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Existence of solutions for a semilinear parabolic system with singular
initial data

By Yohei FusisHIMA, Kazuhiro ISHIGE and Tatsuki KAWAKAMI

Abstract. Let (u,v) be a solution to the Cauchy problem for a semilinear parabolic
system
Oyu = D1 Au + vP in RN x (0,7),
(P) 0w = DaAv + ul in RN x (0,7),

(u('vo)vv('70)) = (AU" V) in RNa

where N > 1, T > 0, D1 > 0, D2 > 0, 0 < p < ¢q with pg > 1, and (p,v) is a pair
of nonnegative Radon measures or locally integrable nonnegative functions in RY. In
this paper we establish sharp sufficient conditions on the initial data for the existence of
solutions to problem (P) using uniformly local Morrey spaces and uniformly local weak
Zygmund type spaces.

1. Introduction

We consider the Cauchy problem for a semilinear parabolic system

Oru = D1 Au + vP in RY x (0,7),
(P) 0w = Do Av + 4 in RN x (0,7),
(u('ao)vv('ao)) = (Ma V) in RN,

where N > 1, T >0, D; >0, Dy > 0,0 < p < qwith pg > 1, and (i, v) is a pair of nonnegative
Radon measures or locally integrable nonnegative functions in RY. Parabolic system (P) is the
Cauchy problem for one of the simplest parabolic systems and it is an example of reaction-diffusion
systems describing heat propagation in a two component combustible mixture. Problem (P) has
been studied extensively in many papers from various points of view. See e.g., [1,4-6,8-11,15,18,
21,23] and references therein (see also [22, Chapter 32]). In this paper we establish sharp sufficient
conditions on initial data for the existence of solutions to problem (P).

We formulate the definition of solutions to problem (P). Denote by M (resp. £) the set
of nonnegative Radon measures (resp. locally integrable functions) in RY. We often identify
dp = p(x) dr in M for p € L. For any p € M, let

2
[SE)p](z) = G(z —y,t)du(y), where G(x,t):= (47t)~ % exp (—'ZL) .
RN
Definition 1.1. Let u, v € M and T € (0,00]. Let u and v be nonnegative measurable and
almost everywhere finite functions in RY x (0,T). We say that (u,v) is a solution to problem (P)
in RN x (0,T) if (u,v) satisfies

u(a, t) = [S(Dytul(z) + / (S(Ds (t — 5))u(s)?)(x) ds,
(1.1) o
oz, 1) = [S(Dat)) (x) + / [S(Dalt — 5))u(s)7)(z) ds,
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for almost all (x,t) € RN x (0,T). If (u,v) satisfies (1.1) with “ =" replaced by “ > 7, we say
that (u,v) is a supersolution to problem (P) in RN x (0,T).

For the existence of solutions to problem (P), the following results have already been proved
in [5,15,21] for the case of Dy = Ds.

(1) Let p > 1 and rq1,r2 € (1,00). Assume
max{P(r1,r2), Q(r1,r2)} <2,

where

P(ri,ms) =N (p - 1) . Q(ri,re) =N (q -~ 1) .

r2 T 1 T2

Then problem (P) possesses a solution in RY x (0, T') for some T' > 0 if (u,v) € L™ x L2,
The same conclusion remains true if max{P(r1,72),Q(r1,72)} = 2 and both ||p||pr .= and
||| 720 are small enough.

(2) Assume that max{P,Q} > 2. Then there exists (u,v) € L™ x L™ such that problem (P)
possess no local-in-time solutions.

(3) Assume that

q+1 N
pqg—1 2

(1.2)

and both |||, r+.« and ||[v[|, 5. are small enough, where

«. Npg—1

o «._ Npg—1
1 2p+17

Ty = 5 q+1

Then problem (P) possesses a global-in-time solution. On the other hand, if (p,q) does not
satisfy (1.2), then problem (P) possesses no global-in-time non-trivial solutions.

Subsequently, in [9] the first and the second authors of this paper divided problem (P) into the
following six cases:

1 N
(A) L5 < 5
(B) ;qtll g and  p < g; ©) I;thll _ g wd b
(D) ;qu_ll >% and q>1+N, (E) ;D(Iqtll >% and q:1+%;
(F) ;qtll > g and ¢g<1+ %7

and obtained necessary conditions for the existence of solutions to problem (P). Subsequently, in
[10] they studied sufficient conditions for the existence of solutions to problem (P), and identified
the optimal singularity of the initial data for the existence of solutions to problem (P) (see [10,
Theorem 1.2] and Remark 1.1).

Proposition 1.1. Let N > 1 and 0 < p < q with pg > 1.

(a) Consider case (A). Let

_ 2(p+1) .
x| raT XB(o,l)(fC) m RN,

(@) = ca1
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2(qt+1)

v(x) = cgalx|” PaT XB((),l)(iU) in RY,

where ¢cq 1, Ca2 > 0. Problem (P) possesses no local-in-time solutions if either cq.1 or cq9 18
large enough. On the other hand, problem (P) possesses a global-in-time solution if both of
Ca,1 0nd cq2 are small enough.

(b) Consider case (B). Let

_2p+1) 1\] 7 :
p(x) = cpala]” e [log <€+x|>] xpon(@) i RY,

1 __1
B 1 pg—1 .
v(w) = cpolz| ™V [mg <€ " le)] Xson(z) n RY,

where ¢p1, ¢p2 > 0. Problem (P) possesses no local-in-time solutions if either ¢y 1 or cp 2 is

large enough. On the other hand, problem (P) possesses a local-in-time solution if both of
cp1 and cy 2 are small enough.

(¢) Consider case (C). Let

_N_q
- 1 2 .
w(x) = cealzl N [log (e + x|>] XB(0,1)(T) in RY,

_N_q
_ 1 2 _
i) = cealel ™ Jiog (e + )| xaon() i BN

where ¢q1, Ce2 > 0. Problem (P) possesses no local-in-time solutions if either cq1 or cc o is
large enough. On the other hand, problem (P) possesses a local-in-time solution if both of
Ce,1 and cc2 are small enough.

(d) Consider case (D). Let

+2

_ N2 ‘ N
p(x) = le]~ " ha(lz)xpon (@) in RY,

where hy is a positive increasing function in (0,1] such that hi(1) < oo and r—hy(r) is
decreasing in v for some € > 0. Let v € M. Problem (P) possesses no local-in-time solutions
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if either

1
/ hi(T)r tdr =00 or sup v(B(z,1)) = occ.
0

zeRN

On the other hand, problem (P) possesses a local-in-time solution if

1
/ hi(t)%r tdr < oo and sup v(B(z,1)) < occ.
0 z€RN

(e) Consider case (E). Let
pw(z) = |z Nha(Jz))x o) (@) n RV,

where hg s a positive increasing function in (0,1] such that ha(l) < oo. Let v € M.
Problem (P) possesses no local-in-time solutions if either

/01 [/0 h2(7)7_1d7]qr_1dr =00 or sup v(B(z,1)) = oo,

zERN

On the other hand, problem (P) possesses a local-in-time solution if

1 r q
/ {/ ho(T)rt dT:| r~Ydr < oo and sup v(B(z,1)) < occ.
o LJo

zERN
(f) Consider case (F). Let u, v € M. Problem (P) possesses no local-in-time solutions if either

sup u(B(z,1)) =00 or sup v(B(z,1)) = cc.
z€RN xeRN

On the other hand, problem (P) possesses a local-in-time solution if

sup pu(B(z,1)) <oo and sup v(B(z,1)) < co.
xeRN z€RN

Remark 1.1. There are two types of optimal singularity for problem (P). One is a layer-type
optimal singularity, which corresponds to cases (A), (B), and (C) in Proposition 1.1. In other
words, this is a case where the existence or non-existence of solutions is classified according to the
size of a constant multiple of an initial function. The other is a singularity corresponding to (D),
(E), and (F) in Proposition 1.1, where the existence or non-existence of a solution is classified
according to the integrability of a certain function or the finiteness of a measure associated with
the initial value.

Proposition 1.1 with cases (A), (C), and (F) can be regarded as a generalization of [13, Corol-
lary 1.2] (ii), (i), and [13, Theorem 1.3], respectively, for the scalar semilinear parabolic equation
Orw = Aw~+wP, where p > 1. (See also [2,7].) On the one hand, optimal singularities of the initial
data in Proposition 1.1 with cases (B), (D), and (E) are peculiar to the parabolic system.

In this paper, taking Proposition 1.1 into the account, we obtain sharp sufficient conditions on
the initial data for the existence of solutions to problem (P) in the framework of Banach spaces.
In cases (A) and (F), we develop the arguments in [10, Section 3] and [15] to obtain our sharp
sufficient conditions using uniformly local Morrey spaces (see Theorems 1.1 and 1.2).

For the other cases (B)—(E), we develop the arguments in [14] to introduce new uniformly
local weak Zygmund type spaces. In [14] the second and the third authors of this paper and
Ioku introduced a uniformly local weak Zygmund type space £ (log £)¢, where 1 < r < co and
0 < a < o0, to obtain sharp sufficient conditions for the existence of solutions to the Cauchy
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problem for the critical fractional semilinear heat equation

M

Ou+ (—A)2u = |u|%u in RY x(0,7), u(-,0)=p in RY,

where 6 € (0,2]. For the proof, they established sharp decay estimates of the fractional heat

semigroup in £ (log £)®. In this paper, applying the arguments in [10,14], we obtain sharp

sufficient conditions for the existence of solutions to problem (P) in case (C) (see Theorem 1.4).
For cases (B), (D), and (E), in addition to £/, (log £)%, we treat somewhat standard uniformly

">°(log L)™ and we also introduce more general uniformly local

weak Zygmund type spaces L™ ®(L)* and £ ®(£)*. Then we establish sharp decay estimates

of the heat semigroup in these uniformly local weak Zygmund type spaces (see Proposition 3.1).

local weak Zygmund type space L

Furthermore, we develop the arguments in [10, 14] to get uniform estimates of approximate solutions
in suitable uniformly local weak Zygmund type spaces, and obtain sharp sufficient conditions for
the existence of solutions in cases (B), (D), and (E).

We introduce some notation. For any measurable set E in RV, we denote by xz (resp. |E|) the
characteristic function of E (resp. the N-dimensional Lebesgue measure of E). For any x € RV
and R > 0, let B(z,R) := {y € RN : |z —y| < R}. Set wy = |B(0,1)|. For any r € [1,00], we
denote by || - ||z~ the usual norm of L". For any u € M, we say that u € My, if

[l ma = sup p(B(z,1)) < oco.
z€RN

Similarly, for any f € £ and r € [1,00], we say that f € L7, if

[fllzr, = sup || fXBG1llLr < oc.
r€RN

For any measurable function f in R, we denote by p the distribution function of f, that is,
us) = o ¢ [ f@)] > AH, A>o0.
We define the non-increasing rearrangement f* of f by
[ (s) =inf{A >0 : pr(X) < s}, s€][0,00).

Here we adopt the convention inf & = oco. Then f* is non-increasing and right continuous in
[0,00), and it has the following properties (see [12, Proposition 1.4.5]):

(1.3) kST = 1kl (A =0 1 0. = I llzrs

where ¢ € (0,00), k € R, and r € [1,00]. For any r € [1, 00|, we define the weak L" space by

L = {f eL || fllpre = sup{s%f*(s)} < oo}.
>0

Then L°*° = L*® and L™ C L™ if 1 <r < oo.
Next, we introduce uniformly local Morrey spaces. For any r € [1, 0], « € [1, 7], and R € (0, o],
let

(1.4) |l = sup sup {|B@.0)F | fliesan |+ f €L
z€RN o0€(0,R)

We write || fllar(ra) = IIfl|p(r,a;1) for simplicity. We also remark that M(r,7;1) = Ly, for r €
[1,00]. We define the uniformly local Morrey space M (r, «) by

M(’I”,Oé) = {f eL: Hf”M(na) < OO} :
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Then M (r, ) is a Banach space equipped with the norm || - ||57(r,o)- Notice that M (oo, a) = L™
and

|| ' HM(oo,a;R) = H ' ||L°°
for oo € [1,00] and R € (0, 00].
Now we state our main results in cases (A) and (F).

