SCHATTEN CLASS ESTIMATES FOR PARAPRODUCTS IN
MULTI-PARAMETER SETTING
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ABSTRACT. Let IT, be a bounded n parameter paraproduct with symbol b. We demonstrate
that this operator is in the Schatten class SP, 0 < p < oo, if the symbol is in the n parameter
Besov space BP. Our result covers both the dyadic and continuous version of the paraproducts
in the multiparameter setting.

1. INTRODUCTION, NOTATION AND STATEMENT OF MAIN RESULTS

Paraproducts are an extremely useful tool in questions arising in harmonic analysis. They
provide a nice class of singular integral operators, and when restricting to the dyadic case
provide much insight into the mapping properties of Calderén—Zygmund operators. Para-
products have natural connections with other important operators in analysis. In particular,
it is possible to view paraproducts as either the commutator between a function and the
Hilbert transform or equivalently a Hankel operator with a certain symbol. It turns out the
properties of the symbol heavily influence the operator theoretic characteristics of the para-
product. In this paper, we are interested in the property of the paraproduct (both continuous
version and dyadic version) being in certain Schatten class, with applications to commutators
in multi-parameter settings which link to the big Hankel operators.

We note that along the line of Calderén [2], Coifman—Rochberg—Weiss [6], Uchiyama [27],
Janson-Wolff [11], Rochberg-Semmes [25], the theory of commutators (boundedness, com-
pactness and Schatten class) plays an important role, which connects to the weak factorisation
of Hardy space ([6]) and Hankel operators ([1,22,24]) in the complex analysis, compensated
compactness in the PDEs [5], as well as the quantised derivative in non-commutative analysis
and geometry [7,17].

To state the main results of this paper, let us recall the relevant paraproducts. In so doing,
we prefer a discrete formulation of these operators. As is well known, there are two distinct
ways to formulate them, with the Haar basis playing a distinguished role. So, for the sake of
definiteness, we first give the Haar paraproducts and the statements of the main results in
this context.

Here we make some conventions on notation. Throughout the paper, the letter C' denotes
(possibly different) constants that are independent of the essential variables. If A < CB, we
write A< Bor B2 A;andif A< B < A, we write A ~ B.

One Parameter Paraproducts. We take the dyadic intervals to be

def . . .
D = {[j2", (G +1)2") : j ke Z}.
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Each dyadic interval I is a union of its left and right halves, denoted I_ and I, respectively.
The Haar function h; adapted to I is

(1.1) hy = |17 (1. +1.).
The other function of importance is
(1.2) ht = |I|7Y%1,.

Thus, A has cancellation, i.e. [, hf(x)dz = 0, while hj is a multiple of an indicator function.
The function h} is, in wavelet nomenclature, the ‘father’ wavelet.
The one parameter Haar paraproducts are

2
(1.3) Bitaar(f1, f2) < Y 117V20E (£ b9 e

1eD j=1

A classic result in dyadic harmonic analysis is that (see for example [3, Section 2.1.])

(1.4) | Btaar (f1, ')HL2(R)_>L2(R) = ||fl||BModyadic R)
In this last display, BMOgyadgic (R) is the dyadic BMO space.

To define more general paraproducts, we will appeal to wavelets. We make this more
precise now. For an interval I, we say that ¢ is adapted to I if and only if ||¢||, = 1 and

-N
o )
< |I]7¢ 1 lz = (D] =0,1,2.

’dxa { | | < + |]| ) Q s Ly

Here, ¢(I) denotes the center of I, and N is a large fixed integer, whose exact value need not
concern us. By {¢; : I € D} are adapted to D we mean that for all dyadic intervals I, ¢;
are adapted to I. We shall consistently work with functions which are normalized in L?(R).
Some of these functions we will also insist to be normalized to have cancellation, i.e.

/Rgol(a:)dx =0.

A collection {p; : I € D} is uniformly adapted to D if for each I € D, p; is adapted
to I, and each ¢; is obtained from a single fixed function ¢ € C*°(R) as follows

_ 1 x —c(I)
(1.6) pr(z) = \/m@ ( 7] ) )

where ¢(I) is the center of I and ¢ satisfies

/ zdt
0

(1.5)

o(t€) 1, for all £ # 0.

Most typically, the notation ¢; will be used for a function adapted to I.

A collection of functions {w; : I € D} is called a wavelet basis if the collection is
uniformly adapted to D, and it is an orthonormal basis for L?(IR). It is very easy to see that
necessarily, w has cancellation. The examples of wavelet bases that will be important for us
are L?(R) normalized functions adapted to an interval.

Paraproduct operators are constructed from rank one operators f — (f, p)¢. A paraprod-
uct is, in its simplest manifestation, of the form

def
B(f1, f2) Z!I\ 1/2 <P31H fga%l L2(R)-

1€eD
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Here, the functions ¢;;, j = 1,2,3, are adapted to I, and (f,g)r2m) = fR

Two of these three functions are assumed to have cancellatlon and 1n partlcular we Wlll
always assume that ¢, ; has cancellation. We are concerned with extensions of the classical
conditions for this operator to be bounded on L?*(R). For these more general paraproducts
there is the following well-known extension of (1.4). See [14,20] for proofs.

1.7. Theorem ([14,20]). If {¢11} and at least one collection of {1} j = 2,3 have cancel-
lation and are adapted to D, then

(1.8) B N e@oe@ S llsmo) -
If all three collections {@jr} are uniformly adapted to D, then the reverse inequality holds.

The BMO norm is explicitly given by
1/2

(1.9) 1o = swp (U1 1F @) o)

v Icu
Here, the supremum is formed over all intervals U and {¢;} is uniformly adapted to D. We
note that the definition is independent of the choice of {(;} and the dyadic grid D.

In this paper we are principally concerned with the Schatten norms of paraproducts
B(fi, f2) and their multiparameter versions. Recall that the Schatten norm of an opera-
tor is given by a /P sum of its singular values, see Section 2 for the precise definition and
more information about these norms. Much like the case of boundedness, membership of the
paraproduct in a Schatten class can be characterized in terms of the function f;.

We first recall some previous closely related results on Schatten class of related operators.
In the case of continuous paraproducts, Janson and Peetre showed in [10] that membership
in a Schatten class is equivalent to the symbol belonging to the Besov space. Their method
of proof was very much Fourier analytic by viewing the continuous paraproduct as a certain
multiplier on the Fourier side and then decomposing the operator in an appropriate manner.
See also Pott and Smith, [24] for the dyadic version. Chao and Peng [3] showed that the one
parameter paraproducts arising from (d-dyadic) martingale transforms are bounded if and
only if the symbol belongs to the dyadic Besov space, whose definition is given below. The
proof is very computational, and takes advantage of the notion of “nearly weakly orthonormal
sequences” introduced by Rochberg and Semmes, [25]. In fact, in both [3,10] it is shown that
more generally the commutators with singular integral operators (or martingale transforms)
belong to a certain Schatten class if and only if the symbol belongs to the appropriate Besov
space.

