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Abstract

Oka introduced the concept of mixed polynomials and started to investigate how
a study for singularities of mixed polynomials similar to the study of singularities of
polynomials is possible. We introduce a mixed toric modification as a mixed analogy
of toric modifications and discuss when this provides an analogy of resolutions of
singularities defined by mixed polynomials. A mixed toric modification is associated
with a mixed fan, which is a notion we introduce in the paper. They provide several
combinatorial data for singularities of mixed polynomials. We define the notion of
mixed Newton non-degeneracy for mixed polynomials and show that a mixed toric
modification provides a semi-algebraic or real algebraic analogue of resolutions of
singularities under mixed Newton non-degeneracy condition. Our approach allows
us a combinatorial description of the topology of singularities of mixed polynomials,
which are mixed Newton non-degenerate, and we show a formulas for the Fuler
characteristics and the monodromy zeta function of nearby fibers. We also show how
the dual graphs of analogy of resolution of singularities of such mixed polynomial
are obtained in low dimensions.

J. Milnor ([I1]) started to investigate topology of complex polynomials and he shows
there cone structure and fibration structure. These have been provided a wealth of ex-
amples in differential topology and basic language for describing how topological type
changes under deformations. In [I0], Khovanskii introduced a powerful method to con-
struct a resolution of singularities. He introduced a suitable non-degeneracy condition
with respect to Newton polyhedrons of holomorphic functions, and showed that a toric
modification provides a resolution of singularities of a holomorphic function under this
non-degenerate condition. This allows us several combinatorial descriptions of topological
objects of the holomorphic functions like:
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e topology of nearby fibers, in particular the Euler characteristics of the nearby fiber,

and zeta function of monodromy ([I7]),

e topology of links of singularity (for example, see [?] for surface singularities).
Such a description of phenomenon should be understood as a broad class of phenomenon
that includes singularities of polynomials. For example, Pichon and Seade [IH] estab-
lished a type of Milnor fibration for functions of the form fg. Oka ([IZ]) has launched
to investigate the topology of the maps defined by a mixed polynomial introducing the
notion of Newton polyhedron for a mixed polynomial (). Oka introduced the notion
of non-degeneracy for mixed polynomial ([I2, 2.3]) and discussed how topology of mixed
polynomials are described in terms of combinatorics of Newton polyhedrons. He showed
fibration theorems [12, Theorems 29, 33] and describe zeta functions of monodromies |12,
Theorem 60], etc. for singularities defined by several mixed polynomials. He also investi-
gate when a toric modification provides a resolution of singularities for mixed functions
([T3, Theorem 11]). Inaba, Kawashima and Oka also have investigated ([8]) the topology
of links for certain special mixed polynomials. We also remark that Chen, Dias, Takeuchi
and Tibar ([3], [4]) discussed asymptotically critical values or bifurcation values for mixed
polynomials using Newton polyhedrons.

In this paper, we introduce the notion of mixed Newton non-degeneracy (Definition
[07) for mixed polynomials, and define the notion of mixed toric modifications (Definition
[22) associated with mixed fans (X, 3) (Definition I3) constructed from it, and show
that they provide a semi-algebraic analogue of resolution of the singularities defined by
the mixed polynomials. Our approach allows us to analyze considerably wide cases of
mixed polynomials compared to Oka’s results.

Throughout the paper, we denote by Z (toric. R, C) the set of integers (resp.real
numbers, complex numbers). We denote by Z> (resp. R>) the set of non-negative integers
(resp. real numbers). We set C* = C\ {0} and S' ={z € C: |z| = 1}.

Let us state several definitions related to mixed polynomials to fix the terminology.

Let € = (z1,...,2,) be the coordinate system of C" and let & = (77,...,7,) where
7; denotes the complex conjugate of x;. Setting x” = x7* - -z, T = ;"' ---T,”",
v=,...,vn), 0= (1,...,0,) € Z", we consider a C-linear combination of x*Z":
(0.1) ch,pwuﬁzp, cw € C.

v, U

e We call this (D) a mixed polynomial if all the exponents v and © are non-negative.

e In general, we say (O) is a mixed Laurent polynomial, since we allow negative

exponents in the expression ().

e We call ”Z” a mixed monomial if the exponents v and ¥ are non-negative integers.

e We call z¥Z” a mixed semi-monomial if the exponents are non-negative half inte-

gers.

e We also call z¥Z” a mixed Laurent monomial if we allow negative integer expo-

nents.

e We call z¥Z” a mixed Laurent semi-monomial if the exponents are half integers.
By comparison, we sometimes call polynomials in @ are called pure polynomials, and
monomials in x are called pure monomials.



For a mixed polynomial (O), we consider the map

f:C"— C, defined by x — f(x) = Zc,,,f,a:”if’.

For the abuse of language, we often call the map f a mixed polynomial.

Definition 0.2. We say that a mixed polynomial () is a mixed weighted homoge-
neous polynomial of type (a,b;(,m), a = (ay,...,a,) € Z%, b= (b1,...,b,) € Z",if f
is a C-linear combination of mixed monomials x¥Z" with

(0.3) (v+rv,a)="L (v—v,b)=m.

We easily see that for such a polynomial we have

(0.4) frove? Oy, o ponebnfiy ) = rlem¥if ()

for r > 0, and 6 € R. Here the notation § denotes the imaginary unit.

Definition 0.5. We define absolute Newton polyhedron (or radial Newton poly-
hedron as in [I7]) of the mixed polynomial (I0) (as power series) by

(0.6) [} (f) =convex hull of {v + v +RY : ¢, 5 # 0}.

For a subset v of R”, we define f, by f, =3, ;e copx’®".

Definition 0.7. We say that a mixed polynomial f is mixed Newton non-degenerate
if the following conditions hold.
(a) For each compact face v of I';(f), we have

(0.8) ()N fy_l(o) C {1z, =0}

Here X(f,) denotes the singular set of the map f, : C* — C defined by & — f, ().
(b) The polynomial f, is mixed weighted homogeneous for each compact face v of I' (f).

As in [12, 2.2], we say that a mixed polynomial f is non-degenerate if the condition
(a) above holds.

Now we can state our main theorem.

Theorem 0.9. If a mixed polynomial f is mixed Newton non-degenerate in the sense of
Definition [01, then there exists a mized toric modification m: M — C" (see Definition
22) which provides a semi-algebraic analogy of “resolution of singularities” of f~1(0)
near 0, that is, (forr)~1(0) is a semi-algebraically normal crossing variety (see Definition
#32) near 7 1(0).

As a by-product of this construction, we are able to discuss an analogy of A’Campo’s
formula for zeta functions, Euler characteristics of nearby fibers, and resolution graphs
of singularities of f~1(0), as holomorphic function case. In particular, we have a formula
(Theorem B=2) for the monodromy zeta function for mixed polynomials.

The paper is organized as follows: In §, we introduce the notion of mixed toric mod-
ification and describe their fundamental properties. The key idea is to construct mixed
toric manifolds using the notion of mixed fan. Using the notion of Newton polyhedron in
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81, we introduce mixed version of normal crossing properties, which is a semi-algebraic
analogue of normal crossing properties (§871), and discuss when a mixed toric modification
provides a semi-algebraic analogue of resolution of singularities for a mixed polynomial.
We also discuss a formula for monodromy zeta function of singularities in §82 and a way
to compute the intersection numbers associated with resolution of singularities in §83. In
8811, we show a version of topologically triviality theorem, which comes from real-analytic
isomorphism of the resolution spaces.

It is also important to look at phenomena specific to mixed polynomials, despite of
the fact that it is important to pursue analogies of the study of polynomial in the study
of topologies of mixed polynomials. We thus present an attempt to analyze a mixed
polynomial, which is not mixed Newton non-degenerate, but which is non-degenerate, in
§E2.

The author is grateful to Masaharu Ishikawa for his helpful comments on this topic.
Thanks are also due to H. Shimizu, as this paper is motivated by seminar work with him.
The author sincerely thanks the anonymous referee for their thorough review and many
valuable comments. The referee’s careful reading helped identify numerous errors in the
earlier version of the paper.
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1 Mixed toric manifold
1.1 Fan and mixed fan

We say a subset o of R" is a rational polyhedral cone if there are integer vectors a', ...,
a” so that
o={cia'+ - F+ca:¢>0 i=1,...k}.
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Let X denote a fan, that is, a finite collection of rational polyhedral cones in R"™ with the
following properties.
o If o € ¥ and 7 is a face of g, then 7 € 3.
e If 0,0’ € ¥, then o No’ is a face of o and also is a face of o’.
Let (k) denote the set of k-dimensional cones (k-cones, for short) in ¥. Let (k) denote
the set of k-dimensional faces of o.
We say a fan ¥ is simplicial if each cone in ¥ is simplicial cones, that is, o € (k) is
generated by linearly independent k vectors.
We say a fan ¥ is nonsingular if each cone in ¥ is generated by a part of Z-basis of
7.

Remark 1.1. A toric variety is constructed from a fan. This toric variety is nonsingular if
the fan is nonsingular. Refer the survey article [6] for fundamental facts for toric varieties.
We remark that a nonsingular fan is called a regular fan in [B].

We say a vector a € Z" is primitive if the greatest common divisor of non zero

components of a is 1.

Definition 1.2 (Mixed fan). Let ¥ be a simplicial fan, and let 5 be a map
Y1) —7Z"xZ", 17+ (a",b").

We say that (X, 5) is a mixed fan, if the following conditions hold.
(i) {a” : 7 € X(1)} is the set of the primitive generators of 7 € ¥(1). Thus, for all 0 € X,

U:{Z cra’ e >0}

T€o(1)
(ii)) {b" : 7 € 0(1)} forms a part of Z-basis of Z" for all o € X.

If a” = b” for 7 € ¥(1), the mixed fan (3, 8) is a nonsingular fan with mentioning
primitive generators a” for 7 € ¥(1).

Mixed fans form a subclass of the set of topological fans introduced in [d]. We are going
to define a mixed toric manifold associated to a mixed fan, which also form a subclass of
topological toric manifolds introduced in [9].