Theorem 1.1. Consider case (A). Let

Npg—1 Nopg—1 qg+1 qlp+1)
15) ri=— , Ty = , aq=——fa, 1<pa< ,
( ) 1 2 p+1 2 2 g+1 A p—i—lﬂA Ba g+ 1

Then there exists 64 > 0 such that, if a pair (u,v) € L X L satisfies

1.6 aa Ba <5
(1.6) HMH cnTh) + [lv IIM(%MTQ) A

for some T € (0,00], then there exists a solution (u,v) to problem (P) in RN x (0,T) such that

N
1.7 sup ||u(t + sup {tz"f u(t oo} < 00,
N I (e O
N
(1.8) sup [v(t)]],, o3yt sup {t”i ||v(t)||Loo} < o0,
te(0,T) M(r3,B4;T2) te(0,T)
(1.9) Jm [u(®) = S1(D1t)pllpr (e = 0, tl_lj_{lOHU( ) = S(D2t) V|| a1 (rs,05) = 0,

where r1 € [ '3, 1%), ro € [By1r5,13), 41 € [L,aari/75], and by € [1, Bara/r3].

Notice that, in case (A), we have rj > 15 > 1 by p < g and ay <rf by B4 <7r3.

Theorem 1.2. Consider case (F). Assume u, v € My. Then there exists a solution (u,v)
to problem (P) in RN x (0,T) for some T € (0,00) such that

N N
10)  swp {Ju®)loy, + ¢ F e e} <o, sup {le@)l, + F o)~ } < oo.
te(0,T) t€(0,T)
Furthermore,
(1.11) Jim (Jlut) = S(D1ul ey, + () = SDat)v 1y, ) = 0.

We discuss the optimality of Theorems 1.1 and 1.2 in Section 7.

Next, we introduce weak Zygmund type spaces to obtain our sufficient conditions for the exis-
tence of solutions to problem (P) in cases (B)—(E). Throughout this paper, let ® be a non-decreasing
function in [0, co) with the following properties:

(®1) @(0) = 1;
(®2) there exists C' > 0 such that ®(a?) < C®(a) for a > 0;

(®3) for any 6 > 0, there exist Cs > 0 and 75 > 0 such that

7'2_5@(7'2) < 0571_5(1)(7'1) if 75 <7 <mo.

A typical example which satisfies (91)—(®3) is ®(7) = log(e+7). For any r € [1,00] and o € [0, o0),
we define weak Zygmund type spaces L™ ®(L)* and £7°®(£)* by

L=o(L)* ={feL: |/

preoa(rye <0of, L0FQ(L)* ={f € L : | fller=a(g)s < oo},
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respectively, where

1oy = Sub {s@(s™H) ()"} if < oo,
1
[ £llerow(e)e = sup {s®(s™")*(IFI")*"(s)} " if < oo,
Ifllerea@ye = 1fllze, Nfllereage = [Ifllre if r=oc.
Here
Kok 1 ® *
@)= [ r@dn se 0.
0

Similarly to [14, Lemma 2.1], we see that £7>°®(£)% is a Banach space equipped with the norm
| llgroed(gya. LN°®(L)* is also a Banach space if r > 1 (see Lemma 3.9). Furthermore,

L"°®(L)° = L, £rep(e)’ =17, £ree(L)* C LM d(L)*.
In the case of ®(7) = log(e + 7), we write
L7 (log L) := L"®®(L)*, £"®(log £ := £"°d (L),
for simplicity.

Next, we define uniformly local weak Zygmund type spaces L} ®(L)* and £7°®(£). For
any R € (0, 00], set

[ flle,ra:r = sup [|[fXB@.r)llLreaw)es [flllerar = sup [|fxB@r)ller=a)-
TERN zERN
Then |[f|[r=a()e = [Iflleracc and [|fllercscg)e = [[[f]ller a0 We write
[fllera = [flleran, [ fllera = [l[flllora1;

for simplicity. Then we define

Ly~ ®(L)* ={feL:|f|

ul

oo <00, LTR(E)" ={f €L : [/l

ora < OO}
We remark that

(1.12) £ree(L) = L,

ul-
In the case of ®(7) =log(e + 7), we write
L (log L) := L7 ®(L)*,  £13°(log £)* := £,7°®(£)*,

|| : Hr,a;R = || : H<I>,T,a;Rv |H ’ mr,a;R = ||| : |||<I>,T,a;R,

|| : Hr,a = ” : ||<I>,T,ou |H : mr,a = ||| ) ‘H<I>,T,a»

for simplicity.

Now we are ready to state our main results in cases (B)—(E).
Theorem 1.3. Consider case (B). Let

_q+1 p By - 1
B «— — ) B = .
p+1lpg—1 pg—1

(1.13)

For any T € (0,00), there exists §p > 0 such that if (u,v) € L X L satisfies

(1.14) g5 ot + AL, g < 05
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for some T € (0,T.], then there exists a solution (u,v) to problem (P) in RN x (0,T) such that

N p+1 1 a1
sup () pes oy + s 35 flog (e )7 ult) e < oo,

te(0,T) p+1YB; te(0,T)
(1.15) ,
N 1\ ]Pe-t
sup |[fo@)ll, , 3+ sup {17 {log (e + )} o)z p < o0
te(0,7) P5; te(0.T) t
Furthermore,
(L16)  Jim ) = SOl gy =0, Jim [10) = SDatll =0,

fora €[0,ap) and B € [0, BB).

Theorem 1.4. Consider case (C). For any T, € (0,00), there exists ¢ > 0 such that if
(u,v) € L X L satisfies

(1.17) Nl + Iy <

for some T € (0,T.], then there exists a solution (u,v) to problem (P) in RY x (0,T) such that

OiggT{m(mnl,g;T; + |||v<t>|||1,g;T;} <o,

N 1
sup < t2 [log (e + )]
0<t<T 3

Furthermore, the solution (u,v) satisfies

N
2

(lu(®)l Lo + Iv(t)IILoo)} < o0.

tim [fu(®) = SO, 3 =0,

Jim, tim, [lo(t) = S(DatVIl, 5 =0.

t—
for v €[0,N/2).

Theorem 1.5. Consider case (D). Let ® be a non-decreasing function in [0, 00) with proper-
ties (®1)—(®3) such that

1
(1.18) / s71®(s71) " 7ds < 0.
0
Let
Ng_ o q
(1.19) pe LY TO(L)VE,  ve My,

Then there exists a solution (u,v) to problem (P) in RN x (0,T) for some T > 0 such that

Nez o
sup {0y s, e + 5 0D (B} < o,

te(0,T) TNFDNE2
N
sup {Jlo(®)llz, + ¥ lo(®)]lz~ | < oo.
te(0,T)

Furthermore,

tim [[[u(t) = (D)l o wa =0, Timn [Jot) = S(Dat)l|y, = 0.

t—+0 YN2 t—s+

Theorem 1.6. Consider case (E). Let ® be a non-decreasing function in [0, 00) with proper-
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ties (®1)—~(®3) and satisfy (1.18). Let
(1.20) peLhXaL),  veMy.
Then there ezists a solution (u,v) to problem (P) in RN x (0,T) for some T > 0 such that
Ni2 oo
sup {u®lllo1 + 15 S ut) 1 } < oc.
te(0,T)

N
sup {Ilo(®)llz, + ¥ lo®llz | < oo.
te(0,T)

Furthermore,

i (lu(t) — S(Du)plllas =0, Tim [lo(t) — S(Datl g, = 0.

Similarly to Theorems 1.1-1.2, in Section 7, we discuss the optimality of Theorems 1.3-1.6.

The rest of this paper is organized as follows. In Section 2 we treat cases (A) and (F), and
prove Theorems 1.1 and 1.2. In Section 3 we establish decay estimates of S(t)¢ in uniformly
local weak type Zygmund spaces L™ ®(L)* and £;°®(£)*. In Section 4 we treat case (B) and
prove Theorem 1.3 using L} (log L)* and £, (log £)®. In Section 5 we treat case (C) and prove
Theorem 1.4 using £, (log £)*. In Section 6 we treat cases (D) and (E) and prove Theorems 1.5
and 1.6 using L} ®(L)* and £;°®(£)*. In Section 7, taking Proposition 1.1 into the account,
we discuss the optimality of Theorems 1.1-1.6.

2. Proofs of Theorems 1.1 and 1.2

This section is divided into three subsections. In Section 2.1 we construct approximate solutions
to problem (P). In Section 2.2 we introduce similar transformation of solutions to problem (P).
In Section 2.3 we prove Theorems 1.1 and 1.2. In all that follows we will use C to denote generic
positive constants and point out that C' may take different values within a calculation. For any
positive functions f; and fo in (0, 00), we write

fixfofors>0 if Cfa(s) < fi(s) < Cfas) for s > 0.

2.1. Approximate solutions
Let p, v € M. Set

uo(z,t) = [S(D1t)u)(x), wvo(x,t) = [S(Dat)V](z), (x,t) €RY x (0,00).
For n = 1,2,..., we define the functions u, and v, in RY x (0, 00) inductively by

un(z,t) = [S(Dlt)u](xH/ [S(D1(t = 5))vn-1(s)?)(z) ds,
(2.1) 0

t

v, t) == [S(Dat)v](z) —|—/ [S(Da(t — 8))un—1(s)](x) ds,
0

for almost all (x,t) € RV x (0,00). By induction we see that

0 < wg(x,t) (z,t) < - <up(z,t)

< <
(2.2)
O S U0($7t) S Ul(xat) S S Un(‘r;t) S Tty
for almost all (x,t) € RV x (0,00). Then we can define the limits

(2.3) u(z,t) = lUm wu,(x,t), wv(x,t):= lim v,(z,t),

n—oo n—oo



10 Y. FusisHiMmA, K. ISHIGE and T. KAWAKAMI

for almost all (z,t) € RY x (0,00), and see that (u,v) satisfies integral system (1.1) in RY x (0, 00).
If u and v are finite almost everywhere in RY x (0, T) for some T' € (0, 0], then (u,v) is a solution
to problem (P) in RY x (0, 7).

Assume that there exists a supersolution (%, v) to problem (P) in RY x (0, T') for some T € (0, 00]
in the sense of Definition 1.1. Similarly to (2.2), by induction we see that

)

0 < wo(z,1) (z,t) <--- <wplx,t) <--- <T(x,

for almost all (z,t) € RY x (0,7). Then (u,v) defined by (2.3) is a solution to problem (P) in
RN x (0,T) such that

IA A

U ,1) < 00
v t) < oo

0 <u(z,t) <u(z,t) < oo, 0<v(x,t)<T(x,t)< o0,
for almost all (x,t) € RN x (0,7).

2.2. Transformations of solutions
Let (u,v) be a solution to problem (P) in RY x (0,T) for some T € (0,00). Let k > 0. Set

iz, t) = Tratu(kT %2, Tt),  o(x,t) = TraTo(kT 22, Tt),
for x € RN and t € (0,1). Then (4,9) satisfies

Ot = Dik~2Ad+ 0P in RN x (0,1),
Op = Dok 2A0 + 49  in RN x (0,1),
(’EL(,O),'{)(,O)) = (/:Lvﬁ) in RN‘

Here [ and © are Radon measure in RY such that

N q+1 N

(K) = k~NToe % y(kT3K), 9(K) =k NTro1" 2 y(kTK),

for Borel sets K in RY. In particular, setting
k= maX{Dl, DQ}%7
we see that problem (P) is transformed to problem (P) with max{D;, D>} = 1.

2.3. Proofs of Theorems 1.1 and 1.2
We recall some properties in uniformly local Morrey spaces. It follows from (1.4) that

[ llaerosry < 1 Fllnarp:m) if o<p,

(2.4) |
||fk||M(r7a;R) = ||f||]kw(kr7ka;R) if k>0.

