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Abstract

In this paper we study the Hilbert series of triangle groups ∆(p, q, r).
The 11 groups in this series are, conjecturally, the only cocompact tri-
angle groups that admit matrix models over totally real fields.

We provide evidence for this conjecture, along with explicit integral
models for every group in the Hilbert series. The most remarkable
among them, ∆(14, 21, 42), is the only known triangle group with a
split invariant quaternion algebra.

Using this special group, we construct the first example of a compact
Kobayashi geodesic curve V on a Hilbert modular variety (aside from
those that reside on proper Shimura subvarieties). For comparison,
there are no compact Kobayashi geodesic curves in the moduli space
Mg.
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Figure 1. Hyperbolic tilings defined by groups in the Hilbert series.

1 Introduction

This paper gives the first example of a curve on a Hilbert modular variety,
V ⊂ XK , V 6= XK , such that:

1. V is totally geodesic for the Kobayashi metric,

2. V does not lie on a proper Shimura subvariety of XK , and

3. V is compact (it has no cusps).

The most familiar and commonly studied curves on XK are the Shimura
curves; these satisfy (1) but not (2). Teichmüller curves in moduli space,
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V ⊂ Mg, yield (by passing to the Jacobian) curves satisfying (1) and (2),
but they always have cusps. In fact, in [Mc3] we show that every V satisfying
(1) and (2) must violate (3) when dimXK = 2. It is thus natural to wonder
if the same is true with dimXK > 2. We provide a negative answer in
Theorem 1.9.

A second goal of this paper is to discuss a remarkable collection of 11
triangle groups acting on H, which we call the Hilbert series. Every group
∆ in the Hilbert series admits a matrix model over its trace field. The
model for ∆(14, 21, 42) leads to a very explicit example of a curve V ⊂ XK

satisfying (1), (2) and (3) above (with dimXK = 6), and hence a proof of
Theorem 1.9. See §6 and Figure 5 below for details.

Triangle groups. We begin by defining the Hilbert series, stating its main
properties and formulating its conjectural characterizations.

The classical hyperbolic triangle groups

∆(p, q, r) ⊂ SL2(R)

are uniquely determined, up to conjugacy, by triples of positive integers
satisfying 1/p+ 1/q + 1/r < 1. They are readily described geometrically as
subgroups of index two in the reflection groups associated to the triangles
T (p, q, r) ⊂ H with internal angles (π/p, π/q, π/r).

Algebraic models. One can also approach triangle groups from an alge-
braic perspective. Let us say ∆ = ∆(p, q, r) has a matrix model (or simply
a model) over a subring A ⊂ R if it is conjugate to a subgroup of SL2(A).
Every triangle group has a model over a number field L (see e.g. [CV, eq.
(2.7)]). This field necessarily contains the trace field

K = Q(tr ∆) = Q(cosπ/p, cosπ/q, cosπ/r). (1.1)

One can always find a model with [L : K] = 2. It is unusual, however, for
∆ to admit a model over K itself.

The Hilbert series. In this paper we will study the 11 triangle groups
∆(p, q, r) in the Hilbert series, given by (p, q, r) =

(2, 4, 6), (2, 6, 6), (3, 4, 4), (3, 6, 6), (2, 6, 10), (3, 10, 10),

(5, 6, 6), (6, 10, 15) (4, 6, 12), (6, 9, 18), and (14, 21, 42).

See Figure 1. We will show that every group in this series admits a model
over its trace field K. In fact, we will show (§3):

Theorem 1.1 Every group ∆(p, q, r) in the Hilbert series admits a matrix
model over the ring of integers OK in its trace field K.
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The most remarkable group in the Hilbert series is ∆(14, 21, 42). For
this group we will also show (§4):

Theorem 1.2 Every subgroup Γ of finite index in ∆(14, 21, 42) admits a
matrix model over the ring of integers in Q[Tr Γ].

This result will be used to construct an exotic curve on a Hilbert modular
variety; see Theorem 1.9 below.

Generators. The proof we offer for Theorems 1.1 and 1.2, provides explicit
matrix generators for ∆(p, q, r) in SL2(OK). This approach makes the proof
easy to verify and independently useful for computational work.

Despite the large literature on triangle groups, these algebraically opti-
mized matrices appear to be new; they were found using a general algorithm,
described in §2. In the Appendix, we apply the same method to give an in-
tegral model for the arithmetic group ∆(2, 3, 7).

Quaternion algebras. To explain the significance of the Hilbert series
more completely, we formulate three conjectures in the language of quater-
nion algebras.

Recall that a quaternion algebra B over a field K of characteristic zero
is a central simple algebra of rank 4. We let SL(B) ⊂ B× denote the group
of units of norm one.

The algebra B is split if B ∼= M2(K); otherwise, B is a division algebra.
When K is a number field, it is known that the Hasse principle holds:

B is split ⇐⇒ Bv = B ⊗K Kv is split for every place v of K. (1.2)

See e.g. [MR, Theorem 2.7.2]. The algebra B is said to ramify at the finitely
many places where Bv is not split. We say B splits over a field extension
L/K if B ⊗K L is split.