Membership of the paraproduct in the Schatten class is related to smoothness on the
symbol fi, and this is governed by the symbol belonging to a certain Besov space. We can

define the dyadic Besov spaces By , 4. (R) as the set of f € L;,.(R) such that || f ||]B;g @) < 00

where

p11/P
I D (LT P I B

dyadlc
1eD

Also, the Besov space BF(R) is the set of Schwartz distributions f such that || f||z,, < oo,
where

1/p
def _ p
(1.11) ||f||BP(R) = [Z [|I| Y2\(f, ¢I>L2(R)|] } ) 0<p<oo

1eD
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with {o;} is uniformly adapted to D. We note that the definition of B?(R) is independent
of the choice of {¢;} and the dyadic grid D. That is, suppose there is another family {¢;}
that is uniformly adapted to dyadic system D’. Then

1/p
_ p
||f||IB%P(]R) = Z [|]| Y2(f, 1/JI>L2(R)H 5 0 <p<oo.
1eD’

We refer the readers to Proposition 3.1 for a proof.
Our main result is then the following theorem, giving an extension and refinement of the
boundedness of paraproducts in one parameter given in Theorem 1.7.

1.12. Theorem (Main Result 1). Assuming only the collection of functions {¢1; : I € D}
has cancellation, we have the estimate

(1.13) B s S Mfillgrmy, — 0<p<oo

If each of the collections of functions {@;r}, j = 1,2,3, is uniformly adapted to D, then the
reverse inequality holds.

When taking the collections of functions {¢;} to be the Haar functions (1.1) and the
normalized indicators (1.2), we have the following immediate corollary in the case of Haar
paraproducts.

1.14. Theorem. In the Haar case we have

10,
Z<f1 [>L(R)h§®h§

VI

We note that a variation of Theorem 1.14 for dyadic martingale transforms was previously
studied by Chao and Peng [3]. Additionally, an alternate proof of Theorem 1.14 was given
by Pott and Smith [24, Theorem 2.1]. We provide a different proof compared to [3,24].

We will now use these ideas to extend the results from one-parameter to the multi-
parameter setting.

(1.15)

~ “leBg,d» (R) » O<p<(>(), {675}#{171}
yadic
sp

Multi-parameter paraproducts. We use many of the ideas from the previous section to

form the tensor product basis in L*(R") = L*(R x -+ x R). Let R © D x ... x D be the

collection of dyadic rectangles in R”.
e Dyadic version of paraproduct:
For a rectangle R = Ry x --- X R, € R and for a choice of ¢ = (¢y,...,¢,) € {0,1}",

n

c def €j
(116) hR(a:la"'axn) = Hh’R<x])7

J
j=1
where h;jj is given by either (1.1) or (1.2) depending on if ¢; = 0 or g; = 1. Fore =0 =
(0,...,0), we denote h%(z1,...,x,) by hr(zi,...,z,) for simplicity.

Define E, < {0,1}» \ I, where T = (1,...,1). Note that the cardinality of the set E, is

2" — 1. We then have that {h%, : R € R,e € E,} is the product Haar basis for L*(R").
The n parameter Haar paraproducts are

hR) 2 (&
(1.17) Bitaar(f1, f2) = Y M%’h;)mw) B,

ke VIE]
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The essential restriction to place on the two choices of £,6 € {0,1}" is that
in no coordinate j do we have €; = §; = 1.

Observe that this condition permits a wide variety of paraproducts, with most having no
proper analog as compared to the one dimensional case.
e Continuous version of paraproduct:

Let us say that a collection {pr : R € R} is adapted to a rectangle R if and only if
¢r(T1, .. 20) = [[2, @jr,(;), with each {p;r,} adapted to D. We say that {¢r} has
cancellation in the jth coordinate if and only if {p; g, } has cancellation. The collection {yg}
is uniformly adapted to R if and only if each {¢; .}, j = 1,...,n, is uniformly adapted to
D.

Paraproducts are then defined as follows:

( 2
(1.18) B(f1, f2) E Z i H fJaSOR L2(R")

ReR ’R

where the functions 4,0(] ) are adapted to R for 5 = 1,2,3. The construction of a smooth
wavelet basis in L?(R") is similar and standard. For the details we omit here.

The boundedness of the multi-parameter paraproducts was first studied by Journé when
considering the 7'(1) Theorem in the product setting, [9]. These results were later studied
further by Muscalu, Pipher, Tao and Thiele in the following papers [18,19] which showed the
richness of the paraproduct structures in the multiparameter setting. One should also see
the article by Lacey and Metcalfe, [14]. The following general theorem on the boundedness
in L?(R") of the Haar paraproducts and more general paraproducts from a wavelet basis is
then given by:

1.19. Theorem ([9, 14, 18,19]). For the multi-parameter Haar paraproducts, we have the
following estimate:

(1.20) || Btaar (f1, ')||L2(R")—>L2(R”) S ||f1||BMOdyadic(]R><~~><R)'

More generally, assume that for both coordinates j = 1,2 there is a choice of k € {2,3} for

which gag) and gog) have cancellation in the jth coordinate. Then, for the paraproducts as in
(1.18), we have the inequality:

(1.21) IBU 1 2@y r2@ny S Iillsaogsx...<ry

There are two points to make about this last inequality. The first is that the space
BMO(R X --- x R) is the product BMO space studied by S.-Y. A. Chang and R. Feffer-
man [4], and the BMO norm is given explicitly by

1/2
def
(1.22) 1/l Bro@x - xR) - sup [’U| ' Z| fowr) 2 )| } '

RCU

Here, the supremum is formed over open sets U and {wg} is a product wavelet basis. Re-
placing the wavelet basis by the Haar basis, we have dyadic Chang—Fefferman BMO, [4]. The
second is that we are not asserting the equivalence of norms. Indeed, for a ‘degenerate’ n
parameter paraproduct, the equivalence of norms is not so clear. There are essentially two
distinct cases. The first case, with the greatest similarity to the one parameter case, is where

we have for example, {gag)} has cancellation in all coordinates. The second case with no
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proper analog in the one variable setting is, for instance, {gpg)} has cancellation in one set
of coordinates while {gog’)} has cancellation in a complimentary set of coordinates.

Similar to the one-parameter case, with the Haar basis we can define the dyadic (product)
Besov spaces in R" as

1/p
(1.23) 1Fllss, cexiy = [Z RI21 S, hR>L2<Rn>|]p] . 0<p<oo
ReR
For the tensor product wavelet basis, we define the (product) Besov spaces in R" as
1/p
(124 flsrgese) = {Z (IR, @R>L2<Rn>|]p} . 0<p<oo
RER

Again, we will see that this definition does not depend upon the choice of wavelet basis.

Our principal estimate, giving an extension of Theorem 1.19 to the multi-parameter setting
is given next, especially for the continuous version. For simplicity, this theorem is stated in
the case of two parameters. The correct statement of the general multi-parameter version
can be obtained from Theorem 5.17 below.

1.25. Theorem (Main Result 2). Assume that {¢1 r} has cancellation for both coordinates
Jj = 1,2, while {¢por} and {¢sr} have the property that: if {2 r} has cancellation in coor-
dinate j then {¢s r} does not and vice versa, for j =1,2. Then,

(1.26) IB(f1; Mo S fillgr@smy, 0 <p<oo
If all the collections {¢; r} are uniformly adapted to R, then the reverse inequality holds.

