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ABSTRACT. Let F' be a number field and D a quaternion algebra over F'. Take
a cuspidal automorphic representation 7 of Dg with trivial central character
and a cusp form ¢ in 7. Using the prehomogeneous zeta function, we find an
explicit mean value of the toric periods of ¢ with respect to quadratic algebras
over F'. The result can also be written as a mean value formula for the central
values of automorphic L-functions twisted by quadratic characters.
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1. INTRODUCTION

In this paper, as a sequel of [SW], we prove a mean value theorem for toric
periods. Our result is based on the celebrated work of Waldspurger on the toric
periods and the central L-values. Before stating our main theorem, we recall the
result of [SW].

We fix a number field F' and a quaternion algebra D over F. Let A = A be the
adele ring of F' and m = ®,m, an irreducible cuspidal automorphic representation
of DAf with trivial central character. Here, Dy = D Qg A. Let E be a quadratic
étale algebra over F' embedded in D and we regard E* as a subtorus of D*. In
[Wal85], Waldspurger proved a relation between an automorphic period integral

Pe(o) = /AXEX\AX o(h)d*h, éem,
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which we call the toric period, and the L-value L(%, ﬂ)L(%,ﬂ' ® ng). Here, np =
®qNE, 1s the quadratic character on A} attached to E. To state this result precisely,
we need to introduce more notation. Let (-,-) be the Petersson inner product

(1, 02) = /AXDX\DX ¢1(h)p2(h) dh, o1, 02 €T

and fix a decomposition as a product (-,-) = [[, (-, ), where (-, -), is a D -invariant
inner product on m,. Put

0, G d2) = [ (m0)10s 2} dh
FI\EJ

It converges absolutely. Let (g (s) be the Dedekind zeta function of F', L(s,m, Ad)

the adjoint L-function of m and L(s,ng) the Hecke L-function. Take a finite set S

of places of F. We denote the partial Euler product outside S of (r(s), L(s,ng)

and L(s,m,Ad) by ¢2(s), L%(s,nr) and L(s, 7, Ad), respectively.

Now we are ready to state the result of Waldspurger. Let ¢ = ®,¢0, € 7w
be a decomposable element and assume that S is sufficiently large so that =, is
unramified for any v ¢ S. Waldspurger proved that there is a constant C' > 0
depending on the choice of Haar measures such that

CR(LS (5, ™)L (5,7 @ i)

Po@)f = € g AT I 0 (o),
where
aps(®) =[] as, (@0, d0).
veSs
In particular, L(3,7) = 0 implies Pg(¢) = 0 for any E. Conversely, in [SW] we

showed that if L(%, 7) # 0 then there are infinitely many isomorphism classes of
FE such that Pg is not identically zero on w. The main theorem of this paper is a
refinement of this previous result.

1.1. Main results. Suppose that S is sufficiently large. Let F, denote the com-
pletion of F' at a place v. Assume also that there is an S-tuple s = (€,)ypes of
quadratic étale algebras over F), such that ag, (¢v, @) # 0 for every v € S, and we
fix such £s. By [S\W, Theorem 1.7}, this is possible if L($,7) # 0. We fix a set
of representatives X (D) of isomorphism classes of quadratic étale F-subalgebras of
D. Let X(D,E&g) be the set of E € X(D) such that E, ~ &, for any v € S.

Let fg, be the conductor of the quadratic character ng,, N(fg,) its norm and
N(2) = [T¢s N(fe,)- The absolute discriminant of F//Q is denoted by [Ap|. If v
is a finite place, set ¢, = (g, (1). If v is an archimedean place, set ¢, = 1. Let cp
be the residue of the finite part of (r(s) at s = 1. For v € S, set

1
Ao = @5 (o + a;1)7

where «, € C* is the Satake parameter of m, and ¢, is the order of the residue
field of F,. The following is a special case (the ¢t = 1 case) of Theorem 5.

Theorem 1 (A special case of Theorem 5). The limit
lim &'y L(1L, ) am,s(0) ! [Pr(0)?
E

T—>00
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exists, where the sum is over E € X (D, Es) such that N(f3) < x. The value of the
above limit equals

2¢? (1,ne,) _ g —1 _
L(3,m) —£ . {1%3%3/\3}
= |AF|2 HQCU L(3,m) l;g go +1

For a quadratic étale algebra &/ over F,, we set

P /(71_ ) . CFu(2)L(%77T’U ®’r]5f))
E\Mw) - QCU L(l’ﬂ-v’Ad)

Then the Euler factor for v € S of the above mean value formula satisfies

— g@—1 _5 .9 Ker ()
1- 4y s 4y )‘v = y .
Qv +1 52/ N(fé’{))

Here, &£/ runs through all quadratic étale algebras over F,. We do not yet have
conceptual understanding of this expression.

By using Waldspurger’s formula for [Pg(¢)|?, we can rewrite this result as a
mean value theorem for the special values of the twisted L-functions.

| 2

Theorem 2 (A special case of Corollary 8). Let S be an arbitrary finite set of
places of F. We allow the possibility that S is empty. Suppose that L(%, ) # 0.
The limit

lim z 1ZL (3,7 ®nE)

T—r 00

exists, where the sum is over E € X (D, £s) such that N(f3) < x. The value of the
above limit equals

20F|AF‘7 Hfis () H ZE%;;U))

vgS \ &,

As corollaries of these results, we record two mean value theorems in the following
special cases:

(i) The case where ¢ corresponds to a Hecke eigenform f € Si(SL2(Z)). In
this case, F' = Q and D is the split quaternion algebra.

(ii) The case where F' = Q and D is a quaternion division algebra of odd prime
discriminant.

Appendix A by Shun’ichi Yokoyama and the authors provides numerical examples
for these two special cases using Magma | ]

We describe one consequence of the explicit mean value theorem for the case (i).
Let k be an even positive integer and f € S;(SL2(Z)) a normalized Hecke eigenform.
We denote by a,, the n-th Fourier coefficient of f and by (-,-) the Petersson inner
product. Let 0 = ®,0, be the cuspidal automorphic representation of GL2(Ag)
generated by f. Theorem 2 in this case reads as follows.

Theorem 3 (Corollary 11). The limit

lim z 1ZL (3,0 ®@nE)

Tr—r00
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exists, where the sum is over real quadratic fields E with |Ag| < . The value of
the above limit equals

6(87)=T(%) P e
Fro U I { - - fo ).

where the product is over all primes.

1.2. Methods and related works. We prove Theorem 1 by applying Tauberian
theorem to the prehomogeneous zeta function with toric periods which is introduced
in [SW]. As we see in [SW, Theorem 4.10] (or Theorem 16 of this paper), our zeta
function is roughly a counting function of L(1,ng)*ag,s(¢) "' |Pr(¢)>. Based on
this interpretation, we follow the general strategy toward the density theorems

discussed by Wright and Yukie in the introduction to | ]. Since the global
zeta function is an approximation of the counting function, we need to carry out
the filtering process developed by Datskovsky and Wright | ]. The main step

of the filtering process is to find a uniform estimate for the contribution of the local
zeta functions to the residue of the global zeta function. We emphasize that we
use the bound of Blomer and Brumley | | for Hecke eigenvalues to obtain this
uniform estimate. Note that a less sharp bound is sufficient for our purpose. See
Remark 19 for this point.

When F = Q, similar results are obtained by many researchers. Here, we men-
tion only a few of them. Radziwill and Soundararajan | ] studied the mean
values for quadratic twists of Hasse-Weil L-functions associated with elliptic curves.
Soundararajan and Young | ] obtained second moments for quadratic twists of
modular L-functions. Higher moments for products of automorphic L-functions are
studied by Sono | ]. These results concern estimates of the order and error
terms. There are several researches which aimed to determine the leading term.
See [ ] and | ]. In | ], a conjectural formula for the leading term
was proposed. Their formula looks quite different from ours and we did not confirm
that our formula coincides with theirs.

For a general number field, several results are obtained by analyzing a multiple
Dirichlet series. Friedberg and Hoffstein [ ] proved non-vanishing of central L-
values for infinitely many quadratic twists. Their results also imply the existence of
the density and its positivity. Bump, Friedberg and Hoffstein obtained an explicit
mean value formula with an error term estimate for quadratic twists of L-functions

for GL3(Ag) times certain correction terms | , Theorem 3.8]. One may be
able to do the same for quadratic twists of L-functions for GL2(Ap) for a general
number field F' using the technique developed in | 1, [ ] and [ ].

However, it is not clear whether one can recover Theorem 1 by this approach since
their sum involves correction terms which contain information about ramification
of the automorphic representation. An important step of the proof of Theorem 1 is
to show that the ramification of the automorphic representation is reflected in the
mean value as a local period.
Compared with others, the approach using prehomogeneous zeta functions has
several advantages:
(1) One can compute the mean value explicitly and the resulting formula is so
simple that it can be numerically checked.
(2) One can consider contributions of quadratic extensions with given local
behaviors at arbitrarily chosen finite number of places.
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(3) The mean value has an Euler product, which visualizes the contribution of
each local component of the automorphic representation.

A prototype of our zeta function was first introduced by Sato | ] and its local
theory is extensively studied by Wen-Wei Li ([ I, [ ], [Li19] and [Li20]) in
a quite general setting. The results of this paper and the previous one [SW] are

first applications to the non-vanishing of automorphic periods and L-functions.

1.3. Organization of the paper. The organization of the paper is as follows. In
Section 2, after introducing notations we use throughout the paper, we state our
main theorem and deduce from it the above mentioned two special cases. In Section
3, we briefly recall the definition and necessary properties of the prehomogeneous
zeta function with toric periods from [SW]. The global zeta function can be written
as a Dirichlet series with appropriate weight factors. We show that this Dirchlet
series has a simple pole at s = % unless it is identically zero and determine the
residue. The residue has an Euler product and we see that each local factor is
essentially the local period ag, (¢, ¢,) which appears in Waldspurger’s formula.
In Section 4, we apply the filtering process and prove the main theorem. Finally
in Appendix A, we provide numerical examples for the mean values of the special
values of the twisted L-functions of the elliptic modular cusp form of level 1, weight

12 and the toric periods of an algebraic modular form.
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partially supported by JSPS Grant-in-Aid for Scientific Research (C) No.20K03565,
(B) No.21H00972. S.Y. was partially supported by JSPS Grant-in-Aid for Scientific
Research (C) No.20K03537.

2. MEAN VALUE THEOREMS

2.1. Preliminaries.

2.1.1. Number fields. Let F be a number field, o its ring of integers and ¥ the set
of all places of F.. For v € 3, let F,, denote the completion of F' at v. In particular,
when F' = Q and v = oo is its unique infinite place, Q.. denotes the real number
field R. If v is a finite place, we write 0, = o, for the ring of integers of F),, w,
for a prime element of 0, and g, for the order of the residue field o, /w,0,.

Let A = Ap denote the adele ring of F' and Ag, = Apg, its finite part. Set
F = Hv‘oo F,, where the product runs over the set of infinite places of F. We
write by r1 (resp. r2) the number of real (resp. complex) places of F.

For an algebra E over F' and v € 3, we write E, = E ®p F,. Suppose that E is
a quadratic étale algebra over F. We write the maximal order of F (resp. E,) by
op (resp.og,). Let n = ng be the corresponding quadratic character on A*. For
v € X, let n, = ng, be the quadratic character on F* corresponding to E,,.

Let dz be the Haar measure on A normalized so that vol(A/F) = 1. For v € X,
we fix a Haar measure dz, on F, as follows. If v is finite, dz, is normalized
so that vol(e,) = 1. If v is a real place, let dx, denote the ordinary Lebesgue
measure on R. For a complex place v, we set dzr, = 2dzy,d»s,, where x, =
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T1 .+ 220V —1 € C and dw;,, i = 1,2 are the Lebesgue measures on R. Then, we
obtain dz = |Ap|~Y/2]],cs, dz,, where |Ap| is the absolute discriminant of F/Q.

Let | - |, denote the normalized absolute value of F, and |- | the idele norm on
A*. Take a non-trivial additive character 1g on Ag/Q, and set r = g o trp/q.
Then, dz is the self-dual Haar measure with respect to ¥ p. For each v € ¥, we
write the restriction of ¥p to F, by ¥p,. For each place v € ¥, let d*z, denote
the Haar measure d*z, = ¢, |z|, ! dz, on F)X, where

1 if v is an infinite place,
C, =
! (1—g,;H)~! if v is a finite place.