Triangle groups. Now let ∆ = ∆(p, q, r) ⊂ SL2(R) be a cocompact trian-
gle group with trace field K. Then the associated ring

B = Q[∆] ⊂ M2(R)

is a quaternion algebra over K. The algebra B is determined, up to isomor-
phism, by the triple (p, q, r), as we will see explicitly in §2. If B splits over
L, then the inclusion

∆ ⊂ SL(B ⊗K L) ∼= SL2(L)
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gives a model for ∆ over L. The converse also holds. Thus one can regard
the inclusion

∆ ⊂ SL(B)

as a canonical precursor to any matrix model for ∆ (including its usual
model over R).

Commensurability. Let ∆0 = 〈g2 : g ∈ ∆〉. The invariant trace field and
quaternion algebra of ∆, defined by

K0 = Q[tr ∆0] and B0 = Q[∆0],

depend only on the commensurability class of ∆ [MR, Cor. 3.3.5]. We note
that

∆/∆0
∼= H1(∆,Z/2) ∼= (Z/2)e,

where e = 2 if all (p, q, r) are even, e = 1 if exactly two are even, and
otherwise e = 0.

We can now formulate three conjectures concerning all cocompact trian-
gle groups ∆ = ∆(p, q, r).

Conjecture 1.3 The quaternion algebra Bv is split at all infinite places v
of K ⇐⇒ ∆ belongs to the Hilbert series.

Conjecture 1.4 The quaternion algebra B is split ⇐⇒ ∆ belongs to the
Hilbert series.

Conjecture 1.5 The invariant quaternion algebra B0 is split ⇐⇒ ∆ is
conjugate to ∆(14, 21, 42).

The implication ⇐= in each conjecture follows from Theorems 1.1 and 1.2
above. We regard Conjecture 1.3 as the main conjecture, since it clearly
implies Conjecture 1.4, which in turn implies Conjecture 1.5 (see below).

Added in proof. A proof of Conjecture 1.3 has been announced in [CC].

Totally real models. We now discuss the main conjecture in more detail,
and provide evidence in its support.

If Bv is ramified at v|∞, then Bv is isomorphic to Hamilton’s quater-
nions, which can only be split by extending Kv = R to C. Thus the main
conjecture is equivalent to:

Conjecture 1.6 A cocompact triangle group ∆ has a model over a totally
real field ⇐⇒ ∆ belongs to the Hilbert series.
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Totally hyperbolic groups. In general, if B is split at s infinite places
and ramified at r others, where r + s = [K : Q], then the embedding

∆ ⊂
∏
v|∞

SL(Bv) ∼= SU2(R)r × SL2(R)s

gives an isometric action of ∆ on Sr ×Hs, where S denotes the unit sphere
in R3. We say ∆ is totally hyperbolic if r = 0. In these terms, the main
conjecture states that:

The Hilbert series is the complete list of totally hyperbolic cocom-
pact triangle groups.

This is [Mc5, Conjecture 1.15].

Evidence. It is straightforward to test if ∆(p, q, r) is totally hyperbolic.
Let L =

{
a ∈ Z3 :

∑
ai = 0 mod 2

}
, and for a ∈ R3, let

‖a‖1 =
∑
|ai| and ‖a− L‖1 = inf{‖a− b‖1 : b ∈ L}.

Then ∆(p, q, r) is totally hyperbolic ⇐⇒ ‖ka−L‖1 < 1 for all k ∈ (Z/n)∗,
where a = (1/p, 1/q, 1/r) and n = 2 lcm(p, q, r); see [Mc5, Cor. 7.3]. Using
this test, we have verified:

Theorem 1.7 The only totally hyperbolic triangle groups with p, q, r ≤ 5000
are those in the Hilbert series.

It is also known that the set of cocompact, totally hyperbolic triangle groups
is finite [WM, Theorem 4], [Mc5, Cor. 1.9].

We remark that the computation above can be accelerated by choosing a
random generator u of Z/n, and then testing ka for k = u, 2u, 3u, . . .modn
instead of k = 1, 2, 3 . . .modn.

Table of invariants. The principal invariants of the groups ∆(p, q, r) in the
Hilbert series are summarized in Table 2. In this table, the second column
gives an algebraic number u generating the trace field K. The next two
columns give [K : Q] and [K0 : Q]. Each quaternion algebra B0/K0, except
the last, is ramified at two finite places of K0, which lie above two primes P
of Q, listed in the final column. Since the quaternion algebra B = B0⊗K0K
splits whenever B0 splits, this final column shows:

Conjecture 1.4 implies 1.5.
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(p, q, r) K = Q(u) degK degK0 P
(2, 4, 6) cosπ/12 4 1 {2, 3}
(2, 6, 6) cosπ/6 2 1 {2, 3}
(3, 4, 4) cosπ/4 2 1 {2, 3}
(3, 6, 6) cosπ/6 2 1 {2, 3}
(2, 6, 10) cosπ/30 8 2 {3, 5}
(3, 10, 10) cosπ/10 4 2 {3, 5}
(5, 6, 6) cosπ/5 + cosπ/6 4 2 {3, 5}

(6, 10, 15) cosπ/30 8 4 {3, 5}
(4, 6, 12) cosπ/12 4 2 {2, 3}
(6, 9, 18) cosπ/18 6 3 {2, 3}

(14, 21, 42) cosπ/42 12 6 ∅

Table 2. The Hilbert series.

We remark that the first four examples in Table 2 are arithmetic and
commensurable; the next three are also commensurable; and for the last
three examples, (1/p, 1/q, 1/r) is proportional to (1, 2, 3).

