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Abstract

Oka introduced the concept of mixed polynomials and started to investigate how
a study for singularities of mixed polynomials similar to the study of singularities of
polynomials is possible. We introduce a mixed toric modification as a mixed analogy
of toric modifications and discuss when this provides an analogy of resolutions of
singularities defined by mixed polynomials. A mixed toric modification is associated
with a mixed fan, which is a notion we introduce in the paper. They provide several
combinatorial data for singularities of mixed polynomials. We define the notion of
mixed Newton non-degeneracy for mixed polynomials and show that a mixed toric
modification provides a semi-algebraic or real algebraic analogue of resolutions of
singularities under mixed Newton non-degeneracy condition. Our approach allows
us a combinatorial description of the topology of singularities of mixed polynomials,
which are mixed Newton non-degenerate, and we show a formulas for the Euler
characteristics and the monodromy zeta function of nearby fibers. We also show how
the dual graphs of analogy of resolution of singularities of such mixed polynomial
are obtained in low dimensions.

J.Milnor ([11]) started to investigate topology of complex polynomials and he shows
there cone structure and fibration structure. These have been provided a wealth of ex-
amples in differential topology and basic language for describing how topological type
changes under deformations. In [10], Khovanskii introduced a powerful method to con-
struct a resolution of singularities. He introduced a suitable non-degeneracy condition
with respect to Newton polyhedrons of holomorphic functions, and showed that a toric
modification provides a resolution of singularities of a holomorphic function under this
non-degenerate condition. This allows us several combinatorial descriptions of topological
objects of the holomorphic functions like:
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• topology of nearby fibers, in particular the Euler characteristics of the nearby fiber,
and zeta function of monodromy ([17]),
• topology of links of singularity (for example, see [2] for surface singularities).

Such a description of phenomenon should be understood as a broad class of phenomenon
that includes singularities of polynomials. For example, Pichon and Seade [15] estab-
lished a type of Milnor fibration for functions of the form fg. Oka ([12]) has launched
to investigate the topology of the maps defined by a mixed polynomial introducing the
notion of Newton polyhedron for a mixed polynomial (0.1). Oka introduced the notion
of non-degeneracy for mixed polynomial ([12, 2.3]) and discussed how topology of mixed
polynomials are described in terms of combinatorics of Newton polyhedrons. He showed
fibration theorems [12, Theorems 29, 33] and describe zeta functions of monodromies [12,
Theorem 60], etc. for singularities defined by several mixed polynomials. He also investi-
gate when a toric modification provides a resolution of singularities for mixed functions
([13, Theorem 11]). Inaba, Kawashima and Oka also have investigated ([8]) the topology
of links for certain special mixed polynomials. We also remark that Chen, Dias, Takeuchi
and Tibăr ([3], [4]) discussed asymptotically critical values or bifurcation values for mixed
polynomials using Newton polyhedrons.

In this paper, we introduce the notion of mixed Newton non-degeneracy (Definition
0.7) for mixed polynomials, and define the notion of mixed toric modifications (Definition
1.22) associated with mixed fans (Σ, β) (Definition 1.2) constructed from it, and show
that they provide a semi-algebraic analogue of resolution of the singularities defined by
the mixed polynomials. Our approach allows us to analyze considerably wide cases of
mixed polynomials compared to Oka’s results.

Throughout the paper, we denote by Z (toric.R, C) the set of integers (resp. real
numbers, complex numbers). We denote by Z≥ (resp.R≥) the set of non-negative integers
(resp. real numbers). We set C∗ = C \ {0} and S1 = {z ∈ C : |z| = 1}.

Let us state several definitions related to mixed polynomials to fix the terminology.
Let x = (x1, . . . , xn) be the coordinate system of Cn and let x = (x1, . . . , xn) where
xi denotes the complex conjugate of xi. Setting xν = xν1

1 · · · xνn
n , xν = x1

ν1 · · · xn
νn ,

ν = (ν1, . . . , νn), ν = (ν1, . . . , νn) ∈ Zn, we consider a C-linear combination of xνxν :

(0.1)
∑
ν,ν

cν,νx
νxν , cν,ν ∈ C.

• We call this (0.1) a mixed polynomial if all the exponents ν and ν are non-negative.
• In general, we say (0.1) is a mixed Laurent polynomial, since we allow negative
exponents in the expression (0.1).
• We call xνxν amixed monomial if the exponents ν and ν are non-negative integers.
• We call xνxν a mixed semi-monomial if the exponents are non-negative half inte-
gers.
• We also call xνxν a mixed Laurent monomial if we allow negative integer expo-
nents.
• We call xνxν a mixed Laurent semi-monomial if the exponents are half integers.

By comparison, we sometimes call polynomials in x are called pure polynomials, and
monomials in x are called pure monomials.
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For a mixed polynomial (0.1), we consider the map

f : Cn −→ C, defined by x 7−→ f(x) =
∑
ν,ν

cν,νx
νxν .

For the abuse of language, we often call the map f a mixed polynomial.

Definition 0.2. We say that a mixed polynomial (0.1) is a mixed weighted homoge-
neous polynomial of type (a, b; ℓ,m), a = (a1, . . . , an) ∈ Zn

≥, b = (b1, . . . , bn) ∈ Zn, if f
is a C-linear combination of mixed monomials xνxν with

(0.3) 〈ν + ν,a〉 = ℓ, 〈ν − ν, b〉 = m.

We easily see that for such a polynomial we have

(0.4) f(ra1eb1θix1, . . . , r
anebnθixn) = rℓemθif(x)

for r ≥ 0, and θ ∈ R. Here the notation i denotes the imaginary unit.

Definition 0.5. We define absolute Newton polyhedron (or radial Newton poly-
hedron as in [12]) of the mixed polynomial (0.1) (as power series) by

Γ+(f) =convex hull of {ν + ν + Rn
≥ : cν,ν 6= 0}.(0.6)

For a subset γ of Rn, we define fγ by fγ =
∑

ν+ν∈γ cν,νx
νxν .

Definition 0.7. We say that a mixed polynomial f is mixed Newton non-degenerate
if the following conditions hold.
(a) For each compact face γ of Γ+(f), we have

(0.8) Σ(fγ) ∩ f−1
γ (0) ⊂ {x1 · · · xn = 0}.

Here Σ(fγ) denotes the singular set of the map fγ : Cn −→ C defined by x 7−→ fγ(x).
(b) The polynomial fγ is mixed weighted homogeneous for each compact face γ of Γ+(f).

As in [12, 2.2], we say that a mixed polynomial f is non-degenerate if the condition
(a) above holds.

Now we can state our main theorem.

Theorem 0.9. If a mixed polynomial f is mixed Newton non-degenerate in the sense of
Definition 0.7, then there exists a mixed toric modification π : M −→ Cn (see Definition
1.22) which provides a semi-algebraic analogy of “resolution of singularities” of f−1(0)
near 0, that is, (f ◦π)−1(0) is a semi-algebraically normal crossing variety (see Definition
3.1) near π−1(0).

As a by-product of this construction, we are able to discuss an analogy of A’Campo’s
formula for zeta functions, Euler characteristics of nearby fibers, and resolution graphs
of singularities of f−1(0), as holomorphic function case. In particular, we have a formula
(Theorem 3.21) for the monodromy zeta function for mixed polynomials.

The paper is organized as follows: In §1, we introduce the notion of mixed toric mod-
ification and describe their fundamental properties. The key idea is to construct mixed
toric manifolds using the notion of mixed fan. Using the notion of Newton polyhedron in
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§2.1, we introduce mixed version of normal crossing properties, which is a semi-algebraic
analogue of normal crossing properties (§3.1), and discuss when a mixed toric modification
provides a semi-algebraic analogue of resolution of singularities for a mixed polynomial.
We also discuss a formula for monodromy zeta function of singularities in §3.2 and a way
to compute the intersection numbers associated with resolution of singularities in §3.3. In
§4.1, we show a version of topologically triviality theorem, which comes from real-analytic
isomorphism of the resolution spaces.

It is also important to look at phenomena specific to mixed polynomials, despite of
the fact that it is important to pursue analogies of the study of polynomial in the study
of topologies of mixed polynomials. We thus present an attempt to analyze a mixed
polynomial, which is not mixed Newton non-degenerate, but which is non-degenerate, in
§4.2.

The author is grateful to Masaharu Ishikawa for his helpful comments on this topic.
Thanks are also due to H. Shimizu, as this paper is motivated by seminar work with him.
The author sincerely thanks the anonymous referee for their thorough review and many
valuable comments. The referee’s careful reading helped identify numerous errors in the
earlier version of the paper.
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1 Mixed toric manifold

1.1 Fan and mixed fan

We say a subset σ of Rn is a rational polyhedral cone if there are integer vectors a1, . . . ,
ak so that

σ = {c1a1 + · · ·+ cka
k : ci ≥ 0, i = 1, . . . , k}.
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Let Σ denote a fan, that is, a finite collection of rational polyhedral cones in Rn with the
following properties.
• If σ ∈ Σ and τ is a face of σ, then τ ∈ Σ.
• If σ, σ′ ∈ Σ, then σ ∩ σ′ is a face of σ and also is a face of σ′.

Let Σ(k) denote the set of k-dimensional cones (k-cones, for short) in Σ. Let σ(k) denote
the set of k-dimensional faces of σ.

We say a fan Σ is simplicial if each cone in Σ is simplicial cones, that is, σ ∈ Σ(k) is
generated by linearly independent k vectors.

We say a fan Σ is nonsingular if each cone in Σ is generated by a part of Z-basis of
Zn.

Remark 1.1. A toric variety is constructed from a fan. This toric variety is nonsingular if
the fan is nonsingular. Refer the survey article [5] for fundamental facts for toric varieties.
We remark that a nonsingular fan is called a regular fan in [5].

We say a vector a ∈ Zn is primitive if the greatest common divisor of non zero
components of a is 1.

Definition 1.2 (Mixed fan). Let Σ be a simplicial fan, and let β be a map

Σ(1) −→ Zn × Zn, τ 7−→ (aτ , bτ ).

We say that (Σ, β) is a mixed fan, if the following conditions hold.
(i) {aτ : τ ∈ Σ(1)} is the set of the primitive generators of τ ∈ Σ(1). Thus, for all σ ∈ Σ,

σ = {
∑

τ∈σ(1)

cτa
τ : cτ ≥ 0}.

(ii) {bτ : τ ∈ σ(1)} forms a part of Z-basis of Zn for all σ ∈ Σ.

If aτ = bτ for τ ∈ Σ(1), the mixed fan (Σ, β) is a nonsingular fan with mentioning
primitive generators aτ for τ ∈ Σ(1).

Mixed fans form a subclass of the set of topological fans introduced in [9]. We are going
to define a mixed toric manifold associated to a mixed fan, which also form a subclass of
topological toric manifolds introduced in [9].

The following lemma ensures the existence of nonsingular mixed fan for several cases.

Lemma 1.3. Let Σ0 denote a simplicial fan, which is a subdivision of the positive orthant
Rn

≥. For τ ∈ Σ0(1), set β0(τ) = (aτ , bτ ) where aτ is the primitive vector generating τ .
We assume that
• For σ ∈ Σ0(n), b

τ , τ ∈ σ(1), are linearly independent.
Then there exists a mixed fan (Σ, β) with the following properties.
• Σ is a subdivision of Σ0.
• β(τ) = β0(τ) for τ ∈ Σ0(1).

Proof. We construct a simplicial subdivision Σ of Σ0 and

β : Σ(1) −→ Zn × Zn, τ 7−→ β(τ) = (aτ , bτ )

with the following properties:
• For τ ∈ Σ0(1), β(τ) = β0(τ).
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• For τ ∈ Σ(1), aτ generates τ .
• For σ ∈ Σ(n), bτ , τ ∈ σ(1), generate a nonsingular n-cone.
• For σ ∈ Σ(n) and τ ∈ Σ(1)\Σ0(1), a

τ is a primitive generator of the 1-cone generated
by
∑

τ ′∈σ(1) cτ ′a
τ ′ if bτ =

∑
τ ′∈σ(1) cτ ′b

τ ′ .

This Σ is obtained constructing a nonsingular subdivision of 〈bτ : τ ∈ σ(1)〉R≥ for σ ∈
Σ0(n) (see [5, 8.1]).

1.2 Mixed toric manifold

Definition 1.4 (Group G). Let us define the group G as the kernel of the group mor-
phism:

(1.5) λΣ,β : (C∗)Σ(1) −→ (C∗)n, (zτ )τ∈Σ(1) 7−→
( ∏

τ∈Σ(1)

|zτ |a
τ
i

( zτ
|zτ |

)bτi)
i=1,...,n

.