The following lemma ensures the existence of nonsingular mixed fan for several cases.

Lemma 1.3. Let ¥ denote a simplicial fan, which is a subdivision of the positive orthant
RZ. For m € ¥¢(1), set Bo(7) = (a™,b") where a” is the primitive vector generating .
We assume that

o [oro € Xyg(n), b, T € (1), are linearly independent.
Then there ezists a mized fan (X, ) with the following properties.

® X is a subdivision of Y.

e 3(7) = Bo(7) for T € ¥p(1).

Proof. We construct a simplicial subdivision ¥ of ¥y and
Y1) —7Z"xZ", 1+— p(1)=(a",b")

with the following properties:
o For 7 € 3(1), (1) = Bo(7).



e For 7 € (1), a” generates 7.

e For 0 € 3(n), b", 7 € o(1), generate a nonsingular n-cone.

e For o € ¥(n) and 7 € X(1)\ 3o(1), a” is a primitive generator of the 1-cone generated
by 27/60(1) CT/CLT if bT — ZT’GO’(I) CT/bT .

This X is obtained constructing a nonsingular subdivision of (b7 : 7 € o(1))r, for o €
Yo(n) (see [, 8.1]). O

1.2 Mixed toric manifold

Definition 1.4 (Group G). Let us define the group G as the kernel of the group mor-
phism:

*\33(1) *\1 a’ Zr b7
(L5)  dws: (©0 — (@) Goeesy — (T 1= (25) .
i=1,...,n

TEE(I) | T‘ j geeey

We clearly have

2762(1) aj log|z;| = 0,

Zr)r €G <~
(e dreaty {Zfez(l) b argz- =0 (mod 27).

For o € ¥(n), these equations can be written as

ST alloglz == Y af log|z,

T€o(1) T'go(1)
Z bl arg z, = — Z b7 arg z.  (mod 27),
T€o(1) T'do(1)

and we conclude that an element (z;);co(1) € G is determined by (27/)r¢0(1)-

Notation 1.6. Let § denote the imaginary unit. We do not use i for the imaginary unit,
since we may use ¢ as an index of vectors, etc.. Then a complex number z can be written
as in the following polar form

z=re”" where r=|z|, 0 =argz.

% we have

Since Z = re”
(1.7) 10y = 20, + 205, Oy = 1(20, — 20:).
by chain rule. To save symbols, we often denote them as

(1.8) |20, = 20, + 205, Oarg. = 1(20. — 20).

Since the polar coordinate (r,6) is a coordinate system of C= R> x S, we often regard
the formula (IZ7), or equivalently, (I8), as a formula on C via the polar blow-up:

C—C, 2=(r0)r— z=re"

In [[4, page 222], this map is called a simple oriented blowing-up.



Setting x = Re z = %(z +2),y=Imz = %(2 — Z), we have

s - () e m-( ) B)o 30 7)

By (IC8), we have °
() -3 ) ()

]

f
2|z|

and

]_cz .fé 8|z\.]j aargz.]j
fz fz a|z\f 8arng

Definition 1.10 (Mixed toric manifold). We assume that (X, 5) is a mixed fan. We
define Uy, by

(1.9) det J =

(1.11) Us, = U U,, where U, = {(uT)Teg(l) c = . H Uy 0}.

c€X(n) T¢a(1)

We remark that (2;);epa) € G acts on U, by
(zr)resy  Us — Usy (Ur)reoq) ¥ (20Ur)reon),
and thus on Us,. We define the mixed toric manifold My 53 by
My, 3 =Us/G, and M, = U, /G.
Set V, = {(tr)rexq) 1 ur =1, 7 € 0(1)}. We easily have the following:
(ur)resa) € U <= 3(27)ren) € G such that (z;u:)-exa) € V.

We thus conclude that the composition V, C U, — U,/G = M, is a semi-algebraic
homeomorphism. We consider this map as a semi-algebraic chart of a mixed toric manifold
My, 5, identifying V, with C).

It is interesting to ask when My 5 is a real algebraic manifold.

Proposition 1.12. Let (X, 5) denote a mized fan. Then My, 5 is a real algebraic manifold
if
a”"=b" mod2 for Te€X(1).

Proof. By supposition, we have
(@")rect) = (b7)reoq)y mod 2 for o € X(n).

By the condition (ii) in Definition T2, det(b”);co1) = 1 mod 2, and det(a”),;co1) = 1
mod 2. Moreover, (bT);ElU(l)(aT)Teo(l) is the identity matrix modulo 2. Thus the lemma
below implies the result. See also Remark Il

Lemma 1.13. Assume that (3, ) is a mized fan. For o,0" € ¥(n), we have two charts
Vo, — My 3 and Voo — My g. The patch V, — Vi is a semi-algebraic map (defined
except a thin set). This is given by mized Laurent monomials if

/ ’

(1.14) (@) rrer ) (7)ot = (@)reo(y(b7) &5, mod 2
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Proof. We consider two semi-algebraic maps (possibly with indeterminacy sets)

by
(115) Va — Cn, (UT)TGO'(l) — ( H |UT % < o > > )
e
vl \OT
Vo’ — (Cn7 (U;’)T"Ea,(l) — ( H |/U;—|ai ( U;— ) > ‘
r'ec’(1) |/UT/| 1=1,....,n

For 7/ € ¢/(1), we assume that

(1.16) a’ = Zp:,afl, b” = ZquT/,

TEO TEC

that is,

/ /

(117) (aT )T’EO”(l)(p:’) - (aT)TEU(1)7 (bT )T/EO"(I)(Q;—/) = (bT)TEO'(l)‘

We thus have

.
/ — pT’ h fy H ( /UT )qT/
et = 1L e o o)

T€o(1) reo(l)
and
r_ DN i vyt v
v = v (0, 0,) " 2 = v, TG,
T€o(1) reo(l)

So v., and ¢, are mixed Laurent monomials in v, and o5 if
(a’T )7:160’(1) (G’T)TGO'(I) = (bT );leg/(l)(bT)TGO'(l) mOd 2.

Let (af’)i,eg,(l) denote the adjugate matrix of (aT')T/EU,(l) and 6, = det(a”)-c(1). Then
this condition is equivalent that

/

(a’T ):Ga’(l) (G’T)TGU(I) = 50’(b7— );]égl(l)(b‘r)’reg(l) mod 2(501.

Multiplying (@™ )¢,y from the left, and (bT);elg(l) from the right, we obtain that

’

001 (a7)rea() () p1) = 001 (@7 ey (b7 ) o prqy  mod 20,0,
which is equivalent to (II4). O

Remark 1.18. Let (X, 3) be a mixed fan and 3(7) = (a7,b") for 7 € X(1).

e Let S and T be integer n x n matrices with det S = detT = 1. If we set ¥’ = {So :
o € X} and f/(ST) = (Sa”,Tb") for 7 € (1), then My 5 is isomorphic to My g,
because of the proof above.

e Changing u, by @,, 7 € (1), in (IT), we can construct a mixed toric manifold in a
similar way. The resulting mixed toric manifold is isomorphic to the original one, but
changing the orientations of the corresponding charts, and the corresponding mixed fan
is obtained by changing b™ by —b".



e Changing the ith component of the map ([CH) by its complex conjugate, we can con-
struct a mixed toric manifold similarly. The resulting mixed toric manifold is isomorphic
to the original one, but changing the orientation, and the corresponding mixed fan is
obtained by changing the sign of ith components of b™ for each 7 € 3(1).

Example 1.19. Let (3, 3) be a mixed fan so that 3 is a subdivision of R?. We denote
by a’ the primitive vectors generating 1-cones of ¥.

Assume that the cardinal of (1) is three, and b! = e;, b*> = e, and b® = +e; + e,.
Let M4y denote the mixed toric manifold My, g. Talking about M, M _ and M_,, we
can reduce them to the case that b = —e; — ey, by the second and third items of Remark
[T8. They are mixed analogues of the complex projective plane, as M__ coincides with
the complex projective plane when a’ = b%, i = 1,2, 3 (see [H, 0.3]).

Assume that the cardinal of (1) is four, and b' = e;, b®> = ey, b®> = ¢1e; + siey
and b* = s,e; + eze9, €, = 1, 5; € Z so that s159 — €165 = £1. Remark that s;s9 =
0,£2. When s1s5 = 0, the resulting mixed toric manifolds can be reduced to the case
(€1,€2) = (—1,—1) using the second and third items of Remark IT8. These are mixed
analogues of Hirzebruch surfaces as they coincide with Hirzebruch surface when a’ = b’
1 =1,2,3,4 and ¢ = g = —1. When s;5, = £2, we can similarly reduce to the case
(61, €92, 851, 82) = (—1, —1, ]., 2)

Remark 1.20 (Orientation of Msy 5). The complex structure of C" defines a natural
orientation of (C*)". We consider an orientation of My, 3 induced by the map defined by
(IH). The sign of the jacobian of the map defined by (IIH) is the sign of

det(a’T)‘rEa(l) det(bT)TEa(l) 5

which we refer as e,. For 0 € ¥(n), {a"};c,1) generates the n-cone o, and, changing
the order of a” if necessary, we can assume that det(a”),c,(1) is always positive in the
calculation.

Remark 1.21 (Real oriented blow up, cf. [, §2]). Let £ = U§:1 C; denote the critical
set of m = 7y g where C}, j = 1,..., k, denote the semi-algebraically nonsingular subman-
ifolds, which form a semi-algebraically normal crossing set. Let p; : Z; — My, 3 denote
real oriented blow up along Cj, that is, a map described by (@ x C"=1 S'x0) — (C",0)
locally where C; = {0} x C"! locally. The map ]\//Tz”g — My, 5 is the fiber product of
Zj — Myx g, j=1,...,k. We denote by 7s;, 3 the composition: ]\//fgﬁ — My 3 — C™.

1.3 Mixed toric modification

Definition 1.22 (Mixed toric modification). We assume that

(i) (X, 0) is a mixed fan. Set B(7) = (a”,b") for 7 € ¥(1).

