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Abstract

In this paper we study the Hilbert series of triangle groups A(p, g, 7).
The 11 groups in this series are, conjecturally, the only cocompact tri-
angle groups that admit matrix models over totally real fields.

We provide evidence for this conjecture, along with explicit integral
models for every group in the Hilbert series. The most remarkable
among them, A(14,21,42), is the only known triangle group with a
split invariant quaternion algebra.

Using this special group, we construct the first example of a compact
Kobayashi geodesic curve V on a Hilbert modular variety (aside from
those that reside on proper Shimura subvarieties). For comparison,
there are no compact Kobayashi geodesic curves in the moduli space

M.
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(14,21,42)

Figure 1. Hyperbolic tilings defined by groups in the Hilbert series.

1 Introduction

This paper gives the first example of a curve on a Hilbert modular variety,
V C Xk, V # Xk, such that:

1. V is totally geodesic for the Kobayashi metric,
2. V does not lie on a proper Shimura subvariety of X, and
3. V is compact (it has no cusps).

The most familiar and commonly studied curves on Xg are the Shimura
curves; these satisfy (1) but not (2). Teichmiiller curves in moduli space,



V C My, yield (by passing to the Jacobian) curves satisfying (1) and (2),
but they always have cusps. In fact, in [Mc3] we show that every V satisfying
(1) and (2) must violate (3) when dim X = 2. It is thus natural to wonder
if the same is true with dim Xx > 2. We provide a negative answer in
Theorem 1.9.

A second goal of this paper is to discuss a remarkable collection of 11
triangle groups acting on H, which we call the Hilbert series. Every group
A in the Hilbert series admits a matrix model over its trace field. The
model for A(14,21,42) leads to a very explicit example of a curve V C X
satisfying (1), (2) and (3) above (with dim Xx = 6), and hence a proof of
Theorem 1.9. See §6 and Figure 5 below for details.

Triangle groups. We begin by defining the Hilbert series, stating its main
properties and formulating its conjectural characterizations.

The classical hyperbolic triangle groups

A(pa q, ’f') C SLQ(R)

are uniquely determined, up to conjugacy, by triples of positive integers
satisfying 1/p+ 1/q+ 1/r < 1. They are readily described geometrically as
subgroups of index two in the reflection groups associated to the triangles
T(p,q,r) C H with internal angles (7 /p,7/q,7/r).

Algebraic models. One can also approach triangle groups from an alge-
braic perspective. Let us say A = A(p,q,r) has a matriz model (or simply
a model) over a subring A C R if it is conjugate to a subgroup of SLy(A).
Every triangle group has a model over a number field L (see e.g. [CV, eq.
(2.7)]). This field necessarily contains the trace field

K =Q(tr A) = Q(cos7/p,cosm/q,cosm/r). (1.1)

One can always find a model with [L : K] = 2. It is unusual, however, for
A to admit a model over K itself.

The Hilbert series. In this paper we will study the 11 triangle groups
A(p,q,r) in the Hilbert series, given by (p,q,r) =
(2,4,6), (2,6,6), (3,4,4), (3,6,6), (2,6,10), (3,10,10),
(5,6,6), (6,10,15) (4,6,12), (6,9,18), and (14,21,42).

See Figure 1. We will show that every group in this series admits a model
over its trace field K. In fact, we will show (§3):

Theorem 1.1 FEvery group A(p,q,r) in the Hilbert series admits a matriz
model over the ring of integers O in its trace field K.



The most remarkable group in the Hilbert series is A(14,21,42). For
this group we will also show (§4):

Theorem 1.2 FEvery subgroup T' of finite index in A(14,21,42) admits a
matriz model over the ring of integers in Q[TrT.

This result will be used to construct an exotic curve on a Hilbert modular
variety; see Theorem 1.9 below.

Generators. The proof we offer for Theorems 1.1 and 1.2, provides explicit
matriz generators for A(p,q,r) in SLa(Of). This approach makes the proof
easy to verify and independently useful for computational work.

Despite the large literature on triangle groups, these algebraically opti-
mized matrices appear to be new; they were found using a general algorithm,
described in §2. In the Appendix, we apply the same method to give an in-
tegral model for the arithmetic group A(2,3,7).

Quaternion algebras. To explain the significance of the Hilbert series
more completely, we formulate three conjectures in the language of quater-
nion algebras.

Recall that a quaternion algebra B over a field K of characteristic zero
is a central simple algebra of rank 4. We let SL(B) C B* denote the group
of units of norm one.

The algebra B is split if B = Ma(K); otherwise, B is a division algebra.
When K is a number field, it is known that the Hasse principle holds:

B is split < B, = B®xk K, is split for every place v of K. (1.2)

See e.g. [MR, Theorem 2.7.2]. The algebra B is said to ramify at the finitely
many places where B, is not split. We say B splits over a field extension
L/K if B®g L is split.

Triangle groups. Now let A = A(p,q,r) C SLa(R) be a cocompact trian-
gle group with trace field K. Then the associated ring

B =Q[A] € Ma(R)

is a quaternion algebra over K. The algebra B is determined, up to isomor-
phism, by the triple (p,q,r), as we will see explicitly in §2. If B splits over
L, then the inclusion

A C SL(B @ L) = SLy(L)



gives a model for A over L. The converse also holds. Thus one can regard
the inclusion

A C SL(B)

as a canonical precursor to any matrix model for A (including its usual
model over R).

