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Abstract. Let Πb be a bounded n parameter paraproduct with symbol b. We demonstrate
that this operator is in the Schatten class Sp, 0 < p < ∞, if the symbol is in the n parameter
Besov space Bp. Our result covers both the dyadic and continuous version of the paraproducts
in the multiparameter setting.

1. Introduction, Notation and Statement of Main Results

Paraproducts are an extremely useful tool in questions arising in harmonic analysis. They
provide a nice class of singular integral operators, and when restricting to the dyadic case
provide much insight into the mapping properties of Calderón–Zygmund operators. Para-
products have natural connections with other important operators in analysis. In particular,
it is possible to view paraproducts as either the commutator between a function and the
Hilbert transform or equivalently a Hankel operator with a certain symbol. It turns out the
properties of the symbol heavily influence the operator theoretic characteristics of the para-
product. In this paper, we are interested in the property of the paraproduct (both continuous
version and dyadic version) being in certain Schatten class, with applications to commutators
in multi-parameter settings which link to the big Hankel operators.

We note that along the line of Calderón [2], Coifman–Rochberg–Weiss [6], Uchiyama [27],
Janson–Wolff [11], Rochberg–Semmes [25], the theory of commutators (boundedness, com-
pactness and Schatten class) plays an important role, which connects to the weak factorisation
of Hardy space ([6]) and Hankel operators ([1, 22,24]) in the complex analysis, compensated
compactness in the PDEs [5], as well as the quantised derivative in non-commutative analysis
and geometry [7, 17].

To state the main results of this paper, let us recall the relevant paraproducts. In so doing,
we prefer a discrete formulation of these operators. As is well known, there are two distinct
ways to formulate them, with the Haar basis playing a distinguished role. So, for the sake of
definiteness, we first give the Haar paraproducts and the statements of the main results in
this context.

Here we make some conventions on notation. Throughout the paper, the letter C denotes
(possibly different) constants that are independent of the essential variables. If A ≤ CB, we
write A ≲ B or B ≳ A; and if A ≲ B ≲ A, we write A ≃ B.

One Parameter Paraproducts. We take the dyadic intervals to be

D def
=
{
[j2k, (j + 1)2k) : j, k ∈ Z

}
.
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Each dyadic interval I is a union of its left and right halves, denoted I− and I+ respectively.
The Haar function hI adapted to I is

(1.1) h0I
def
= |I|−1/2

(
−1I− + 1I+

)
.

The other function of importance is

(1.2) h1I = |I|−1/21I .

Thus, h0I has cancellation, i.e.
∫
R h

0
I(x)dx = 0, while h1I is a multiple of an indicator function.

The function h1I is, in wavelet nomenclature, the ‘father’ wavelet.
The one parameter Haar paraproducts are

(1.3) BHaar(f1, f2)
def
=
∑
I∈D

|I|−1/2h1I

2∏
j=1

⟨fj, h0I⟩L2(R).

A classic result in dyadic harmonic analysis is that (see for example [3, Section 2.1.])

(1.4) ∥BHaar(f1, ·)∥L2(R)→L2(R) ≃ ∥f1∥BMOdyadic (R) .

In this last display, BMOdyadic (R) is the dyadic BMO space.
To define more general paraproducts, we will appeal to wavelets. We make this more

precise now. For an interval I, we say that φ is adapted to I if and only if ∥φ∥2 = 1 and

(1.5)
∣∣ dα
dxα

φ(x)
∣∣ ≲ |I|−α− 1

2

(
1 +

|x− c(I)|
|I|

)−N

, α = 0, 1, 2.

Here, c(I) denotes the center of I, and N is a large fixed integer, whose exact value need not
concern us. By {φI : I ∈ D} are adapted to D we mean that for all dyadic intervals I, φI

are adapted to I. We shall consistently work with functions which are normalized in L2(R).
Some of these functions we will also insist to be normalized to have cancellation, i.e.∫

R
φI(x)dx = 0.

A collection {φI : I ∈ D} is uniformly adapted to D if for each I ∈ D, φI is adapted
to I, and each φI is obtained from a single fixed function φ ∈ C∞(R) as follows

(1.6) φI(x) =
1√
|I|
φ

(
x− c(I)

|I|

)
,

where c(I) is the center of I and φ satisfies∫ ∞

0

∣∣φ̂(tξ)∣∣2dt
t
= 1, for all ξ ̸= 0.

Most typically, the notation φI will be used for a function adapted to I.
A collection of functions {wI : I ∈ D} is called a wavelet basis if the collection is

uniformly adapted to D, and it is an orthonormal basis for L2(R). It is very easy to see that
necessarily, w has cancellation. The examples of wavelet bases that will be important for us
are L2(R) normalized functions adapted to an interval.

Paraproduct operators are constructed from rank one operators f 7→ ⟨f, φ⟩ϕ. A paraprod-
uct is, in its simplest manifestation, of the form

B(f1, f2)
def
=
∑
I∈D

|I|−1/2φ3,I

2∏
j=1

⟨fj, φj,I⟩L2(R).
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Here, the functions φj,I , j = 1, 2, 3, are adapted to I, and ⟨f, g⟩L2(R) =
∫
R f(x)g(x)dx.

Two of these three functions are assumed to have cancellation, and in particular we will
always assume that φ1,I has cancellation. We are concerned with extensions of the classical
conditions for this operator to be bounded on L2(R). For these more general paraproducts
there is the following well-known extension of (1.4). See [14,20] for proofs.

1.7. Theorem ([14, 20]). If {φ1,I} and at least one collection of {φj,I} j = 2, 3 have cancel-
lation and are adapted to D, then

(1.8) ∥B(f1, ·)∥L2(R)→L2(R) ≲ ∥f1∥BMO(R) .

If all three collections {φj,I} are uniformly adapted to D, then the reverse inequality holds.

The BMO norm is explicitly given by

(1.9) ∥f∥BMO(R)
def
= sup

U

[
|U |−1

∑
I⊂U

|⟨f, φI⟩L2(R)|2
]1/2

.

Here, the supremum is formed over all intervals U and {φI} is uniformly adapted to D. We
note that the definition is independent of the choice of {φI} and the dyadic grid D.
In this paper we are principally concerned with the Schatten norms of paraproducts

B(f1, f2) and their multiparameter versions. Recall that the Schatten norm of an opera-
tor is given by a ℓp sum of its singular values, see Section 2 for the precise definition and
more information about these norms. Much like the case of boundedness, membership of the
paraproduct in a Schatten class can be characterized in terms of the function f1.
We first recall some previous closely related results on Schatten class of related operators.

In the case of continuous paraproducts, Janson and Peetre showed in [10] that membership
in a Schatten class is equivalent to the symbol belonging to the Besov space. Their method
of proof was very much Fourier analytic by viewing the continuous paraproduct as a certain
multiplier on the Fourier side and then decomposing the operator in an appropriate manner.
See also Pott and Smith, [24] for the dyadic version. Chao and Peng [3] showed that the one
parameter paraproducts arising from (d-dyadic) martingale transforms are bounded if and
only if the symbol belongs to the dyadic Besov space, whose definition is given below. The
proof is very computational, and takes advantage of the notion of “nearly weakly orthonormal
sequences” introduced by Rochberg and Semmes, [25]. In fact, in both [3,10] it is shown that
more generally the commutators with singular integral operators (or martingale transforms)
belong to a certain Schatten class if and only if the symbol belongs to the appropriate Besov
space.

Membership of the paraproduct in the Schatten class is related to smoothness on the
symbol f1, and this is governed by the symbol belonging to a certain Besov space. We can
define the dyadic Besov spaces Bp

dyadic(R) as the set of f ∈ L1
loc(R) such that ∥f∥Bp

dyadic(R)
<∞,

where

(1.10) ∥f∥Bp
dyadic(R)

def
=

[∑
I∈D

[
|I|−1/2|⟨f, h0I⟩L2(R)|

]p]1/p
, 0 < p <∞.

Also, the Besov space Bp(R) is the set of Schwartz distributions f such that ∥f∥Bp(R) < ∞,
where

(1.11) ∥f∥Bp(R)
def
=

[∑
I∈D

[
|I|−1/2|⟨f, φI⟩L2(R)|

]p]1/p
, 0 < p <∞
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with {φI} is uniformly adapted to D. We note that the definition of Bp(R) is independent
of the choice of {φI} and the dyadic grid D. That is, suppose there is another family {ψI}
that is uniformly adapted to dyadic system D′. Then

∥f∥Bp(R) ≃

[∑
I∈D′

[
|I|−1/2|⟨f, ψI⟩L2(R)|

]p]1/p
, 0 < p <∞.

We refer the readers to Proposition 3.1 for a proof.
Our main result is then the following theorem, giving an extension and refinement of the

boundedness of paraproducts in one parameter given in Theorem 1.7.

1.12. Theorem (Main Result 1). Assuming only the collection of functions {φ1,I : I ∈ D}
has cancellation, we have the estimate

(1.13) ∥B(f1, ·)∥Sp ≲ ∥f1∥Bp(R) , 0 < p <∞.