For any positive constants R and R/, there exists C' > 0 such that

(25) ||f||M(T,oc;R’) < C”f”M(r,a;R)

(see e.g., [16, Lemma 2.1]). Furthermore, we have:

Lemma 2.1. (1) Let 1 <r; <71y <00 and o € [1,79/r1]. Then there exists C1 > 0 such that

N(1 _ 1
(2.6) ?‘Ul;%z) {t ¥ (%) ||5(t)<P||M(r2,a;R)} < Cillellmer), v € M(r,1; R),
te(0,

for R € (0, 00].
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(2) Let 1 <r < oo and o € [1,7]. Then there exists Co > 0 such that

N(1_1
(2.7) s(up){w(l NS Wllasirey } < Coll it 1€ M.
te(0,1

Proof. We prove Lemma 2.1 (1). The proof is divided into two steps.
Step.1 We prove inequality (2.6) with R = oo using the following decay estimate.
e For any 1 < r < ¢ < oo, there exists C' > 0 such that
N

(2.8) sup [|S(t)ellLa(B(a,Rr)) < ct5(:73) sup lellzr(B(e,R))
zERN zERN

for t € (0, R?) and R > 0. (See [17, Corollary 3.1].)
Let 1<r; <ry<ocand 1 <a<ry/r;. By (2.8) withr =1, ¢ =00, and R = t1/2 we have

1_ 1

[B(z,0)[72 "= IS (1)@l Lo (B(z.0))
< [B(z,0)]2[|S(t)#llec < Ct22 [[S(H)¢l o

N N
<Ct?2 -Ct™2
(2.9) s L sup el L1 (B(t12))

N N

- 1/2y7 —1
< Ct?r2 - Ct 21 sup {|B(5U,t )| HSOHLI(B(x,tl/Z))}

zERN

~¥(A-34)
<Ot 2\ 2|0 ey, 1500)

for z € RN, ¢t > 0, and o € (0,¢'/2). Furthermore, by (2.8) with r = ¢ = 1 and R = o and with
r=1,q=o00, and R = t'/? we have

11
|B(z,0)|72 " ~[|S() @l Lo (B(2.0))

o é 1—L1
< (IBG o E SO seon) 15Ol

1 11

o o _N *
< (CIBG = s lelluaeay ) (C0F s el ooy
z€RN zERN
1 _q =
E \l@\\Ll(B(z,a))}

(2.10) < (C|B(Z,U)
_ N 1
% <Ct 2r1 sup {|B($,t1/2)‘m 1||@||L1(B(m,t1/2))})

T su {|B(:E,U)

RN

1—L

a

«
RN

1
1-3

12y (o
S OBzt )2 el ueey ) (CF 2 [[@llarery,1500)
_N(1 _ 1
<Ct > (1 "'2)||<P||M(r1,1;oo)

for z € RN, t > 0, and o € (t'/2,00). Here we used the relation a/ry < 1/r;. Combining (2.9)
and (2.10), we obtain

11 _g( ;)
|B(z,0)|2  =[[S)¢llLa(Bz,0)) < Ct 2\ 2|0 ar (1, 1500)

for z € RN and o € (0,00). This implies (2.6) with R = oo. (See also [24, Proposition 4.1] for
another proof of (2.6) with R = c0.)

Step 2. Let 1 <7 <71y < oo and a € [1,73/r1]. Let R € (0,00]. For the proof of (2.6) with
R < o0, it suffices to find C' > 0 such that

1

(%) e SO g, iy < Ol iy

N
2

(2.11) t
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for € R" and 0 < t < R%. Then, by translating if necessary, we have only to consider the case of
z=0.

The proof is a modification of the proofs of [13, Theorem 1.2] and [14, Proposition 3.2].
By Besicovitch’s covering lemma we can find an integer m depending only on n and a set
{zkitk=1,..m, ien CR"\ B(0,10R) such that

(2.12) BiiNBy; =@ ifi#j and R"\B(0,10R) C O D By,
K=1i=1
where By, ; := B(w,;, R). Then
(2.13) [S(®)e] (z)] < Juo(z, t)| + i i lur,i(w,t)],  (z,t) € R" x (0, R?),
where o
ug(x,t) := [S()(exBo10r)](2),  uri(x,t) = [S(t)(oxB, )] (2)-

By (2.5) and (2.6) with R = co we have

||XB(O,R)u0(t)HM(Tz,a,oo) < ||u0(t)||M(r2,a;00)
_ﬂ(;_;>
<Ct 2\ 72 loxs0,00m) |y 1:00)
(214) 7ﬂ(iii>
<Ct 2\ 2ol a(ry,1510R)
,ﬂ(i,i)
<ot >\ ol r),  t € (0,R?

Let k=1,...,m and i€ N. Then we see that

e <C [ G-l dy
(2.15) Bl R)
=C Gx — 2z — x4, t)pri(2) dz
Rn

for (x,t) € R™ x (0,00), where oy i(x) = |o(x + zr:)|XB(0,r)- It follows from |z ;| > 10R that

R ] W ] Bl ] W C7 ]
t1/2 = t1/2 — ot1/2

5R—2z—z| |z— 2z < |k i n |z — 2|

+ t1/2 t1/2  — 2R t1/2

for z, 2 € B(0, R) and t € (0, R?). This implies that

2 2 2
21 g ) < (At Czwgl® |z < |zkgil 3
(2.16) Gz —z— gy, t) < (47t)” =2 exp ( T6R? yr < exp T6R2 G(x — z,t)

for z, 2 € B(0, R) and t € (0, R?). We observe from (2.15) and (2.16) that

EXs
16 R2

fugaz,1)] < Cexp ( ) 1S(t)or] (2)
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for x € B(0, R) and t € (0, R?). Then, by (2.11) with R = oo we obtain

|ur,s (1) X B(0,R) | M(ra,000)

Tk i 2
—"“') 15t pns

|M(r2,oc;oo)

M(r1,1;00)

Tk N (1 _ 1
Lol )f F (55 X a0 s 10

26l =% (5%
(217) S OeXp <_ 16R2 t H‘pk,z|

2
fﬂk,‘ _N(1 _ 1
_ okl )t ¥ (3 W)H@HM(n,l;R)

for t € (0, R?).
On the other hand, since

1
% < 3 (lzkil + R) < |z, for ye€ By,

1 ly|* |z, i |2
_ dy > _TRAlD
| Br.i] /B XP ( 6arz ) Y =P\ T 16R2

Then, by (2.12) we see that

we have

(2.18) i=1

for R > 0. Combining (2.13), (2.14), (2.17), and (2.18) we obtain

1

Hha)
t o HXB(O,R)S(t)SDHM(.,.%a;OO)

e B
< Clielarirair) + Clielarear) Y Y exp <— oz ) < Cllellveur
k=11=1

for t € (0, R?). This implies (2.11) with z = 0. Thus (2.6) with R < oo holds, and Lemma 2.1 (1)
follows. Similarly, we obtain Lemma 2.1 (2), and the proof of Lemma 2.1 is complete. O

We prove Theorems 1.1 and 1.2. In cases (A) and (F), following the arguments in [10, Section 3]
and [15], we construct a supersolution to problem (P) to find a solution to problem (P).

Proof of Theorem 1.1. Consider case (A), that is,

1 N
g+l _

pqg—1 2"

Let D = min{D;, Dy} and D’ := max{D;, D2}. By Section 2.2 it suffices to consider the case of
D’ =1. Then

L

4Dt

(2.19) G(z,D;t) = (47rDit)_% exp < ) < D_%G(as,t)

in RN x (0,00), where i = 1, 2.
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Let 54 > 0 be small enough and assume (1.6). Set

(2.20) N 1
(m t)‘*A, v(x,t) = 2D" 2 w(x,t)?a,

for (z,t) € RN x (0,00). It follows from the semigroup property of S(t) that
(2.21) w(z,t) =[St — s)w(s)|(x), xRN, 0<s<t.

Since

*_q+1ﬁpq*1_ﬂpq*1_ «

(2.22) aaBytrs v r12 g7l 2 pil ri,
it follows from (1.6) and (2.4) that
I P g ity S Wl F IRy S0
This together with (2.6) implies that
_ﬂ<ﬁ7A_1>
(2.23) Hw(t)HM(T’mT%) <Céat 2\ 7). te(0,T),

for r € [B3'r5,00] and n € [1, Bar/r3].
We prove that (%, ) is a supersolution to problem (P) in RY x (0,T). It follows from (1.5) that

1 N N 2%
g _aetl) ﬁA<_1)+1: ﬁf(_q+1+ 7“2)
ax Palg+1) 2r; \aa 2r3 aa NpBa
N 1 1pg—1\ N 1
= Bf( R | ): ”8:‘(1—>>0.
2r3 Ba q+1 Ba q+1 2r3 Ba

These together with (2.19), (2.21), and (2.23) with r = oo imply that

/0 (S(Ds(t — 5))u(s)7)(x) ds

<D > [ [S(t—s)u(s)(x)ds < C /0 t [S(t - s)w(s)ﬁ} (z)ds

0

220 ccf t [s<t—s>|w<s>||zqs:1w<s>} (@)ds = Cufat) [ )72 ds

NBa NBa

4 _q Ut NBa( 4 _ a1 o _ 1
<Cs5h w(x,t)/ st () ds = C53A w(:v,t)/ s (1-5%) g
0 0

_q _ NBA

<o () we, ) i RY x (0,7).

Taking small enough 64 > 0 if necessary, by Jensen’s inequality, (2.19), (2.23), and (2.24) we
obtain

[S(Datyw](z) + / [S(Da(t — 5))u(s)7) (x) ds

N 94 1 NBa (1_4
2

D¥(S(t(a) + o5 175 (175 (e 1)

IN

(2.25)
3 1 L1 Lﬁf(l,i) 1—% 1
D% [S(t)] (z)7a + Cozh 7% U (8| o w(a, ) P

IN

1 4L e
<57 T(x,t) +Co5* "Pw(t)Pa <T(z,t) in RY x (0,7).
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Here we used the relation

q 11 (_q+l)_1pq—1

_ - > 0.
p+1 ap p+1

oA BA o

On the other hand, it follows from (1.5) that

_ NBa (-1)+1=N’B"‘ <—p+1+ QTS)

2ry \ fBa 2r; Ba NpBa
N 1 1 pg—1 N 1 1
(2.26) - B*A( Lpatp g, 1 H ): Bf(l—p+)
2r3 Ba qg+1 Ba q+1 2r; Bagq+1
N 1
_ 5;‘(1>>o.
2r; ap

Then, similarly to (2.24), in the case of p > B4, we have
[ 18t = (s ) as
<D~ / (t — 8)(s)?](z )ds<C/0 [S(t — s)w(s)P](z) ds

(1_5) ds

(2.27)

NBA

» o _ t
SCw(x,t)/ ||w(s)\|£g‘c 1ds§C(5§A 1w(x,t)/0 s

NBA _ 1

_p_ 1
gCéjA EEE <1 “A)w(x,t) in RY x (0,7).

Taking small enough 64 > 0 if necessary, by Jensen’s inequality, (2.19), (2.23), and (2.27) we
obtain

(S(Dy )yl (x) + / 1S(Ds(t - 5))0(s)7)(x) ds

y BN (1
oo <DESOW@ ool R
N 1 -1 XPa (-1 - 1
< D ¥ [S()po) (2) 75 + 057 17 () o) | T e, )
1 P N
< Ul t) + CoF* “w(e, )5 <u(x,t)

in RY x (0,7) in the case of p > 34. Here we used the relation

1 1 1 1 -1
(2.29) p_:( _p+ )qu
Ba  aa  Ba q+1 Ba qg+1

In the case of p < B4, it follows from Jensen’s inequality, (2.19), and (2.21) implies that

/0 (S(Ds(t — 5))p(s))(x) ds

(2.30) <D ¥ [ [S(t—s)5(s)” 5<c/ (t — s)w(s)P5](z) ds
0

< c/o [S(t — s)w(s)|(z)P4 ds = Ctw(z,t)72 in RN x (0,7T).



16 Y. FusisHiMmA, K. ISHIGE and T. KAWAKAMI

Then, similarly to (2.28), by (2.26) and (2.29), taking small enough 64 > 0 if necessary, we obtain

[S(D1t)p]() +/0 [S(D1(t — 5))(s)"](x) ds

(2.31) < D72 [S(t)u)(z) + Ctw(z,t)Pa *aw(x,t)*4

< DTE[S(uo) (@) + Cpr A

p 1

< ST(w,t) + C60 “Aw(z,t)ma < T(x,t)

N |

in RY x (0,7) in the case of p < B4. Therefore we deduce from (2.25), (2.28), and (2.31) that
(W, ) is a supersolution to problem (P) in RY x (0, 7). Then, by the arguments in Section 2.1 we
find a solution (u,v) to problem (P) in RY x (0,7T) such that

(2.32) 0 <u(w,t) <a(z,t), 0<ov(x,t) <v(x,t), (r,t)cRY x(0,T).

These together with (2.4), (2.20), (2.22), and (2.23) imply that

t A t Ba
e g, F OIS
1 1
< Cllw(t)=a|*4 Cllw(t)?a P < Cllw(t <C
<Clw® |3y Ol S OOy, ) <O

77 Ju(t) | + 7% [Jo(t) || < 7T w(®)]| 72 + 177 Jw(t)]| 4 < C,

for t € (0,7). Thus (1.7) and (1.8) hold.
It remains to prove (1.9) for ry € [1,77), ro € [1,13), {1 € [1,aar1/r}], and €y € [1, Bara/r3].
Since

Np(pg—1) _ Nplpg—1
s o Nplea= D Npe—1) .
2 p+1 2 p+pg

and || fllarmy,e) < Cllfllat(ma,e) for f € M(mo,£) if 1 < my < mo < oo, it suffices to consider the
case of

(2.33) 1<ro<r <rf, r5<pry, lera‘ <rg<Ty.