We clearly have

(zτ )τ∈Σ(1) ∈ G ⇐⇒

{∑
τ∈Σ(1) a

τ
i log |zτ | = 0,∑

τ∈Σ(1) b
τ
i arg zτ ≡ 0 (mod 2π).

For σ ∈ Σ(n), these equations can be written as∑
τ∈σ(1)

aτi log |zτ | =−
∑

τ ′ ̸∈σ(1)

aτ
′

i log |zτ ′ |,

∑
τ∈σ(1)

bτi arg zτ ≡−
∑

τ ′ ̸∈σ(1)

bτ
′

i arg zτ ′ (mod 2π),

and we conclude that an element (zτ )τ∈σ(1) ∈ G is determined by (zτ ′)τ ′ ̸∈σ(1).

Notation 1.6. Let i denote the imaginary unit. We do not use i for the imaginary unit,
since we may use i as an index of vectors, etc.. Then a complex number z can be written
as in the following polar form

z = reθi where r = |z|, θ = arg z.

Since z = re−θi, we have

(1.7) r∂r = z∂z + z∂z, ∂θ = i(z∂z − z∂z).

by chain rule. To save symbols, we often denote them as

(1.8) |z|∂|z| = z∂z + z∂z, ∂arg z = i(z∂z − z∂z).

Since the polar coordinate (r, θ) is a coordinate system of Ĉ = R≥ × S1, we often regard

the formula (1.7), or equivalently, (1.8), as a formula on Ĉ via the polar blow-up:

Ĉ −→ C, ẑ = (r, θ) 7−→ z = reθi.

In [7, page 222], this map is called a simple oriented blowing-up.
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Setting x = Re z = 1
2
(z + z), y = Im z = 1

2i(z − z), we have

J =

(
∂x
∂y

)(
Re f Im f

)
=

(
∂Re z

∂Im z

)(
Re f Im f

)
=

(
1 1
i −i

)(
∂z
∂z

)(
f f

) 1
2

(
1 −i
1 i

)
.

By (1.8), we have (
∂z
∂z

)
=

1

2

(
1/z −i/z
1/z i/z

)(
|z|∂|z|
∂arg z

)
and

(1.9) det J =

∣∣∣∣fz fz
f z f z

∣∣∣∣ = i
2|z|

∣∣∣∣∂|z|f ∂arg zf

∂|z|f ∂arg zf

∣∣∣∣ .
Definition 1.10 (Mixed toric manifold). We assume that (Σ, β) is a mixed fan. We
define UΣ by

(1.11) UΣ =
⋃

σ∈Σ(n)

Uσ, where Uσ =
{
(uτ )τ∈Σ(1) ∈ CΣ(1) :

∏
τ ̸∈σ(1)

uτ 6= 0
}
.

We remark that (zτ )τ∈Σ(1) ∈ G acts on Uσ by

(zτ )τ∈Σ(1) : Uσ −→ Uσ, (uτ )τ∈σ(1) 7−→ (zτuτ )τ∈σ(1),

and thus on UΣ. We define the mixed toric manifold MΣ,β by

MΣ,β = UΣ/G, and Mσ = Uσ/G.

Set Vσ = {(uτ )τ∈Σ(1) : uτ ′ = 1, τ ′ 6∈ σ(1)}. We easily have the following:

(uτ )τ∈Σ(1) ∈ Uσ ⇐⇒ ∃(zτ )τ∈Σ(1) ∈ G such that (zτuτ )τ∈Σ(1) ∈ Vσ.

We thus conclude that the composition Vσ ⊂ Uσ −→ Uσ/G = Mσ is a semi-algebraic
homeomorphism. We consider this map as a semi-algebraic chart of a mixed toric manifold
MΣ,β, identifying Vσ with Cσ(1).

It is interesting to ask when MΣ,β is a real algebraic manifold.

Proposition 1.12. Let (Σ, β) denote a mixed fan. Then MΣ,β is a real algebraic manifold
if

aτ ≡ bτ mod 2 for τ ∈ Σ(1).

Proof. By supposition, we have

(aτ )τ∈σ(1) ≡ (bτ )τ∈σ(1) mod 2 for σ ∈ Σ(n).

By the condition (ii) in Definition 1.2, det(bτ )τ∈σ(1) ≡ 1 mod 2, and det(aτ )τ∈σ(1) ≡ 1
mod 2. Moreover, (bτ )−1

τ∈σ(1)(a
τ )τ∈σ(1) is the identity matrix modulo 2. Thus the lemma

below implies the result. See also Remark 1.26

Lemma 1.13. Assume that (Σ, β) is a mixed fan. For σ, σ′ ∈ Σ(n), we have two charts
Vσ −→ MΣ,β and Vσ′ −→ MΣ,β. The patch Vσ −→ Vσ′ is a semi-algebraic map (defined
except a thin set). This is given by mixed Laurent monomials if

(1.14) (aτ ′)τ ′∈σ′(1)(b
τ ′)−1

τ ′∈σ′(1) ≡ (aτ )τ∈σ(1)(b
τ )−1

τ∈σ(1) mod 2.
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Proof. We consider two semi-algebraic maps (possibly with indeterminacy sets)

Vσ −→ Cn, (vτ )τ∈σ(1) 7−→
( ∏

τ∈σ(1)

|vτ |a
τ
i

( vτ
|vτ |

)bτi)
i=1,...,n

,(1.15)

Vσ′ −→ Cn, (v′τ ′)τ ′∈σ′(1) 7−→
( ∏

τ ′∈σ′(1)

|v′τ |a
τ ′
i

( v′τ ′

|v′τ ′ |

)bτ ′i )
i=1,...,n

.

For τ ′ ∈ σ′(1), we assume that

(1.16) aτ =
∑
τ∈σ

pττ ′a
τ ′ , bτ =

∑
τ∈σ

qττ ′b
τ ′ ,

that is,

(1.17) (aτ ′)τ ′∈σ′(1)(p
τ
τ ′) = (aτ )τ∈σ(1), (bτ

′
)τ ′∈σ′(1)(q

τ
τ ′) = (bτ )τ∈σ(1).

We thus have

|v′τ ′ | =
∏

τ∈σ(1)

|vτ |p
τ
τ ′ ,

v′τ ′

|v′τ ′ |
=
∏

τ∈σ(1)

( vτ
|vτ |

)qτ
τ ′
,

and

v′τ ′ =
∏

τ∈σ(1)

v
qτ
τ ′

τ (vτvτ )
pτ
τ ′−qτ

τ ′
2 =

∏
τ∈σ(1)

vτ
pτ
τ ′+qτ

τ ′
2 vτ

pτ
τ ′−qτ

τ ′
2 .

So v′τ ′ and v′τ ′ are mixed Laurent monomials in vτ and vτ if

(aτ ′)−1
τ ′∈σ′(1)(a

τ )τ∈σ(1) ≡ (bτ
′
)−1
τ ′∈σ′(1)(b

τ )τ∈σ(1) mod 2.

Let (aτ ′)∗τ ′∈σ′(1) denote the adjugate matrix of (aτ ′)τ ′∈σ′(1) and δσ = det(aτ )τ∈σ(1). Then
this condition is equivalent that

(aτ ′)∗τ ′∈σ′(1)(a
τ )τ∈σ(1) ≡ δσ′(bτ

′
)−1
τ ′∈σ′(1)(b

τ )τ∈σ(1) mod 2δσ′ .

Multiplying (aτ ′)τ ′∈σ′(1) from the left, and (bτ )−1
τ∈σ(1) from the right, we obtain that

δσ′(aτ )τ∈σ(1)(b
τ )−1

τ∈σ(1) ≡ δσ′(aτ ′)τ ′∈σ′(1)(b
τ ′)−1

τ ′∈σ′(1) mod 2δσ′ ,

which is equivalent to (1.14).

Remark 1.18. Let (Σ, β) be a mixed fan and β(τ) = (aτ , bτ ) for τ ∈ Σ(1).
• Let S and T be integer n× n matrices with detS = detT = 1. If we set Σ′ = {Sσ :
σ ∈ Σ} and β′(Sτ) = (Saτ , Tbτ ) for τ ∈ Σ(1), then MΣ′,β′ is isomorphic to MΣ,β,
because of the proof above.
• Changing uτ by uτ , τ ∈ Σ(1), in (1.11), we can construct a mixed toric manifold in a
similar way. The resulting mixed toric manifold is isomorphic to the original one, but
changing the orientations of the corresponding charts, and the corresponding mixed fan
is obtained by changing bτ by −bτ .
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• Changing the ith component of the map (1.5) by its complex conjugate, we can con-
struct a mixed toric manifold similarly. The resulting mixed toric manifold is isomorphic
to the original one, but changing the orientation, and the corresponding mixed fan is
obtained by changing the sign of ith components of bτ for each τ ∈ Σ(1).

Example 1.19. Let (Σ, β) be a mixed fan so that Σ is a subdivision of R2. We denote
by ai the primitive vectors generating 1-cones of Σ.

Assume that the cardinal of Σ(1) is three, and b1 = e1, b
2 = e2 and b3 = ±e1 ± e2.

Let M±± denote the mixed toric manifold MΣ,β. Talking about M++, M+− and M−+, we
can reduce them to the case that b3 = −e1−e2, by the second and third items of Remark
1.18. They are mixed analogues of the complex projective plane, as M−− coincides with
the complex projective plane when ai = bi, i = 1, 2, 3 (see [5, 0.3]).

Assume that the cardinal of Σ(1) is four, and b1 = e1, b
2 = e2, b

3 = ϵ1e1 + s1e2

and b4 = s2e1 + ϵ2e2, ϵi = ±1, si ∈ Z so that s1s2 − ϵ1ϵ2 = ±1. Remark that s1s2 =
0,±2. When s1s2 = 0, the resulting mixed toric manifolds can be reduced to the case
(ϵ1, ϵ2) = (−1,−1) using the second and third items of Remark 1.18. These are mixed
analogues of Hirzebruch surfaces as they coincide with Hirzebruch surface when ai = bi,
i = 1, 2, 3, 4 and ϵ1 = ϵ2 = −1. When s1s2 = ±2, we can similarly reduce to the case
(ϵ1, ϵ2, s1, s2) = (−1,−1, 1, 2).

Remark 1.20 (Orientation of MΣ,β). The complex structure of Cn defines a natural
orientation of (C∗)n. We consider an orientation of MΣ,β induced by the map defined by
(1.15). The sign of the jacobian of the map defined by (1.15) is the sign of

det(aτ )τ∈σ(1) det(b
τ )τ∈σ(1),

which we refer as εσ. For σ ∈ Σ(n), {aτ}τ∈σ(1) generates the n-cone σ, and, changing
the order of aτ if necessary, we can assume that det(aτ )τ∈σ(1) is always positive in the
calculation.

Remark 1.21 (Real oriented blow up, cf. [1, §2]). Let E =
⋃k

j=1 Cj denote the critical
set of π = πΣ,β where Cj, j = 1, . . . , k, denote the semi-algebraically nonsingular subman-
ifolds, which form a semi-algebraically normal crossing set. Let ρj : Zj −→ MΣ,β denote

real oriented blow up along Cj, that is, a map described by (Ĉ×Cn−1, S1×0) −→ (Cn,0)

locally where Cj = {0} × Cn−1 locally. The map M̂Σ,β −→ MΣ,β is the fiber product of

Zj −→ MΣ,β, j = 1, . . . , k. We denote by π̂Σ,β the composition: M̂Σ,β −→ MΣ,β
π−→ Cn.

1.3 Mixed toric modification

Definition 1.22 (Mixed toric modification). We assume that
(i) (Σ, β) is a mixed fan. Set β(τ) = (aτ , bτ ) for τ ∈ Σ(1).
(ii) A fan Σ is a subdivision of Rn

≥. In particular, each aτj , τ ∈ Σ(1), j = 1, . . . , n, is
non-negative.

(iii) For any τ ∈ Σ(1) and j = 1, . . . , n, aτj = 0 implies bτj = 0.
Then the map λΣ,β (see (1.5)) extends to the map

π̃Σ,β : UΣ −→ Cn, (uτ )τ∈Σ(1) 7−→
( ∏

τ∈Σ(1)

|uτ |a
τ
i

( uτ

|uτ |

)bτi)
i=1,...,n

.

9



Since this map is G-invariant, π̃Σ,β induces the natural map

(1.23) π = πΣ,β : MΣ,β −→ Cn,

which we call the mixed toric modification defined by the mixed fan (Σ, β).

