
Regular Lagrangians are smooth Lagrangians∗

Tomohiro Asano†1, Stéphane Guillermou‡2,
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Abstract

We prove that for any element in the γ-completion of the space of smooth compact
exact Lagrangian submanifolds of a cotangent bundle, if its γ-support is a smooth
Lagrangian submanifold, then the element itself is a smooth Lagrangian. We also
prove that if the γ-support of an element in the completion is compact, then it is
connected.

1 Introduction

Let M be a C∞ closed connected manifold. The space L(T ∗M) of smooth compact exact
Lagrangian submanifolds of T ∗M carries a distance γ, called the spectral distance (see
[Vit92; Oh97; MVZ12; HLS16]). The metric space (L(T ∗M), γ) is not complete, so we
consider its completion. Its study was initiated in [Hum08], pursued further in [Vit22b],
and has applications to Hamilton–Jacobi equations [Hum08], symplectic homogenization
theory [Vit08], and to conformally symplectic dynamics [AHV24].

The elements of the completion L̂(T ∗M) are by definition certain equivalence classes
of Cauchy sequences with respect to the spectral distance γ. Despite their very abstract
nature, they admit a geometric incarnation called the γ-support, which was introduced by
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Viterbo in [Vit22b] (as a modification of the support introduced in [Hum08]). It is defined
as follows:

Definition 1.1. Let L∞ ∈ L̂(T ∗M) and z ∈ T ∗M . One says that z is in the γ-support of
L∞ if for any neighborhood U of z there is φ ∈ DHamc(U) such that φ(L∞) ̸= L∞. Here,
DHamc(U) denotes the group of Hamiltonian diffeomorphisms compactly supported in U .
The set of points in the γ-support of L∞ is denoted by γ-supp(L∞).

For a smooth Lagrangian L ∈ L(T ∗M), we easily show γ-supp(L) = L. Several
questions are of importance for γ-supp(L∞). Does γ-supp(L∞) characterize L∞? This is
not the case in general (examples can be found in [Vit22b]), but one could still hope it if
γ-supp(L∞) is small.

Also since γ-supports appear in [AHV24] as higher-dimensional versions of Birkhoff
invariant sets, they share some of the properties of the 1-dimensional case. It is proved in
loc. cit. that the projection π : γ-supp(L∞) →M induces an injection in cohomology, but
also that the map is not in general surjective. However, is it the case at the H0 level?

In this note, we give positive answers to the above questions, namely Conjecture 8.2
of [Vit22b] and a question in [AHV24]. That is, we prove, for L∞ ∈ L̂(T ∗M),

(i) if γ-supp(L∞) = L for some L ∈ L(T ∗M), then L∞ = L (see Theorem 5.1),

(ii) if γ-supp(L∞) is compact, then it is connected (see Theorem 6.1).
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2 Notations

Throughout this paper, we fix a field k.
Let L(T ∗M) denote the set of compact exact Lagrangian branes, i.e., triples (L, fL, G̃),

where L is a compact exact Lagrangian submanifold of T ∗M , fL : L → R is a function
satisfying dfL = λ|L, and G̃ is a grading of L (see [Sei00; Vit22b]). The action of R on

L(T ∗M) given by (L, fL, G̃) 7→ (L, fL − c, G̃) is denoted by Tc. Let L(T
∗M) be the set of

compact exact Lagrangians, where we do not record primitives or gradings. For L1, L2 in
L(T ∗M), we define as in [Vit22b] the spectral invariants c+(L1, L2) and c−(L1, L2), and
set

c(L1, L2) = max{c+(L1, L2), 0} −min{c−(L1, L2), 0}.

This defines a distance.1 For L1, L2 in L(T ∗M), we define the spectral distance between
L1 and L2 by

γ(L1, L2) = inf
c∈R

c(L1, TcL2) = c+(L1, L2)− c−(L1, L2).

We denote by L̂(T ∗M) (resp. L̂(T ∗M)) the completion of L(T ∗M) (resp. L(T ∗M)) with
respect to γ (resp. c).

1Note that the definition given in [AGHIV23] is not correct, and has to be replaced by the one above.
This has been corrected in the published version of [Vit22b].
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We denote by DHam(T ∗M) the group of Hamiltonian diffeomorphisms of T ∗M (time
1 of an isotopy) and DHamc(T

∗M) its subgroup made by times 1 of compactly supported
isotopies.

We follow the notations of [KS90]. In particular D(kM ) is the derived category of
sheaves of k-vector spaces onM . An object F ∈ D(kM ) has a microsupport SS(F ) ⊂ T ∗M
defined in loc. cit. For A ⊂ T ∗M , a closed conic subset, DA(kM ) := {F ∈ D(kM ) |
SS(F ) ⊂ A} is a triangulated full subcategory of D(kM ). We now recall several notions
and ideas from [Tam18]. We denote by (t; τ) the canonical coordinates on T ∗R and we
set for short {τ ≷ 0} = T ∗M × {τ ≷ 0} ⊂ T ∗(M × Rt). The Tamarkin category T (T ∗M)
is defined as the quotient category D(kM×R)/D{τ≤0}(kM×R). The Tamarkin category has

a monoidal structure. For F, F ′ ∈ D(kM×R) we set F ∗ F ′ := Rm!(q
−1
1 F ⊗ q−1

2 F ′), where
q1, q2 : M × R2 → M × R are the projections and m is the addition map m(x, s, t) =
(x, s + t). The operation ∗ preserves the left orthogonal ⊥D{τ≤0}(kM×R) and moreover
F 7→ F ∗ kM×[0,+∞[ is a projector onto it. This projector induces an equivalence between

T (T ∗M) and ⊥D{τ≤0}(kM×R), with which we identify them in what follows. We also

set Hom∗(F, F ′) := Rq1∗RHom(q−1
2 F,m!F ′) and denote the projection of this Hom∗

onto T (T ∗M) by the same symbol. This defines an internal hom Hom∗ : T (T ∗M)op ×
T (T ∗M) → T (T ∗M). For c ∈ R, let Tc : M × R → M × R be the translation Tc(x, t) =
(x, t+c). The category T (T ∗M) comes with a family of morphisms of functors τc : id → Tc∗
for each c ≥ 0 introduced by Tamarkin. They give rise to an interleaving distance on
T (T ∗M) denoted dT (T ∗M) (see [KS18] and [AI20]) defined as follows:

dT (T ∗M)(F, F
′) := inf

{
a+ b

∣∣∣∣∣ ∃u : F → Ta∗F
′, ∃v : F ′ → Tb∗F,

Ta∗v ◦ u = τa+b(F ), Tb∗u ◦ v = τa+b(F
′)

}
.