Note that M (r,£;1) = M (r,£) for r € [1,00] and « € [1,7]. By (2.5), (2.23), (2.24), and (2.32) we
have

[0(8) — S(Dat)¥arrasn) < € H [ 150t spatsyoas

1
M(’l"z,éz;Tj)
NBy

NP4 (- L
(2.34) < o=t ‘*A)IIW(t)“M(m,b;T%)

S04 o H(8) Lot (+4)
< Ct?s fa) ot P\ ) < ott\ 2 50

as t — +0. Furthermore, since r; > ro > B,'73 (see (2.33)), if p > B4, then, by (2.5), (2.22),
(2.23), (2.27), and (2.32) we obtain

lu(t) — SDr)llar(reey < C H / S(Ds (1 — 5))o(s)?)(x) ds

M(’r’l,ZUT%)
Noa(1-L
(2.35) <ot A)Hw(t)||M<m,zl;T%>

NBa(1_ 1 N %,L) ﬂ(i,%)
< Ct?*s: (1 "A>~Ct 2("2 <ot \" i) 50
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ast — 40. If p < 54, by (2.4), (2.5), (2.23), (2.30), (2.32), and (2.33) we have

[u(t) = S(D1it)pllar(ry o) < C H/O [S(D1(t = 5))v(s)"](x) ds

1
M(’I‘l,el;Tj)

(236) <t < Clllut)| "

_ _ 1
M8, pri,8, ' p1T2)

-4 (2a_Ba) p N(1 2 2 patl) N(L_ 1
<Ct (% ”1>’*A:Ct?(ﬁwfﬁppg—l):m?(” r1>—>0

1
M(rl,él;T§

as t — 40. By (2.34), (2.35), and (2.36) we obtain (1.9). Thus Theorem 1.1 follows. O

Proof of Theorem 1.2. Consider case (F), that is,
qg+1 N 2
— d 14+ —.
pr—1 > 5 and g<1+ N

Assume pu, v € My. Let D := min{D;, Dy} and D’ := max{D;, Dy}. Similarly to the proof of
Theorem 1.1, we can assume, without loss of generality, that D’ = 1.
Set

w(x,t) =2D"7 [S(t)(n+ v)](x) + 29, (2,t) € RN x (0, 00).
It follows that
(2.37) [S(t = s)w(s)l(z) = 2D~ Z[S(t) (1 +v)](x) + 275 < w(x,t)
for z € RN and 0 < s < t. By (2.7) with a = r, for any r € [1, 5], we have
(2.38) lw(®)l|z;, <@ =073 1oy <o 02 te(0,1).

We prove that (w,w) is a supersolution to problem (P) in RY x (0,T) for some T € (0,1).
Since 1 < ¢ < 14 2/N, it follows from (2.19), (2.37), and (2.38) that

[ 15ate = sy as < 0¥ [ (8(e = spu(s)w) ds
(2.39) 0 0

t
< D_%w(x,t)/ w(s)||4= ds < CD™ =5 @ Dy (g, t)
0
for (x,t) € RN x (0,1). Taking small enough T € (0,1), by (2.39) we have
¢
S(Dat)v + / [S(D2(t — s))w(s)?](x) ds
0
(2.40) <D 28ty +CD >t @ Dy (g ¢)

< <; + CD’JTI’JWU) w(z,t) <w(z,t), (z,t) € RN x (0,T).

On the other hand, it follows from 0 < p < ¢ that a? < (a + 1)P < (a + 1)7 < 2971q? 4 2971 for
a > 0. Then, similarly to (2.39), we have

[ 181t = 9)uisriards <2074 0 [ (S(Di(e - )u(s) (o) ds
0 0

<297t 4 CngtI*%(qfl)w(x, t)

(2.41)
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for (z,t) € RN x (0,1). Taking small enough T € (0,1) if necessary, by (2.41) we see that

S(Dutu+ [ (St = )w(s) ) ds
<D TS+ 2T 4+ CD Tt 2@ Dy (g, 8)

<;+CDT1(‘1 1>) w(z,t) <w(z,t), (z,t) € RN x (0,T).

This together with (2.40) implies that (w,w) is a supersolution to problem (P) in RY x (0,7). B
the arguments in Section 2.1 we find a solution to problem (P) in R x (0,7 such that

(2.42) 0 <u(x,t) <w(w,t), 0<uv(r,t) <w(r,t), (z,t)eRY x(0,T).

Then (1.10) follows from (2.38). Furthermore, we deduce from (2.38), (2.39), (2.41), and (2.42)
that

lu(t) = S(Di)ll s, + o(t) = S(Datypl s, < O %O flw(t)]| 11, + Ct = 0

as t — 40. Thus (1.11) holds, and the proof of Theorem 1.2 is complete. O

3. Decay estimates in weak Zygmund type spaces

In this section we obtain some properties of our weak Zygmund type spaces L™°®(L)%,
£reed (L), L7 ®(L), and £°®(£)*. Furthermore, we develop the arguments in [14, Sec-
tion 3] to establish decay estimates of S(t)y in our weak Zygmund type spaces. Throughout this
paper, for any r € [1,00], we denote by ' the Holder conjugate of r, that is, v’ = r/(r — 1) if
re(l,o),r” =ccifr=1,and v =1if r = 0.

3.1. Preliminary lemmas
We recall some properties of the non-increasing rearrangement f* and its averaging f** for
fecrL.

(a) Since f* is non-increasing in (0, 00), it follows that
(3.1) 7 (s) > f*(s), se€(0,00).
(b) For any r € [1,00), Jensen’s inequality together with (1.3) and (3.1) yields
1 * * I 1 * T\ % T %%
<< | ) ds=— | (IF7)7(s) = (IF1")7(s), s €(0,00).
S Jo S Jo
(c) It follows from [3, Chapter 2, Proposition 3.3] that

(3.2) 7 (s) = i/os fr(r)dr == sup / |f(z)|dz, s€(0,00).

S |E|=s
(d) (O’Neil’s inequality) For any f1, fa € L, it follows from [20, Lemma 1.6] that
(33) (") < [ dn s 0.00)

where (f1 * f2)(@) = [pn f1(z — y) f2(y) dy for almost all z € RY.
(e) For any f1, f2 € L, it follows from [20, Theorem 3.3] that

(34) (fle ** / fl f2 S € (0, OO)
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Then, for any r € [1,00) and « € [0, 00), we have

1
I3

7 lmacsye = sup {s®(s™)(117)"(5)}

—sup { B(s™) sup If(x)l"dw}r
(3.5) >0 { E|—S/E 1

—sup fosy [sryary —sw {2 [ ey dT}i

1

> SI;IS {S@(s‘l)af*(s)’"F = Ifllzrecar)e-
Furthermore, we have:

Lemma 3.1. Let ® be a non-decreasing function in [0,00) with properties (®1)—(®3). Let
r € [1,00) and « > 0. Then

k k k k
M1 e rasr = 1 flle krars W omair = I1f11$ krasr>
for f € L, k>0 with kr > 1, and R € (0, x].

Proof. Let f € £ and k > 0 with kr > 1. It follows from (1.3) and (3.5) that

1
=

IF1*l e a(nye = Sup {s@(s™H)*(1F1") ()"}

1
I3

= sup {sfb(s_l)af*(s)kr}

= ||f||lzkmcq>(L)m
s>0

-

1141 waraye =sup {7 [ (s (ryar )

~ sup {cb(fl)a [y dT} oy

s>0

These imply the desired relations with R = oco. Furthermore, for any R € (0, c0),

I f1*l@r0cr = sup [F1*XB@.r)l|lLrea@)s = sup [[f1XB@m)lEmeamys = 1116 kmars
r€RN zERN
k k k k
£ e,rar = sup [IfI"XB@ r)ller=ae)e = sup ||fIxB@r)llgreae)e = IS krair:
z€RN z€RN

Thus Lemma 3.1 follows. O

Lemma 3.2. Let ® be a non-decreasing function in [0,00) with properties (®1)—(®3). Let
r € [1,00] and ay, as > 0 be such that

(03] a9
3.6 = — 4+ —.
(3.6) o=y
Then
(3.7) Hf1f2lllen,ar < |l fillleranrllf2lller axsr

for f1, fo € £L and R € (0, 00]. Furthermore, for any R € (0, 00), there exists C' > 0 such that

(3-8) WA W@,ri0:m < ClILf Il ,r,6:7

for fel, 1<r;<ry<oo,and 0 <a < < oo.
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Proof. It suffices to consider r € (1,00). Let ay, ag > 0 satisfy (3.6). Let f1, fo € L. It
follows from Holder’s inequality, (3.4), and (3.5) that

Ilf1follercm(e)e = ilig {s@(s™)*(f1.f2)™(s)}

s>0

< sup {‘I’(S_l)a (/OS i)y dT) % </os @ dT> 1}

< sup {q)(s—l)al / S f;mrdr}i sup {q><s—1>a2 / i) df}’

s>0 s>0

<swp {o( [ i) ar

= [|filler=a(e)or [ follgr cp(g)on -

Then
[ fifalll®,1,0:r = sup Il f1foX Bz, R) |l 210 B()e
zeR™
< sup [ fixp,r)ller=ae)or - sup [[foXB,r)ller con(g)e
z€Rn c€Rn
= [|[fillle,r,ar;r[|f2]]

for R € (0,00]. This implies (3.7).
Let R € (0,00). It follows from the monotonicity and (®1) that ®(7) > 1 for 7 € [0, 00). Then,
by Lemma 3.1 and (3.7) we have

D, 1" a2 R

i i R
e, asr = A 6t 0:m < ||||f|”HIfl,f%»,a;Rl||1|||¢f(%)/7a;R < O fll®,rz,05r
1
= C sup sup {s@(s_l)aﬂfXB(m,R)|T2)**}T2
z€RN >0
1
< C sup sup {s@(s ) (| fxBE.r)|™)*} 7 = CllIflllor0r
z€RN s>0

for fel,1<r <ry<oo,and 0 < a < < co. Thus (3.8) holds, and the proof of Lemma 3.2
is complete. O

Next, we recall the following two lemmas on Hardy’s inequality. (See [19, Theorems 1 and 2].)

Lemma 3.3. Letr € [1,00]. Let U and V be locally integrable functions in [0,00). Then
there exists C' > 0 such that

IUFllr(0.000) < CIIV FllLr(o,00y)  with  f(s) 12/ f(r)dr
0

holds for locally integrable functions f in [0,00) if and only if

sup {1l (oo IVl 0.y | < -
s>0

Lemma 3.4. Letr € [1,00]. Let U and V be locally integrable functions in [0,00). Then
there exists C' > 0 such that

o0
MU flloro.00)) < CIV fllLr(o,00))  with  f(s) :/ f(r)dr
S
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holds for locally integrable functions f in (0,00) with f € L*((1,00)) if and only if

sup {1V 0.y IV ™ (500 | < 20

3.2. Decay estimates
In this subsection we prove the following proposition on decay estimates of S(t)p in weak
Zyegmund type spaces L™ ®(L)* and £7°d(L).

Proposition 3.1. Let ® be a non-decreasing function in [0,00) with properties (®1)—(P3).
Let 1 <ry <ry <ooand a, 8>0. Assume that o < S if r{ = rs.

(1) There exists Cy > 0 such that

1

_ o

_N 1 1 — B
||S(t)g0||2r2,x¢,(2)5 S Clt 2 (m Tz)@(t 1) = +r2 H(p|‘2rl,oo¢)(£)a, t > 0,

for p € £ 1°p(L)“.
(2) Let r; > 1. There exists Cy > 0 such that

_N(1_ 1 _a. 8
(3.9 18@Ollraays < Gt~ F B o) E g a0,
for ¢ € L™ ®(L)".
(3) Assume that 1 < r; < rg. Then there exists C3 > 0 such that
,%(L,L) e B
”S(t)‘:"”mzvomp(g)ﬁ < Cst o) OtT) T ol e sy, >0,
for ¢ € L™ >°®(L)>.

At the end of this subsection, as an application of Proposition 3.1, we establish decay estimates
of S(t)¢ in uniformly local weak Zygmund type spaces L ®(L)* and £7°®(£)*.

ul
For the proof of Proposition 3.1, we prepare the following four lemmas on ®.

Lemma 3.5. Assume the same conditions as in Proposition 3.1.

(1) For any fized k > 0,

for a € (0,00).
(2) Let « € R and 6 > 0. Then there exists C > 0 such that
()T < CHe(r )Y, ()T = CT (),
for 1, 7o € (0,00) with 71 < 7.

