we exhibit a new volume formula for a hyperbolic knot (not
necessarily fibered) using graph data and Bell polynomials.
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5.1. Bell polynomial. Bell polynomials are often used in the study of set partitions. See
[5]. Note that Wolfram Mathematica mounts Bell polynomials.

The partial Bell polynomials are the polynomials Bk,j = Bk,j(x1, x2, . . . , xk−j+1) in an
infinite number of variables x1, x2, . . . , defined by the formal double series expression:

exp
(
u
∑
m≥1

xm
tm

m!

)
=
∑

k≥j≥0

Bk,j
tk

k!
uj = 1 +

∑
k≥1

tk

k!

(
k∑

j=1

ujBk,j(x1, x2, . . .)

)
.

The complete Bell polynomials Bk are defined by

Bk = Bk(x1, x2, . . . , xk) =
k∑

j=1

Bk,j , B0 = 1.

There is a list of the values of the partial Bell polynomials Bk,j for the small numbers k, j
on pages 307 in [5]. For the reader’s convenience, we exhibit some of them:

B1,1 = x1, B2,1 = x2, B2,2 = x2
1, B3,1 = x3, B3,2 = 3x1x2, B3,3 = x3

1,

B4,1 = x4, B4,2 = 4x1x3 + 3x2
2, B4,3 = 6x2

1x2, B4,4 = x4
1,

B5,1 = x5, B5,2 = 5x1x4 + 10x2x3, B5,3 = 10x2
1x3 + 15x1x

2
2, B5,4 = 10x3

1x2, B5,5 = x5
1.

Let A be a d× d matrix and φA(λ) be the characteristic polynomial of A with coefficients
p1, p2, . . . , pd:

φA(λ) = λd − p1λ
d−1 − p2λ

d−2 − · · · − pd.

Suppose that λ1, λ2, . . . , λd are the eigenvalues of A, i.e. φA(λ) = (λ−λ1)(λ−λ2) · · · (λ−
λd). Then, Ak has the eigenvalues λk

1, λ
k
2, . . . , λ

k
d and the trace trAk =

∑d
j=1 λ

k
j (k =

1, 2, . . .). We denote trAk by qk for simplicity.
The traces qk (k = 1, 2, . . . , d) have a relation to the coefficients pk by Newton’s identities:

kpk = qk − p1qk−1 − · · · − pk−1q1 (k = 1, 2, . . . , d).

The coefficient pk can be expressed as follows.

Lemma 5.1 (Lemma 3.3 in [11]). Let Bk(x1, x2, . . . , xk) be the complete Bell polynomial.
Then, we have

pk = −
1

k!
Bk

(
− q1,−1!q2,−2!q3, . . . ,−(k − 1)!qk

)
= −

∑
m1+2m2+···+kmk=k

k∏
j=1

(−qj)mj

mj! jmj

where m1 ≥ 0, . . . ,mk ≥ 0.

5.2. Hyperbolic volume. In this subsection, we review the volume formula of a hyperbolic
knot using the higher-dimensional twisted Alexander polynomials according to [3] (see also
[9]). We also provide a new volume formula using Bell polynomials.

An orientable hyperbolic 3-manifold has a natural representation of its fundamental group
into PSL(2;C), which is unique up to conjugation. We call it the holonomy representation
of the 3-manifold. It is known that the holonomy representation lifts SL(2;C), and a lift is
unique up to multiplication with a representation into the center of SL(2;C). In this paper,
we consider the lift such that the trace of the image of a meridian of a hyperbolic knot is
equal to 2. Of course, another choice of lift works as well.
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For n ≥ 2, let us recall that, up to conjugation, the unique n-dimensional irreducible rep-
resentation of SL(2;C) is the (n− 1)-th symmetric power. We denote it by σn : SL(2;C)→
SL(n;C). Let K be a hyperbolic knot in S3, namely, the interior of EK admits the complete
hyperbolic metric of finite volume. For our lift of the holonomy representation, we consider
the composition with σn, and denote this representation by ρn : π1(EK) → SL(n;C). Here
we note that ρ2 is conjugate to our lift of the holonomy representation.

The next theorem is a volume formula of a hyperbolic knot using the twisted Alexander
polynomials. The set of unit complex numbers is denoted by S1 = {ζ ∈ C | |ζ| = 1}.

Theorem 5.2 ([3, Theorem 1.1]). For a hyperbolic knot K in S3 and for any ζ 6= 1 ∈ S1,
1

4π
Vol(S3 \K) = lim

n→∞

1

n2
log |∆K,ρn(ζ)|

holds.

Let Ωn be the twisted Alexander weight for the knot graph GK of a hyperbolic knot K,
which corresponds to the representation ρn : π1(EK) → SL(n;C). Further, we set qk(t) =
tr (AGK

(Ωn))
k ∈ C[t±1] (k = 1, 2, . . . , d) and

q⃗(t) =
(
− q1(t),−1!q2(t),−2!q3(t), . . . ,−(d− 1)!qd(t)

)
.

Then, Proposition 3.19 and the definition of Nℓ(Ωn) imply that we can compute q⃗(t) by the
sum of the traces of matrices over all closed paths with fixed length on the knot graph GK .

Now, we provide a new volume presentation of a hyperbolic knot.

Theorem 5.3. For any ζ 6= 1 ∈ S1, we have

1

4π
Vol(S3 \K) = lim

n→∞

1

n2
log

∣∣∣∣∣
mn∑
k=0

Bk(q⃗(ζ))

k!

∣∣∣∣∣ ,
where m is the number of vertices in the knot graph GK .

Proof. Using Theorem 4.11, we see that the numerator of the twisted Alexander polynomial
can be written as ∆1

K,ρn
(t) = det(I − AGK

(Ωn)) = det(sI − AGK
(Ωn))|s=1. On the other

hand, by Lemma 5.1

det(sI − AGK
(Ωn)) = sd − p1s

d−1 − p2s
d−2 − · · · − pd,

where d = mn and pk = − 1
k!
Bk(q⃗(t)) (k = 1, 2, . . . , d). Thus, we have

∆1
K,ρn(t) = 1 +

d∑
k=1

Bk(q⃗(t))

k!
=

d∑
k=0

Bk(q⃗(t))

k!
.

As for the denominator of the twisted Alexander polynomial, we obtain ∆0
K,ρn

(t) = (t− 1)n

(see Lemmas 2.6 and 2.7 in [11]). Hence, using Theorem 5.2 for ζ 6= 1 ∈ S1, we have

1

4π
Vol(S3 \K) = lim

n→∞

1

n2
log |∆K,ρn(ζ)| = lim

n→∞

1

n2
log

∣∣∣∣∣
∑d

k=0
Bk(q⃗(ζ))

k!

(ζ − 1)n

∣∣∣∣∣
= lim

n→∞

1

n2

(
log

∣∣∣∣∣
d∑

k=0

Bk(q⃗(ζ))

k!

∣∣∣∣∣− n log |ζ − 1|

)

= lim
n→∞

1

n2
log

∣∣∣∣∣
d∑

k=0

Bk(q⃗(ζ))

k!

∣∣∣∣∣ .
This completes the proof of Theorem 5.3. □
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We remark here that the hyperbolic volume of K does not depend on the denominator of
the twisted Alexander polynomial evaluated at t = ζ . We can also use the trace of the edge
matrix MGK

(Ωn) to provide a similar expression for the hyperbolic volume.
Wolfram Mathematica was used for the calculations in this paper. We became aware of

the existence of the literature [19] after completing this paper.
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