We recall the composition of sheaves. For F ∈ D(kM×N ) and G ∈ D(kN×P ), set
F ◦ G := Rq13!(q

−1
12 F ⊗ q−1

23 G), where qij are the projections from M × N × P to the
(i × j) factors. We also consider a mixture of ◦ and ∗: for F ∈ T (T ∗M × T ∗N), G ∈
T (T ∗N × T ∗P ), we set F �G = Rm!Rq13!(q

−1
12 F ⊗ q−1

23 G) where qij are projections from
M ×N × P × R2 to M ×N × R, N × P × R, M × P × R2 and m the addition map. We
set for short K�(F ) := K � F for K ∈ T (T ∗M2) and F ∈ T (T ∗M).

We put an analytic structure onM and define Tlc(T ∗M) as the subcategory of T (T ∗M)
made by objects that are limits (for the interleaving distance) of constructible sheaves.
We remark that for a submanifold N ofM , the pull-back to N×R commutes with Tc∗ and
τc. It follows that the pull-back is a contraction and hence sends Tlc(T ∗M) to Tlc(T ∗N).

For an object F ∈ T (T ∗M), we define its reduced microsupport RS(F ) ⊂ T ∗M by

RS(F ) := ρt(SS(F ) ∩ {τ > 0}),

where ρt : {τ > 0} → T ∗M, (x, t; ξ, τ) 7→ (x; ξ/τ). For a closed subset A ⊂ T ∗M , we let
TA(T ∗M) be the full subcategory of T (T ∗M) consisting of the F with RS(F ) ⊂ A. We
also set Tlc,A(T ∗M) = TA(T ∗M) ∩ Tlc(T ∗M).

3 Preliminaries

We recall that we have a quantization map for Hamiltonian isotopies Q : DHamc(T
∗M) →

T (T ∗M2) introduced in [GKS12]. It is defined so that RS(Q(φ)) is the graph of φ. For
φ ∈ DHamc(T

∗M) and Kφ = Q(φ), the action of Kφ on T (T ∗M), F 7→ K�
φ (F ) = Kφ�F ,

is an auto-equivalence of category and we have RS(K�
φ (F )) = φ(RS(F )). The category
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Tlc(T ∗M2) is not a group but it comes with the operation � which is associative and has
k∆M×[0,+∞[ as a unit element. Then Q respects the operations on DHamc(T

∗M) and
Tlc(T ∗M2): Q(φ ◦ ψ) ≃ Q(φ) �Q(ψ).

We also have a quantization map for smooth compact exact Lagrangians, denoted
by the same letter, Q : L(T ∗M) → T (T ∗M) defined more recently in [Gui23; Vit19],
constructed so that RS(Q(L)) = L for any L ∈ L(T ∗M). This functor is an isometric
embedding for the spectral and interleaving distances respectively (see [GV24, prop 6.3]):
for L1, L2 ∈ L(T ∗M),

dT (T ∗M)(Q(L1), Q(L2)) = γ(L1, L2).

Since the map Q is an isometry, it extends to the completion2 as an isometric embedding
Q̂ : L̂(T ∗M) → T (T ∗M) defined in [GV24]. We notice that Q̂(Tc(L̃∞)) ≃ Tc∗Q̂(L̃∞). The
main result of [AGHIV23] is the following connection between microsupport, γ-support
and quantization:

RS(Q̂(L̃∞)) = γ-supp(L̃∞) for any L̃∞ ∈ L̂(T ∗M).

An approximation argument is missing in [GV24], which we shall now provide.

Proposition 3.1. For any L̃∞ ∈ L̂(T ∗M), one has Q̂(L̃∞) ∈ Tlc(T ∗M).

Proof. According to [CE12], Corollary 6.25, an element L̃ ∈ L(T ∗M), is Ck-approximated
for any k ≥ 1 by analytic Lagrangians L̃i. We thus find that L̃ = Ck − lim L̃i hence
L̃i = φi(L̃) where φi is generated by a Ck-small Hamiltonian. According to Lemma 3.2
the distance between L̃ and L̃i can then be chosen arbitrarily small. As a result L̃ is
a γ-limit of analytic Lagrangians. According to [KS90] Theorem 8.4.2, the Q(L̃i) are
constructible hence their limit Q(L̃) is in Tlc(T ∗M). Since L̃∞ can be written as a Cauchy
sequence of elements of L(T ∗M), the claim follows.

Lemma 3.2. Let h : (T ∗(M×R)\0M×R)×I → R be a homogeneous Hamiltonian function
and ϕ be the associated homogeneous Hamiltonian isotopy. Let K ∈ D((M × R)2 × I) be
the sheaf associated with ϕ constructed in [GKS12]. Then, for any F ∈ T (T ∗M)

dT (T ∗M)(F,K1 ◦ F ) ≤ 4

∫ 1

0
max |hs(x, t; ξ, 1)| ds.

Proof. First note that we have

SS(K) ⊂
{
(ϕs(x, t; ξ, τ), (x, t;−ξ,−τ), (s,−hs(ϕs(x, t; ξ, τ))))

∣∣
(x, t; ξ, τ) ∈ T ∗(M × R) \ 0M×R, s ∈ I

}
,

which implies

SS(K ◦ F ) ⊂ T ∗M × {(t, s; τ, σ) | τ ≥ 0,−maxhs(x, t; ξ, τ) ≤ σ ≤ −minhs(x, t; ξ, τ)} .

Since h is homogeneous, we get hs(x, t; ξ, τ) = τhs(x, t; ξ/τ, 1) for τ > 0. Thus, we can
apply the same proof in Theorem 4.16 [AI20] to get

dT (T ∗M)(F,K1 ◦ F ) ≤ 2

∫ 1

0
(maxhs(x, t; ξ, 1)−minhs(x, t; ξ, 1)) ds.

Here, note that the distance dT (T ∗M) is slightly different from the distance dD(M) in [AI20]
and we have dT (T ∗M) ≤ 2dD(M). The right-hand side of the inequality is bounded above
by the desired integral.