Proof. We prove assertion (1). It suffices to consider the case where k > 1 and a is large
enough. Let £ be a natural number such that k < 2¢. Since ® is non-decreasing in [0, 00), by (®2)
we see that

®(a) < Ba+ k) < d(ka) < B(a*) < D(a®) < CB(* ) < -+ < CB(a)

for large enough a. Thus assertion (1) follows.
We prove assertion (2). Since ® is non-decreasing in [0, 00), for any @ € R and ¢ > 0, by (®3)
we find 7, > 0 such that the desired inequalities hold for 0 < 7, < 75 < 7. In particular, we have

(3.10) 75@(7_1)0‘ < CTf¢(7;1)07 T_‘SCI)(T_I)O‘ > C_lT*_é(P(T*_l)a,
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for 0 < 7 < 7. On the other hand, it follows from the monotonicity of ® and (®1) that
cl<a(r ) <C, T€En, ).
Then we observe from (3.10) that

Tf@(Tfl)o‘ < C’Tf@(ﬁ[l)o‘ < CT§<I>(72_1)°‘ if 7 <7 <y,

Ro(r )Y <O d(ry ) if 7 <71 < T
Similarly, we have

Tféq)(rfl)a > CT*_5<I>(T;1)O‘ > Crgéq)(rgl)“ if 7 <7 <19,

o 0®(r Y > Oy (DY if T <7 < T
Thus assertion (2) follows. The proof is complete. O

Lemma 3.6. Assume the same conditions as in Proposition 3.1.

(1) Let ¢ > —1 and o € R. Then there exists C; > 0 such that

/ TI®(77 % dr < C157 1 B(s71)Y, 5> 0.
0

(2) Let ¢ < —1 and o € R. Then there exists Cy > 0 such that

/ TIO(r~ ¥ dr < Cost™ (s~ H*, 5> 0.

Proof. We prove assertion (1). Let § > 0 be such that ¢ — ¢ > —1. By Lemma 3.5 (2) we have

/ Tq<I>(7'71)D‘dT:/ 7170 0P (r > dr
0 0

< Cs‘;@(s_l)o‘/ 170dr < CsTTa(s7H), s> 0.
0

Thus assertion (1) follows.
We prove assertion (2). Let € > 0 be such that g+¢ < —1. Similarly to the proof of assertion (1),
by Lemma 3.5 (2) we see that

(oo} oo
/ T1®(r N dr = / T o (rH Y dr
S S
< Cs_ﬁfb(s_l)a/ I dr < CsTMo(s™H*, 5> 0.

Thus assertion (2) follows. The proof is complete. O

Lemma 3.7. Assume the same conditions as in Proposition 3.1.

(1) Let 1 <r < oo and a>0. Then

Lrood(L)a, f eL.

sup {s7@(s™)F 17 ()| < |

s>0

(2) Let 1 <r < oo and a > 0. Then there exists C > 0 such that

sup {s7@(s ™))% ()} < Cllfllpreapye, f€L
s>0
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Proof. Let f € L. For any r € [1,00), it follows from Jensen’s inequality and (1.3) that

sup {57 @(s™)% £ (s) |

s>0

=58 {si%lﬁ (= [ o) } —supfo e [Carry ) df}i

= sup {sB(s ™) ()" ()} = I lerwcee,

Sl

which implies assertion (1).
Let r € (1,00), and set U(7) := 7+ 1®(r~1)% and V(7) := 77 ®(r~1)¥ for 7 > 0. It follows
from Lemma 3.5 (2) and Lemma 3.6 (1) that

Sug {||U||Lm((57m)) / V(r)|! dT} < sup {CS%_1¢(8_1)% : Csl_%é(s_l)_%} < 0.
§> 0

s>0

This together with Lemma 3.3 with r = co implies that

sup {sFa(s )7 1)} =sup {U) [ 1) as}

5>0 s>0 0
< Csup{V(s)f*(s)} = Csup {s%q)(s_l)%f*(s)}
s>0 s>0

1
= ngg {s@(s‘l)af*(s)r} " =C|fllerea(r)e
which implies assertion (2). Thus Lemma 3.7 follows. O

Lemma 3.8. Assume the same conditions as in Proposition 3.1. Let 1 < r < g < oo and
v € R. Then there exists C > 0 such that

1

(3.11) / (=D gr(r)tdr < - F GDeE >0,
0

where gi(z) = G(x,t).

Proof. For any t > 0, it follows that

132
(3.12) gi(s) = (47rt)_% exp (—(MNZHS)> , s>0.
Then
I = ra(1 T)@(Tfl)wg*(r)q dr
0
(3.13) < th%/ Tq(l_%)é(T71)7 exp (—TN> dr
0 Ct
<ot FGE3) [ gNa(i-3)HN-1 0l ((ﬁl/%)—f\’)7 g, t>0
0

Let € > 0 be small enough. Then, by Lemma 3.5 we have
o ((151/25)—N)'Y < C(tl/Qg)—e(tl/Zg)eq) ((t1/2£)_1)’7

(3.14) S
<oy (1) <cgre)y, €€ (0,1,
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Similarly, we see that

(3 15) o ((tl/Qé-)—N)'y S C(t1/2§)6(t1/2£)_6@ ((tl/Qé—)_l)’y
) < C(tl/zg)e(tl/z)fe‘b ((t1/2)71)7 < CED(tY), £e(1,00).

Combining (3.13), (3.14), and (3.15), we obtain

Thus (3.11) holds, and the proof is complete. O

Now we are ready to prove Proposition 3.1. We first prove Proposition 3.1 (1) and (3).
Proof of Proposition 3.1 (1) and (3). The proof is divided into the following three cases:

1<r <ry <o 1<r; =ry <oo; 1<ri <ryg=o0.
Step 1. Consider the case of 1 <1y < rs < co. By (3.5) it suffices to prove

o

_N(1 __ 1 _ B
(3.16) 1Sl graep(eys < Cit FAE B o) A A plxnn, >0,

where X" == £h®(€)® if r = 1 and X" == LP®(L)* if r > 1. It follows from (3.1), (3.3),
and (3.5) that

IS ooy =sup {26 [ (50001 (7)™ ar}
<sup {o [ (500" ()" ar}

<swp foey’ [ ([T mer dn)” i} >0

Since ®(s71)? is non-increasing for s € (0, 00), we have

B

oo oo T2
(B17) 1Sl eaier < / (@(H)m / gf*(n)sa**(n)dn) dr, t>0.

Set U(r) = @(7_1)% and V(1) := T‘I)(T_l)% for 7 > 0. It follows from Lemma 3.6 that

L o0 <
sup </ U(r)|™2 dT> ’ (/ IV (r)| "% dr) ’
s>0 0 s

1 1L —1+-1 =L
<sup ¢« Csm=2®(77 )2 -Cs  2®(177) ™2 p < o0.

5>0
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Then, by Lemma 3.4, Lemma 3.7, and (3.17) we have
T o — ﬂ kk k% 2
SO waer <€ [ (7o) F g (e (7)) dr

r S N T2
< C'sup {s%@(s‘l)iw**(s)} 2/ (Tl"'llq)(T_l)’l gg?*(ﬂ) dr
0

(3.18) 520 . .
_ 1 _ e
< Cllelgnn | ( Ee() g, m) ar
0
[e’e) T T2
= Cllglz [ (r—hb(rlw / g?(s)ds) dr, >0,
0 0
Wherefy:—%Jr%

Set U(r) =7~ o T ®(r1) and V(r) = 1_ﬁ<1>(7"1)7 for 7 > 0. Since 7o > r1 and 75 < rf, by
Lemma 3.6 we have

ap{ ([ o) ([ o) )
(3.19) = sup (/:OT B (e )TQ»ydT)w (/OT P mm)%

1
i @(s‘l)_y} < o0.

w\"“

1 1
< sup {Cs’fz'”li)(s_l)” -Cs™
s>0

Applying Lemma 3.3 to (3.18), by (3.19) we obtain

%) 4 B . ro
SOz oy < Cllelzne [ (7t gi(m)" dr, e
0
This together with Lemma 3.8 implies that
IS eys < O )01y 2y s > 0.
Thus inequality (3.16) holds, and Proposition 3.1 (1) and (3) hold in the case of 1 <7y < r9 < 0.

Step 2. Consider the case of 1 < ry =r9 < 00. Set r :=ry = ro. It follows from Jensen’s inequality
that

[S)e] (2)]" < /RN gz —y)le)["dy, (z,t) € RY x (0, 00).
This together with (3.3) implies that

SOl mageys = sup {52551 ())
(3.20) s
< sup {scﬁ(s-l)ﬁ | s @el o dT}, I 0.

s>0

Set U(7) == 7®(r~ ) and V(r) = 72®(r~1)? for 7 > 0. By Lemma 3.5 (2) and Lemma 3.6 (2)

we have

s>0

(3.21) sup {”U”Loo((o’s))/ \V(T)|_1 dT} < sup {qu)(s_l)ﬁ . Cs_1<1>(5_1)_ﬁ} < 0.
s>0 s



26 Y. FusisHiMmA, K. ISHIGE and T. KAWAKAMI
Applying Lemma 3.4 with » = co, by (3.20) and (3.21) we obtain

152l er o pe)s < Csup {s*@(s™) g7 (s)(Il") ()}

(3.22) < Osup {s@(s™")"""g;" ()} - sup {s@(s™")*(|¢]") " ()}
= C’s1>1;0) {@(sl)ﬂa/ g7 (1) dT} el era(gyas t>0.
s 0

Furthermore, since o < 3, ®(t~1)#~* is non-increasing in (0, 00), by Lemma 3.8 we have

sup {q»(s—l)ﬁ—a /Osg:(T) dr} < /OOO B(r1)P-og: () dr < CHEYP~, ¢ 0.

s>0

This together with (3.22) implies that
ISO¢lrxae)s < COE T elerwage, t>0.

Thus Proposition 3.1 (1) holds in the case of 1 < r; =19 < 0.

Step 3. It remains to consider the case of 1 < r; < ro = oco. Let X™* be as in Step 1.

r1 = r9 = 0o, then

(323) IOl < lel= [ sy < lelli. ¢>0.

and Proposition 3.1 (1) follows. If 1 <1y < rg = 00, by (3.16) with 7, = 2r; we have

t t t
Isrel =5 (5) 5 (5) ¢ 5(3)¢
t - *7(- %> -hy=a
Sla) @ <Ct - O 2T () T gl xre

22r1,ooq>(£)0

= O P R(tY) gl xre, £ 0.

__N_
< O
Loo

L2r1

— Ot T

If

Thus Proposition 3.1 (1) and (3) hold in the case of 1 < r; < 19 = co. Therefore the proof of

Proposition 3.1 (1) and (3) is complete. O

Proof of Proposition 3.1. It remains to prove Proposition 3.1 (2). It follows from (3.1) and

(3.3) that
||S(t)%0||Lr2,ocq>(L)B = 21;% {Sq)(s—l)ﬁ (S(t)gp)* (s)”}%

< 22}8 {8<I>(s_1)'6 (S(t)p)™ (S)Tz}i

i — ﬂ e * %k kk
Ssglg {8"2<I>(s 1)"'2/ gi (e (n)dn}, t>0.
S S

) Lo —1\E ) L e 12
Set U(t) == 772 ®(r~ )™ and V(r) = 7 "= ®(r7 )2 for 7 > 0. By Lemma 3.5 (2) and

.
Lemma 3.6 (2) we have

st>1}8 {||U||L°°((0,s))/ V(T)ldr} < 31>1;0) {Csrlz‘q)(51)r"2 ~C’s_r12<1>(51)—,i} o
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Then, by Lemma 3.4 with = co and Lemma 3.7 (2) we obtain

L — i *k 3k 3k
1(0)ll s eaqyo < Csup {50 B g (900 ()}

(3.24) < Csup {57 (s ) ()} sup {51 a (s g (s) }

s>0 s>0
11 B_a [°
SCIIwIILrl»%(L)a“p{S” (s / 92‘(7)6”}, t>0.
s>0 0

Consider the case of 1 < r; < rg9 < co. Set

B o N 1 1 B

A 1 B o

U(r) =772 md(r = n, Vir)=rtm ae@r )=,

for 7 > 0. By Lemma 3.5 (2) and Lemma 3.6 (1) we have

sup{|UuLw«&Mmu/ w«rn—ldf}
s>0 0
8

< sup {Csii%tb(s_l)@*% . CsiiJr%(I)(s_l)*%Jr%} < 00.
s>0
This together with Lemma 3.3 with r = oo implies that
(3.25) sup {sé_é@(sl)g_ﬁl / g; (1) dT} < C'sup {SH%_%@(s*l)%_%gf(s)}
s>0 0 s>0
for t > 0. On the other hand, since ® is non-decreasing in [0, 00), it follows from (®1) and (D2)
that
®(ab) < ®((max{a,b})?) < O®(max{a,b}) < CO(max{a,b})®(min{a,b}) = CP(a)®(b)
for a, b > 0. Then, by Lemma 3.5 (1) and (3.12) we have

£ L B _ «
sup {875 @ (s g (s) |

<o a5 sup {ng<1+’}2_’}1)®(n‘1)g%€_"}

n>0
<o * G HoeE A, 1>,
This together with (3.24) and (3.25) implies (3.9) in the case of 1 < 11 < g < 00.