Notice that when neither collection of functions have cancellation, the corresponding op-
erator is not bounded for general functions in BMO. This is indicative of the well known fact
that the result on Schatten norms is not as delicate as the criteria for being bounded.

Parallel to the above result, a corollary of Theorem 1.25 in the dyadic version is as follows,
which is an extension of Theorem 1.14.

1.27. Theorem. For any bounded n parameter dyadic paraproduct we have the equivalence
(1'28) ||BHaar(f17 ')Hsp = Hf1||IB§gyadic(R><~--><R) ) 0 <p<oo.

Note that a variation of Theorem 1.27 for little Hankel operators was given in Pott and
Smith [24, Theorem 5.1]. For the sake of notational simplicity, we state and prove the result
in the bi-parameter setting. The argument for multi-parameter setting follows similarly.

In Section 2 we collect some properties of Schatten norms. In Section 3 we show that the
Besov norms are independent of the choice of wavelet basis and establish the dyadic structure
for the Besov spaces. In Section 4 we give a proof of Theorems 1.12 and 1.14. We first will
handle the case of Haar paraproducts since that will turn out to be a model for the more
general case of paraproducts built from wavelet bases. In Section 5 we give the proofs of
Theorems 1.25 and 1.27, which are based upon the ideas appearing in Section 4 but will be
complicated by additional notation necessary to handle the multi-parameter paraproducts.

2. BASIC PROPERTIES OF SCHATTEN NORMS

Let H be a separable Hilbert space. Recall that for elements ¢, ¢ € H the operator denoted
by ¢ ® ¢ takes an f € H to ¢(f, ©)xn.
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A compact operator T : H — H has a decomposition

(2.1) T =) A e, ®f,

in which A\, € R, and {e,} and {f,} are orthonormal sequences in H (compactness implies
that |A,| — 0). The Schatten norm is then

1/p
Z|)\n|p] , 0<p<oo.

n

def
(22) ITllse =

This is an actual norm for 1 < p < oo, while for 0 < p < 1 it is not. The trace class
operators are the class S! and the Hilbert-Schmidt operators are the class S?. Part of the
interest in these classes are that the class S' is in natural duality with £(H), the space of
bounded operators on H and the class S? has a simple way to compute the norm using any
orthonormal basis. It is clear that || T||g, = ||T"||s,-

Define a collection of positive numbers

1/p
T Z T enll5, : {en} is an orthonormal basis in H
Then it is the case that
23) IT|s = nfT,  0<p<2
(2.4) |T||gp =sup T, 2 <p< 0.

For 1 < p < 00, the Schatten norm obeys the triangle inequality:
(2.5) 15+ Tllge < [ISllse + [Tls» -

For 0 < p < 1 this is no longer the case. There is the following quasi-triangle inequality,
linked to the subadditivity of x — aP.

(2.6) IS+ Tllse < ISlge + Tl -
In the converse direction, there is a proposition below.

2.7. Proposition. Suppose that T is an operator from H to itself, and that P is a contraction,
then
TPl [P Tllge < [ITllge, 0 <p<oo.

Proof. For ||P T||g,, this follows from the characterization of the Schatten norm in terms of
either an infimum or supremum, see (2.3) and (2.4). Combining this observation with the
equivalence of the Schatten norms for dual operators proves the proposition. O

We also need an inequality for the Schatten norms of a m x n matrix A = (a; ;).
2.8. Proposition. We have the inequality

m,n 1/p
(2.9) 1Allgp < (mn)°® [Z |%|p] , 0<p<oo

1,j=1
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Proof. The case of 0 < p < 2 is clear. Appealing to (2.3), we use the standard basis ey
1 <k <m, so that

m m n p/2
AL < S el = 30 [Dw
k=1 k=1 =1

This case is finished.
To conclude the proof for 2 < p < 0o, observe that the norms decrease in p, hence

n m 1/2 n m 1/p
[Allgy < [Allgz = [ZZW@F] < (mn)°®) [ZZWMV’] :

i=1 j=1 i=1 j=1

m n
< Z Z\az’,k|p~

k=1 =1

The proof is complete. [

More comments about the Schatten norms and nearly weakly orthogonal (NWQO) functions
are made in Section 4.

3. BESOV SPACE AND ITS DYADIC STRUCTURE

3.1. One-parameter. We are interested in those results that relate the Schatten norms to
Besov spaces of corresponding symbols. The functions {¢; : I € D} will be a wavelet basis
for L?(R) with the function ¢ being continuous and rapidly decreasing. In the first definition,
(1.11), one may be concerned that the definition depends upon the choice of function ¢. There
is a straight forward lemma which shows this is not the case.

3.1. Proposition. Let ¢ and ¢ be two distinct wavelets, generating wavelet bases {¢;} and
{o1}, respectively. We have the equivalence

ST 2KE eneml]” = Y I én ee)l]”
IeD I€D
This is valid for any function f for which either side is finite, and implied constants depend

only on the choice of 0 < p < o0.

Proof. This is a standard argument for wavelet characterisation of Besov spaces. We also note
that the two wavelet bases need not be associated with the same dyadic grid D, which could
be different grids. The key steps are to use the wavelet expansion, almost orthogonality
estimates and then the Plancherel-Pélya type inequality. See for example the standard
argument in [8]. O

We have the standard characterization of the Besov space BP(R), 1 < p < oo, as follows
(see for example [26, p. 242]), which also reflect that the definition of B?(RR) is independent
of the choice of the dyadic grids, and the associated wavelet basis.

3.2. Proposition. Let b € L (R) and 0 < p < co. Then we say that b belongs to the Besov

space BP(R) if
1
[b(@) '
Wl = ( [ [ PO )" < oo

Further, if 1 < p < oo, then we have BP(R) = BP(R) with equivalence of norms.
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In the dyadic case the same definition applies, defining the Besov space deadm(]R) as
follows, with the functions ¢; replaced by Haar functions.
1/p
def _ p
(3.3) Hf”xaagyadic(ug) = Z (1] V2T, hr)rew)|] , 0 <p<oo.
1€D

Based on our recent work [12,13], it is direct to see the following dyadic structure of the
Besov space.

3.4. Proposition. Suppose 1 < p < co. There are two choices of dyadic grids D° and D!
for which we have By 4. o(R) N BY 4.1 (R) = BP(R), where B (R) is the dyadic Besov

] dyadic,z
space associated with the dyadic grid D*, i = 0,1. Moreover, we have
Ibllsocey = bl oy + 05,

3.2. Product setting. Recall that the (product) Besov space on R" = Rx - - - x R is defined
by
1/p
def —
(35) HfHIBP(RX~--><R) = Z UR’ 1/2|<f7 @R)LZ(R”)HP ) 0< p < Q.

ReER

3.6. Proposition. Let ¢ and ¢ be two distinct wavelets, generating wavelet bases {@r} and
{or}, respectively. We have the equivalence

Z [|R|_1/2|<f7 90R>L2(R")Hp o Z [|R|_l/2|<f7 ¢R>L2(R")Hp
ReR ReR

This is valid for any function f for which either side is finite, and implied constants depend
only on the choice of 0 < p < co. The two wavelet bases need not be associated with the same

dyadic grid R.