Kobayashi geodesic curves. Next we relate the main conjecture to com-
plex geometry. Recall that any totally real field L of degree d over Q deter-
mines a Hilbert modular variety

XL = Hd/ SL2(OL), (1.3)

where SL2(OL) acts on Hd via its d distinct embeddings into SL2(R).
Let V be a hyperbolic Riemann surface of finite volume, equipped with

a holomorphic map to a complex manifold,

f : V = H/Γ→ X.

By the Schwarz lemma, f is distance non–increasing from the complete
hyperbolic metric on V (of constant curvature −4) to the Kobayashi metric
on X.

In the rare case that f is a local isometry, we say V is a Kobayashi
geodesic curve on X (or simply a geodesic curve). We also allow V and X
to be orbifolds, in which case f must respect the orbifold structure.
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The Kobayashi metric on Hd is the supremum of the hyperbolic metrics
on each factor; it descends to give the Kobayashi metric on XK . As we will
see in §6, Conjecture 1.3 is also equivalent to:

Conjecture 1.8 A finite cover of V = H/∆(p, q, r) can be presented as
a Kobayashi geodesic curve on a Hilbert modular variety ⇐⇒ ∆(p, q, r)
belongs to the Hilbert series.

The implication ⇐= is Corollary 6.5 below.

Moduli spaces and Hilbert modular surfaces. We now turn to a ques-
tion in complex geometry answered by Theorem 1.2 above. This question
motivated our investigation of triangle groups.

There are two known cases where a geodesic curve f : V → X is forced
to have a cusp; that is, where V cannot be compact. They occur when:

1. The target X is the moduli spaceMg of compact Riemann surfaces of
genus g ≥ 2 [V, Prop. 2.10]; and when

2. The target X is a Hilbert modular surface XL, deg(L/Q) = 2, and V
is not a Shimura curve on XL [Mc3].

In case (1), the Kobayashi metric on Mg coincides with the Teichmüller
metric, and V is called a Teichmüller curve (for a recent survey, see [Mc4]).
In case (2), one can normalize so that the lift of f to a map f̃ : H→ H2 has
the form

f̃(z) = (z, f2(z)),

and f2 : H → H is a hyperbolic isometry if and only if V is a Shimura
curve. Most examples of case (1) (all but finitely many in each genus) can
be deduced from case (2); see [Mo, Cor. 2.11] and [EFW, Cor. 1.6]).

Higher dimensions. We now address the following question: does a suit-
able generalization of (2) hold when dimXL > 2?

It seems likely that the answer is no, already when dimXL = 3. However,
aside from Teichmüller curves and Shimura curves, and their images under
Hecke operators, few examples of geodesic curves are known. Nevertheless,
using Theorem 1.2, and a construction from [CW] special to triangle groups,
in §6 we will show:

Theorem 1.9 There exists a compact geodesic curve

f : V = H/Γ→ XL,

with dimXL = 6, such that f(V ) is not contained in any proper Shimura
subvariety S ⊂ XL.
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For the proof we take Γ to be a suitable subgroup of ∆(14, 21, 42). The
condition on f(V ) excludes curves of the form V → XK → XL, where
dim(XK) < dim(XL), as well as compact Shimura curves on XL.

It would be interesting to find other constructions of totally geodesic
curves in Hilbert modular varieties, and determine what happens when
dimXL = 3.

Figure 3. The triangle group ∆(2, 4, 5) (Schwarz, 1873).

Notes and references. According to Poincaré, cocompact hyperbolic
triangle groups first appeared in the work of Schwarz on hypergeometric
functions [P, p.168]; see e.g. Figure 3, reproduced from [Sch, p. 240]. Fricke
and Klein studied many triangle groups from both a geometric and algebraic
point of view in [FK]. For a modern perspective, including the theory of
quaternion algebras, see the monographs [MR] and [Voi]. We remark that
once formulated, the statement of Theorem 1.2 can also be ratified by less
explicit calculations, using Hilbert symbols and the classification of maximal
orders.

The groups in the Hilbert series are listed as ‘exceptional triples’ in [WM,
p.362]. This means the existence of matrix models over K is not ruled out
by their Theorem 2. We are grateful to A. Reid for this reference.

As discussed in [Mc5], one can regard the Hilbert series as a complement
to the finite list of arithmetic triangle groups obtained by Takeuchi in [Tak].
In the former case, B0 is split at all infinite places of K0; in the latter case,
at just one. (The two series overlap when degK0 = 1).

More details on geodesic curves, Teichmüller curves and Hilbert modular
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varieties can be found in [vG], [CW], [Mc1], [Mc2], [Mo], [MV], [BM] and
[We]. For an introduction to Shimura varieties, see [Milne].

This paper is a sequel to [Mc5] and [Mc3]. The latter paper includes a
discussion of triangle groups with cusps on Hilbert modular surfaces. For
recent work on Conjecture 1.3, see [CC].

Acknowledgements. I would like to thank A. Reid and P. Tretkoff (coau-
thor of [CW]) for many useful conversations.

2 Models for triangle groups

In this section we describe a procedure to produce an explicit matrix model
for a triangle group over a given field, or show none exists.