Commensurability. Let Ag = (g : g € A). The invariant trace field and
quaternion algebra of A, defined by

Ko =Q[trAg] and By = Q[A],

depend only on the commensurability class of A [MR, Cor. 3.3.5]. We note
that
A/Ag = Hi(A,Z)2) = (Z/2),

where e = 2 if all (p,q,7) are even, e = 1 if exactly two are even, and
otherwise e = 0.

We can now formulate three conjectures concerning all cocompact trian-
gle groups A = A(p,q,r).

Conjecture 1.3 The quaternion algebra B, is split at all infinite places v
of K <= A belongs to the Hilbert series.

Conjecture 1.4 The quaternion algebra B is split <= A belongs to the
Hilbert series.

Conjecture 1.5 The invariant quaternion algebra By is split <— A 1is
conjugate to A(14,21,42).

The implication <= in each conjecture follows from Theorems 1.1 and 1.2

above. We regard Conjecture 1.3 as the main conjecture, since it clearly

implies Conjecture 1.4, which in turn implies Conjecture 1.5 (see below).
Added in proof. A proof of Conjecture 1.3 has been announced in [CC].

Totally real models. We now discuss the main conjecture in more detail,
and provide evidence in its support.

If B, is ramified at v|oco, then B, is isomorphic to Hamilton’s quater-
nions, which can only be split by extending K,, = R to C. Thus the main
conjecture is equivalent to:

Conjecture 1.6 A cocompact triangle group A has a model over a totally
real field <= A belongs to the Hilbert series.



Totally hyperbolic groups. In general, if B is split at s infinite places
and ramified at r others, where r + s = [K : Q], then the embedding

A C [ SL(By) = SU(R)" x SLa(R)*

v]oo

gives an isometric action of A on §" x H¥, where S denotes the unit sphere
in R3. We say A is totally hyperbolic if » = 0. In these terms, the main
conjecture states that:

The Hilbert series is the complete list of totally hyperbolic cocom-
pact triangle groups.

This is [Mc5, Conjecture 1.15].

Evidence. It is straightforward to test if A(p,q,r) is totally hyperbolic.
Let L = {a €73 : Y a; = Omod2}, and for a € R3, let

lally = lai| and |la = L|y = inf{lla — b}y : be L},

Then A(p, q,r) is totally hyperbolic <= ||ka— L||; < 1 for all k € (Z/n)*,
where a = (1/p,1/q,1/r) and n = 2lem(p, g, ); see [Mch, Cor. 7.3]. Using
this test, we have verified:

Theorem 1.7 The only totally hyperbolic triangle groups with p, q,r < 5000
are those in the Hilbert series.

It is also known that the set of cocompact, totally hyperbolic triangle groups
is finite [WM, Theorem 4], [Mc5, Cor. 1.9].

We remark that the computation above can be accelerated by choosing a
random generator u of Z/n, and then testing ka for k = u, 2u, 3u,...modn
instead of Kk =1,2,3... modn.

Table of invariants. The principal invariants of the groups A(p, ¢, ) in the
Hilbert series are summarized in Table 2. In this table, the second column
gives an algebraic number u generating the trace field K. The next two
columns give [K : Q] and [Kj : Q]. Each quaternion algebra By/K), except
the last, is ramified at two finite places of K, which lie above two primes P
of Q, listed in the final column. Since the quaternion algebra B = By ® g, K
splits whenever By splits, this final column shows:

Conjecture 1.4 implies 1.5.



(p,q,7) K =Q(u) deg K | degKo | P
(2,4,6) cosm/12 4 1 {2,3}
(2,6,6) cos /6 2 1 {2,3}
(3,4,4) cos /4 2 1 {2,3}
(3,6,6) cos /6 2 1 {2,3}
(2,6,10) cos /30 8 2 {3,5}
(3,10,10) cos /10 4 2 |{3,5}
(5,6,6) | cosm/5+ cosm/6 4 2 {3,5}
(6,10, 15) cos /30 8 4 {3,5}
(4,6,12) cos/12 4 2 | {2,3)
(6,9,18) cosm/18 6 3 {2,3}
(14,21, 42) cos /42 12 6 0

Table 2. The Hilbert series.

We remark that the first four examples in Table 2 are arithmetic and
commensurable; the next three are also commensurable; and for the last
three examples, (1/p,1/q,1/r) is proportional to (1,2, 3).

Kobayashi geodesic curves. Next we relate the main conjecture to com-
plex geometry. Recall that any totally real field L of degree d over QQ deter-
mines a Hilbert modular variety

Xp, =H?/SLy(Op), (1.3)

where SLz(Op) acts on H? via its d distinct embeddings into SLa(R).
Let V' be a hyperbolic Riemann surface of finite volume, equipped with
a holomorphic map to a complex manifold,

f:V=H/T - X.

By the Schwarz lemma, f is distance non—increasing from the complete
hyperbolic metric on V' (of constant curvature —4) to the Kobayashi metric
on X.

In the rare case that f is a local isometry, we say V is a Kobayashi
geodesic curve on X (or simply a geodesic curve). We also allow V' and X
to be orbifolds, in which case f must respect the orbifold structure.