We always assume that conditions (i), (ii), and (iii) for (Σ, β) when discussing mixed
toric modifications (1.22).

Lemma 1.24. The map (1.22) is proper.

Proof. Take a sequence {y(m)}m=1,2,... in MΣ,β so that {πΣ,β(y
(m))}m=1,2,... is convergent.

We are going to prove that there is a convergent subsequence of {y(m)}m=1,2,.... Since
MΣ,β is a finite union of Vσ (σ ∈ Σ(n)) there is an n-cone σ ∈ Σ(n) so that infinitely
many {y(m)} are in Vσ. We write this sequence as {v(m)}m=1,2,.... We take a sequence
{v̂(m)}m=1,2,... in (C∗)σ(1) so that

|v(m) − v̂(m)| → 0 (m → ∞)

It is enough to show that {v̂(m)}m=1,2,... has a convergent subsequence. Thus we can
assume that v(m) ∈ (C∗)σ(1). Since πσ(v

(m)) is convergent, there is a positive constant L
so that

log |x(m)
i | ≤ L where |x(m)

i | =
∏

τ∈σ(1)

|v(m)
τ |aτi .

Since
(L− log |x(m)

i |)i=1,...,n ∈ Rn
≥ =

⋃
σ∈Σ(n)

σ,

we can assume that, taking a subsequence if necessary, there is σ ∈ Σ(n) so that

(1.25) (L− log |x(m)
i |)i=1,...,n ∈ σ.

Taking constants Lτ (τ ∈ σ(1)) so that L =
∑

τ∈σ(1) a
τ
iLτ , i = 1, . . . , n,

(L− log |x(m)
i |)i=1,...,n = (aτ )τ∈σ(1)(Lτ − log |v(m)

τ |)τ∈σ(1)

By (1.25), we obtain that Lτ − log |v(m)
τ | ≥ 0. Thus {v(m)}m=1,2,... is bounded, and

{v(m)}m=1,2,... has a convergent subsequence.

Remark 1.26. In general, the map πΣ,β is semi-algebraic. Since

π̃Σ,β((uτ )τ∈Σ(1)) =

( ∏
τ∈Σ(1)

u
aτi +bτi

2
τ uτ

aτi −bτi
2

)
i=1,...,n

,

the map πΣ,β is expressed by mixed semi-monomials if |bτi | ≤ aτi for τ ∈ Σ(1), i = 1, . . . , n.
The map πΣ,β is real algebraic (actually, expressed by mixed monomials) if we further
assume that aτ ≡ bτ mod 2 for τ ∈ Σ(1) (cf. Proposition 1.12).
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Definition 1.27 (Eσ and E∗
σ). For τ ∈ Σ(1), we define Eτ as the image of the set defined

by uτ = 0 by the map π̃Σ,β : UΣ −→ MΣ,β. We call Eτ themixed divisor corresponding
to τ ∈ Σ(1). It is clear that vτ = 0 defines Vσ ∩Eτ under the identification of Cσ(1) with
Vσ. For σ ∈ Σ, we set

(1.28) Eσ =
⋂

τ∈σ(1)

Eτ , and E∗
σ = Eσ \

⋃
σ′∈Σ:σ ̸⊂σ′

Eσ′ .

Since the natural map Vσ −→ Cn, σ ∈ Σ(n), is expressed by

(1.29) |xi| =
∏

τ∈σ(1)

|vτ |a
τ
i ,

xi

|xi|
=
∏

τ∈σ(1)

( vτ
|vτ |

)bτi
,

we have that the restriction of the map Vσ −→ Cn to the set defined by
∏

τ∈σ(1) vτ 6= 0 is

an isomorphism onto (C∗)n, and

(1.30) πΣ,β(Eτ ) = {x ∈ Cn : xi = 0 for i with aτi > 0}.

Remark 1.31 (Moment maps). We consider a moment map associated to a finite
subset Γ of Zn. This is a completion of the map

(1.32) µ : (C∗)n −→ Rn, x 7−→ µ(x) =

∑
ν∈Γ |xν |ν∑
ν∈Γ |xν |

.

Let ∆ denote the convex hull of Γ. For a vector a, we define ∆(a) by

∆(a) = {ν ∈ ∆ : 〈a,ν〉 = m∆(a)}

where m∆(a) = min{〈a,ν〉 : ν ∈ ∆}. Similarly for a cone σ, we define ∆(σ) by

∆(σ) = {ν ∈ ∆ : 〈a,ν〉 = m∆(a) ∀a ∈ σ}.

We define an equivalence relation, for a, b ∈ Rn, by

a ∼ b ⇐⇒ ∆(a) = ∆(b).

Their equivalence classes are identified with cones in Rn, which form the dual fan of ∆.
Let Σ be a simplicial subdivision of the dual fan of ∆.

For any ν0 ∈ Zn,

µ(x) =

∑
ν∈Γ |xν−ν0 |ν∑
ν∈Γ |xν−ν0 |

.

Let σ′ be a face of σ, σ ∈ Σ(n). When ν0 is a point in the relative interior of ∆(σ′), by
(1.29), we can identify this with

(1.33)

∑
ν∈Γ
∏

τ∈σ(1) |vτ |⟨a
τ ,ν−ν0⟩ν∑

ν∈Γ
∏

τ∈σ(1) |vτ |⟨a
τ ,ν−ν0⟩ .

When vτ → 0 for τ ∈ σ′(1), we have

(1.33) −→
∑

ν∈Γ∩∆(σ)

∏
τ ̸∈σ(1)\σ′(1) |vτ |⟨a

τ ,ν−ν0⟩ν∑
ν∈Γ∩∆(σ)

∏
τ ̸∈σ(1)\σ′(1) |vτ |⟨a

τ ,ν−ν0⟩ .

This implies that the map (1.32) extends to µΣ,β : MΣ,β −→ Rn and µΣ,β(Eσ′) = ∆(σ′).
If the dual fan of ∆ is nonsingular, the fiber µ−1

Σ,β(p) is isomorphic to (S1)n−d where
d = dim∆(σ), for p in the relative interior of ∆(σ).
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Let us consider a mixed fan (Σ, β) with the following property:
• The fan Σ is a part of the dual fan of ∆.

Then we have the moment map

µΣ,β : MΣ,β −→ ∆.

For a mixed toric modification πΣ,β : MΣ,β −→ Cn, µΣ,β(π
−1
Σ,β(0)) is the union of faces of

∆ which are facing to the origin.

2 Mixed toric modifications for mixed polynomials

2.1 Newton polyhedron of f and construction of a mixed fan (Σ, β)

We consider the Newton polyhedron Γ+(f) defined by (0.6). For a ∈ Rn
≥, set

ℓ(a) =min{〈a,ν〉 : ν ∈ Γ+(f)}, and

γ(a) ={ν ∈ Γ+(f) : 〈a,ν〉 = ℓ(a)}.

For a, b ∈ Rn
≥, we introduce an equivalence relation ∼ by

a ∼ b ⇐⇒ γ(a) = γ(b).

The set of closures of equivalence classes gives a polyhedral cone subdivision of Rn
≥. We

denote it as Γ∗(f) and we call it the dual Newton diagram.
Define LEγ(f) by

(2.1) LEγ(f) = convex hull of {ν − ν : cν,ν 6= 0, ν + ν ∈ γ}.

We call (Γ+(f); LEγ(f), γ ∈ F0(Γ+(f))mixed Newton polyhedrons of f where F0(Γ+(f))
denotes the set of compact faces of Γ+(f).

For a mixed Newton non-degenerate mixed polynomial, we construct a mixed fan
(Σ, β) as follows: We first take a simplicial subdivision Σ0 of Γ∗(f). Let aτ denote the
primitive vector which generates τ for τ ∈ Σ0(1). Set

m(bτ ) = min{〈bτ ,ν〉 : ν ∈ LEγ(aτ )(f)}.

We can assume that m(bτ ) ≥ 0, τ ∈ Σ(1), changing the sign of bτ , if necessary. If we
assume that Condition (b) of Definition 0.7, we can choose bτ , τ ∈ Σ0(1), which satisfies
the following properties.
(a1) LEγ(aτ )(f) = {ν ∈ LEγ(aτ )(f) : 〈bτ ,ν〉 = m(bτ )} for τ ∈ Σ0(1).
(a2) bτ , τ ∈ σ(1), are linearly independent for σ ∈ Σ0(n).
By Lemma 1.3, there is a mixed fan (Σ, β) with the following properties.
• Σ is a simplicial subdivision of Σ0.
• β(τ) = (aτ , bτ ) for τ ∈ Σ0(1).
By Condition (b) of Definition 0.7, fγ is a mixed weighted homogeneous with respect to

the weight (aτ , bτ ) and degrees (ℓτ ,mτ ) = (ℓ(aτ ),m(bτ )) where τ ∈ Σ(1) with γ(aτ ) = γ.
If Condition (b) of Definition 0.7 does not hold, fγ is no longer mixed weighted homoge-
neous, but we can choose bτ with Condition (a2) above, and we are able to construct a
mixed fan (Σ, β) similarly.
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Lemma 2.2. πΣ,β(Eτ ) ⊂ f−1(0), whenever ℓ(aτ ) 6= 0 for τ ∈ Σ(1),

Proof. Set I(τ) = {i = 0, aτi > 0}. We have

〈ν + ν,aτ 〉 =
∑
i∈I(τ)

(νi + νi)a
τ
i < ℓ(aτ ) =⇒ cν,ν = 0.

This implies f |{xi=0: i∈I(τ)} = 0 by (1.30).

We often refer ℓ(aτ ) and m(bτ ) as ℓτ and mτ , respectively, for τ ∈ Σ(1), when dis-
cussing one fixed mixed fan (Σ, β)

2.2 Remark on the singular set of f

We say that Γ+(f) is convenient if Γ+(f) intersects with each coordinate axis. In this
subsection, we show that the zero of a mixed Newton non-degenerate polynomial f has
isolated singularity whenever f is convenient. We also show several conclusions for non-
convenient cases from the related discussion of its proof.

For I ⊂ {1, . . . , n}, we set

CI = {(x1, . . . , xn) ∈ Cn : xi = 0, i 6∈ I}

and identify CI × CIc with Cn, Ic = {1, . . . , n} \ I, without notice.

Notation 2.3 (Ap). For p = (p1, . . . , pn) ∈ Zn
≥, Ap denotes the set of real-analytic arcs

(2.4) x(t) = (x1(t), . . . , xn(t)), xi(t) =

{
αit

pi + h.o.t., αi 6= 0, i ∈ I(p),

0, i 6∈ I(p),

where I(p) = {i ∈ {1, . . . , n} : pi > 0}.

Proposition 2.5. If there is a real analytic arc x(t) ∈ Ap in Σ(f) (resp.Σ(f)∩ f−1(0)),
then the set

Σ̃p(f) = {x ∈ (C∗)I(p) : rank J̃pf(x) < 2}

(resp. Σ̃p(f) ∩ f−1
γ(p)(0)) is not empty, where, setting I = I(p),

J̃pf =

(
xi∂xi

(f |CI )γ(p) xi∂xi
(f |CI )γ(p) ((∂xj

f)|CI )γ(p) ((∂xj
f)|CI )γ(p)

xi∂xi
(f |CI )γ(p) xi∂xi

(f |CI )γ(p) ((∂xj
f)|CI )γ(p) ((∂xj

f)|CI )γ(p)

)
i∈I; j ̸∈I

.

Corollary 2.6. If a mixed polynomial f is non-degenerate, then

Σ(f) ∩ f−1(0) ⊂
⋃

I∈I0(f)

CI near 0

where I0(f) denotes the set of subsets I of {1, . . . , n} so that f |CI is identically zero, that
is,

I0(f) = {I ⊂ {1, . . . , n} : RI ∩ Γ+(f) = ∅}.

In particular, if f is convenient, then the origin 0 is an isolated point of Σ(f) ∩ f−1(0).
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Proof of Proposition 2.5. Choose a real-analytic arc x(t) ∈ Ap, so that x(t) ∈ Σ(f). By
definition, we have

rank

(
∂x1f ∂x1f · · · ∂xnf ∂xnf

∂x1f ∂x1f · · · ∂xnf ∂xnf

)
(x(t)) < 2,

and we obtain 2 × 2 minors of J̃pf are zero along αtp = (αit
pi)i∈I ∈ CI , I = I(p), and a

point of Σ̃p(f) is attained by α = (αi)i∈I .

If we assume moreover f(x(t)) = 0, then (f |CI )γ(p)(αtp)i∈I = 0 and a point of Σ̃p(f)∩
(f |CI )−1

γ(p)(0) is attained by α = (αi)i∈I .

