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Abstract. Let p be a prime number. By a result of Ozaki, the capitula-
tions of ideals in Zp-extensions and the finite submodules of Iwasawa modules
are closely related. In this article, we discuss this relationship in Zd

p-extensions.

1. Introduction

Let p be a fixed prime number and k/Q a fixed finite extension, where denote by Q
the field of rational numbers. For a number field F , let AF be the p-part of the ideal
class group of F . Let Zp be the ring of p-adic integers. Let k∞/k be a Zp-extension and
kn its n-th layer for each non-negative integer n, namely, kn is the unique intermediate
field of k∞/k such that [kn : k] = pn. Let Xk∞ = lim←−n

Akn
, the projective limit is

taken with respect to norm maps. The module Xk∞ is also defined to be the Galois
group Gal(Lk∞/k∞) of the maximal unramified abelian pro-p extension Lk∞/k∞. We
then have natural projection maps Xk∞ → Akn

for all n ≥ 0. Let Ak∞ = lim−→n
Akn

,
the inductive limit is taken with respect to lifting maps. We then have lifting maps
Akn → Ak∞ for all n ≥ 0. It is well known that Xk∞ is a module over the completed
group ring ZpJGal(k∞/k)K. Let X0

k∞
be the maximal finite submodule of Xk∞ . Then

Ozaki obtained the following.

Theorem 1.1 (Ozaki [15]). Suppose that k∞/k is totally ramified at all ramified
primes. Then we have Ker(Akn → Ak∞) = Im(X0

k∞
→ Akn) for all n ≥ 0. In particular,

X0
k∞
̸= 0 if and only if Ker(Akn

→ Ak∞) ̸= 0 for some n ≥ 0.

For the cyclotomic Zp-extensions k∞/k of totally real fields k, the non-triviality of
X0

k∞
is studied as a weak form of Greenberg’s conjecture (for Greenberg’s conjecture see

[5], and for a weak form of Greenberg’s conjecture see [13], [14]). In this article, we
discuss the relationship between kernels of lifting maps and pseudo-null submodules in
Zd
p-extensions.

For a positive integer d, an algebraic extension K/k is called a Zd
p-extension if K/k

is a Galois extension and Gal(K/k) ≃ Zd
p as topological groups. The composite field k̃ of

all Zp-extensions of k is a Zd
p-extension for some d > 0. Let K/k be a Zd

p-extension. Let
XK = lim←−

k⊆k′⊆K,[k′:k]<∞
Ak′ , the projective limit is taken with respect to norm maps. The
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module XK is also defined to be the Galois group of the maximal unramified abelian pro-p
extension LK/K. Then the completed group ring ZpJGal(K/k)K acts on XK . Then it is
known that that XK is a finitely generated torsion ZpJGal(K/k)K-module, see Lemma 2.2
of the below. Let X0

K be the maximal pseudo-null ZpJGal(K/k)K-submodule of XK , here,
a ZpJGal(K/k)K-module is called pseudo-null if the annihilator ideal is not contained in
any height 1 prime ideals. When K = k̃, the non-triviality of X0

k̃
is studied as a weak

form of Greenberg’s generalized conjecture (for Greenberg’s generalized conjecture see
[7], and for a weak form of Greenberg’s generalized conjecture see [18], [14] and [11]).
Let AK = lim−→

k⊆k′⊆K,[k′:k]<∞
Ak′ , the inductive limit is taken with respect to lifting maps.

Let Ak′ → AK be the lifting map. In this article, we mainly discuss by putting the
following assumption on Zd

p-extensions:

Condition A. The prime number p does not split in k/Q and K/k is totally ramified
at the unique prime of k lying above p.

The results of this article are as follows.

Theorem 1.2. Let K/k be a Zd
p-extension. Suppose that the condition A holds

and that Ak ≃ Z/pc for some c ∈ Z>0. If there is an intermediate field k ⊆ k′ ⊆ K with
[k′ : k] <∞ such that Ker(Ak′ → AK) ̸= 0, then X0

K ̸= 0.

We must mention here that, by Iwasawa’s result [8], under the condition A, if Ak = 0

then XK = 0.