(ii) A fan ¥ is a subdivision of RZ. In particular, each a7, 7 € ¥(1), j = 1,...,n, is
non-negative.

(iii) For any 7 € ¥(1) and j = 1,...,n, aj = 0 implies b7 = 0.

Then the map Ay s (see (CH)) extends to the map

- n aor [ Ur bf
Fsp i Us — € (ur)resq) — ( I1 ]uTM(u ) ) .
i=1,...,n

||

Tez(l) ) AR



Since this map is G-invariant, 7y, 3 induces the natural map
(1.23) T=Txg: szﬁ — Cn,
which we call the mixed toric modification defined by the mixed fan (X, 5).

We always assume that conditions (i), (ii), and (iii) for (¥, 5) when discussing mixed
toric modifications (I=22).

Lemma 1.24. The map (I=22) is proper.

Proof. Take a sequence {y(m)}mzl,l,_, in My, g so that {7727/3(y(m))}m:1’27_“ is convergent.
We are going to prove that there is a convergent subsequence of {y(m)}m:1,27..,. Since
My 5 is a finite union of V, (o € ¥(n)) there is an n-cone o € ¥(n) so that infinitely
many {y™} are in V,. We write this sequence as {v(m)}m:1,27.,,. We take a sequence
{61, 1. in (C*)°M so that

o™ — M| 50 (m — o)

It is enough to show that {f)(m)}m:1727_” has a convergent subsequence. Thus we can
assume that v € (C*)°™. Since 7,(v™) is convergent, there is a positive constant L
so that

log |z < L where |2{™]= H |p(m) |a7

T€0(1)

Since
(L —log ("™ ])i=1,. € RL = U o,

oeX(n

we can assume that, taking a subsequence if necessary, there is o € 3(n) so that
(1.25) (L —log |z )izr,.n € 0.

Taking constants L, (7 € (1)) so that L = yaiLr,i=1,...,n,

T€o(1
(L = log [2{"™ )iz1,..n = (@) reo(ny(Lr — log [™])reon)

By (Z4), we obtain that L, — log|v$m)| > 0. Thus {v™}, 5. is bounded, and
{'U(m)}mzlvg,_n has a convergent subsequence. Il

Remark 1.26. In general, the map 7y, 5 is semi-algebraic. Since

a; +bT aT —bT

~ —a i 7
WE,B((“T TeX( 1) < || Ur Ur 2 ) ;
i=1,...,n

TEXN(1) i=1,...,

the map 7y, g is expressed by mixed semi-monomials if |b]| < af for 7 € X(1),i=1,...,n
The map 7y s is real algebraic (actually, expressed by mixed monomials) if we further
assume that a” = b” mod 2 for 7 € (1) (cf. Proposition [C12).
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Definition 1.27 (E, and E¥). For 7 € ¥(1), we define E. as the image of the set defined
by u, = 0 by the map 7x. g : Us; — My, g. We call E; the mixed divisor corresponding
to 7 € ¥(1). It is clear that v, = 0 defines V, N E, under the identification of C*™) with
V,. For 0 € ¥, we set

(1.28) E,= ()| B, and E;=E,\ |J E,.

T€o(1) o'eXiogo’
Since the natural map V, — C", o € ¥(n), is expressed by

. b7
(129) |$7,| = | | |U7— a:) |xl| = | | <|UT|> 9
ZT; Vs

T€o(1) T€o(1)

we have that the restriction of the map V,, — C™ to the set defined by []
an isomorphism onto (C*)", and

(1.30) myg(E;) ={z € C": x; =0 for i with a] > 0}.

T€o(1) Ur 7& 0 is

Remark 1.31 (Moment maps). We consider a moment map associated to a finite
subset I' of Z™. This is a completion of the map

ZVGF |wu ‘ v
ZVGF |my‘

Let A denote the convex hull of I'. For a vector a, we define A(a) by
A(a) ={v € A: (a,v) =ma(a)}

(1.32) p:(CH" — R, x+—— pu(x) =

where ma(a) = min{(a,v) : v € A}. Similarly for a cone o, we define A(c) by
A(o) ={v e A: {a,v) =ma(a) Va € c}.
We define an equivalence relation, for a,b € R", by
a~b << A(a)=A(b).

Their equivalence classes are identified with cones in R"™, which form the dual fan of A.
Let X be a simplicial subdivision of the dual fan of A.
For any v° € Z",
R
> ver |2V

Let o’ be a face of 0, 0 € X(n). When v¥ is a point in the relative interior of A(¢’), by
(29), we can identify this with

a”,v—Y
ZVGF HTEO‘(l) |,U7'|< 7 >V
ZI/EF HTEU(I) |/U7_|(a7'7u—u0>

When v, — 0 for 7 € ¢/(1), we have

(1.33)

T U—UO
Zuerm(o) HT¢U(1)\UI(1) N v

o

(C33) —
ZVGFQA(U) HT%U(l)\U’

This implies that the map ([232) extends to px s : My g — R™ and us g(E, ) = A(0').
If the dual fan of A is nonsingular, the fiber uilﬁ (p) is isomorphic to (S')"~¢ where
d = dim A(o), for p in the relative interior of A(o).
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Let us consider a mixed fan (X, 8) with the following property:
e The fan ¥ is a part of the dual fan of A.
Then we have the moment map

Hx.B - Mgﬁ — Al

For a mixed toric modification ms 5 : My g — C", s (75 5(0)) is the union of faces of
A which are facing to the origin.

2 Mixed toric modifications for mixed polynomials
2.1 Newton polyhedron of f and construction of a mixed fan (3, 3)

We consider the Newton polyhedron I'\ (f) defined by (I8). For @ € R%, set

((a) =min{(a,v) :v € ' (f)}, and
V(a) ={v e T.(f) : (a,v) = (a)}.

For a, b € RY, we introduce an equivalence relation ~ by
a~b << v(a)="(b).

The set of closures of equivalence classes gives a polyhedral cone subdivision of RY. We
denote it as I'*(f) and we call it the dual Newton diagram.
Define LE, (f) by

(2.1) LE,(f) = convex hull of {v =D : ¢, 5 #0, v+ U € v}

We call (I'4(f); LE,(f),v € Fo(I'+(f)) mixed Newton polyhedrons of f where Fo(I';(f))
denotes the set of compact faces of I'y (f).

For a mixed Newton non-degenerate mixed polynomial, we construct a mixed fan
(33, B) as follows: We first take a simplicial subdivision ¥ of I'*(f). Let a” denote the
primitive vector which generates 7 for 7 € ¥y(1). Set

m(b") = min{(b",v) : v € LE, (o~ (f)}.

We can assume that m(b7) > 0, 7 € X(1), changing the sign of b7, if necessary. If we
assume that Condition (b) of Definition 4, we can choose b™, 7 € (1), which satisfies
the following properties.
(al) LEy@)(f) ={v € LE @) (f) : (b7, v) = m(b")} for 7 € Xy(1).
(a2) b7, 7 € 0(1), are linearly independent for o € 3y (n).
By Lemma 3, there is a mixed fan (X, 8) with the following properties.

e Y is a simplicial subdivision of Y.

o 5(1)=(a7,b") for 7 € Ly(1).

By Condition (b) of Definition 4, f, is a mixed weighted homogeneous with respect to
the weight (a7, b7) and degrees (¢, m,) = ({(a™),m(b7)) where 7 € (1) with y(a™) = ~.
If Condition (b) of Definition 4 does not hold, f, is no longer mixed weighted homoge-
neous, but we can choose b” with Condition (a2) above, and we are able to construct a
mixed fan (X, 3) similarly.
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Lemma 2.2. 75, 3(E,) C f~(0), whenever £(a™) # 0 for T € £(1),
Proof. Set I(t) = {i =0,a] > 0}. We have
(v+p,a”) = Z (v, +7)al <l(a”) = cp=0.
iel(r)
This implies f|{z,~0:ic1(-)y = 0 by (I=30). O
We often refer ¢(a”) and m(b7) as ¢, and m,, respectively, for 7 € (1), when dis-

cussing one fixed mixed fan (X, 5)

2.2 Remark on the singular set of f

We say that I' (f) is convenient if ', (f) intersects with each coordinate axis. In this
subsection, we show that the zero of a mixed Newton non-degenerate polynomial f has
isolated singularity whenever f is convenient. We also show several conclusions for non-
convenient cases from the related discussion of its proof.

For I C {1,...,n}, we set

C'={(zy,...,7,) €C":2;,=0,i & I}
and identify C! x CI* with C*, I¢ = {1,...,n} \ I, without notice.
Notation 2.3 (Ap). For p = (p1,...,pn) € ZZ, A, denotes the set of real-analytic arcs

Oéitpi + h.O.t.7 (67 7é 0, 1€ ](p),

(24) @) = (2(1),. ., 2a(t),  @i(t) = {0, i I(p)
where I(p) ={i € {1,...,n} : p; > 0}.

Proposition 2.5. If there is a real analytic arc x(t) € Ap in S(f) (resp. 2(f) N f71(0)),
then the set B .
Sp(f) = {z € (C)® :rank J, f(x) < 2}

(resp. ip(f) N fv_(;)(O)) is not empty, where, setting I = I(p),

J f= (xiaxi(ﬁ@)'y(p) x_iaﬁ(ﬁ@)'y(p) ((axg']j)‘(cf)v(p) ((actfjf)‘@?f)w(p)) .
P 20, (fler)yw) Tz (fle)yw) (02, Nle)sw) (O Dle)v®)) e, jor

Corollary 2.6. If a mized polynomial f is non-degenerate, then
()N fH0) U C' near 0
I€Zo(f)

where Zo(f) denotes the set of subsets I of {1,...,n} so that f|cr is identically zero, that
18,

Io(f) ={I c{1,...,n}:R' N, (f) = 2}
In particular, if f is convenient, then the origin 0 is an isolated point of L(f) N f~1(0).
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Proof of Proposition ZZ3. Choose a real-analytic arc &(t) € A,, so that x(t) € X(f). By
definition, we have

rouk (e f Snk o el ) (i) <2

and we obtain 2 x 2 minors of jpf are zero along atP = (q;tP);c; € CI, I = I(p), and a
point of ip(f) is attained by a = (;);es.