Consider the case of 1 < r; = 75 < co. Set 7 =1 = ro. Let a < 3. Since ®(t71)~* is
non-increasing in (0, c0), it follows from Lemma 3.8 that

s>0

sup{fb(sl)?-?'/ g; (1) dT} §/ @(771)27%9:(7) dr < C@(til)gf%, t>0.
0 0

This together with (3.24) implies (3.9) in the case of 1 < 1 = r3 < co. Furthermore, in the case
of 1 < ry < ry = oo, similarly to Step 3 in the proof of Proposition 3.1 (1) and (3), we have

() ()

—ct i ||ls (L
<ot or Y(E ) g1y A
=~ 1 ( ) 1 ||<pHL7‘1,00¢(L)a

[,271,00

|S(t)pllpee < Ct 31

L2r1 ,oc@(L)O

_ N 1N —
<Ct )T )l a@pye, >0
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Thus (3.9) holds in the case of 1 < 1 < 19 = c0. In addition, if 1 < r; =7y = o0, (3.9) follows
from (3.23). Thus (3.9) holds, and the proof of Proposition 3.1 is complete. O

Furthermore, we apply the same arguments as in the proof of [14, Proposition 3.2] together
with Proposition 3.1, and obtain the following proposition.

Proposition 3.2. Let ® be a non-decreasing function in [0,00) with properties (®1)—(P3).
Let 1 <7y <ry<oo,a 8>0,and R, € (0,00). Assume that o < g if 1 = rs.

(1) There exists C; > 0 such that

_ _ a

_x 1 5
SOl < ot~ ) @) A5 gl oo
for o € £7®(£)*, R € (0,R,], and ¢ € (0, R?).
(2) Let r; > 1. There exists Cy > 0 such that

_ N _a B
1S el sin < Cot™F FT) &) ™54 o]l cir
for ¢ € LT1>®(L)*, R € (0,R,], and t € (0, R?).

(3) Let 1 <r; < ry. There exists C3 > 0 such that

_N(1 _ 1 i _ <« B
1S ®llm i < Cat™F GE) St ™55 o cir
for o € L'V®(L)*, R € (0, R,], and t € (0, R2).

At the end of this section, we apply Hardy’s inequality again to show that L™*°®(L)* are
Banach spaces if r > 1.

Lemma 3.9. Let ® be a non-decreasing function in [0,00) with properties (®1)—(®3). Let
r € (1,00) and a € [0,00). For any f € L, set

(3.26) 1oy o= sup {57 @)% 72 (s) ).

s>0

Then there exists C' > 0 such that

11

Furthermore, L™>*°® (L)% is a Banach space equipped with the norm || - ||’Lr,m¢,(L)a.

ety < sy < Olflinmswye, 1 €L

Proof. Let r € (1,00) and « € [0, 00). It follows from (3.1) and (3.26) that
71 aqaye > sup {s*@(s™)F £(5)} = I llreaye
for f € L. Furthermore, it follows from Lemma 3.7 (2) that
1z earys < CllfllLresm)e

for f € L. On the other hand, we observe from (3.2) that

(3.27) 1o q(r)e = sup sup {81“‘1’(81)? /E |f($)|d$}7 fecl.

$>0 |E|=s

Then we easily see that || - ||/Lrv°°<I>(L)f’ is a norm of L™ ®(L)“. In addition, we see that L™>°® (L)%
is a Banach spaces equipped with the norm | - ||/qu°°<I>(L)°" Thus Lemma 3.9 follows. O
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Then we have:

Lemma 3.10. Let ® be a non-decreasing function in [0,00) with properties (®1)—(®3). Let
r € (1,00) and a € [0,00). For any f € £ and R € (0, 0], set

1A% r0:r = sup 1 fXBGR) L ccs(r)e-
zeRN
Then there exists C' > 0 such that

£ lle.recr < [fl@,a;:r < ClISI

D.ra;R> f S £, R e (0, OO]

Furthermore,

Hf +g||:I>,7‘,oc;R S ||f||:I’,r,a;R + Hg| :I>,r7a;Ra fvg € ‘C’ R e (0700]

4. Proof of Theorem 1.3

We consider case (B), that is,

1 N
g+ — and p<gq,

4.1 —

and prove Theorem 1.3 using uniformly local weak Zygmund type spaces L!;(logL)* and
£7°(log £)*. Throughout this section, we set ®(7) = log(e + 7) for 7 > 0. Then (®1)-(93)
hold.

Recalling pg > 1, we set

qg+1
4.2 re = q).
(2 <p+1q)
Let . € (0,8p). It follows from (4.1) that
pg+p
4.3 r > > 1,
(4.3) P p+1
N N Nopg—1 Np+1
4.4 —— 1=- _ R
(4.4) o Pt 2Pt T 2q+1’
p+1 2 2
4.5 =—t =<1+ —.
(45) Pttt

Let T, € (0,00). For any T € (0,T.], by Proposition 3.2 and Lemma 3.10 we find C\ > 0 such that

ISy )y < Collill s

gz
SOl , oy < Cot™ FEEDRE) P05 Yy,
(4.6) IS(Dullz= < Cot™ T FTRE) 7 |t s s
L ap;Tz
SOt g < ColllAll, 1t
IS(Dat)) | < Cut™ 2B P2wlll, ;10 £ € (0T),
where ap and fp are as in Theorem 1.3, that is, ap = %pqp_l and B = Wl—r Then we have:

Lemma 4.1. Consider case (B). Let {(un,v,)} be as in Section 2.1. Let r and o be as in
the above. Let

-1
(4.7) 0<e<pqp .
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For any T, € (0,00), there exists § > 0 with the following property: if
(48) Wy it S0 AWy <07

for some T € (0,T.], then

/
<
(49) S Ol oy <200
(4.10) sup {3 RN =5 llun0)ll], g} < 2646,
te(0,T) 7o T2
(4.11) sup {5 (1) uy (1)1~ | < 2020,
te(0,T)
4.12 sup |||vn(t 1 < 2C,677¢,
(112 R O
(4.13) sup {5 0(1) o, (1)1~ b < 20267,
te(0,T)
forn=0,1,2,..., where C, is as in (4.6). Furthermore, there exists C > 0 such that
+1 t '
(4.14) sup 4 d(1—)pPe e / S(Ds(t — 5))om () ds < csta-om,
tE(O,T) 0 ﬂ’a;T%
I
t
(4.15) sup < d(t~H)PEF m / S(Da(t — s))un(s)?ds < Cé,
te(0,T) 0 1,8:T%

for a € [0,ag], B € |ax, BB], andn=0,1,2,....

Proof. Let T, € (0,00), and assume (4.8) for some T' € (0,T,]. By induction we prove (4.9)-
(4.15) for n = 0,1,2,.... It follows from (4.6) that (4.9)—(4.13) hold for n = 0. We assume that
(4.9)-(4.13) hold for some n = n, € {0,1,2,...}.

Step 1. Let
1
Ee{qil,r,oo}, v € [0, 00).
p
Set
I : _ gtl
[ - ||%7%T% if €= p+1?
|- M., = I - |||T7‘T% if £=r,
-l it £= oo,

for simplicity. Notice that (3.5), (3.27), and the definitions of L;7*®(L)* and £;°®(£)* yield
Minkowski’s inequality for integrals in X, .. We claim that there exists C1 = C1(N,p,q,7) > 0
such that

N

t
(4.16) H / S(Dy(t — 5))vn, (s)7 ds < corsta=or= ¥ (B -1 (1) T -rbo
0

X,y

for t € (0,7).
If p > 1, thanks to (4.4) and (4.5), by (4.12) and (4.13) with n = n, we apply Proposition 3.2
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and Lemmas 3.1, 3.6, and 3.10 to obtain

t/2 N 1 v
<C [ (=5 0D -5 fu,(5)

t/2
< / 1S(Ds(t — 8))vm. ()7 x, . ds
Xy 0

t)2
/O S(Dy(t — 8))on. ()" ds

"Il it @8

_N(1_1 1 X — t/2 -
1) <o 0Dy ﬂs/o o (2 Mom, I, g s

t/2

< OCfaw—f)pt—%(l—%)cp(t—l)%—ﬁB/ s (s~ (=088 g
0

< Ccfg(q—e)pt*%(lf%)q%t—l)%—ﬂB A F D=1~ (- DBs

= ccorstaar 3 (F 1)o@ -2 ¢ e (0,T).

Similarly, if 0 < p < 1, thanks to (4.4), by (4.12) with n = n, we apply Proposition 3.2, Lemma 3.1,
and Lemma 3.10 to obtain

t/2 t/2
[ st =shuntords| < [T ISDE = Do (57]x,, ds
0 0

X
t/2 o )
< C/o (t_S)_T(p_i)q)((t_S)_l)y_pﬁBmvm(S)pm;IBBAT% ds
p’ £
(4.18) o o
< thi(P*Z)(I)(tfl)%*pﬁB / [[|vn. (5)|||}176 % ds
0 ,BB;l'2

2
[

“PPe e (0,T).

On the other hand, by (4.3) we find £, € (1,¢) such that

N1 1
L N
2(5* e><’ o>

Then, thanks to (4.4), by (4.12) and (4.13) with n = n, we apply Proposition 3.2, Lemma 3.6, and
Lemma 3.10 to obtain

t

S(Dr(t — 8)vm. (s ds| < / IS(D1(t = ))vn. (5)7 |1 x,., ds

/2 .. P
<C t t 77(77%)(? t 1 %71213 » .
t/g( —5) - ((t—=9)"") «|||vn, (8) IHE*,BB;T% s
¢ 7 N .
<o [ s BE D)) E o G e I, ds
” 1,8p;T2
< cerslamar (f?@(t*l)fﬁgy =
t
></ (t—s)_%(ﬁ—%)q)((t_s) 1)%_%&9
/2

< CCf(g(q*E)pt—%(P—i)q)(tfl)_ﬁB(p_i)t_%(i_%)‘H(I)(t*l)

N (pt+1 1

_ CCfé(tIﬂ)Pf?(m*Y)q)(t—l)%—PﬂB’ te (0,7).

This together with (4.17) and (4.18) implies (4.16). Furthermore, applying (4.16) with ¢ = (¢ +
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1)/(p+1) and v = a € [0, ap], we obtain (4.14) with n = n,.

Step 2. We prove that (4.9)—(4.11) hold with n = n, + 1. Let 6 > 0 be small enough. By
Lemma 3.10, (4.6), (4.8), and (4.16) with £ = (¢+1)/(p+ 1) and v = ap we have

lin 10y, gy < ISy o+ | / S(D1(t =)o, (5)7 ds
pri°YB; pr1ooBiT

1
qj: ,ap;T2

< CL6 4 CCPsla=9P < 20,6, te (0,T).

Here we used the relations ag(p+1)/(¢+ 1) — pBp = 0 (see (1.13)) and (¢ — €)p > 1 (see (4.7)).
Similarly, by (4.6), (4.8), and (4.16) with ¢ = r and v = a, we have

O,y < @il #|| [ 51— o as

1
Ty T 2

1

< (Cuo+ccps ) =3 (Fa D1y s
<206t 3 (Fa -2y te(0,T).

Furthermore, by (4.6), (4.8), and (4.16) with £ = co we have

/0 S(D1(t — s))vn, (s)Pds

< (C*(S + Ccp(g(q—e)P) t*%%ﬁ@(t—l)—PﬁB

tn, 41 (&) ||Lee < ||S(D1t)pllLe +

oo

< 20,5t TRt L e (0,T).

These imply that (4.9)—(4.11) hold with n = n, + 1.