Theorem 1.3. Let K/k be a Zd
p-extension. Suppose that the condition A holds.

If X0
K ̸= 0, then there is an intermediate field k ⊆ k′ ⊆ K with [k′ : k] < ∞ such that

Ker(Ak′ → AK) ̸= 0.

Corollary 1.1. Let K/k be a Zd
p-extension. Suppose that the condition A holds

and that Ak ≃ Z/pc for some c ∈ Z>0. Then X0
K ̸= 0 if and only if there is an

intermediate field k ⊆ k′ ⊆ K with [k′ : k] <∞ such that Ker(Ak′ → AK) ̸= 0.

There have been some related earlier studies, we introduce here two of them.

Theorem 1.4 (Proposition 5.B of Minardi [10]). Let K/k be a Zd
p-extension.

Suppose that the condition A holds. Then XK = X0
K if and only if there is a sub-Zp-

extension F∞/F of K/k with [F : k] <∞ such that AF = Ker(AF → AF∞).

Theorem 1.5 (Lai and Tan [9]). Let K/k be a Zd
p-extension. Then we have

lim←−
k⊆k′⊆K,[k′:k]<∞

Ker(Ak′ → AK) ⊆ X0
K .

We set here some notations. For a profinite group G, let ΛG = ZpJGK be the
completed group ring of G with coefficients in Zp. In the rest of this section, let G ≃ Zd

p.
It is known as Serre’s isomorphism that ΛG is isomorphic to the formal power series
ring in d-variables with coefficients in Zp. Hence ΛG is a noetherian, integrally closed,
complete, regular local ring. By Auslander–Buchsbaum’s theorem [1], ΛG and ΛG/pΛG
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are UFDs. A finitely generated ΛG-module M is called pseudo-null if the annihilator
ideal of M over ΛG is not contained in any height 1 prime ideals of ΛG. When d = 1,
it is known that M is pseudo-null if and only if is finite. For a topological group G

and a topological G-module M , let MG and MG be the G-invariant submodule and the
G-coinvariant module of M . For an algebraic extension F/Q not necessary finite, let
LF /F be the maximal unramified abelian pro-p extension and XF its Galois group. Let
AF be the p-part of the ideal class group of F . If [F : Q] <∞, XF ≃ AF by unramified
class field theory.

2. Preliminaries

Lemma 2.1. Let A be a UFD and I an ideal of A. The following three statements
are equivalent.
(1) The ideal I is not contained in any height 1 prime ideals of A.
(2) There are f, g ∈ I such that f and g are relatively prime.
(3) For all 0 ̸= f ∈ A there is g ∈ I such that f and g are relatively prime.

Proof. (3)⇒ (2) : Trivial. (2)⇒ (1) : Let f, g ∈ I and suppose that f and g are
relatively prime. Then there is no prime element q ∈ A such that both of f and g are
divided by q. Since (f, g) ⊆ I, I is not contained in any height 1 prime ideals. (1)⇒ (3) :

The following proof is written in Lemma 4.3 of [10]. Suppose that I is not contained in
any height 1 prime ideals of A. Let s be the number of pairwise non-associated prime
factors of f . We prove by using induction on s. Let s = 1. Then f = uqm1 for a unit
u and an integer m. Since I is not contained in any height 1 prime ideals, it follows
that I ̸⊆ (q1), and hence there is g ∈ I such that f and g are relatively prime. Suppose
that s > 1. Let f = f1f2 be a decomposition of f by non units f1, f2 such that f1 and
f2 are relatively prime. By the assumption of our induction, there are g1, g2 ∈ I such
that each of two pairs of elements f1, g1 and f2, g2 are relatively prime respectively. Put
g = g2f1 + g1f2 ∈ I. Then f and g are relatively prime. □

Lemma 2.2. Let K/k be a Zd
p-extension and G = Gal(K/k). Then XK is a finitely

generated torsion ΛG-modules.

