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Abstract. It is shown that if the universal enveloping algebra of a
simple Zn-graded Lie algebra is Noetherian, then the Lie algebra is finite-
dimensional.

1. Introduction

Let K be an algebraically closed field of characteristic 0. If a Lie algebra is
finite-dimensional, then its enveloping algebra is Noetherian (i.e. Noetherian
on the right or on the left, which is equivalent for the enveloping algebras).
Whether the converse is true has been asked by many authors, among them
R. Amayo and I. Stewart, see [1, Question 27], K. A. Brown, see [3, Question
B], J. Dixmier, and V. Latyshev. Besides its intrinsic interest, this is an
unavoidable question in the problem of the classification of Noetherian Hopf
algebras. S. Sierra and C. Walton stated this question as a Conjecture.

Conjecture 1.1. [10] The universal enveloping algebra of an infinite-dimen-
sional Lie algebra is not Noetherian.

Intuitively, since ‘large’ Lie algebras satisfy the Conjecture, e.g. the en-
veloping algebra of a free Lie algebra in two generators is not Noetherian,
one expects that a counterexample to the Conjecture, if any, should be in
some sense ’small’. In this direction, a breakthrough result was obtained in
2013 by Sierra and Walton. Recall that the Witt algebra isW (1) := DerK[t].

Theorem 1.2. [10, Theorem 0.5] The enveloping algebra of W (1) is not
Noetherian.

This result allows us to conclude that the enveloping algebra of an infinite-
dimensional simple Z-graded Lie algebra of finite growth is not Noetherian,
by going over the classification of such Lie algebras obtained in [9].

However there are neither classification results for the simple Z-graded Lie
algebras of arbitrary growth, nor for the simple Zn-graded Lie algebras for
n ≥ 2. Nevertheless, the following result will be established.
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Theorem 1.3. The universal enveloping algebra of an infinite-dimensional
simple Zn-graded Lie algebra is not Noetherian.

According to our convention below, it is assumed in Theorem 1.3 that
all dimensions of the homogeneous components of the Zn-graded Lie algebras
are finite.

The proof of Theorem 1.3 is divided into four parts (three of them involve
the case n = 1). Some parts use concrete results, namely the Theorem of
Sierra and Walton and the classification results of the second author [9].

2. Conventions and Preliminaries

2.1. Conventions about graded vector spaces.

In the whole paper, we will adopt the following convention. A vector space
M endowed with a decompositionM = ⊕m∈ZnMm will be called a Zn-graded
vector space only if all homogeneous componentsMm are finite-dimensional.

A Lie algebra L endowed with a Zn-grading is called a Zn-graded Lie
algebra if we have

[Ln,Lm] ⊂ Ln+m for any n,m ∈ Zn.

A Zn-graded Lie algebra L of dimension ≥ 2 without nontrivial proper
Zn-graded ideals is called a simple Zn-graded Lie algebra. For example,
sl(2) ⊗K[t, t−1] is a simple Z-graded Lie algebra, but it is not simple as a
Lie algebra. The definitions of a Zn-graded L-module and a simple Zn-
graded L-module are similar.

2.2. Criteria for Noetherianity of enveloping algebras.

A section of a Lie algebra L is a Lie algebra s isomorphic to q/m for some
Lie subalgebra q ⊂ L and some ideal m of q.

The following standard observations are useful, see [10, Lemma 1.7] and
[4, Proposition 2.1].

Lemma 2.1. Let L be a Lie algebra such that U(L) is Noetherian.
(a) L satisfies the ascending chain condition on Lie subalgebras.
(b) L is finitely presented and Hk(L) is finite-dimensional for any k ≥ 0.
(c) If s is a section of L, then U(s) is also Noetherian.
(d) If s is an abelian section of L, then dim s <∞.
(e) If L is a Lie subalgebra of finite codimension of some Lie algebra L′,

then U(L′) is also Noetherian. �

2.3. Examples of enveloping algebras that are not Noetherian.

Lemma 2.1 allows us to deduce that many Lie algebras satisfy Conjecture
1.1 from Lie algebras that are already known to fulfill it, for instance:

(i) The free Lie algebra Free(Z) on a vector space Z of dimension ≥ 2.
Indeed U(Free(Z)) ' T (Z) is not Noetherian.
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(ii) [10, Theorem 0.5] The positive Witt algebra W+. By Lemma 2.1(e),
this result is equivalent to the remarkable Theorem 1.2.