The Kobayashi metric on H? is the supremum of the hyperbolic metrics
on each factor; it descends to give the Kobayashi metric on Xg. As we will
see in §6, Conjecture 1.3 is also equivalent to:

Conjecture 1.8 A finite cover of V.= H/A(p,q,r) can be presented as
a Kobayashi geodesic curve on a Hilbert modular variety <= A(p,q,r)
belongs to the Hilbert series.

The implication <= is Corollary 6.5 below.

Moduli spaces and Hilbert modular surfaces. We now turn to a ques-
tion in complex geometry answered by Theorem 1.2 above. This question
motivated our investigation of triangle groups.

There are two known cases where a geodesic curve f : V — X is forced
to have a cusp; that is, where V' cannot be compact. They occur when:

1. The target X is the moduli space M, of compact Riemann surfaces of
genus g > 2 [V, Prop. 2.10]; and when

2. The target X is a Hilbert modular surface Xy, deg(L/Q) = 2, and V'
is not a Shimura curve on X, [Mc3].

In case (1), the Kobayashi metric on M, coincides with the Teichmiiller
metric, and V' is called a Teichmiiller curve (for a recent survey, see [Mc4]).
In case (2), one can normalize so that the lift of f to a map f : H — H? has
the form

f(2) = (2 fal2)),
and fo : H — H is a hyperbolic isometry if and only if V' is a Shimura

curve. Most examples of case (1) (all but finitely many in each genus) can
be deduced from case (2); see [Mo, Cor. 2.11] and [EFW, Cor. 1.6]).

Higher dimensions. We now address the following question: does a suit-
able generalization of (2) hold when dim X7, > 27

It seems likely that the answer is no, already when dim X = 3. However,
aside from Teichmiiller curves and Shimura curves, and their images under
Hecke operators, few examples of geodesic curves are known. Nevertheless,
using Theorem 1.2, and a construction from [CW] special to triangle groups,
in §6 we will show:

Theorem 1.9 There exists a compact geodesic curve
f:V=H/T— Xz,

with dim X, = 6, such that f(V) is not contained in any proper Shimura
subvariety S C Xp,.



For the proof we take I' to be a suitable subgroup of A(14,21,42). The
condition on f(V) excludes curves of the form V — Xg — X, where
dim(Xg) < dim(X7), as well as compact Shimura curves on X7..

It would be interesting to find other constructions of totally geodesic
curves in Hilbert modular varieties, and determine what happens when
dim X7, = 3.

Fig.16.

Figure 3. The triangle group A(2,4,5) (Schwarz, 1873).

Notes and references. According to Poincaré, cocompact hyperbolic
triangle groups first appeared in the work of Schwarz on hypergeometric
functions [P, p.168]; see e.g. Figure 3, reproduced from [Sch, p. 240]. Fricke
and Klein studied many triangle groups from both a geometric and algebraic
point of view in [FK]. For a modern perspective, including the theory of
quaternion algebras, see the monographs [MR] and [Voi]. We remark that
once formulated, the statement of Theorem 1.2 can also be ratified by less
explicit calculations, using Hilbert symbols and the classification of maximal
orders.

The groups in the Hilbert series are listed as ‘exceptional triples’ in [WM,
p.362]. This means the existence of matrix models over K is not ruled out
by their Theorem 2. We are grateful to A. Reid for this reference.

As discussed in [Mc5], one can regard the Hilbert series as a complement
to the finite list of arithmetic triangle groups obtained by Takeuchi in [Tak].
In the former case, By is split at all infinite places of Kj; in the latter case,
at just one. (The two series overlap when deg Ky = 1).

More details on geodesic curves, Teichmiiller curves and Hilbert modular



varieties can be found in [vG], [CW], [Mcl], [Mc2], [Mo], [MV], [BM] and
[We]. For an introduction to Shimura varieties, see [Milne].

This paper is a sequel to [Mc5] and [Mc3]. The latter paper includes a
discussion of triangle groups with cusps on Hilbert modular surfaces. For
recent work on Conjecture 1.3, see [CC].

Acknowledgements. I would like to thank A. Reid and P. Tretkoff (coau-
thor of [CW]) for many useful conversations.

2 Models for triangle groups

In this section we describe a procedure to produce an explicit matrix model
for a triangle group over a given field, or show none exists.

Quaternion algebras. Let B be a quaternion algebra over a number
field K. There is a natural K-linear involution z + 2z’ on B such that
(xy) = y'2’ and 2’ = x if and only if x € K. The (reduced) trace and norm
from B to K are defined by tr(z) = x4+ 2’ and N(z) = z2’. The trace form

xy +y'x’

(2,9) = 5 tr(ey) = 2L

2

is nondegenerate, and satisfies N(z) = (z,2/).
We have an orthogonal decomposition

B=Ka B°,

where B = {z € B : tr(z) = 0}. Note that BY & K3 as a vector space
over K. The zero set of the norm form restricted to B® determines a conic

Q(B) C P(B°) = P*(K),
defined equivalently by tr(z%) = 0. The group
SL(B)={z€ B : N(z)=1} C B*

acts by conjugation on P(BY), preserving Q(B).

One can think of SL(B) and Q(B) as potentially twisted forms of SLa(K)
and P1(K). When B = My(K), the norm and trace on B agree with the
usual trace and determinant on My(K).