Proof. This lemma was shown by Greenberg [4] for the extension k̃/k, and some
authors mentioned that the statement of Lemma 2.2 also holds true for arbitrary Zd

p-
extensions. For readers, we prefer to provide the proof here. Greenberg’s proof depends
on the existence of the cyclotomic Zp-extensions. The cyclotomic Zp-extension of a
number field is ramified at all primes lying above p, and this property is a keystone to
prove the statement of Lemma 2.2. Let K/k be a Zd

p-extension with d ≥ 1 and S the
set of all primes of k which ramify in K/k. Here it suffices to show that there is a Zp-
extension k∞/k such that k∞ ⊆ K and that k∞/k is ramified at all primes in S. Such a
Zp-extension k∞/k plays the role of the cyclotomic Zp-extensions in Greenberg’s proof,
see Theorem 1 of [4]. We shall prove by induction on d ≥ 1. The case that d = 1 is trivial.
Let d > 1 and assume that the statement of the lemma holds true for all Zr

p-extensions
K0/k which are exactly ramified at all primes in S with r < d. Let Iv ⊆ Gal(K/k) be
the inertia subgroup at v ∈ S. Put S1 = {w ∈ S | Iw ≃ Zp}. Since d > 1 and S1 is a
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finite set, we can choose x ∈ Gal(K/k) such that x ̸∈ Gal(K/k)p and that ⟨x⟩ ∩ Iw = 0

for all w ∈ S1. Let K0 be the fixed field of ⟨x⟩ in K. Then K0/k is a Zd−1
p -extension.

Let u ∈ S \ S1. It follows that the Zp-rank of Iu is greater than 1. Then Iu⟨x⟩/⟨x⟩ has
Zp-rank at least 1. Thus the inertia subgroup in K0/k at each v ∈ S is not trivial, and
hence K0/k is ramified at all primes in S. By the assumption of our induction, there is
a Zp-extension k∞/k such that k∞ ⊆ K0 and that k∞/k is ramified at all primes in S.
This completes the proof. This proof is a generalization of Lemma 5 of [3]. □

Lemma 2.3. Let K/k be a Zd
p-extension. Suppose that the condition A holds. For

each intermediate field F of K/k, we have XF ≃ (XK)Gal(K/F ).

Proof. It follows that K/F is a Zr
p-extension for some r ≤ d. Let Gal(K/F ) =

⟨σ1, · · · , σr⟩. One can see that (XK)Gal(K/F ) = XK/(σ1 − 1, · · · , σr − 1)XK . Let Ki

be the fixed field of ⟨σi+1, · · · , σr⟩ for 0 ≤ i ≤ r − 1. Then we have a tower of fields
F = K0 ⊆ K1 ⊆ · · · ⊆ Kr = K. By the condition A, the extension K/k is totally
ramified at the unique prime of k lying above p, and hence extensions Ki/Ki−1 are also
totally ramified at the unique prime of Ki−1 lying above p for all i with 1 ≤ i ≤ r. Let Li

be the maximal subfield of LKi
which is abelian over Ki−1. It holds that Gal(Li/Ki) ≃

(XKi
)Gal(Ki/Ki−1) = XKi

/(σi − 1)XKi
. Let Ii be the inertia subgroup in Li/Ki−1 of

the unique prime of Ki−1 lying above p. It then holds that Ii = Gal(Li/LKi−1
). Since

Li/Ki is unramified, we have Ii ∩ Gal(Li/Ki) = 1, and hence Li = KiLKi−1 holds. By
the definition of Li it follows that LKi−1 ∩ Ki = Ki−1, and hence we have XKi−1 ≃
Gal(Li/Ki) ≃ XKi/(σi−1)XKi for all i. Thus it holds that XF ≃ XK/(σ1−1, · · · , σr−
1)XK = (XK)Gal(K/F ). □

Lemma 2.4. Let Γ ≃ Zp and M a finitely generated torsion ΛΓ-module. Then M
has no non-trivial finite submodules if and only if there is an exact sequence 0→ Λ⊕r

Γ →
Λ⊕r
Γ →M → 0 for some r ∈ Z>0.