See [10], [4] for a list of Lie algebras whose enveloping algebras are not
Noetherian by the remarks above. By Lemma 2.1 (c) and (i), another exam-
ple is a Kac–Moody algebra of indefinite type, cf. [6, Corollary 9.12].

3. Growth of modules over Z-graded Lie algebras

In this section and in the next three, we investigate the Noetherianity con-
dition for Z-graded Lie algebras. The present section involves the questions
of finite generation and growth.

Given a Z-graded vector space M and an integer n ∈ Z, we set

M≥n := ⊕k≥nMk.

The subspaces M>n, M≤n and M<n are similarly defined.

3.1. Finite generation.

Let L be a Z-graded Lie algebra. We set

L+ = L>0 and L− = L<0.

Lemma 3.1. Assume that the Lie algebra L is finitely generated. Then L+

and L− are finitely generated subalgebras.
Moreover let M be a finitely generated Z-graded L-module. Then the L+-

module M≥0 and the L−-module M≤0 are finitely generated.

Proof. By hypothesis, there is an integer d > 0 such that ⊕−d≤k≤d Lk gen-
erates L. By Lemma 18 of [8], ⊕1≤k≤d Lk generates L+ and ⊕−d≤k≤−1 Lk
generates L−, which proves the first assertion.

Let S be a finite set of generators of M . There is an integer e such that S
lies in M≤e. Since M≤e is a L≤0-module, we have M = U(L+).M≤e. Since
in addition L+ is generated by ⊕1≤k≤d Lk, we have

Mn =
∑

1≤k≤d
Lk.Mn−k,

for any n > e. It follows easily that the L+-moduleM≥0 is finitely generated.
The proof of the finite generation of the L−-module M≤0 is identical. �

3.2. Finite and intermediate growth.

A Z-graded vector space M is called of finite growth if the function

n 7→ dim Mn

is bounded by a polynomial. It is called of intermediate growth if both limits

lim sup
log+(dimMn)

n
and lim sup

log+(dimM−n)

n
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are zero, where the function log+ is defined by log+(x) = log(x) if x ≥ 1 and
log+(x) = 0 otherwise. The formal series

χ±M (z) :=
∑
n≥0

dim M±n z
n

are called the two generating series of M . Equivalently, M has intermediate
growth iff both series χ+

M (z) and χ−M (z) are convergent for |z| < 1.

Assume now thatM = ⊕n≥1Mn is a positively graded vector space. Then
the symmetric algebra S(M) is a nonnegatively graded vector space. The
following lemma is well-known.

Lemma 3.2. Assume that the positively graded vector space M has inter-
mediate growth. Then S(M) also has intermediate growth.

Proof. For any integer n ≥ 1, set an = dim Mn. We have

χ+
M (z) =

∑
n≥1

anz
n, χ+

S(M)(z) =
∏
n≥1

1

(1− zn)an
.

If M is finite-dimensional, S(M) has finite growth. Otherwise, the lemma
follows because these series have the same radius of convergence. �

3.3. Growth of Z-graded L-modules.

Let L be a Z-graded Lie algebra and let M be a Z-graded L-module. For
any n, let M int

n be the subspace of all m ∈ Mn such that U(L+).m has
intermediate growth. Set M int = ⊕n∈ZM int

n .

Lemma 3.3. The subspace M int is a L-submodule.

Proof. Since M int is clearly a L+-module, it is enough to show that for any
homogeneous elements u ∈ L of degree d ≤ 0 and v ∈ M int, u.v belongs to
M int. First note that

U(L+)u ⊂ U(L+)L≥d = L≥dU(L+) = U(L+)⊕⊕d≤k≤0 LkU(L+).

Therefore we have

U(L+)u.v ⊂ U(L+).v +
∑
d≤k≤0

LkU(L+).v.

Thus U(L+)u.v has intermediate growth, i.e. u.v belongs to M int. �

Lemma 3.4. Let L be a finitely generated Z-graded Lie algebra and let M be
a simple Z-graded L-module. Assume that, for some homogeneous v ∈M \0,
the vector space L.v has intermediate growth. Then M has intermediate
growth.