2Note that the image is complete, but the map is not onto.
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Let L ∈ L(T ∗M) and L∞ ∈ L̂(T ∗M). We assume that γ-supp(L∞) = L and we want
to prove that L∞ ∈ L(T ∗M) and L∞ = L. Let L̃ = (L, fL, G̃) ∈ L(T ∗M) be a lift of
L and let L̃∞ ∈ L̂(T ∗M) be a lift of L∞. In view of [AGHIV23] our assumption means
that the sheaf F

L̃∞
= Q̂(L̃∞) ∈ T (T ∗M) satisfies RS(F

L̃∞
) = L. To prove that L∞ = L

it is enough to see that FL∞ is isomorphic to FL = Q(L̃), up to translation (in t) and
shift (in grading). To this end, we shall characterize the objects F of Tlc,L(T ∗M) with
SS(F ) = Tc(Λ) for some c ∈ R, where Λ ⊂ T ∗(M ×R) is the cone over a Legendrian lift of
L and Tc also denotes the translation on T ∗(M × R) by c (see Definition 4.1, Lemma 4.2
and Proposition 4.11). Explicitly

Λ = {(x, τp,−fL(x, p), τ) | τ > 0, (x, p) ∈ L}.

Hence Λ is a conic Lagrangian submanifold of T ∗(M ×R) contained in {τ > 0}. Note that
the coisotropic submanifold ρ−1

t (L) is foliated by the translates of Λ: ρ−1
t (L) =

⊔
c∈R Tc(Λ).

It is not too difficult to see that any closed conic coisotropic subset of ρ−1
t (L) is a union

of translates of Λ. Hence for any non zero F ∈ TL(T ∗M), SS(F ) contains at least Tc(Λ)
for some c ∈ R. However we shall not use these facts.

4 Cohomologically chordless sheaves

The main result we want to prove, Theorem 5.1, is about the space L̂(T ∗M) and its state-
ment is independent of sheaves. However, our proof starts by embedding this space in
the category of sheaves via the functor Q. This embedding Q is far from being essentially
surjective. We do not try to characterize its image, but we give here a useful property,
cohomologically chordless, shared by the sheaves in its image. This property is a coho-
mological consequence of the following geometric property: if F = Q(L̃) for some smooth
Lagrangian brane L̃ = (L, fL, G̃), then the reduction map SS(F )∩ST ∗(M ×R) → T ∗M is
an embedding with image L. In other words, the Legendrian SS(F )∩ST ∗(M ×R) has no
Reeb chords. Unfortunately, this geometric property is not necessarily preserved by taking
limits since a γ-support may have double points (see Ex. 6.22 in [Vit22b]). However, the
geometric property easily implies the following (already used in [Gui23, chapter XII.4]),
which is stable by completion: RHom(F, Tc∗F ) is constant when c runs over R>0 or over
R<0 (and in the latter case it is zero). Our Definition 4.1 below only retains the case R<0

but gives a slightly stronger version.
As already mentioned, even for a cohomological chordless sheaf F , the map SS(F ) ∩

ST ∗(M × R) → RS(F ) may not be injective. However we can give a sheafy statement
analog to our main theorem: if F is cohomological chordless and RS(F ) is a smooth
exact Lagrangian submanifold, then SS(F ) ∩ ST ∗(M × R) → RS(F ) is a bijection (see
Proposition 4.11 below for a more precise statement).

We denote by q : M × R →M the projection.

Definition 4.1. Let F ∈ T (T ∗M). We say that F is cohomologically chordless if

RHom(F ⊗ q−1G,Tc∗F ) ≃ 0

for all c < 0 and all locally constant G ∈ D(kM ) (we say that an object of D(kM ) is locally
constant if its cohomology sheaves are locally constant).

Before proving Proposition 4.11 we give several results about cohomologically chordless
sheaves.
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Lemma 4.2. Let F ∈ TL(T ∗M) with SS(F ) = Tc0(Λ) for some c0 ∈ R and F |M×{t} ≃ 0
for t≪ 0. Then F is cohomologically chordless.

Proof. This is already done in [Gui23, Lemma 12.4.4], but we sketch the proof for the
convenience of the reader. First the microsupports of F ⊗ q−1G and Tc∗F do not meet
when c runs over ]−∞, 0[, hence RHom(F ⊗ q−1G,Tc∗F ) is independent of c < 0 by a
variation on the Morse theorem for sheaves [KS90, Corollary 5.4.19] (see [Nad16] or [Gui23,
Corollary 1.2.17]). We choose a such that Λ ⊂ T ∗(M × ]−a, a[). For c < −2a we obtain
that Tc∗F is locally constant on supp(F⊗q−1G), say Tc∗F ≃ q−1G′ ≃ q!G′[−1] there. Then
RHom(F⊗q−1G,Tc∗F ) is isomorphic to RHom(F⊗q−1G, q!G′[−1]). Using the adjunction
(Rq!, q

!) and the projection formula Rq!(F ⊗q−1G) ≃ Rq!F ⊗G, it is then enough to check
that Rq!F ≃ 0. This can be proved stalkwise: (Rq!F )x ≃ RΓc({x} × R;F |{x}×R) and the
vanishing follows again from the Morse theorem for sheaves since SS(F |{x}×R) ⊂ {τ ≥ 0}
and F |{x}×R vanishes near −∞.

Lemma 4.3. Let (Fi)i∈N, be a convergent sequence in T (T ∗M) and set F = limi Fi (the
limit being for the distance dT (T ∗M)). We assume that Fi is cohomologically chordless for
each i ∈ N. Then F is cohomologically chordless.

Proof. By [GV24, Proposition 6.25] (or [AI24, Theorem 4.3]), up to taking a subsequence,
there exist a sequence of positive numbers (εi)i∈N converging to 0 and morphisms

fi : T−εi∗Fi → T−εi+1∗Fi+1, ui : T−εi∗Fi → F (4.1)

such that ui+1 ◦ fi = ui, for all n, and the morphism hocolimT−εi∗Fi → F induced by
the ui’s is an isomorphism, where hocolim is the sequential homotopy colimit described in
[BN93] (see also [KS06, Notation 10.5.10]). The same proposition holds with homotopy
limits instead of homotopy colimits and we can write in the same way (taking a subsequence
again) F

∼−→ holimTηj∗Fj for some other sequence (ηi)i∈N.
Since the tensor product commutes with direct sums, it also commutes with homotopy

colimits and we have, for any G ∈ D(kM ), F ⊗ q−1G ≃ hocolim(T−εi∗Fi ⊗ q−1G). Recall
that the category of sheaves on a topological space X is a Grothendieck category, so
we may apply Lemma 4.4 and infer that RHom(F ⊗ q−1G,Tc∗F ) is a homotopy limit of
Ei = RHom(T−εi∗Fi ⊗ q−1G,T(ηi+c)∗F ). For a given c < 0 and for i big enough we have
εi + ηi + c < 0 and then Ei ≃ 0. It follows that RHom(F ⊗ q−1G,Tc∗F ) vanishes.