Proof. See Proposition 2.1 of [17]. □

Lemma 2.5. Let G ≃ Zd
p with d > 0. Let N be a finitely generated torsion ΛG-

module. Assume that N has an annihilator Φ ∈ ΛG such that Φ ̸≡ 0 mod pΛG. Then G

contains at least one subgroup H such that G/H ≃ Zp with the property that N is finitely
generated over ΛH .

Proof. See Lemma 2 of [6]. □

Lemma 2.6. Let d ≥ 3 and G ≃ Zd
p. Let H be a subgroup of G such that G/H ≃ Zp.

Let N be a finitely generated pseudo-null ΛG-module. Suppose that N is finitely generated
over ΛH . Then for all but finitely many subgroups V of H with H/V ≃ Zd−2

p , NV is a
pseudo-null ΛG/V -module.

Proof. This lemma is shown in [10] as a Corollary of Proposition 4.C. Here, we
give a somewhat simpler proof. Let H be a subgroup of G such that N is finitely generated
over ΛH with G/H ≃ Zp. Let τ ∈ G be an element such that G = H×⟨τ⟩. Put T = τ−1,
and we shall identify by Serre’s isomorphism ΛG with ΛHJT K, the formal power series
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ring in the variable T with coefficients in ΛH . Hence all ΛG-module can be regarded as
ΛHJT K-modules. Since N is finitely generated over ΛH , by Cayley–Hamilton’s theorem,
there is a monic polynomial f ∈ ΛH [T ] such that f annihilates N . By the Weierstass
preparation theorem, we may assume that f is a distinguished polynomial of degree
greater than 0, see Definition 2 and Proposition 6 in Section 3 of Chapter 7 of [2]. Since
N is pseudo-null, by Lemma 2.1, there is an annihilator g ∈ ΛG = ΛHJT K of N such
that f and g are relatively prime. If we need, by adding f to g and by the Weierstrass
preparation theorem, we may assume that g is also a distinguished polynomial in ΛH [T ].
By Proposition 7 of Section 3 of Chapter 7 of [2], f and g are relatively prime in ΛG

if and only if are relatively prime in ΛH [T ]. Hence there are polynomials A and B of
QΛH

[T ] such that Af + Bg = 1, here QΛH
denotes the field of fractions of ΛH . Choose

an element α ∈ ΛH such that αA,αB ∈ ΛH [T ], hence it holds that αAf +αBg = α. Let
σ ∈ H \Hp. By the choice of f and g, we have f, g ̸≡ 0 mod (σ − 1)ΛG. Since ΛG is a
UFD and (σ − 1)ΛG is a prime ideal of ΛG, there are only finitely many prime ideals of
the form (σ − 1)ΛG so that α ≡ 0 mod (σ − 1)ΛG. Let V = ⟨σ⟩ with the property that
α ̸≡ 0 mod (σ − 1)ΛG. For each h ∈ ΛG, let hV be the image of h with respect to the
map ΛG → ΛG/V = ΛH/V JT K. Thus it holds that (αA)V fV + (αB)V gV = αV ̸= 0. This
implies that fV and gV are relatively prime in ΛH/V [T ]. Further fV , gV ̸= 0 and both of
fV , gV annihilate NV . Therefore, NV is a pseudo-null ΛH/V JT K = ΛG/V -module. □

Lemma 2.7. Let K/k be a Zd
p-extension. Suppose that the condition A holds. Let

1 ̸= σ ∈ G = Gal(K/k). Then a generator of the characteristic ideal of XK over ΛG and
σ − 1 are relatively prime.

Proof. Because we study on a generator of the characteristic ideal of XK , we may
assume that X0

K = 0. By the structure theorem of finitely generated torsion ΛG-modules,
see for example (5.1.7) Proposition of [12], there is an exact sequence 0 → XK → E →
Z → 0 of ΛG-modules, here, we denote by E an elementally finitely generated torsion
ΛG-module and by Z a pseudo-null ΛG-module. Let {σ1, σ2, · · · , σd} be a basis of G over
Zp such that σ = σpa