If we assume moreover f(x(t)) = 0, then (f|cr)(p)(@t?)ier = 0 and a point of Sp(f)N
(f|(cz);&))(0) is attained by a = (az)zel O

Proof of Corollary 2. Remark that ip(f) C X((flicoyr@ )(p))- For pwith I(p) & Zo(f)
flct@) is not identically zero and non-degeneracy implies that YX((f|(ceyr@) )y(p)) N fw_(l (
is empty.

DS

2.3 Strict transform of f via a mixed toric modification

Let us consider a mixed fan (X, ), so that ¥ is a subdivision of the dual Newton diagram

I=(f).

For o € ¥(n), we have

sl e = Sevn T[ o2 s-oem,

v,U T€o(1)
If we set
(2.7) fors g(vr)reory = f H |UT|ZT(UT/|UT|>mT
T€0(1)

where (; = {(a”), m; = min{(v,b") : v € LE, (4~ (f)}, we have

(2:8) f= ch TT o[ o)t e Srco (@7 w=m)mmo) o i

T€o(1)

and we thus have

~

@9 flo,= D s [[ [l el @ msen g

'y
v+rey T€o(1)\o’(1)

where v = (,c,/1)7(a”). Remark that f is semi-algebraic. Setting e, = e(®5v) e have

(2.10) ]/C;: Z Cop H ebTV U)—m, H |UT/|<a7l’y+l7>_zf’eil,)Tl’V_m_mT'7

v+vey T€0/(1) T'ea(1)\o’(1)
— ’ ’_
N _ (b™,o— T y—/t b . v—v)+m
fr=30 an JI e T qeef@n vt v
v+vey T€o’(1) T'ea(1)\o’(1)

Remark that R
f = fv + O(|UT| 1T E J/(l))'
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and the equation f — 0 defines the strict transform Z of f by s 3. The function ﬁ
depends on |v;|, argv,, 7 € o(1) \ ¢'(1), and the arguments argv,, 7 € ¢'(1), in general.
Eliminating argv,, 7 € ¢’(1), from the system ]/C; = ﬁ = 0, we obtain the equations
defining the intersection of E,s with the strict transform in terms of coordinate system
(vr)rgo(1) Of E. When we assume Condition (b) in Definition 7, the equation f, = 0

depends on |v,|, argv,, 7 € o(1) \ 0'(1), and f and f have continuous extensions on V.
We denote these extensions by f’ and f’ respectively.

2.4 Mixed weighted homogeneous polynomials

We consider a mixed weighted homogeneous polynomial defined in Definition 2. When
the mixed weighted homogeneous polynomial f does not have a constant term, we always
have ¢ > 0. Moreover, we can always assume that m > 0, changing the sign of b, if
necessary.

For a mixed weighted homogeneous polynomial f, we have the following:

ar b
iy (0L Toal e wd g mosl) (U)o my
| 2100 f TOnf - 2l f TOnf) | L | T \F —mf)
an —bn

Taking the determinants of the both hand side of (21), Cauchy-Binet formula implies
Y(f) € f71(0) whenever m # 0. When m = 0, (f) C f~*(0) does not hold in general,
as the following example shows.

Example 2.12. Set f = |21|*+ 2. This is mixed weighted homogeneous with respect to
the weights ((1,1),(1,0)) and degree (2,0), and X(f) = {z2 =0} ¢ f~1(0).

Condition (b) in Definition 072 implies that f, is mixed weighted homogeneous with
respect to the weights (a™,b7), 7 € o(1), when v = (1 ,4y7(a") is a compact face of
F+(f)7 oeX.

Example 2.13. A mixed monomial f = x¥Z", v # D, is mixed weighted homogeneous
with respect to any weights (a,b). We obtain X(f) C f~1(0), since there is a weight b so
that m = (v — v, b) # 0.

3 Semi-algebraic analogue of resolution of singularities
3.1 Normal crossing property

We introduce semi-algebraic analogue of normal crossing varieties as mixed version of
normal crossing varieties.

Definition 3.1. We say a subset Z of C” is of semi-algebraically normal crossing at
z € Z if there is a semi-algebraic coordinate system (U, ¢), U an open neighborhood of z,
and a semi-algebraic homeomorphism ¢ : U — ¢(U) C C™ centred at z, so that ZNU
is the inverse image of zero of a pure monomial by ¢.

Theorem 3.2. Let f be a mized polynomial, which is mixzed Newton non-degenerate in
the sense of Definition U1, and let (3, B) denote a mized fan constructed in §23. Then,
for the mized toric modification Ts g : Ms g — C", the subset (foms 5)~*(0) in V, is of
semi-algebraically normal crossing near = 1(0).
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To conclude an analogy of Milnor fibration for mixed polynomial, we need to assume
that 32(f) € f7(0). The next theorem shows when this is the case.

Theorem 3.3. For a mixed polynomial f, which is mixed Newton non-degenerate in the

sense of Definition U1, we take (3, 3) as in Theorem 2. Then X(f) C f~1(0) near the

origin 0, whenever one of the following conditions is satisfied.

(i) m,; #0 forall T € X(1).

(1t) If there is 0 € ¥ with m, = 0 for 7 € o(1), then X(f,) C {z1---x,f, = 0} where
Y= nq—ea(l) '7(0’7)'

Remark 3.4. Under the assumptions of Theorem B3, we often say that the mixed toric
modification m = 7y, g provides a semi-algebraic analogue of resolution of singularity of f,
since the zero of for is of semi-algebraically normal crossing and X( forr) C (for)1(0).

Remark 3.5. We use the notation in §223. As we see in the proof below, non-degeneracy
implies the strict transform of f by 7 intersects with the set defined by |v,| =0, 7 € ¢'(1),
transversely, when |v./| # 0, 7" € o(1) \ ¢/(1). This fact is proved by Oka [I2, Theorem
24] when 7 is a certain toric modification.

Oka ([T4, Theorem 9.19]) also proved that 7 provides “a resolution of singularity” when
a” = b for 7 € (1) with the condition (i) in Theorem BZ3. Dropping this condition,
Saito and Takashimizu ([I8, §8]) discuss another case that a toric modification provides
an analogy of resolution.

Proof of Theorem B3. We take a mixed fan (3, ) constructed in §21. Condition (a) of
Definition 074 implies that

B amzf'y(x) 8=’D7f7(x) =
(36) XLy Ty 7& 07 f’)’(x) =0 = rank (aﬂﬁzﬁ(aj) afz _7('7:))11 n -

This is clearly equivalent to the following condition:

-----

(3.7) Ty Xy # 0, fw(x) =0 = rank (Zgzj%gg i:zg:j%ygg>zl n -

Ay

Since |20z, = 205, + Ti0%;, Oarga, = 1(2:02, — Ti0x ), we have

|xz|8wi 8argg3i.]j . xﬁmj fzf)@]ﬁ 1 i
|xl|a\wl\f aargxif - xzaxlf :Eax—zf 1 —8
and condition (B77) is equivalent to the following condition:

_ . |0z £ (%) 3argxi&(w)> _
(3.8) r1-- 2, #0, fo(r) =0 = rank <|$i!3|g;i|f7(£€) O To(2) 2.

We take o € 3(n) and discuss the behavior of the pull back for, where 7, = 7y 5|y, near
7 1(0). By (I=29), we have

(3.9) log |z;| = Z al log |v, ], argr; = Z bl argv, (mod 2m),
T€o(1) TE€0(1)

(3.10) V2[00, :Zaﬂxﬂa‘m, Oarg v, :sz—gargziy
i=1 i=1
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By (B10), we have
(lUTlaWTi)
|UT|8|vT\f rea(1)

(aarg vr ‘i)
aarg U"f 7€ (1)

We thus obtain

21|0an) f -+ Tl Oan f .
(|x1|8z1f |l’n|a|xn‘f (a )760(1) and

aargxlf ce aargxnf }
(aargxlf T &Hgmn f) <b )Teo(l) ’

(311) J[ v #0, fromo(v,) =0 —> rank ('“T'a'“&”" aarg”fjc—”c’ﬁ") (v) = 2.
T€o(1)

reo(l) |UT|a|v7\f’y°7Ta aargv-rf'yoﬂ'a

Since f, = f5 1L con) v, |frelmrarevat p— ¢(aT), m,; = m(b7), we have

(312) |1}T|8|,U7_‘f,y :(|UT|a|v7|fr; + ng;) H |’U7—|£T€(m7 argvf)ﬁ’
T€o(1)
10700 fo :(|UT|3|UT|ﬁ + ETE) H [, |£ e~ arg o)l
T€a(1)
(3.13) Darg v, [ :(aargvff; + mTf;ﬁ) H |UT|ZT€(mT srgvoi,
T€o(1)
8arg@7f_,y :(aargvff_fy — mTEﬁ) H |UT|ET€(*mT argvr)
T€o(1)

The function f! does not depend on |v.|. Condition (b) of Definition 4 and (27T0) imply
that f/ does not depend on argv,, 7 € o(1). We thus obtain that

O, 1Sy Oargo, [}
v 0 (S )
H # f’y() ’UT’ah}r‘f’y aargvrf“/y T€0/(1)()

T¢a'(1)
where ¢’ is a face of 0. Thus we have the following condition:
(3.14)
T av o o aar v Lo o
H v; #0, fromy(v) =0 = rank (:U }3| T;—;Y?T o ® T%W > (v) =2
rea(l) Ur|Ow, | J4°Te  Oargv, J4oTo rea(\o’(1)

We can rewrite this condition as follows:

o Ufrav-rfé U_Tavirf;
(315)  JJ v #0, frems(v) =0 = rank (mvﬂ 0705 1

) () =2,
rea(l) 7/ rea()\o’(1)

since 7|0y, | = v+0y, + U705, Oargv, = 8(v:0,, — U705 ). This implies that the set defined
by f' =0 intersects E, \ |J.. . E, transversely. O

TCo!
Remark 3.16. From the proof above, we see that f’ can be a part of coordinate system

at a point of zero of f’ in 771(0).