Lemma 4.4. Let C be a Grothendieck category. Let (Ai, fi), i ∈ N, be an inductive system
in D(C), with homotopy colimit A, and let (Bj , gj), j ∈ N, be a projective system, with ho-
motopy limit B. Then RHom(A,B) is a homotopy limit of the system (RHom(Ai, Bi), hi)
where hi is the morphism induced by composition with fi, gi.

Proof. According to [Hov01], Theorem 2.2, the category Ch(C) of chain complexes on C
is a model category having homotopical category D(C). We denote by Vk the category of
k-vector spaces.

We apply results of [CS02] where homotopy (co)limits are defined for categories with
weak equivalences. If A is such a category and I is a small category, we have a functor
holim′

I : Fun(I,A) → Ho(A) (in particular holim′
I : Fun(I,Ch(C)) → Ho(Ch(C)) = D(C).

In the proof of Lemma 4.3 the notation holimI F applies to F ∈ Fun(I,D(C)) — this
is not a functor: holimI F is well-defined up to a non-unique isomorphism. We use the
notation holim′

I F to avoid confusion (but this is denoted by holimI in [CS02]). We have
holim′

I F ≃ holimI Q ◦ F where Q : A → Ho(A) is the quotient.
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We will apply Section 31.5 from [CS02] which states that if F : I × J → C is a functor
to a model category, then holim′

I×J F ≃ holimI holim
′
J F ≃ holimJ holim

′
I F . In our case

I = J = Nop. We first lift the diagram i 7→ Ai to a similar diagram in the set of chain
complexes on C. We shall use the same notation for the lift. We do the same for j 7→ Bj
and we may further impose that each Bj is a complex of injectives. We then define a
functor F : (Nop)2 → Ch(Vk) by F (i, j) = Hom(Ai, Bj). Since the Bj ’s are injective,
we have holim′

i F (i, j) ≃ RHom(hocolim′
iAi, Bj) ≃ RHom(A,Bj) for each j. From the

definition of holim we also have holimj RHom(A,Bj) ≃ RHom(A, holim′
j Bj). Hence

RHom(A,B) ≃ holim′
(i,j)∈(Nop)2 Hom(Ai, Bj).

According to 31.6 (loc. cit.) for F : I → C a functor in a model category and f : J → I an
initial functor, the map

holim′
I F → holim′

J f
∗F

is a weak equivalence. Using the fact that the inclusion of the diagonal Nop in (Nop)2 is
initial we get

RHom(A,B) ≃ holim′
i∈Nop Hom(Ai, Bi) ≃ holimi∈Nop RHom(Ai, Bi).

This concludes the proof.

We now prove that, if F ∈ Tlc,0M (T ∗M) is cohomologically chordless, then SS(F ) =
0M × ({c0}×]0,∞[) for some c0 ∈ R (Proposition 4.6 below).

We first recall a microlocal characterization of the inverse image of sheaves by a pro-
jection with contractible fibers.

Lemma 4.5. Let N be a manifold and let I be an open interval (or more generally a
contractible manifold). Let p : N × I → N be the projection and let ia : N × {a} → N × I
be the inclusion, for a ∈ I. Then p−1 : D(kN ) → DT ∗N×0I (kN×I) is an equivalence of
categories, with inverses Rp∗ and i−1

a , a ∈ I. Moreover, in the case N = R, these functors
induce equivalences T (pt) ≃ T0I (T ∗I) and Tlc(pt) ≃ Tlc,0I (T ∗I).

Proof. Proposition 2.7.8 of [KS90] says that p−1 and Rp∗ give equivalences between D(kN )
and Dp(kN×I), where the latter category is the subcategory of D(kN×I) whose objects
restrict to constant sheaves on the fibers. Now Proposition 5.4.5 of [KS90] says that
Dp(kN×I) coincides with DT ∗N×0I (kN×I). Since i−1

a ◦ p−1 ≃ idD(kN ), we deduce that i−1
a

is also an inverse to p−1.
The functors p−1 and i−1

a commute with −∗k[0,+∞[ and we deduce T (pt) ≃ T0I (T ∗I).
Moreover they send constructible sheaves to constructible sheaves and are 1-Lipschitz with
respect to the interleaving distance. Hence they also induce the last equivalence of the
lemma.

Proposition 4.6. Let F ∈ Tlc,0M (T ∗M) such that F is cohomologically chordless. Then
there exists c0 and a locally constant sheaf G0 on M such that F ≃ G0 ⊠ k[c0,+∞[.

Proof. (i) For c ∈ R we set G′
c = Rq∗RHom(F, Tc∗F ). By Lemma 4.5, for any open

ball B ⊂ M , we have F |B×R ≃ p−1F ′ for some F ′ ∈ Tlc(pt), where p : B × R → R is
the projection. It follows that RHom(F, Tc∗F )|B×R ≃ p−1RHom(F ′, Tc∗F

′). By base
change we deduce that G′

c|B is constant. Hence G′
c is locally constant. We also have the

adjunction isomorphism

RHom(F ⊗ q−1G′
c, Tc∗F ) ≃ RHom(q−1G′

c,RHom(F, Tc∗F ))

≃ RHom(G′
c,Rq∗RHom(F, Tc∗F )) = RHom(G′

c, G
′
c).
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Since F is cohomologically chordless, it follows that G′
c ≃ 0 for any c < 0.

(ii) Let x ∈ M be given and let B be a small ball around x. With the same notations as
in (i) we have RHom(F, Tc∗F )|B×R ≃ p−1RHom(F ′, Tc∗F

′) and the base change formula
gives RΓ(B;G′

c) ≃ RHom(F ′, Tc∗F
′). For c < 0 we thus obtain RHom(F ′, Tc∗F

′) ≃ 0. Let
us check that this implies F ′ ≃ E ⊗ k[c0,+∞[ for some constant sheaf E on R and some
c0 ∈ R.