1 with some non-negative integer a. Then one can see that Z/(σ−1)Z
is a finitely generated torsion ΛH -module, where we let H = ⟨σ2, · · · , σd⟩. Indeed, since
Z/(σ − 1)Z is also pseudo-null over ΛG, there is an annihilator u of Z/(σ − 1)Z over
ΛG such that u and σ− 1 are relatively prime. By the Weierstrass preparation theorem,
if u is not reduced in ΛG = ΛHJσ1K, by adding σ − 1 to u, we may assume that u is
a distinguished polynomial in ΛH [σ1 − 1]. Since σ − 1 and u are relatively prime in
QΛH

[σ1 − 1], there are f and g of QΛH
[σ1 − 1] such that f(σ − 1) + gu = 1. Thus there

is 0 ̸= v ∈ ΛH such that v = (vf)(σ− 1) + (vg)u. This shows that Z/(σ− 1)Z is torsion
over ΛH .

Let M be the fixed field of ⟨σ⟩. Then we have a decomposition Gal(M/k) ≃ Z/pa×
⟨σ2, · · · , σd⟩. Let F be the fixed field of H = ⟨σ2, · · · , σd⟩ in M . Then [F : k] < ∞ and
M/F is a Zd−1

p -extension. It is known by Lemma 2.2 that the module XM is finitely
generated and torsion over ΛH . By Lemma 2.3, one can see that XM ≃ (XK)Gal(K/M) =

XK/(σ−1)XK . Then we have an exact sequence XM → E/(σ−1)E → Z/(σ−1)Z → 0.
Let f ∈ ΛG be a generator of the characteristic ideal of XK over ΛG. Now, suppose that
f and σ − 1 are not relatively prime. Let q be a common prime factor of f and σ − 1.
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Then E is a module of the form

E = ΛG/q
eΛG ⊕

s⊕
i=1

ΛG/q
ei
i ΛG,

where q1, · · · , qs ∈ ΛG denote prime elements of ΛG, and e, e1, · · · , es are positive inte-
gers. As we checked, Z/(σ − 1)Z is torsion over ΛH . Since

ΛG/(q, σ − 1) = ΛG/qΛG = (ZpJ⟨σ1⟩K/qZpJ⟨σ1⟩K)JHK ⊇ ΛH ,

ΛG/(q, σ− 1) is not torsion over ΛH , and ΛG/(q
e, σ− 1) is also not torsion since there is

a surjective morphism ΛG/(q
e, σ− 1)→ ΛG/(q, σ− 1). This contradicts to the fact that

XM ≃ XK/(σ− 1)XK is torsion over ΛH . Therefore there are no common prime factors
of f and σ − 1. □

Lemma 2.8. Let K/k be a Zd
p-extension. Suppose that the condition A holds. Let

1 ̸= σ ∈ Gal(K/k). Then we have (XK/X0
K)⟨σ⟩ = 0.

Proof. By Lemma 2.7, a generator of the characteristic ideal of XK and σ − 1

are relatively prime. Since XK/X0
K has no non-trivial pseudo-null submodules, we have

(XK/X0
K)⟨σ⟩ = 0. □

Lemma 2.9. Let N be a non-trivial pseudo-null ΛU -module, where U ≃ Z2
p. As-

sume that NU is finite. Then there exists at least one subgroup V of U such that
U/V ≃ Zp with the property that NV contains a non-trivial finite ΛU/V -submodule.

Proof. See Lemma 5 of [6]. □

3. Proof of Theorem 1.2

Let K/k be a Zd
p-extension and suppose that the condition A holds. Suppose also

that Ak ≃ Z/pc for some c > 0, and Ker(Ak′ → AK) ̸= 0 for some k ⊆ k′ ⊆ K with [k′ :

k] < ∞. There is a finite extension k′1/k
′ with k′1 ⊆ K such that Ker(Ak′ → Ak′

1
) ̸= 0.

Then one can find a finite cyclic extension F ′/F such that k′ ⊆ F ⊆ F ′ ⊆ k′1 and that
Ker(AF → AF ′) ̸= 0. Since K/F is a Zd

p-extension, there is a Zp-extension F∞/F such
that F ′ ⊆ F∞ ⊆ K and that Ker(AF → AF∞) ̸= 0. By Theorem 1.1, we have X0

F∞
̸= 0.