Matrices for B. It is useful to be able to construct an explicit isomorphism
B = My (K) when one exists. To this end, we recall that the following three
statements are equivalent:



1. The conic Q(B) has a point over K.
2. There exists a u # 0 in B such that u? = 0.
3. The algebra B is split.

The proof is constructive. Suppose [u] € PBY represents a point on Q(B).
Then tr(u) = N(u) = 0, and hence u # 0 but u? = —uv/ = —N(u) = 0. It
follows that dim(Bu) < 2. Since the trace form is nondegenerate, tr(zu) = 1
for some xu € Bu; thus

Bu=Ku® Kzu = K.
Now we are done: the left action of B on Bu gives a map of K—algebras,
¢ : B — End(Bu) = My(K),
and since B is simple, ¢ is an isomorphism. Thus (1) = (2) = (3),
and the implication (3) = (1) is immediate.

The regular representation. Now consider a nonelementary Fuchsian
group I' C SLg(R), generated by three elements a,b and c satisfying

(tra,trb, trc) = (o, B,7y) and abc= —1I.

Let K = Q(«, 8,7) and let B = QI[I']. Since I' is nonelementary, the matrices
{I, a,b,c} form a basis for Ma(R) over R, and hence a basis for the quaternion
algebra B over K. With respect to this basis, the left regular representation
gives an embedding of algebras,

¥ B — My(K).

Under this embedding, N(a) = det(a) and 1 = I.

To compute the matrix 1(a), we need to express a?, ab and ac in terms
of the basis above. The first two products are immediate: since a + a’ = «
and aa’ = det(a) = 1, we have

a2:aa—1,

and from abc = —1 we get ab= —c ' =c— .
To compute ac, first let ap = a — a/2 denote the projection of a to BY,

and similarly for by and ¢y. Then

apco + coap = tr(apco),

10



because ' = —x for all € BY. Expanding this expression, we find

ac=~va+ ac—b— ay,

and hence
0 -1 —v —ay
1 a O ¥
a =
v(a) 0 O 0 -1
0 O 1 I}

Similar reasoning leads to matrices for 1(b) and ¥ (c), also expressed in terms

of (a, B,7).

Models for triangle groups. With the regular representation of B in
hand, an explicit model for A(p, g, r) over its trace field K — if it exists —
can be computed as follows.

1. Construct B C My(K) as above, using
(tra,trb,trc) = 2(cosm/p,cosw/q, cosm/r).

2. Compute the homogeneous polynomial
P(z,y, z) = tr((zao + ybo + z¢0)?)
defining the conic Q(B) c PB°. (Note that the trace of u in B is half
the trace of 1(u) in My(K).)

3. Find a nonzero solution to the homogeneous equation P(x,y,z) = 0
over K, to obtain a K-rational point p € Q(B). (This is a standard
problem in computer algebra.)

4. Let [u] € P(BY) represent p. Then u? = 0.

5. Choose an isomorphism Bu = K?, and compute the representation

¢ : B — End(Bu) = Ms(K).

6. The restriction of ¢ to I' C SL(B) then gives the desired model
¢:T'— SLy(K).

Obstructions. Of course B may not split over K. In this case one can
obtain, by the same procedure, a model for A(p, q,r) over L O K, whenever
P(z,y,z) = 0 has a nontrivial solution over L.

The obstruction to splitting can be found by first computing the Hilbert
symbol for B, given in [MR, §3.6]; and then computing the ramified primes
of B. The last column of Table 2 was obtained in this way.

11



3 Generators for the Hilbert series

In this section we give a concise proof of Theorem 1.1, constructed using the
method of §2. (Some care was required to obtain models over O.)

Proof of Theorem 1.1. For each group A(p,q,r) in the Hilbert series,
we give below an algebraic integer ¢, and a pair of matrices a,b € SLa(Z]t]),
such that Ok = Z[t] and

A(p,q,r) = (a,b). (3.1)

Thus (a,b) gives the desired model of A(p,q,r) over O. To verify (3.1),
the reader need only check that

(tra,trb, trc) = 2(cosw/p,cosw/q, cosm/r),

where abc = —I. We have included ¢ where space permits. In the special
case of A(5,6,6), Ox = Z[s, t] requires two generators.
Here are the required generators for each group.

A(2,4,6): t =2cos/12 = (1++/3)/V2); a,b=

—t3 + 5t + 2 2% + 12 — 6t — 2 23 + 12 — 6t — 2 34+ 5t+1
—23 — 2 4+ 6t + 2 3 5t —2 ’ 3 5t —2 B2 43t+2 )

A(2,6,6): t =2cosT/6 = /3;
2—t t—-1 t—1 1 t 1
a = 7b: ,C: .
2-2t t—-2 t—2 1 -1 0
A(3,4,4): t =2cosm/4 = 2;
0 -1 -1 —t -1 —t—-1
a = ’b: ,C: .
1 1 t+1 t+1 t  t+1
A(3,6,6): t =2cosm/6 = /3;
2—t t t t+2 t 1
a = 7b: 7C: .
3—-2t t—-1 t—2 0 -1 0
A(2,6,10): t =2cosm/30;

L @-2) (-1 2T 45t

= ( —(26° =72 +5t) —(t*-2) (t2_1)2>,

12



—(2-2) (2 -1)° —5 423
A(3,10,10): ¢t = 2cosm/10;