Proof of Corollary 2.6. Remark that Σ̃p(f) ⊂ Σ((f |(C∗)I(p))γ(p)). For p with I(p) 6∈ I0(f),

f |CI(p) is not identically zero and non-degeneracy implies that Σ((f |(C∗)I(p))γ(p))∩ f−1
γ(p)(0)

is empty.

2.3 Strict transform of f via a mixed toric modification

Let us consider a mixed fan (Σ, β), so that Σ is a subdivision of the dual Newton diagram
Γ∗(f).

For σ ∈ Σ(n), we have

f ◦πΣ,β|Vσ(vτ )τ∈σ(1) =
∑
ν,ν

cν,ν
∏

τ∈σ(1)

|vτ |⟨a
τ ,ν+ν⟩e

(
∑

τ∈σ(1)
⟨bτ ,ν−ν⟩ arg vτ )i.

If we set

(2.7) f ◦πΣ,β(vτ )τ∈σ(1) = f̂
∏

τ∈σ(1)

|vτ |ℓτ (vτ/|vτ |)mτ ,

where ℓτ = ℓ(aτ ), mτ = min{〈ν, bτ 〉 : ν ∈ LEγ(aτ )(f)}, we have

(2.8) f̂ =
∑
ν,ν

cν,ν
∏

τ∈σ(1)

|vτ |⟨a
τ ,ν+ν⟩−ℓτ e(

∑
τ∈σ(1)(⟨bτ ,ν−ν⟩−mτ ) arg vτ )i

and we thus have

(2.9) f̂ |Eσ′ =
∑

ν+ν∈γ

cν,ν
∏

τ∈σ(1)\σ′(1)

|vτ |⟨a
τ ,ν+ν⟩−ℓτ e((⟨b

τ ,ν−ν⟩−mτ ) arg vτ )i = f ′
γ

where γ =
⋂

τ∈σ′(1) γ(a
τ ). Remark that f̂ is semi-algebraic. Setting eτ = e(arg vτ )i, we have

f̂γ =
∑

ν+ν∈γ

cν,ν
∏

τ∈σ′(1)

e⟨b
τ ,ν−ν⟩−mτ

τ

∏
τ ′∈σ(1)\σ′(1)

|vτ ′ |⟨a
τ ′ ,ν+ν⟩−ℓτ ′e

⟨bτ ′ ,ν−ν⟩−mτ ′
τ ′ ,(2.10)

f̂γ =
∑

ν+ν∈γ

cν,ν
∏

τ∈σ′(1)

e⟨b
τ ,ν−ν⟩+mτ

τ

∏
τ ′∈σ(1)\σ′(1)

|vτ ′ |⟨a
τ ′ ,ν+ν⟩−ℓτ ′e

⟨bτ ′ ,ν−ν⟩+mτ ′
τ ′ .

Remark that
f̂ = f̂γ +O(|vτ | : τ ∈ σ′(1)).
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and the equation f̂ = 0 defines the strict transform Ẑ of f by π̂Σ,β. The function f̂γ
depends on |vτ |, arg vτ , τ ∈ σ(1) \ σ′(1), and the arguments arg vτ , τ ∈ σ′(1), in general.

Eliminating arg vτ , τ ∈ σ′(1), from the system f̂γ = f̂γ = 0, we obtain the equations
defining the intersection of Eσ′ with the strict transform in terms of coordinate system
(vτ )τ ̸∈σ(′1) of Eσ′ . When we assume Condition (b) in Definition 0.7, the equation f̂γ = 0

depends on |vτ |, arg vτ , τ ∈ σ(1) \ σ′(1), and f̂ and f̂ have continuous extensions on Vσ.
We denote these extensions by f ′ and f ′ respectively.

2.4 Mixed weighted homogeneous polynomials

We consider a mixed weighted homogeneous polynomial defined in Definition 0.2. When
the mixed weighted homogeneous polynomial f does not have a constant term, we always
have ℓ > 0. Moreover, we can always assume that m ≥ 0, changing the sign of b, if
necessary.

For a mixed weighted homogeneous polynomial f , we have the following:

(2.11)

(
x1∂x1f x1∂x1f · · · xn∂xnf xn∂xnf

x1∂x1f x1∂x1f · · · xn∂xnf xn∂xnf

)
a1 b1
a1 −b1
...

...
an bn
an −bn

 =

(
ℓf mf

ℓf −mf

)
.

Taking the determinants of the both hand side of (2.11), Cauchy-Binet formula implies
Σ(f) ⊂ f−1(0) whenever m 6= 0. When m = 0, Σ(f) ⊂ f−1(0) does not hold in general,
as the following example shows.

Example 2.12. Set f = |x1|2+x2
2. This is mixed weighted homogeneous with respect to

the weights ((1, 1), (1, 0)) and degree (2, 0), and Σ(f) = {x2 = 0} 6⊂ f−1(0).

Condition (b) in Definition 0.7 implies that fγ is mixed weighted homogeneous with
respect to the weights (aτ , bτ ), τ ∈ σ(1), when γ =

⋂
τ∈σ(1) γ(a

τ ) is a compact face of

Γ+(f), σ ∈ Σ.

Example 2.13. A mixed monomial f = xνxν , ν 6= ν, is mixed weighted homogeneous
with respect to any weights (a, b). We obtain Σ(f) ⊂ f−1(0), since there is a weight b so
that m = 〈ν − ν, b〉 6= 0.

3 Semi-algebraic analogue of resolution of singularities

3.1 Normal crossing property

We introduce semi-algebraic analogue of normal crossing varieties as mixed version of
normal crossing varieties.

Definition 3.1. We say a subset Z of Cn is of semi-algebraically normal crossing at
z ∈ Z if there is a semi-algebraic coordinate system (U,φ), U an open neighborhood of z,
and a semi-algebraic homeomorphism φ : U −→ φ(U) ⊂ Cn centred at z, so that Z ∩ U
is the inverse image of zero of a pure monomial by φ.

Theorem 3.2. Let f be a mixed polynomial, which is mixed Newton non-degenerate in
the sense of Definition 0.7, and let (Σ, β) denote a mixed fan constructed in §2.1. Then,
for the mixed toric modification πΣ,β : MΣ,β −→ Cn, the subset (f ◦πΣ,β)

−1(0) in Vσ is of
semi-algebraically normal crossing near π−1(0).
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To conclude an analogy of Milnor fibration for mixed polynomial, we need to assume
that Σ(f) ⊂ f−1(0). The next theorem shows when this is the case.

Theorem 3.3. For a mixed polynomial f , which is mixed Newton non-degenerate in the
sense of Definition 0.7, we take (Σ, β) as in Theorem 3.2. Then Σ(f) ⊂ f−1(0) near the
origin 0, whenever one of the following conditions is satisfied.
(i) mτ 6= 0 for all τ ∈ Σ(1).
(ii) If there is σ ∈ Σ with mτ = 0 for τ ∈ σ(1), then Σ(fγ) ⊂ {x1 · · · xnfγ = 0} where
γ =

⋂
τ∈σ(1) γ(a

τ ).

Remark 3.4. Under the assumptions of Theorem 3.3, we often say that the mixed toric
modification π = πΣ,β provides a semi-algebraic analogue of resolution of singularity of f ,
since the zero of f ◦π is of semi-algebraically normal crossing and Σ(f ◦π) ⊂ (f ◦π)−1(0).

Remark 3.5. We use the notation in §2.3. As we see in the proof below, non-degeneracy
implies the strict transform of f by π̂ intersects with the set defined by |vτ | = 0, τ ∈ σ′(1),
transversely, when |vτ ′ | 6= 0, τ ′ ∈ σ(1) \ σ′(1). This fact is proved by Oka [12, Theorem
24] when π is a certain toric modification.

Oka ([14, Theorem 9.19]) also proved that π provides “a resolution of singularity” when
aτ = bτ for τ ∈ Σ(1) with the condition (i) in Theorem 3.3. Dropping this condition,
Saito and Takashimizu ([16, §8]) discuss another case that a toric modification provides
an analogy of resolution.

Proof of Theorem 3.2. We take a mixed fan (Σ, β) constructed in §2.1. Condition (a) of
Definition 0.7 implies that

(3.6) x1 · · · xn 6= 0, fγ(x) = 0 =⇒ rank

(
∂xi

fγ(x) ∂xi
fγ(x)

∂xi
fγ(x) ∂xi

fγ(x)

)
i=1,...,n

= 2.

This is clearly equivalent to the following condition:

(3.7) x1 · · · xn 6= 0, fγ(x) = 0 =⇒ rank

(
xi∂xi

fγ(x) xi∂xi
fγ(x)

xi∂xi
fγ(x) xi∂xi

fγ(x)

)
i=1,...,n

= 2.

Since |xi|∂|xi| = xi∂xi
+ xi∂xi

, ∂arg xi
= i(xi∂xi

− xi∂xi
), we have(

|xi|∂|xi|f ∂arg xi
f

|xi|∂|xi|f ∂arg xi
f

)
=

(
xi∂xi

f xi∂xi
f

xi∂xi
f xi∂xi

f

)(
1 i
1 −i

)
and condition (3.7) is equivalent to the following condition:

(3.8) x1 · · · xn 6= 0, fγ(x) = 0 =⇒ rank

(
|xi|∂|xi|fγ(x) ∂arg xi

fγ(x)

|xi|∂|xi|fγ(x) ∂arg xi
fγ(x)

)
= 2.

We take σ ∈ Σ(n) and discuss the behavior of the pull back f ◦πσ where πσ = πΣ,β|Vσ near
π−1
σ (0). By (1.29), we have

log |xi| =
∑

τ∈σ(1)

aτi log |vτ |, arg xi ≡
∑

τ∈σ(1)

bτi arg vτ (mod 2π),(3.9)

|vτ |∂|vτ | =
n∑

i=1

aτi |xi|∂|xi|, ∂arg vτ =
n∑

i=1

bτi ∂arg xi
,(3.10)
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By (3.10), we have(
|vτ |∂|vτ |f
|vτ |∂|vτ |f

)
τ∈σ(1)

=

(
|x1|∂|x1|f · · · |xn|∂|xn|f

|x1|∂|x1|f · · · |xn|∂|xn|f

)(
aτ
)
τ∈σ(1) and(

∂arg vτf

∂arg vτf

)
τ∈σ(1)

=

(
∂arg x1f · · · ∂arg xnf

∂arg x1f · · · ∂arg xnf

)(
bτ
)
τ∈σ(1) .

We thus obtain

(3.11)
∏

τ∈σ(1)

vτ 6= 0, fγ◦πσ(vτ ) = 0 =⇒ rank

(
|vτ |∂|vτ |fγ◦πσ ∂arg vτfγ◦πσ

|vτ |∂|vτ |fγ◦πσ ∂arg vτfγ◦πσ

)
τ∈σ(1)

(v) = 2.

Since fγ = f ′
γ

∏
τ∈σ(1) |vτ |ℓτ e(mτ arg vτ )i, ℓτ = ℓ(aτ ), mτ = m(bτ ), we have

|vτ |∂|vτ |fγ =(|vτ |∂|vτ |f ′
γ + ℓτf

′
γ)

∏
τ∈σ(1)

|vτ |ℓτ e(mτ arg vτ )i,(3.12)

|vτ |∂|vτ |fγ =(|vτ |∂|vτ |f ′
γ + ℓτf ′

γ)
∏

τ∈σ(1)

|vτ |ℓτ e(−mτ arg vτ )i,

∂arg vτfγ =(∂arg vτf
′
γ +mτf

′
γi)

∏
τ∈σ(1)

|vτ |ℓτ e(mτ arg vτ )i,(3.13)

∂arg vτfγ =(∂arg vτf
′
γ −mτf ′

γi)
∏

τ∈σ(1)

|vτ |ℓτ e(−mτ arg vτ )i.

The function f ′
γ does not depend on |vτ |. Condition (b) of Definition 0.7 and (2.10) imply

that f ′
γ does not depend on arg vτ , τ ∈ σ(1). We thus obtain that

∏
τ ̸∈σ′(1)

vτ 6= 0, f ′
γ(v) = 0 =⇒ rank

(
|vτ |∂|vτ |f ′

γ ∂arg vτf
′
γ

|vτ |∂|vτ |f ′
γ ∂arg vτf

′
γ

)
τ ̸∈σ′(1)

(v) = 2

where σ′ is a face of σ. Thus we have the following condition:
(3.14)∏

τ∈σ(1)

vτ 6= 0, fγ◦πσ(v) = 0 =⇒ rank

(
|vτ |∂|vτ |f ′

γ◦πσ ∂arg vτf
′
γ◦πσ

|vτ |∂|vτ |f ′
γ◦πσ ∂arg vτf

′
γ◦πσ

)
τ∈σ(1)\σ′(1)

(v) = 2.