By [GV24, Corollary B.12] we have a decomposition F ′ ≃
⊕

j∈I k[aj ,bj [[dj ], where I is a
countable set and aj ∈ R, bj ∈ R∪{+∞}, dj ∈ Z. If F ′ is not of the form E⊗k[c0,+∞[, then
there exists n with bn ̸= +∞ or there exist n,m with an ̸= am (say an < am). In the first
case we write F ′ ≃ k[an,bn[[dn]⊕ F ′′ and see that H(c) := RHom(k[an,bn[,k[c+an,c+bn[) is a
direct summand of RHom(F ′, Tc∗F

′). By Lemma 4.7 belowH(c) ≃ k[−1] for an−bn < c <
0. The second case is similar, with the use of the fact that Hom(k[an,+∞[,k[c+am,+∞[) ≃ k
for an − am < c. In both cases we have RHom(F ′, Tc∗F

′) ̸= 0 and get a contradiction.
Hence F ′ ≃ E ⊗ k[c0,+∞[ for some constant sheaf E and c0 ∈ R, as claimed.

(iii) Summing up, we have for any x ∈M and ball B around x an isomorphism F |B×R ≃
p−1(E ⊗ k[c0,+∞[) where p : B × R → R is the projection, E ∈ D(k) and c0 ∈ R. Since M
is connected, c0 does not depend on x. It follows that F is supported on M × [c0,+∞[,
hence RHom(kM×[c0,+∞[, F )

∼−→ F .
Let us set G0 = Rq∗F . The image of idG0 by the adjunction isomorphisms

Hom(G0,Rq∗F ) ≃ Hom(q−1G0, F )

≃ Hom(q−1G0,RHom(kM×[c0,+∞[, F )) ≃ Hom(q−1G0 ⊗ kM×[c0,+∞[, F )

gives a morphism u : q−1G0⊗kM×[c0,+∞[ → F . By (ii) it is locally an isomorphism, hence
it is an isomorphism.

Lemma 4.7. Let a, c ∈ R and b, d ∈ R ∪ {+∞} with a < b, c < d. We have

RHom(k[a,b[,k[c,d[) ≃ RHom(k[a,b[∩ ]c,d],kR)

≃


k[c,b] if a ≤ c < b ≤ d,

k]a,d[ if c < a < d < b,

k{a}[−1] if a = d,

kI else, where I is half closed or empty

and in particular

RHom(k[a,b[,k[c,d[) ≃


k if a ≤ c < b ≤ d,

k[−1] if c < a ≤ d < b,

0 else.

Proof. For an interval I with non empty interior let us write I∗ = (I \I)∪Int(I) (in words,
we turn closed ends into open ones and conversely). Then RHom(kI ,kR) ≃ kI∗ . In par-
ticular RHom(k[a,b[,k[c,d[) ≃ RHom(k[a,b[,RHom(k]c,d],kR)) ≃ RHom(k[a,b[ ⊗ k]c,d],kR),
which gives the first isomorphism. The second one follows by a case by case check, to-
gether with the additional isomorphism RHom(k{a},kR) ≃ k{a}[−1]. The last assertion
is obtained by taking global sections.

We now check that DHamc(T
∗M) and its completion preserve cohomologically chord-

less sheaves.
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Lemma 4.8. Let φ ∈ DHamc(T
∗M) and Kφ = Q(φ). Let F ∈ T (T ∗M) be cohomologi-

cally chordless. Then K�
φ (F ) is cohomologically chordless.

Proof. Since K�
φ is an equivalence, we have

RHom(K�
φ (F ⊗ q−1G),K�

φ (Tc∗F )) ≃ RHom(F ⊗ q−1G,Tc∗F ).

Hence it is enough to check that K�
φ commutes with Tc∗, which is clear by the definition

of �, and that
K�
φ (F ⊗ q−1G) ≃ K�

φ (F )⊗ q−1G.

Since φ is the time 1 of some isotopy, both sides of this isomorphism are restrictions at time
1 of sheaves in TA(T ∗(M × R)), where A ⊂ T ∗(M × R) is given by A = {(x, ξ, s, σ) | σ =
h(x, ξ, s)}, with h the Hamiltonian function of φ. Both sheaves coincide at time 0 and the
result follows from a uniqueness property in this situation (see for example Corollary 2.1.5
in [Gui23]).

We equip DHamc(T
∗M) with the sheaf-theoretic spectral metric γs defined as

γs(φ,φ′) = dT (T ∗M2)(Kφ,Kφ′).

Denote by D̂Hamc(T
∗M) the completion of DHamc(T

∗M) with respect to γs. By the
completeness of T (T ∗M2) with respect to dT (T ∗M2) [AI24; GV24], we can extend the map
Q as

Q̂ : D̂Hamc(T
∗M) → Tlc(T ∗M2).

As a completion of a group, D̂Hamc(T
∗M) is a group and the formula Q(φ ◦ ψ) ≃

Q(φ) �Q(ψ) given at the beginning of §3 extends to Q̂.

Lemma 4.9. Let φ∞ ∈ D̂Hamc(T
∗M) and Kφ∞ = Q̂(φ∞). Then K�

φ∞ : T (T ∗M) →
T (T ∗M), F 7→ K�

φ∞(F ) := Kφ∞ � F is an equivalence of categories. Moreover, if F ∈
T (T ∗M) is cohomologically chordless, so is K�

φ∞(F ).

Proof. We find that Kφ∞ has an inverse with respect to � given by K−1
φ∞ = Q̂(φ−1

∞ ).
The first assertion is then clear. Writing φ∞ as a limit of a Cauchy sequence (φn)n of
DHamc(T

∗M), the sequence K�
φn

(F ) converges to K�
φ∞(F ). Hence the second assertion

follows from Lemmas 4.3 and 4.8.

Now we extend Proposition 4.6 to the case of a general exact Lagrangian L. To
reduce the problem to Proposition 4.6 we shall use a result Arnaud, Humilière, and
Viterbo [AHV24].

Theorem 4.10 (cf. [AHV24]). Let L ∈ L(T ∗M) be a compact exact Lagrangian sub-

manifold of T ∗M . Then, there exists φ∞ ∈ D̂Hamc(T
∗M) such that φ∞(L) = 0M ,

where both sides should be understood as elements in L̂(T ∗M). Moreover, the functor
K�
φ∞ : T (T ∗M2) → T (T ∗M2) sends TL(T ∗M) to T0M (T ∗M).

The theorem is proved in [AHV24] for the completion of DHamc(T
∗M) with respect

to the usual spectral metric γ. In Appendix A, we give a proof for the sheaf-theoretic
spectral metric γs. Note that if k is of characteristic 2 or M is spin, then γs coincides
with the usual spectral metric γ (see [GV24]).