NOETHERIAN ENVELOPING ALGEBRAS 5

Proof. Let K+ = {x ∈ L+ | x.v = 0}. As a graded space, the L+-module
IndL

+

K+ Kv is isomorphic to S(L+/K+). By Lemma 3.2, IndL
+

K+ Kv has inter-
mediate growth. Thus U(L+).v, a quotient of IndL

+

K+ Kv, has intermediate
growth too.

Since M is simple, from Lemma 3.3 we infer that any cyclic U(L+)-sub-
module of M has intermediate growth. Now the L+-module M≥0 is finitely
generated by Lemma 3.1, hence M≥0 has intermediate growth. Similarly
M≤0 has intermediate growth; therefore M has intermediate growth. �

4. Rank one Lie algebras of class V

We define first the general notions of roots and rank of a Z-graded Lie algebra
L. Then we split the proof that U(L) is not Noetherian into three parts: Lie
algebras of class V are treated in this section; the next section 5 is devoted
to class S ; the last section 6 deals with the Lie algebras of rank ≥ 2.

4.1. Roots and rank.

Let L = ⊕n∈ZLn be a Z-graded Lie algebra. We fix, once and for all, a
Cartan subalgebra h of L0, i.e., h is a nilpotent self-normalizing subalgebra
of L0 [2]. For any α ∈ h∗ and any n ∈ Z, we set

Lαn = {x ∈ Ln | (ad(h)− α(h))N (x) = 0 ∀h ∈ h and N � 0}.

Also, Lα̃ := Lαn for α̃ = (α, n) ∈ h∗ × Z. The set of roots of L is the set
∆ := {α̃ | Lα̃ 6= 0} (with our nonstandard definition, (0, 0) is a root whenever
L0 6= 0). Therefore

L = ⊕α̃∈∆ Lα̃

is the generalized root space decomposition of L.
A root α̃ = (α, n) is called real if α 6= 0 and imaginary otherwise. Let

∆re, respectively ∆im, be the set of real, respectively imaginary, roots.
The root lattice is the subgroup Q ⊂ h∗×Z generated by ∆. By definition

the rank of L is the rank of Q.

Remark 4.1. It is proved in [2] that any two Cartan subalgebras of L0 are
conjugated by an automorphism of L0. In fact the proof of [2] shows that
they are conjugated by a degree-preserving automorphism of L. Therefore
the root lattice is independent of the choice of a Cartan subalgebra of L0.
Since we do not need this fact, we will not provide more details.

4.2. Rank one Lie algebras.

Let L = ⊕n∈ZLn be a Z-graded Lie algebra of rank one. Assume that
L 6= L0. Then L0 = h is a nilpotent Lie algebra and there exists α̃ =
(α, 1) ∈ L∗0 × Z such that ∆ lies in Z.α̃. We keep the terminology of [9].
When α = 0 or, equivalently, when the set of real roots is void, we say that
L belongs to the class V (for the class V , the Lie algebra L0 could be 0).
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Otherwise, we say that L belongs to the class S . Here the letter S stands
for string, because, roughly speaking, all real roots are on a “string”.

4.3. Rank one Lie algebras of class V .

This case follows easily from the next result.

Lemma 4.2. [7, Lemma 22] Let L be a Z-graded Lie algebra of class V . If
L = [L,L], then L is not finitely generated. �

Corollary 4.3. Let L be a simple Z-graded Lie algebra of class V . Then
U(L) is not Noetherian.

Proof. Immediate from Lemmas 2.1(b) and 4.2. �

5. Rank one Lie algebras of class S

The case of Lie algebras of class S is more difficult than the previous one.
Recall that a Z-graded Lie algebra L belongs to S if L 6= L0, L0 is nilpotent
and there exists a nonzero α ∈ L∗0 such that Ln = Lnαn for any n ∈ Z.

The main step is Theorem 5.8, which is implicit in [9]. Navigating through
chapters 7 and 8 of loc. cit. is not easy. Thus for the sake of the reader, we
rewrite parts of those in a convenient way.

We need the following definition. For n 6= 0, let L{n} be the Lie algebra
L endowed with a grading rescaled by a factor of n, i.e. we have

L{n}nk = Lk, k ∈ Z, L{n}m = 0 if n 6 |m.