We can rewrite this condition as follows:

(3.15)
∏

τ∈σ(1)

vτ 6= 0, fγ◦πσ(v) = 0 =⇒ rank

(
vτ∂vτf

′
γ vτ∂vτf

′
γ

vτ∂vτf
′
γ vτ∂vτf

′
γ

)
τ∈σ(1)\σ′(1)

(v) = 2,

since |vτ |∂|vτ | = vτ∂vτ + vτ∂vτ , ∂arg vτ = i(vτ∂vτ − vτ∂vτ ). This implies that the set defined
by f ′ = 0 intersects Eσ′ \

⋃
τ⊊σ′ Eτ transversely.

Remark 3.16. From the proof above, we see that f ′ can be a part of coordinate system
at a point of zero of f ′ in π−1(0).

Proof of Theorem 3.3. We continue the notation of the proof of Theorem 3.2. Assume
that there is a real-analytic arc x(t) ∈ Ap with x(t) ∈ Σ(f). We are going to show that
x(t) ∈ f−1(0) for 0 < t � 1.
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We take a lift x̃(t) of x(t) by π. Clearly we have x̃(t) ∈ Σ(f ◦π). If x̃(t) ∈ Eτ with
ℓτ 6= 0, Lemma 2.2 implies x(t) ∈ f−1(0).

We assume that x̃(t) 6∈ Eτ with ℓτ 6= 0. We can also assume that x̃(t) ∈ Vσ for some
σ ∈ Σ(n). We also assume that x̃(0) ∈ Eτ . Then, by changing the vτ coordinate of x̃(0)
by 1, we obtain a point in (C∗)n so that the Jacobi matrix of fγ is not of full rank. If
mτ 6= 0, then we deduce fγ(x̃(0)) = 0 (see the sentence after (2.11)). By Remark 3.16,
one can take a local coordinate system at x̃(0) so that f ◦π is expressed as Example 2.13,
and we conclude that x̃(t) ∈ (f ◦π)−1(0).

If mτ = 0, then we deduce fγ(x̃(0)) = 0 by Condition (ii). Again, by Remark 3.16,
one can take a local coordinate system at x̃(0) so that f ◦π is expressed as Example 2.13,
and we conclude that x̃(t) ∈ (f ◦π)−1(0).

3.2 Monodromy zeta function

The zeta function of a transformation h : Y −→ Y of a topological space Y is the rational
function

ζh(t) =
∏
i≥0

∆i(h)
(−1)i , ∆i(h) = det{1− th∗ : Hi(Y ) −→ Hi(Y )},

where Hi(Y ) is the i-th homology group of chain complex with closed support whose
coefficient is C.

Let f : (Cn,0) −→ (C, 0) be a holomorphic function germ. We have a locally trivial
fibration

(3.17) f−1(S1
r ) ∩ B2n

ε −→ S1
r , x 7−→ f(x), S1

r = {z ∈ C : |z| = r},

for 0 < r � ε � 1, since Σ(f) ⊂ f−1(0) near 0. We consider the zeta function ζh(t) of a
monodromy transformation

h : F (r, 0) −→ F (r, 2π) = F (r, 0)

where F (r, θ) = f−1(reθi) ∩ B2n
ε . This monodromy transformation h is obtained by inte-

grating a vector field ξ which is a lift of ∂arg z by (3.17). Remark that the zeta function
ζh(t) is determined by f . In fact, if two lifts ξ0 and ξ1 of the vector field ∂arg z generate two
monodromy transformations h0 and h1, then they are connected by a homotopy, which is
generated by ξt = (1− t)ξ0 + tξ1 (0 ≤ t ≤ 1).

Let π : M −→ Cn be a proper modification such that at any point of π−1(0) the
divisor X0 = π−1(f−1(0)) is of normal crossing. For m ∈ Z, m ≥ 1, we put

Sm =
{
s ∈ π−1(0) :

the equation of X0 at s is of the form zm1 for a
local coordinate system (z1, . . . , zn) of M at s

}
.

Theorem 3.18 ([1, THÉORÈME 3]). The monodromy zeta function ζ(t) and the Euler
characteristics of Milnor fiber F = f−1(r) ∩ B2n

ε , 0 < r � ε � 1, are given by

ζ(t) =
∏
m≥1

(1− tm)χ(Sm), χ(F ) =
∑
m≥1

mχ(Sm).
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Remark 3.19. The signs in the exponents in our formula are opposite to those in the
formula of A’Campo, since he defined the monodromy zeta function with the opposite
sign in the exponents in the first paragraph of [1].

Remark 3.20. We quickly recall A’Campo’s construction of geometric monodromy ([1,
§2]). Let X = (f ◦π)−1(Dr) ∩B2n

ε for 0 < r � ε � 1, where Dr = {w ∈ C : |w| < r}. Let
C1, . . . , Cs be nonsingular components of X0 = (f ◦π)−1(0). Let ∆x be a simplex spanned

by the pre-image of x ∈ X0 by the natural map:
⊔s

i=1 Ci −→ X0. Define X̂0 by

X̂0 =
( s⊔
i=1

Ci

)
∪
( ⊔
x∈X0

∆x

)
.

Let ρ : X̂ −→ X denote the fiber product of ρj : X̂j −→ X, the real oriented blow-up

of X with center Cj for j = 1, . . . , s. Remark that X̂ is a manifold with corner and

∂X̂ = ρ−1(X0). Let Y denote the fiber product of the natural map X̂0 −→ X0 and

ρ : ∂X̂ −→ X0. We remark that the inverse image of x ∈ X0 is (S1)k+1 where k is
the dimension of ∆x. Let mi denote the multiplicity of f along Ci. Then the geometric
monodromy h : Y −→ Y is described as follows:

h(a, θi0 , . . . , θik) = (a, θi0 +
2πai0
mi0

, . . . , θik +
2πaik
mik

), a ∈ ∆x, (θi0 , . . . , θik) ∈ ρ−1(x).

where ai0 , . . . , aik denote the barycentric coordinate of a ∈ ∆x. Remark that, when k = 0,
we have h(x, θi0) = (x, θi0 +

2π
mi0

).

Now we consider a map f : Cn −→ C defined by a mixed polynomial with Σ(f) ⊂
f−1(0). Then we have an analogue of a locally trivial fibration (3.17) and we can consider
a monodromy transformation as holomorphic case. We obtain the following result, which
is analogous to Theorem 3.18 for a mixed polynomial.

Theorem 3.21. Let π : M −→ Cn be a proper modification which provides semi-algebraic
analogue of resolution of singularities of a mixed polynomial f . For m ∈ Z, m ≥ 1, we
set

Sm =

{
s ∈ π−1(0) :

the equation of X0 at s is of the form uz1
αz1

β for a
local coordinate system (z1, . . . , zn) of M at s with
m = |α− β| where u is an invertible function near s.

}
.

If S0 is empty, then the monodromy zeta function ζ(t) is given by

ζ(t) =
∏
m≥1

(1− tm)χ(Sm).(3.22)

In particular, we have the following formula for Euler characteristics for local nearby fiber:

χ(F (r, θ)) = lim
r→0

χ(F (r, θ)) =
∑
m≥1

mχ(Sm)(3.23)

where F (r, θ) = f−1(reθi) ∩ B2n
ε for 0 < r � ε � 1.
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3.3 Intersection numbers among components of the exceptional set

Let (Σ, β) be a mixed fan. Using the orientation introduced by Remark 1.20, we can
discuss intersection numbers of submanifolds of MΣ,β. Let Eτ be the mixed divisor corre-
sponding to τ ∈ Σ(1).

Remark that (3.10) defines co-orientation of Eτ , for τ ∈ Σ(1). A mixed polynomial
f : Cn → C also defines a co-orientation of its zero set induced by the orientation of C, and
it thus induces a co-orientation of its strict transform also. Using these co-orientations, we
can compute their intersection numbers. Set Eτ2,...,τn = Eτ2∩· · ·∩Eτn for τ2, . . . , τn ∈ Σ(1).
The intersection number of Eτ1 and Eτ2,...,τn is

Eτ1 · Eτ2,...τn =

{
εσ, τ1, . . . , τn generate an n-cone σ ∈ Σ(n),

0, otherwise,

whenever τ1, . . . , τn are all distinct. Here εσ is defined in Remark 1.20.
Let 〈τ1, . . . , τk〉R≥ denote the cone generated by τi ∈ Σ(1), i = 1, . . . , k.
If f is mixed Newton non-degenerate, then we can define the strict transform of f by

certain mixed toric modification πΣ,β. Let Z denote the zero locus of the strict transform
of f by πΣ,β.

Proposition 3.24. Assume that τi ∈ Σ(1), i = 2, . . . , n, and 〈τ2, . . . , τn〉R≥ ∈ Σ(n − 1).
Set γ = γ(aτ2) ∩ · · · ∩ γ(an). Then the intersection number of Z and Eτ2,...,τn is given by

Nσ(fγ) = εσ
∑

vτ∈C∗:gγ(vτ )=0

sign
( i
2|vτ |

∣∣∣∣∂|vτ |gγ ∂arg vτ gγ
∂|vτ |gγ ∂arg vτ gγ

∣∣∣∣ (vτ ))
where gγ = fγ(v

aτ1
τ , . . . , v

aτn
τ ) and τ ∈ Σ(1) so that σ = 〈τ, τ2, . . . , τn〉R≥ ∈ Σ(n).

Proof. In Vσ, Z is defined as zero of f ′, which is defined by

f ◦π|Vσ = f ′(v)
∏

τ ′∈σ(1)

|vτ ′ |ℓτ ′ .

Then we obtain

f ′|Eτ2,...,τn
(vτ ) =

∑
ν+ν̄∈γ

cν,ν̄ |vτ |⟨a
τ ,ν+ν̄⟩−ℓτ e(⟨b

τ ,ν−ν̄⟩ arg vτ )i = |vτ |−ℓτ gγ(vτ ).

The intersection number of Z and Eτ2,...,τn is the number of its roots counting with the
signs of the value of function εσJ there, where J is defined by

df ′ ∧ df̄ ′ ∧ dvτ2 ∧ dv̄τ2 ∧ · · · ∧ dvτn ∧ dv̄τn = J dvτ ∧ dv̄τ ∧ dvτ2 ∧ dv̄τ2 ∧ · · · ∧ dvτn ∧ dv̄τn .

Since

J =
df ′ ∧ df̄ ′ ∧ dvτ2 ∧ dv̄τ2 ∧ · · · ∧ dvτn ∧ dv̄τn
dvτ ∧ dv̄τ ∧ dvτ2 ∧ dv̄τ2 ∧ · · · ∧ dvτn ∧ dv̄τn

=
i
2

df ′ ∧ df̄ ′ ∧ dvτ2 ∧ dv̄τ2 ∧ · · · ∧ dvτn ∧ dv̄τn
|vτ |d|vτ | ∧ d arg vτ ∧ dvτ2 ∧ dv̄τ2 ∧ · · · ∧ dvτn ∧ dv̄τn

=
i

2|vτ |
∂(f ′, f̄ ′)

∂(|vτ |, arg vτ )
,

we obtain the result.
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For the next Propositions 3.26 and 3.28, we assume that

(3.25) the fan Σ is a part of the dual fan of the convex hull ∆ of a finite set.

This assumption is technical and seems unnecessary, but it is sufficient for the purpose of
our calculations, so we assume it for simplicity.

Proposition 3.26. We take 〈τ2, . . . , τn〉R≥ ∈ Σ(n− 1), τi ∈ Σ(1), i = 2, . . . , n. Take τ1,
τ ′1 ∈ Σ(1) so that σ = 〈τ1, τ2, . . . , τn〉R≥ ∈ Σ(n) and σ′ = 〈τ ′1, τ2, . . . , τn〉R≥ ∈ Σ(n). Then
we have

εσ′bτ
′
1 + εσb

τ1 +
n∑

i=2

(Eτi · Eτ2,...,τn) b
τi = 0.

Proof. Since (π|Vσ)
∗xi =

∏
τ∈σ(1) |vτ |a

τ
i −bτi vτ

bτi , we have, for p ∈ Zn,

(π|Vσ)
∗xp =

∏
τ ∈ σ(1)

⟨p, bτ ⟩ ≥ 0

|vτ |⟨p,a
τ−bτ ⟩vτ

⟨p,bτ ⟩ ·
∏

τ ∈ σ(1)
⟨p, bτ ⟩ < 0

|vτ |⟨p,a
τ+bτ ⟩vτ

−⟨p,bτ ⟩.