Define the Haar measure on A* by d*z = |Ap|~'/2]], .y d*=,, and normalize
the Haar measure d'y on A = {x € AX | |z| = 1} so that d*z equals dly x dt/t
under the isomorphism A x Ryq =+ A, (y,t) — yt. Here, dt is the Lebesgue
measure on R and dt/t is the Haar measure on Rg.

Let Cr(s) (resp. (pgn(s)) denote the completed (resp. the finite part of)
Dedekind zeta function of F. For a character x on F*Rso\A*, write L(s,x)
(resp. Lan(s,x)) for the completed (resp. the finite part of) L-function of the
Hecke character x. When x = 1 is the trivial character, Lgn(s,1) = (rgin(s) has
a simple pole at s = 1 with residue cp := vol(F*\A!). By abuse of notation, we
write Lgn(1,1) = ¢ so that La,(1, x) is defined for any Hecke character .

2.1.2. Quaternion algebras. Let F be a field of characteristic zero and D a quater-
nion algebra over F. When D is not division, we identify D with Ms(F') so that the
main involution ¢ of D is given by z* = (% §) z(9 '). When D is division and
F is its subfield which is a quadratic étale algebra over F, we can find an element

b € F* so that D is isomorphic to the matrix algebra

{<b§n Z) € M(E) | &neE},

where ~ is the unique non-trivial F-algebra automorphism of . The main involution

ton D is given by ( b% g)b = ( _%ﬁ —577 ) . We write the reduced norm and the reduced
trace by det(z) = xz* € F and tr(x) = ¢ + 2* € F for x € D, respectively.

From the Skolem-Noether theorem, two quadratic étale F-subalgebras of D are
isomorphic if and only if they are conjugate to each other. Let X (D) denote a set of
representatives of isomorphism classes of quadratic étale F-subalgebras of D. For
each £ € X(D), choose an element g € D so that £ = F + Fdg and tr(dg) = 0.
Set dg = 62 € F. Note that we have det(dg) = —de.

Suppose F' is a number field and E € X (D). For a place v e X, D, = D ®p F,
is a quaternion algebra over F, and F, = F ®p F, is an F,-subalgebra of D,,.
Unless otherwise mentioned, we assume 0, = dg and dg, = dg under the natural
embeddings £ — F, and D — D,,.

2.1.3. Measures on algebraic groups. From now on, let F' be a number field. For
an algebraic group G over F', we write G(F), G(A) and G(Agy,) by Goo, Ga and
Gy, » respectively. Let K =[], K, be a maximal compact subgroup of GL2(A),
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where
GLy(0,) if v is finite,
K, =<0(2) if v is real,
U(2) if v is complex.

Let dk, be the Haar measure on K, normalized so that vol(K,) = 1 and define the
Haar measure dk on K by dk =[], dk,.

Let D be a quaternion algebra over F' and Z the center of D* and dz the Haar
measure on Z(A) = A* given by dz = % dla, where z = t2al, with t € Rs and
a € A'. Note that dz = 2d*x, where d*z is the measure on A* chosen in §2.1.1.
Let dg be the Tamagawa measure on D;. The algebraic group D*/F* over F
will be denoted by PD*. Then we have vol(PD*\PD}) = c.' with respect to the

quotient measure %. Let (-,-) be the inner product on L?(PD*\PD}) given by
(e,¢) = / w9)¢'(9) .9 € LX(PD*\PDy). (1)
PD*\PD} Z

Let dz denote the Tamagawa measure on D and dz, the local Tamagawa mea-
sure on D, = D ® F, for v € ¥. We have

dz = [Ap| 7 [ dz.. (2)

vEX

For a quadratic étale algebra &, over F,,, we write an element hg, € &, in the form
he, = a, + 0g, b, with a,,b, € F,. Define a Haar measure dhg, on £ by

da, db,

dhe, = cy L(1,7¢,) [ — ds. 2],

3)
where 7g, is the quadratic character on F,¢ corresponding to &, and da,, db, are
the Haar measures on F, chosen in §2.1.1. For a quadratic étale algebra E over F,
the Tamagawa measure dhg on (Ap @p E)* is given by

1
dhp = ——F——— dhg .
" cFL<17nE>\AF|rUI B

Here, np = ®uexne, denotes the quadratic character on Ay corresponding to E.

2.1.4. Toric periods. Throughout this paper, we assume that 7 = ®,cxnm, is an ir-
reducible cuapidal automorphic representation of PD} which is not 1-dimensional.
For each place v € X, take a D¢ -invariant non-degenerate Hermitian pairing (-, -),
on 7, so that we have

For €, € X(D,), let dh, = j’;gz be the quotient measure on F\E. The integral

v

Oés,,(s%%):/ e <7rv(hv)90va¢i;>v dhy, SD'L”SD’IU € Ty
FY\ES

converges absolutely and defines an element of Hom?X?(ﬂU X 7, C), Here we

write A for the image of A(C D,,) under the projection DX — PDJ}. Let E € X(D).
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We define the Haar measure dh on ASEX\AF by dh = (cz' d*2)\ dhg. A linear
form Pg on 7 is defined by

Pr(p) =/ @(h) dh, ¢ em.
AXEX\AZ

We say that m is E*-distinguished if Pg is not identically zero. The linear form Pg
is called a toric period. Similarly for &, € X (D,), we say that m, is £-distinguished
if Homs(my, C) # 0.

Let qgj = Quex@y be a decomposable element of . In | ], Waldspurger
proved a formula which relates the toric period and the special values of automor-
phic L-functions:

1 Cr(2L(E, )L ,w@nE #
Pr(@) = Ap|  L(1,7, Ad)L( 21 RSE H i, (@0, $u)- )

Here,

L(1,m,,Ad)L(1,7nE,)
CFU( ) ( Wv)L(%’Wv Y 77Ev)
is the normalized local period. Note that the choice of our Haar measure on PD

is 2cp times the Tamagawa measure. See also [[110, Section 6].
Let S be a finite subset of ¥ satisfying the following conditions.

Condition 4. For v € 9,
e v is a finite place which is not dyadic.
D, is split, in particular PD)¢ ~ PGLy(F).
7, is unramified and ¢, is the spherical vector, which is normalized so that

<¢va ¢v>v =1

e let K, be the maximal compact subgroup corresponding to PGL2(0,) under
a fixed isomorphism PD} ~ PGLy(F,).
for every E € X (D), we have dg, € 0, \ @20,, and the maximal compact

b (Do, by) =

ag, (dv, v)

subgroup of E is contained in K, (that is, o , C K,).

Since we have PD; = PD*[[,cg PD) [],¢5 K for sufficiently large S, by
taking a suitable PD*-conjugate, we may assume that our fixed embedding E < D
satisfies the last condition of Condition 4.

Since aﬁv (¢v, Py) = 1 for any v ¢ S (see Corollaries 33 and 34), the formula (4)
is equivalent to

1 G L5 ) L (5, @ k)

|AF| Ls(lv m, Ad) Ls(lv ne) L(1,1k)
where ap s(¢) = [[,cs @r, (v, ¢»). Note that if both sides of (5) is not equal to
zero, then ag s(¢)~1|Pr(¢)* depends only on the isomorphism class of E and is
independent of its realization as a subalgebra of D.

Put X(Ds) = [[,cs X(Dy). Take an element £ = (&,)ves € X(Ds). Let
E € X(D) and suppose that FE, is isomorphic to &, for each v € S. In the case
ap,s(¢p) =0, by abuse of notation, from the viewpoint of (5) we formally define

1 GR)LS(57m) L (5, @ p)
‘AF| LS(LW’Ad) LS(LTIE) L(lanE)

Pe(e)?

aE,S(¢)7 (5)

ap,s(9)” [Pe(#)*
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when 7 is E*-distinguished, and
ag.s(®) | Pe(@))? =0 when 7 is not E*-distinguished.

Note that ag, s(¢) = 0implies Pg(¢) = 0 even if 7 is E*-distinguished. In addition,
by abuse of notation, we define
1
- de, |?
o5 (DNPE(6) = aps(6) 7 [Pr(9) x ae,(6.0) x [] |72

vES
where agg (¢, @) = [[,cg e, (D0, pv). When ap s(¢) # 0, we have

Oé%s (¢) _ agg (¢a QS) H d&;

aps(®) ¢lds,

Note that a4 (¢)|Pg(4)[? is non-negative (see Lemma 20).

(6)

v v

v

2.2. Mean value theorem for toric periods. Let ¢ = ®,¢, be a decomposable
element in m. We take a finite subset S of ¥ and a set X (D) of representatives
of isomorphism classes of quadratic étale F-subalgebras of D so that S satisfies
Condition 4 for ¢ and all (but finitely many) E € X (D).

We assume that there exists £ = (&,)pes € X (Dg) such that ag, (¢y, Py) # 0
for any v € S. In [SW, Theorem 1.7], we showed that this is the case if L(3,m) # 0.
Fix such . Let X(D,E&s) be the set of E € X(D) such that E, ~ &, for each
veS.

Theorem 5. Let ¢ = ®,¢,, S C ¥ and Es € X(Dg) be as above. In particular,
we assume that Condition 4 is satisfied. For ¢ > 0, we have

Tm o=t 3" NG L(Lp) as(6) 7 Pe(9)) (7)
EeX(D,Es),
N(fz)<z

202 L]., “ — qv_]-,
=L(3,m—L- ] 1, 7z,) -H{l—q,,B—q3>\3}-

1 1 v
t‘AF|2 vES 2¢y L(§77Tv) vés g +1
Here, fz, is the conductor of the quadratic character ng,, N(f5) = [Togs N(fe.)

1
and \, = ¢ (a, + ay ), where a,, € C* is the Satake parameter of m,. Note that
the mean value on the left-hand side depends only on the isomorphism class of &s.

Remark 6. The factor ap s(¢) 1 |Pr(¢)|? is independent of the choice of ®,es5py,
and hence so are the both sides of (7).

Remark 7. For any v € ¥ and a quadratic étale algebra &/ over F,,, we set

oy DU )
E AT e, L(1, 7y, Ad)
A direct computation shows that the Euler factor for v € S of (7) satisfies

qv — 1q73 2 _ :‘4351/) (771))
qv +1 v v = N(ff{/) I

1—q,°—

where &/ runs through all quadratic étale algebras over F,, up to isomorphism.

Substituting Waldspurger’s formula (5), one can rewrite (7) as a mean value
formula for L-values.
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Corollary 8. We keep the notation as in Theorem 5. Suppose that L(3,m) # 0.
For ¢t > 0, we have

. —t S\t—1 1

Jma™t 3 NGETLGr o) )
EeX(D,Es)
N(jip)<z

267 IAp|z L 1 T, Ad ke (my)
= F ; H KEg, 7TU . H Z N(fg;)

vgS \E,€X(D,)

Remark 9. We examine the dependence on S of the mean value formula (8) for
L-values. Suppose that T' is a finite subset of ¥ such that S C T. Note that T
satisfies Condition 4 if S does. Recall that &g € X (Dg) is fixed. It is easily seen
that

> NGFR)TLG,m@ne)
EeX(D,Es)
N(fp)<z
t—1

= > | II ~Ge) 3 NGB (L, 7 @ np),

[,TEX(DT) UET\S EEX(D,ﬁT)
EsCLT NGR)<(TTyers N(f‘v))ilm

where L1 = (L,)yer runs over elements in X (Dr) such that &, = £, for each
v € S. Hence the left hand side of (8) becomes

-1

> II NGe)| -lima™ > NGRT'LG.7@um).

T—00
LreX(Dr) \veT\S EeX(D,LT)
EsCLr N(fg)<e

Also, we obviously have

“L(Trv)
e (5 5

veS vgS \E,€EX(Dy)
-1
ﬁﬂg,(ﬂ—v)
= Z H N(jc.) ' H we, () - H Z N(z)
LreX(Dr) \veT\S veT vgT \ L, eX(D,) £y
EsCLr

It follows that the mean value formula (8) holds once we prove it for some finite set
T containing S. This means that in order to prove Corollary 8 (and equivalently, to
prove Theorem 5), we may assume that S is sufficiently large. Moreover, Corollary
8 holds for arbitrary finite set S and in particular we can remove Condition 4.
Note, however, that this is not the case in Theorem 5 since we have the equivalence
between Theorem 5 and Corollary 8 only when S satisfies Condition 4.