Quaternion algebras. Let B be a quaternion algebra over a number
field K. There is a natural K–linear involution x 7→ x′ on B such that
(xy)′ = y′x′ and x′ = x if and only if x ∈ K. The (reduced) trace and norm
from B to K are defined by tr(x) = x+ x′ and N(x) = xx′. The trace form

〈x, y〉 =
1

2
tr(xy) =

xy + y′x′

2

is nondegenerate, and satisfies N(x) = 〈x, x′〉.
We have an orthogonal decomposition

B = K ⊕B0,

where B0 = {x ∈ B : tr(x) = 0}. Note that B0 ∼= K3 as a vector space
over K. The zero set of the norm form restricted to B0 determines a conic

Q(B) ⊂ P(B0) ∼= P2(K),

defined equivalently by tr(x2) = 0. The group

SL(B) = {x ∈ B : N(x) = 1} ⊂ B×

acts by conjugation on P(B0), preserving Q(B).
One can think of SL(B) and Q(B) as potentially twisted forms of SL2(K)

and P1(K). When B = M2(K), the norm and trace on B agree with the
usual trace and determinant on M2(K).

Matrices for B. It is useful to be able to construct an explicit isomorphism
B ∼= M2(K) when one exists. To this end, we recall that the following three
statements are equivalent:
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1. The conic Q(B) has a point over K.

2. There exists a u 6= 0 in B such that u2 = 0.

3. The algebra B is split.

The proof is constructive. Suppose [u] ∈ PB0 represents a point onQ(B).
Then tr(u) = N(u) = 0, and hence u 6= 0 but u2 = −uu′ = −N(u) = 0. It
follows that dim(Bu) ≤ 2. Since the trace form is nondegenerate, tr(xu) = 1
for some xu ∈ Bu; thus

Bu = Ku⊕Kxu ∼= K2.

Now we are done: the left action of B on Bu gives a map of K–algebras,

φ : B → End(Bu) ∼= M2(K),

and since B is simple, φ is an isomorphism. Thus (1) =⇒ (2) =⇒ (3),
and the implication (3) =⇒ (1) is immediate.

The regular representation. Now consider a nonelementary Fuchsian
group Γ ⊂ SL2(R), generated by three elements a, b and c satisfying

(tr a, tr b, tr c) = (α, β, γ) and abc = −I.

Let K = Q(α, β, γ) and let B = Q[Γ]. Since Γ is nonelementary, the matrices
{I, a, b, c} form a basis for M2(R) over R, and hence a basis for the quaternion
algebra B over K. With respect to this basis, the left regular representation
gives an embedding of algebras,

ψ : B → M4(K).

Under this embedding, N(a) = det(a) and 1 = I.
To compute the matrix ψ(a), we need to express a2, ab and ac in terms

of the basis above. The first two products are immediate: since a+ a′ = α
and aa′ = det(a) = 1, we have

a2 = αa− 1,

and from abc = −1 we get ab = −c−1 = c− γ.
To compute ac, first let a0 = a− α/2 denote the projection of a to B0,

and similarly for b0 and c0. Then

a0c0 + c0a0 = tr(a0c0),
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because x′ = −x for all x ∈ B0. Expanding this expression, we find

ac = γa+ αc− b− αγ,

and hence

ψ(a) =


0 −1 −γ −αγ
1 α 0 γ

0 0 0 −1

0 0 1 α

 .

Similar reasoning leads to matrices for ψ(b) and ψ(c), also expressed in terms
of (α, β, γ).

Models for triangle groups. With the regular representation of B in
hand, an explicit model for ∆(p, q, r) over its trace field K — if it exists —
can be computed as follows.

1. Construct B ⊂ M4(K) as above, using

(tr a, tr b, tr c) = 2(cosπ/p, cosπ/q, cosπ/r).

2. Compute the homogeneous polynomial

P (x, y, z) = tr((xa0 + yb0 + zc0)2)

defining the conic Q(B) ⊂ PB0. (Note that the trace of u in B is half
the trace of ψ(u) in M4(K).)

3. Find a nonzero solution to the homogeneous equation P (x, y, z) = 0
over K, to obtain a K–rational point p ∈ Q(B). (This is a standard
problem in computer algebra.)

4. Let [u] ∈ P(B0) represent p. Then u2 = 0.

5. Choose an isomorphism Bu ∼= K2, and compute the representation

φ : B → End(Bu) ∼= M2(K).

6. The restriction of φ to Γ ⊂ SL(B) then gives the desired model

φ : Γ→ SL2(K).

Obstructions. Of course B may not split over K. In this case one can
obtain, by the same procedure, a model for ∆(p, q, r) over L ⊃ K, whenever
P (x, y, z) = 0 has a nontrivial solution over L.

The obstruction to splitting can be found by first computing the Hilbert
symbol for B, given in [MR, §3.6]; and then computing the ramified primes
of B. The last column of Table 2 was obtained in this way.
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3 Generators for the Hilbert series

In this section we give a concise proof of Theorem 1.1, constructed using the
method of §2. (Some care was required to obtain models over OK .)

Proof of Theorem 1.1. For each group ∆(p, q, r) in the Hilbert series,
we give below an algebraic integer t, and a pair of matrices a, b ∈ SL2(Z[t]),
such that OK = Z[t] and

∆(p, q, r) = 〈a, b〉. (3.1)

Thus 〈a, b〉 gives the desired model of ∆(p, q, r) over OK . To verify (3.1),
the reader need only check that

(tr a, tr b, tr c) = 2(cosπ/p, cosπ/q, cosπ/r),

where abc = −I. We have included c where space permits. In the special
case of ∆(5, 6, 6), OK = Z[s, t] requires two generators.