Because of (3.25), we have µΣ,β(Eτ ) is (n − 1)-dimensional face of ∆ for τ ∈ Σ(1) (See
Remark 1.31). Let Lτ : Rn −→ R be a linear function so that µΣ,β(Eτ ) = L−1

τ (0) ∩ ∆.
Then

ϕ : MΣ,β −→ R, ϕ(v) =
∏

τ ∈ Σ(1)
⟨p, bτ ⟩ ≥ 0

Lτ (µΣ,β(v))
⟨p, bτ−aτ ⟩ ·

∏
τ ∈ Σ(1)

⟨p, bτ ⟩ < 0

Lτ (µΣ,β(v))
−⟨p, bτ+aτ ⟩,

is a rational function on MΣ,β. We remark that ϕ|Vσ ·
∏

τ∈σ(1) |vτ |⟨p,a
τ−bτ ⟩ can extend to a

non-vanishing function on Vσ. We thus obtain that

ϕ · π∗xp|Vσ = (a non-vanishing function) ·
∏

τ ∈ σ(1)
⟨p, bτ ⟩ ≥ 0

v⟨p, b
τ ⟩

τ ·
∏

τ ∈ σ(1)
⟨p, bτ ⟩ < 0

vτ
−⟨p, bτ ⟩.

Thus, ϕ · π∗xp is a globally defined complex-valued function on MΣ,β. We denote the
divisor defined by ϕ · π∗xp by Dϕ. Note that the factor vτ induces an orientation of Eτ

that is opposite to the one induced by vτ . Then we have

0 =Dϕ · Eτ2,...,τn

=
∑

τ∈Σ(1)

〈p, bτ 〉(Eτ · Eτ2,...,τn)

=〈p, bτ1〉εσ + 〈p, bτ ′1〉εσ′ +
n∑

i=2

〈p, bτi〉(Eτi · Eτ2,...,τn)

=
〈
p, εσ′bτ

′
1 + εσb

τ1 +
n∑

i=2

(Eτi · Eτ2,...,τn) b
τi
〉
.

Since p is arbitrary, we conclude the result.

It is worth to state the case n = 2 separately.
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Proposition 3.27. Assume that n = 2, and (Σ, β) is a mixed fan. Suppose that Σ(1) =
{τ0, τ1, . . . , τk+1} and β(τi) = (ai, bi), i = 0, 1, . . . , k + 1. We assume that a0 = e1,
ak+1 = e2, and det(ai,ai+1) > 0, i = 0, . . . , k. We set εj = det(bj−1 bj). Then we
have

Ei · Ej =


0 (j − i ≥ 2)

εj (j = i+ 1)

qj (i = j)

where qj is defined by 0 = bjiqj + bj−1
i εj + bj+1

i εj+1, i = 1, 2, j = 1, . . . , k.

Proposition 3.28. Assume that f is mixed Newton non-degenerate. Let Z be the zero of
the strict transform f ′ of f by π defined in §2.3. We take σ ∈ Σ(n), 〈τ3, . . . , τn〉R≥ ∈ σ(n−
2), τi ∈ σ(1), i = 3, . . . , n. Set Zτ3,...,τn = Z∩Eτ3∩· · ·∩Eτn. Then δ = γ(aτ3)∩· · ·∩γ(aτn)
is a polygon, or a segment or a point, and we obtain∑

τ∈Σ(1):⟨τ,τ3,...,τn⟩R≥∈Σ(n−1)

Nσ(fδ(aτ )) b
τ +

n∑
i=3

(Eτi · Zτ3,...,τn) b
τi = 0

where δ(aτ ) is defined by δ(aτ ) = δ ∩ γ(aτ ).

Proof. The proof is similar to that of Proposition 3.26. The difference lies in considering
the intersection numbers with Zτ3,...,τn instead of Eτ2,...,τn . Remark that the locus Zτ3,...,τn

in Vσ is defined by
f ′|Vσ = vτ3 = · · · = vτn = 0.

When τ 6= τ3, . . . , τn, the intersection Eτ ∩ Zτ3,...,τn in Vσ is defined by

vτ = f ′|Vσ = vτ3 = · · · = vτn = 0.

Defining Dϕ as in the proof of Proposition 3.26, a similar argument shows that

0 =Dϕ · Zτ3,...,τn

=
∑

τ∈Σ(1)

〈p, bτ 〉(Eτ · Zτ3,...,τn)

=
〈
p,

∑
τ∈Σ(1)

(Eτ · Zτ3,...,τn) b
τ
〉

=
〈
p,

∑
τ∈Σ(1):⟨τ,τ3,...,τn⟩∈Σ(n−1)

Nσ(fδ(aτ )) b
τ +

n∑
i=3

(Eτi · Zτ3,...,τn) b
τi
〉
.

Since p is arbitrary, we conclude the result.

Remark 3.29 (Dual graph of exceptional sets). We can consider a dual weighted graph
associated to a finite collection of connected oriented surfaces Ei in an oriented compact
4-manifold with boundary, which form a variety with sub-algebraically normal crossing
singularities. The intersection relations give rise a dual weighted graph where each vertex
corresponds to a surface Ei. The vertex corresponding to Ei is labelled by self-intersection
number of Ei. We connect two vertices by a solid edge (resp. dashed edge) if the corre-
sponding surfaces intersect with intersection number 1 (resp.−1). In general, we connect
two vertices by edge if the corresponding surfaces Ei and Ej intersect, labeling the inter-
section number Ei · Ej.
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q1 q2 . . . qk
ε1 ε2 εk−1

Since the dual graph is a tree, we can choose orientations of Ej so that the numbers εj are
1. It is also useful to add the information of the strict transform to the dual graph. We
associate a vertex • to each component C of the strict transform and connect the vertex
corresponding to Ei when C and Ei intersect. In this case, ai supports a 1-dimensional
face of Γ+(f), since the intersection corresponds to the solution of fγ = 0.

Example 3.30. Set f = x5
2+x2

1x1x
3
2+x5

1x1
2x2+x8

1x1
3. We show the boundary of Γ+(f)

(solid lines) and LEγ(f)’s (dotted lines) in the left figure below.

We consider the mixed fan from the data

(a0 a1 a2 a3 a4) =

(
1 2 1 1 0
0 3 2 4 1

)
, (b0 b1 b2 b3 b4) =

(
1 2 1 1 0
0 1 1 2 1

)
,

which are shown in the middle and right figures above. The corresponding ℓ = (ℓτ )τ∈Σ(1)

and m = (mτ )τ∈Σ(1) are given by ℓ = (0 15 9 11 0), m = (0 5 4 5 0) and (ε1, ε2, ε3, ε4) =
(1, 1, 1, 1). Since the map π̃Σ,β : UΣ −→ C2 is expressed by

|x1| =r0r
2
1r2r3,

x1

|x1| =e0e
2
1e2e3,

|x2| =r31r
2
2r

4
3r4,

x2

|x2| =e1e2e
2
3e4,

where ri = |ui| and ei = ui/|ui|, i = 0, 1, . . . , 4, we obtain

π∗f = r151 r92r
11
3 e51e

4
2e

5
3(r2r

9
3r

5
4e2e

5
3e

4
4 + r30r

4
3r

3
4e0e

2
3e

3
4 + r70r

2
1r4e

3
0e

2
1e4 + r110 r71r

2
2e

5
0e

5
1e2).

Since the strict transforms f ′ on Vσ, σ ∈ Σ(2), are given by the following table:

fγ f ′
γ|Vσ

x3
2(x

2
2 + x2

1x1) 1 + r30e0 on Vσ0,1 r2e2 + 1 on Vσ1,2

x2
1x1x2(x

2
2 + x3

1x1) 1 + r21e
2
1 on Vσ1,2 r43e

2
3 + 1 on Vσ2,3

x5
1x1

2(x2 + x3
1x1) 1 + r22e2 on Vσ2,3 r4e4 + 1 on Vσ3,4

where σi,j = 〈ai,aj〉R≥ , we have #(Z ∩ E1) = 1, #(Z ∩ E2) = 2, #(Z ∩ E3) = 1. Here
Ei, i = 1, . . . , 3, denote the exceptional divisor corresponding to ai.

Thus we obtain the dual graph

−1 −3 −1
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since b1 = b0+b2, 3b2 = b1+b3 and b3 = b2+b4. Remark that the intersection numbers
of a component Ci of the strict transform and a component Ej of the exceptional set
depend on the given orientation of the components of the strict transform. For simplicity,
we assume that Ei · Cj ≥ 0. Since χ(S4) = −2 and χ(S5) = 0, we obtain

ζ(t) = (1− t4)−2.

Example 3.31. Set f = x4
2x2 + x2

1x1x
3
2 + x5

1x1
2x2 + x7

1x1
4. We show the boundary of

Γ+(f) (solid lines) and LEγ(f)’s (dotted lines) in the left figure below.

We consider the mixed fan from the data

(a0 a1 a2 a3 a4) =

(
1 2 1 1 0
0 3 2 4 1

)
, (b0 b1 b2 b3 b4) =

(
1 0 −1 1 0
0 1 −1 0 1

)
,

which are shown in the middle and the right figures above. The corresponding ℓ =
(ℓτ )τ∈Σ(1) and m = (mτ )τ∈Σ(1) are given by ℓ = (0 15 9 11 0) and m = (0 3 − 4 3 0).
Since the map π̃Σ,β : UΣ −→ C2 is expressed by

|x1| =r0r
2
1r2r3,

x1

|x1| =e0e
−1
2 e3,

|x2| =r31r
2
2r

4
3r4,

x2

|x2| =e1e
−1
2 e4,

where ri = |ui| and ei = ui/|ui|, i = 0, 1, . . . , 4, we obtain

π∗f = r151 r92r
11
3 e31e

−4
2 e33(r2r

9
3r

5
4e2e

−3
3 e34 + r30r

4
3r

3
4e0e

−2
3 e34 + r70r

2
1r4e

3
0e

−2
1 e4 + r110 r71r

2
2e

3
0e

−3
1 e2).

Since the strict transforms f ′ on Vσ, σ ∈ Σ(2), are given by the following table:

fγ f ′
γ|Vσ

x3
2(x2x2 + x2

1x1) 1 + r30e0 on Vσ0,1 r2e2 + 1 on Vσ1,2

x2
1x1x2(x

2
2 + x3

1x1) 1 + r21e
−2
1 on Vσ1,2 r43e

−2
3 + 1 on Vσ2,3

x5
1x1

2(x2 + x2
1x1

2) 1 + r22e2 on Vσ2,3 r4e4 + 1 on Vσ3,4

where σi,j = 〈ai,aj〉R≥ , we have #(Z ∩ E1) = 1, #(Z ∩ E2) = 2, #(Z ∩ E3) = 1. Here
Ei, i = 1, 2, 3, denote the exceptional divisor corresponding to ai.

Thus we obtain the dual graph

1 1 1

since −b1 = b0 + b2, −b2 = b1 + b3, −b3 = b2 + b4. Since χ(S4) = −2 and χ(S3) = 0, we
obtain

ζ(t) = (1− t4)−2.
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Example 3.32. Set f = x4
1x1

2 + x2
1x2 + x2

1x3 + x3
2 + x3

3. We consider a simplicial fan Σ
so that

Σ(1) ={a1,a2, . . . ,a5}, (ai)i=1,...,5 =

1 0 0 1 1
0 1 0 1 4
0 0 1 1 4

 , and

Σ(3) ={σ1,2,4, σ1,3,4, σ2,4,5, σ3,4,5,, σ2,3,5},

where σi,j,k = 〈ai,aj,ak〉R≥ . We consider the mixed fan (Σ, β) with the following data

(bi)i=1,...,5 =

1 0 0 1 −1
0 1 0 1 0
0 0 1 1 0

 .

For σ ∈ Σ(3), we see εσ = 1 if and only
if σ 6= σ2,3,5.

x1x2

x3

Γ+(f) Σ

x1
x2

x3

Since the map π̃Σ,β : UΣ −→ C3 is expressed by

|x1| =r1r4r5,
x1

|x1| =e1e4e
−1
5 ,

|x2| =r2r4r
4
5,

x2

|x2| =e2e4,

|x3| =r3r4r
4
5,

x2

|x2| =e3e4,

where ri = |ui| and ei = ui/|ui|, i = 1, . . . , 5, we obtain π̃∗f = r34r
6
5e

3
4e

−2
5 f̃ where

f̃ = r21e
2
1(r

4
1r

3
4e

−1
4 + r2e2 + r3e3) + r65e

2
5(r

3
2e

3
2 + r33e

3
3).