2.3. Mean value theorem for elliptic modular forms. In this subsection,
we specialize Corollary 8 to the case of elliptic modular forms of level 1. Let k
be a non-negative even integer and f € Si(SL2(Z)) be a weight k normalized
cuspidal Hecke eigenform. Let f(z) = Zn 1 anq" be the Fourier expansion, where
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g = e>™V=1z_ Let 0 = ®,0, be the cuspidal automorphic representation of GL (Ag)
corresponding to f. Note that A, = pl’gap for each prime p.

Note that o does not have non-trivial toric periods with respect to any imaginary
quadratic fields since o, does not have non-zero SO(2)-fixed vector. Therefore we
only consider toric periods with respect to real quadratic fields. We can apply
Corollary 8 to this case with F' = Q, D = M3(Q) and S = {2, 0}.

For a quadratic field E, recall that we fixed dg € Q such that E = Q(v/dg) (see
§2.1.2). We further assume that dg is square-free and set

9)

|[dg| if dg =1,3 mod 4,
ap = .
otherwise.

lde|
2
Note that when S = {2, 0o}, we have N(f3) = [ ¢ ldp, [ = [l es ldBlo = ap.

Theorem 10. Set S = {2,00} and take a pair of quadratic étale algebras £ =
(Ey)ves so that £, = R x R. For a positive real number ¢ > 0,

et T oo
EBeX(M2(Q),€s),
ap<x

()%() 3 p—1 4 45
—ﬂm<f7f>082(¢2)131_[ﬁ{1—p —]mpk ap}’ (10)

where (f, f) is the usual Petersson inner product and
(3+ 2" %ay) if & =~ Qy x Qo,
(3 -2~ 2a2) if & ~ Qa(V/5),

(9 —227%a2)  otherwise.

L(3,02 ®@ng,)

e:l02) = TR T

el L N L N

The product in the right hand side is over odd primes.

Proof. Set I'r(s) = 7~2I'($) and I'c(s) = 2(2m)~°I'(s), where I'(s) is the usual
gamma function. Then we have L(1, 7, Ad) = 2*(f, f), (o(2) = %2 -Tr(2) = § and
cg = |Ag| = 1. Also we see that

5L, 00®@ns,) 1
_ 3 27 22— 2.
Re02) = ) S LT op Ad) ~ 3 (92
Since L(s,00 ® ne..) = Le(s + £51) and L(s,000,Ad) = Ie(s + k — 1)Ir(s + 1),

one obtains

Te@Te(d)  (@mir)
We(kTa(2)  20(k)

The last equality for the constant cg,(¢2) follows from
2/(3—A2) if & ~ Qo x Qy,

L(%7772®7752) = 2/(3+>\2) lfSQ ZQQ(\/g)v (11)
1 otherwise.

ke (000) =

8
9— A2’

L(l, 7T2,Ad) ==

and Ay = 2!~ %ay. Substituting these into (8), we obtain (10). O
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Corollary 11. The limit

; -1 1

lim 27y L(5,m @ )
E

exists, where the sum is over real quadratic fields F with |Ag| < z. The value of

the above limit equals

6(8m)%

r(%) 3 p—1 4
7rr<k><f’f>1;[{1‘p s

where the product is over all primes.

Proof. We see in Remark 9 that Corollary 8 holds for any finite set S. As in
the proof of Theorem 10, we specialize the mean value formula (8) to the current
situation with S = {c0} and £, = R x R to obtain the corollary. O

2.4. Mean value theorem for algebraic modular forms. In this subsection,
we specialize Theorem 5 to the case of algebraic modular forms on the multiplicative
group of a quaternion algebra over F' = Q. Let D be a quaternion division algebra
over Q with odd prime discriminant g. Take a maximal order O in D and set
0, = O®1Z, for each finite place v. The set X (D) consists of imaginary quadratic
fields which do not split at v = ¢. By | , Corollary 4.22], we may take X (D)
so that o C O for all but finitely many E € X (D), where og is the ring of integers
of E. Note that we can ignore the contribution of finite number of quadratic fields
to the mean value formula. With a slight abuse of notation, we identify X (D) with
the set of £ € X (D) such that op C O.

We summarize some notation about algebraic modular forms. We refer the reader

to | ] and [ , §2] for more details. Denote by C1(O) the set of ideal classes
in O, see [Voi2l, Ch.17] for the definition. It is known that Cl(O) is identified with
D*\Dy /DX U, where U = [], . OF, see | , Lemma 27.3.6]. For a finite

place v, let U, be the image of OF under the natural projection D)} — PDJ
and U = [], ., Uy. These are maximal compact subgroups of PD} and PDgﬁn,
respectively. By A* = Q*R* Hp Z, , we have

Cl(0) = PD*\PD} /PDXU.

Let A(O) be the space of complex functions on Cl(O). Take 1 = x4, x9,...,2) €
PDgfin so that we have a disjoint decomposition

PD} =1}, PD*z;PDXU.

Elements of A(O) are functions on the finite set {z1,...,z,}. We define a PDj -
invariant inner product on A(O) by

h "z
0.8) = S HTE) e g0
j=1 /

where w; is the order of the finite group PD* N sz:Z:j_l.
Hecke operators on A(O) are defined similarly as the holomorphic modular forms.
A Hecke eigenform ¢ € A(O) gives rise to an automorphic form on PD}, which
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we again denote by ¢. By Eichler mass formula [ , Theorem 25.3.15], the
Petersson inner product (1) becomes

n_ 12 /

Let m = ®,m, be the corresponding automorphic cuspidal representation of PD} .
Note that 7 is the trivial representation, and 7, is the trivial or the unramified
quadractic character since 74|y, is trivial and PD; /U, = Z/2Z. In addition, 7,
is unramified for any places p # ¢, 00 since they are trivial on U,. Hereafter, we
assume that L(%,?T) # 0. Then we see from the local root numbers that m, is
the trivial representation. Set S = {2, ¢,00}. The cusp form ¢ is factorizable, i.e.
¢ = Ry, with ¢, € m,. We assume that ¢, is the normalized spherical vector for
allv € S and v = 2.

Let CI(E) denote the ideal class group of E. Since we assumed that og C O, we
have a map

CUE) = EX\AL/(EX - ] 0k.) = PD*\PD}/PDXU = CL(O). (12)

v<0o0o

By abuse of notation, we write the function on CI(E) which is the composition of
¢ with the above map again by ¢.
Recall that the positive integer ap is attached to each quadratic field E in (9).

Theorem 12. Set S = {2,¢,00}. We take a triple £ = (Ey)ves so that £, = C
and &, is the unramified quadratic extension of Q4. Then
2

JimoeTE T Y 6() (13)

EeX(D,Es), |teCI(E)

ap<x
_iq—l 1 _—3_17—1 —342
= 67q q+1Lﬁn(277T)(¢v¢)Q(gZ) H {1 p p+1p >\p .

P#2,q

Here, ¢ in the left hand side is seen as a function on C1(E) by the map (12). Recall
that A, is given by A, = p? (ap + 1), where oy, denotes the Satake parameter of
mp. The product in the right hand side is over odd primes other than ¢q. The factor
(&) is given as follows:

L(%ﬂfz ® 1e,)
L(1,my, Ad)
34+ Ao if £ ~ Qg x Qq,
3— A2 if £ ~ Q2(V5),
9 — A3 if £ ~ Qa(v/3) or & ~ Qa(V7),
V2(9 = \3) if & ~ Qu(VE2) or & ~ Qo (v/E1D).

Proof. First we consider the left hand side of (7). For E € X(D,&g), note that
—agN(fg,) equals the fundamental discriminant of E. Since &; is unramifed over
Qq, we have |dp|, = 1 and ag = N(f3,). We have L(1,7g) = (apN(fe,))"2|CUE)|
from the Dirichlet class number formula, since we may ignore F = Q(y/—1) and

Q&) =4N (fe,)* -
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Q(+v/—3). Hence we get

L (@eN(Ge) P L(1Lng) Pa(e) = CHEN o(h) =3 (1),

2 2 EXAZ\AL teCl(E)

Recall that d*h is the Tamagawa measure and vol(E*AF\A%, d*h) = 2. Since we
prove ag (¢, ) # 0 for any E below, the left hand side of (7) (t = 3/2) becomes

2

INGe,) ™t Jim o2 Y agfans() S )

EecX(D,Es) teCl(E)
ap<T

Recall that m; and 7, are the trivial representations and we assumed op C O.
From Lemma 27, Lemma 28 and Corollary 34, we get

_ Cu@L(gm)L(g,m®ns)  [2if By~ Q@ x Qs or Qa(V5),
ap,(¢2,¢2) = L(1,my, Ad)L(1,ns,) g

1 otherwise.

Here, we note that dg, € Z5 U2Z5 and ng, = ng,. Furthermore,

dh
aEq(¢q7¢q) = / = x <¢qa¢q> = <¢q7¢q>7

AV
aEm(QSoovd)oo) / dhc ]-/ da |d ‘,%
- . . = = — ——— = |dEg .
<¢ooa ¢oo> RX\CX d* 20 ™ JR a?+ |dE‘
Hence, ag, s(¢, ¢) # 0 holds for any E. We also note that

4 1 if &~ Qa x Qq or & ~ Qa(V/5),
€0, (2) =7, N(fe,) = 44 if &~ Qa(V3) or & ~ Qa(VT), (14)

3 )
8 otherwise

and (11) remains valid in this case. Therefore, by the above equalities and ag s(¢) =

B (Poos Poo)m, (P2, P2)ap, (0q, ¢q), We get

L o _ L(Lme)  2L(1,7m2, Ad)N(je,) "
AN(fe,) ap®aps(9) = L(L,m) (o)LL, m @ns,) - (6,0)
_ L(,ne,) 6
L(%,m) Q&) - (p,0)

q— 1 L(langz) . _3
- lim z72 o(t)
26,0 T mnE) AT 2| 2
ap<x

For the constant Q(&2), its value follows from (11) and (14).
On the other hand, the right hand side of (7) equals

L (¢g—1) 1 L(1,ne,) { 3 pP—1 3
- Lan(5, ™) —7— L—p " ==——p "N\ ¢.
e g+ 0 Ty prl

Putting altogether, we obtain (13). O
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3. PREHOMOGENEOUS ZETA FUNCTION

3.1. Definition and basic properties. We recall the definition and basic prop-
erties of the prehomogeneous zeta function with toric periods introduced in the
previous paper [SW].

3.1.1. Prehomogeneous vector space. Let F be a field of characteristic zero and D a
quaternion algebra over F'. Set G = D* x D* x GLo and V = D& D. We consider
the F-rational right action p: G — GL(V') of G on V given by

(2,y) - p(91, 92, 93) = (97 'xg2. 07 'yg2)g3, (91,92,93) € G, (w,y) € V.

The triple (p, G, V) forms a prehomogeneous vector space. The fundamental rela-

tive invariant is P(x,y) = — det(z y* — yz*) and the corresponding character of G
is w(g) = det(g1) 2 det(go)? det(g3)?, i.e.
P((z,y) - plg)) = wlg) P(z,y), geG, (x,y) eV

It is easy to check that
Kerp = {(a,b,ab™'I,) € G | a,b € GLy} = GL; x GLy,

where I,, is the unit matrix in M,,. Set H = Kerp\G. By abuse of notation, we
will also let p denote the induced action of H on V.
We define a non-degenerate bilinear form (, ) on V by

<($1»y1)7 (CU273/2)> = tr(irle) +t1"(3/13/2)» (xzvyz) € Vv 1= 172

Let (p¥, V) denote the contragredient representation of p on V', namely (x - p(g),y -
pY(9)) = (x,y). One can see that p" is given by

(,9) - 0" (91,92, 93) = (95 '2g1. 95 'ya) ‘o5, (91.92.93) €G, (2,y) €V

and Kerp = KerpV.