Here are the required generators for each group.

∆(2, 4, 6): t = 2 cosπ/12 = (1 +
√

3)/
√

2); a, b =(
−t3 + 5t+ 2 2t3 + t2 − 6t− 2

−2t3 − t2 + 6t+ 2 t3 − 5t− 2

)
,

(
2t3 + t2 − 6t− 2 −t3 + 5t+ 1

t3 − 5t− 2 −t3 − t2 + 3t+ 2

)
.

∆(2, 6, 6): t = 2 cosπ/6 =
√

3;

a =

(
2− t t− 1

2− 2t t− 2

)
, b =

(
t− 1 1

t− 2 1

)
, c =

(
t 1

−1 0

)
.

∆(3, 4, 4): t = 2 cosπ/4 =
√

2;

a =

(
0 −1

1 1

)
, b =

(
−1 −t
t+ 1 t+ 1

)
, c =

(
−1 −t− 1

t t+ 1

)
.

∆(3, 6, 6): t = 2 cosπ/6 =
√

3;

a =

(
2− t t

3− 2t t− 1

)
, b =

(
t t+ 2

t− 2 0

)
, c =

(
t 1

−1 0

)
.

∆(2, 6, 10): t = 2 cosπ/30;

a =

( (
t2 − 2

) (
t2 − 1

)2
2t5 − 7t3 + 5t

−
(
2t5 − 7t3 + 5t

)
−
(
t2 − 2

) (
t2 − 1

)2
)
,
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b =

(
2t5 − 7t3 + 5t 2t4 − 4t2

−
(
t2 − 2

) (
t2 − 1

)2 −t5 + 2t3

)
.

∆(3, 10, 10): t = 2 cosπ/10;

a =

(
3t3 − 5t2 − 4t+ 6 −2t3 + 5t2 + t− 7

3t3 − 6t2 − 3t+ 8 −3t3 + 5t2 + 4t− 5

)
, b =

(
0 −1

1 t

)
.

∆(5, 6, 6): s = 2 cosπ/5 = (1 +
√

5)/2, t = 2 cosπ/6 =
√

3;

a =

(
0 −1

1 s

)
, b =

(
−st+ 2s+ 1 −st+ s− t+ 1

st− 2s+ t− 1 st− 2s+ t− 1

)
.

∆(6, 10, 15): t = 2 cosπ/30;

a =

(
0 −1

1 t5 − 5t3 + 5t

)
, b =

(
−4t7 + t6 + 27t5 − 6t4 − 51t3 + 10t2 + 25t− 2 t7 − 2t6 − 6t5 + 14t4 + 9t3 − 29t2 − 2t+ 15

−2t7 − t6 + 12t5 + 6t4 − 18t3 − 5t2 + 4t− 5 4t7 − t6 − 27t5 + 6t4 + 52t3 − 10t2 − 28t+ 2

)
.

∆(4, 6, 12): t = 2 cosπ/12;

a =

(
t3 − t2 − 2t+ 1 −t3 + 2t2 + t− 2

1− t2 t2 − t− 1

)
, b =

(
−t3 + 2t2 + t− 2 2t3 − 2t2 − 3t

−t3 + t2 + 2t− 1 t3 − t2 − t

)
.

∆(6, 9, 18): t = 2 cosπ/18;

a =

(
3t5 − 19t3 + 5t2 + 24t− 6 t5 − 4t4 − 4t3 + 19t2 + 3t− 22

−4t5 + 4t4 + 17t3 − 14t2 − 15t+ 16 −3t5 + 20t3 − 5t2 − 27t+ 6

)
,

b =

(
−t5 + 6t3 − 2t2 − 6t+ 5 −2t5 + t4 + 11t3 − 4t2 − 14t+ 3

t5 − 2t4 − 5t3 + 8t2 + 8t− 6 t5 − 6t3 + 3t2 + 6t− 7

)
.

∆(14, 21, 42): t = 2 cosπ/42; a =(
−3t11 + 33t9 − 131t7 + 227t5 − 165t3 + 36t 3t11 − 32t9 + 123t7 − 206t5 + 144t3 − 31t

−3t11 + 33t9 − 132t7 + 234t5 − 179t3 + 45t 3t11 − 33t9 + 131t7 − 227t5 + 166t3 − 39t

)
,

b =

(
0 −1

1 t2 − 2

)
.
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4 The (14, 21, 42) triangle group

In this section we will show:

Theorem 4.1 The unique subgroup ∆0 of index two in ∆(14, 21, 42) admits
a model over the ring of integers in its trace field.

We then deduce Theorem 1.2.

21

14

42

T
Q7

21

2121

Figure 4. The triangle group ∆(14, 21, 42) and its quadrilateral subgroup ∆0.

From triangles to quadrilaterals. Let ∆0 be the unique subgroup of
index two in ∆ = ∆(14, 21, 42). It is readily verified that these groups have
trace fields K0 = Q(cosπ/21) and K = Q(cosπ/42) respectively. In fact,
∆0 = 〈g2 : g ∈ ∆〉; thus K0 is the invariant trace field of ∆.