The Z-graded Lie algebra L{n}, again in class S , is called a rescaling of L.

5.1. Local Lie algebras.

Let P be the set of pairs of integers (i, j) with i, j, i+j ∈ {−1, 0, 1}. Following
[5], see [6, Exercise 1.8, p. 13], a local Lie algebra is a graded vector space

G = G−1 ⊕G0 ⊕G1

endowed with a degree preserving bracket [ , ] which is defined only on
∪(i,j)∈P Gi × Gj and which satisfies the Jacobi identity whenever it makes
sense. Equivalently, this means that G0 is a Lie algebra, G1 and G−1 are
G0-modules and the bracket [, ] : G−1 ×G1 → G0 is G0-equivariant.

The notions of morphisms between local Lie algebras, local Lie subalgebras
and local ideals are defined in an evident way. Analogously a local Lie
algebra S is a called a section of G if S is isomorphic to H/K for some local
subalgebra H ⊂ G and some local ideal K of H.

Given a Z-graded Lie algebra L, its local part

Lloc := L−1 ⊕ L0 ⊕ L1
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is evidently a local Lie algebra. Conversely, given a local Lie algebra G there
are Z-graded Lie algebras whose local part is G. One of them, denoted by
Lmax(G), is defined as follows. As a vector space we have

Lmax(G) = Free(G−1)⊕G0 ⊕ Free(G1)

where Free(G±1) denotes the free Lie algebra on the vector space G±1. Then
the local Lie bracket and the Z-grading extend uniquely to Lmax(G) [5].
Indeed the functor G→ Lmax(G) is the left adjoint of the functor L → Lloc
[8]. Let I be the largest graded ideal of Lmax(G) such that I ∩ G = 0 and
set

Lmin(G) = Lmax(G)/I.

Notice that, if L is a Lie Z-graded Lie algebra which is generated by its local
part G, then there are natural epimorphisms

Lmax(G) � L and L� Lmin(G),

so L is between the Lie algebras Lmax(G) and Lmin(G). We conclude:

Lemma 5.1. Let G be a local Lie algebra and let L be a Z-graded Lie algebra.
If G is a section of Lloc, then Lmin(G) is a section of L. �

5.2. Four basic simple Lie algebras of class S .

We start recalling the definitions of some Lie algebras of class S .

• The centerless Virasoro algebra is W = DerK[t, t−1]. It has a natural
grading, relative to which the element Ln := tn+1 d

dt is homogeneous of
degree n. We have h = K.L0.

• The Witt algebra is W (1) = DerK[t]; it is a graded subalgebra of W .

• The Lie algebra sl(2); it is the Lie subalgebra ofW with basis {L−1, L0, L1}.

• The contragredient Lie algebra G(2 2
2 2). It is generated by five elements

h, e1, e2, f1, f2 and defined by the following relations

[h, ei] = 2ei, [h, fi] = −2fi, [ei, fj ] = δi,j h, (1)

for any i, j ∈ {1, 2}, where, as usual, δi,j is the Kronecker symbol. It has
a Z-grading relative to which the ei’s have degree one, h has degree zero
and the fi’s have degree −1.

These four Z-graded Lie algebras and their rescalings are simple Lie alge-
bras of class S (for the simplicity of G(2 2

2 2) see [5]). They play a central role
in what follows.
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5.3. Non-Abelian free subalgebras of Z-graded Lie algebras.

Let G(2 2
2 2)loc be the local part of the Lie algebra G(2 2

2 2). Since G(2 2
2 2) is

generated by its local part and is defined by local relations, we have

G(2 2
2 2) = Lmax(G(2 2

2 2)loc).

Lemma 5.2. We have G(2 2
2 2) = Lmin(G(2 2

2 2)loc).

Proof. This follows because the Lie algebra G(2 2
2 2) is simple [5]. �

Lemma 5.3. Let L be a Z-graded Lie algebra. If G(2 2
2 2)loc is a section of

Lloc, the Lie algebra L contains a non-Abelian free Lie subalgebra.