For each point z € V(F), we say that z is regular if the G(F)-orbit of z is
Zariski open dense in V(F), and x is singular otherwise. The set of regular points
is VI(F) = {x € V(F) | P(z) # 0}. For £ € X(D), Ve(F) = {x € V| P(z) €
de(F*)?} is a G(F)-orbit and £ — Vg (F) gives rise to a bijective correspondence
between X (D) and the set of G(F)-orbits in VO(F). We take a base point xg =
(1, (55) S Vg(F)

3.1.2. Zeta functions. For the rest of this section, F' is a number field. We take
an F-rational gauge form w on H. Then the Tamagawa measure dh on H(A) is
written as

dh = ¢! |Ap| 7P H Cyp Wy,
vED

where w, is the measure on H(F,) obtained from w. The constants ¢, and cp are
defined in §2.1.1.

Let S(V(A)) denote the Schwartz space on V(A). Let 7 be a cuspidal automor-
phic representation of PD; that is not 1-dimensional. For s € C, ¢ = ®,¢, € 7
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and ® € S(V(A)), we define the global zeta functions Z(®, ¢, s) and ZV(®, ¢, s):

9= MF6) o) Y Bl plh)) dh,
H(F)\H(A 2EVO(F)
9= W0l () 3 @l p"(h) dh.
H(F)\H(A vEVO(F)
We set
24(@.65) = [ W6 9e) 3 @l plh) dh,
H(F)\H(A),|w(h)|>1 z€VO(F)
2,05 = [ W)~ 0(1) 3lgz) > @la-p" (k) d.
H(F)\H(A),|wY (h)|>1 zEVO(F)
These integrals Z,(®,¢,s) and Z}(®,¢,s) define entire functions on C if they
absolutely converge for sufficiently large Re(s) (cf. | , Proposition 5.15]).
Let

- o dg
)= [ o) g

be the matrix coefficient. For ¥ € S(Dj,), the Godement-Jacquet zeta integral is
the meromorphic continuation of

290, f09) = [ W(g) fulo) | det(9)]* g
D

A

g € D}

Given a Schwartz function ® € S(V(A)) , we define Px € S(V(A)) and ®; € S(Da)
by

Ox(z) = /K O(z-p(1,1,k)) dk, D4 (z) == ®(z,0).
Note that we have Z (Pg) = (FP) g, where
Fo() = [ B@vr()ds
V(4)

is the Fourier transform of ®.
The basic analytic properties of Z(®, ¢, s) are summarized as follows.

Theorem 13. (1) The zeta function Z(®, ¢, s) is absolutely convergent and
holomorphic on the domain {s € C | Re(s) > T} for sufficiently large
T>0.

(2) For Re(s) > T and ® € S(V(A)), we have
Z(®,¢,8) =2 (P, ¢,5) + ZL(FP,¢,2—s)

Z(((F®)k)1, fo, 1) Z9(®k)y ) f4,1)
+cCcrpcp —CpF (R ,
2s—3 2s —1
where we set
2n"2cp
CFP'=—1 . -
|AF|2 Cr(2)

(3) The zeta function Z(®, ¢, s) is meromorphically continued to the whole s-
plane. The possible poles are at most simple, located at s = + and s = 3.

2 2
In addition, the following functional equation holds:

2(,6,8) = ZV(FD, 6,2 — 5). (15)
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Proof. The assertions were proved in [SW, Lemma 3.1, Theorem 3.2 and Corollary
3.3 in §3]. Note that the measure ¢cpdh on H(A) is used in [SW, §3] and its
normalization is different from the other sections in [SW]. We also note that the
assertion (3) above follows from (1) and (2). O

We also introduce the local zeta function

Ze, (P, o, 5) = /V iy 5 (7o (g1) b0, o (g2)¢0) [P(2)[37* Py (2) dar,

2cy
L(1,ne,)?
where &, € X(D,) and z = x¢, - p(g1, g2, g3). Since we have
g, (T (t1)on, T (t2) @) = e, (po, ©))

for any element (t1,t2,t3) of the stabilizer of z¢, in G(F,), the above integral is
well-defined.

Lemma 14. Let the notation be as above.

(1) The local zeta function Zg, (P, ¢y, s) is absolutely convergent when Re(s)
is sufficiently large, and is meromorphically continued to the whole s-plane.
(2) Assume that ag, (¢, ¢,) # 0. For sg € C there exists a test function
o, € S(V(F,)) supported on Vg, (F,) such that Zg, (P, ¢y, s) is entire and

non-zero around s = sg.

Proof. (1) is proved in [Li20]. A test function supported on a sufficiently small
neighborhood of z¢, satisfies the conditions of (2). O

Take two quadratic étale subalgebras &, and &, of F, in D,,. Suppose &, ~ /.
Then, there exist ¢ € DX and a € F) such that at™'dg,t = dg,. This implies
xgr = xg, - p(t,t,diag(1,a)) and a®dg, = dg;. For ¢y, ¢, € m,, we have

ag, (7(t) b, 7(£) ).
: (16)

de,
de:

v

gy (B, 8) = lal;! / (o (1) bos &) ity =

FJ\t—1E5t

1

d 2 .

di—j Zg, (Py, ¢y, s) for v € S, since for
v v

In particular, we get Zg/ (®y, dy,5) =

any t in D* we have Zg, (®,, 7, (t)dy, s) = Zg, (D, ¢y, s) by change of variable as
v ax-ptTht ).
From now on till the end of the next section, we assume the following.
Assumption. We fix a decomposable element ¢ = ®,¢, € 7, a
finite set of places S C X and s = (&,)ves € X(Dg) such that
Condition 4 is satisfied and ag, (¢y,d,) # 0 for all v € S as in
Theorem 5.

One can see that the left hand side of (7) depends only on the isomorphism classes
of £,’s. When proving Theorem 5, we may fix the choice of an étale subalgebra
&/ C D, as follows.

e For any v ¢ S and any &, € X(D,), we also suppose that dg; € o, \ @w?o,
and the maximal compact subgroup of £ is contained in K.
e For each archimedean place v, we have dg, = 52@ = =+1.

We can impose the second condition, since we have ag, (7 (ty)du, To (ty)Py) # O
for some t, € D} by (16) and we may replace m,(t,)p, by ¢, without loss of
generality (cf. Remark 6). The following lemma is obtained from the first condition.
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Lemma 15. Take a finite subset T of ¥ containing S. For & = (‘%)veT\S c
X(Dp\s), let £5 U E" be the union of £5 and &', which is an element of X (D7) =
[I,er X (D). Then, we have

A (9)PE(@)* = oFF (9)|Pr(9)?
for any £ € X (Dp\g).
Proof. Forv e T\S and &, € X(D,), we get a?, (v, ¢v) = 1 by the above condition

(cf. Corollaries 33 and 34). Then, the assertion can be proved by the definition (6)
of 0 (#) [P (@) O

We set
g(Da537¢35) = C(Da¢7s7s)@(DagS,¢as)

with a meromorphic function

B 1 (p(2s — 1) L% (2s — 1,7, Ad)
DS SR e G@Pas(6.9) "
and a Dirichlet series
Es S
9D, Es,65) = Y L(1,n)* o (¢) ‘PE(¢)|2DE(7T’S). (18)

SVs—1
E€X(D,Es) N(fE)s

Here, D3 (7, s) = [.¢s PE, (v, s) is the product of

)1+ q; 2+ g% + g T — 20, (w,) @, 25N, if g, is unramified,
DEU ('ﬂ—va 5) -

1+ g, 2t if ,, is ramified.

Note that ¢(D, ¢, S, s) is holomorphic and does not vanish in the region Re(s) >
1 (see [ , Theorem 5.3]). Choose a maximal order @ in D, and an integral
structure of V' is given by V(o) = O @ O. The next theorem is a special case of
the explicit formula [SW, Theorem 1.2] for Z(®, ¢, s), which is sufficient for our
purpose.

Theorem 16. Take a decomposable Schwartz function ® = ®,®, € S(V(A)) as
follows. For v ¢ S, @, is the characteristic function of V(0,). For v € S, we choose
®, so that

Ze, (Py, ¢y, s) =0 forall £, € X(D,)\ {E}- (19)
For Re(s) > 0 sufficiently large, the Dirichlet series £(D, g, ¢, s) converges abso-
lutely and satisfies

Z(¢’7¢75) = <H ZEU (‘I)v,(bv,s)) 5(D5857¢a5)~ (20)

veS

3.2. Residues of the Dirichlet series 2(D, &g, ¢,s). Throughout this subsec-
tion, let ® = ®,®, € S(V(A)) and assume that ®,, is the characteristic function of
V(o,) for all v ¢ S as in Theorem 16. The goal of this subsection is to compute the
residue of the Dirichlet series Z(D, &g, ¢, s) at s = %, which is the key ingredient
in the proof of Theorem 5.

Lemma 17. We keep the assumptions and notation of the previous subsection.

(1) The function (D, Eg, ¢, s) is meromorphically continued to C and the pos-
sible poles are at most simple, located at s = % and %
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(2) The Dirichlet series (D, Eg, ¢, s) is meromorphically continued to C and
2(D,Es, b, s) is holomorphic at s = 1.

Proof. (1) The meromorphic continuation follows from that of Z(®, ¢, s), see The-
orem 13. By Lemma 14 (2), we may assume Zg, (®,,¢y,5) # 0 and hence the
possible pole at s = % is at most simple, so is the possible pole at s = %

(2) The first half is obvious from (1). Since it is known that (2(2s — 1) L¥(2s —
1,7, Ad) has a simple pole at s =1 (cf. | , p-374]), ¢(s, D, ¢,S) has a simple
pole at s = 1. By (1) we find that £(D, &g, ¢, s) is holomorphic at s = 1. Therefore,

2(D,Eg, d,s) is holomorphic at s = 1. O
The following result of Blomer and Brumley | | will be used repeatedly.

_ T
Theorem 18. For v ¢ S, we have ¢, < |ay| < ¢§* and in particular |A,| <
1 7 7

@i (g8" +qv **).
Remark 19. We use Theorem 18 in the proofs of Lemma 21, Corollary 34, and
1 1
Theorem 5 in §4. On one hand, the trivial bound ¢, > < |a,| < ¢7 obtained
in | ] is not sufficient for our purposes. On the other hand, the estimate of
Theorem 18 is sharper than what we really need. To prove the main theorem, we
1 1

only need ¢, 20 < aw| < g8 s for some ¢ > 0 and the choice of § does not matter.
Actually, if we take smaller § (< %), then we have to include more places in the
sets S and T in Lemma 21 and in §4, respectively. Since the sizes of these S and
T do not matter in the proof of Theorem 5, the specific choice of § does not have
any particular meaning.

Lemma 20. The factor a5%(¢)|Pg(4)|? is non-negative for any E € X (D, Es).

Proof. Take an element F € X(D,E&g) such that 7 is E*-distiguished. Under
Condition 4, there exists an element gs = (gu)ves € Dg so that Pr(n(gs)¢®) # 0.

HBHCB, ‘,PE(W(QS)¢)|2 > 0 and by (4) we have HUES agp, (7T1)(gv)¢)va7rv(gv)¢’u) 7& 0.
Therefore,

v

o (9)|Pe(9)> I ag, (¢o, dv) |de,

|Pe(m(9s)9)|? ves YEBu (70 (90)Pv, T (90) b0) ldE,

Fix a place v € S. By (16), we take u, € D¢ and a, € F* so that

v

ap, (Wv(gv)(bv»ﬂ—v(gv)(bv) = ‘avlgla&, (ﬂ—v(uvgv)qsvyﬂv(uvgv)(bv)

Set
Qg (Wv(gl)¢vaﬂv(92)¢v)
v g1, = , v g) = v g, 1
Be, (o : 91,92) oz (Gor 60) Be, (o 1 9) = Be, (9w 1 g, 1)
for g1, 92,9 € D;*. In the proof of [SW, Lemma 5.1], we observed
Be, (Do 91.92) = Be, (dv : 91) Be, (Pv : g2).-
Thus,

a&,(qbvaqsv) _ |a'u|v
ag, (W'U(gv)¢v>77v(gv)¢v) |/8€v (va : Uvgv)‘Q
This completes the proof. [

> 0.
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Lemma 21. Assume that S contains all places above primes less than 14. If we
write Dirichlet series (D, Eg, ¢, s) as

>~ a(D
‘@(D7€Sﬂ¢,3) = ZW’
n=1

the constants a(D, &g, ¢,n) are non-negative real numbers and non-zero for infin-
itely many n unless (s, D, &g, ¢) is identically zero.