If each of the collections of functions {φj,I}, j = 1, 2, 3, is uniformly adapted to D, then the
reverse inequality holds.

When taking the collections of functions {φj,I} to be the Haar functions (1.1) and the
normalized indicators (1.2), we have the following immediate corollary in the case of Haar
paraproducts.

1.14. Theorem. In the Haar case we have

(1.15)

∥∥∥∥∥∑
I∈D

⟨f1, h0I⟩L2(R)√
|I|

hϵI ⊗ hδI

∥∥∥∥∥
Sp

≃ ∥f1∥Bp
dyadic (R) , 0 < p <∞, {ϵ, δ} ≠ {1, 1}.

We note that a variation of Theorem 1.14 for dyadic martingale transforms was previously
studied by Chao and Peng [3]. Additionally, an alternate proof of Theorem 1.14 was given
by Pott and Smith [24, Theorem 2.1]. We provide a different proof compared to [3, 24].

We will now use these ideas to extend the results from one-parameter to the multi-
parameter setting.

Multi-parameter paraproducts. We use many of the ideas from the previous section to

form the tensor product basis in L2(Rn) = L2(R × · · · × R). Let R def
= D × · · · × D be the

collection of dyadic rectangles in Rn.
• Dyadic version of paraproduct:
For a rectangle R = R1 × · · · ×Rn ∈ R and for a choice of ε = (ε1, . . . , εn) ∈ {0, 1}n,

(1.16) hεR(x1, . . . , xn)
def
=

n∏
j=1

h
εj
Rj
(xj),

where h
εj
Rj

is given by either (1.1) or (1.2) depending on if εj = 0 or εj = 1. For ε = 0⃗ =

(0, . . . , 0), we denote h0⃗R(x1, . . . , xn) by hR(x1, . . . , xn) for simplicity.

Define En
def
= {0, 1}n \ 1⃗, where 1⃗ = (1, . . . , 1). Note that the cardinality of the set En is

2n − 1. We then have that {hεR : R ∈ R, ε ∈ En} is the product Haar basis for L2(Rn).
The n parameter Haar paraproducts are

(1.17) BHaar(f1, f2)
def
=
∑
R∈R

⟨f1, hR⟩L2(Rn)√
|R|

⟨f2, hεR⟩L2(Rn) h
δ
R.
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The essential restriction to place on the two choices of ε, δ ∈ {0, 1}n is that

in no coordinate j do we have εj = δj = 1.

Observe that this condition permits a wide variety of paraproducts, with most having no
proper analog as compared to the one dimensional case.
• Continuous version of paraproduct:
Let us say that a collection {φR : R ∈ R} is adapted to a rectangle R if and only if

φR(x1, . . . , xn) =
∏n

j=1 φj,Rj
(xj), with each {φj,Rj

} adapted to D. We say that {φR} has

cancellation in the jth coordinate if and only if {φj,Rj
} has cancellation. The collection {φR}

is uniformly adapted to R if and only if each {φj,Rj
}, j = 1, . . . , n, is uniformly adapted to

D.
Paraproducts are then defined as follows:

(1.18) B(f1, f2)
def
=
∑
R∈R

φ
(3)
R√
|R|

2∏
j=1

⟨fj, φ(j)
R ⟩L2(Rn),

where the functions φ
(j)
R are adapted to R for j = 1, 2, 3. The construction of a smooth

wavelet basis in L2(Rn) is similar and standard. For the details we omit here.
The boundedness of the multi-parameter paraproducts was first studied by Journé when

considering the T (1) Theorem in the product setting, [9]. These results were later studied
further by Muscalu, Pipher, Tao and Thiele in the following papers [18,19] which showed the
richness of the paraproduct structures in the multiparameter setting. One should also see
the article by Lacey and Metcalfe, [14]. The following general theorem on the boundedness
in L2(Rn) of the Haar paraproducts and more general paraproducts from a wavelet basis is
then given by:

1.19. Theorem ([9, 14, 18, 19]). For the multi-parameter Haar paraproducts, we have the
following estimate:

(1.20) ∥BHaar(f1, ·)∥L2(Rn)→L2(Rn) ≲ ∥f1∥BMOdyadic(R×···×R) .

More generally, assume that for both coordinates j = 1, 2 there is a choice of k ∈ {2, 3} for

which φ
(1)
R and φ

(k)
R have cancellation in the jth coordinate. Then, for the paraproducts as in

(1.18), we have the inequality:

(1.21) ∥B(f1, ·)∥L2(Rn)→L2(Rn) ≲ ∥f1∥BMO(R×···×R) .

There are two points to make about this last inequality. The first is that the space
BMO(R × · · · × R) is the product BMO space studied by S.-Y. A. Chang and R. Feffer-
man [4], and the BMO norm is given explicitly by

(1.22) ∥f∥BMO(R×···×R)
def
= sup

U

[
|U |−1

∑
R⊂U

|⟨f, wR⟩L2(Rn)|2
]1/2

.

Here, the supremum is formed over open sets U and {wR} is a product wavelet basis. Re-
placing the wavelet basis by the Haar basis, we have dyadic Chang–Fefferman BMO, [4]. The
second is that we are not asserting the equivalence of norms. Indeed, for a ‘degenerate’ n
parameter paraproduct, the equivalence of norms is not so clear. There are essentially two
distinct cases. The first case, with the greatest similarity to the one parameter case, is where

we have for example, {φ(2)
R } has cancellation in all coordinates. The second case with no
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proper analog in the one variable setting is, for instance, {φ(2)
R } has cancellation in one set

of coordinates while {φ(3)
R } has cancellation in a complimentary set of coordinates.

Similar to the one-parameter case, with the Haar basis we can define the dyadic (product)
Besov spaces in Rn as

(1.23) ∥f∥Bp
dyadic(R×···×R)

def
=

[∑
R∈R

[
|R|−1/2|⟨f, hR⟩L2(Rn)|

]p]1/p
, 0 < p <∞.

For the tensor product wavelet basis, we define the (product) Besov spaces in Rn as

(1.24) ∥f∥Bp(R×···×R)
def
=

[∑
R∈R

[
|R|−1/2|⟨f, φR⟩L2(Rn)|

]p ]1/p
, 0 < p <∞.

Again, we will see that this definition does not depend upon the choice of wavelet basis.
Our principal estimate, giving an extension of Theorem 1.19 to the multi-parameter setting

is given next, especially for the continuous version. For simplicity, this theorem is stated in
the case of two parameters. The correct statement of the general multi-parameter version
can be obtained from Theorem 5.17 below.

1.25. Theorem (Main Result 2). Assume that {ϕ1,R} has cancellation for both coordinates
j = 1, 2, while {ϕ2,R} and {ϕ3,R} have the property that: if {ϕ2,R} has cancellation in coor-
dinate j then {ϕ3,R} does not and vice versa, for j = 1, 2. Then,

(1.26) ∥B(f1, ·)∥Sp ≲ ∥f1∥Bp(R×R) , 0 < p <∞.

If all the collections {ϕj,R} are uniformly adapted to R, then the reverse inequality holds.

Notice that when neither collection of functions have cancellation, the corresponding op-
erator is not bounded for general functions in BMO. This is indicative of the well known fact
that the result on Schatten norms is not as delicate as the criteria for being bounded.

Parallel to the above result, a corollary of Theorem 1.25 in the dyadic version is as follows,
which is an extension of Theorem 1.14.

1.27. Theorem. For any bounded n parameter dyadic paraproduct we have the equivalence

(1.28) ∥BHaar(f1, ·)∥Sp ≃ ∥f1∥Bp
dyadic(R×···×R) , 0 < p <∞.

Note that a variation of Theorem 1.27 for little Hankel operators was given in Pott and
Smith [24, Theorem 5.1]. For the sake of notational simplicity, we state and prove the result
in the bi-parameter setting. The argument for multi-parameter setting follows similarly.

In Section 2 we collect some properties of Schatten norms. In Section 3 we show that the
Besov norms are independent of the choice of wavelet basis and establish the dyadic structure
for the Besov spaces. In Section 4 we give a proof of Theorems 1.12 and 1.14. We first will
handle the case of Haar paraproducts since that will turn out to be a model for the more
general case of paraproducts built from wavelet bases. In Section 5 we give the proofs of
Theorems 1.25 and 1.27, which are based upon the ideas appearing in Section 4 but will be
complicated by additional notation necessary to handle the multi-parameter paraproducts.

2. Basic Properties of Schatten Norms

LetH be a separable Hilbert space. Recall that for elements φ, ϕ ∈ H the operator denoted
by φ⊗ ϕ takes an f ∈ H to ϕ⟨f, φ⟩H.
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A compact operator T : H → H has a decomposition

(2.1) T =
∑
n

λn en⊗ fn

in which λn ∈ R, and {en} and {fn} are orthonormal sequences in H (compactness implies
that |λn| → 0). The Schatten norm is then

(2.2) ∥T∥Sp
def
=

[∑
n

|λn|p
]1/p

, 0 < p <∞.