We thus obtain the strict transforms of fγ on Vσ and the intersection numbers Nσ(fγ) as
follows:

fγ f ′
γ|Vσ Nσ(fγ)

x3
2 + x3

3 r32e
3
2 + 1 on Vσ1,2,4 1 + r33e

3
3 on Vσ1,3,4 3

x2
1x2 + x3

2 r21e
2
1 + 1 on Vσ1,3,4 1 + r65e

2
5 on Vσ3,4,5 2

x2
1x3 + x3

3 r21e
2
1 + 1 on Vσ1,2,4 1 + r65e

2
5 on Vσ2,4,5 2

x2
1x2 + x2

1x3 r2e2 + 1 on Vσ2,4,5 1 + r3e3 on Vσ3,4,5 1
x4
1x1

2 + x2
1x2 r34e

−1
4 + 1 on Vσ3,4,5 1 + r2e2 on Vσ2,3,5 −1

x4
1x1

2 + x2
1x3 r34e

−1
4 + 1 on Vσ2,4,5 1 + r3e3 on Vσ2,3,5 −1

Let Zi, i = 4, 5, denote the intersection of the strict transform Z of f by πΣ,β and the
exceptional divisor corresponding to ai. Since

3b1 + 2b2 + 2b3 + b5 = 2b4, −b2 − b3 + b4 = −b5,

we obtain that Z4 · Z4 = −2 and Z5 · Z5 = 1 as intersection numbers in Z. We can
define the dual graph using the intersection products in Z, and, in this case, it becomes
as follows:

−2 1

Z4 Z5
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Example 3.33. Set f = x2
1x1 + x2

2 + x2
3. We consider a simplicial fan Σ so that

Σ(1) ={a1,a2, . . . ,a6}, (ai)i=1,...,6 =

1 0 0 1 2 1
0 1 0 1 3 2
0 0 1 1 3 2

 , and

Σ(3) ={σ1,2,4, σ2,4,5, σ2,5,6, σ1,3,4, σ3,4,5, σ3,5,6, σ2,3,6}

where σi,j,k = 〈ai,aj,ak〉R≥ . We consider the mixed fan (Σ, β) with the following data:

(bi)i=1,...,6 =

1 0 0 1 −2 1
0 1 0 1 −1 0
0 0 1 1 −1 0

 .

We see εσ = 1 for any σ ∈ Σ(3).

Γ+(f)

x1x2

x3
Σ

x1

x2

x3

Since the map π̃Σ,β : UΣ −→ C3 is expressed by

|x1| =r1r4r
2
5r6,

x1

|x1| =e1e4e
−2
5 e6,

|x2| =r2r4r
3
5r

2
6,

x2

|x2| =e2e4e
−1
5 ,

|x3| =r3r4r
3
5r

2
6,

x2

|x2| =e3e4e
−1
5 ,

where ri = |ui| and ei = ui/|ui|, i = 1, . . . , 6, we obtain π̃∗f = r24r
5
5r

3
6e

2
4e

−2
5 f̃ where

f̃ = r31r4e1e
−1
4 e6 + r22r6e

2
2 + r23r6e

2
3.

We thus obtain the strict transforms of fγ on Vσ and the intersection numbers Nσ(fγ) as
follows:

fγ f ′
γ|Vσ Nσ(fγ)

x2
1x1 + x3

2 r4e
−1
4 + 1 on Vσ3,4,5 e6 + r6 on Vσ3,5,6 −1

x2
1x1 + x2

3 r4e
−1
4 + 1 on Vσ2,4,5 e6 + r6 on Vσ2,5,6 −1

x2
2 + x2

3 r22e
2
2 + 1 on Vσ2,4,5 1 + r23e

2
3 on Vσ3,4,5 2

x2
2 + x2

3 r22e
2
2 + 1 on Vσ1,2,4 1 + r23e

2
3 on Vσ1,3,4 2

Let Zi, i = 4, 5, 6, denote the intersection of the strict transform Z of f by πΣ,β and the
exceptional divisor corresponding to ai. We remark that Z6 = ∅ and that Z4 has two
components, say Z ′

4 and Z ′′
4 , since Nσ(fγ(a4)) = 2, fγ(a4) = x2

2 + x2
3. Since

2b1 + 0b2 + 0b3 + 2b5 = −2b4, −b2 − b3 + 2b4 + 0b6 = −b5,

we obtain that Z4 · Z4 = 2 and Z5 · Z5 = 1 as the intersection products in Z. We thus
obtain the following dual graph:

1 1 1

Z ′
4 Z5 Z ′′

4

Remark 3.34 (Links of singularities). In general, the link of an isolated singularity of
the zero set of a holomorphic function is a graph manifold, which is a manifold obtained
by plumbing of several S1-bundles on the irreducible components of the exceptional set
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in the strict transform of its resolution of singularity. The plumbing data are given by
resolution graphs.

The situation is analogous for the link of zero of a mixed polynomial f which is mixed
Newton non-degenerate. Let K(f) denote the link of f , that is,

K(f) = f−1(0) ∩ S2n−1
ε , S2n−1

ε = {x ∈ Cn : |x| = ε} for 0 < ε � 1.

Assume that f is mixed Newton non-degenerate and (Σ, β) denote a mixed fan constructed
in §2.1. We take a polygon ∆ so that Σ is a part of the dual fan of ∆. Then we have
maps

K(f) −→ π−1
Σ,β(0) ∩ Z

µΣ,β−→ µΣ,β(π
−1
Σ,β(0)) ⊂ ∆ ⊂ Rn

where the first arrow is determined by pluming, Z denotes the strict transform of f−1(0)
and µΣ,β is the moment map (see Remark 1.31).

4 Remarks on non-degenerate case

4.1 Topological trivialities induced by real-analytic isomorphisms of resolu-
tion spaces

We consider a family of mixed polynomials, which are simultaneously non-degenerate, and
show a topological triviality theorem for them which comes down from real-analytic iso-
morphisms of a resolution space if they have the same Newton polyhedron which intersects
each coordinate axis.

Theorem 4.1. Let I be an interval which contains 0. Let ft : Cn −→ C, t ∈ I, be a
real-analytic family of mixed polynomials with Γ+(ft) = Γ+(f0). Let π = πΣ,β : M −→ Cn

denote the mixed toric modification associated to a mixed fan (Σ, β) constructed in §2.1
and π̂ = π̂Σ,β : M̂ −→ Cn denote its real oriented blow-up (Remark 1.21). If ft, t ∈ I,
are mixed Newton non-degenerate (resp. non-degenerate) simultaneously, then there exists
a family of real-analytic isomorphisms

h′
t : (M,π−1(0)) −→ (M,π−1(0)) (resp. ĥt : (M̂, π−1(0)) −→ (M̂, π−1(0))),

so that

h′
t((π◦f0)

−1(0)) = (π◦ft)
−1(0) (resp. ĥt((π̂◦f0)

−1(0)) = (π̂◦ft)
−1(0))).

Moreover, if ft, t ∈ I, are convenient, h′
t (resp. ĥt) induces a family of homeomorphism-

germs ht : (Cn, 0) −→ (Cn, 0), that is, ht◦π = π◦h′
t (resp.ht◦π̂ = π̂◦ĥt), so that

(ht(f
−1
0 (0)),0) = (f−1

t (0),0), t ∈ I.

Proof. The proof is an adaption of the discussion appeared in [6] and we present here
briefly. Assume that ft, t ∈ I, are mixed Newton non-degenerate (resp. non-degenerate)
simultaneously, and set F (x, t) = ft(x). Consider the vector field

ξ̃ =det(PV ), where P =

(
J Jt

0 1

)
, V =

(
tJ tv
tJt ∂t

)
,

J =

(
|x1|∂|x1| ReF ∂arg x1 ReF · · · |xn|∂|xn| ReF ∂arg xn ReF
|x1|∂|x1| ImF ∂arg x1 ImF · · · |xn|∂|xn| ImF ∂arg xn ImF

)
, Jt =

(
∂t ReF
∂t ImF

)
,
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v =
(
|x1|∂|x1| ∂arg x1 · · · |xn|∂|xn| ∂arg xn

)
.

Remark that the elements of the last column of V are vectors fields. We have ξ̃ReF =
ξ̃ ImF = 0, since both V ReF and V ImF are not of full rank. Define

ξ =
ξ̃ + |F |2∂t

det(J tJ) + |F |2
.

The coefficient of ∂t in ξ is 1, since the coefficient of ∂t in ξ̃ is det(J tJ). Thus, on the set
defined by F = 0, ξReF = ξ ImF = 0, wherever ξ is defined.

Since J = 1
2
IJcI1, where

Jc =

(
x1∂x1F x1∂x1F · · · xn∂xnF xn∂xnF
x1∂x1F x1∂x1F · · · xn∂xnF xn∂xnF

)
, I =

(
1 1
−i i

)
, I1 =

(
tI
...

tI

)
,

we have

det(J tJ) =det( I
2
JcI1

tI1
tJc

tI
2
) = det( I

2
) det(Jc(I1

tI1)
tJc) det(

tI
2
)

=det( I
2
) det(2Jc

tJc) det(
tI
2
)

=

∣∣∣∣ ∑n
i=1 |xi∂xi

F |2
∑n

i=1(xi∂xi
F )(xi∂xi

F )∑n
i=1(xi∂xi

F )(xi∂xi
F )

∑n
i=1 |xi∂xi

F |2
∣∣∣∣ ,

since

det( I
2
) =

i
2
, det(

tI
2
) =

i
2
, I1

tI1 =

(
tII

...
tII

)
, tI I = 2

(
0 1
1 0

)
.

We first remark that v has a lift on M (resp. M̂) by (3.10). We denote it by v′ (resp. v̂).
Then we see the pull backs of coefficients of ξ by π (resp. π̂). We consider these pull backs

on Vσ (resp. V̂σ), σ ∈ Σ(n). Define J ′ and J ′
t (resp. Ĵ and Ĵt) by

J◦πσ =J ′ ∏
τ∈σ(1)

|uτ |ℓτ , Jt◦πσ =J ′
t

∏
τ∈σ(1)

|uτ |ℓτ(
resp. J◦π̂σ =Ĵ

∏
τ∈σ(1)

|uτ |ℓτ , Jt◦π̂σ =Ĵt
∏

τ∈σ(1)

|uτ |ℓτ
)
.

Remark that J ′ and J ′
t (resp. Ĵ and Ĵt) is locally well-defined functions. Setting

ξ̃′ = det(P ′V ′), where P ′ =

(
J ′ J ′

t

0 1

)
, V ′ =

(
tJ ′ tv′

tJ ′
t ∂t

)
(
rssp. ̂̃ξ = det(P̂ V̂ ), where P̂ =

(
Ĵ Ĵt
0 1

)
, V̂ =

(
tĴ tv̂
tĴt ∂t

))
,

we obtain the lift ξ′ (resp. ξ̂) of ξ by πσ (resp. π̂σ) as follows:

ξ′ =
ξ̃′

det(J ′tJ ′) + |F ′|2

(
resp. ξ̂ =

̂̃ξ
det(Ĵ tĴ) + |F̂ |2

)
,
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since

det(J tJ)◦πσ =det(J ′tJ ′)
∏

τ∈σ(1)

|uτ |2ℓτ , F ◦πσ =F ′
∏

τ∈σ(1)

|uτ |2ℓτ(
resp. det(J tJ)◦π̂σ =det(Ĵ tĴ)

∏
τ∈σ(1)

|uτ |2ℓτ , F ◦π̂σ =F̂
∏

τ∈σ(1)

|uτ |2ℓτ
)
.

Take a cone σ′ ∈ Σ so that π(Eσ′) = {0}, σ′ ⊂ σ. It is enough to show that

Q = (det(J ′ tJ ′) + |F ′|2)|Eσ′ (resp. Q̂ = det(Ĵ tĴ) + |F̂ |2)|Êσ′
)

is nowhere zero near π−1(0) (resp. π̂−1(0)), if f is mixed Newton non-degenerate (resp. non-
degenerate). Remark that only the terms in (ft)γ, γ =

⋂
τ∈σ′(1) γ(a

τ ), contribute to the

terms in J ′|Eσ′ J
′
t|Eσ′ , F

′|Eσ′ (resp. Ĵ |Êσ′
, Ĵt|Êσ′

, F̂ |Êσ′
), and so is Q (resp. Q̂). By mixed

Newton non-degeneracy (resp. non-degeneracy),

(4.2)
(

xi∂xi Re (ft)γ xi∂xi Re (ft)γ
xi∂xi Im (ft)γ xi∂xi Im (ft)γ

)
i=1,...,n

(
resp.