Proof of Theorem 3. We continue the notation of the proof of Theorem BZ. Assume
that there is a real-analytic arc x(t) € A, with x(t) € X(f). We are going to show that
z(t) € f71(0) for 0 < t < 1.
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We take a lift &(t) of x(t) by m. Clearly we have &(t) € X(for). If (t) € E, with
(; # 0, Lemma P22 implies x(t) € f~*(0).

We assume that &(t) € E, with ¢, # 0. We can also assume that &(t) € V, for some
o € ¥(n). We also assume that &(0) € E,. Then, by changing the v, coordinate of &(0)
by 1, we obtain a point in (C*)" so that the Jacobi matrix of f, is not of full rank. If
m, # 0, then we deduce f,(x(0)) = 0 (see the sentence after (211)). By Remark B8,
one can take a local coordinate system at &(0) so that for is expressed as Example P13,
and we conclude that &(t) € (for)~1(0).

If m, = 0, then we deduce f,(2(0)) = 0 by Condition (ii). Again, by Remark B8,
one can take a local coordinate system at €(0) so that for is expressed as Example 2713,
and we conclude that &(t) € (for)~1(0). O

3.2 Monodromy zeta function

The zeta function of a transformation h : Y — Y of a topological space Y is the rational
function

G(t) = [T AV, Aih) = det{l — th, : Hy(Y) — H;(Y)},

i>0

where H;(Y') is the i-th homology group of chain complex with closed support whose
coefficient is C.

Let f: (C",0) — (C,0) be a holomorphic function germ. We have a locally trivial
fibration

(3.17) ffSHhnB — 8z f(z), S'={zcC:|z|=r},

for 0 < r < e < 1, since X(f) C f71(0) near 0. We consider the zeta function ¢, (¢) of a
monodromy transformation

h:F(r,0) — F(r,2m) = F(r,0)

where F(r,0) = f~1(re”) N B2. This monodromy transformation A is obtained by inte-
grating a vector field ¢ which is a lift of Ou, by (BT4). Remark that the zeta function
(n(t) is determined by f. In fact, if two lifts & and &; of the vector field O, » generate two
monodromy transformations hy and hy, then they are connected by a homotopy, which is
generated by & = (1 —t)& +t& (0 <t <1).
Let # : M — C" be a proper modification such that at any point of 7=(0) the
divisor Xo = 7 (f~1(0)) is of normal crossing. For m € Z, m > 1, we put
S — {3 e 1(0) - tlhe equatiop of Xy at s is of the form 2" for a}'
ocal coordinate system (z1,...,2,) of M at s

Theorem 3.18 ([, THEOREME 3)). The monodromy zeta function ((t) and the Buler
characteristics of Milnor fiber F = f~1(r)N B>, 0 <r < e < 1, are given by

¢ty =TT =m0 x(F) =) mx(Sm).

m>1 m>1
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Remark 3.19. The signs in the exponents in our formula are opposite to those in the
formula of A’Campo, since he defined the monodromy zeta function with the opposite
sign in the exponents in the first paragraph of [.

Remark 3.20. We quickly recall A’Campo’s construction of geometric monodromy (][,
§2]). Let X = (forr) " Y(D,) N B¥ for 0 < r < ¢ < 1, where D, = {w € C: |w| < r}. Let
Ci, ..., C, be nonsingular components of Xy = (for)~1(0). Let A, be a simplex spanned
by the pre-image of € X, by the natural map: | |I_; C; — Xj. Define )A(O by

o= (Ueyo (U )

z€Xg

Let p : X — X denote the fiber product of p; : )?j — X, the real oriented blow-up
of X with center C; for j = 1,...,s. Remark that X is a manifold with corner and
0X = p~1(Xy). Let Y denote the fiber product of the natural map )/(\'0 — X, and
p: 80X — X,. We remark that the inverse image of z € X, is (S!)**! where k is
the dimension of A,. Let m; denote the multiplicity of f along C;. Then the geometric
monodromy h : Y — Y is described as follows:

h(a, 0. ... 0:) = (a, emﬁ”% O+ ) ge Ay, (0,0 00) € p (@)
ik

k

where a;,, ..., a;, denote the barycentric coordinate of a € A,. Remark that, when k& = 0,

we have h(z,0;,) = (z,0;, + Ti—zr)

Now we consider a map f : C* — C defined by a mixed polynomial with (f) C
f71(0). Then we have an analogue of a locally trivial fibration (BI7) and we can consider
a monodromy transformation as holomorphic case. We obtain the following result, which
is analogous to Theorem BIR for a mixed polynomial.

Theorem 3.21. Let m: M — C" be a proper modification which provides semi-algebraic
analogue of resolution of singularities of a mixzed polynomial f. For m € Z, m > 1, we
set

the equation of Xy at s is of the form uz“Z"” for a
S = {3 € 77 10) : local coordinate system (21, ...,z,) of M at s with }
= |a — B| where u is an invertible function near s.

If Sy is empty, then the monodromy zeta function ((t) is given by

(3.22) C(t)=[J@—tmytsm.

m>1

In particular, we have the following formula for Euler characteristics for local nearby fiber:

(3.23) X(F(r,0)) = th Z mx(S.

m>1

where F(r,0) = f2(re®™) N B> for0 <r <e < 1.
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3.3 Intersection numbers among components of the exceptional set

Let (3,5) be a mixed fan. Using the orientation introduced by Remark 20, we can
discuss intersection numbers of submanifolds of My, 3. Let E; be the mixed divisor corre-
sponding to 7 € 3(1).

Remark that (BT0) defines co-orientation of E., for 7 € ¥(1). A mixed polynomial
f : C" — C also defines a co-orientation of its zero set induced by the orientation of C, and
it thus induces a co-orientation of its strict transform also. Using these co-orientations, we
can compute their intersection numbers. Set E,, . = E,N---NE, form,..., 7, € X(1).
The intersection number of £, and E,, ., is

n

-----

E B _Jes, T1,...,7T, generate an n-cone o € X(n),
T1 T2,---Tn .
0, otherwise,
whenever 7y, ..., 7, are all distinct. Here ¢, is defined in Remark I210.

Let (71,...,7%)r. denote the cone generated by 7; € ¥(1),i=1,... k.
If f is mixed Newton non-degenerate, then we can define the strict transform of f by
certain mixed toric modification 7y, 3. Let Z denote the zero locus of the strict transform

of f by Ts.8-

Proposition 3.24. Assume that 7; € X(1), i = 2,...,n, and (7, ..., T)r. € X(n —1).
Set v =~(a™)N---N~vy(a™). Then the intersection number of Z and E, . ., is given by

(v,))

where g, = fv(vﬁ, 08 and T € B(1) so that o = (1,7, . .. s Tn)Rs € 2(n).
Proof. InV,, Z is defined as zero of f’, which is defined by

forrly, = f'(v) H oy |5

T'eo(1)

. i
Ny(fy) =¢o Z Slgn(m

vr €C*:g (v7)=0

a|v7— | 9_7 aarg vy g_'y
v Gy  Oargv. Jry

Then we obtain

aT,u—&—D)—&-e((b",u—D) arg v, )i

UT|< = |UT|_£T97(UT)-

vtrey

The intersection number of Z and E,, . is the number of its roots counting with the
signs of the value of function ¢,J there, where J is defined by

d'/\d_’/\dUT ANdvg, N\--- Ndv, N\dv, = Jdv. \do; \dvo, Ndvo, \---Adv,, Nduo,,.
2 2 n n 2 2 n n

Since
df' Ndf' A dvg, A dvg, A -+ Adv,, Ados,
" dv, A do, A dos, Adoy, A Advy, A doy,
i df' Ndf' A dvy, Advg, A--- Adv,, A do,,
2 |vr|d|v.| A darg v, A dvg, Advg, A--- Adug, Ado,,
i A f)
~2fu ] O(Jv- | argv,)’
we obtain the result. O
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For the next Propositions and B8, we assume that
(3.25) the fan ¥ is a part of the dual fan of the convex hull A of a finite set.

This assumption is technical and seems unnecessary, but it is sufficient for the purpose of
our calculations, so we assume it for simplicity.

Proposition 3.26. We take (7,...,7)r, € X(n—1), 7, € X(1), i =2,...,n. Take 7,
7 € ¥(1) so that 0 = (11,72, ..., Tu)rs € (1) and o' = (1,72, ..., Tu)r, € X(n). Then
we have

e +eb™ + Y (Br - Ery ) b7 = 0.

bT

Proof. Since (7|v,) w: = [1,c,q) Tv.% ) we have, for p € Z",

(wlvya? = [ Jol® 00 @00 T for] e r0a 000,
T€o(1) T €o(l)
(p,d7) >0 (p,b7) <0

Because of (B22H), we have us g(E;) is (n — 1)-dimensional face of A for 7 € (1) (See
Remark [3T). Let L, : R” — R be a linear function so that us g(E;) = L-1(0) N A.
Then

¢ : ME”Q — R’ ¢(U) = H L ME,B p7b7'—a . H L MEB ) (p,bT—&-a"')?