This is an actual norm for 1 ≤ p < ∞, while for 0 < p < 1 it is not. The trace class
operators are the class S1 and the Hilbert–Schmidt operators are the class S2. Part of the
interest in these classes are that the class S1 is in natural duality with L(H), the space of
bounded operators on H and the class S2 has a simple way to compute the norm using any
orthonormal basis. It is clear that ∥T∥Sp = ∥T∗∥Sp .
Define a collection of positive numbers

T def
=


[∑

n

∥Ten∥pH

]1/p
: {en} is an orthonormal basis in H

 .

Then it is the case that

∥T∥Sp = inf T , 0 < p ≤ 2,(2.3)

∥T∥Sp = sup T , 2 ≤ p <∞.(2.4)

For 1 ≤ p <∞, the Schatten norm obeys the triangle inequality:

(2.5) ∥S+T∥Sp ≤ ∥S∥Sp + ∥T∥Sp .
For 0 < p < 1 this is no longer the case. There is the following quasi-triangle inequality,
linked to the subadditivity of x 7→ xp.

(2.6) ∥S+T∥pSp ≤ ∥S∥pSp + ∥T∥pSp .
In the converse direction, there is a proposition below.

2.7. Proposition. Suppose that T is an operator from H to itself, and that P is a contraction,
then

∥TP∥Sp , ∥PT∥Sp ≤ ∥T∥Sp , 0 < p <∞.

Proof. For ∥PT∥Sp , this follows from the characterization of the Schatten norm in terms of
either an infimum or supremum, see (2.3) and (2.4). Combining this observation with the
equivalence of the Schatten norms for dual operators proves the proposition. □

We also need an inequality for the Schatten norms of a m× n matrix A = (ai,j).

2.8. Proposition. We have the inequality

(2.9) ∥A∥Sp ≤ (mn)δ(p)

[
m,n∑
i,j=1

|ai,j|p
]1/p

, 0 < p <∞.

Here, δ(p) = max
(
0, 1

2
− 1

p

)
.
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Proof. The case of 0 < p < 2 is clear. Appealing to (2.3), we use the standard basis ek
1 ≤ k ≤ m, so that

∥A∥pSp ≤
m∑
k=1

∥Aek∥p =
m∑
k=1

[
n∑

i=1

|ai,k|2
]p/2

≤
m∑
k=1

n∑
i=1

|ai,k|p.

This case is finished.
To conclude the proof for 2 < p <∞, observe that the norms decrease in p, hence

∥A∥Sp ≤ ∥A∥S2 =

[
n∑

i=1

m∑
j=1

|ai,j|2
]1/2

≤ (mn)δ(p)

[
n∑

i=1

m∑
j=1

|ai,j|p
]1/p

.

The proof is complete. □

More comments about the Schatten norms and nearly weakly orthogonal (NWO) functions
are made in Section 4.

3. Besov space and its dyadic structure

3.1. One-parameter. We are interested in those results that relate the Schatten norms to
Besov spaces of corresponding symbols. The functions {φI : I ∈ D} will be a wavelet basis
for L2(R) with the function φ being continuous and rapidly decreasing. In the first definition,
(1.11), one may be concerned that the definition depends upon the choice of function φ. There
is a straight forward lemma which shows this is not the case.

3.1. Proposition. Let φ and ϕ be two distinct wavelets, generating wavelet bases {φI} and
{ϕI}, respectively. We have the equivalence∑

I∈D

[
|I|−1/2|⟨f, φI⟩L2(R)|

]p ≃ ∑
I∈D

[
|I|−1/2|⟨f, ϕI⟩L2(R)|

]p
.

This is valid for any function f for which either side is finite, and implied constants depend
only on the choice of 0 < p <∞.

Proof. This is a standard argument for wavelet characterisation of Besov spaces. We also note
that the two wavelet bases need not be associated with the same dyadic grid D, which could
be different grids. The key steps are to use the wavelet expansion, almost orthogonality
estimates and then the Plancherel–Pólya type inequality. See for example the standard
argument in [8]. □

We have the standard characterization of the Besov space Bp(R), 1 ≤ p < ∞, as follows
(see for example [26, p. 242]), which also reflect that the definition of Bp(R) is independent
of the choice of the dyadic grids, and the associated wavelet basis.

3.2. Proposition. Let b ∈ L1
loc(R) and 0 < p <∞. Then we say that b belongs to the Besov

space Bp(R) if

∥b∥Bp(R) =

(∫
R

∫
R

∣∣b(x)− b(y)
∣∣p

|x− y|2
dydx

) 1
p

<∞.

Further, if 1 ≤ p <∞, then we have Bp(R) = Bp(R) with equivalence of norms.
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In the dyadic case the same definition applies, defining the Besov space Bp
dyadic(R) as

follows, with the functions φI replaced by Haar functions.

(3.3) ∥f∥Bp
dyadic(R)

def
=

[∑
I∈D

[
|I|−1/2|⟨f, hI⟩L2(R)|

]p]1/p
, 0 < p <∞.

Based on our recent work [12, 13], it is direct to see the following dyadic structure of the
Besov space.

3.4. Proposition. Suppose 1 ≤ p < ∞. There are two choices of dyadic grids D0 and D1

for which we have Bp
dyadic,0(R) ∩ Bp

dyadic,1(R) = Bp(R), where Bp
dyadic,i(R) is the dyadic Besov

space associated with the dyadic grid Di, i = 0, 1. Moreover, we have

∥b∥Bp(R) ≃ ∥b∥Bp
dyadic,0(R) + ∥b∥Bp

dyadic,1(R).

3.2. Product setting. Recall that the (product) Besov space on Rn = R×· · ·×R is defined
by

(3.5) ∥f∥Bp(R×···×R)
def
=

[∑
R∈R

[
|R|−1/2|⟨f, φR⟩L2(Rn)|

]p]1/p
, 0 < p <∞.

3.6. Proposition. Let φ and ϕ be two distinct wavelets, generating wavelet bases {φR} and
{ϕR}, respectively. We have the equivalence∑

R∈R

[
|R|−1/2|⟨f, φR⟩L2(Rn)|

]p ≃ ∑
R∈R

[
|R|−1/2|⟨f, ϕR⟩L2(Rn)|

]p
.

This is valid for any function f for which either side is finite, and implied constants depend
only on the choice of 0 < p <∞. The two wavelet bases need not be associated with the same
dyadic grid R.

Proof. Again, the key step is to use the wavelet expansion, almost orthogonality estimates,
and then the Plancherel–Pólya type inequality. See for example the standard argument for
the product Hardy and BMO spaces in [8, Section 4], which can be easily adapted to the
product Besov space setting. □

We also introduce the following definition of product Besov space via difference. For
notational simplicity, for j = 1, . . . , n, we let

△(j)
yj
b(x1, . . . , xn) = b(x1, . . . , xn)− b(x1, . . . , xj−1, yj, xj+1, . . . xn).

To begin with, we first introduce the following definition.

3.7. Definition. Let b ∈ L1
loc(Rn) and 0 < p <∞. Then we say that b belongs to the product

Besov space Bp(R× · · · × R) if

∥b∥Bp(R×···×R) =

(∫
R2

· · ·
∫
R2

∣∣△(1)
y1 · · ·△(n)

yn b(x1, . . . , xn)
∣∣p∏n

j=1 |xj − yj|2
dy1dx1 · · · dyndxn

) 1
p

<∞.

Next, we first point out that parallel to the classical setting, we have the equivalence of
Bp(R× · · · × R) and Bp(R× · · · × R) when p ≥ 1. That is,

3.8. Proposition. Suppose 1 ≤ p < ∞. We have Bp(R × · · · × R) = Bp(R × · · · × R) with
equivalence of norms.
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Proof. By using the reproducing formula and the almost orthogonality estimate in the tensor
product setting (see for example [8, Section 4]) and Proposition 3.1, one obtains the above
proposition. Details are omitted. □

To establish the dyadic structure of the product Besov space, we only provide details for
R2 = R× R. The n-parameter setting follows with appropriate modifications.

We establish the following natural containment of the Besov space and the dyadic Besov
space.

3.9. Proposition. Suppose 1 ≤ p <∞. We have Bp(R×R) ⊂ Bp
dyadic(R×R), with estimate

∥b∥Bp
dyadic(R×R) ≲ ∥b∥Bp(R×R).