Proof. By Lemma 20, it is sufficient to consider the factor ij(m s). Forv & S, set

Ay =1+q;t —2n,(wy) g, A\w, By, =1 ifn, is unramified
A, =1, B, =0 if n, is ramified.

From the assumption for S, we have ¢, > 17. By Theorem 18, for v ¢ S,
1 -2 -39 25 39
4 | <o 4 qo 1 < (17)78 4+ (17) 781 < 0.51,

and so
Ay >14q;1 —2¢,' N\, > 1.05 -2 x0.51 > 0.

Hence, it follows from

Di(m,s) = [J(1+ Aug ™ + Bugy ) (21)
vgS
that a(D, &g, ¢, n) > 0. The second assertion follows from [SW, Theorem 1.7]. O

Lemma 22. Suppose that (D, Eg, ¢, s) is not identically zero. Then, (D, Es, ¢, s)
is absolutely convergent for Re(s) > %, has a simple pole at s = 2, and is holomor-

29
phic on the domain {s € C | Re(s) > 1, s # 3}. In particular,
&(D,£5,6) = Res Z(D, s, 6, ) > 0.

Proof. First we consider the case where S contains all places above primes less than
14. Let o € R be the abscissa of convergence of the Dirichlet series 2(D, g, ¢, s).
Since the infinite product (21) diverges at s = 1, we have ¢ > 1. Suppose that
o = 1. By Lemma 21 and | , Theorem 1II in p.465], 2(D, &g, ¢, s) has a pole
at s = 1. This contradicts Lemma 17 (2). Therefore, we obtain ¢ > 1. Since the

possible poles of (D, Eg, ¢, s) are located at s = L and s = %7 and since ¢(D, ¢, S, s)

2

is holomorphic in the region Re(s) > 1, we see that o = % and 2(D, &g, P, s) has a

simple pole at s = % The positivity of the residue is obvious since we know from
Lemma 21 that (s — %)@(D,Ss,(b,s) >0for seR, s> %

Now we remove the condition that S contains all places above primes less than

14. Take a finite subset T" of ¥ containing S. By Lemma 15, we have

Der (my, s
9(D,Es,by5) = Y 11 N‘g(f()_f P(D,EsUE  p,s).  (22)
£'eX(Dps) \weT\s V&
E'=(E)ver\s

Suppose that T' contains all places above primes less than 14. Since D¢/ (7, %) >
0 for v ¢ S and &, € X(D,), the assertions follow from those for 2(D,Eg U
&' b, s). O
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For the rest of this subsection, we assume (D, ¢, g, s) is not identically zero
and compute the residue of Z(D, ¢,Eg,s) at s = % We set

s—2 <¢v>77v( )¢v>v
( va(b'ua _CU/DX/ vK in ‘det )l <¢v,¢v>v dyd.l?,

where @, g, ( = fK p(1,1,k)) dk. Note that |det(z)|;
Haar measure on DX This mtegral I gu( v, Pv, §) is regarded as a local Godement-
Jacquet integral. Hence it has meromorphic continuation to the whole complex
plane and holomorphic at s = 1. In particular, for v € S we have

(B, ™ (@) b0}y
<¢va ¢v>'u

= CFU (2)_1L(8 - %,’/Tv),

2dz is a

zsv<@v,¢u,s>::<p;<2>*ljf | det(x)]3 2 do
Mg(o )ﬂGLQ( )

since vol(K,, dx) = ¢, 1(p, (2)71.
For v € S, we take @, € S(V(F),)) satisfying (19) and

Z&,(q)uy ¢1}7 %) 7é 0. (23)
This is possible by Lemma 14 (2). We set

(¢va¢v) ISU (‘I)v7¢v71)
2] CF (2) L(3,70) Ze,(®o, bu, 3)

and mS(DagSaQbS) = H'UES mv(D75v7¢v)-

Lemma 23. Assume that @, satisfies (19) and (23) for v € S. If {(D, ¢, &g, s) is
not identically zero, then

Bo(D, &y, pu) =

¢r Cr(2) (¢, 9) L(5,7) Bs(D,Es, bs)
2|AF]*C3(2)? ags(¢,0)

In particular, B, (D, &,, ¢,) does not depend on the choice of ®, satisfying (19)
and (23).

Res¢(D, Es, ,5) =

Proof. Recall that @, is the characteristic function of V(a,) for all v ¢ S. From
Theorem 13 (2) and (20), we can deduce

-1
1?656(D7557¢78) = CF2CF ZGJ(('?(I)K 1af¢>7 (H ZE 'uv(b'uv g)) .

veS

By the functional equation of the Godement-Jacquet integral, we get
ZY(FOxN, [,2 = 5) = Z9UF(FPr)), fo,8) = Z9 (Fo(Pr)h, f4,9)

Here, we used the partial Fourier inversion formula .Z# ((.Z®)1)(z) = (%#2®)1(—x)
and(F2(Pk))1(—z) = (F2(Pk))1(x), where F2® is the partial Fourier transform:

%ﬂmw=4¢mwwmmmw
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The last expression becomes

2D o) = [ ([ oxten dy) (@) det(@)]3 "

= I ’Ua ’U7
CF|AF‘4H (b

<¢7¢> LS(S_%’T() ngv(q)qusvas)

or |AR[CE(2) s

Here, we used dy = |Ap|~2[], dy, and d*z = c;'|Ar| 2], co| det(z,)]; 2 dz,.
This completes the proof. O

Theorem 24. Suppose that (s, D, ¢,Es) is not identically zero. Then,

L(3,7)

D, Es,¢) = crcr(r(2) (6, 9) Bs(D, Es, ds) m

(24)

In addition, we see that Pg(D,Es, ps) > 0

Proof. By Lemma 22, £(D, Eg, ¢, s) has a simple pole at s = % The theorem follows
from Lemma 23 and the definition of £(D, &g, ¢, s). The last assertion follows from
the positivity of the left hand side, L(%,7) > 0 (see | D), and L(2,7,,Ad) >0

_1 1
for v ¢ S, which is easily seen from the bound ¢, ? < |ay| < g3 (see | D. O

Corollary 25. Suppose that 2(D, Es, ¢, s) is not identically zero. Let T be a finite
subset of ¥ containing S. For & = (€, )ver\s € X(Dp\g), let E5 UE’ be the join of
Es and &', which is an element of X (D7) = [[,cp X(Dy). Then 2(D,EsUE’, ¢, 5)
is not identically zero for any &’.

Proof. From (22) we get

epeso= S | ]I lw))

£'€X(Drys) \veT\S Nz,

Nl= ol

¢(D,EsUE, $).

Substituting (24) and multiplying the both sides by LT (2,7, Ad)Bs(D, Es, ds) 7L,
we obtain

II z@m. A0~ = > I % ™). (25)

veET\S £'eX(Dr\s), vET\S
2(D,EsUE’ ,,5) 20

where we write
DS,'J <7r1)7 %) ‘Bv(D, 81/)7 bv)
N(ff,@)f

Note that we will see in Corollary 34 that B, (D, &/, ¢,) > 0 for v ¢ S, since we
have chosen the element dg/ satisfying the assumption of Corollary 34. Hence we

m(gqlﬂ 7TU) =
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get R(E,,m,) > 0 for v ¢ S and the right hand side of (25) has an obvious bound

3 I nE~ < > [ ®EL )

£'eX(Dr\s), veET\S E£'€X(Dr\s) vET\S
PD(D,EsUE’ ,¢,5)Z0

I [ X »em] e

veT\S \E&,eX(Dy)

The equality holds if and only if Z(D,EsUE’, ¢, s) # 0 for all &' € X(Dp\g).
We compute ¢ <y (p,) R(E, ) for v € S. Recall that De; (m,, 3) equals

(I+¢ )0 +¢") (1 —q; ' +4;7%) =247, if & s split,
A+q (1 +q¢,2) (1 —qt +q,2) + 2,2\, if & /F, is an unramified extension,
1+q,2 if £/ /F, is a ramified extension.

On the other hand, we will show in Corollary 34 that B, (D, &}, ¢,) equals

g T+qgt + g\ if £ is split,
20T (;;1) liq,jl —q; '\ if £ /F, is an unramified extension,
g {1+ q;1)? —q,2\2} if £/ /F, is a ramified extension.
Thus we get
S RE,m) = (1- ;) {1+, — ¢, ° A2}
EleX (D)
=(1-¢°)(1-0ai¢,*)(1 - a;%¢, %) = L(2,m, Ad) ™"
Thus the equality holds in (26). O

Remark 26. There is a different proof of Corollary 25 using the results of | 1,
[ ] and | ].

3.3. The local factor B, (D, &,, ¢,). In this subsection, we fix a place v € ¥ and
compute the local factor B(D,, &y, ¢,,) for &, € X (D,).
First, we introduce a meromorphic function

‘4|1S)72O‘5 (¢va ¢v) IS ((I)q;, ¢q), 2s — 2)
v D7 vy Yo, = - u
;B ( En? S) CFv (2)L(28_ %7771)) ng (q)v7¢v78)

Note that P, (D, &y, dy) = Bo(D, Eyy o, %) We also consider an auxiliary integral
Ze,(60r9) = .2 [ | det(a+ b, |52 S22 Tol0 e )9u)
k=(§ §)eK., (Go; Po)o

When &, is a field, this integral converges absolutely for all s € C and defines an
entire function.

dk.

Lemma 27. Suppose that v is a finite place.

(1) The integral for Zg (¢, s) converges absolutely for Re(s) sufficiently large
and has meromorphic continuation to the whole complex plane.
(2) We have

L(1,7ne,)?

v D78U7 U)S = 5 5
el Pus) 2lde, |72 L(2s — §,m0)

IEU (¢’Ua 25 — 2)
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Proof. (1) Let pry : V(F,) — D, be the projection onto the first coordinate. Take
a sufficiently small open compact subgroup K/ of D) so that K| fixes ¢, and
U, = zg, - p(K| x K| x K,) is an open compact neighborhood of z¢, contained
in Vg, (F,). Note that pry(U,) C D). Let ®, be the characteristic function of U,.
Since V(Fy,) \ (D x D,) is of measure 0, the domain of integration for the defining
integral of Ig, (®,, ¢y, s) can be replaced with V(F,). Hence, by change of variable
for (z,y) € V( F,) we have

<¢)U7¢)U v 'U7¢'U7 )
/ / [, 201ty () )60, () )

= cv/ / |det(pr1(mgv : k)) 181_2<¢v77rv(pr1 (m:‘:v : k))¢v>v dr dydk
K, JU,

= ¢, vol(U,) / | det(a + bdg, )|5 2 (¢, Ty (a + bg, ) o)y dk
k=( q)€Ky

=Cy CFU (2) VOI(UU) <¢v7 ¢v>v : ISU ((bva 5)7

where we abbreviate (x,y) - p(1,1,k) as (z,y) - k. In addition, the absolute conver-
gence and meromorphic continuation follow from those for the Godement-Jacquet

integral Ig, (®y, Py, $).
(2) Let @, be as above. This is an immediate consequence of
2¢,

Ze, (®y, Py, 5) = WVOK I P(ze, )5 2 ae, (o, dv)
and P(zg,) = 4dg,. O

Lemma 28. Suppose that v is a finite place. The integral for Zg, (¢, s) converges
absolutely and uniformly for Re(s) > 1 and satisfies

_ _1 Q¢ ((ZSU,QSU)
Iv Pu, 1 :CvlL L, e, ' " :
¢ ( ) ( ¢ ) <¢va¢v>v
Proof. Let U, and @, be as in the proof of Lemma 27. Note that we have
/ fla,b)dk = CF,,(Q)/ f(a,b)dadb
k:(% (Ci)EKv (00X 0,)\(Ty 0y Xy 0,)

for f € C°(F, x F,), where da and db are Haar measures on F, normalized so
that vol(o,) = 1. Formally we have

1 <¢v7 7Tv(=’£)¢v>v
“ /V<Fu>

<¢v7¢v>v
_ |<¢v»7rv(a + béSv)¢v>v|
a CUCFU( )VOI(U ) /a X04)\ (W 0y X0y 04, <¢v> ¢v> |det(a + b(sf,',u)lv

¢v7 Wv(a + b(sc‘: )¢v>'u|
=Cy )vol(U. . da db.
CF <~/o X0y /a quau) ¢U7 ¢U>U|a2 - bzdfu |U

Since the central character of m, is trivial, the integral over o, x 0 equals

x |{pv, To(a + dg,)Pv)ol
VOI(OU)/% (Gordo)ola® — ds. | da.