T e (1) TeX(1)
(p,b7) >0 (p,b7) <0

a™—b7)

is a rational function on My, 5. We remark that ¢y, - [] v, | P can extend to a

non-vanishing function on V,,. We thus obtain that

T€o(1)

¢ - m*xP|y, = (a non-vanishing function) - H L H 7P,

T€o(l) T €o(l)
(p,67) 20 (p,d7) <0

Thus, ¢ - 7*xP is a globally defined complex-valued function on Msy 5. We denote the
divisor defined by ¢ - 7*xP by Dy4. Note that the factor v, induces an orientation of E.
that is opposite to the one induced by v,. Then we have

0 :D¢ ’ ET27--~7T7L
= Z <p7 bT)(ET : ETQ,...,Tn)
T€X(1)

i=2
<p7 €U/b1+€ le+Z ' T2, ,Tn)bn>‘
Since p is arbitrary, we conclude the result. O]
It is worth to state the case n = 2 separately.
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Proposition 3.27. Assume that n = 2, and (3, 3) is a mized fan. Suppose that (1) =
{70, 71, -, Ter1} and B(7;) = (a’,b"), i=0,1,....,k+1. We assume that a® = e,
a" = ey, and det(a’,a™') > 0, i = 0,...,k. We set e; = det(b’"! b). Then we
have

0 (j—i>2)
Bi-Ej=1q¢ (G=i+1)
g (=)

where q; 1s defined by 0 = b{qj + bflej + b{“em, 1=1,2,5=1,... k.

Proposition 3.28. Assume that f is mixed Newton non-degenerate. Let Z be the zero of
the strict transform [’ of f by m defined in §Z23. We take o € ¥(n), (13,...,Tp)r. € o(n—
2),€0(1),i=3,....,n. Set Z,, . =ZNE.,N---NE, . Thend =~(a™)N---Nvy(a™)
s a polygon, or a segment or a point, and we obtain

Z fé(a* T+ Z ’ 7'3 bTZ =0

7'62(1):(7',73,...,7—”)]RZ €x(n—1)
where §(a”) is defined by 6(a™) = dNy(a”).

Proof. The proof is similar to that of Proposition B2G. The difference lies in considering
the intersection numbers with Z,, . instead of E., . . Remark that the locus Z,,
in V, is defined by

f/|Vo':,U7—3:‘..:/UTn:0'
When 7 # 73, ..., T,, the intersection E. N Z,, . in V, is defined by
:f/‘Vg:Ung"':an:O'

Defining Dy as in the proof of Proposition B28, a similar argument shows that
0=Dy-Zr, 7
= Z <p> bT><ET : ng,...,rn)

TeX(1)

:<p7 Z (Er - Znyyir) bT>
T€X(1)

G F ez )

TED(1):(7,73,..., T EX(n—1) =3
Since p is arbitrary, we conclude the result. Il

Remark 3.29 (Dual graph of exceptional sets). We can consider a dual weighted graph
associated to a finite collection of connected oriented surfaces F; in an oriented compact
4-manifold with boundary, which form a variety with sub-algebraically normal crossing
singularities. The intersection relations give rise a dual weighted graph where each vertex
corresponds to a surface F;. The vertex corresponding to Ej; is labelled by self-intersection
number of E;. We connect two vertices by a solid edge (resp. dashed edge) if the corre-
sponding surfaces intersect with intersection number 1 (resp. —1). In general, we connect
two vertices by edge if the corresponding surfaces £; and E; intersect, labeling the inter-
section number F; - F;.
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€1 m €2 Ek—1 Q
a1 qz ce qk
()——()

Since the dual graph is a tree, we can choose orientations of E; so that the numbers €; are
1. It is also useful to add the information of the strict transform to the dual graph. We
associate a vertex e to each component C' of the strict transform and connect the vertex
corresponding to F; when C and E; intersect. In this case, a’ supports a 1-dimensional
face of I'; (f), since the intersection corresponds to the solution of f, = 0.

Example 3.30. Set f = 2 + 237125 + 2371%19 + 25773, We show the boundary of T', (f)
(solid lines) and LE,(f)’s (dotted lines) in the left figure below.

We consider the mixed fan from the data

0.1 .2 3 4 (1 21 10 0p1 122344y (1 21 10
(aaaaa)—(03241,(bbbbb)_ L9 1)

which are shown in the middle and right figures above. The corresponding ¢ = (¢;)ex (1)
and m = (m;)rexq) are given by £ = (015911 0), m = (0545 0) and (e1,9,€3,€4) =
(1,1,1,1). Since the map 7g 5 : Us — C? is expressed by

2 T 2
21| =rorirars, m =epe|eaes,
_.3.2.4 zy 2
’$2’ =TToT3Ty, ﬁ =€1€2€3€4,
where r; = |u;| and e; = w;/|u;], i = 0,1,...,4, we obtain

159,11 5 4 5 9,.5 5 4 3,.4,.3 2.3 7,.2 3.2 11,.7..2 55

Since the strict transforms f’ on V,, o € ¥(2), are given by the following table:

/
372 5 2 3f7|v[,
xy(x5 + 2777) 1+7r5e0 on Vo, rmeeg+1on 'V, ,
3 (2 3 22 )
w1 @ (w5 + 2777) | 1+7riejon V, , rses+1lonV,,,

5—2 3— 2
23717 (22 + 2777) | 14+ rjeaonV,,, mes+1lon 'V,

where 0;; = (a’,a’)r., we have #(Z N Ey) = 1, #(Z N E;) = 2, #(Z N E3) = 1. Here
E;,i=1,...,3, denote the exceptional divisor corresponding to a’.
Thus we obtain the dual graph

-1 : -3 : ~1




since b! = b° 4 b2, 3b® = b' + b% and b® = b? + b*. Remark that the intersection numbers
of a component C; of the strict transform and a component E; of the exceptional set
depend on the given orientation of the components of the strict transform. For simplicity,
we assume that E; - C; > 0. Since x(Sy) = —2 and x(S55) = 0, we obtain

Gty = (1 -9

Example 3.31. Set [ = 2375 + a1T25 + 2371%2 + 2]Z7*. We show the boundary of
Iy (f) (solid lines) and LE.(f)’s (dotted lines) in the left figure below.

We consider the mixed fan from the data

0 12 s o (121 10\ 0,1 ,0m. (10110
<""””a"’>_(03241’(bbbbb)_01—101’

which are shown in the middle and the right figures above. The corresponding ¢ =
(€7)rexy and m = (m;)rexa) are given by ¢ = (0159 11 0) and m = (03 —4 3 0).
Since the map 7s g : Us — C? is expressed by

2 T -1
|1| =rorirars, [m] —C02 €3,
3,2 4 x —1
\a| =ryrrsry, T =€1€5 €4,
where r; = |u;| and e; = u;/|u;|, i = 0,1,...,4, we obtain
15,911 .3 4 3¢ .95 33 343 23 72 3 -2 11,.7,2 .3 -3
T f = roryryejes es(rarsrieses ey + rorarieoes €y + roririege; “es + ry rirsepe; “es).

Since the strict transforms f’ on V,, o € ¥(2), are given by the following table:
f'y fr;|VU

Ty(@oTs + 2171) | 1+rgegon Vo, rmea+1lonV,,
— — = =

1T o (x5 + 2i71) | 1+rieg” on V,,, riez +1onV,,,

237 (20 + 2371°) | 1+r3eo0n Vyy,  raes+1lon 'V,

where 0;; = (a’,a’)r., we have #(Z N Ey) = 1, #(Z N E;) = 2, #(Z N Es) = 1. Here
E;, i =1,2,3, denote the exceptional divisor corresponding to a’.
Thus we obtain the dual graph

1 1 1

N

since —b' = b% + b*, —b* = b' + b®, —b® = b? + b*. Since x(S4) = —2 and x(S3) = 0, we
obtain

Ct) = (1 -9
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Example 3.32. Set f = 2171 + 2329 + 2323 + 25 + 3. We consider a simplicial fan 3
so that

' 1 0011
x(1) :{ala a’,. .. 70/5}7 (@)1 5=(0 1 0 1 4|, and
00114

¥(3) ={0124,0134,0245,0345.,0235},

where 0; 5, = (a', @/, a*)r,. We consider the mixed fan (X, §) with the following data

1 001
(bl) 1,...,6 — O ]. 0 ].
0011

For o € £(3), we see ¢, = 1 if and only

if o # 0235-
Since the map 7s g : Us — C? is expressed by

~1
1| =rirars, (o] —€164€5
4
|2| =rarars, T =€2€4,
4
|w3| =rarars, % =€3€4,
where 7; = |u;| and e; = u;/|ug|, i = 1,...,5, we obtain #* f = r3r8ee? f where

F=riel(riries" + raes + raes) + ried(ried + ried).

We thus obtain the strict transforms of f, on V, and the intersection numbers N, (f,) as
follows:

f7 f/ |V(7 Na(fw)
T3+ 13 r262+10n Voo 1+r3e3 on V,,,, 3
iTe + T3 rief+1lon 'V, ,, 1+ 7“565 on Vy, 2
Tirs + 5 riei+1lonV,,, 1+rfezonV,,,; 2
l’%l‘g + x%xg roea +1on Vg, 1+rzeson Vi, . 1
272 + 222y | e, + 1 on Vosus 1+r2ea0n Vg, -1
1T +atas | rje;  +1lonV,,,, l4+rsesonV,,, | —1

Let Z;, © = 4,5, denote the intersection of the strict transform Z of f by ms s and the
exceptional divisor corresponding to a’. Since

3b' 4+ 2b% +2b° + b° = 2b*,  —b® — b® + bt = b,

we obtain that Z, - Z4, = —2 and Z5 - Z5 = 1 as intersection numbers in Z. We can
define the dual graph using the intersection products in Z, and, in this case, it becomes
as follows:
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Example 3.33. Set f = 2777 + 23 + 3. We consider a simplicial fan ¥ so that

| 1001 21
2(1) ={a',a’...,a’}, (a')ici.6=[0 1 0 1 3 2], and
00113 2

2(3) :{01,2,4, 02,45,0256,01,3,4,034,5,0356, 02,3,6}

where 0, ;1 = (a',a’,a ) . We consider the mixed fan (E B) with the followmg data:

| 1001 —21
()ic.6=(0 101 -1 0
0011 —-10

€

We see ¢, = 1 for any o € ¥(3).
Since the map 7s g : Us — C? is expressed by

2 T -2

21| =rirarsrs, |x—i| =ejeq465 "€,
3,.2 x -1
|5E2| =ToTr4TsTg, Toa] —€2€4€5
_ 3.2 Ty _ —1
| x| =rsrarsrs, [ =€3€4€5

_ _ - sk 20589 -2
where 7; = |u;| and e; = u;/|u;|, i = 1,...,6, we obtain 7*f = r2rlrie2e; 2 f where

& 3 -1 2 9 2. 9
[ =rirseie; eg + ryree; + ryrges.