Proof. By Lemmas 5.1 and 5.2, G(2 2
2 2) is a section of L. The Lie subalgebra

of G(2 2
2 2) generated by e1 and e2 is free of rank two. Hence L admits a

non-Abelian free section, which can be lifted to a Lie subalgebra of L. �

5.4. A simple criterion for a section isomorphic to G(2 2
2 2).

Let L be a Z-graded Lie algebra of class S with α ∈ L∗0 as above. In this
subsection and in the next two, we do not assume that L is simple as a
Z-graded algebra. We will describe criteria for the existence of a section of
L isomorphic to G(2 2

2 2).

For n 6= 0, let Bn : L−n × Ln → K be the bilinear map

Bn : (x, y) ∈ L−n × Ln 7→ α([x, y]).

Let Kn and K−n be its right kernel and its left kernel. Since α([L0,L0]) = 0,
the bilinear map Bn is L0-equivariant. Also K0 := Kerα is an ideal of L0.

Given a finite-dimensional L0-module M , its cosocle is its maximal semi-
simple quotient. It is denoted by Cosoc M . For any β ∈ (L0/[L0,L0])∗,
let Kβ be the one-dimensional L0-module on which any h ∈ L0 acts by
multiplication by β(h). Obviously, Cosoc Ln/Kn is direct sum of copies of
Knα.

Lemma 5.4. Assume that Cosoc Ln/Kn has dimension ≥ 2 for some n > 0.
Then, up to a rescaling, G(2 2

2 2) is a section of L.

Proof. Since we did not assume that L is simple, we can assume that n = 1.
By assumption, there is a L0-module I1 with K1 ⊂ I1 ⊂ L1 such that L1/I1

is isomorphic to Kα ⊕ Kα. Let L′−1 ⊂ L−1 be the orthogonal of I1 with
respect to the bilinear map B1.

By definition L′−1 contains K−1 and the L0-module L′−1/K−1 is isomorphic
to K−α⊕K−α. It follows that I := K−1⊕K0⊕I1 is a local ideal of the local
Lie algebra G := L′−1⊕L0⊕L1. Since G/I is clearly isomorphic to the local
part of G(2 2

2 2), it follows from Lemmas 5.1 and 5.2 that G(2 2
2 2) is a section of

L. �
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5.5. Cyclic modules.

Let g be a Lie algebra and let M be a finite-dimensional g-module.

Lemma 5.5. There is a polynomial P such that the dimension of any cyclic
U(g)-module in M⊗n is bounded by P (n), for any n ≥ 1.

Proof. For any positive integer n, let In be the annihilator of the U(g)-
module M⊗n. Since the coproduct is cocommutative, U(g)/In embeds into
H0(Sn,End(M)⊗n), where the symmetric group Sn acts on End(M)⊗n by
permutation of the factors. Thus for any cyclic U(g)-submodule C of M⊗n,
the inequality

dimC ≤ dim U(g)/In ≤ dimSn(End(M)) =
(
n+(dimM)2−1

n

)
is a polynomial bound of degree (dimV )2 − 1. �

5.6. An improved criterion for a section isomorphic to G(2 2
2 2).

Using the notation of the previous sections, we show that the conclusion of
Lemma 5.4 holds with a weaker hypothesis.

Lemma 5.6. Assume that Ln/Kn has dimension ≥ 2 for some n > 0. Then,
up to a rescaling, G(2 2

2 2) is a section of L.

Proof. We can assume that n = 1 and that L is generated by its local part.
This implies that L+ is generated by L1.

By Lemma 5.5, the dimensions of the cyclic L0-modules in L⊗n1 are boun-
ded by a polynomial on n. Obviously, the same property holds for its quotient
Ln/Kn. However, by Lemma 7.9 of [9], the function n 7→ rk Bn = dimLn/Kn
has infinite growth (i.e. it is not bounded by a polynomial). Hence, when
n goes to ∞, the minimal number of generators of the L0-module Ln/Kn is
arbitrarily large. Thus the function n 7→ dim Cosoc(Ln/Kn) is unbounded.

Therefore, for some n, we have

dim Cosoc(Ln/Kn) ≥ 2.