Proof. Again, the key step is to use the wavelet expansion, almost orthogonality estimates,
and then the Plancherel-Pdlya type inequality. See for example the standard argument for
the product Hardy and BMO spaces in [8, Section 4], which can be easily adapted to the
product Besov space setting. O

We also introduce the following definition of product Besov space via difference. For
notational simplicity, for j = 1,...,n, we let

A;i)b(xl, coy @) = bz, ) = O(T, T, Y, T, - - D)
To begin with, we first introduce the following definition.

3.7. Definition. Letb € L; C(]R”) and 0 < p < co. Then we say that b belongs to the product
Besov space BP(R x «-- X ]R)

AW .. Z)bx,...,xnp
16]| Br(Rx - xR) = (/ / { yl By b1 e )‘ dy1dx1---dyndxn> < 00.
R2 Yj

] 1|I']

3=

Next, we first point out that parallel to the classical setting, we have the equivalence of
BP(R x -+ x R) and B?(R X --- x R) when p > 1. That is,

3.8. Proposition. Suppose 1 < p < oco. We have BP(R x --- x R) = BP(R x - -+ x R) with
equivalence of norms.
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Proof. By using the reproducing formula and the almost orthogonality estimate in the tensor
product setting (see for example [8, Section 4]) and Proposition 3.1, one obtains the above
proposition. Details are omitted. 0

To establish the dyadic structure of the product Besov space, we only provide details for
R? = R x R. The n-parameter setting follows with appropriate modifications.

We establish the following natural containment of the Besov space and the dyadic Besov
space.

3.9. Proposition. Suppose 1 < p < co. We have BP(R x R) C B,

dyadm(R x R), with estimate

1bllez xRy S 110l 5o @xR)-

Proof. The key inequalities here are specific to a choice of dyadic rectangle R. Let R =1 x J,
where both I and J are dyadic intervals. Below, let I’ = I 4+ 2|I| and J' = J + 2|J|. Then it
is clear that R = I’ x J' is another dyadic rectangle with volume comparable to that of R.
Hence, by the cancellation condition of hg, we have

/ b(l‘l, [Eg)hR(ZL’l, I’Q)d.l’ldl’g |R|_%
R

< inf
(y1,y2)ER’

nt
< |R|_(/ /lA(l)A ZL‘l,ZEQ) |pdy1dy2d$1dx2) </ /|hR I1,$2)| dIld,IQdyldyg)
1
(/ /|A $1,$2 | dyrdyadydy W)
x17$2) |
5 dyrdysdades |
R JR |$1 yl\ |22 — Y2

where in the third inequality we use Holder’s inequality and this is where we need 1 < p < 0.
Note also that if p = 1, then p’ = 0o and the second factor in the right-hand side of the third
inequality will become ||hgl| -

Take the power p on both sides, and sum over all R, R' € D x D, to get an expression
dominated by ||b||Bp RxE)- O

|R|~2

/ (b(il?1, T9) — b(w1,y2) — b(y1, v2) + b(y1, y2)>hR($17 To)dx dzy

dy,dys

/Ayl A(Z .1'1,1’2) hR($1,l‘2)d$1d$2

1
7

B =

S =

Moreover, we also have a weaker version of the reverse containment. That is, we will need
another set of dyadic intervals. We take two dyadic grids D° and D! so that for all intervals
I there is a Q € D° U D! with

(3.10) I'cQ c4l.

One option is that D is the standard dyadic system in R and D! is the ‘one-third shift’ of
D, see for example [16].

3.11. Proposition. Suppose 1 < p < oo. There are two choices of grids D° and D* for which
we have

B’(R x R) =B (R x R) nBYOV(R x R) nBEUO(R x R) nBELD(R x R),

dyadic dyadic dyadic dyadic
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where JB%Z},(;&])C(R X R) is the dyadic Besov space associated with D' x D’ for i,5 € {0,1}.

Moreover, we have

16/ Bp(RxR) = ||b||Bg;(§égg(RxR) + ||b||Bg;§é;g(RxR) + ||b||B§,y<;£C>(RxR) + ||b||IBS§;(;C’ﬁlC)(R><R)'
Proof. To begin with, we first note that
(3.12) 181 B0 )

A ;
/ / | : o 952)| dy1dyadzdy
R2 JR2

|$1 ?/1 |902 — Y2 |2

Al b 1,T
/ / a a+1 ’ yl ( . Q)L dyld?Jdeldl"Q
15 J{ER20I<|er—y1 [<2* TN} |y — y1| |23 — ya

fzé% {y2€R 20 |J| <[z —ys] <2°+1|J]}
<N |AD AR (2, 25) [ dyy dyady o
’RP I J W €R2%I|< |21~ —y1|<20T I} v b 2) EREn e
§§% {y2€R:24|J|<|z2—ya| <20 1] [}

2n1—1 2no—1

S DS

§€% mi=ni ma=naz
€
/I JﬁyleRQa:llI|<x1_y1<2am$“|1|} {A b (21, T2 | dy,dyadxdzs.
X

{y2€R:20 22 |J|<|wa —ya| <20 25 ||}
The second integral above is over a symmetric interval. Consider the two intervals
(3.13) I, I+ 2%1I|[my/nq, (my +1)/n4q], ny <my < 2ny.

Now, we choose a = 5, and n; = 1000, so the second interval is smaller in length, but still
comparable to I in length. And, they are separated by a distance approximately 2¢||. By
(3.10), we can choose a so that there is a dyadic I’ € DY U D! which contains both intervals
above, and moreover I is contained in the left half of I’, and I + 2*|I|[my/ny, (my + 1)/n4]
the right half. We can argue similarly for I — 2%|I|[m/ny, (m1 + 1)/ny], as well as for the
dyadic interval J and the parameters mo and ny. Below we continue with R = [ x J and
R =1Ix/J.
Next, observe the following identity:

AP ADb(w1,x5) = (b(wr, 2) — EOb(x5) — EOVp(ay) + EC %)
(bly, w2) — E“’O)b( 2) — B ”b(y )+ EMVp)
- (o) = E*0t) Bt >+E“b>
((y1y2) E®Op(yy) — E@Dp(y )+E11b)
=: By(x1,x2) + Ba(y1,x2) + Bs(x1,y2) + Ba(y1, y2),
where
(L) — L 1) 1
E ’ b() - 17/ b(Zh ')le, E b( ) b(',ZQ)dZQ,
|‘[/| I |J| J
1
E (a l)b = b(zl, Zg)dzleQ.

R Jr
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In particular, for the main term in (3.12), with fixed ny < my < 2n; and ny < my < 2ng,
we have

(314) |R’ / ﬂy1€R2am1|I|<|$1 y1|<2am1+1m} }A(I)A x1,1’2)‘?dy1dy2dx1dx2

{y2€R:22 2| 7| <|w— y2|<2“”2“|J|}

1
5@{/ / ‘Bl(x1a$2>‘pdy1dy2dx1dl’2+//‘Bg(yl,xQ)‘pdylddexlde

+/ / ‘Bs(fl,yz)‘pdmdmdﬂdfz+/ / |B4(y1,y2)‘pdy1dy2d$1d$2}-

It follows that the norm |[|b||, Br(Rxr) 15 dominated by several terms, one of which is

(3.15) |R|72 / / |b(z1, 22) — ECOb(25) — EOVb(2) + ENVb| dyy dyadas dzs.