We thus obtain the strict transforms of f, on V, and the intersection numbers N, (f,) as
follows:

fv f“‘/a Ng(f'y)
SL‘%?L’_l + SL’% 7"4621 + 1 on V03,475 €6 1 T'g ONL V03,5,6 —1
3T+ a3 | rael +1lonV,,, . es+reon Vo, —1
x%+x§ r%e%—i—lon VU245 1+7"3€3 on V0345 2
x3+a3 | rses+1lonV, ,, 1l+rjeionV, ., 2

Let Z;, i = 4,5,6, denote the intersection of the strict transform Z of f by mx g and the
exceptional divisor corresponding to a‘. We remark that Zs = @ and that Z, has two
components, say Zj and ZJ, since No(fy(a1)) = 2, fr(a) = 23 + 23. Since

2b' + 0b% + 0b® + 2b° = —2b*,  —b% — b + 2b* + 0b° = —b°,

we obtain that Z, - Z, = 2 and Z5 - Z5 = 1 as the intersection products in Z. We thus
obtain the following dual graph:

O——O

Z Zs Z

Remark 3.34 (Links of singularities). In general, the link of an isolated singularity of
the zero set of a holomorphic function is a graph manifold, which is a manifold obtained
by plumbing of several S'-bundles on the irreducible components of the exceptional set
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in the strict transform of its resolution of singularity. The plumbing data are given by
resolution graphs.

The situation is analogous for the link of zero of a mixed polynomial f which is mixed
Newton non-degenerate. Let K (f) denote the link of f, that is,

K(f)=f1'0)ns> 1t S l={zecC":|z|=c} for0<e<1.

Assume that f is mixed Newton non-degenerate and (X, 5) denote a mixed fan constructed
in §Z0. We take a polygon A so that ¥ is a part of the dual fan of A. Then we have
maps

K(f) — 75500 N Z =3 iy 5(m55(0)) € A C R
where the first arrow is determined by pluming, Z denotes the strict transform of f~1(0)
and py 5 is the moment map (see Remark [Z3T).

4 Remarks on non-degenerate case

4.1 Topological trivialities induced by real-analytic isomorphisms of resolu-
tion spaces

We consider a family of mixed polynomials, which are simultaneously non-degenerate, and
show a topological triviality theorem for them which comes down from real-analytic iso-
morphisms of a resolution space if they have the same Newton polyhedron which intersects
each coordinate axis.

Theorem 4.1. Let I be an interval which contains 0. Let f;, : C* — C, t € I, be a
real-analytic family of mized polynomials with 'y (f;) =Ty (fo). Letm =mg5: M — C"
denote the mized toric modification associated to a mized fan (3, [) constructed in 21
and ™ = Tix g : M —s C™ denote its real oriented blow-up (Remark T23). If f;, t € I,
are mized Newton non-degenerate (resp. non-degenerate) simultaneously, then there exists
a family of real-analytic isomorphisms

W, (M, 71 (0)) — (M, 7 1(0))  (resp. hy: (M, 7 (0)) — (M, 7 1(0))),
so that
hi((mofo) H(0)) = (mo ) 7H(0)  (resp. hy((#ofo) "1 (0)) = (7o f)~H(0))).

Moreover, if f;, t € I, are convenient, h, (resp. /Azt) induces a family of homeomorphism-
germs hy : (C",0) — (C",0), that is, hyow = moh} (resp. hyom = Tohy), so that

(he(f57(0)),0) = (f71(0),0), tel

Proof. The proof is an adaption of the discussion appeared in [6] and we present here
briefly. Assume that f;, t € I, are mixed Newton non-degenerate (resp.non-degenerate)
simultaneously, and set F(z,t) = fi(x). Consider the vector field

E i J Jt . tJ t'U
& =det(PV), where P = (O 1> , V= (Ut 3t> ,

(121|012 Re ' Oargzy Re F' -+ 2,03, Re F' Oarga, Re F 7 _ O;Re I’
"\ 21|10y Im P Oprgey ImF -+ 2] 0 INF Oy, ImF )7 70 7 O Im F )

27



v = (|$1|a|$1‘ aargxl “ e |xn|a\xn\ aargmn)

Remark that the elements of the last column of V' are vectors fields. We have é ReF =
&Im F = 0, since both V' Re F' and V Im F' are not of full rank. Define

¢ = é—|— |F’28t
~det(JU) + |F|2

The coefficient of 8, in € is 1, since the coefficient of 8, in € is det(JY). Thus, on the set
defined by F' =0, ERe ' = £&Im F = 0, wherever £ is defined.
Since J = %IJcll, where

J. = 110, F 2105 F -+ 2,0, F 7,05 F I — 1 1 I, = tj.
c ZElaxlF Tlaﬁﬁ f[,‘n8$RF maﬁﬁ ) —\= 5/ 1= ]

we have

det(J ) =det(3 /L' Do) = det(5) det(Je(L' 1)) det(5)
= det(L) det(2J.'T,) det()

_ Z?:l |xi8xiF‘2 2?21@7%8961?)(3726@]3)
B Z:L:l(xzazzF)(fzamiF) ?:1 ’xiaIiF|2

° I
U _— ' 77 o (0 1
T
We first remark that v has a lift on M (resp. M ) by (B0). We denote it by v’ (resp.v).
Then we see the pull backs of coefficients of & by 7 (resp. 7). We consider these pull backs

on V, (resp. V,), o € S(n). Define J' and J! (resp. J and J) by

I

since

det(L) ==, det(L) =

DN | =o

JoTry, =J H |UT‘€T, J1oTo :Jt, H |UT|éT
r€a(1) T€a(1)
<I‘€Sp. Joﬁ'a ::]\ H |u7_’57—7 Jto’ﬁ'g ::]; H ’uT|€7—).
reo(1) T€o(1)

Remark that J" and J| (resp. J and j;) is locally well-defined functions. Setting

- J/ J/ tJl t,vl
r_ Iy 7! /I t [
& = det(P'V’), WhereP—(O 1),V—(Ut, at)

z o ~ 7T - 7 ts
(TSSP- &€ = det(PV), where P = (J Jt) V= (J v))7

0 1 7, 0
we obtain the lift & (resp. é\) of € by m, (resp. 7,) as follows:

¢ = ¢ resp. E: AAé
T (T 1 P g ’
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since

det(J%)om, =det(JT) ] |u-l*", Forg =F' [ lu-l*"
T€o(1) T€0(1)

<resp. det(JU)oﬁU:det(ﬁj) H ||, Foity =F H |u7|%>.
T€o(1) T€0(1)

Take a cone ¢’ € ¥ so that 7(F,) = {0}, 0’ C 0. It is enough to show that
Q = (det(J'\') + [F'[*)|g, (vesp. @ = det(J 7) + |[F|)|5 )

is nowhere zero near 7~1(0) (resp. #71(0)), if f is mixed Newton non-degenerate (resp. non-
degenerate). Remark that only the terms in (f;)y, ¥ = (,¢,/1)7(a@”), contribute to the
terms in J'|g_, J{|g,,, I'|E,, (resp. JA|E e jtlE e ﬁ|§ 1), and so is @ (resp. Q). By mixed
Newton non-degeneracy (resp. non-degeneracy),

©;0z; Re (ft)y Tidz; Re (fit)~y |zi]0);| Re (ft)y Oargz; Re (fi)y
(42) <$ia% Im (ft)y Zi0z; Im (ft)y >i1,...,n (resp. ( |2:0)2;) Im (fe)y Oarg w; Im (fi)~y >i*1 n>7

e

is of full rank on (f;);"(0) N (C*)", and so is

vr Oy, Rem* (ft)y U705 Rem* (ft)~ resp [v7 |0}y, ReT* Fy Oarg v, Re @™ Fy
V7rOur Im m* (ft) U705 Im ¥ (ft) rea(1) ’ |UT‘8\v7—I Im#*Fy Oarg v, Im 7" F reo(1)

on ((fy)5)~1(0) N (C*)". This implies that @Q is nowhere zero near 7~'(0) (resp. 7~"(0)).
Thus the vector field &’ (resp.g) is well-defined and its flow provides the desired real-
analytic isomorphisms. If I';(f) is convenient, 7y g is an isomorphism except over the

origin, by ([Z30). The last assertion is thus a consequence of the fact that & (resp. &)
tangent to each E, (resp. F,) for 7 € 3(1). O

When I'; (f) is not convenient, there is a non-compact face which does not lie in the
union of coordinate hyperplanes. Remark that H; (resp. l/LI\t) induces a homeomorphism
when (f;), does not depend on ¢ for each non-compact face  which does not lie in the
union of coordinate hyperplanes, since 0,F'|g, is zero for 7 € (1) with ¢, > 0 and

~(E,) # {0}.

Corollary 4.3. Let f be a mized polynomial. If f is non-degenerate and convenient, then
the local topological type of (C™, f~1(0),0) is determined by fr where T is the union of
compact faces of I'1(f).

Proof. Apply the previous Theorem for fi(z) = f(x) + tg(z), 0 <t <1, so that I'y (g) is
in the interior of I', (f). O

4.2 Coordinate crossing property

In this subsection, we present an attempt to understand the situation that a mixed poly-
nomial is not mixed Newton non-degenerate, but is non-degenerate.

We say that two subsets Z; and Z, of R*" at p € Z; N Z, are of coordinate crossing
if there exists submersion germs g; : (R*",p) — (R*,0), i = 1,2, so that (Z;,p) =
(g;1(0),p), i = 1,2, and the Jacobi matrix of G = (g1, g2) : (R*",p) — (R* x R*2 0) is
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of rank k along G~'(0). Remark that k < k; + ko and equality holds if and only if g;*(0)
and g, '(0) intersects transversely.