Proof. The key inequalities here are specific to a choice of dyadic rectangle R. Let R = I×J ,
where both I and J are dyadic intervals. Below, let I ′ = I + 2|I| and J ′ = J + 2|J |. Then it
is clear that R′ = I ′ × J ′ is another dyadic rectangle with volume comparable to that of R.
Hence, by the cancellation condition of hR, we have∣∣∣∣ ∫

R

b(x1, x2)hR(x1, x2)dx1dx2

∣∣∣∣ |R|− 1
2

≲ inf
(y1,y2)∈R′

∣∣∣∣ ∫
R

(
b(x1, x2)− b(x1, y2)− b(y1, x2) + b(y1, y2)

)
hR(x1, x2)dx1dx2

∣∣∣∣ |R|− 1
2

≲ |R|−
3
2

∫
R′

∣∣∣∣ ∫
R

△(1)
y1
△(2)

y2
b(x1, x2) hR(x1, x2)dx1dx2

∣∣∣∣ dy1dy2
≲ |R|−

3
2

(∫
R′

∫
R

∣∣△(1)
y1
△(2)

y2
b(x1, x2)

∣∣pdy1dy2dx1dx2) 1
p
(∫

R′

∫
R

|hR(x1, x2)|p
′
dx1dx2dy1dy2

) 1
p′

≲

(∫
R′

∫
R

∣∣△(1)
y1
△(2)

y2
b(x1, x2)

∣∣pdy1dy2dx1dx2 1

|R|2

) 1
p

≲

(∫
R′

∫
R

∣∣△(1)
y1 △

(2)
y2 b(x1, x2)

∣∣p
|x1 − y1|2|x2 − y2|2

dy1dy2dx1dx2

) 1
p

,

where in the third inequality we use Hölder’s inequality and this is where we need 1 ≤ p <∞.
Note also that if p = 1, then p′ = ∞ and the second factor in the right-hand side of the third
inequality will become ∥hR∥L∞ .

Take the power p on both sides, and sum over all R,R′ ∈ D × D, to get an expression
dominated by ∥b∥pBp(R×R). □

Moreover, we also have a weaker version of the reverse containment. That is, we will need
another set of dyadic intervals. We take two dyadic grids D0 and D1 so that for all intervals
I there is a Q ∈ D0 ∪ D1 with

(3.10) I ⊂ Q ⊂ 4I.

One option is that D0 is the standard dyadic system in R and D1 is the ‘one-third shift’ of
D0, see for example [16].

3.11. Proposition. Suppose 1 ≤ p <∞. There are two choices of grids D0 and D1 for which
we have

Bp(R× R) = Bp,(0,0)
dyadic(R× R) ∩ Bp,(0,1)

dyadic(R× R) ∩ Bp,(1,0)
dyadic(R× R) ∩ Bp,(1,1)

dyadic(R× R),
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where Bp,(i,j)
dyadic(R × R) is the dyadic Besov space associated with Di × Dj for i, j ∈ {0, 1}.

Moreover, we have

∥b∥Bp(R×R) ≃ ∥b∥Bp,(0,0)
dyadic (R×R) + ∥b∥Bp,(0,1)

dyadic (R×R) + ∥b∥Bp,(1,0)
dyadic (R×R) + ∥b∥Bp,(1,1)

dyadic (R×R).

Proof. To begin with, we first note that

∥b∥pBp(R×R)(3.12)

=

∫
R2

∫
R2

∣∣△(1)
y1 △

(2)
y2 b(x1, x2)

∣∣p
|x1 − y1|2|x2 − y2|2

dy1dy2dx1dx2

≲
∑
I∈D
J∈D

∫
I×J

∫
{y1∈R:2a|I|<|x1−y1|≤2a+1|I|}
{y2∈R:2a|J |<|x2−y2|≤2a+1|J |}

∣∣△(1)
y1 △

(2)
y2 b(x1, x2)

∣∣p
|x1 − y1|2|x2 − y2|2

dy1dy2dx1dx2

≲
∑
I∈D
J∈D

1

|R|2

∫
I×J

∫
{y1∈R:2a|I|<|x1−y1|≤2a+1|I|}
{y2∈R:2a|J |<|x2−y2|≤2a+1|J |}

∣∣△(1)
y1
△(2)

y2
b(x1, x2)

∣∣pdy1dy2dx1dx2
≲
∑
I∈D
J∈D

1

|R|2
2n1−1∑
m1=n1

2n2−1∑
m2=n2∫

I×J

∫
{y1∈R:2a m1

n1
|I|<|x1−y1|≤2a

m1+1
n1

|I|}

{y2∈R:2a m2
n2

|J |<|x2−y2|≤2a
m2+1
n2

|J |}

∣∣△(1)
y1
△(2)

y2
b(x1, x2)

∣∣pdy1dy2dx1dx2.
The second integral above is over a symmetric interval. Consider the two intervals

(3.13) I, I + 2a|I|[m1/n1, (m1 + 1)/n1], n1 ≤ m1 < 2n1.

Now, we choose a = 5, and n1 = 1000, so the second interval is smaller in length, but still
comparable to I in length. And, they are separated by a distance approximately 2a|I|. By
(3.10), we can choose a so that there is a dyadic I ′ ∈ D0 ∪ D1 which contains both intervals
above, and moreover I is contained in the left half of I ′, and I + 2a|I|[m1/n1, (m1 + 1)/n1]
the right half. We can argue similarly for I − 2a|I|[m1/n1, (m1 + 1)/n1], as well as for the
dyadic interval J and the parameters m2 and n2. Below we continue with R = I × J and
R′ = I ′ × J ′.

Next, observe the following identity:

△(1)
y1
△(2)

y2
b(x1, x2) =

(
b(x1, x2)− E(1,0)b(x2)− E(0,1)b(x1) + E(1,1)b

)
−
(
b(y1, x2)− E(1,0)b(x2)− E(0,1)b(y1) + E(1,1)b

)
−
(
b(x1, y2)− E(1,0)b(y2)− E(0,1)b(x1) + E(1,1)b

)
+
(
b(y1, y2)− E(1,0)b(y2)− E(0,1)b(y1) + E(1,1)b

)
=: B1(x1, x2) +B2(y1, x2) +B3(x1, y2) +B4(y1, y2),

where

E(1,0)b(·) = 1

|I ′|

∫
I′
b(z1, ·)dz1, E(0,1)b(·) = 1

|J ′|

∫
J ′
b(·, z2)dz2,

E(1,1)b =
1

|R′|

∫
R′
b(z1, z2)dz1dz2.
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In particular, for the main term in (3.12), with fixed n1 ≤ m1 < 2n1 and n2 ≤ m2 < 2n2,
we have

1

|R|2

∫
I×J

∫
{y1∈R:2a m1

n1
|I|<|x1−y1|≤2a

m1+1
n1

|I|}

{y2∈R:2a m2
n2

|J |<|x2−y2|≤2a
m2+1
n2

|J |}

∣∣△(1)
y1
△(2)

y2
b(x1, x2)

∣∣pdy1dy2dx1dx2(3.14)

≲
1

|R|2

{∫
R′

∫
R′

∣∣B1(x1, x2)
∣∣pdy1dy2dx1dx2 + ∫

R′

∫
R′

∣∣B2(y1, x2)
∣∣pdy1dy2dx1dx2

+

∫
R′

∫
R′

∣∣B3(x1, y2)
∣∣pdy1dy2dx1dx2 + ∫

R′

∫
R′

∣∣B4(y1, y2)
∣∣pdy1dy2dx1dx2}.

It follows that the norm ∥b∥pBp(R×R) is dominated by several terms, one of which is

(3.15)
∑

R∈D0×D0

|R|−2

∫
R

∫
R

∣∣b(x1, x2)− E(1,0)b(x2)− E(0,1)b(x1) + E(1,1)b
∣∣pdy1dy2dx1dx2.

The other terms are obtained by varying the role of m1 in (3.13) and the similar index m2,
considering the negative of the intervals in (3.13), exchanging the role of the dyadic grid, and
the roles of xi and yi, i = 1, 2. All cases are similar, so we continue with the one above. In
(3.15), the point is that

(3.16) 1R

(
b(x1, x2)− E(1,0)b(x2)− E(0,1)b(x1) + E(1,1)b

)
=

∑
R̃∈D0×D0

R̃⊂R

⟨b, hR̃⟩hR̃.

That is, only the smaller scales contribute. But then, it is straight forward to see that we
can make a pure sum on scales.

(3.15) ≲
∑

R∈D0×D0

|R|−2

∫
R

∫
R

∣∣⟨b, hR⟩hR∣∣pdydx ≲ ∥b∥p
Bp,(0,0)
dyadic (R×R)

.(3.17)

This completes the proof. □

Thus, based on Propositions 3.8 and 3.11, we obtain that

3.18. Proposition. Suppose 1 ≤ p <∞. There are two choices of grids D0 and D1 for which
we have

Bp(R× R) = Bp,(0,0)
dyadic(R× R) ∩ Bp,(0,1)

dyadic(R× R) ∩ Bp,(1,0)
dyadic(R× R) ∩ Bp,(1,1)

dyadic(R× R),

where Bp,(i,j)
dyadic(R × R) is the dyadic Besov space associated with Di × Dj for i, j ∈ {0, 1}.

Moreover, we have

∥b∥Bp(R×R) ≃ ∥b∥Bp,(0,0)
dyadic (R×R) + ∥b∥Bp,(0,1)

dyadic (R×R) + ∥b∥Bp,(1,0)
dyadic (R×R) + ∥b∥Bp,(1,1)

dyadic (R×R).
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4. The Proof of the One Parameter Result

The proof in fact has very little to do with the function theory of Besov spaces. The main
results in Theorem 1.12 and Theorem 1.14 can be rephrased this way.