RGDO x DO

The other terms are obtained by varying the role of m; in (3.13) and the similar index ma,
considering the negative of the intervals in (3.13), exchanging the role of the dyadic grid, and
the roles of x; and y;, © = 1,2. All cases are similar, so we continue with the one above. In
(3.15), the point is that

(3.16) 1g(b(w1, 12) — EMVb(zy) — EOVb(2y) + ECV0) = Y (b, hp)hy.
ReDxDO
RCR
That is, only the smaller scales contribute. But then, it is straight forward to see that we
can make a pure sum on scales.

(3.17) (3.15) < |R|~ 2/ / (b, hg)hg| dydz < ||b])P

RGDO x DO

p,(0,0)
deadlc RXR

This completes the proof. O

Thus, based on Propositions 3.8 and 3.11, we obtain that

3.18. Proposition. Suppose 1 < p < oo. There are two choices of grids D° and D* for which
we have

BP(R x R) = B""O(R x R) nB2OD(R x R) nBEEO(R x R) nBEUD (R x R),

dyadic dyadic dyadic dyadic

where Bﬁ;;cfl)c(ﬂ% x R) is the dyadic Besov space associated with D' x D’ for i,j € {0,1}.

Moreover, we have

1ol 57 xr) 2 [1bllgac00) @iy + [Bllzon @xmy + I1PlBz00 @xry + 1llgncn @m)-
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4. THE PROOF OF THE ONE PARAMETER RESULT

The proof in fact has very little to do with the function theory of Besov spaces. The main
results in Theorem 1.12 and Theorem 1.14 can be rephrased this way.

4.1. Theorem. Suppose that {¢;r : I € D} and {¢; : I € D} are adapted to the dyadic
intervals, and at least one collection of functions has cancellation. Then we have the estimate

(4.2) > al)er @ ¢

1eD

S laGllp,  0<p<oo.
Nid

If both collections of functions are uniformly adapted to D, then the reverse inequality holds.
In the setting of the Haar functions we have the estimate

(4.3) > a(I)hg @ b

1eD

= ||a()||€P ’ 0< p <00,
Sp

with {e, 6} # {1,1}.

We first point out that the conditions of ¢; and ¢; “to be adapted to the dyadic intervals”
are close to the notion of “nearly weakly orthogonal sequences” introduced by Rochberg and
Semmes, [25]. However, we do not require the compact support condition, but require suitable
decay and regularity instead. Thus, it has the advantage in dealing with the continuous
setting via wavelet functions or more general functions, which was missing before.

4.1. The Proof of Theorem 4.1: The Haar Case. We begin with the obvious estimate
when € = 0 and § = 0; that is,

> a(I)h§ @ h

I1eD

= Jla()le -

sp

To prove the full argument in (4.3), a certain extension of the above fact is needed. We will
prove (4.3) for e = 1 and ¢ = 0; that is, it suffices to prove

(4.4) S a@hinl| < o),
IED Sp

and

(4.5) | danendll 2 e
1€D Sp

The case when € = 0 and § = 1 can be done symmetrically.
We now first prove inequality (4.4). The main point is the explicit representation

(4.6) hy= > NhylcD)n)= > uI,J\/%h?,,

J: 1S J: 1GJ
where the v; ; € {£1} are determined by I being in the left or the right half of J.
For an integer m > 0 and for J € D, we define the m-fold children of J to be

(4.7) D(m,J) € {1eD:1cJ2m=]|J}
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Now, consider the operators

(4.8) Hyy < > vsa(l)h
1€D(m,J)

and

(4.9) S E D 1S ® Hyy.
JeD

The choices of signs v ; are determined as in (4.6). Our observation is that this operator S,,
also has an effective estimate of its norm as follows.

(4.10) ISmllsr S 2°P™ la()llw, 0 <p <o,
where §(p) = max (O,% — 117) Indeed, the functions H,, ; are orthogonal in J, and we have
the estimate
1/2 1/p
(4.11) 1Huill oy = | D D] <2@™ 1 3" ja(D)P
IeD(m,J) IeD(m,J)

And this clearly implies our observation in (4.10).
Taking (4.6) and (4.10) into account, it is clear that we can write

o0

Y a)hi@h)=> 27"7S,,.

1D m=1

For 1 < p < oo, the Schatten norm obeys the triangle inequality, hence, together with (4.10),
we can estimate

> a(l)hy @ hY

< Z 2~/ 1Smls
m=1

1eD Nig
(4.12) o i
< fa()p 32 mmns)
m=1
5 ||a<')||£p .

In the case that 0 < p < 1, we can rely upon the subadditivity as in (2.6), and a very similar
argument finishes the proof of the upper bound in (4.4).

Our inequality (4.4) then follows.

We prove the lower bound in (4.5). Fix a(-) so that ||a(-)||,, = 1, We want to show that

for
To € > a(l)hi e R,
1€D

we have || Tl 2 1.

A collection of dyadic intervals D, will have scales separated by ¢ if it satisfies the conditions
I € Dyimplies [ £2|1]| € Dy, but I +|I| € D, and {log,|I| : I € Dy} = a+{Z for some choice
of integer a. All dyadic intervals D are a union of 2¢ subcollections with scales separated by
¢. Of course passing to such a subcollection will suggest a loss of order £~!, but from other
aspects of the argument below, we will be able to pick up an exponential decay in ¢.
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For an integer ¢ to be chosen, we can separate the scales in the dyadic intervals, choosing
one particular D, so that

(4.13) > (D) > (20)°

1€Dy

Let P, be the projection onto the span of the functions {h; : J € D}, i.e.,
Pe(f) = D (f,h5) 2@hl.

JED(

Let D be the collection of parents of those dyadic intervals in Dy (the parent of I is the next
dyadic larger interval) and let P} be the corresponding projection. Appealing to Proposi-
tion 2.7 we have the estimate

ITallse > 1P Ta Pellgs -
We shall show that |P} T, Py, is at least (8¢)! for ¢ sufficiently large depending only on

P.
Define
T € S e a(l) b)) @ b,
1Dy

where I’ is the parent of I and again the v;; € {1} are determined by [ being in the left
or the right half of I’. Then the S? norm can be calculated exactly from (2.2) as follows

ITallz = D aD? = (207
I€D,

where the above inequality follows from (4.13). This is the main term in providing a lower
bound on the Schatten norm for T,,.
We appeal to some of the estimates used in the proof of the upper bound. Define

m def o
T, = Z hr @ Hpes, 1

IeD,
where ﬁmg+17 7 is similar as in the definition from (4.9), given by

(414) ﬁm[—&—l,[ déf E Vi1 Oz(K) h?(
KeDy
KeD(mt+1,1)

Note that
P, T,P,=2"2T + Z 93 (mt+1)
m=2

Repeating the estimates as in (4.10) and (4.12), we have the estimate

Z 9= % mi+1) TZL

The implied constant depends upon 0 < p < oo. Therefore, for an absolute choice of ¢, we
will have the estimate || Tq|lg, > (8¢)"'. This completes the proof of (4.5).