Thus by Lemma 5.4, G(2 2
2 2) is a section of L. �

5.7. The dichotomy for the class S .

From now on, we assume that the Lie algebra L of class S is simple. It is
implicitly proved in [9, Chapter 8] that L is isomorphic toW orW (1), under
the hypothesis

all bilinear forms Bn have rank ≤ 1.(H1)

Unfortunately, the explicit hypothesis used in [9, Chapter 8] is

the Lie algebra L has intermediate growth.(H2)

It would be long to go into the details of loc. cit. to explain why (H1) can
be used instead of (H2). Here we can assume that L is finitely generated.
Under this additional hypothesis, the next lemma gives an easy explanation.
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Lemma 5.7. If L is finitely generated, then (H1) implies (H2).

Proof. Let M := ⊕n∈Z L∗n be the graded dual of the adjoint module. The
hypothesis (H1) means that the Z-graded space L.α has homogenous com-
ponents of dimension ≤ 1. By Lemma 3.4, we see that M has intermediate
growth, i.e. (H2) holds. �

The following result is implicitly proved in [9], even without the hypothesis
of finite generation.

Theorem 5.8. Let L be a simple Z-graded Lie algebra of class S . Assume
that L is finitely generated. Then

(i) either L is isomorphic to sl(2), W (1) or W ,
(ii) or L contains a nonabelian free Lie algebra.

Proof. (i) First assume that the bilinear form Bn has rank ≤ 1 for any n.
By Lemma 5.7, L has intermediate growth. Thus it follows from Proposition
8.9 of [9] that L is isomorphic to sl(2), W (1) or W .

(ii) Otherwise, the bilinear form has rank ≥ 2 for some n. By Lemma 5.6
the Lie algebra G(2 2

2 2) is a section of L. By Lemma 5.3, the Lie algebra L
contains a nonabelian free Lie algebra. �

Corollary 5.9. Let L be a simple Z-graded Lie algebra of class S . Then
U(L) is not Noetherian, except if L is isomorphic to sl(2).

Proof. Assume that L is infinite-dimensional. By Lemma 2.1(b), we can
assume that L is finitely generated. By Theorem 5.8, L contains a subalgebra
isomorphic to the Witt algebraW (1) or a nonabelian free subalgebra. In the
first case, Theorem 1.2 implies that U(L) is not Noetherian. In the second
case, we already observed that the enveloping algebra of a nonabelian free
Lie algebra is not Noetherian, so neither is U(L). �

6. Z-graded Lie algebras of rank ≥ 2

In this section we investigate the Noetherianity condition for Z-graded Lie
algebras of rank ≥ 2.

6.1. Weakly Z-graded Lie algebras.

We will encounter Lie algebrasM with a decompositionM = ⊕Mn satis-
fying [Mn,Mm] ⊂Mn+m where the homogeneous components could be of
infinite dimension; we shall call them weakly Z-graded Lie algebras.

Lemma 6.1. Let L = ⊕n∈Z Ln be a weakly Z-graded Lie algebra such that
U(L) is Noetherian. Then Ln is finite-dimensional for any n ∈ Z \ 0.

Moreover if L is simple and L 6= L0, then L0 is also finite-dimensional.

Proof. As before, set L+ = L>0 and L− = L<0.
By Lemma 2.1, U(L+) is Noetherian, hence L+ is finitely generated. It

follows easily that all homogeneous components of L+ are finite-dimensional.
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Similarly, all homogenous components of L− are finite-dimensional, which
proves the first assertion.

Assume now that L is simple and L 6= L0. Since L+ and L− are finitely
generated, there is an integer d > 0 such that ⊕1≤i≤d Li generates L+ and
⊕1≤i≤d L−i generates L−. Set

M = ⊕1≤i≤d Li
⊕
⊕1≤i≤d L−i

and let K be the annhilator in L0 of the L0-module M . Since M is a finite-
dimensional L0-module, L0/K = 0 is finite-dimensional. We have

[K,L±] = 0, [K,L0] ⊂ L0, and K ⊂ L0.(2)

Hence K is a proper ideal of L. Since L is simple, the ideal K is trivial. It
follows that L0 is finite-dimensional. �

6.2. The hypothesis (H).

Let L be a Z-graded Lie algebra. Consider the following hypothesis

There exist α̃, β̃ ∈ Q, β̃ /∈ Q.α̃, such that (β̃ + Z.α̃) ∩∆ is infinite.(H)

Lemma 6.2. If L satisfies the hypothesis (H), then U(L) is not Noetherian.