4.1. Theorem. Suppose that {φI : I ∈ D} and {ϕI : I ∈ D} are adapted to the dyadic
intervals, and at least one collection of functions has cancellation. Then we have the estimate

(4.2)

∥∥∥∥∥∑
I∈D

α(I)φI ⊗ ϕI

∥∥∥∥∥
Sp

≲ ∥α(·)∥ℓp , 0 < p <∞.

If both collections of functions are uniformly adapted to D, then the reverse inequality holds.
In the setting of the Haar functions we have the estimate

(4.3)

∥∥∥∥∥∑
I∈D

α(I)hϵI ⊗ hδI

∥∥∥∥∥
Sp

≃ ∥α(·)∥ℓp , 0 < p <∞,

with {ϵ, δ} ≠ {1, 1}.

We first point out that the conditions of φI and ϕI “to be adapted to the dyadic intervals”
are close to the notion of “nearly weakly orthogonal sequences” introduced by Rochberg and
Semmes, [25]. However, we do not require the compact support condition, but require suitable
decay and regularity instead. Thus, it has the advantage in dealing with the continuous
setting via wavelet functions or more general functions, which was missing before.

4.1. The Proof of Theorem 4.1: The Haar Case. We begin with the obvious estimate
when ϵ = 0 and δ = 0; that is,∥∥∥∥∥∑

I∈D

α(I)h0I ⊗ h0I

∥∥∥∥∥
Sp

≃ ∥α(·)∥ℓp .

To prove the full argument in (4.3), a certain extension of the above fact is needed. We will
prove (4.3) for ϵ = 1 and δ = 0; that is, it suffices to prove

(4.4)

∥∥∥∥∥∑
I∈D

α(I)h1I ⊗ h0I

∥∥∥∥∥
Sp

≲ ∥α(·)∥ℓp

and

(4.5)

∥∥∥∥∥∑
I∈D

α(I)h1I ⊗ h0I

∥∥∥∥∥
Sp

≳ ∥α(·)∥ℓp .

The case when ϵ = 0 and δ = 1 can be done symmetrically.
We now first prove inequality (4.4). The main point is the explicit representation

(4.6) h1I =
∑

J : I&J

√
|I|hJ(c(I))h0J =

∑
J : I&J

νI,J

√
|I|
|J | h

0
J ,

where the νI,J ∈ {±1} are determined by I being in the left or the right half of J .
For an integer m > 0 and for J ∈ D, we define the m-fold children of J to be

(4.7) D(m, J)
def
= {I ∈ D : I ⊂ J, 2m|I| = |J |}.
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Now, consider the operators

(4.8) Hm,J
def
=

∑
I∈D(m,J)

νI,J α(I)h
0
I

and

(4.9) Sm
def
=
∑
J∈D

h0J ⊗Hm,J .

The choices of signs νI,J are determined as in (4.6). Our observation is that this operator Sm

also has an effective estimate of its norm as follows.

(4.10) ∥Sm∥Sp ≲ 2δ(p)m ∥α(·)∥ℓp , 0 < p <∞,

where δ(p) = max
(
0, 1

2
− 1

p

)
. Indeed, the functions Hm,J are orthogonal in J , and we have

the estimate

(4.11) ∥Hm,J∥L2(R) =

 ∑
I∈D(m,J)

|α(I)|2
1/2

≤ 2δ(p)m

 ∑
I∈D(m,J)

|α(I)|p
1/p

.

And this clearly implies our observation in (4.10).
Taking (4.6) and (4.10) into account, it is clear that we can write∑

I∈D

α(I)h1I ⊗ h0I =
∞∑

m=1

2−m/2 Sm .

For 1 ≤ p <∞, the Schatten norm obeys the triangle inequality, hence, together with (4.10),
we can estimate ∥∥∥∥∥∑

I∈D

α(I)h1I ⊗ h0I

∥∥∥∥∥
Sp

≤
∞∑

m=1

2−m/2 ∥Sm∥Sp

≤ ∥α(·)∥ℓp
∞∑

m=1

2−mmin( 1
2
, 1
p)

≲ ∥α(·)∥ℓp .

(4.12)

In the case that 0 < p < 1, we can rely upon the subadditivity as in (2.6), and a very similar
argument finishes the proof of the upper bound in (4.4).

Our inequality (4.4) then follows.

We prove the lower bound in (4.5). Fix α(·) so that ∥α(·)∥ℓp = 1, We want to show that
for

Tα
def
=
∑
I∈D

α(I)h1I ⊗ h0I ,

we have ∥Tα∥Sp ≳ 1.
A collection of dyadic intervalsDℓ will have scales separated by ℓ if it satisfies the conditions

I ∈ Dℓ implies I±2|I| ∈ Dℓ, but I±|I| ̸∈ Dℓ and {log2|I| : I ∈ Dℓ} = a+ℓZ for some choice
of integer a. All dyadic intervals D are a union of 2ℓ subcollections with scales separated by
ℓ. Of course passing to such a subcollection will suggest a loss of order ℓ−1, but from other
aspects of the argument below, we will be able to pick up an exponential decay in ℓ.
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For an integer ℓ to be chosen, we can separate the scales in the dyadic intervals, choosing
one particular Dℓ so that

(4.13)
∑
I∈Dℓ

|α(I)|p ≥ (2ℓ)−p.

Let Pℓ be the projection onto the span of the functions {hJ : J ∈ Dℓ}, i.e.,

Pℓ(f) =
∑
J∈Dℓ

⟨f, h0J⟩L2(R)h
0
J .

Let D′
ℓ be the collection of parents of those dyadic intervals in Dℓ (the parent of I is the next

dyadic larger interval) and let P′
ℓ be the corresponding projection. Appealing to Proposi-

tion 2.7 we have the estimate

∥Tα∥Sp ≥ ∥P′
ℓ Tα Pℓ∥Sp .

We shall show that ∥P′
ℓ Tα Pℓ∥Sp is at least (8ℓ)−1 for ℓ sufficiently large depending only on

p.
Define

T1
α

def
=

∑
I∈Dℓ

vI,I′ α(I)h
0
I′ ⊗ h0I ,

where I ′ is the parent of I and again the νI,I′ ∈ {±1} are determined by I being in the left
or the right half of I ′. Then the Sp norm can be calculated exactly from (2.2) as follows∥∥T1

α

∥∥p
Sp =

∑
I∈Dℓ

α(I)p ≥ (2ℓ)−p,

where the above inequality follows from (4.13). This is the main term in providing a lower
bound on the Schatten norm for Tα.
We appeal to some of the estimates used in the proof of the upper bound. Define

Tm
α

def
=

∑
I∈D′

ℓ

hI ⊗ H̃mℓ+1,I ,

where H̃mℓ+1,I is similar as in the definition from (4.9), given by

(4.14) H̃mℓ+1,I
def
=

∑
K∈Dℓ

K∈D(mℓ+1,I)

νK,I α(K)h0K .

Note that

P′
ℓ Tα Pℓ = 2−

1
2 T1

α+
∞∑

m=2

2−
1
2
(mℓ+1)Tm

α .

Repeating the estimates as in (4.10) and (4.12), we have the estimate∥∥∥∥∥
∞∑

m=2

2−
1
2
(mℓ+1) Tm

α

∥∥∥∥∥
Sp

≲ 2−min( 1
2
, 1
p)ℓ.

The implied constant depends upon 0 < p < ∞. Therefore, for an absolute choice of ℓ, we
will have the estimate ∥Tα∥Sp ≥ (8ℓ)−1. This completes the proof of (4.5).
Thus, combining (4.4) and (4.5), we obtain that (4.3) holds. The proof of the Haar Case

in Theorem 4.1 is complete. □
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4.2. The Proof of Theorem 4.1: The Wavelet Case. Assume that both collections {φI}
and {ϕI} are wavelet bases, then the operator in (4.2) is already given in singular value form,
and the theorem is trivial. The Theorem follows from the lemma below:

4.15. Lemma. We have the inequality

(4.16)

∥∥∥∥∥∑
I∈D

α(I)φI ⊗ ϕI

∥∥∥∥∥
Sp

≲ ∥α(·)∥ℓp , 0 < p <∞,

assuming only that {ϕI} are adapted to D. If this collection of functions is uniformly adapted
to D, then the reverse inequality holds.

In the case of Haar functions, the main point is the explicit expansion of (4.6). In the
current setting, of course we have the expansion

φI =
∑
J∈D

⟨φI , wJ⟩L2(R)wJ ,

as {wJ} is an orthogonal basis as defined in Page 2 in the introduction. But the expansion is
not quite so clean. Nevertheless, we have the following general almost orthogonality estimate.

4.17. Lemma. Denoting 2m|I| = |J |, we have the inequality

(4.18) |⟨φI , wJ⟩L2(R)| ≲ 2−∆(m)

(
1 +

dist(I, J)

|I|+ |J |

)−η

, m ∈ Z.

Here, ∆(m) = |m| if m ≤ 0 , and ∆(m) = 1
2
m if m > 0, η > 0 is a large positive constant,

namely N − 1, where N appears in (1.5).