Thus, combining (4.4) and (4.5), we obtain that (4.3) holds. The proof of the Haar Case
in Theorem 4.1 is complete. O

< 27min(%,%)£

Sp
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4.2. The Proof of Theorem 4.1: The Wavelet Case. Assume that both collections {¢;}
and {¢;} are wavelet bases, then the operator in (4.2) is already given in singular value form,
and the theorem is trivial. The Theorem follows from the lemma below:

4.15. Lemma. We have the inequality

(416) 5 Ha(.>H£p ) 0< p < 00,

Z a(l)er ® ¢r

1eD

sp

assuming only that {¢r} are adapted to D. If this collection of functions is uniformly adapted
to D, then the reverse inequality holds.

In the case of Haar functions, the main point is the explicit expansion of (4.6). In the
current setting, of course we have the expansion

Y1 = Z(SDI, wJ)L?(R) Wy,
Jep

as {wy} is an orthogonal basis as defined in Page 2 in the introduction. But the expansion is
not quite so clean. Nevertheless, we have the following general almost orthogonality estimate.

4.17. Lemma. Denoting 2™|I| = |J|, we have the inequality

dist(1, J) ) -

T — m € Z.
1]+ 1]

(418) |<g0[, wJ)LQ(]R)l 5 Q_A(m) (1 —|—

Here, A(m) = |m| if m <0, and A(m) = tm if m > 0, n > 0 is a large positive constant,

2
namely N — 1, where N appears in (1.5).
Proof. This is elementary. On the one hand, by using (1.5), we have

1 dist(Z,J)\ V!
[{pr, wy) ey S 272 (1+—> ;
® 1]+ [J]

where N is as in (1.5). This treats the case m > 0.

The case m < 0 does not occur in the Haar setting. While it does occur here, there is
an extra decay coming from the fact that the wavelet has mean zero, and are adapted to an
interval of smaller length than J. Thus, we essentially gain a derivative in this case

§m
[{or w) ey S 272

Taking the geometric mean of these two estimates proves the estimate in this last case. [

We use this lemma to prove another technical lemma, more specifically adapted to our
purposes. Let Pom be the wavelet projection of functions onto the span of {w; : |J| = 2™},

that is
def
Pom = E wy@wy,
JED: |J|=2m

so that

Pon(f) = > (frwnuw,.

JED: |J|=2m
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4.19. Lemma. We have the estimate
IBullg S 27" ()|,  meL,

def
where B, =

ZO‘(D[PZ’”\II ¢1] ® ¢r.

1€D

In particular note that the scale of the wavelet projection being used depends upon the scale
of I.

Proof. Consider first the case of m < 0. Now, for an integer ¢ > 0, set
Do(I) & {JeD: |J]=21], J C I},
D) = {JeD: |J|=2"I|, JcC2, Jg2" I},

Also consider the functions

def

def

Wre = Z (D) (o1 wy) 2wy

JED(I)
For fixed ¢, the functions {W;, : I € D} are orthogonal. Hence the operator
ef
« Z Wie® ¢r

1€D
is in singular value form. Moreover, observe that from Lemma 4.17,

1/2 12
| (R) = Z (1) SOIan>L2(R)|2 < 9—Im|—n't Z la(])
JED[ ) JeD, I)
An elementary estimate gives
1/2 U
(4.20) Z |a < Card(De(]))é(p) Z |a
Jebell JEDU(I

The term in the exponent is §(p) = max (0, % — %) as before.

Hence, we can easily estimate the Schatten norm of T,.
ITellgs < D NWrellfag S 2770 @M= a5,
IeD

Because we are free to take n” as large as needed, this completes the proof in this case.
We now consider the case of m > 0. Keeping the same notation D,(.J), we redefine

def
Wie = E a(l){er, ) 2@w.,
1€Dy(J)

Z wy @ Wy

JeD

def
T, =

Again, this is an operator in singular value form. In particular

2
Wl fom = D laD)(er, ws) 2w
I1€Dy(J)
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2m”42|a

1€D(J)

2/p
<2 m(1-24(p [Z |Of ] ]

1€D(J
Therefore, it is the case
— in(L 1)—py
1Tl < 2780 ()
Due to the fact that n can be taken very large, for all 0 < p < oo, this estimate can be
summed over ¢, to prove the lemma in this case. The proof of Lemma 4.19 is complete. [

Proof of Lemma 4.15. We assume that {¢;} are adapted to D. Then, we have

Z a(l)pr ® ¢r = ZQ(I) Z<S01,”LUJ>L2(R) wy ® ¢r

1eD I1eD JeD

- Z Z a() Z (or,wr) 2wy ws ® ¢r

mez 1€D JED: |J|=2m

= Z ZO‘([) [ Pomir 1] © ¢r

meZ IeD
= 2_Bn
meEZL
With the estimates on the operators B,, provided by Lemma 4.19, we obtain that

Za(1)901®¢1 S el

IeD
for 0 < p < oo, which shows that (4.16) holds.

Sp

We turn to the proof of the reverse inequality, assuming that {¢;} are uniformly adapted
to D. We aim to prove that

Y alhpr®e;

1eD

(4.21) > o)y,  0<p<oo.

Sp
This argument is modeled on the proof of the lower bound in the Haar setting. Recall that
this means that (1.6) is in force. Fix a dyadic interval Iy with length 1, so that

| <¢[0,1], w10>L2(R)|

is maximal.
To continue, we define

(4.22) 1<J

if the (orientation preserving) linear transformation that carries J to [0, 1] also carries I to
Iy. (In the Haar case, we take Iy to be the parent of [0, 1]).

In Figure 1 below, we illustrate two examples of orientation-preserving linear transforma-
tions applied to dyadic intervals. Let Iy be a dyadic interval of length 1. The interval I
may lie to the right of [0, 1], or conversely, [0, 1] may lie to the right of /5. These examples
demonstrate how the transformation maps intervals while preserving orientation and scale
(up to dyadic structure), possibly shifting their position along the real line.
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FIGURE 1. (orientation preserving) linear transform

The notion of scales separated by ¢ is modified slightly. A collection of dyadic intervals D,
will have scales separated by ¢ if it satisfies the conditions: “I € D, implies I + ¢|I| € Dy,
but I £+ j|I| € D, for |j| < ¢ and {log,|I| : I € Dy} = a + (Z for some choice of integer a”.

All dyadic intervals D are a union of 2 subcollections with scales separated by ¢. We
expect a loss of =2 by passing to a subcollection with scales separated by £. We will be able
to pick up rapid (but not exponential) decay from other parts of the argument.

Fix a(-) such that [[a(-)[|, = 1. We want to provide a lower bound on

T, Za(I) b1 @ wy.

1€D

For a choice of £ to be specified, we can choose D, with scales separated by ¢ such that

1

(Statr) =6

IeDy
Let P, be the projection onto the span of {w; : I € D,}, that is
Pg déf Z wr X wr.
1€Dy

Let Dy« be those dyadic intervals I which satisfy I < J for some J € D, (as defined in
(4.22)). We will pick ¢ so large that there is a unique such J. Let P, be the corresponding
wavelet projection onto the span of {w;_ : I. € D, .}, defined similarly to P, as above.