Just as ∆ has index two in the reflection group for the triangle T =
T (14, 21, 42), ∆0 has index two in the reflection group for the symmetric
quadrilateral Q(7, 21, 21, 21) built from two copies of T ; see Figure 4. To
describe ∆0 explicitly, let (a, b, c) be the generators for ∆(14, 21, 42) given
in §3. These generators satisfy a14 = b21 = c42 = abc = −I. Then

(A,B,C,D) = (a2, b, c2, c−1bc)

are generators for ∆0, satisfying

A7 = B21 = C21 = D21 = −ABCD = −I.

There is one generator for each vertex of Q.

Proof of Theorem 4.1. It can now be checked directly, from the explicit
matrices a, b, c given in §3, that we have A,B,C,D ∈ SL2(OK0).
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Matrices. Since the matrices for ∆0 are simpler than those for ∆, we also
give them explicitly: setting t = 2 cosπ/21 ∈ OK0 , we have:

A =

(
t5 − 4t3 − t2 + 3t −t5 + t4 + 6t3 − 3t2 − 10t

t3 − 1 −t5 + 5t3 + t2 − 6t

)
, B =

(
0 −1

1 t

)
,

C =

(
t5 + t4 − 4t3 − 4t2 + 2t t4 + t3 − 4t2 − 5t

−t4 − t3 + 4t2 + 5t− 1 −t5 − t4 + 4t3 + 4t2 − t

)
, and

D =

(
−t5 + 2t4 + 7t3 − 6t2 − 13t− 1 2t5 + t4 − 9t3 − 5t2 + 6t

−t5 + 5t3 + 2t2 − 5t+ 1 t5 − 2t4 − 7t3 + 6t2 + 14t+ 1

)
.

Galois theory. To prove Theorem 1.2, we must generalize Theorem 4.1 to
all subgroups of finite index in ∆ = ∆(14, 21, 42).

For this purpose, note that the trace field K = Q(cosπ/42) of ∆ is a
quadratic extension of K0, with Galois group G = Gal(K/K0) ∼= Z/2. Let
g 7→ g′ denote the action of G on ∆. We claim that

∆G = ∆0.

Indeed, noting that only odd powers of t appear in the expression for a in
§3, and only even powers in the expression for b, we find that a′ = −a,
b′ = b and c′ = −c, and hence A,B,C and D are all fixed by G. This shows
∆0 ⊂ ∆G, and equality must hold since ∆G 6= ∆.

Lemma 4.2 Let Γ ⊂ ∆(14, 21, 42) be a subgroup of finite index. Then the
trace field of Γ is K0 ⇐⇒ Γ ⊂ ∆0.

Proof. Choose elements a1, a2, a3, a4 ∈ ∆0∩Γ that form a basis for M2(K0)
over K0. Suppose the trace field of Γ is K0. Then for any g ∈ Γ, we have

tr(aig) = tr(aig)′ = tr(aig
′)

for all i. But the trace pairing is nondegenerate, so g′ = g, and thus Γ ⊂
∆G = ∆0. The converse is immediate.

Proof of Theorem 1.2. Since [K : K0] = 2, the trace field of any subgroup
of finite index Γ ⊂ ∆ is either K or K0. In the first case, Γ has a model
over OK because ∆ does; and in the second case, it has a model over OK0

because Γ ⊂ ∆0.
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5 Zariski density

Let L be a totally real field of degree d over Q, and let SL2(L) be embedded
in SL2(R)d using the d distinct real places of L. In this section we will show:

Theorem 5.1 Let Γ be a subgroup of SL2(L) ⊂ SL2(R)d. Then Γ is Zariski
dense in SL2(R)d ⇐⇒

1. The invariant trace field of Γ is L; and

2. The group Γ is not virtually solvable.

This result will be used, in the proof of Theorem 1.9, to show that the curve
V ⊂ XL does not lie on a proper Shimura subvariety.

Remarks.

1. The Zariski closure of Γ ⊂ SL2(R)d coincides with the smallest Lie
group H such that

Γ ⊂ H ⊂ SL2(R)d and |H/H0| <∞;

cf. [Bor, I.1]. More formally, Theorem 5.1 concerns the Zariski density
of Γ in the Q–algebraic group T = ResL/Q SL2, which satisfies T (Q) =

SL2(L) and T (R) ∼= SL2(R)d.

2. It is critical in Theorem 5.1 that L is the invariant trace field of Γ.
For example, the trace field of Γ = ∆(3, 4, 4) is K = Q(

√
3), while its

invariant trace field is K0 = Q. If we embed Γ into SL2(K) using the
generators (a, b, c) given in §2, then their Galois conjugates satisfy

a′ = hah−1, b′ = −hbh−1 and c′ = −hch−1,

where h =
(−1 2

2 1

)
. Hence Γ is not Zariski dense in SL2(R)2; it lies in

the Lie subgroup H defined by g2 = ±hg1h
−1. A similar statement

holds for all groups in the Hilbert series.