33 —5t2 —4t+6 —23+524+t—7 ; 0 —1
a = , 0= .
33 —6t2 —3t+8 —3t>+5t2+4t—5 1 ¢
A(5,6,6): s=2cosm/5=(1++/5)/2,t=2cosT/6 = /3;
0 -1 b —st+2s+1 —st+s—t+1
a= , b= .
1 s st—2s+t—1 st—2s+t—1

A(6,10,15): t = 2cosm/30;

0 -1
a = ,b:
1 > —5t3+5¢

( AT 18 2T — 6t — 513 4+ 1062 + 250 — 2 7 — 246 — 645 4+ 14¢* + 943 — 2912 — 2t + 15 )

_( 25 — 73 4+ 5t ot — 42 )

o7 — 0 41265 + 6t* — 1813 — 52+ 4t — 5 4T — 8 — 275 + 6¢* + 523 — 102 — 28t + 2
A(4,6,12): t =2cosm/12;
B2 —2%+1 —t34+22+¢t—2 3422 4t —2 23— 22— 3t
a= , b= .
1—¢2 2—t—1 B2+ —1 3—t2—t
A(6,9,18): t =2cosm/18;

a =

3t — 19¢3 + 5t2 + 24t — 6 > — 4t* — 4¢3 + 19¢% + 3t — 22
—A5 A 1T — 1442 — 15t 4+ 16 —3t° + 2083 — 5t2 — 27t + 6

- —t® 4613 — 202 =6t +5 =27 + 1+ 1147 — 4% — 141 + 3
0 — 2t* — 5t3 + 8t2 + 8t — 6 > — 63 + 32+ 6t — 7 '
A(14,21,42): t =2cosw/42; a =

=31 4 339 — 13147 + 227t° — 165¢3 + 36t 3t!! — 32¢9 4 123t7 — 206t° + 1443 — 31¢
—3t11 4 33¢9 — 1327 4 234¢° — 179¢3 + 45t 3t11 — 33¢9 + 13147 — 2275 + 1663 — 39t |’

0 -1
b= :
(1 t2—2>

13



4 The (14,21,42) triangle group
In this section we will show:

Theorem 4.1 The unique subgroup Ay of index two in A(14,21,42) admits
a model over the ring of integers in its trace field.

We then deduce Theorem 1.2.

Figure 4. The triangle group A(14,21,42) and its quadrilateral subgroup Ay.

From triangles to quadrilaterals. Let Ag be the unique subgroup of
index two in A = A(14,21,42). It is readily verified that these groups have
trace fields Ky = Q(cos7/21) and K = Q(cosm/42) respectively. In fact,
Ag = (g : g € A); thus Ky is the invariant trace field of A.

Just as A has index two in the reflection group for the triangle T =
T(14,21,42), Ap has index two in the reflection group for the symmetric
quadrilateral Q(7,21,21,21) built from two copies of T’; see Figure 4. To
describe Aq explicitly, let (a,b,c) be the generators for A(14,21,42) given
in §3. These generators satisfy a'* = v?! = ¢*? = abc = —I. Then

(A, B,C,D) = (a?,b,c%, ¢ be)
are generators for Ag, satisfying
A"=p* =(C*' = D* = —ABCD = 1.

There is one generator for each vertex of Q.

Proof of Theorem 4.1. It can now be checked directly, from the explicit
matrices a, b, ¢ given in §3, that we have A, B,C, D € SLy(Ok,). [ |

14



Matrices. Since the matrices for Ag are simpler than those for A, we also
give them explicitly: setting t = 2cos /21 € Ok,, we have:

A [Pt Pt 6 =3 =10 ), (0 1
-1 —t° +5¢% + 2 — 6t ’ 1ot )

o+t — 483 — 412 4+ 2t th 43 — 442 — 5t
C = and
B A2 45— 1 D — A A2 — ¢t

po [ AT 67 13t =1 267 48— 08 — 52 4 6
2+ 55+ 22 —5t+1 -2t T 462+ 14t +1 )

Galois theory. To prove Theorem 1.2, we must generalize Theorem 4.1 to
all subgroups of finite index in A = A(14, 21, 42).

For this purpose, note that the trace field K = Q(cosm/42) of A is a
quadratic extension of Ky, with Galois group G = Gal(K/Ky) = Z/2. Let
g — ¢’ denote the action of G on A. We claim that

AC = A,.

Indeed, noting that only odd powers of ¢ appear in the expression for a in
§3, and only even powers in the expression for b, we find that a’ = —a,
b =band ¢ = —c, and hence A, B,C and D are all fixed by G. This shows
Ag € A%, and equality must hold since AY # A.

Lemma 4.2 Let I' C A(14,21,42) be a subgroup of finite index. Then the
trace field of I' is Koy <— ' C Ap.

Proof. Choose elements aj,az,as,aqs € AgNI that form a basis for Mo (Kj)
over K. Suppose the trace field of I' is K. Then for any g € I', we have

tr(aig) = tr(aig)’ = tr(aig’)

for all 7. But the trace pairing is nondegenerate, so ¢’ = g, and thus I' C
AC = Ag. The converse is immediate. [ |

Proof of Theorem 1.2. Since [K : K| = 2, the trace field of any subgroup
of finite index I' C A is either K or Ky. In the first case, I' has a model
over O because A does; and in the second case, it has a model over Ok,
because I' C Ay. [ |
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5 Zariski density

Let L be a totally real field of degree d over Q, and let SLa(L) be embedded
in SLy(IR)? using the d distinct real places of L. In this section we will show:

Theorem 5.1 Let T' be a subgroup of SLa(L) C SLa(R)?. Then T is Zariski
dense in SLa(R)? <=

1. The invariant trace field of I' is L; and

2. The group T is not virtually solvable.

This result will be used, in the proof of Theorem 1.9, to show that the curve
V C X1, does not lie on a proper Shimura subvariety.