By Proposition 2.7, we have the estimate

ITallse 2 IIP<. Ta Pellg, -

We estimate the norm of the latter quantity. By definition, we have
Py ToPp= Z Z a(l"){¢r, wr.) 2w wi. ® wr.
]ED57< 1'eDy
Set

def
T, = > a(I){br, wr) e wi. @ w;.
IeDy
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Here, by I we mean that unique element of D,  for which /. < I. Observe that (¢, wi_) r2(r)
is in fact independent of I, and so we have the estimate

(4.23) ITalls 2072,

with the implied constant depending only on the specific choice of ¢ and wavelet basis {wy}.
The remainder of the argument consists of showing that

< g*4,

(424) ||P<,€ Ta PZ_TiHSp ~

where the implied constant depends on 0 < p < 0o, and on the specific constants that enter
into the inequality (1.5) (in particular, for the case of 0 < p < 1, we will need to require that
Np > 5).

To see (4.24), note that the remainder P, T, P, —Ti can be represented and split as
follows. Set

def

DI S {I €Dy : |I| 2T, T g2}, j>1.

And we consider the functions

def

WI’,j - Z a(I’)(¢1/,wI<)L2(R) wy_ .

1€Dy (')

Then we have

PeeTaPe=To= 3, > all')érwi)wmwwr. ®wr

I'e€Dy €Dy, o I

= Z Z Wpj @ wp

j=2 I'eD,
o
def
= § T
=2

Note that for each j, there are only 2j cases of I € D, ;(I'). Hence, by using the almost
orthogonality estimate in Lemma 4.17 for (¢r,wr_)r2(r), and following a similar step in
the proof of Lemma 4.19 for |[Wy |2, we obtain that ||Ty;s, < 27277, where 7 is a
large positive number as in Lemma 4.17. Thus, summing over all 7 > 2, we obtain that
|Pey TaPr—Th|lg, <277, that is, (4.24) holds.

Now, it is clear that we can choose ¢ sufficiently large, and then combine (4.23) with (4.24)
to obtain that (4.21) holds. The proof of the Wavelet Case in Theorem 4.1 is complete. [

5. THE PROOF OF THE MULTI-PARAMETER RESULT

5.1. Two-Parameter Paraproducts. We now consider paraproducts formed over sums
of dyadic rectangles in the plane. The class of paraproducts is then invariant under a two
parameter family of dilations, a situation that we refer to as one of “two parameters”. This
case contains all the essential difficulties for the higher parameter setting and is good for
focusing ideas. Again, there is very little function theory in the argument and Theorems 1.25
and 1.27 in the two parameter setting can be rephrased as
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5.1. Theorem. Let {¢r : R € R} and {¢r : R € R} be collections of functions adapted to
R, with at least one collection having cancellation in the jth coordinate for 7 = 1,2. Then
we have the inequality

(5.2) > a(R)or @ ¢r

ReR

S lleC)le -

sp

In the Haar case, we have for €,6 € {0,1}%, with the same assumption on cancellation, that
the equivalence holds

(5.3) > a(R) b5 ® b,

ReR

= fla()le -

sp

5.1.1. The Proof of Theorem 5.1: The Haar Case. Recall that as in (1.16), for a dyadic
rectangle R = Ry X Ry, we set hg(21, x2) = h (21)h, (22).
We of course immediately have the inequality

> a(R)hp® hy

RER

~ Jla()le -

Sp
And, keeping in mind the proof in one parameter, we need a certain extension of this in-
equality.

To set some notation to capture the role of zeros, or their absence, we set

o (21, 0) = W, (1) hE, (2)-

We discuss the equivalence (5.3). There are three possible forms of the paraproduct, after
taking duality and permutation of coordinates into account. Of these, the first and simplest

case is
> a(R)hy” @ hp.
RER

This is very clearly a simple variant of the one parameter version, and we do not discuss it.
The second case is that e = (1,1) and § = (0,0), i.e.,

> a(R)hy" @ hp.
ReR

It is clear that one function is a Haar function, and the other is a normalized indicator
function. This case is the most natural analog of the one parameter case.
From (4.6) we see that for j = 1,2,

1 1] 50
(5.4) hh, = Y Vhs, 1o
S;: R;&S;
Define, for a multi-integer m = (my, ms) € N2, the collections
R(m,S)={ReR : RCS, 2™|R;| =|S;|, 7 =1,2}.

There is a corresponding operator A,, defined as follows.

(5.5) A E Y hs® Hyg,
SER
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where
def
(5.6) Hps = Z vr.s a(R)hg.
ReR(m,S)
Here, vp s = VR, .5, - VR,.5,- Observe that, just as in (4.10), we have the estimate

(5.7) IAmllge < 270+ )|

~Y

Here, 0(p) = max (0 i_ 2%) as before. This follows just as before, namely observe that the

)2
functions H,, ¢ are orthogonal in .S, and that
1/2 1/p
1 Hnsll, = | Y la@P| < 22@0mxma i 5™ o(R)P
ReR(m,S) ReR(m,S)
In addition, by (5.4), we have

ST (R @hy = 3 ardimma o
ReER meN2

for appropriate choices of signs in the definition of A,,. The remainder of the proof is just as
in the one parameter case. For 1 < p < oo, the Schatten norm obeys the triangle inequality,
hence, together with (5.7), we can estimate

SR ohal| < 3 S0 2 A,

ReR Sp mi1=1mo=1
(58) = —m min(l l) = —m min(l l)
< a()llp Y 27mman) - ommeminty
mi=1 mo=1
S )l -

In the case that 0 < p < 1, we can rely upon the subadditivity as in (2.6), and a very similar
argument finishes the proof of the upper bound as above.
We turn to the case with no proper analog in the one parameter setting, namely

(5.9) To= Y a(R)h” @ h§Y.
ReR

Of course we want to apply (4.6) to the first function in the first coordinate, and the
second function in the second coordinate. Doing so suggests these definitions. For m € N2,
and S € R,

(5.10) R(m,S) = {R€R : RCS, 2™|R;| =1S,|, j = 1,2},
(511) Am déf ZAm,S7
SeR
where
(5.12) Ams =Y vrsa(R)hY, (x1)hY, (2) - b, (y1)hS, (o).
RER(m,S)

Here, vg g are appropriate choices of signs.
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The principle observation is that Proposition 2.8 applies to the operators A,, g, giving the
estimate

1/p
1A sll, <200t N " ja(R)P
ReR(m,S)
It is easy to see that we then have
[Amllg S 2°Pm4m) [l
Finally, we have
> a(R) by (w1, 2) @ g™ (y1, 1)
RER
R,
= X o)) X vy o0 o) s )
R=R1 X R> S1: R1§51
R1,Ro€D
Ry
X |: Z VRs,S2 ’|S || hSQ(yZ):|

So: RoGSs

= XX alRns i) |y A8 0] [y 18,00

=51x52 R1CS1
S1 SQGD RQCSQ

R1 R2 €D

The conclusion of this case is just as that of (5.8). Thus, we obtain that
ITallgy S lla(lle, 0 <p<oo,

where T, is as defined in (5.9).
Combining all these cases above, we obtain that for (¢,6) = ((0,0),(0,0)), ((1,1),(0,0)),

((0,0), (1,1)), ((1,0),(0,1)) and ((0,1),(1,0))
> a(R) b5 ® b,

ReR

S llaC)lw,  0<p<oo

Sp

We now prove the reverse direction. We only pick one case, (¢,9) = ((1,0),(0,1)), to
discuss the details, that is, we aim to prove that

(5.13) ITallse 2 Nl ), 0<p<oo,

where T, is as defined in (5.9).
To begin with, we fix a(-) such that ||a(-)||» = 1. We want to show that

||Ta||Sp 2 L.