Making the substitution ¢ = b=1, the integral over 0 x ,0, becomes

Py k., (7, y)| det(z)|, dz dy

da db
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vaaﬂ'v 1+b58 )¢v>v|
1(o
VO % Z/ ol, (bva(bv |1_b2d&,|v db

= vol(0,}) Z/ (Do, m(c+ Oz, )bu)| de.

=1 x vaa ¢v ‘62 51, v

Hence, using

¢y L(1,mg, ) vol(o / fla+0dg,) 55 = 0e Ty / f(hy) dhy
v |V F,UX\E,;(

(f is a test funciton on F,\&E)), at least formally we have

e e e
V(F.) (v, Po)v
= )LL) ol [ Rl gy,
F\ES <¢va¢v>v
Since the right hand side converges by | , Lemmas 2, 3], the integral for

Ig, (o, ¢y, s) converges absolutely at s = 1.

Let Uy be the set of (x,y) € V(F,) such that |det( )|» < 1. Suppose Re(s) > 1,
that is, Re(s)—2 > —1. Then, we have | det(z)[n°" ™2 < | det(z)|5! for (z,y) € U;.
Hence the convergence of Ig (®,, ¢, s) follows from that of I¢ (P, Py, 1). There-
fore the integral for I¢ (®,, ¢y, s) converges absolutely and uniformly for Re(s) > 1,
and so is Zg, (¢, 8). Now all the formal manipulations are justified and we obtain
the desired equality. O

Next we consider the archimedean case. First, we prepare some general lemmas
about norms on real vector spaces.

Lemma 29. Let || - || be the norm on R™ given by ||z| = (zz)2 for z € R™, where
elements in R™ are regarded as column vectors. We consider the natural left action
of GL,(R) on R™. For a compact subset C C GL,(R), we have

lg-all <llzll,  geC, zeR"

Proof. Let Sym,, (R) be the set of real symmetric matrices of size n and €2 be the
subset of positive definite matrices. For z,y € Sym,,(R), we write y < z if v — y is
positive definite.

We have a surjective map h : GL,(R) — Q given by h(g) = gg for g € GL,(R).
Since it is continuous, h(C') is a compact subset of Q. For g € C, let a1(g), ..., an(g) >
0 be the eigenvalues of h(g). Since tr(h(C)) is a compact subset of R+, there is
¢ € Ry such that tr(h(g)) < c for all g € C. In particular, we have a;(g) < ¢ for
all 7 and hence h(g) < cI,, for all g € C.

Thus for x € R"”,

lg - =]|* = %'ggz = v h(g) v < c'rw = c|jx|. a

Lemma 30. Let | - ||’ be the norm on GLy(R) given by [lg| = |det(g) 'tr(g'g)|2
for g € GL2(R). For a compact subset C' C GL2(R), we have

gzl < ll=ll', g €C, € GLz(R).
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Proof. We define the action of GLy(R) on Sym,(R) by X - g = (det(g)) " ‘igXg
for g € GL2(R) and X € Sym,(R). Note that this action factors through that of
PGL2(R) and gives rise to a continuous homomorphism

f: GLy(R) — GL(Sym,(R)) ~ GL3(R).
Let | - || denote the norm on Ms(R) given by ||z|| = tr(z'z)? for # € M3(R). Note
that this norm is equivalent to the one considered in Lemma 29.

By the Cartan decomposition, every element g € GLy(R) can be written in the
form g = kidiag(ab,b)ks with ki, k2 € O(2), a > 0, and b > 0. Then |g|| =
Idiag(a, DII' = (a+a~1)% and || £(g)] = [diag(a, 1,a=})]| = (a+1+a2)%. Hence

1
we have [}l = [|f(g)]|} for g € GLo (). 1

From this, we get [gz|" < [|f(gz)l|z and [f(z)[|> < [[z]" for g,z € GLa(R).

Since we have || f(gz)| = || f(g)f(z)|| < ||f(z)|| for g € C and x € GLy(R) from

Lemma 29, the assertion follows. ([l
We define a norm || - || on V(F,) by
2] = tr(zz* + yy*)?, z=(z,y) € V(Fy),
where

v if D, = Ma(R),
=% if D, = My(C),
z* if D, is the quaternion division algebra.

Take € > 0 and let ¢, € C°(V (Fy)) be a non-negative K,-invariant function such

that
/ Y. (x)dz = €8
V(Fy)
and supported on B, = {z € V(F,) | ||z|]| < €}. Let ®.(z) = ¢-(x — z¢,).

Lemma 31. Suppose that v is an archimedean place.

(1) For a K,-finite vector ¢, € m,, the integral for Ig (®,, d,,s) converges
absolutely and uniformly on compact sets for Re(s) > 1.
(2) Suppose that € > 0 is sufficiently small. For ®, = ®., we have

lim &g, (B, ¢, 1) = (r, (2) Ze, (60, 1).
(3) We have

1
L(1,n¢,)?|de, |2
2L(5,my)

Proof. (1) Suppose that D, is not split, that is, det is positive definite on D,. Set
D! = {z € D, | det(z) = 1}. Consider the polar decomposition z = rx; for z €
DX, r € Rsg, 71 € D}, and choose a measure dz; on D} so that dxr = r® dr dla.
Then

;ﬂpv(D75U>¢v) = Igv(¢v’1)'

dr
Igv(q)va¢vvs) = / 28 q)( ) 5
Rso r

o[ Bt B

The function ® belongs to S(R), because D! is compact. Therefore, we obtain the
assertion in this case.
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Next, we consider the case where D, is split. By the same argument as in
the proof of Lemma 28, it suffices to show the absolute convergence at s = 1.
By the Cartan decomposition, any g € GLy(F,) can be written in the form g =
kydiag(a, b)ks with some ki, ke € K, and a > b > 0. Then, a Haar measure dg on
GLa(F,) is given by

|det(g)? dg = C'(a® — b*)dim= o (gp)dim=Fo=1 qg dh dk; dk,

with some constant C’ > 0. See | , Theorem 5.8 in p.186] for details. On
the open dense subset GLy(F},) of Ma(F,), a Haar measure dz on Ms(F,) equals
| det(g)|? dg up to a constant, since the complement Ms(F,)\GL2(F,) is of measure
0 with respect to dx. Hence there is C > 0 such that

1 (P, T (%) P0)w
A%)%&mwmmmn Sy

:C/ dadb/ dkl/ dkg/ dy
a>b>0 v v M2 (Fy)

dx dy

bo, Ty (k1diag(a, b)ka) Py e

(@) = ) o, (g )k )] |

’ <¢'U7 ¢’U>U

Since ¢, is K,-finite and ®,, g, is compactly supported, there are K,-finite vectors

¢vj € my and ¥; € C°(R x R), j = 1,2,...,1 such that the above integral is

bounded by

C : / (a2 _ b2)dimR F, \I/j (a, b) ‘ <¢v,j’ m(diag(a, b))¢v,j>v
a>b>0 <¢v» ¢v>v

o
a b’

Jj=1

Making the substitution ¢ = ab™!, this becomes

l .
C b2 2 b2 dimpg F”\II‘ be. b <¢v,j7ﬂ-v(dlag(c7 1))Qj)v,j>v
Zl/b>0 /c>1( ‘ ) j( “ ) ‘ <¢va¢v>v

Since the supports of ¥; (1 < j <) are contained in a compact subset of R? and
we have

de db

b

|<¢17 Ty (diag(c7 1))¢2>v| < C_K7 (bla ¢2 € Ty (27)
for some x > 0, there exists a constant tv such that the above integral is bounded
by

dimg F.

v o pb )
E / / deImR Fq,—cht—K/—l de db
t=0 YO J1

up to constant multiple. Taking the integral for ¢, this is bounded by

dimp F,

/m b2dimRFv—1 db+ Z ! /m b2dimm F,—1—-2t+k db < 17
0 t=0 “0

hence we obtain the convergence. If 7, is a discrete series representation, (27) is
well-known. If 7, is a unitary principal series representation, (27) follows from
[ , Proposition 7.14, 7.15]. This completes the proof.

(2) Let pr, : V(F,) — D, denote the projection onto the first coordinate. Set
U = {(z,k) € V(F,) x K, | det(pr;((z + z¢g,) - p(1,1,k))) # 0}. Then, U is
open dense in V(F,) x K,. Assume that ¢ is sufficiently small so that ®, = @,
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is supported on the set of x € V(F,) such that (z,k) € U for some k € K. For
(x,k) € U, we set

(Po, mo (1 (2 + 2¢,) - p(1, 1, K)))fu)o
(G, do)ol det(pry((z +xe,) - p(L, 1K)l

Changing the variables, we obtain

f(xa k) -

/ N / e(@) (oK) Ak dz = Ie, (B, 6, 1), (28)

Note that the absolute convergence of the left hand side follows from the first part
of this lemma.
We need the following claim.

Claim There exists a small constant § > 0 such that the integral
/ K, (z, k) dk is convergent uniformly on x € Bs.

Proof of Claim. Consider the case £, = C. If § is sufficiently small, there exists
t > 0 such that |det(pry((z + z¢,) - p(1,1,k)))|, > t for any © € Bs and k € K,.
This fact is easily proved by a direct calculation similar to the proof of Lemma 32.
The claim is obvious in this case.

In what follows, we assume D, = Ms(F,) and &, = F, x F,. In this case, in
order to show the uniform convergence, we need to take care of the zeros of the
denominator of f(x,k).

When F, =R,

~ B ] T Ay, Ty (1 cO8 0 + T2 8IN 0) Dy ),
fl@ = wg,) = (constant) x /_,T | det(x1 cos @ + xo sinb)|,

dé,

where x = (21, 22). Assume that § > 0is a suﬁ"lciently small constant. It suffices to
show that this integral converges uniformly on Vg, 5 :== {z € V(F,)
Let z € Vg, 5. Note that det(z2) # 0, because z; is close to dg, . Puttlng z =tan6
and x3 = x;lxh the above integral becomes

vy '/Tv z2T2 + x1)¢v>v
|det x2) |y | det(z1z + x3) ]y

dz.

Since x € Vg, 5, we see that z3 is sufficiently close to 5gv1. Set I, str(xs).
Changing the variables z — z — [, we have

r _ <¢U7 ﬂ-v((z - ZI)IQ + Il)¢v>v
f(@ = we,) = (constant) x /R [det(z2)], | det(zLs + (23 — loda))]

dz.