Remarks.

1. The Zariski closure of I' C SLy(R)? coincides with the smallest Lie
group H such that

' C HCSLy(R)? and |H/H| < oo;

cf. [Bor, I.1]. More formally, Theorem 5.1 concerns the Zariski density
of I' in the Q-algebraic group T' = Resy, /g SL2, which satisfies T'(Q) =
SLo(L) and T(R) 2 SLy(R).

2. It is critical in Theorem 5.1 that L is the invariant trace field of T'.
For example, the trace field of T' = A(3,4,4) is K = Q(v/3), while its
invariant trace field is Ky = Q. If we embed T" into SLy(K) using the
generators (a, b, ¢) given in §2, then their Galois conjugates satisfy

a' =hah 0 = —hbh™' and ¢ = —heh7!,

where h = (' ?). Hence I' is not Zariski dense in SLp(RR)?; it lies in
the Lie subgroup H defined by go = +hgih~!. A similar statement
holds for all groups in the Hilbert series.

Background on SL2(R). A group I' is virtually solvable if it contains a
solvable subgroup of finite index. We note that:

I' C SLy(R) is Zariski dense <= T is not virtually solvable,
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since H is solvable for every proper algebraic subgroup H C SLa(R).

It is well-known that the adjoint action of SL2(R) on its Lie algebra
is irreducible, and similarly for any Zariski-dense subgroup I'. In fact its
action generates the full matrix algebra; we have:

R[Ad SLy(R)] = R[Ad L] = End(slo(R)) = M;(R). (5.1)

If the eigenvalues of g € SLo(R) are (u, 1), then those of Ad g are (u?, 1, u=2),
and hence tr Ad g = tr(g?) — 1. This shows the adjoint trace field and the
invariant trace field coincide: we have

Q(tr AdT) = Q(tr(g?) : g €T). (5.2)

Notation. As above, let L be a totally real field with d = [L : Q]. Choose
an ordering for the d distinct embeddings L — R, and let

A= (Ao Aa) and g = (g1, 9a)
denote the corresponding embeddings
L —RY and SLo(L) — G = SLy(R)%

For clarity, we will also write G = Hcll G;, and identity each factor G; =
SL2(R) with the corresponding subgroup of G. Then the Lie algebra of G
over R is given by

d
Lie(G) = P Lie(G)).
1

Let m; : Lie(G) — Lie(G;) denote the natural projection to each summand.

Proof of Theorem 5.1. Assume that I' is not virtually solvable and its
invariant trace field is L. Let H C G be a Lie subgroup with finitely many
components such that I' C H. Note that the algebra generated by the
adjoint representation of I,

A = R[AdT] C End(Lie(Q)),

preserves each summand Lie(G;), as well as Lie(H). Since I is not virtually
solvable, its projection to G; is Zariski dense, and hence

A|Lie(G;) = End(Lie(G})) (5.3)

by equation (5.1). Consequently m;(Lie(H)) = Lie(G;) for all i, since the
image is a nonzero module for the A|Lie(G;).
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To show that I' is Zariski dense in G, it suffices to show that m; € A for
all i, for then we have € m;(Lie(H)) = € Lie(G;) = Lie(G) C Lie(H) and
hence H = G.

By assumption L is the invariant trace field of I', and hence also the
trace field of AdT", by equation (5.2). Now for any g € G, the eigenvalues
of Ad g have the form (u, 1, '), where

A=p+pt=(trAdg) —1€ L.

Thus the eigenvalues of

S=Adg+Adg™!

are (2,\, \). Since L = Q(tr AdT"), for any j # i we can choose g such that
Aj # A;. Since Ad g has distinct eigenvalues, S is diagonalizable, and hence

U=(S-2)(S—-\))

satisfies U|Lie(G;) = 0, but U|Lie(G;) # 0.

In view of (5.1), the two-sided ideal J C A generated by U satisfies
J| Lie(G;) = End(Lie G;). Thus J contains an element T;; that acts by multi-
plication by 0 on Lie(G;) and by 1 on Lie(G;). Therefore m; = [[,,; T;; € 4,
and hence H = G, completing the proof in one direction.

For the converse, suppose that (i) the invariant trace field of I is a proper
subfield Lo of L, or (ii) I is virtual solvable. In case (i), there exist a pair
of distinct indices such that \; = A; for all A € Lo, and thus I' is contained
the proper subvariety of G defined by Tr Adg; = Tr Adg;. In the second
case, the projection of I' to (G; is not Zariski dense. So in either case, I' is
not Zariski dense in G. |

For a related argument, see [PR, Lemma 5.7].

6 Curves on Hilbert modular varieties

In this section we prove Theorem 1.9, and more generally explain the close
relationship between the Hilbert series and Hilbert modular varieties.