All dyadic intervals D are a union of 2¢ subcollections with scales separated by ¢ (for ‘scales
separated by ¢’, we refer to the definition provided in the proof of (4.5)). We denote by Dél)
such collection of intervals in the first variable, and by Df) such collection of intervals in the
second variable. Let (Dél) )/ be the collection of parents of those dyadic intervals in Dél) (the
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parent of I is the next dyadic larger interval) and let (Df))/ be the collection of parents of

those dyadic intervals in Df).
For an integer ¢ to be chosen, we can separate the scales in the dyadic intervals in each

variable, choosing Dél) and Déz) so that

(5.14) Yo Ja®)P = (4e)r.
R=R; x Rs€R,
R1eD{M RyeD?

Let P, be the projection onto the span of the functions {hs S =51 x5 ¢ Dél) X (Df))/},
ie.,

Pe(f) = > (L h) amhl.
SeDiV x (D;2>)'
Let ﬁ; be the corresponding projection onto the span of the functions {hs S =5 x5 €
(DY) x D'}, e,
Pif)= > (Fhneht
se(pV) xp
Appealing to Proposition 2.7 we have the estimate

~/ ~
I Tallse > ||P, Ta B[ -
We shall show that Hﬁ; T, f’gHS is at least (16¢?)~! for ¢ sufficiently large depending only

Define

1,1) def
T = E vrr @(R)hr/(21,92) hr(ys, T2),
R=R1 XR2€R,
3161?;1)7326@22)

where R = R} x R}, with R] the parent of R; for i = 1,2. Then the S” norm can be calculated
exactly from (2.2) as follows

i

p
= Y. la®)P = @),
5 R=RixRy€R,
R1eD{" RyeD?

where the above inequality follows from (5.14). This is the main term in providing a lower
bound on the Schatten norm for T,,.
We appeal to some of the estimates used in the proof of the upper bound above. Define

m def Y 2
Ta = E Am€+1757 m = (mlamQ) eN )
S=51xS2, S1€(DV), S2e(DP)

where
x def
(5.15) Ams =Y vrsa(R)hg (w)h, (x2) - Wy, (11)hS, (1)
ReR(m,S)
and
R(m,S) € {R=R xRy eR: Rie D" R, e DP RcCS, 2™|R;| =|5;], j =1,2}.
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Note that

BT Bie S S aR) vas ) T B, (o)A, (e2) iy, (1), (32)

S
SZSlXSQ R=R1><R2 | |
s1€(DV) RieD), RiCS:
SZE(D(Q))/ RQGD(2), RyCSs

I T 1 ,1) T Z 2 MQ€+1) T 1 mz) I Z 277 m1€+l (m1, )

m2>2 m1>2
—7(m1€+1+mgé+1) m
+ Y 2 ™
meN?
mi1,ma>2

=: Termy + Termo + Terms + Termy.

Then similar to the estimates in (5.8), we have the estimate

[Termillg <27 ™ (5) =234,

~Y

The implied constant depends upon 0 < p < oco. Therefore, for an absolute choice of ¢, we
will have the estimate || T,|lg, > (16¢%)~1. This completes the proof of (5.14).

5.1.2. The Proof of Theorem 5.1: The Wawvelet Case. We can derive the same argument
using similar steps as in the Haar setting in Section 5.1.1, combining with the wavelet basis
and the almost orthogonality estimate as used in the one-parameter setting in Section 4.2.

5.2. The Case of Multi-parameters. In the general n parameter setting, the number of
paraproducts increases dramatically. The only restriction in forming a paraproduct is that
in each of the n coordinates, there must be zeros in one of the three classes of functions
corresponding to the paraproduct.

Let us pass immediately to the Haar case, without mention of the Besov norms. Given

€= (€1,...,€6,) € {0,1}", set
(5.16) W, . wn) = [ [ 2 ().
j=1

In this case, the proper statement of Theorem 5.1 is

5.17. Theorem. Given €,0 € {0,1}", we assume that in each coordinate j, €;-6; = 0. Then,
we have the equivalence

(5.18)

Za(R) < ® hY,

RER

= fla()le -

Sp

The proof of Theorem 5.17 is again similar to what appeared above. Let O; denote the
coordinates in which € equals j. These sets of coordinates are disjoint, and not necessarily
all of {1,...,n}.

The case that both O, for j = 0,1, are empty, is trivial. The case that one of these two

is the empty set is (essentially) the one parameter case, but this will fit into the discussion

below. Assume that O, is not empty. Let O dof Oy U Oy.
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We define, for choices of S € R, and m € N°,

R(m,S) € {ReR : R; C5;, 2|R;| =15, j € O},
Am déf ZAm,Sa
SER
def
Ams = Z VR,s(R) Hym r,s @ Himr.s,
ReR(m,S)
def .
Hj’m’R’S = H hsj(x]) H th(xk)7 .7 = 07 1
j€0; kg0,

The main point is that Proposition 2.8 applies to the operators A,, g, giving the estimate
1/p

[Amsll, S22@%0m | N |a(R)P

ReR(m,S)
And this, plus a simple argument, gives us the estimate

[Amlls <2720 fla(-)|l,

~Y

Finally, it is the case that for appropriate choices of signs vg ¢, we have

dSaR)hg@hh= Y 271X A,

ReR meN?

This is clearly enough to prove the theorem for both the upper bound and lower bound of
(5.18) following the arguments in Section 5.1.1.

6. CONCLUDING REMARKS

We close this paper by making several concluding remarks. First, we chose to work with
the Haar/wavelet bases for L?*(R), and then the appropriate generalization of these to the
tensor product setting for L*(R™). It is possible to formulate and prove analogous results by
starting with the Haar/wavelet basis for L?*(R™) and then forming the d-parameter tensor

product bases for LQ(RZ?=1"1). The only additional difficulty that this produces is more
complicated notation. The interested reader can easily modify the results appearing in this
paper to arrive at these more general theorems.

In this paper we have focused on continuous and dyadic paraproducts. As mentioned
in the introduction, paraproducts are an equivalent way to view Hankel operators. Once
estimates for the paraproducts are known, then using a nice result of S. Petermichl [23] it
is possible to recover the commutator operator from an averaging of a dyadic shift operator;
this commutator can then be understood as a sum of a Hankel operator and it adjoint. Using
these results one can prove that a Hankel operator belongs to the Schatten class SP if the
symbol belongs to the Besov space BP. It is carried out very nicely in the paper [24] of Pott—
Smith in their discussion of SP class, 1 < p < oo, of one-parameter dyadic paraproducts, and
the related Besov spaces.
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