Proposition 4.11. Let L̃ ∈ L(T ∗M) be a lift of L ∈ L(T ∗M) and set F
L̃
= Q(L̃). Let

φ∞ ∈ D̂Hamc(T
∗M) be given by Theorem 4.10 and set Kφ∞ = Q̂(φ∞) ∈ Tlc(T ∗M2).
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(i) There exist a locally constant sheaf G0 on M , of rank 1, and c0 ∈ R such that
K�
φ∞(F

L̃
) ≃ G0 ⊠ k[c0,+∞[.

(ii) Let F ∈ Tlc,L(T ∗M) such that F is cohomologically chordless. Then there exists c1
and a locally constant sheaf G1 on M such that F ≃ Tc1∗(FL̃ ⊗ q−1G1).

Proof. Let F be as in (ii). By Theorem 4.10 K�
φ∞(F ) ∈ Tlc,0M (T ∗M), and by Lemma 4.9

it is cohomologically chordless. By Proposition 4.6, we deduce K�
φ∞(F ) ≃ GF ⊠ k[cF ,+∞[

for some cF ∈ R and some locally constant sheaf GF on M .
By Lemma 4.2 the sheaf F

L̃
satisfies the property in (ii). In particular, we have (i)

with c0 = cF
L̃

and G0 = GF
L̃
, but we have to check that G0 is of rank 1. We set

F1 = (K−1
φ∞)�(k[c0,+∞[). Then K�

φ∞(F1 ⊗ q−1G0) ≃ K�
φ∞(F

L̃
). Hence F1 ⊗ q−1G0 ≃ F

L̃
.

Restricting to M × {t} for t ≫ 0 we obtain (F1|M×{t}) ⊗ G0 ≃ F
L̃
|M×{t} ≃ kM , which

implies that G0 is of rank 1. This proves (i).
Now we come back to F as in (ii). We have

K�
φ∞(F ) ≃ GF ⊠ k[cF ,+∞[ ≃ Tc1∗(G1 ⊗ (G0 ⊠ k[c0,+∞[)),

where c1 = cF−c0 and G1 = GF⊗G−1
0 . Hence K�

φ∞(F ) ≃ K�
φ∞(Tc1∗(FL̃⊗q

−1G1)) and (ii)
follows.

5 Regular Lagrangians are smooth Lagrangians

We now prove our first main result, as a corollary of the characterization of cohomologically
chordless sheaves obtained in Proposition 4.11.

Theorem 5.1. Let L∞ ∈ L̂(T ∗M). We assume that L = γ-supp(L∞) is a compact exact
Lagrangian submanifold of T ∗M . Then L∞ = L in L(T ∗M).

Proof. We lift L∞ to L̃∞ ∈ L̂(T ∗M) and set F∞ = Q̂(L̃∞). By definition, L̃∞ is the
equivalence class of a Cauchy sequence (Ln)n in L(T ∗M) and, by [GV24] or [AI24], the
sequence of associated sheaves FLn converges in T (T ∗M) to F∞. By [AGHIV23] we
know that RS(F∞) = L. We lift L into L̃ ∈ L(T ∗M) and let F

L̃
be the associated

sheaf. By Lemma 4.3 and Proposition 4.11 we have F∞ ≃ Tc1∗(FL̃ ⊗ q−1G1) for some
c1 ∈ R and some locally constant sheaf G1 on M . Let x ∈ M be given. The sequence
FLn |{x}×R converges to F∞|{x}×R and RΓ({x} × R;FLn |{x}×R) ≃ k for all n. Hence
RΓ({x}×R;F∞|{x}×R) ≃ k. It follows that (G1)x ≃ k. The same kind of argument shows
that RΓ(M ;G1) ≃ RΓ(M×R;F∞) ≃ k. Hence G1 ≃ kM and F∞ ≃ Tc1∗FL̃, which implies

L̃∞ = Tc1(L̃), hence L∞ = L.

Remark 5.2. Note that for L = 0M in T ∗M and for a manifold M satisfying a cer-
tain condition (denoted by (⋆) in [Vit22a]), this theorem follows from Theorem 8.6 of
[Vit22b](version 2) as a consequence of Theorem 6.3 in [Vit22a]. This was removed from
the published version of [Vit22b] and included in [Vit22a].

6 Compact γ-supports are connected

Our second main result answers a question in [AHV24].

Theorem 6.1. Let L∞ ∈ L̂(T ∗M) and assume that γ-supp(L∞) is compact. Then
γ-supp(L∞) is connected.
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Lemma 6.2. For any L̃∞ ∈ L̂(T ∗M), one has EndT (T ∗M)(FL̃∞
) ≃ k.

Proof. Write L̃∞ as the equivalence class of a Cauchy sequence (L̃n)n, where L̃n ∈
L(T ∗M). Then, we find that Rq∗Hom∗(F

L̃n
, F

L̃n
) ≃ RΓ(M ;kM ) ⊗ k[0,+∞[ for any n

by [Vit19, Proposition 9.11]. Since γ(L̃n, L̃∞) → 0 and Hom∗ is continuous for the in-
terleaving distance, we find that Rq∗Hom∗(F

L̃n
, F

L̃n
) converges to Rq∗Hom∗(F

L̃∞
, F

L̃∞
).

This implies that

dT (pt)(Rq∗Hom∗(F
L̃∞
, F

L̃∞
),RΓ(M ;kM )⊗ k[0,+∞[) = 0,

from which we deduce Rq∗Hom∗(F
L̃∞
, F

L̃∞
) ≃ RΓ(M ;kM )⊗ k[0,+∞[ by [GV24, Proposi-

tion B.8]. Thus, we obtain

Hom(F
L̃∞
, F

L̃∞
) ≃ H0RHom(k[0,+∞[,Rq∗Hom∗(F

L̃∞
, F

L̃∞
)) ≃ k,

which proves the lemma.

Our next Lemma is a variant of microlocal cut-off lemma. A cut-off functor associated
with an open subset Ω of a cotangent bundle sends a sheaf F to a sheaf F ′ such that
SS(F ′) ⊂ Ω and SS(F ′) ∩ Ω = SS(F ). Such functors were first introduced in [KS90] for
special cases of Ω and more recently in [DAg96; Chi17; Zha24; Zha23; Kuo23; KSZ23;
Zha25]. In general SS(F ′) ∩ ∂Ω will not be bounded by SS(F ) ∩ ∂Ω. However, when
SS(F ) ∩ ∂Ω is empty, we check that it holds true.