Let G = Gal(K/k), H = Gal(K/F∞) and Γ = Gal(F∞/F ). By Nakayama’s lemma and
Lemma 2.3, since Ak ≃ (XK)G, XK is cyclic over ΛG. Let 0→ I → ΛG → XK → 0 be an
exact sequence of ΛG-modules with an ideal I of ΛG. Since ΛG is noetherian, I is finitely
generated. Put I = (h1, · · · , hs) for some elements h1, · · · , hs ∈ ΛG. Let h be a greatest
common divisor of h1, · · · , hs. Suppose that X0

K = 0. Let I0 = (h1/h, · · · , hs/h). It
holds that hΛG/I ≃ ΛG/I0. Since elements h1/h, · · · , hs/h have no non-trivial common
divisor, I0 is not contained in any height 1 prime ideals of ΛG. Hence ΛG/I0 ≃ hΛG/I is
a pseudo-null ΛG-module. Since XK ≃ ΛG/I has no non-trivial pseudo-null submodules,
we have I = hΛG. Thus there is an exact sequence 0 → ΛG → ΛG → XK → 0. Since
(ΛG)H ≃ ΛG/H , we have an exact sequence ΛG/H → ΛG/H → XF∞ → 0. By the
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definitions of G and H, we have (G/H)/Γ = Gal(F/k). Since (ΛG/H)Γ ≃ Z⊕[F :k]
p and

ΛG/H is torsion free over Zp, it holds that ΛG/H ≃ Λ
⊕[F :k]
Γ as ΛΓ-modules. From the fact

that XF∞ is a torsion ΛΓ-module, the kernel of ΛG/H → ΛG/H is a submodule of a free
ΛΓ-module and is of rank 0, and hence is trivial. Therefore we have an exact sequence
0 → Λ

⊕[F :k]
Γ → Λ

⊕[F :k]
Γ → XF∞ → 0. This implies that X0

F∞
= 0 by Lemma 2.4. This

contradicts to the fact that X0
F∞
̸= 0. Thus we have X0

K ̸= 0. □

4. Proof of Theorem 1.3

Let K/k be a Zd
p-extension. Suppose that the condition A holds, and that X0

K ̸= 0.
Let G = Gal(K/k). First, we suppose that d ≥ 3. Since X0

K is pseudo-null, there is
an annihilator Φ ∈ ΛG of X0

K such that Φ ̸≡ 0 mod pΛG. By Lemma 2.5, there is a
subgroup H of G such that G/H ≃ Zp and that X0

K is finitely generated over ΛH . By
Nakayama’s lemma and Lemma 2.6, there is σ ∈ H \Hp such that X0

K/(σ − 1)X0
K is a

non-trivial pseudo-null Λ
G/⟨σ⟩-module. Let K⟨σ⟩ be the fixed field of σ in K. By Lemma

2.8, X0
K/(σ − 1)X0

K → XK/(σ − 1)XK ≃ X
K⟨σ⟩ is injective. Hence we have X0

K⟨σ⟩ ̸= 0.
Let KH be the fixed field of H. Then one sees that KH/k is a Zp-extension. By doing the
same arguments, we can find a Z2

p-extension L/k such that X0
L ̸= 0 and KH ⊆ L. Next

we consider the Z2
p-extension L/k. Put U = Gal(L/k), and let V0 be a closed subgroup of

U such that U/V0 ≃ Zp, and E ⊆ L the fixed field of V0. Let γ be a topological generator
of Gal(E/k) = U/V0. From the condition A, it holds that Ak ≃ XE/(γ − 1)XE , and
hence XE/(γ − 1)XE is finite. This shows that a generator of the characteristic ideal
of XE over ΛU/V0

and γ − 1 are relatively prime. By Lemma 2.8, the map (X0
L)V0

→
(XL)V0

≃ XE is injective. Hence a generator of the characteristic ideal of (X0
L)V0

and
γ−1 are also relatively prime. This shows that (X0

L)U = (X0
L)V0

/(γ−1)(X0
L)V0

is finite.
By Lemma 2.9, there is a subgroup V ⊆ U such that U/V ≃ Zp with the property that
(X0

L)V has a non-trivial finite submodule. Let k∞ be the fixed field of V in L. Then it
follows that X0

k∞
̸= 0. By Theorem 1.1, Ker(Akn → Ak∞) ̸= 0 for some n ≥ 0. Since

Ker(Akn → Ak∞) ⊆ Ker(Akn → AK), this completes the proof. □

Remark. In fact, from Theorem 2 of [16], one can further see that (X0
L)V is

finite for all but finite subgroups V of U such that U/V ≃ Zp.