Modular embeddings. We begin by reviewing a construction from [CW],
adapted to the case at hand. Let L C R be a totally real number field
of degree d over Q. As in the previous section, we choose an ordering

for the real places of L, and denote the corresponding maps L — R? and
GLQ(L) — GLQ(R)d by A= ()\z) and g — (gz)

18



In addition to the traditional modular variety Xy = H¢/SLy(Op), it is
useful to consider the disconnected variety

Yy, = (£H)?/SLy(Op).

We say two complex manifolds (or orbifolds) are commensurable if they have
isomorphic finite covers.

Proposition 6.1 Fach component of Y, is commensurable to X,.

Proof. Let g = (6‘ [1)) where A # 0 in L. Then conjugation by g sends
SL2(Op) to a commensurable subgroup of SLa(L). On the other hand, as
a Mobius transformation, g; sends H to —H whenever A\; < 0. Since every
possible sequence of signs can be achieved for some A € L, all components
of Y7, are commensurable, including the one isomorphic to X7.. |

Corollary 6.2 IfV is a geodesic curve on Yr, then a finite cover of V can
be presented as a geodesic curve on X,.

Theorem 6.3 (Cohen and Wolfart) Let I' C A(p, q,r) be a subgroup of
finite index in a triangle group. Suppose that I' has a model over Oy. Then
there exists a holomorphic map

f:V =H/T - (£H)?/SLy(Op),
presenting V' as a geodesic curve on Yy,.

The map f is referred to as a modular embedding in [CW].

Sketch of the proof. Assume for simplicity that I' = A(p, ¢, 7). Since T’
has a model over O, we may also assume that

A(pv q, T‘) - SLZ(OL) - SLQ(R)a

where the embedding L — R is given by A — ;.

For each ¢t =1,2,...,d, let T; C H denote the hyperbolic triangle whose
vertices are the fixed points of (a;,b;,¢;). Assume the orientations of T
and T; agree. Then, by the Riemann mapping theorem, there is a unique
conformal map

fi Ty — 15,
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respecting vertices. This map can be analytically continued, by Schwarz
reflection through the sides of 77 and T;, to a conformal map f; : H — H
satisfying

filgr-2) = gi - fi(2) (6.1)
for all g € I" and z € H. If the orientations of 77 and T; do not agree, we
construct f; : H — —H using the analogous Riemann mapping from 7j to
the complex conjugate of T;. This map also satisfies (6.1).

Let F: H — (+£H)¢ be the map defined by

F(z) = (2, fao(2),..., fa(2)).

This map is an isometry from the hyperbolic metric to the Kobayashi metric,
since it is the identity on the first coordinate, and by virtue of equation (6.1),
it descends to give the desired map f:V — Yr. |

b
B

Figure 5. Constructing an equivariant map fo : H — HE for Ag(14,21,42).

Proof of Theorem 1.9. Let L = K| be the trace field of Ag, the unique
subgroup of index two in A(14,21,42). By Theorem 1.2, Ay has a model
over Op; thus Theorem 6.3 provides us with a holomorphic local isometry

fo : H/AO — Y.

The components of the map ﬁ) are illustrated in Figure 5. By Corollary 6.2,
we can pass to a subgroup I' of finite index in Ag to obtain a geodesic curve

f:V=H/T - X,.
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Now suppose f(V) is contained in a Shimura subvariety S C X. Then
the universal cover S of S in HY is stabilized by I', and hence also by its
Zariski closure. But T is Zariski dense in SLa(R)? by Theorem 5.1, so S = H¢
and S =X L-

(The conclusion S = X also follows from formal properties of mor-
phisms between Shimura varieties; see [Milne, §5.15].) [ |

Remark. In [CW, pp.95-97], it is assumed that all the triangles 7; C H
have the same orientation, and that A(p, g, r) has a model over its trace field
K; the formulation of Theorem 6.3 corrects these points (see also [Ri]).
Further consequences. We conclude with three more Corollaries of The-
orem 6.3.

Corollary 6.4 A cocompact triangle group A has a model over a totally
real field <= V =H/A has a finite cover that can be realized as a geodesic
curve on a Hilbert modular variety.

Proof. Suppose we have a model A C SLa(L), where L is totally real, and
let B = My(L) be the corresponding quaternion algebra. Then Oa = Z[A]
is an order in B, as can be seen from the fact that the representation ¢ of
§2 sends A into My(Op). Since any two orders in B are commensurable,
there is a subgroup I' of finite index in A such that

' c OaNMy(Oy),

and thus I' has a model over Or. By Theorem 6.3, the finite cover H/I" of
V can be realized as a geodesic curve on Y7, and by Corollary 6.2, a further
finite cover can be realized on X7 ..

For the converse, suppose a finite cover of V' can be realized as a totally
geodesic curve on Xy. Then a subgroup of finite index in A has a model
over L, so the invariant quaternion algebra By for A splits over L. It follows
that A itself has a model over the (totally real) compositum of L and its
trace field K. |

Corollary 6.5 Let A = A(p,q,r) be a triangle group in the Hilbert series.
Then a finite cover of V.= H/A can be presented as a geodesic curve on
Xk, where K is trace field of A.

Corollary 6.6 Conjectures 1.3 and 1.8 are equivalent.