Step 3. Let m € [1,00] and n € [0,00) be such that n > a, if m = 1. We claim that there exists
Coy = Co(N,p,q,r, ) > 0 such that

< Cpodsn~F(m) gty m—on
m T3

(4.19) H‘ /O t S(Ds(t — 5))un. (s)? ds

for t € (0,T). Set my :==1if m =1. If m > 1, let m, € [1,m) be such that

N(l 1)
— -—— | <1
2 \my m

By Proposition 3.2, Lemma 3.1, and (4.2) we have

m,n;T?2

\H /otS(Dﬂ'f— $))tn, (5)7 ds

/ IS(Dalt — 8))un. ()71 ds

’mnT2

t/2 N 1 n
< [ (t= 9 BB ) E (), ds

n [

+C/t (t—s) (G —m) ot — s)~ L)

q
. ()1, s
y t/2
<o ¥ RaE e [ un . I, ds
0 T

o T2
_r_
M
1
o T2

x/t (t—s) 2 Gem)a((t—s) )W wr ds, te (0,T).
t/2

O sup {|un*<>||Lm*
SE(t/2,t)

[tn, ()]
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Furthermore, since ®(7) =log(e+7), 0 < T < T, < o0, and as < fp, by (4.10) and (4.11) with
n = n, we obtain

t/2
/0 ltm ()12 [t (5) s

17
t/2 N ptl e q—r ,ﬂ(ﬂ,l) T ax \T

<CCist (8 2 a1 P(s7) pBB) (s 2\t T r ) P(s7) pﬁB+r> ds
0
t/2

< ccg(s‘I/ sT1O(s )Tt s < CC51P(t 1) TPET € (0,T).
0

Here we used relations

,glil( ,r)fg p+1 1\ _ Npg+q N _ Npg—1_ |
(4.20) 2q+1q 2 \¢g+1 r)  2q+1 2 24941 7
fpﬂB(q*T)*pBBr+a*:quﬂB+a*:*pqul+0‘*:*1753+a*.

The first relation (resp. the second relation) follows from (4.1) (resp. (1.13)). Similarly, we see that
Jutm. DI lln. (1™

T Les T r,a*;T%
< CCas (f%%@(t_l)_p%)qimﬁ (t’%(%*%)@(t_l)_pﬁm‘%)m

N _

= CCI5%>

Uros g(¢= )~ P 0 e (0,7).

Here we also used relations

Np+l ry_N(ptl 1y
2 q+1 q My 2 \qg+1 1) m,

N pq + N N Npg—1 N N N
__Vpg qu __ v INpg n A ’
2 g+1 2m, 2 2 g+1 2m, 2 2m,
r s\ T Oy Qs Oy
- BB (q—)+<—p63+) = —pafp + =~ 2 = 1
My T/ My My pg—1  my My

Similarly to (4.20), the first relation (resp. the second relation) follows from (4.1) (resp. (1.13)).
These together with Lemma 3.6 (1) imply that

H’ /ot S(Da(t = 5))un. (5)" ds

< C'Cf&qt_%(l_%)q)(t—l)%—a* (L) Pm e

‘ 1
m,n;T2

+ st F T mr )Tt F (R m) g ) m

1

<o) H P ¢ e (0,T).

This implies (4.19). Furthermore, applying (4.19) with m = 1 and n = 8 € [a., B8], we obtain
(4.15) with n = n..

Step 4. We prove that (4.12) and (4.13) hold for n = n,+1. Taking small enough ¢ > 0 if necessary,

by (4.6), (4.8), and (4.19) with m =1 and n = Sp we have

t
ones Ol 5, s < NSD, o1+ [ SDa(e = sy (5170

1
1,8p;T2

< 0,897 + CC57 < 20,697, t e (0,T).
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Similarly, by (4.6), (4.8), and (4.19) with m = co we obtain

o2 ()2~ < [S(Dat) e + H | St = . (s)7as

LQO
< (CL89 + CCUNE 2 (¢~ 1) P < 20,674 2 (¢t 1) P, te(0,T).

These imply that (4.12) and (4.13) hold for n = n, + 1. Therefore (4.9)—(4.15) hold for n =
0,1,2,..., and the proof of Lemma 4.1 is complete. O

Proof of Theorem 1.3. Let T, > 0, ¢ > 0, and 6 > 0 be as in Lemma 4.1. Let dg > 0 be
such that g < min{d, 497}, and assume (1.14). Let {(un,v,)} be as in (2.1), and define the limit
function (u,v) of {(un,v,)} by (2.3). Then we apply the arguments in Section 2.1 together with
Lemma 4.1 to see that (u,v) is a solution to problem (P) in RY x (0,7) satisfying (4.9)—(4.15)
with (un, vy ) replaced by (u,v). Furthermore, we deduce from (3.8) that (u,v) satisfies (1.15) and
(1.16). Thus Theorem 1.3 follows. O

5. Proof of Theorem 1.4

In this section we consider case (C), that is,

—q=14 2
p=4q= N

Similarly to Section 4, throughout this section, we set ®(7) := log(e + 7) for 7 > 0.
Let 0 < . < N/2 and T, > 0. For any T € (0,7.], by Proposition 3.2 we find C, > 0 such
that

sup {||S<Dlt>u|||1 wrd IS, W} < C.A,

0<t
(D)5 ( )} <
(51)  sup {t : o) (ISDuulll, | 3 +ISD)I s } < CiA,
sup_ {t¥0( ) F (IS(D1t)ulli + S(Dat)v] i) } < Cu,
0<t<T
where A := |\|,u|||1 v 1+ |||u\|\1 et . Then we have:

Lemma 5.1. Consider case (C). Let {(un,vyn)} be as in Section 2.1. Let T, and ~y. be as in
the above. Then there exists § > 0 with the following properties: if (u,v) satisfies

(5.2 Ml g+ 11, g <0

for some T € (0,T.], then

(5.3) e |||1 wirt +llontt >|||1712V;T;} <205,

Yk

_ x4 N
7 (un®IIL_ g + @]y )} < 2C.0,

) (Jun ()12 + on(®)lz<) b < 2.5,

I\J‘Z

o<t<T
N
2

ar, {
(5.4) sup {t
{

(5.5) sup
0<t<T

t

forn=0,1,2,..., where Cy is as in (5.1). Furthermore, for any n € [y, N/2], there exists C > 0
such that

H‘ /ot S(Da(t = s)Jun(s)" ds +‘ H /Ot S(D1(t — s))vn(s)P ds

N
2

(5.6) 1yT3 LT3

<Co(t )1
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forte (0,T) and n=0,1,2,....

Proof. Let T, € (0,00), and assume (5.2) for some T € (0,7T,]. By induction we prove (5.3)—
(5.6). It follows from (5.1) that (5.3)—(5.5) hold for n = 0. We assume that (5.3)—(5.5) hold for
some n =n, € {0,1,2,... }.

Let ¢ € [1, 0] andne[ «N/2]. Set £, :==1if £ =1. If £ > 1, let ¢, € (1,¢) be such that

(5.7) Z (; - 2) <1

By Proposition 3.2 we obtain

H’ /0 S(Dat = 5))un. (5)" ds

/O S(D1(t — 8))om () ds

1 1
L T2 L T2

t/2 N
N1 —1\ 2 —~,
gc/o (t =57 2000t =)™ (lun. )71,y + w7,y ) ds
t

e (e ’ 1
+C | (= s HE (-7 (Il 71, g+ llone ()7, oy ds

for t € (0,T). On the other hand, by Lemma 3.1, (5.4) with n = n,, and (5.5) with n = n, we
have

j p
. PN, g F o @I gy = [lun. (S)]]]

1
D,y T2

< Ccfdp tii pfl)q)(tfl) **717 — COfCSP t*l(p(tfl) - 2p

+llvn. (I

1
YT 2

and
P p =
|||, (2) |||ZM*;T% + o (1], P [, (s) rh T Il[vn. () 1,7*7T%
p(1-) * p(1-7) g
< ot I P+ o L e U

N N p( ) Y i
= Ccfép{t_z‘l’(t_l)_?} {t 1<I>(t—1)7*—2p}
< C’Cf(;p t_%(p_i)q)(tfl)—%p_;_%

for t € (0,T). Since T, < oo and

N N 2 N
T gP=" 5 (1F =7 -5 1<

we deduce that

H\ /ot S(Da(t — s))un. (s)" ds

T +’ H /ot S(D1(t = s))vn(s)” ds

12
< CCo" f%(lf%)q’(flﬁ_%/ sTIB(s7 1) T3P ds
0

1
LTz
(5.8)

< cersr¥0-Ho@ )~ F+# 4 corar ¥ g1y~ F+i-
<cocorer > (Do) "5+4 . e (0,7).

)

Here we used ®(7) = log(e + 7) (resp. Lemma 3.6 and (5.7)) in the estimate of the above integral
on the interval (0,¢/2) (resp. (t/2,t)). Then, by (5.8) with £ = 1 we obtain (5.6). Furthermore,
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taking small enough ¢ > 0 if necessary, by (5.1) and (5.8) with £ =1 and 7 = N/2 we see that
: P 5P
50 {2 Ol y g+ o)l 3 b < €.+ CC20 < 206

Thus (5.3) holds with n = n, + 1. Similarly, taking small enough § > 0 if necessary, by (5.1) and
(5.8) with £ = p and n = v, (resp. with £ = c0) we obtain (5.4) (resp. (5.5)) with n = n, + 1.
Therefore we see that (5.3)—(5.6) hold for n =0,1,2,..., and the proof of Lemma 5.1 is complete.
O

Proof of Theorem 1.4. Let T}, € (0,00). Let dc > 0 be small enough, and assume (1.17) for some
T € (0,7Ty]. Then, similarly to the proof of Theorem 1.3, by Lemma 5.1 we find a solution (u,v)
to problem (P) in RN x (0,T). Furthermore, the solution (u,v) satisfies (5.3)—(5.6) with (uy,vy,)
replaced by (u,v). Then, thanks to (3.8), (u,v) is the desired solution. The proof of Theorem 1.6
is complete. O

6. Proofs of Theorems 1.5 and 1.6

In this section we consider cases (D) and (E), that is,

g+1 N 2
— d >1+ —.
pq—1>2 and g > +N
Then
(6.1) <1+2(+1)< 1+2 that i <17L2
. -— - 1 -—.
pq Nq Sq N/ at1s, p N

Furthermore, it follows that

N N +2
(6.2) 5::—2max{p—]\;;,0}—|—1>0,
since
N N +2 1 /N 1
T 1= S (S pg—1) —1) 41> - )-1)+1=0.
3 (r- ) 1=t (=D -1) 41> - (@)= D+1=0
Set

Ng 11, Ng
e =maxq ———, — o > > 1.
N+2'p N +2

Let r* € (r«,q). Assume that (u,v) satisfies (1.19) in case (D) (resp. (1.20) in case (E)). By
Proposition 3.2, (1.12), and (2.7) we find C, > 0 such that

IS(D1pll e < Cut™F (=) p(e=1) 1,
(6.3) IS(Dyt)pl| o < Cot ™50 @(1) 7,

IS(Dat)v s < Ci,

1S(Dat)v|| e < Cit™

for ¢ € (0,1). Then we have:

Lemma 6.1. Consider case (D) (resp. case (E)). Let {(un,vn)} be as in Section 2.1. Let ®
be a non-decreasing function in [0, 00) with properties (91)—(®3) and satisfy (1.18). Let r* and C,
be as in the above. Assume that (p,v) satisfies (1.19) (resp. (1.20)). Then there exists T € (0, 1)
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such that
(6.4) sup {ﬁ(ﬁ“%b(t—l)uunun L} <20,
0<t<T ul
N
(6.5) sup {55 (¢~ Jun(t)|l 1= } < 2C.,
0<t<T
(6.6) sup |Jvn ()] pr < 20,
0<t<T ul
(6.7) sup ¥ o, (01~ } <20,
forn=0,1,2,.... Furthermore, there exists C' > 0 such that
t
(6.8) H’ / S(D1(t — s))vn(s)P ds < OB,
0 D.r. Ty
t t
(6.9) H/ S(Dat — s)un(s)7ds|| < 0/ sl (s1)~ ds,
0

fort e (0,T) andn=0,1,2,..., where d is as in (6.2).

Proof of Lemma 6.1. By induction we obtain (6.4)—(6.9). Let T € (0,1) be a constant to
be chosen later. It follows from (6.3) that (6.4)—(6.7) hold for n = 0. We assume that (6.4)—(6.7)
hold for some n =n, € {0,1,2,...}. Then, for any ¢ € [1, 00| with ¢p > 1, by Lemma 3.1 we have

(6.10) Jon, Pl < lon. (O on. @11 < @CIPEEED, e (0,7).
u ul

Step 1. We prove that (6.8) holds for n = n, in the case of r, = Nq/(N +2) > 1/p. Let r > 1 be
such that

1 Ng N(l N+2>
< 1.
T Ngq

];<T<T*ZN+2’ ?