Acknowledgments

The author would like to express his thanks to the referee for his/her kindness and
patience. In particular, the proof of Lemma 2.7 was remarkably simplified thanks to
his/her suggestion. The author would like to express his gratitude to Kazuaki Murakami
for pointing out that the proof of Lemma 2.7 in the previous version was not correct.
The research of this article was partly supported by JSPS KAKENHI Grant number
22H01119.

References

[ 1 ] M. Auslander and D. A. Buchsbaum, Unique factorization in regular local rings. Proc. Natl. Acad.
Sci. USA 45, 733-734 (1959).



8 S. Fujii

[ 2 ] N. Bourbaki, Elements of Mathematics, Commutative Algebra, Chapters 1–7, Springer–Verlag
(1988).

[ 3 ] S. Fujii, On Greenberg’s generalized conjecture for CM-fields. J. Reine Angew. Math. 731, 259-278
(2017).

[ 4 ] R. Greenberg, The Iwasawa invariants of Γ-extensions of a fixed number field. Amer. J. Math. 95,
204-214 (1973).

[ 5 ] R. Greenberg, On the Iwasawa invariants of totally real number fields. Amer. J. Math. 98 (1976),
no. 1, 263–284.

[ 6 ] R. Greenberg, On the structure of certain Galois groups. Invent. Math. 47, 85-99 (1978)
[ 7 ] R. Greenberg, Iwasawa theory – past and present. Adv. Stud. Pure Math. 30, 335-385 (2001).
[ 8 ] K. Iwasawa, A note on class numbers of algebraic number fields. Abh. Math. Semin. Univ. Hamb.

20, 257-258 (1956).
[ 9 ] K. F. Lai and K-S. Tan, A generalized Iwasawa’s theorem and its application. Res. Math. Sci. 8,

No. 2, Paper No. 20, 18 p. (2021).
[10] J. V. Minardi, Iwasawa modules for Zd

p-extensions of algebraic number fields. Thesis (Ph.D.)-
University of Washington. 1986. 77 pp.

[11] K. Murakami, A weak form of Greenberg’s generalized conjecture for imaginary quadratic fields.
J. Number Theory 244, 308-338 (2023).

[12] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields. Second edition,
Grundlehren Math. Wiss., 323, Springer-Verlag, Berlin, 2008. xvi+825 pp.

[13] T. Nguyen Quang Do, Sur la conjecture faible de Greenberg dans le cas abélien p-décomposé. Int.
J. Number Theory 2, No. 1, 49-64 (2006).

[14] T. Nguyen Quang Do, Sur une forme faible de la conjecture de Greenberg. II. Int. J. Number
Theory 13, No. 4, 1061-1070 (2017).

[15] M. Ozaki, A note on the capitulation in Zp-extensions. Proc. Japan Acad. Ser. A Math. Sci. 71
(1995), no. 9, 218–219.

[16] M. Ozaki, Iwasawa invariants of Zp-extensions over an imaginary quadratic field. Adv. Stud. Pure
Math. 30, 387-399 (2001).

[17] K. Wingberg, Duality theorems for Γ-extensions of algebraic number fields. Compos. Math. 55,
333-381 (1985).

[18] K. Wingberg, Free pro-p extensions of number fields, preprint, avairable at author’s homepage
(05/05/2024).

Satoshi Fujii
Faculty of Education, Shimane University, 1060 Nishikawatsucho,
Matsue, Shimane, 690–8504, Japan.
E-mail: fujiisatoshi@edu.shimane-u.ac.jp