Since the trace of 3 — [, I3 is zero, by diagonalizing 2 X 2 symmetric matrices, we
can take k, € K, close to 1 so that u, = k; (x5 — l,I2)k, is anti-diagonal and u,
is still close to 65_111. Hence |det(ug)|, is close to |de, |, 1. Set u, = /| det(ug)|o-
Note that the diagonalization of u,zls —u, is u,diag(z — 1, z+1). Again we change
the variables z — u, 2 to obtain

f(x —z¢,) = (constant) x / (Do, ™ (o2 = L) + T1)d0) dz. (29)

R | det(z2)]y Uzl |2 — 1 |2 + 1],
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Set X = (uy 2z — lz)xo + x1. Since z is in a small relatively compact set Vg, 5, it
follows from Lemma 30 that

IXI" < ll2lz + w7 (@3 = L I)|" = [|diag(z — 1,2 + 1)

( z+1‘ )1/2
< .

z—=1],
Here, || ||’ is the norm on GLy(R) defined in Lemma 30. Write X = k;diag(c, 1)ka
with ki, ke € K, and ¢ > 1. It follows from (27) that

(G, To(X)p)p < ¢ " < (c+c )% = || X|'~"

z—1
<<(

z+ 1], +
Here, the implicit constant does not depend on x € Vg, 5. Therefore, to prove the
uniform convergence, we have only to consider the integral for (29) around z = 1
and z = —1. Thus, by (29) and (30) we get the uniform convergence of the integral
for f(z —z¢,) on Ve, 5.
For the case F,, = C, we can similarly show

r <¢va7rv(<ua:z_lm>x2 +$1)¢u>v
T —x = (constant) X
Tl re)) = (comstant) x [ ot e T i

z—1
z+1},

z+1
z—1

-3
) < min{|z — 1]y, |z + 1|, } 2. (30)
v

dz,

(Do, ™o (Mg 2 — lz) T2 + 1)y )y < min{|z — 1|, |z + 1|}7,
by using the calculations as in the proof of Lemma 32. This proves the claim we
desire. (]

Define f Bs — C by f =/ X, f(x, k) dk. As a consequence of Claim, f is
a continuous function on Bs. From (28) we obtain

IEU((I)saﬁbva 1) = »/V(F )1/}s(x) f(l’) dx

Set fo(z) = f(z) — (r,(2)Ze, (¢v, 1). By e~ fV(F )"l}e z) dr =1, we have

e e, (e, b0, 1) = Cp, (2)Z¢, (¢0: 1) +5_8/( Ve(x) fo(x) dx
14

F’U)
Since lim,_,o f(z) = f(0) = Cp, (2)Te, (¢0,1), we have lim, o fo(z) = 0. For
arbitrary small € > 0, there exists 0 < d.(< ) so that |fo(z)| < € for any = € Bs,.
Hence, for any € > 0, we have

lim sup < e.

e—0

-8
c /V Ve o) do

This means lim,_,g =8 fV(FU) Ye(x) fo(x) dz = 0, hence
Ehi% 578]&, ((I)av ¢U7 1) = CFU (2)I€v (QS'Ua 1)-

(3) Since |P(z)]o »/% and ag, (7y(91) v, T (g2)Py) are smooth on a small neigh-
borhood of xg, € Vg, (F,), it follows from the Taylor expansion that |P(x)|5~2

Is
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|P(ze,)l;72 + Oz — x¢,|I) and ag, (m(91)bv, Tu(g2)0) = e, (do, ¢0) + O(l|z —
zg,||), where © = ¢, - p(g1, 92, 93). Thus we get

2 8
Ze,(®e,608) = 733 (P(e )i, (60,60) +0().

This implies that (23) holds by the assumption ag, (¢py, P») # 0. Note that (19)
holds by the definition of ®.. Since ﬁv(D, Ev, ¢y) is independent of €, we get

lim (¢va¢v) IS,U((I)67¢1),1)
=0 |2|vCF,,( )L(%,m) Ze,(Pe, b, 3)

L(1,mg,)?|de |3

Bo(D, Ev, ¢0) =

= 0 % Pl Te (b, 1). O
2[/(%,7(1)) gv(¢ )
Lemma 32. Suppose that v is an archimedean place. Then we have
_ — ag (¢vv ¢v)
Igv QS 71 =Gy 1L 17"781; e Uiv
( v ) ( ) <¢v7¢'u>'u

where

1 if v is a real place
my = . .
2 if v is a complex place.

Proof. First we consider the case of a real place. Suppose that &, is isomorphic to
C. Then, we have 5§U = —1 by the assumption. We have

13 T <¢’U77T'U(COSQ+ (Sin9)55U)¢v>v d6
4 / <¢va ¢v>v

— (1, 71/ Mdhv: SIL(L,me)”
( 7751)) FX\Ex <¢va¢v>v Cy ( 7751;)

Ze, (6v,1) = Cp,(2)”

1@¢g, (d)m ¢7j)
(Po; oo

Suppose that &, is isomorphic to R x R. In this case, 5%1) =1 and hence

. 42 7 (Pv, mp(cos @ + (sin 6)dg, Yo )
IEU (¢v, 1) - CFU (2) A /_Tr <¢va¢v>v| C082 9 — sin2 0‘

Making the substitution z = cot 8, the above integral becomes

v v 6 1 v/v —_ —_ P v v
/ <¢ T (Z+ 2£u)¢ > dzzcvlL(l,ﬂgv) 1a£u(¢ (b )
FX <¢v7¢v>v|z - 1‘ <¢va¢v>v
Next we treat the case where v is a complex place. In this case, &, is isomorphic
to C x C. If we write an element of K,, = U(2) as

dé.

_ \/jlk, 6\/771(¢+<p) CcOS 9 _e\/jl(d"fcp) sin 0
g=e¢ VIO ging e~ V=IW+e) cos 0
with 0 <k <7, 0<0< g,O§ga§Wandfﬂgibgﬂ,thenormalizeHaar
measure on K, is given by dg = 5 oiz sin20 dr dfdp dib. See | , Proposition
7.2. 1] Hence Zg, (¢, 1) equals
¢r (27" / d@/ d / v (o, Ty (eV71EH) cos 0 4 €V~ 1E=¥) sin 6s )¢v> sin 20
271'2 ¢ - ¢’U7 ¢v>v |62\/7(¢+LP) cos2 O — e2vV—1(¢—9) gin 6|v

= 47T/ dw/ (Pv; o ( 262\/71/} + 0, )Pv)v 2
z ¢va¢v> |Z etV =Tv _1|v 7
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where we set z = cot §. Note that the normalized absolute value |- |, for a complex
place v is given by |z|, = 2%, z € C, where ~ is the complex conjugate.

Put z = ze2V~1¥. The self-dual Haar measure on C is given by dx = 4zdzdy.
Thus the last expression becomes

7T/ <¢v77rv(1'+557,)¢v>v 2dI _ 71'2 O‘SU(QSU’QSU)' 0
Cx <¢v7¢v>v |.’L' - llv <¢v>¢v>v
Corollary 33. For any v € ¥ and &, € X(D,),
de, L 1ne, )™ ag, ($v, do
B (D, &, b0) = | ( 1 ) ( )
261} L(§77Tv) <¢v;¢v>v
Here, m, = 2 if v is a complex place and m, = 1 otherwise.
Proof. This follows from Lemma 27, Lemma 28, Lemma 31 and Lemma 32. O

Corollary 34. Suppose that v is a finite place of F' such that D, splits, m, is
unramified and ¢, is the normalized spherical vector. We also assume that dg¢, €
0, \ @20, and the maximal compact subgroup of £X is contained in g=!K,g for
some g € D*. When v is dyadic, we further assume that F,, = Q2. Then

mv(Dvgva¢v) =

|de, |2 Cr, (2)L(%,m ®@1g,) 2 if v = 2 and &3 is unramified over Qs,
2¢, L(1,7,, Ad)

And B, (D, &y, ¢) > 0. If v is not dyadic, we have

_ . 1—qt
S NGe)TVBADEnb) =1 art - g (3)
£.€X(D) T

1 otherwise.

Proof. Let KC,, denote the maximal compact subgroup of €. First, we consider the
case that &, is not a ramified extension of F),. In this case, this is a consequence of
Corollary 33 and the unramified computation

CFU (Q)L(%vﬂ-v)L(%vﬂ-v ® 7781,)
L(1, 7y, Ad)L(1,ng,)

carried out by Waldspurger [ , Lemmes 2, 3] (see also [[I10, Theorem 1.2]).
When v is not dyadic, we can take

o ={ (40 o) € CLate

and so we compute vol(K,) = flCu dhg, =1 by the definition (3) of dhg,. On the
other hand, when v is dyadic, that is, F,, = Q2 and dg, =1 mod 4Zy, we can take

_ffa+b/2  b/2
K2_{<d52b/2 a+b/2) “’beZZ}’
since we have

-1 _ a b _ d52 -1 _ 1 0

which means Ky C g71GL2(Z2)g. Hence, we compute vol(Kz) = f,cz dhg, = 2 by
(3)-

Qg (¢vv ¢v) = X VOI(K)




32 MIYU SUZUKI AND SATOSHI WAKATSUKI

Next, we treat the case that &, is a ramified extension over F), and dg, € w,0.
It is known that A, equals the eigenvalue for ¢, of the integral operator m,(f),
where f is the characteristic function of K, diag(1,w@,)K,, cf. | , Proposition
4.6.6]. Hence, by using vol(K,diag(1, w,)K,) = ¢, + 1, we have

A = / (Go:To(g0) o) dgo = (g0 + 1) {0 mo(ding(L, 0))bo)o.
K,diag(1l,w,)K

We also note
K,(a +bdg,)K, = K,diag(1,a* — b*de,) K,

if (a,b) € 0, X 0, \ @y0, X w@,0,. Hence, we have

Ig ((b 1) :/ <¢'U77T'U(a+b5£v)¢v>
: ’ (00 X04y)U(ey 00 X 04 ) |det(a+b65v)|v

=(1—q; ")+ (1= q; ") {po, mp(diag(1, @,))dy) =

da db

(1-q; )1 +q, "+, M)
1+qyt

since a + bdg, belongs to K, (resp. dg, K,) if (a,b) € 0 X 0, (resp. wy0, X 0).
From this and Lemma 27, we obtain the desired equality.

The remaining case is that F, = Q2, &, is ramified over F),, and dg, € 0. In
this case, 0, = Zg, ¢, = 2, dg, = 3 mod 4, and we can choose w, = 2. Dividing
0y X 04 \ TWy0y X Wy0, into (0 X @,0,) U (20,0, X 0) U (0 X 0X) we have

1 1 1 (b, o (diag(1,a® — dg,))dy)
Ze, (¢y, 1) = 1 + 1 + 5 /ox 2 — dg. da.

Hence, we get Zg, (¢u,1) = (3 + A,)/6 since a® — dg, € 2(1 + 20,) for a € o}.
Therefore, we obtain the assertion by Lemma 27.

The positivity of B, (D, E,, ¢y) follows from Theorem 18. Equation (31) follows
from the above calculations. O

v

4. PROOF OF THE MEAN VALUE THEOREMS

Now we give the proof of Theorem 5.

If L(1,7) = 0, then Pg(¢) = 0 for all E € X(D) and hence the both sides
of (7) are zero. For the rest, we assume L(3,7) # 0. Under this assumption,
P(D,Es, ¢, s) is not identically zero, see [SW, Proposition 3.4].

Let T be a finite subset of ¥ containing S. Set

L(Lnf0f @) [Po(6)Dh(r.5)
N5

9(D7557¢3T35): Z

EEX(D,gs)
and €(D,E&s,0,T) = 1:_{?()3?2@(D,€5,¢,T,s). Clearly we have 2(D,&g,9,5,s) =
2(D,Es,¢,s) and €(D,Eg,$,S) = €(D,Eg,d). For Err = (E)ver € X(Dp/) =
[Toer X (Do), we set N(fe,,) = [[,er» N(fe,). By Lemma 15, we obtain

1
@(D7857¢aT78): Z W@(D785U8/a¢58)7
E'eX(Dr\s) £

where &' = (€,)yer\ s runs through X (Dp g) and EgUE" is an element of X (Dr) =
[I,er X(Dy). In particular, Z(D,Es, $, T, s) is a meromorphic function on C and
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has a simple pole at s = % with a positive residue (see Lemma 22 and Corollary

25). Together with Theorem 24 and Corollary 25, we get

Cr(2)L(5,m) Z PBr(D,Es UE, or)
LT(2,7,Ad) £ e Dos) N(fg/)% )

Q:(D7857¢’T) = CFCF<¢5¢> '

By (31), this becomes

1— —1
¢(D,Es,6,T) = €D, Es.¢) [[ L2, Ad)J1—q, — — I _q;322 0. (32)
I+qgt
veT\S
We follow the same line as the proof of | , Theorem 6.22] to deduce (7) from

(32). In particular, we apply the filtering process formulated by Datskovsky and
Wright. We write

em (1)

9(D,55,¢,T,S+%*t): Z
m=1
and
— nE7 aT7t
pg(w,ﬁg_gzz‘”nizf
n=1

Note that a1 (F,m,T,t) = 1. From the definition of Z(D, g, ¢, T, s) we have

a"l’L(E7 Tr’ T7 t)

— o &s
=3 X L @)Pe) e

n=1EeX(D,Es),
nN(fp)=m
The following theorem is called the Tauberian theorem.