Proof. This is elementary. On the one hand, by using (1.5), we have

|⟨φI , wJ⟩L2(R)| ≲ 2−
1
2
|m|
(
1 +

dist(I, J)

|I|+ |J |

)−N+1

,

where N is as in (1.5). This treats the case m > 0.
The case m < 0 does not occur in the Haar setting. While it does occur here, there is

an extra decay coming from the fact that the wavelet has mean zero, and are adapted to an
interval of smaller length than J . Thus, we essentially gain a derivative in this case

|⟨φI , wJ⟩L2(R)| ≲ 2−
3
2
|m|.

Taking the geometric mean of these two estimates proves the estimate in this last case. □

We use this lemma to prove another technical lemma, more specifically adapted to our
purposes. Let P2m be the wavelet projection of functions onto the span of {wJ : |J | = 2m};
that is

P2m
def
=

∑
J∈D: |J |=2m

wJ ⊗ wJ ,

so that

P2m(f) =
∑

J∈D: |J |=2m

⟨f, wJ⟩wJ .
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4.19. Lemma. We have the estimate

∥Bm∥Sp ≲ 2−min( 1
2
, 1
p
)|m| ∥α(·)∥ℓp , m ∈ Z,

where Bm
def
=
∑
I∈D

α(I)[P2m|I| φI ]⊗ ϕI .

In particular note that the scale of the wavelet projection being used depends upon the scale
of I.

Proof. Consider first the case of m < 0. Now, for an integer ℓ ≥ 0, set

D0(I)
def
= {J ∈ D : |J | = 2m|I|, J ⊂ I},

Dℓ(I)
def
= {J ∈ D : |J | = 2m|I|, J ⊂ 2ℓI, J ̸⊂ 2ℓ−1I}.

Also consider the functions

WI,ℓ
def
=

∑
J∈Dℓ(I)

α(I)⟨φI , wJ⟩L2(R)wJ .

For fixed ℓ, the functions {WI,ℓ : I ∈ D} are orthogonal. Hence the operator

Tℓ
def
=
∑
I∈D

WI,ℓ ⊗ ϕI

is in singular value form. Moreover, observe that from Lemma 4.17,

∥WI,ℓ∥L2(R) ≤

 ∑
J∈Dℓ(I)

|α(I)⟨φI , wJ⟩L2(R)|2
1/2

≲ 2−|m|−η′ℓ

 ∑
J∈Dℓ(I)

|α(I)|2
1/2

.

An elementary estimate gives

(4.20)

 ∑
J∈Dℓ(I)

|α(I)|2
1/2

≲ card(Dℓ(I))
δ(p)

 ∑
J∈Dℓ(I)

|α(I)|p
1/p

.

The term in the exponent is δ(p) = max
(
0, 1

2
− 1

p

)
as before.

Hence, we can easily estimate the Schatten norm of Tℓ.

∥Tℓ∥pSp ≤
∑
I∈D

∥WI,ℓ∥pL2(R) ≲ 2−p(1−δ(p))|m|−η′′ℓ ∥α(·)∥pℓp .

Because we are free to take η′′ as large as needed, this completes the proof in this case.

We now consider the case of m > 0. Keeping the same notation Dℓ(J), we redefine

WJ,ℓ
def
=

∑
I∈Dℓ(J)

α(I)⟨φI , wJ⟩L2(R)wJ ,

Tℓ
def
=
∑
J∈D

wJ ⊗WJ,ℓ.

Again, this is an operator in singular value form. In particular

∥WJ,ℓ∥2L2(R) =
∑

I∈Dℓ(J)

|α(I)⟨φI , wJ⟩L2(R)|2
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≲ 2−m−ηℓ
∑

I∈D(J)

|α(I)|2

≲ 2−m(1−2δ(p))−ηℓ

[ ∑
I∈D(J)

|α(I)|p
]2/p

.

Therefore, it is the case

∥Tℓ∥pSp ≲ 2−mpmin( 1
2
, 1
p)−ηℓ ∥α(·)∥pℓp .

Due to the fact that η can be taken very large, for all 0 < p < ∞, this estimate can be
summed over ℓ, to prove the lemma in this case. The proof of Lemma 4.19 is complete. □

Proof of Lemma 4.15. We assume that {ϕI} are adapted to D. Then, we have∑
I∈D

α(I)φI ⊗ ϕI =
∑
I∈D

α(I)
∑
J∈D

⟨φI , wJ⟩L2(R)wJ ⊗ ϕI

=
∑
m∈Z

∑
I∈D

α(I)
∑

J∈D: |J |=2m

⟨φI , wJ⟩L2(R)wJ ⊗ ϕI

=
∑
m∈Z

∑
I∈D

α(I)
[
P2m|I| φI

]
⊗ ϕI

=
∑
m∈Z

Bm .

With the estimates on the operators Bm provided by Lemma 4.19, we obtain that∥∥∥∥∥∑
I∈D

α(I)φI ⊗ ϕI

∥∥∥∥∥
Sp

≲ ∥α(·)∥ℓp

for 0 < p <∞, which shows that (4.16) holds.

We turn to the proof of the reverse inequality, assuming that {ϕI} are uniformly adapted
to D. We aim to prove that

(4.21)

∥∥∥∥∥∑
I∈D

α(I)φI ⊗ ϕI

∥∥∥∥∥
Sp

≳ ∥α(·)∥ℓp , 0 < p <∞.

This argument is modeled on the proof of the lower bound in the Haar setting. Recall that
this means that (1.6) is in force. Fix a dyadic interval I0 with length 1, so that

|⟨ϕ[0,1], wI0⟩L2(R)|
is maximal.

To continue, we define

(4.22) I < J

if the (orientation preserving) linear transformation that carries J to [0, 1] also carries I to
I0. (In the Haar case, we take I0 to be the parent of [0, 1]).
In Figure 1 below, we illustrate two examples of orientation-preserving linear transforma-

tions applied to dyadic intervals. Let I0 be a dyadic interval of length 1. The interval I0
may lie to the right of [0, 1], or conversely, [0, 1] may lie to the right of I0. These examples
demonstrate how the transformation maps intervals while preserving orientation and scale
(up to dyadic structure), possibly shifting their position along the real line.
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J I
0 1

I0

JI
0 1

I0

Figure 1. (orientation preserving) linear transform

The notion of scales separated by ℓ is modified slightly. A collection of dyadic intervals Dℓ

will have scales separated by ℓ if it satisfies the conditions: “I ∈ Dℓ implies I ± ℓ|I| ∈ Dℓ,
but I ± j|I| ̸∈ Dℓ for |j| < ℓ and {log2|I| : I ∈ Dℓ} = a+ ℓZ for some choice of integer a”.

All dyadic intervals D are a union of ℓ2 subcollections with scales separated by ℓ. We
expect a loss of ℓ−2 by passing to a subcollection with scales separated by ℓ. We will be able
to pick up rapid (but not exponential) decay from other parts of the argument.

Fix α(·) such that ∥α(·)∥p = 1. We want to provide a lower bound on

Tα
def
=
∑
I∈D

α(I)ϕI ⊗ wI .

For a choice of ℓ to be specified, we can choose Dℓ with scales separated by ℓ such that(∑
I∈Dℓ

|α(I)|p
) 1

p

≥ ℓ−2.

Let Pℓ be the projection onto the span of {wI : I ∈ Dℓ}, that is

Pℓ
def
=

∑
I∈Dℓ

wI ⊗ wI .

Let Dℓ,< be those dyadic intervals I which satisfy I < J for some J ∈ Dℓ (as defined in
(4.22)). We will pick ℓ so large that there is a unique such J . Let P<,ℓ be the corresponding
wavelet projection onto the span of {wI< : I< ∈ Dℓ,<}, defined similarly to Pℓ as above.
By Proposition 2.7, we have the estimate

∥Tα∥Sp ≥ ∥P<,ℓ Tα Pℓ∥Sp .

We estimate the norm of the latter quantity. By definition, we have

P<,ℓ Tα Pℓ =
∑

I∈Dℓ,<

∑
I′∈Dℓ

α(I ′)⟨ϕI′ , wI<⟩L2(R)wI< ⊗ wI′ .

Set

T1
α

def
=

∑
I∈Dℓ

α(I)⟨ϕI , wI<⟩L2(R)wI< ⊗ wI .
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Here, by I< we mean that unique element ofDℓ,< for which I< < I. Observe that ⟨ϕI , wI<⟩L2(R)
is in fact independent of I, and so we have the estimate

(4.23)
∥∥T1

α

∥∥
Sp ≳ ℓ−2,

with the implied constant depending only on the specific choice of ϕ and wavelet basis {wI}.
The remainder of the argument consists of showing that

(4.24)
∥∥P<,ℓ Tα Pℓ −T1

α

∥∥
Sp ≲ ℓ−4,

where the implied constant depends on 0 < p < ∞, and on the specific constants that enter
into the inequality (1.5) (in particular, for the case of 0 < p < 1, we will need to require that
Np > 5).