Proof. For any integer k ≥ 1, set ∆(k) = (k.β̃ + Z.α̃) ∩∆ and

Mk = ⊕γ̃∈∆(k) Lγ̃ .
Since we have [Mk,Ml] ⊂Mk+l for any k, l ≥ 1, the vector space

M := ⊕k≥1Mk

is a weakly Z-graded Lie algebra. Since α̃ and β̃ are linearly independent
over Q, the sets ∆(k) are pairwise disjoint. HenceM is a Lie subalgebra of
L. SinceM1 is infinite-dimensional, by Lemma 6.1 U(M) is not Noetherian
and by Lemma 2.1 U(L) is not Noetherian. �

6.3. Constructions of ideals in Lie algebras.

The next two lemmas show that certain subspaces of a Lie algebra are indeed
ideals. Results of this kind are useful in the study of simple Lie algebras.

Let L be a Lie algebra.

Lemma 6.3. [7, Lemma 6] Let A and B be linear subspaces of L such that
L = A+ B and [A,B] ⊂ B. Then B + [B,B] is an ideal of L. �

Let L be a linear subspace of L. We say that an element x ∈ L is locally
L-nilpotent if we have Ad(L)1+n(x) = 0 for n � 0. Let N be the space of
all locally L-nilpotent elements and set I := ∩N≥0 Ad(L)N (L).

Lemma 6.4. The subspace N is a Lie subalgebra and I is a N -submodule.
Consequently, if N = L, the subspace I is an ideal.

Proof. Let x, y ∈ L. For any N ≥ 0, we have
(i) Ad(L)N ([x, y]) ⊂

∑
0≤k≤N ([Ad(L)k(x),Ad(L)N−k(y)]),
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(ii) [x,Ad(L)N (y)] ⊂
∑

0≤k≤N Ad(L)N−k([Ad(L)k(x), y]).

The first identity shows that [N ,N ] ⊂ N , i.e. N is a Lie subalgebra. The
second identity shows that [N , I] ⊂ I, i.e. I is a N -submodule. �

6.4. A dichotomy for the Z-graded Lie algebras of rank ≥ 2.

Let L be a simple Z-graded Lie algebra of rank ≥ 2. We now define two
hypothetical properties, and show that any such L satisfies one of them. By
the end of the section it will be clear that these properties are mutually
exclusive.

To start with, we define the notion of a string. Let α̃ ∈ Q and β̃ ∈ ∆.
There are a, b ∈ Z ∪ {±∞} with a < 0 < b such that

(i) β̃ + kα̃ belongs to ∆ for any k ∈]a, b[, but

(ii) neither β̃ + aα̃ nor β̃ + bα̃ belongs to ∆.

The set {β̃ + kα̃ | k ∈]a, b[} is called the α̃-string through β̃.

The first hypothetical property (Hre) is the following:

There exist α̃ ∈ ∆re, β̃ ∈ ∆, β̃ /∈ Q.α̃, such that

the α̃-string through β̃ is infinite.
(Hre)

The hypothesis (Hre) is obviously stronger than (H).

The second hypothetical property is the notion of weak integrability. Fol-
lowing [9], we say that L is weakly integrable if, for any α̃ ∈ ∆re, we have⋂

n≥0

Ad(Lα̃)n(L) = 0.

Lemma 6.5. Let L be a simple Z-graded algebra of rank ≥ 2. Then either
(a) L satisfies the hypothesis (Hre), or
(b) L is weakly integrable.

Proof. Assuming that L does not satisfy (Hre), we will prove that L is weakly
integrable. Let α̃ ∈ ∆re, let N be the space of locally Lα̃-nilpotent elements
and set

I = ∩N≥0 Ad(Lα̃)N (L) A = ⊕
β̃∈Q.α̃ L

β̃ and B =
⊕
β̃ /∈Q.α̃

Lβ̃.