Theorem 35. Let a, be a non-negative real number for any n € N, and M be
a positive real number. A Dirichlet series L(s) = > 7, -%2 is absolutely and
uniformly convergent on any compact set in the domain {s € C | Re(s) > M}.
In addition, L(s) is meromorphically continued to a domain including {s € C |

Re(s) > M}, and L(s) has a simple pole only at s = M. Set A = ResL(s) > 0.
$=3

Then, we have

A
. —M _
Jim XM an = M
n<X
Proof. For the case M = 1, we refer to [ , Theorem I in p.464]. Our assertion
is obtained by putting L(s) = L(Ms). O

Assume that T contains all places above primes less than 20. Then, we have
_25 _39
2 ‘qv 4+ q, 64‘ < 0.9 for any v ¢ T. Hence, by Theorem 18 and the argument in
the proof of Lemma 21,

Dp, (M0, s+ % — 1) = 1+ ayqp BT b g he oA

v

with some 0 < a, < 2 and 0 < b, < 1 for v ¢ T. It follows from this fact that
an(E,7,T,t) > 0, and hence ¢,,(t) > 0. Therefore, Theorem 35 can be applied to
P(D,Es,d,T, s+ % —t), and we obtain

. _ 1
xll)n;ox K Z<: em(t) = ;QZ(D,ES,(b, 7). (33)
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On the other hand, by a,(E,7,T,t) > 0 we also get

1

S L) (@) [Pa(d))? N(i5)' 2
EEX(D,SS),
N(f3) <=z

<Y L) Pe@) D 5 )

S\L_
n=1 BeX(D.Es), N(fg)=~"
nN(fg)<z

Combining this inequality with (32) and (33), and taking %an , we obtain the upper
—
bound

1
limsup 27" > N(i$)'"2 L(1,n)? o5 (9) [Pe(9)]* < C(D,Es,¢,1), (34)
oo EcX(D.Es),
N(g)<a

where we set

o1
C(Dnga¢at) = :}1—1?2 Ee(Dv‘gS’gﬁ’T)

1 T
=-¢(D L%, m A 1—qg 3 — 2 73\ 1.
Le(p.£s. o)1, dLQ{ 0 - e

In particular, there is a constant R > 0 such that for any = > 0,

S NGETTLL0? a5 (6) [Pe(@) < R-2'C(D,Es,6,t).  (35)
EX(D7ES),
JGV(f%)<z

Now we prove in (36) below that if we replace limsup,_, . on the left-hand side
of (34) with liminf, ., it is bounded below by C(D,&g,¢,t). Combining this
lower bound with (34), we see that C(D, &g, ¢,t) equals lim,_, of the left-hand
side of (34) (see (37)). This is the heart of this argument.

To prove (36), we need a Dirichlet series BT (s,t) = 3> | b, (T,t)n~* satisfying

n=1

b, (T, t) € R is independent of E and ,
bn(T,t) > an(E,m,T,t) >0 and by(n,T) =1,
BT (s,t) is absolutely convergent for Re(s) > t,
limp_,s BT (t,t) = 1.

For example, such a series can be obtained by putting B,(s,t) = 1 + 2¢;2572+2¢ +
g, 75t and BT (s,t) = [, Bu(s,t). Since a,(E, 7, T,t) < b,(T,t) and b, (T 1)
is independent of E, we have
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1
Zcm(t)— Z N(13) "2 L(1,m)* o5 (8) [Pe(9)?
m<zx EEX(D,gs),
N(f3)<z
> an(E,m,T,t
=S 1naf () P DD
n=2 E€X(D,£s), N(fp)2
nN(f%)<x

<Y LLnaF ) Pe@P S

n=2 BeX(D,Es),

nN(fz)<z
i 1
=S 0(Tt) S NGSTI L)% el (9) [Pe(e).
n=2 EGXDgs)
N(fE)<I,

It follows from the upper bound (35) that the last expression is bounded above by
> t
R ba(Tt) (f) C(D,Es.6,t) = R-at C(D, Es, 6,t)(BT (¢,) — 1).
n
n=2

We deduce from this and (33) that

—

liminf 2~ Y N(GE)'TZ L) 0 (6) [Pe(o)

T—r00
EeX(D,Es),
N(fg) <z

> liminf 27" ) en(t) = R-C(D,Es,¢,t)(B" (t,1) — 1)

m<zx

-&(D,Es,¢,T) — R-C(D,Es, ¢,t) (BT (t,t) — 1).

Since lim BT(t,t) = 1, taking lim of the both sides of the above inequality, we
¢ T—% T—%
ge

minf 2~ " NG5 L(La) 0 (8) [Pe(6) > C(D.Es.6.1). (36)
EEAXDgs)7
N(fE)<$

From (24), (34) and (36), we obtain

lim 2™ YNGR ILL0)aF (@)|Pe(@) = C(D. s, ¢,t) (37)
EeX(D,Es)
N(j§)<a
1 _ q,  _
= D, Es,0)L%(2,m Ad) [ | {1 Bt g 2}

vgS

T2 2
— () T 0O (D s, 0s) T] {1 gt -2l USA%}-
t|AF‘§ vgS
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Hence, we deduce

lim 2= YNGR L(Lp) aps(@) " Ps(9)

Tr—r 00
EeX(D,Es),
N(fg)<z
2123 L(1 Zmme v —1

=L m T —Ex I] Love.) XH{l—qf—q qJ3A3},
t|AF|§ veS 2¢, L(§77rv) vgS gy +1

since we have
an,5(6,0) " [Pe(d)]” = N(3) /205 (8)[Pu(9)* x [] lde,| "2 az, (60, 60) "

veS
and by Corollary 33

_1 — 1 L(17775u)27mv
D, &s, de,| "2 v G0) = :
PBs(D,Es,ps) x vel_[S\ e, | 2ag, (Pv, Pu) %.9) 1}11* 2¢, L, m0)

From this we obtain Theorem 5.

APPENDIX A. NUMERICAL EXAMPLES FOR MEAN VALUE THEOREMS

by M. SUZUKI, S. WAKATSUKI AND S. YOKOYAMA'®
Using Magma, we provide numerical examples for Theorem 10 and Theorem 12.

A.1. Elliptic modular forms. We briefly recall the notation of §2.3. Let k be
a non-negative even integer and f € Si(SL2(Z)) be a weight k cuspidal Hecke
eigenform with Fourier expansion f(z) = Y.~ | a,q", where ¢ = 2™V =1z Qe Ap =
plfgap for each prime p. Let m = ®,7, be the cuspidal automorphic representation
of GL2(Ag) corresponding to f.

Let E be a real quadratic field with discriminant D = 0r. We have an equality
of meromorphic functions Lg,(s,7 @ 1) = L(s + & 7f7 ). Here, n is the qua-
dratic character on Aa corresponding to E and the rlght hand side is the analytic
continuation of the Dirichlet L-series > > | (2) ann """ where (%) is the Kro-
necker symbol. It is easy to see that the function fo = >°°; (2) a,q™ belongs to

S5 (T'o(0?)) and satisfies
fo <D_2i—z> = 0%2F fo(2).
The L-function L(s, f,0) has an integral expression
(2m) T (5) (s, / FolV Ty
= [ R + sty Y

1/0 Y
The last integral converges for all s. Hence we get

et r =0+ o) 3 (2w (20,

n=1

LShun’ichi Yokoyama

Department of Mathematical Sciences

Graduate School of Science, Tokyo Metropolitan University

1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, JAPAN s-yokoyama@tmu.ac.jp
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where
k_q
2

Ep(x) = (o) Fe" )

m=0

a:,m

m!
Now we give a numerical example for k = 12, the first non-trivial case. The
space S12(SL2(Z)) is 1-dimensional and generated by the Hecke eigenform

Az)=q[[(1=g)* =D r(n)g"

By | , (29)], the inner product (A, A) is written as an infinite series and we
obtain the numerical value

(A, A) =1.035 362 056 804 320 922 347 816 x 1075,
For x > 0, put

2I'(6
Mell(x) :x_l E L(%JT@??E) = (271_)(6?2 E L(GaAaaE)
EGX(M2<(Q)-,SS) EGX(M2<(Q),55)
ap<T ap<T

Here, S = {2,000}, & € X(M3(Q2)) is arbitrary, £ is isomorphic to R x R and
ag is defined in (9). The following table shows the values M*°!(z) for z = i - 10°,
i=1,2,...,10. The last row is the values of the right hand side of (10) for ¢t = 1.

| |62 QxQ | & Q05 [ £>2Q(V3) | &> Q(VT) |

Me(10%) | 0.0002521751 | 0.0004181237 | 0.0004732234 | 0.0004706102
Me1(2-10%) | 0.0002524130 | 0.0004201329 | 0.0004729765 | 0.0004710201
Me1(3-10%) | 0.0002523719 | 0.0004194494 | 0.0004727592 | 0.0004729393
Me"(4-10%) | 0.0002520415 | 0.0004198913 | 0.0004731776 | 0.0004729414
Me(5-10%) | 0.0002522972 | 0.0004196702 | 0.0004732125 | 0.0004720879
Me1(6-10%) | 0.0002520912 | 0.0004197186 | 0.0004728869 | 0.0004720721
MeN(7-10%) | 0.0002520625 | 0.0004196767 | 0.0004727840 | 0.0004723050
Me1(8-10%) | 0.0002521590 | 0.0004199355 | 0.0004729952 | 0.0004728795
Me1(9-10%) | 0.0002519507 | 0.0004204256 | 0.0004732688 | 0.0004730878

Me1(10%) | 0.0002519197 | 0.0004203996 | 0.0004733662 | 0.0004729954

’ RHS ‘ 0.0002520826 | 0.0004201377 | 0.0004726550 | 0.0004726550

A.2. Algebraic modular forms. Let D be the quaternion division algebra over
Q with discriminant ¢ = 11. We take «,8 € D and a maximal order O as in
§2.4. Then |CI(D)| = 2. Take a set of coset representatives 1 = x1,29 € PDy  of
PD*\PD} /PDZU. The space of algebraic modular forms A(9) is 2-dimensional.
Let ¢ be a non-zero element of A(9) which is orthogonal to the constant functions:

0= (p,1) = 2 | 22),
w1 w2
where 1 is the constant function such that 1(x1) = 1(z2) = 1 and w; = |PD* N

x; ij_1|. As in §2.4, let 7 be the corresponding automorphic representation. By
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Eichler mass formula, we know that {wy,ws} = {2,3}. One can compute the Hecke
operators T}, on A(9D) using Brandt matrices in Magma (see [ , §41] for Brandt
matrices). For example, we have
1 2
n= (5 0)

with respect to the basis ¢1, ¢o defined as ¢;(x;) = d;; (4;; means the Kronecker
delta), that is, we have (Th¢1,Tad2) = (¢1,d2)T2. Computing the eigenvectors of
this Hecke operator, we see that ¢ = 2¢1 — 3¢2 € A(D) is a Hecke eigenform. Thus
we get (wy,ws) = (2,3), since ¢(x1) = 2 and ¢(a2) = —3. Note that we also get
)\2 = -2 by T2 (33) = )\2 (33)

We write

D () = ni(B)d(z1) + na(E)p(w2),
teCl(E)

where n,;(E) is the number of ¢ € CI(E) which is sent to z; under the map (12).

For z > 0, put

2

S Y s =20

EeX(D,£s) [teCl(E)
ap<T
Here, S = {2,11,00}, & € X(Dy) is arbitrary, £11 ~ Q11(v2), o ~ C and ap
is defined in (9). The following table shows the values M2 (z) for x = i - 10°,
i=1,2,...,10. The last row is the value of the right hand side of (13).

MY8(z) =273 > (@nu(E) - 3na(E))%

EEX(D,Ss)
ap<zxT

|

(620 x Q| &>Q(5) | &£>Q(V3) | &~ Q(VT) |

M*2(10°)

0.0046337803

0.0231138780

0.0231920179

0.0231049920

M™8(2-10°)

0.0046185984

0.0230698711

0.0231302785

0.0230117557

M?'5(3 - 10%)

—_

0.0046482718

0.0231826737

0.0231598032

0.0230706705

M®5(4 - 10%)

—

0.0046135180

0.0231018692

0.0231416705

0.0232480416

M5 (5 - 10%)

—_

0.0046270098

0.0232145560

0.0231038542

0.0231405163

—_

0.0046187112

0.0231879730

0.0233013954

0.0231419211

—_

M™(7-10%)

0.0046277835

0.0231512776

0.0232556126

0.0230933603

(
(
Malg (6 . 05)
(
(

M?'5(8 - 10%)

—_

0.0046193685

0.0231590930

0.0231640137

0.0230301054

M?1E(9 - 10°)

0.0046396704

0.0231281141

0.0230524326

0.0232173711

M?'=(10°)

0.0046304910

0.0231243940

0.0230294240

0.0231477800

| RHS

\ 0.0046263724

0.0231318618

0.0231318618

0.0231318618
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