Lemma 6.3. Let U be an open subset of T ∗M and F ∈ T (T ∗M). Assume that RS(F )∩U
is compact and RS(F ) ∩ ∂U = ∅, where ∂U is the topological boundary defined as U \ U .
Then one has an exact triangle

P (U) � F → F → Q(U) � F
+1−−→

with RS(P (U) � F ) = RS(F ) ∩ U and RS(Q(U) � F ) = RS(F ) ∩ (T ∗M \ U). Here
P (U), Q(U) : T (T ∗M) → T (T ∗M) are the microlocal projectors associated with U (see
[Chi17; Zha24; Zha23]).

Proof. Set A1 := RS(F ) ∩ U and A2 := RS(F ) \A1. To show P (U) � F ∈ TA1(T
∗M) and

Q(U)�F ∈ TA2(T
∗M), we use (a version of) Kuo’s description of projectors by microlocal

wrapping [Kuo23; KSZ23].
Let C∞

c (U) be the poset of compactly supported smooth functions on U and H• : N →
C∞
c (U) be a final functor satisfying Hn ≡ n on a neighborhood of A1 for each n. The

microlocal projector Q(U) is described as (see after (4.1) for the notation hocolim)

Q(U) ≃ hocolim
n∈N

KHn .

Since hocolim commutes with �, Q(U)�F ≃ hocolimn(KHn �F ). Since dHn vanishes
on a neighborhood of RS(F ), RS(KHn�F ) = RS(F ) = A1∪A2. Hence RS(hocolimn(KHn�
F )) ⊂ A1 ∪ A2. On the other hand, RS(Q(U) � F ) ⊂ T ∗M \ U by a formal property of
the projector Q(U) and hence,

RS(Q(U) � F ) ⊂ (T ∗M \ U) ∩ (A1 ∪A2) = A2.

Since the morphism F → Q(U)�F is an isomorphism on T ∗M \U , (P (U)�F )∩ (T ∗M \
U) = ∅. The triangle inequality for microsupports shows RS(P (U) � F ) = A1.
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The next lemma is a wide generalization of [Gui23, Proposition 3.3.2], where the result
is local and the sets A1, A2 are supposed “unknotted”.

Lemma 6.4. Let F ∈ T (T ∗M) and assume that RS(F ) is decomposed into two compact
disjoint subsets A1 and A2. Then there exist F1, F2 ∈ T (T ∗M) such that RS(Fi) = Ai and
F ≃ F1 ⊕ F2.

Proof. Take an open neighborhood U of A1 such that U ∩A2 = ∅. Applying Lemma 6.3,
we have an exact triangle in T (T ∗M)

P (U) � F → F → Q(U) � F
+1−−→

with P (U) � F ∈ TA1(T
∗M) and Q(U) � F ∈ TA2(T

∗M). Set F1 := P (U) � F and F2 :=
Q(U)�F . Since A1 ∩A2 = ∅ and each Ai is compact, by Tamarkin’s separation theorem
we have HomT (T ∗M)(F2, F1[1]) = 0. Then by the above exact triangle, F ≃ F1 ⊕ F2.

Proof of Theorem 6.1. Suppose that γ-supp(L∞) is decomposed into two non-empty com-
pact disjoint subsets A1 and A2. Let L̃∞ be a lift of L∞. Set F

L̃∞
= Q(L̃∞) ∈ T (T ∗M).

By a result of [AGHIV23], we have γ-supp(L∞) = RS(F
L̃∞

). By Lemma 6.4, there exist
Fi ∈ TAi(T

∗M) such that F
L̃∞

≃ F1 ⊕ F2. Since F
L̃∞

is indecomposable by Lemma 6.2,
either F1 or F2 is zero. This is a contradiction.

Remarks 6.5. (i) The connectedness does not hold for elements in L̂(T ∗M) with non-
compact γ-support. Indeed, consider the situation in Figure 6.1. Since fj C

0-

converges to f , Lj = graph(dfj) γ-converges to some L∞ in L̂(T ∗S1). Clearly
the γ-support of L∞ is the union of the two connected components represented
in Figure 6.1(b).

(ii) One can construct examples of sequences Fi of elements in T (T ∗M) such that RS(Fi)
remain in a fixed compact set, are connected, Fi converges to F for dT (T ∗M), but

RS(F ) is not connected. As a result F is not in the image of Q̂.

fj

f = lim fj

(a)

Lj = graph(dfj)

L∞

(b)

Figure 6.1: An element L∞ = γ- lim(Lj) in L̂(T ∗S1) with non-compact and disconnected
γ-support. Figure (b) is the differential of Figure (a), the fj , Lj correspond to the dashed
curves, f, L∞ to the solid curves.
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A The weak nearby Lagrangian conjecture for the sheaf-
theoretic spectral metric

In this appendix, we prove a sheaf-theoretic version of a result of Arnaud, Humilière, and
Viterbo [AHV24]. The following theorem is for the sheaf-theoretic spectral metric γs.

Theorem A.1 (cf. [AHV24]). Let L ∈ L(T ∗M) be a compact exact Lagrangian sub-

manifold of T ∗M . Then, there exists φ∞ ∈ D̂Hamc(T
∗M) such that φ∞(L) = 0M ,

where both sides should be understood as elements in L̂(T ∗M). Moreover, the functor
K�
φ∞ : T (T ∗M2) → T (T ∗M2) sends TL(T ∗M) to T0M (T ∗M).

The zero-section 0M is the fixed point set of the canonical Liouville flow. We set ψs0
to be the time-s map of the canonical Liouville flow and set ψ0 := ψ1

0. The map ψs0 is the
multiplication by es on each fiber. By [AHV24, Proposition 7.3], we see that L is also the
fixed point set of the Liouville flow of another Liouville 1-form which coincides with the
canonical Liouville form outside a compact subset. Set ψ1 to be the time-1 map of this
latter Liouville flow.

We will find φ∞ as a fixed point of a contraction on D̂Hamc(T
∗M). To construct the

contraction, we first note the following.

Lemma A.2. Let ψ : T ∗M → T ∗M be a diffeomorphism such that ψ∗λ = aλ for some
a > 0. Moreover, let H : T ∗M × I → R be a compactly supported function and set
H̃ := a−1H ◦ ψ. Then, ψ−1 ◦ ϕHs ◦ ψ = ϕH̃s and λ(XH̃s

) = a−1λ(XHs) ◦ ψ for s ∈ I.