These last two results follow from Corollary 6.4, using Theorem 1.1 and
the equivalence of Conjectures 1.3 and 1.6.
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A Appendix: The group A(2,3,7)

In this Appendix we treat one more triangle group, to illustrate the fact that
the method in §2 is rather general. We choose the Fuchsian group of smallest
covolume, namely the famous arithmetic group A(2,3,7), which appears in
Fricke’s paper [Fr] and figures in the Hurwitz bound Aut(X) < 84(g —1).
This triangle group admits no model over its trace field K = Q(cos 27/7).

Instead, we give the following model over the ring of integers Oy, where
L=Q(t) and t = y/2cos27/T:

Pttt —2t—1 2
a = )
P32t —1 —t5—t*—24+2t+1

—t24+t—1 43 —t2— 92t

O+t t2 -2t -1 1
c= )
o +t3—t2 -2t  —tO+2t
As expected, L is not totally real, since both Galois conjugates of cos(27/7)

are negative. For a more complete discussion of A(2,3,7), and its relation-
ship to the Klein quartic and other matters, see [El].

B2 42 +1 O+t +t2—2t—1
b= , and

References

[Bor]  A.Borel. Linear Algebraic Groups. Second Edition. Springer—Verlag,
1991.

[BM] I I. Bouw and M. Mdller. Teichmiiller curves, triangle groups and
Lyapunov exponents. Ann. of Math. 172 (2010), 139-185.

[CC] F. Calegari and Q. Chen. Fields of definition for triangle groups as
Fuchsian groups. Preprint, 2024.

[CV]  P. L. Clark and J. Voight. Algebraic curves uniformized by con-
gruence subgroups of triangle groups. Trans. Amer. Math. Soc.
371 (2019), 33-82.

[CW] P. Cohen and J. Wolfart. Modular embeddings for some non-
arithmetic Fuchsian groups. Acta Arith. 56 (1990), 93-110.

22



(£l

[EFW]

[Mc2]

[Mc3|

N. D. Elkies. The Klein quartic in number theory. In The Fightfold
Way, pages 51-101. Cambridge University Press, 1999.

A. Eskin, S. Filip, and A. Wright. The algebraic hull of the
Kontsevich-Zorich cocycle. Ann. of Math. 188 (2018), 281-313.

R. Fricke. Ueber den arithmetischen Charakter der zu den Verzwei-
gungen (2, 3, 7) und (2, 4, 7) gehérenden Dreiecksfunctionen. Math.
Ann. 41 (1892), 443-468.

R. Fricke and F. Klein. Lectures on the Theory of Automorphic
Functions. Vol. 1 and 2. Higher Education Press, 2017.

G. van der Geer. Hilbert Modular Surfaces. Springer-Verlag, 1987.

C. Maclachlan and A. W. Reid. The Arithmetic of Hyperbolic 3-
Manifolds. Springer-Verlag, 2003.

C. McMullen. Billiards and Teichmiiller curves on Hilbert modular
surfaces. J. Amer. Math. Soc. 16 (2003), 857-885.

C. McMullen. Foliations of Hilbert modular surfaces. Amer. J.
Math. 129 (2007), 183-215.

C. McMullen. Billiards, heights and the arithmetic of non-—
arithmetic groups. Invent. math. 228 (2022), 1309-1351.

C. McMullen. Billiards and Teichmiiller curves. Bull. Amer. Math.
Soc. 60 (2023), 195-250.

C. McMullen. Galois orbits in the moduli space of all triangles. J.
Math. Soc. Japan 77 (2025), 31-56.

J. S. Milne. Introduction to Shimura varieties. In Harmonic Anal-
ysis, the Trace Formula, and Shimura Varieties, pages 265-378.
Amer. Math. Soc., 2005.

M. Mdller. Variations of Hodge structures of a Teichmiiller curve.
J. Amer. Math. Soc. 19 (2006), 327-344.

M. Moller and E. Viehweg. Kobayashi geodesics in Ag. J. Differen-
tial Geom. 86 (2010), 355-379.

H. Poincaré. QOeuvres. Tome II: Fonctions fuchsiennes. Editions
Jacques Gabay, 1995.

23



[PR]

[Ri]

[Sch]

[Tak]

Vi

G. Prasad and A. S. Rapinchuk. Weakly commensurable arithmetic
groups and isospectral locally symmetric spaces. Pub. Math. IHES
10(2009), 113-184.

S. Ricker. Symmetric Fuchsian quadrilateral groups and modular
embeddings. Quart. J. Math. 53 (2002), 75-86.

H. A. Schwarz. Gesammelte Mathematische Abhandlungen, vol-
ume 2. Springer, 1890.

K. Takeuchi. Arithmetic triangle groups. J. Math. Soc. Japan
29 (1977), 91-106.

W. Veech. Teichmiiller curves in moduli space, Eisenstein series
and an application to triangular billiards. Invent. math. 97 (1989),
553-583.

J. Voight. Quaternion Algebras. Springer, 2021.

P. L. Waterman and C. Maclachlan. Fuchsian groups and algebraic
number fields. Trans. AMS 287 (1985), 353-364.

C. Weiss. Twisted Teichmailler Curves, volume 2104 of Lecture Notes
in Math. Springer, 2014.

MATHEMATICS DEPARTMENT, HARVARD UNIVERSITY, 1 OXFORD ST,
CAMBRIDGE, MA 02138-2901

24