Background on SL2(R). A group Γ is virtually solvable if it contains a
solvable subgroup of finite index. We note that:

Γ ⊂ SL2(R) is Zariski dense ⇐⇒ Γ is not virtually solvable,
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since H0 is solvable for every proper algebraic subgroup H ⊂ SL2(R).
It is well–known that the adjoint action of SL2(R) on its Lie algebra

is irreducible, and similarly for any Zariski–dense subgroup Γ. In fact its
action generates the full matrix algebra; we have:

R[Ad SL2(R)] = R[Ad Γ] = End(sl2(R)) ∼= M3(R). (5.1)

If the eigenvalues of g ∈ SL2(R) are (µ, µ−1), then those of Ad g are (µ2, 1, µ−2),
and hence tr Ad g = tr(g2) − 1. This shows the adjoint trace field and the
invariant trace field coincide: we have

Q(tr Ad Γ) = Q(tr(g2) : g ∈ Γ). (5.2)

Notation. As above, let L be a totally real field with d = [L : Q]. Choose
an ordering for the d distinct embeddings L→ R, and let

λ 7→ (λ1, . . . , λd) and g 7→ (g1, . . . , gd)

denote the corresponding embeddings

L→ Rd and SL2(L)→ G = SL2(R)d.

For clarity, we will also write G =
∏d

1 Gi, and identity each factor Gi ∼=
SL2(R) with the corresponding subgroup of G. Then the Lie algebra of G
over R is given by

Lie(G) =
d⊕
1

Lie(Gi).

Let πi : Lie(G)→ Lie(Gi) denote the natural projection to each summand.

Proof of Theorem 5.1. Assume that Γ is not virtually solvable and its
invariant trace field is L. Let H ⊂ G be a Lie subgroup with finitely many
components such that Γ ⊂ H. Note that the algebra generated by the
adjoint representation of Γ,

A = R[Ad Γ] ⊂ End(Lie(G)),

preserves each summand Lie(Gi), as well as Lie(H). Since Γ is not virtually
solvable, its projection to Gi is Zariski dense, and hence

A|Lie(Gi) = End(Lie(Gi)) (5.3)

by equation (5.1). Consequently πi(Lie(H)) = Lie(Gi) for all i, since the
image is a nonzero module for the A|Lie(Gi).
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To show that Γ is Zariski dense in G, it suffices to show that πi ∈ A for
all i, for then we have

⊕
πi(Lie(H)) =

⊕
Lie(Gi) = Lie(G) ⊂ Lie(H) and

hence H = G.
By assumption L is the invariant trace field of Γ, and hence also the

trace field of Ad Γ, by equation (5.2). Now for any g ∈ G, the eigenvalues
of Ad g have the form (µ, 1, µ−1), where

λ = µ+ µ−1 = (tr Ad g)− 1 ∈ L.

Thus the eigenvalues of
S = Ad g + Ad g−1

are (2, λ, λ). Since L = Q(tr Ad Γ), for any j 6= i we can choose g such that
λj 6= λi. Since Ad g has distinct eigenvalues, S is diagonalizable, and hence

U = (S − 2)(S − λj)

satisfies U |Lie(Gj) = 0, but U |Lie(Gi) 6= 0.
In view of (5.1), the two–sided ideal J ⊂ A generated by U satisfies

J |Lie(Gi) = End(LieGi). Thus J contains an element Tij that acts by multi-
plication by 0 on Lie(Gj) and by 1 on Lie(Gi). Therefore πi =

∏
i 6=j Tij ∈ A,

and hence H = G, completing the proof in one direction.
For the converse, suppose that (i) the invariant trace field of Γ is a proper

subfield L0 of L, or (ii) Γ is virtual solvable. In case (i), there exist a pair
of distinct indices such that λi = λj for all λ ∈ L0, and thus Γ is contained
the proper subvariety of G defined by Tr Ad gi = Tr Ad gj . In the second
case, the projection of Γ to G1 is not Zariski dense. So in either case, Γ is
not Zariski dense in G.

For a related argument, see [PR, Lemma 5.7].

6 Curves on Hilbert modular varieties

In this section we prove Theorem 1.9, and more generally explain the close
relationship between the Hilbert series and Hilbert modular varieties.

Modular embeddings. We begin by reviewing a construction from [CW],
adapted to the case at hand. Let L ⊂ R be a totally real number field
of degree d over Q. As in the previous section, we choose an ordering
for the real places of L, and denote the corresponding maps L → Rd and
GL2(L)→ GL2(R)d by λ 7→ (λi) and g 7→ (gi).
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In addition to the traditional modular variety XL = Hd/ SL2(OL), it is
useful to consider the disconnected variety

YL = (±H)d/SL2(OL).

We say two complex manifolds (or orbifolds) are commensurable if they have
isomorphic finite covers.

Proposition 6.1 Each component of YL is commensurable to XL.

Proof. Let g =
(
λ 0
0 1

)
where λ 6= 0 in L. Then conjugation by g sends

SL2(OL) to a commensurable subgroup of SL2(L). On the other hand, as
a Möbius transformation, gi sends H to −H whenever λi < 0. Since every
possible sequence of signs can be achieved for some λ ∈ L, all components
of YL are commensurable, including the one isomorphic to XL.

Corollary 6.2 If V is a geodesic curve on YL, then a finite cover of V can
be presented as a geodesic curve on XL.

Theorem 6.3 (Cohen and Wolfart) Let Γ ⊂ ∆(p, q, r) be a subgroup of
finite index in a triangle group. Suppose that Γ has a model over OL. Then
there exists a holomorphic map

f : V = H/Γ→ (±H)d/ SL2(OL),

presenting V as a geodesic curve on YL.

The map f is referred to as a modular embedding in [CW].