By Proposition 3.2, Lemma 3.5, Lemma 3.6, and (6.10) we have

S(D1(t — 5))v,, (s)P ds

’H t/2

D r T

t

<[ (t—s)FEFRB((t = 5)7 ) ||on. ()71, ds
(6.11) t/2

t
<C | (-5 FCTE)o((t—5))s F(3) gs

t/2
<ot (= WEg((¢/2) ) < Ct0B(tTY), te (0,T).

On the other hand, if p > 1, by Proposition 3.2, Lemma 3.5, (6.1), and (6.10) we have

£ st o

D1, Tu

_ N(q_N+2 _
(6.12) <C/ t—s 1;] 1-%5 )(I)((t_s) 1)||U”*(S)p”Lll,1 ds

t/2
<C 507 2)<I>(t 1)/ sz (P g
0

<o BN (/)7 < oo, e (0,1),
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Similarly, if 0 < p < 1, then

H’ . S(Di(t = ))vn. (5)F ds

[

N+2

) B((t — 5)71)|on. ()7

M‘Z

p*

(6.13) <C/ (t=9)

gC/ (t—s) 20RO a((t - 5)7") ds

< ot > (P RWE)I((¢/2)71) < COB(tY), e (0,T).

By (6.11), (6.12), and (6.13) we obtain

<Co(t), te(0,T).
Dr,,1

H’/SDlt—s Yon, ()P ds

Thus (6.8) holds for n = n, in the case of 7. > 1/p.
On the other hand, if r, = 1/p, then 0 < p < 1 and Proposition 3.2 together with Lemma 3.6
and (6.10) implies that

H‘ /ot S(D1(t = 5))va. (s)" ds

e H’ /0 S(D1(t = s))vn. (5" ds

@,

3=

s

S

¢
<C/ ((t—8)™Y|vn, (s)7] ;dsgC/ O((t—s)"')ds
Ly 0
<Ctd(t~h) = CctPe(t™t), te(0,7).
This implies (6.8) with n = n, in the case of . = 1/p. Thus (6.8) holds for n = n..
Step 2. We prove that (6.4) and (6.5) hold with n = n, + 1. It follows from (6.10) that
¢

o S(D1(t — s))vp, (s)P ds

(6.14)

t
< C/ [|vn. ()Pl L ds < Ot FpHl
Loo t/2

for t € (0,T). Furthermore, if p > 1, by (6.1) and (6.10) we have

t/2

t/2 N N
S(D1(t — s))vn, (s)P ds < C/ (t—5)"7 ||on, (S>p||L11 ds < Ot~ 3+l
0 u

I,

(6.15) ‘
0

for t € (0,T). Similarly, if 0 < p < 1, then

t/2 N Y
<c / (t = 8)" ¥ P|lon. (s)PI| 1 ds = Ct=FPH!
0 LY

oo ul

t/2
(6.16) | /0 S(D1(t — s))vn, (s)P ds

for t € (0,T). By (6.2), (6.14), (6.15), and (6.16) we see that

<ot =g < oa( )
L()C

e d(t) /O S(D1(t — $))vn. (5)P ds

for t € (0,T). Then, taking small enough T > 0 if necessary, by Lemma 3.5 (2) and (6.3) we obtain
Nt2 £ -1 S (+—1 3
t720 Ot ) |Jun, (B)||e < C + C°O(t77) < Cy 4+ Ct2 <2C,, t€(0,T).

Thus (6.5) holds for n = n, + 1.
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Similarly, since * > r, > 1/p, we find m > 1 such that

1 . N(l 1>
- <m<ry, —|———])<1.
P 2 \m r*

It follows from a similar argument to those of (6.15) and (6.16) that

<o Fl—F)+

/2
/0 S(D1(t — s))vp, (s)P ds

r
L

for t € (0,T). Then, by (6.10) we have

H /Ot S(D1(t — s))vn, (s)P ds

t
<ot Fl-F)H 4o (t—s)_%<#_%*)
t/2

¥
Lul

[Un, (8)P[|Lm ds < o3 (p—7)+1

for t € (0,T). Taking small enough T > 0 if necessary, by Lemma 3.5 (2), (6.2), and (6.3) we
obtain

W) () un, 41 (O e < Cu+ O F =W g1

<C,+ 09t Y <O, +Ct2 <20, te(0,T).

Thus (6.4) holds for n = n, + 1.
Step 3. We prove (6.9) with n = n,. Since ¢ > r*, it follows from (6.4) and (6.5) with n = n, that

| [ st0ute = ppun. sy

Ly
t t . .
<C [ Nun. (90 ds <€ [ N (9 . (9] ds
0 0 “

e /0 (o) (s ¥R Pae) ) s

t
< C/ sTl®(s™H"%ds, te (0,T).
0

This implies (6.9) with n = n,. Furthermore, taking small enough T if necessary, by (1.18) we
obtain

t
omia (D) < c*+c/ s lB(s 1) ds < 2C,, te (0,T).
ul 0

Thus (6.6) holds for n = n, + 1. Similarly, taking small enough T if necessary, we see that

N N t/2 N N t
t2 on, 41 ()l < Ci + CE> / (=) % lun. (s)[ Ly, ds + Ct= / l[tn, (5)%]] Lo ds
0 " t/2

t/2 .
<Gt C/ S_I(I)(S_l)_q ds + Ct% / (s_NTT(I)(S_l)_lyl ds
0 t/2
t
< Cu +/ sT'®(s7h) " %ds <2C., te(0,T).
0

Thus (6.7) holds for n = n, + 1. The proof of Lemma 6.1 is complete. O
Proofs of Theorems 1.5 and 1.6. Similarly to the proof of Theorem 1.3, by Lemma 6.1 we find
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a solution (u,v) to problem (P) in RY x (0,T) for some T' > 0. Furthermore, the solution (u,v)
satisfies (6.4)—(6.9) with (u,,vy) replaced by (u,v). Then we deduce from (3.8) that (u,v) is the
desired solution. Thus Theorems 1.5 and 1.6 follows. O

7. Discussions

Taking Proposition 1.1 into the account, we discuss the optimality of assumptions in our theo-
rems. We remark that, in cases (B)—(F), problem (P) possesses no global-in-time positive solutions
(see assertion (3) in Section 1).

Case (A): Consider case (A). Set

_ 2(p+1) i

1(z) = calz|” 7T xpoay(z) in RY,
_ 2(g+1) .

v(z) = caplz|” P T xpoa(x) in RY,

where ¢4.1, Cq2 > 0. Let ayg and Bp be as in (1.5). Then

H,UJHM(r;‘,aA;oo) = Clcmla ||V||M(T§,ﬁA;oo) = Cica,Qa

where C7 and C] are independent of c¢,1 and ¢, 2. Then, if ¢,1 and ¢, 2 are small enough,
Theorem 1.1 implies that problem (P) possesses a global-in-time solution. On the other hand, if
either ¢,,1 or ¢q2 is large enough, then Proposition 1.1 (a) implies that problem (P) possesses no
local-in-time solutions. This means that, if the constant d4 in Theorem 1.1 is large enough, then
problem (P) does not necessarily possess local-in-time solutions.

Case (B): Consider case (B). Set

_ 2(p+1) 1 _ﬁ .
() = cpqla|™ Pat [log (e + |x>} XB(0,1)(x) in RY,
N 1 wa-T ! . N
v(z) = cpolz|” {log (e + x|>] XB(O,l)(x) in RY,

where ¢p.1, ¢p2 > 0. Then

1 2(p+1)

1\] 7=
w(s) < cp1s” N pa-t {log (e + s)] X(0,wy)(8) for s >0,

1
1 pq—1
v*(s) < cpoast {log (e + s)} X(0wn)(8) for s >0,

1
1 T pg—1
o Chas ™ {log (e + ﬂ for s € (0,wn),
v (s) < s

1

Cp2S~ for s € [wy, 0).

These imply that

el ot o pin + HVIl650 = Calena + cv2),

where C; is independent of ¢, 1 and ¢4,2. Then, if ¢; 1 and ¢, 2 are small enough, then Theorem 1.3
implies that problem (P) possesses a local-in-time solution. On the other hand, if either ¢, ; or
Cq,2 18 large enough, then Proposition 1.1 (b) implies that problem (P) possesses no local-in-time
solutions. This means that, if the constant dp in Theorem 1.3 is large enough, then problem (P)
does not necessarily possess local-in-time solutions.
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Case (C): Consider case (C). Set

_N_4
- 1 2 .
w(x) = cealzl N [log (e + W)} XB(0,1)(7) in RY,
1

1 B .
v(z) = CC72|£L"7N {log (e + |33>} XBo,1)(z) in RY,

w[Z

where c. 1, ¢¢c,2 > 0. Then

_N_q
1 2
coip(s) = coav*(s) < st [log (e + ﬂ X(0wn)(8) for s>0,
] ’ S ?

w2

st {log <e + 1)] for se€ (0,wy),
s

st for s € [wy,o0).

Coah™ (s) = co ™ (s) =

These imply that

g+

172

1.3 = C3(cen + ce2),

172

[l

where Cs is independent of ¢, 1 and ¢,2. Then, if ¢, and c. 2 are small enough, then Theorem 1.4
implies that problem (P) possesses a local-in-time solution. On the other hand, if either c.; or
Ce,2 is large enough, then Proposition 1.1 (c) implies that problem (P) possesses no local-in-time
solutions. This means that, if the constant d¢ in Theorem 1.4 is large enough, then problem (P)

does not necessarily possess local-in-time solutions.
Case (D): Consider case (D). Let ® be a non-decreasing function in [0, c0) with properties (®1)—

(®3). Let v € M and set
_ N2 1 .
p(x) = la|= 7 @(jz[7") 'xpey(x) in RY.
It follows from Lemma 3.5 that

N+42

p(s) <87 N D(sTH) T x 0w (8), s> 0.

This implies that

Ng

Ng
pe LY o(L)ve,

Then Theorem 1.5 implies that problem (P) possesses a local-in-time solution if
1
(7.1) / sil@(sfl)*q ds < oo and v &€ My.
0

Next, we assume that r—<®(r~1)~! is decreasing in (0, 1) for some ¢ > 0. Then Proposition 1.1 (d)
implies that, if either

1
/ sTIP(s ) lds =00 or v My,
0

then problem (P) does not possess no local-in-time solutions. Thus problem (P) does not necessarily
possess a local-in-time solution without (7.1).

Case (E): Consider case (E). Let ¥ be a non-decreasing function in [0, 00) with (®1)—(®3) such
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that
1

(7.2) / N (rH T dr = 1.

0
Let v € M and set

wlx) = |a:|_N\I/(|x|_1)_1XB(0’1)(m) in RV.
It follows from Lemma 3.5 that
pE(s) = s (s T xown (5), T (s) < S’l/ T () T X (0w (T) T,
0

for s > 0. Set

-1
771W(771)71X(071)(7) dT) , s>0.

D(s) = (/OS

Then @ is a non-decreasing function in [0,00) and ®(0) = 1 by (7.2). Furthermore, by assump-
tion (®2) for ¥ we have

®(a?) = (2 /Oa

which implies that ® satisfies (®2). In addition, for any § > 0, by assumption (®3) for ¥ we find

Cs > 0 such that
. 5 . -1
(27.—1> NG (27_—1) > 06—17—5\1,(7_—1)—1
T1 1

for small enough 7 > 0 and all 77, 75 > 0 with 73 < 75. This implies that

-1
T_llII(T_2)—1X(071)(T) dT) < C®(a), a>0,

T -t 70
g (20 > 051%7_1@(7_1)_1
T1 Ty

for small enough 7 > 0 and all 77, 75 > 0 with 77 < 75. Then

ot -1 -
— — ! _ T2 _
T2 6(1)(72) =T ’ (/0 e (7_?7' 1> X(O,TflTQ)(T) dT)

Tfl -1
< Csti° (/0 7'_1‘1’(7'_1)_1X(0,T;172)(7') dT) < G5 °®(m1)

for large enough 71, 72 with 7 < 75. Thus ® satisfies ($3). Since p € Qi’f’o@(ﬁ), we observe from

Theorem 1.6 that problem (P) possesses a local-in-time solution if

1
(7.3) / sT'O(s7 ) Tds < oo and v E My.
0

On the other hand, setting

ha(J]) = @(|z|7H) 7,
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by Proposition 1.1 (e) we see that, if either
1
/ sTIP(s ) lds =00 or v My,
0

then problem (P) possesses no local-in-time solutions. Thus problem (P) does not necessarily
possess a local-in-time solution without (7.3).

Case (F): Consider case (F). In Theorem 1.2 we obtain a local-in-time solution if u, v € M. On
the other hand, we observe from Proposition 1.1 (f) that u, v € M, is a necessary and sufficient
condition for problem (P) to possess a local-in-time solution.
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