(
|xi|∂|xi| Re (ft)γ ∂arg xi Re (ft)γ

|xi|∂|xi| Im (ft)γ ∂arg xi Im (ft)γ

)
i=1,...,n

)
,

is of full rank on (ft)
−1
γ (0) ∩ (C∗)n, and so is(

vτ∂vτ Reπ∗(ft)γ vτ∂vτ Reπ∗(ft)γ
vτ∂vτ Imπ∗(ft)γ vτ∂vτ Imπ∗(ft)γ

)
τ∈σ(1)

(
resp.

(
|vτ |∂|vτ | Re π̂∗Fγ ∂arg vτ Re π̂∗Fγ

|vτ |∂|vτ | Im π̂∗Fγ ∂arg vτ Im π̂∗Fγ

)
τ∈σ(1)

)
on ((ft)

′
γ)

−1(0) ∩ (C∗)n. This implies that Q is nowhere zero near π−1(0) (resp. π̂−1(0)).

Thus the vector field ξ′ (resp. ξ̂) is well-defined and its flow provides the desired real-
analytic isomorphisms. If Γ+(f) is convenient, πΣ,β is an isomorphism except over the

origin, by (1.30). The last assertion is thus a consequence of the fact that ξ′ (resp. ξ̂)

tangent to each Eτ (resp. Êτ ) for τ ∈ Σ(1).

When Γ+(f) is not convenient, there is a non-compact face which does not lie in the

union of coordinate hyperplanes. Remark that Ht (resp. Ĥt) induces a homeomorphism
when (ft)γ does not depend on t for each non-compact face γ which does not lie in the
union of coordinate hyperplanes, since ∂tF

′|Eτ is zero for τ ∈ Σ(1) with ℓτ > 0 and
π(Eτ ) 6= {0}.

Corollary 4.3. Let f be a mixed polynomial. If f is non-degenerate and convenient, then
the local topological type of (Cn, f−1(0),0) is determined by fΓ where Γ is the union of
compact faces of Γ+(f).

Proof. Apply the previous Theorem for ft(x) = f(x) + tg(x), 0 ≤ t ≤ 1, so that Γ+(g) is
in the interior of Γ+(f).

4.2 Coordinate crossing property

In this subsection, we present an attempt to understand the situation that a mixed poly-
nomial is not mixed Newton non-degenerate, but is non-degenerate.

We say that two subsets Z1 and Z2 of R2n at p ∈ Z1∩Z2 are of coordinate crossing
if there exists submersion germs gi : (R2n, p) −→ (Rki , 0), i = 1, 2, so that (Zi, p) =
(g−1

i (0), p), i = 1, 2, and the Jacobi matrix of G = (g1, g2) : (R2n, p) −→ (Rk1 × Rk2 , 0) is
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of rank k along G−1(0). Remark that k ≤ k1 + k2 and equality holds if and only if g−1
1 (0)

and g−1
2 (0) intersects transversely.

We consider the real oriented blow up V̂σ −→ Vσ along the exceptional set Eσ′ where
σ′ is a face of σ. The set V̂σ is Ĉσ′(1)×Cσ(1)\σ′(1) where Ĉσ′(1) = {(|vτ ′ |, arg vτ ′) ∈ R≥0×S1 :

τ ′ ∈ σ′(1)}. Let Êσ′ denote the inverse image of Eσ′ in V̂σ. The condition (3.11) implies
that the strict transform of f intersects the set defined by |vτ ′ | = 0, τ ′ ∈ σ′(1), transversely
(Remark 3.5).

We consider how the strict transform Z of f by πΣ,β and the exceptional set Eτ ,
τ ∈ Σ(1), intersect in Vσ, for σ ∈ Σ(n).

If we set f ◦π̂σ(u) = f̂
∏

τ∈σ(1) |vτ |ℓτ (vτ/|vτ |)mτ where π̂σ = π̂|Vσ , we have

(4.4) f̂ =
∑
ν,ν

cν,ν
∏

τ∈σ(1)

|vτ |⟨a
τ ,ν+ν⟩−ℓτ

( vτ
|vτ |

)⟨bτ ,ν−ν̄⟩−mτ

.

For a face σ′ of σ, we thus have

(4.5) f̂ |Êσ′
=
∑

ν+ν∈γ

cν,ν
∏

τ∈σ(1)\σ′(1)

|vτ |⟨a
τ ,ν+ν⟩−ℓτ

∏
τ∈σ(1)

( vτ
|vτ |

)⟨bτ ,ν−ν⟩−mτ

,

which is f̂γ, where γ =
⋂

τ ′∈σ′(1) γ(a
τ ′). Setting

B(fγ) = {(〈bτ ′ ,ν − ν̄〉 −mτ ′)τ ′∈σ′(1) ∈ Zσ′(1) : ν + ν̄ ∈ γ, cν,ν̄ 6= 0},

we can write

f̂ =
∑

i∈B(fγ)

(ϕi +Ri)e
i, f̂γ =

∑
i∈B(fγ)

ϕie
−i

where Ri = O(|vτ ′ | : τ ′ ∈ σ′(1)), ei =
∏

τ ′∈σ′(1) e
iτ ′ arg vτ ′ i, i = (iτ ′)τ ′∈σ′(1) and

ϕi =
∑

ν+ν̄∈γ

∑
(⟨bτ ′ ,ν−ν⟩−mτ ′ )τ ′∈σ′(1)=i

cν,ν̄
∏

τ∈σ(1)\σ′(1)

|vτ |⟨a
τ ,ν+ν̄⟩−ℓτ e(⟨b

τ ,ν−ν̄⟩−mτ ) arg vτ i.

To obtain the equations for the strict transform by π, we need to eliminate the variables
arg vτ , τ ∈ σ(1), from the system

f̂ = f̂ = 0.

When B(fγ) is one point, say {i0}, then the system f̂γ = f̂γ = 0 reduces to the system

ϕi0 = ϕi0 = 0.

This case is already treated in the previous subsection.
We proceed the next simplest case, that is, the case there are i0, i1 ∈ Zσ′(1) such that

B(fγ) = {i0 ± i1}, i1 6= 0.

In this case, setting ϕ0 = ϕi0+i1 , ϕ1 = ϕi0−i1 , R0 = Ri0+i1 and R1 = Ri0−i1 , we have the
following expression:

(4.6) f̂ = ei0 [(ϕ0 +R0)e
i1 + (ϕ1 +R1)e

−i1 ], f̂γ = ei0 [ϕ0e
i1 + ϕ1e

−i1 ].
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We remark that the system f̂ = f̂ = 0 is reduced to the system

Φ̃

(
ei1

e−i1

)
= 0, where Φ̃ =

(
ϕ0 +R0 ϕ1 +R1

ϕ1 +R1 ϕ0 +R0.

)
,

and thus we obtain

(4.7) f ′ = (ϕ0 +R0)
∏

τ ′∈σ′(1)

vτ ′
iτ ′ + (ϕ1 +R1)

∏
τ ′∈σ′(1)

vτ ′
iτ ′

which vanishes on the strict transform in Vσ. Since ϕ0 and ϕ1 are functions in the variables
vτ , τ ∈ σ(1) \ σ′(1), we have

E∗
σ′ ∩ Z ⊂{(vτ )τ∈σ(1)\σ′(1) : ϕ = 0}, ϕ = detΦ, Φ =

(
ϕ0 ϕ1

ϕ1 ϕ0.

)
.

We consider the case n = 2. We write the coordinate of Vσ by (v0, v1). We can write
a component of the exceptional set by Eσ′ = {v0 = 0}, for a 1-face σ′ of σ.

Proposition 4.8. Under the assumptions and the notations above, we assume that i1 =
(1)τ ′∈σ′(1). The strict transform Z and the set Eσ′ \ {v1 = 0}, intersect as coordinate
crossing when rankΦ = 1 and {ϕ = 0} is nonsingular at any point of Z ∩ Eσ′.

Proof. Since i1 = (1)τ∈σ′(1) and by (4.7), we have

f ′ = (ϕ0(v1) + R0)v0 + (ϕ1(v1) + R1)v0.

We thus obtain

(4.9)

(
Re f ′

Im f ′

)
=

1

2

(
1 1
−i i

)
Φ̃

(
v0
v0

)
, and f ′

γ = ϕ0v0 + ϕ1v0.

Set ϕ̃ = det Φ̃. Since

∂(Re f ′, Im f ′, ϕ̃)

∂(Re v0, Im v0,Re v1, Im v1)

∣∣∣∣∣
v0=0

=

 1
2

1
2

0
− i

2
i
2

0
0 0 1

(f ′
γ)v0 (f ′

γ)v0 (f ′
γ)v1 (f ′

γ)v1
(f ′

γ)v0
(f ′

γ)v0 (f ′
γ)v1 (f ′

γ)v1
ϕv0 ϕv0 ϕv1 ϕv1

 1

2


1 −i 0 0
1 i 0 0
0 0 1 −i
0 0 1 i


=

Re (ϕ0 + ϕ1) Im (ϕ1 − ϕ0) 0 0
Im (ϕ0 + ϕ1) Re (ϕ1 − ϕ0) 0 0
ϕv0 + ϕv0 i[ϕv0 − ϕv0 ] ϕv1 + ϕv1 i[ϕv1 − ϕv1 ]

 ,

where γ = γ(aτ ), we have the following:
• Re v0, Re f

′, ϕ̃ form a part of a coordinate system when Im (ϕ0 − ϕ1) 6= 0.
• Re v0, Im f ′, ϕ̃ form a part of a coordinate system when Re (ϕ0 − ϕ1) 6= 0.
• Im v0, Re f

′, ϕ̃ form a part of a coordinate system when Re (ϕ0 + ϕ1) 6= 0.
• Im v0, Im f ′, ϕ̃ form a part of a coordinate system when Im (ϕ0 + ϕ1) 6= 0.
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Remark that rankΦ = 1 implies (ϕ0, ϕ1) 6= 0 and thus ϕ0 − ϕ1 6= 0 or ϕ0 + ϕ1 6= 0. Since
the set ϕ = 0 is nonsingular, (ϕv1 + ϕv1 , i[ϕv1 − ϕv1 ]) is not zero on the set ϕ = 0. Thus
we complete the proof, because of the following lemma.

Lemma 4.10. Assume that rankΦ = 1. Let p be a point in Z ∩ {v0 = 0}.
(i) The strict transform Z near p is defined by one of the following ideals:

〈Re f ′, ϕ̃〉, 〈Im f ′, ϕ̃〉.

(ii) The exceptional set {v0 = 0} near p is defined by one of the following ideals:

〈Re v0, Im f ′〉, 〈Re v0,Re f ′〉, 〈Im v0, Im f ′〉, 〈Im v0,Re f
′〉.

Proof. The item (i) is a consequence of the following implications.
• Re f ′ = det ϕ̃ = 0 implies Im f ′ = 0 for |v0| � 1.
• Im f ′ = det ϕ̃ = 0 implies Re f ′ = 0 for |v0| � 1.

Re f ′ = 0 implies Φ̃X = 0 has only solution

X = c

(
e(arg v0)i

e(− arg v0)i

)
, c ∈ C,

and we obtain Im f ′ = 0, which shows the first item. The second item is proved similarly.
Now we show the item (ii). Since (ϕ0, ϕ1) 6= (0, 0) on Z ∩ Eσ′ , we have (ϕ0 + ϕ1, ϕ0 −

ϕ1) 6= (0, 0) on Z ∩Eσ′ . Thus the lemma is a consequence of the following implications.
• Re (ϕ0 − ϕ1) 6= 0, Re v0 = 0, Im f ′ = 0 =⇒ Im v0 = 0.
• Im (ϕ0 − ϕ1) 6= 0, Re v0 = 0, Re f ′ = 0 =⇒ Im v0 = 0.
• Re (ϕ0 + ϕ1) 6= 0, Im v0 = 0, Re f ′ = 0 =⇒ Re v0 = 0.
• Im (ϕ0 + ϕ1) 6= 0, Im v0 = 0, Im f ′ = 0 =⇒ Re v0 = 0.

These implications follow from the following identity:
Re f ′

Im f ′

Re v0
Im v0

 =


Re (ϕ̃0 + ϕ̃1) Im (ϕ̃0 − ϕ̃1)

Im (ϕ̃0 + ϕ̃1) Re (ϕ̃0 − ϕ̃1)
1 0
0 1

(Re v0Im v0

)
.
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