Sketch of the proof. Assume for simplicity that Γ = ∆(p, q, r). Since Γ
has a model over OL, we may also assume that

∆(p, q, r) ⊂ SL2(OL) ⊂ SL2(R),

where the embedding L→ R is given by λ 7→ λ1.
For each i = 1, 2, . . . , d, let Ti ⊂ H denote the hyperbolic triangle whose

vertices are the fixed points of (ai, bi, ci). Assume the orientations of T1

and Ti agree. Then, by the Riemann mapping theorem, there is a unique
conformal map

fi : T1 → Ti,
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respecting vertices. This map can be analytically continued, by Schwarz
reflection through the sides of T1 and Ti, to a conformal map fi : H → H
satisfying

fi(g1 · z) = gi · fi(z) (6.1)

for all g ∈ Γ and z ∈ H. If the orientations of T1 and Ti do not agree, we
construct fi : H → −H using the analogous Riemann mapping from T1 to
the complex conjugate of Ti. This map also satisfies (6.1).

Let F : H→ (±H)d be the map defined by

F (z) = (z, f2(z), . . . , fd(z)).

This map is an isometry from the hyperbolic metric to the Kobayashi metric,
since it is the identity on the first coordinate, and by virtue of equation (6.1),
it descends to give the desired map f : V → YL.

Figure 5. Constructing an equivariant map f̃0 : H→ H6 for ∆0(14, 21, 42).

Proof of Theorem 1.9. Let L = K0 be the trace field of ∆0, the unique
subgroup of index two in ∆(14, 21, 42). By Theorem 1.2, ∆0 has a model
over OL; thus Theorem 6.3 provides us with a holomorphic local isometry

f0 : H/∆0 → YL.

The components of the map f̃0 are illustrated in Figure 5. By Corollary 6.2,
we can pass to a subgroup Γ of finite index in ∆0 to obtain a geodesic curve

f : V = H/Γ→ XL.
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Now suppose f(V ) is contained in a Shimura subvariety S ⊂ XL. Then
the universal cover S̃ of S in Hd is stabilized by Γ, and hence also by its
Zariski closure. But Γ is Zariski dense in SL2(R)d by Theorem 5.1, so S̃ = Hd

and S = XL.
(The conclusion S = XL also follows from formal properties of mor-

phisms between Shimura varieties; see [Milne, §5.15].)

Remark. In [CW, pp.95–97], it is assumed that all the triangles Ti ⊂ H
have the same orientation, and that ∆(p, q, r) has a model over its trace field
K; the formulation of Theorem 6.3 corrects these points (see also [Ri]).

Further consequences. We conclude with three more Corollaries of The-
orem 6.3.

Corollary 6.4 A cocompact triangle group ∆ has a model over a totally
real field ⇐⇒ V = H/∆ has a finite cover that can be realized as a geodesic
curve on a Hilbert modular variety.

Proof. Suppose we have a model ∆ ⊂ SL2(L), where L is totally real, and
let B ∼= M2(L) be the corresponding quaternion algebra. Then O∆ = Z[∆]
is an order in B, as can be seen from the fact that the representation ψ of
§2 sends ∆ into M4(OL). Since any two orders in B are commensurable,
there is a subgroup Γ of finite index in ∆ such that

Γ ⊂ O∆ ∩M2(OL),

and thus Γ has a model over OL. By Theorem 6.3, the finite cover H/Γ of
V can be realized as a geodesic curve on YL, and by Corollary 6.2, a further
finite cover can be realized on XL.

For the converse, suppose a finite cover of V can be realized as a totally
geodesic curve on XL. Then a subgroup of finite index in ∆ has a model
over L, so the invariant quaternion algebra B0 for ∆ splits over L. It follows
that ∆ itself has a model over the (totally real) compositum of L and its
trace field K.

Corollary 6.5 Let ∆ = ∆(p, q, r) be a triangle group in the Hilbert series.
Then a finite cover of V = H/∆ can be presented as a geodesic curve on
XK , where K is trace field of ∆.

Corollary 6.6 Conjectures 1.3 and 1.8 are equivalent.

These last two results follow from Corollary 6.4, using Theorem 1.1 and
the equivalence of Conjectures 1.3 and 1.6.
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A Appendix: The group ∆(2, 3, 7)

In this Appendix we treat one more triangle group, to illustrate the fact that
the method in §2 is rather general. We choose the Fuchsian group of smallest
covolume, namely the famous arithmetic group ∆(2, 3, 7), which appears in
Fricke’s paper [Fr] and figures in the Hurwitz bound Aut(X) ≤ 84(g − 1).

This triangle group admits no model over its trace fieldK = Q(cos 2π/7).
Instead, we give the following model over the ring of integers OL, where
L = Q(t) and t =

√
2 cos 2π/7:

a =

(
t5 + t4 + t2 − 2t− 1 2

t5 + t3 − t2 − 2t− 1 −t5 − t4 − t2 + 2t+ 1

)
,

b =

(
−t5 − t3 + t2 + 2t+ 1 t5 + t4 + t2 − 2t− 1

−t2 + t− 1 t5 + t3 − t2 − 2t

)
, and

c =

(
t5 + t4 + t2 − 2t− 1 1

t5 + t3 − t2 − 2t −t5 + 2t

)
.

As expected, L is not totally real, since both Galois conjugates of cos(2π/7)
are negative. For a more complete discussion of ∆(2, 3, 7), and its relation-
ship to the Klein quartic and other matters, see [El].
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