To see (4.24), note that the remainder P<,ℓ Tα Pℓ −T1
α can be represented and split as

follows. Set

Dℓ,j(I
′)

def
= {I ∈ Dℓ,< : |I| ⊂ 2jI ′, I ̸⊂ 2j−1I ′}, j > 1.

And we consider the functions

WI′,j
def
=

∑
I∈Dℓ,j(I′)

α(I ′)⟨ϕI′ , wI<⟩L2(R)wI< .

Then we have

P<,ℓ Tα Pℓ −T1
α =

∑
I′∈Dℓ

∑
I∈Dℓ,<,I ̸=I′

α(I ′)⟨ϕI′ , wI<⟩L2(R)wI< ⊗ wI′

=
∞∑
j=2

∑
I′∈Dℓ

WI′,j ⊗ wI′

def
=

∞∑
j=2

Tℓ,j.

Note that for each j, there are only 2j cases of I ∈ Dℓ,j(I
′). Hence, by using the almost

orthogonality estimate in Lemma 4.17 for ⟨ϕI′ , wI<⟩L2(R), and following a similar step in
the proof of Lemma 4.19 for ∥WI′,j∥2, we obtain that ∥Tℓ,j∥Sp ≲ 2−ηj2−ηℓ, where η is a
large positive number as in Lemma 4.17. Thus, summing over all j ≥ 2, we obtain that∥∥P<,ℓ Tα Pℓ −T1

α

∥∥
Sp ≲ 2−ηℓ, that is, (4.24) holds.

Now, it is clear that we can choose ℓ sufficiently large, and then combine (4.23) with (4.24)
to obtain that (4.21) holds. The proof of the Wavelet Case in Theorem 4.1 is complete. □

5. The Proof of the Multi-Parameter Result

5.1. Two-Parameter Paraproducts. We now consider paraproducts formed over sums
of dyadic rectangles in the plane. The class of paraproducts is then invariant under a two
parameter family of dilations, a situation that we refer to as one of “two parameters”. This
case contains all the essential difficulties for the higher parameter setting and is good for
focusing ideas. Again, there is very little function theory in the argument and Theorems 1.25
and 1.27 in the two parameter setting can be rephrased as
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5.1. Theorem. Let {ϕR : R ∈ R} and {φR : R ∈ R} be collections of functions adapted to
R, with at least one collection having cancellation in the jth coordinate for j = 1, 2. Then
we have the inequality

(5.2)

∥∥∥∥∥∑
R∈R

α(R)φR ⊗ ϕR

∥∥∥∥∥
Sp

≲ ∥α(·)∥ℓp .

In the Haar case, we have for ϵ, δ ∈ {0, 1}2, with the same assumption on cancellation, that
the equivalence holds

(5.3)

∥∥∥∥∥∑
R∈R

α(R)hϵR ⊗ hδR

∥∥∥∥∥
Sp

≃ ∥α(·)∥ℓp .

5.1.1. The Proof of Theorem 5.1: The Haar Case. Recall that as in (1.16), for a dyadic
rectangle R = R1 ×R2, we set hR(x1, x2) = h0R1

(x1)h
0
R2
(x2).

We of course immediately have the inequality∥∥∥∥∥∑
R∈R

α(R)hR ⊗ hR

∥∥∥∥∥
Sp

≃ ∥α(·)∥ℓp .

And, keeping in mind the proof in one parameter, we need a certain extension of this in-
equality.

To set some notation to capture the role of zeros, or their absence, we set

h
(ϵ1,ϵ2)
R (x1, x2) = hϵ1R1

(x1)h
ϵ2
R2
(x2).

We discuss the equivalence (5.3). There are three possible forms of the paraproduct, after
taking duality and permutation of coordinates into account. Of these, the first and simplest
case is ∑

R∈R

α(R)h
(1,0)
R ⊗ hR.

This is very clearly a simple variant of the one parameter version, and we do not discuss it.
The second case is that ϵ = (1, 1) and δ = (0, 0), i.e.,∑

R∈R

α(R)h
(1,1)
R ⊗ hR.

It is clear that one function is a Haar function, and the other is a normalized indicator
function. This case is the most natural analog of the one parameter case.

From (4.6) we see that for j = 1, 2,

(5.4) h1Rj
=

∑
Sj : Rj&Sj

νRj ,Sj

√
|Rj|
|Sj|

h0Sj
.

Define, for a multi-integer m = (m1,m2) ∈ N2, the collections

R(m,S) = {R ∈ R : R ⊂ S, 2mj |Rj| = |Sj|, j = 1, 2}.

There is a corresponding operator Am defined as follows.

(5.5) Am
def
=
∑
S∈R

hS ⊗Hm,S,
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where

(5.6) Hm,S
def
=

∑
R∈R(m,S)

νR,S α(R)hR.

Here, νR,S = νR1,S1 · νR2,S2 . Observe that, just as in (4.10), we have the estimate

(5.7) ∥Am∥Sp ≲ 2δ(p)(m1+m2) ∥α(·)∥ℓp .

Here, δ(p) = max
(
0, 1

2
− 1

p

)
as before. This follows just as before, namely observe that the

functions Hm,S are orthogonal in S, and that

∥Hm,S∥2 =

 ∑
R∈R(m,S)

|α(R)|2
1/2

≤ 2δ(p)(m1+m2)

 ∑
R∈R(m,S)

|α(R)|p
1/p

.

In addition, by (5.4), we have∑
R∈R

α(R)h
(1,1)
R ⊗ hR =

∑
m∈N2

2−
1
2
(m1+m2) Am

for appropriate choices of signs in the definition of Am. The remainder of the proof is just as
in the one parameter case. For 1 ≤ p <∞, the Schatten norm obeys the triangle inequality,
hence, together with (5.7), we can estimate∥∥∥∥∥∑

R∈R

α(R)h
(1,1)
R ⊗ hR

∥∥∥∥∥
Sp

≤
∞∑

m1=1

∞∑
m2=1

2−
1
2
(m1+m2) ∥Am∥Sp

≤ ∥α(·)∥ℓp
∞∑

m1=1

2−m1 min( 1
2
, 1
p)

∞∑
m2=1

2−m2 min( 1
2
, 1
p)

≲ ∥α(·)∥ℓp .

(5.8)

In the case that 0 < p < 1, we can rely upon the subadditivity as in (2.6), and a very similar
argument finishes the proof of the upper bound as above.

We turn to the case with no proper analog in the one parameter setting, namely

(5.9) Tα :=
∑
R∈R

α(R)h
(1,0)
R ⊗ h

(0,1)
R .

Of course we want to apply (4.6) to the first function in the first coordinate, and the
second function in the second coordinate. Doing so suggests these definitions. For m ∈ N2,
and S ∈ R,

R(m,S)
def
= {R ∈ R : R ⊂ S, 2mj |Rj| = |Sj|, j = 1, 2},(5.10)

Am
def
=
∑
S∈R

Am,S,(5.11)

where

Am,S
def
=

∑
R∈R(m,S)

νR,S α(R)h
0
S1
(x1)h

0
R2
(x2) · h0R1

(y1)h
0
S2
(y2).(5.12)

Here, νR,S are appropriate choices of signs.
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The principle observation is that Proposition 2.8 applies to the operators Am,S, giving the
estimate

∥Am,S∥2 ≲ 2δ(p)(m1+m2)

 ∑
R∈R(m,S)

|α(R)|p
1/p

.

It is easy to see that we then have

∥Am∥Sp ≲ 2δ(p)(m1+m2) ∥α(·)∥p .

Finally, we have∑
R∈R

α(R)h
(1,0)
R (x1, x2)⊗ h

(0,1)
R (y1, y2)

=
∑

R=R1×R2
R1,R2∈D

α(R)

[ ∑
S1: R1&S1

νR1,S1

√
|R1|
|S1|

h0S1
(x1)

]
h0R2

(x2)h
0
R1
(y1)

×
[ ∑

S2: R2&S2

νR2,S2

√
|R2|
|S2|

h0S2
(y2)

]

=
∑

S=S1×S2
S1,S2∈D

∑
R1⫋S1

R2⫋S2

R1,R2∈D

α(R)νR,S h
0
R1
(y1)h

0
R2
(x2)

[√
|R1|
|S1|

h0S1
(x1)

][√
|R2|
|S2|

h0S2
(y2)

]

=
∑
m∈N2

2−
1
2
(m1+m2) Am .

The conclusion of this case is just as that of (5.8). Thus, we obtain that

∥Tα∥Sp ≲ ∥α(·)∥ℓp , 0 < p <∞,

where Tα is as defined in (5.9).
Combining all these cases above, we obtain that for (ϵ, δ) = ((0, 0), (0, 0)), ((1, 1), (0, 0)),

((0, 0), (1, 1)), ((1, 0), (0, 1)) and ((0, 1), (1, 0))∥∥∥∥∥∑
R∈R

α(R)hϵR ⊗ hδR

∥∥∥∥∥
Sp

≲ ∥α(·)∥ℓp , 0 < p <∞.