Proof. For s ∈ I, we have

ιXH̃s
ω = −d(a−1Hs ◦ ψ)

= −a−1ψ∗dHs

= a−1ψ∗(ιXHs
ω)

= a−1ιψ∗XHs
(ψ∗ω)

= ιψ∗XHs
ω,

where ψ∗X := (dψ)−1X◦ψ. This shows thatXH̃s
= ψ∗XHs , which implies ϕHs ◦ψ = ψ◦ϕH̃s .

Moreover, since λ = a−1ψ∗λ, we have

ιXH̃s
λ = ιψ∗XHs

λ = a−1ιψ∗XHs
(ψ∗λ) = a−1ψ∗ιXHs

λ,

which proves the second equality.

Lemma A.3. For a compactly supported function H : T ∗M × I → R, let KϕH ∈ D(M2 ×
I×R) be the sheaf quantization of the Hamiltonian isotopy ϕH . Then, for such a function
H, one has Kψ−1

0 ◦ϕH◦ψ0
≃ f∗KϕH , where f is defined as

f : M2 × R× I →M2 × R× I, (x1, x2, t, s) 7→ (x1, x2, e
−1t, s).

Proof. Set H̃ := e−1H ◦ ψ0. We also define

uH,s(p) :=

∫ s

0
(Hs′ − λ(XHs′ ))(ϕ

H
s′ (p)) ds

′
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for H : T ∗M × I → R and s ∈ I. Then, by Lemma A.2, we have

uH̃,s(p) =

∫ s

0
(H̃s′ − λ(XH̃s′

))(ψ−1
0 ϕHs′ψ0(p)) ds

′

= e−1

∫ s

0
(Hs′ − λ(XHs′ ))(ϕ

H
s′ (ψ0(p))) ds

′

= e−1uH,s(ψ0(p)).

We shall estimate the microsupports of Kψ−1
0 ◦ϕH◦ψ0

and f∗KϕH . On the one hand, we

have

S̊S(Kψ−1
0 ◦ϕH◦ψ0

)

=
{
((x′; ξ′), (x;−ξ), (uH̃,s(x; ξ/τ), τ), (s,−τH̃s(ϕ

H̃
s (x; ξ/τ))))

∣∣∣ (x′; ξ′/τ) = ϕH̃s (x; ξ/τ)
}

=

{
((x′; ξ′), (x;−ξ), (e−1uH,s(x; eξ/τ), τ), (s,−τe−1Hs(ϕ

H
s (x; eξ/τ))))

∣∣
(x′; eξ′/τ) = ϕHs (x; eξ/τ)

}
.

On the other hand, we have

S̊S(f∗KϕH )

=

{
((x′; ξ′), (x;−ξ), (e−1uH,s(x; ξ/τ), eτ), (s,−τHs(ϕ

H
s (x; ξ/τ))))

∣∣
(x′; ξ′/τ) = ϕHs (x; ξ/τ)

}
=

{
((x′; ξ′), (x;−ξ), (e−1uH,s(x; eξ/τ̃), τ̃), (s,−τ̃ e−1Hs(ϕ

H
s (x; eξ/τ̃))))

∣∣
(x′; eξ′/τ̃) = ϕHs (x; eξ/τ̃)

}
.

Since (f∗KϕH )|s=0 ≃ k∆×{0}, by the uniqueness of the sheaf quantization ([GKS12]), we
conclude.

Proof of Theorem A.1. By Lemma A.3, for φ ∈ DHamc(T
∗M), we have Kψ−1

0 ◦φ◦ψ0
=

f∗Kφ, where Kφ = Q(φ) and f is defined, by abuse of notation, as

f : M2 × R →M2 × R, (x1, x2, t) 7→ (x1, x2, e
−1t).

This implies, setting h = ψ−1
0 ◦ ψ1 ∈ DHamc(T

∗M), that the map

T : DHamc(T
∗M) → DHamc(T

∗M), φ 7→ ψ−1
0 ◦ φ ◦ ψ1 = ψ−1

0 ◦ φ ◦ ψ0 ◦ h

is a contraction. Note that h = ψ−1
0 ◦ψ1 ∈ DHamc(T

∗M) is proved in the proof of [AHV24,
Theorem 7.4]. Indeed, we have

dT (T ∗M2)(KTφ,KTφ′) = dT (T ∗M2)(Kψ−1
0 ◦φ◦ψ0◦h,Kψ−1

0 ◦φ′◦ψ0◦h)

= dT (T ∗M2)(Kψ−1
0 ◦φ◦ψ0

� Kh,Kψ−1
0 ◦φ′◦ψ0

� Kh)

= dT (T ∗M2)(Kψ−1
0 ◦φ◦ψ0

,Kψ−1
0 ◦φ′◦ψ0

)

= dT (T ∗M2)(f∗Kφ, f∗Kφ′)

= e−1dT (T ∗M2)(Kφ,Kφ′),

where the last equality follows from the fact that an (a, b)-isomorphism for (Kφ,Kφ′) gives
an (e−1a, e−1b)-isomorphism for (f∗Kφ, f∗Kφ′) and vice versa.
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Hence, the map T extends to the completion as a contraction, which we will also
denote by T : D̂Hamc(T

∗M) → D̂Hamc(T
∗M). Therefore, there exists a unique fixed point

φ∞ ∈ D̂Hamc(T
∗M) so that ψ−1

0 φ∞ = φ∞ψ
−1
1 , where both sides should be understood

as actions on L̂(T ∗M). Since L ∈ L̂(T ∗M) is the unique fixed point of the action of ψ−1
1

and 0M ∈ L̂(T ∗M) is the unique fixed point of the action of ψ−1
0 , we find φ∞(L) = 0M .

By its construction, the element φ∞ ∈ D̂Hamc(T
∗M) is represented as the sequence

(φn)n∈N with φn := ψ−n
0 ◦ ψn1 . Thus, we obtain

lim inf
n

φn(L) = lim inf
n

ψ−n
0 ◦ ψn1 (L) = lim inf

n
ψ−n
0 (L) = 0M .

Since taking the microsupport is “continuous” by [GV24, Proposition 6.26], for any F ∈
TL(T ∗M), we have

RS(K�
φ∞(F )) ⊂ lim inf

n
φn(L) = 0M ,

which proves the result.

References

[AHV24] M.-C. Arnaud, V. Humilière, and C. Viterbo. Higher Dimensional Birkhoff
attractors. 2024. arXiv: 2404.00804 [math.SG].

[AGHIV23] T. Asano, S. Guillermou, V. Humilière, Y. Ike, and C. Viterbo. “The γ-
support as a micro-support”. Comptes Rendus. Mathématique 361 (2023),
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