We consider the real oriented blow up ‘70 — V5 along the exceptional set E, where
o’ is a face of 0. The set V,, is C7' M) x C7M\' () where C7'V) = {(|v,|, argv,) € Rsgx St :
7 € ¢'(1)}. Let E, denote the inverse image of E, in V,. The condition (8IT) implies
that the strict transform of f intersects the set defined by |v,/| = 0, 7" € ¢’(1), transversely
(Remark BH).

We consider how the strict transform Z of f by 7y g and the exceptional set E;,
7 € X(1), intersect in V,, for o € X(n).

If we set fofry(u) = fHTeJ(l) v, | (vr/Jvs]| )™ where 7, = 7|y, , we have

(44) J/C\: Z Cv H ’UT’<0,T,V+I7>7ZT( Ur

T€0(1) |UT|

) (b™ ,v—D)—m~,

For a face ¢’ of o, we thus have

-~

(4.5) fla, = o H [, | (@ v P) =t H (vr

vivey  res()\o'(1) vty 7]

Y

)(b",ljt/)mT

which is ]/”;, where v = (¢, v(a™). Setting

B(fv) = {<<bT/v v—U)— m‘r’)f’ea’(l) ez”’W:v+we YV Cop F 0},
we can write
f=) (¢i+R)e, o= ¢’
i€B(fy) icB(fy)
where R; = O(|v| : 7/ € 0/(1)), € = Il eoq) elr eV g = (i) epn 1y and
¢i _ Z Z Co H ’vT’<a",u+17>—€-r6((b7',1/—17>—m-,—)arqu—ﬁ'
v+uey ((b’J,U—17>—m7_/)7_/€a_/(1):1: T€a(1)\o’(1)

To obtain the equations for the strict transform by 7, we need to eliminate the variables
argv,, 7 € o(1), from the system

F=T =0
When B(f,) is one point, say {2}, then the system ﬁ = ﬁ = 0 reduces to the system
Giy = dip = 0.

This case is already treated in the previous subsection.
We proceed the next simplest case, that is, the case there are i, i; € Z7 (1 such that

B(fy) ={to £}, 41 #0.

In this case, setting ¢g = @iytiy, ®1 = Pig—iy, Ro = Riy+4, and Ry = R;,—;,, we have the
following expression:

(4.6) f=e®[(o+ Role™ + (1 + R)e ™, f = e®[goe™ + dre].
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We remark that the system fA: fA = 0 is reduced to the system

= [ en = o+ Ro &1+ Ry
(e_“) 0, where (¢1 + Ry Go+ R0.> ’

and thus we obtain

(47) f/:<¢0+R0 H ’U/"'+ ¢1+R1 H ’U/"'/

T'ea’(1) T'€0’(1)
which vanishes on the strict transform in V.. Since ¢y and ¢ are functions in the variables

vy, T €0(1)\ 0'(1), we have

E* Nz C{(UT)TEU( 1)\o’(1) - 0} Qb = det (I)’ ¢ = (% QZ%) '

We consider the case n = 2. We write the coordinate of V, by (vg,v1). We can write
a component of the exceptional set by E, = {vg = 0}, for a 1-face o’ of 0.

Proposition 4.8. Under the assumptions and the notations above, we assume that 1, =
(1)rrcorry-  The strict transform Z and the set E, \ {vi = 0}, intersect as coordinate
crossing when rank ® = 1 and {¢ = 0} is nonsingular at any point of Z N E,.

Proof. Since ; = (1),¢,1) and by (BZ7), we have

I = (¢o(v1) + Ro)vo + (¢1(v1) + R1)To

We thus obtain

Re [’ 1 /71 1\ =z /(v _
(4.9) <Im ‘Ji,) =3 (_ﬁ ﬁ> o (U_g) , and  f! = govo + ¢170.
Set qg = det ®. Since

ORe ', Im f', §)

0(Re vg, Im vy, Re vy, Im vy)

vo=0
L0\ (W e U D\ (1T 0 o
= _% % 0 (f’QUO (fﬁ//)'lTo (f',y)”Ul (ff,y)vfl 5 0 0 1 —3
0 0 1 ¢vo (szo ¢v1 ¢1T1 0 0 1 i
Re (¢o + ¢1) Im(p1 — o) 0 0
= | Im (¢0 + le) Re (gbl — Qﬁo) 0 0 s
sto + vaT) ﬁ[¢170 - gbvo] ¢v1 + gbvﬁ ﬁ[gbvﬁ - ¢v1]
where v = y(a”), we have the following:
e Rewp, Re f’, ¢ form a part of a coordinate system when Im (o — 1) # 0.
e Rewp, Im f', ¢ form a part of a coordinate system when Re (¢o — ¢1) # 0.
e Imwy, Re f/, ¢ form a part of a coordinate system when Re (¢o + ¢1) # 0.
e Im g, Im f', ¢ form a part of a coordinate system when Im (¢g + ¢1) # 0.
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Remark that rank ® = 1 implies (¢g, ¢1) # 0 and thus ¢g — ¢1 # 0 or ¢p + ¢1 # 0. Since
the set ¢ = 0 is nonsingular, (¢,, + ¢z, 8¢5 — ¢y, ]) is not zero on the set ¢ = 0. Thus
we complete the proof, because of the following lemma. n

Lemma 4.10. Assume that rank ® = 1. Let p be a point in Z N {vy = 0}.
(i) The strict transform Z near p is defined by one of the following ideals:

(Re ', ¢), (Im f',6).
(ii) The exceptional set {vg = 0} near p is defined by one of the following ideals:
(Rewg, Im f), (Rewg,Re f'), (Imwvg, Im f'), (Imwg, Re f').

Proof. The item (i) is a consequence of the following implications.
e Re f' = det ¢ = 0 implies Im f” = 0 for |v| < 1.
e Im [/ = det ¢ = 0 implies Re f’ = 0 for |vo| < 1.

Re f’ = 0 implies ®X = 0 has only solution

e(argvo)ﬁ
X=c , ceC,

6(_ arg vo )t

and we obtain Im f/ = 0, which shows the first item. The second item is proved similarly.
Now we show the item (ii). Since (¢, ¢1) # (0,0) on Z N E,, we have (¢g + ¢1, pg —
¢1) # (0,0) on ZN E,. Thus the lemma is a consequence of the following implications.
o Re(ppo— 1) #0, Revg=0,Im f/ =0 = Imwvy = 0.
o Im(pg— ¢1) #0, Revg =0, Re f/ =0 = Imuv, = 0.
o Re(¢o+ ¢1) #0, Imvg =0, Re f' =0 = Rewvy =0.
o Im (pg+ ¢1) #0, Imvy =0, Im f' =0 = Rewvy = 0.
These implications follow from the following identity:

Re f’ Re (¢o + ¢1) Im(do — 1)

Im f/ _ | Im (¢ + gz~51) Re (¢o — ¢1) Re v O
Re Vo 1 0 Im Vo .
Im g 0 1

References

[1] N.A’Campo, La fonction zéta d’'une monodromie, Comment. Math. Helvetici 50
(1975), 233-248.

[2] G.Braun and A.Némethi, Invariants of Newton non-degenerate surface singularities,
Compositio Math. 143 (2007), 1003-1036.

[3] Y.Chen and M. Tibar, Bifurcation values and monodromy of mixed polynomials.
Math. Res. Lett.19 (2012), no.1, 59-79.

[4] Y.Chen, L. R, Dias, K. Takeuchi and M. Tibar, Invertible polynomial mappings via
Newton non-degeneracy. Ann. Inst. Fourier (Grenoble) 64 (2014), no.5, 1807-1822.

32



[5]
[6]

[7]

[10]

[11]

[12]

[13]

V. Danilov, The geometry of toric variety, Russian Math. Surveys 33 (1978), 97-154.

T. Fukui and E. Yoshinaga, The modified analytic trivialization of family of real
analytic functions, Invent. Math. 82 (1985), 467-477.

H. Hironaka, Stratification and flatness. Real and complex singularities (Proc. Ninth
Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 199-265.

K. Inaba, M. Kawashima and M. Oka, Topology of mixed hypersurfaces of cyclic type,
J. Math. Soc. Japan 70 (2018), no.1, 387— 402.

H. Ishida, Y. Fukukawa, and M. Masuda, Topological toric manifolds, Mosc. Math. J.
13 (2013), 57-98, 189-190.

A. G. Khovanskii, Newton polyhedra and toroidal varieties, Functional Analysis and
its Applications 11 (1978), 289-296.

J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies
61, Princeton University Press. London: Oxford University Press, 1969.

M. Oka, Non-degenerate mixed functions, Kodai Math. J. 33 (2010), 1-62.

M. Oka, Mixed functions of strongly polar weighted homogeneous face type, Singu-
larities in Geometry and Topology 2011, Advanced Study in Pure Math. 66, 173-202,
2015.

M. Oka, Introduction to complex and mixed hypersurface singularities (in Japanese),
Maruzen, Tokyo, 2018.

A. Pichon and J. Seade, Fibred multilinks and singularities fg, Math. Ann. 342(2008),
no.3, 487-514.

S.Saito and K. Takashimizu, Resolutions of Newton non-degenerate mixed polyno-

mials of strongly polar non-negative mixed weighted homogeneous face type, Kodai
Math. J. 44 (2021), 457-491.

A.N. Varchenko, Zeta-function of monodromy and Newton’s diagram, Invent. math. ,
37 (1976), 253-262.

33



	Mixed toric manifold
	Fan and mixed fan
	Mixed toric manifold
	Mixed toric modification

	Mixed toric modifications for mixed polynomials
	Newton polyhedron of f and construction of a mixed fan (,)
	Remark on the singular set of f
	Strict transform of f via a mixed toric modification
	Mixed weighted homogeneous polynomials

	Semi-algebraic analogue of resolution of singularities
	Normal crossing property
	Monodromy zeta function
	Intersection numbers among components of the exceptional set

	Remarks on non-degenerate case
	Topological trivialities induced by real-analytic isomorphisms of resolution spaces
	Coordinate crossing property