We now prove the reverse direction. We only pick one case, (ϵ, δ) = ((1, 0), (0, 1)), to
discuss the details, that is, we aim to prove that

∥Tα∥Sp ≳ ∥α(·)∥ℓp , 0 < p <∞,(5.13)

where Tα is as defined in (5.9).
To begin with, we fix α(·) such that ∥α(·)∥ℓp = 1. We want to show that

∥Tα∥Sp ≳ 1.

All dyadic intervals D are a union of 2ℓ subcollections with scales separated by ℓ (for ‘scales

separated by ℓ’, we refer to the definition provided in the proof of (4.5)). We denote by D(1)
ℓ

such collection of intervals in the first variable, and by D(2)
ℓ such collection of intervals in the

second variable. Let
(
D(1)

ℓ

)′
be the collection of parents of those dyadic intervals in D(1)

ℓ (the
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parent of I is the next dyadic larger interval) and let
(
D(2)

ℓ

)′
be the collection of parents of

those dyadic intervals in D(2)
ℓ .

For an integer ℓ to be chosen, we can separate the scales in the dyadic intervals in each

variable, choosing D(1)
ℓ and D(2)

ℓ so that

(5.14)
∑

R=R1×R2∈R,

R1∈D(1)
ℓ ,R2∈D(2)

ℓ

|α(R)|p ≥ (4ℓ2)−p.

Let P̃ℓ be the projection onto the span of the functions
{
hS : S = S1×S2 ∈ D(1)

ℓ ×
(
D(2)

ℓ

)′}
,

i.e.,

P̃ℓ(f) =
∑

S∈D(1)
ℓ ×
(
D(2)

ℓ

)′⟨f, h0S⟩L2(R)h
0
S.

Let P̃
′
ℓ be the corresponding projection onto the span of the functions

{
hS : S = S1 × S2 ∈(

D(1)
ℓ

)′ ×D(2)
ℓ

}
, i.e.,

P̃
′
ℓ(f) =

∑
S∈
(
D(1)

ℓ

)′
×D(2)

ℓ

⟨f, h0S⟩L2(R)h
0
S.

Appealing to Proposition 2.7 we have the estimate

∥Tα∥Sp ≥
∥∥∥P̃′

ℓ Tα P̃ℓ

∥∥∥
Sp
.

We shall show that
∥∥∥P̃′

ℓ Tα P̃ℓ

∥∥∥
Sp

is at least (16ℓ2)−1 for ℓ sufficiently large depending only
on p.
Define

T(1,1)
α

def
=

∑
R=R1×R2∈R,

R1∈D(1)
ℓ ,R2∈D(2)

ℓ

νR,R′ α(R)hR′(x1, y2)hR(y1, x2),

where R′ = R′
1×R′

2 with R
′
i the parent of Ri for i = 1, 2. Then the Sp norm can be calculated

exactly from (2.2) as follows∥∥∥T(1,1)
α

∥∥∥p
Sp

=
∑

R=R1×R2∈R,

R1∈D(1)
ℓ ,R2∈D(2)

ℓ

|α(R)|p ≥ (4ℓ2)−p,

where the above inequality follows from (5.14). This is the main term in providing a lower
bound on the Schatten norm for Tα.
We appeal to some of the estimates used in the proof of the upper bound above. Define

Tm
α

def
=

∑
S=S1×S2, S1∈(D(1)

ℓ )′, S2∈(D(2)
ℓ )′

Ãmℓ+1,S, m = (m1,m2) ∈ N2,

where

Ãm,S
def
=

∑
R∈R̃(m,S)

νR,S α(R)h
0
S1
(x1)h

0
R2
(x2) · h0R1

(y1)h
0
S2
(y2)(5.15)

and

R̃(m,S)
def
= {R = R1 ×R2 ∈ R : R1 ∈ D(1)

ℓ , R2 ∈ D(2)
ℓ , R ⊂ S, 2mj |Rj| = |Sj|, j = 1, 2}.
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Note that

P̃
′
ℓ Tα P̃ℓ =

∑
S=S1×S2

S1∈(D(1)
ℓ )′

S2∈(D(2)
ℓ )′

∑
R=R1×R2

R1∈D(1)
ℓ , R1⊊S1

R2∈D(2)
ℓ , R2⊊S2

α(R) νR,S

√
|R|
|S|

h0S1
(x1)h

0
R2
(x2)h

0
R1
(y1)h

0
S2
(y2)

=
1

2
T(1,1)

α +
1√
2

∑
m2≥2

2−
1
2
(m2ℓ+1)T(1,m2)

α +
1√
2

∑
m1≥2

2−
1
2
(m1ℓ+1) T(m1,1)

α

+
∑
m∈N2

m1,m2≥2

2−
1
2
(m1ℓ+1+m2ℓ+1) Tm

α

=: Term1 + Term2 + Term3 + Term4.

Then similar to the estimates in (5.8), we have the estimate

∥Termi∥Sp ≲ 2−min( 1
2
, 1
p)ℓ, i = 2, 3, 4.

The implied constant depends upon 0 < p < ∞. Therefore, for an absolute choice of ℓ, we
will have the estimate ∥Tα∥Sp ≥ (16ℓ2)−1. This completes the proof of (5.14).

5.1.2. The Proof of Theorem 5.1: The Wavelet Case. We can derive the same argument
using similar steps as in the Haar setting in Section 5.1.1, combining with the wavelet basis
and the almost orthogonality estimate as used in the one-parameter setting in Section 4.2.

5.2. The Case of Multi-parameters. In the general n parameter setting, the number of
paraproducts increases dramatically. The only restriction in forming a paraproduct is that
in each of the n coordinates, there must be zeros in one of the three classes of functions
corresponding to the paraproduct.

Let us pass immediately to the Haar case, without mention of the Besov norms. Given
ϵ = (ϵ1, . . . , ϵn) ∈ {0, 1}n, set

(5.16) hϵR(x1, . . . , xn) =
n∏

j=1

h
ϵj
Rj
(xj).

In this case, the proper statement of Theorem 5.1 is

5.17. Theorem. Given ϵ, δ ∈ {0, 1}n, we assume that in each coordinate j, ϵj · δj = 0. Then,
we have the equivalence

(5.18)

∥∥∥∥∥∑
R∈R

α(R)hϵR ⊗ hδR

∥∥∥∥∥
Sp

≃ ∥α(·)∥ℓp .

The proof of Theorem 5.17 is again similar to what appeared above. Let Oj denote the
coordinates in which ϵ equals j. These sets of coordinates are disjoint, and not necessarily
all of {1, . . . , n}.
The case that both Oj, for j = 0, 1, are empty, is trivial. The case that one of these two

is the empty set is (essentially) the one parameter case, but this will fit into the discussion

below. Assume that O1 is not empty. Let O def
= O0 ∪O1.



26 M. T. LACEY, J. LI, AND B. D. WICK

We define, for choices of S ∈ R, and m ∈ NO,

R(m,S)
def
= {R ∈ R : Rj ⊂ Sj, 2

mj |Rj| = |Sj|, j ∈ O},

Am
def
=
∑
S∈R

Am,S,

Am,S
def
=

∑
R∈R(m,S)

νR,Sα(R)H0,m,R,S ⊗H1,m,R,S,

Hj,m,R,S
def
=

∏
j∈Oj

hSj
(xj)

∏
k ̸∈Oj

hRk
(xk), j = 0, 1.

The main point is that Proposition 2.8 applies to the operators Am,S, giving the estimate

∥Am,S∥2 ≲ 2δ(p)
∑

O mj

 ∑
R∈R(m,S)

|α(R)|p
1/p

.

And this, plus a simple argument, gives us the estimate

∥Am∥Sp ≲ 2δ(p)
∑

O mj ∥α(·)∥ℓp .

Finally, it is the case that for appropriate choices of signs νR,S, we have∑
R∈R

α(R)hϵR ⊗ hδR =
∑
m∈NO

2−
1
2

∑
O mj Am .

This is clearly enough to prove the theorem for both the upper bound and lower bound of
(5.18) following the arguments in Section 5.1.1.

6. Concluding Remarks

We close this paper by making several concluding remarks. First, we chose to work with
the Haar/wavelet bases for L2(R), and then the appropriate generalization of these to the
tensor product setting for L2(Rn). It is possible to formulate and prove analogous results by
starting with the Haar/wavelet basis for L2(Rnj) and then forming the d-parameter tensor

product bases for L2(R
∑d

j=1 nj). The only additional difficulty that this produces is more
complicated notation. The interested reader can easily modify the results appearing in this
paper to arrive at these more general theorems.

In this paper we have focused on continuous and dyadic paraproducts. As mentioned
in the introduction, paraproducts are an equivalent way to view Hankel operators. Once
estimates for the paraproducts are known, then using a nice result of S. Petermichl [23] it
is possible to recover the commutator operator from an averaging of a dyadic shift operator;
this commutator can then be understood as a sum of a Hankel operator and it adjoint. Using
these results one can prove that a Hankel operator belongs to the Schatten class Sp if the
symbol belongs to the Besov space Bp. It is carried out very nicely in the paper [24] of Pott–
Smith in their discussion of Sp class, 1 < p <∞, of one-parameter dyadic paraproducts, and
the related Besov spaces.
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