First, we prove that L = N . For any β̃ /∈ Q.α̃, there is an integer N > 0

such that Lβ̃+Nα̃ = 0. It follows that AdN (Lα̃)(Lβ̃) = 0. Therefore N
contains Lβ̃ for any β̃ /∈ Q.α̃, i.e. N contains B. By Lemma 6.4, N contains
B + [B,B]. Since [A,B] ⊂ B and L = A + B, the space B + [B,B] is an
ideal by Lemma 6.3. By simplicity of L, we deduce that B+ [B,B] = L, and
therefore we have N = L.
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Next, we prove that I = 0. Let β̃ be a root which is not proportional
to α̃. There is an integer N > 0 such that Lβ̃−Nα̃ = 0. Hence Lβ̃ is not
contained in AdN (Lα̃)(L). It follows that I does not contain Lβ̃ . However,
by Lemma 6.4, I is an ideal of L. Hence we have I = 0. In other words, L
is weakly integrable. �

6.5. Non-Noetherianity for Z-graded Lie algebras of rank ≥ 2.

Corollary 6.6. Let L be a simple Z-graded algebra of rank ≥ 2. If U(L) is
Noetherian, then L is finite-dimensional.

Proof. By Lemma 6.5, L satisfies the hypothesis (Hre) or L is weakly inte-
grable. In the first case, U(L) is not Noetherian by Lemma 6.2.

In the latter case, L is isomorphic to an affine Lie algebra or it has finite
dimension by [9, Theorem 4]. But if L is an affine Lie algebra, then it has an
infinite-dimensional abelian subalgebra, hence U(L) is not Noetherian. �

7. Proof of the Main Result

7.1. The endomorphisms of simple Zn-graded modules.

Let L be a Zn-graded Lie algebra and let M be a simple Zn-graded module.

Lemma 7.1. If M is not simple (as a non-graded module), then there exists
θ ∈ EndL(M) which is invertible and homogeneous of degree p for some
p ∈ Zn\0.

Proof. Any v ∈M decomposes as v =
∑

m vm where vm ∈Mm. By defini-
tion the support of v is the set

supp(v) := {n ∈ Zn | vn 6= 0}.

Assume that M is not simple. Let v ∈ M \ 0 be the generator of a proper
submodule with a support of minimal cardinality. Since M is simple as a
Zn-graded module, v is not homogenous. Hence supp(v) contains distinct
elements m,n.

We claim that Ann(vn) ⊂ Ann(vm), where Ann(m) denotes the annihila-
tor of m in U(L), for any m ∈M . Since Ann(vn) is Zn-graded, it is enough
to show that any homogenous element u ∈ Ann(vn) belongs to Ann(vm).
Since u.vn = 0, the support u.v lies in (d + supp(v)) \ {d + n}, where d is
the degree of u. By minimality of the cardinality of supp(v), we deduce that
u.v = 0 which proves the claim.

Hence there exists θ ∈ EndL(M) mapping vn to vm. Clearly, θ is ho-
mogeneous of degree p = m − n ∈ Zn. Since Ker θ and Im θ are graded
submodules, Ker θ = 0 and Im θ = M , hence θ is invertible. �
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7.2. Simple Zn-graded Lie algebras which are not simple.

Let L be a Zn-graded Lie algebra. The algebra of endomorphisms of the
adjoint module is called the centroid of L.

Lemma 7.2. If the simple Zn-graded Lie algebra L is not simple as a Lie
algebra, then it contains an infinite-dimensional abelian subalgebra.

Proof. By Lemma 7.1, there is an element θ 6= 0 in the centroid which is
homogeneous of degree m ∈ Zn \ 0. Let 0 6= x ∈ L be an homogeneous
element. Let m be the linear span of {θp(x) : p ∈ Z}. For p, q ∈ Z, we have

[θp(x), θq(x)] = θp+q([x, x]) = 0,

hence m is a abelian subalgebra. Moreover the elements θp(x) are nonzero
elements of different degrees, hence m is infinite-dimensional. �

Corollary 7.3. Assume that the simple Zn-graded Lie algebra L is not sim-
ple as a Lie algebra. Then U(L) is not Noetherian.

Proof. This is a consequence of Lemmas 7.2 and 2.1 (d). �

7.3. Proof of the main result.

We can now prove the main Theorem of this article.

Theorem 1.3. Let L be a simple Zn-graded Lie algebra of infinite dimension.
Its enveloping algebra U(L) is not Noetherian.

Proof. We can assume that L is simple as a Lie algebra, otherwise U(L) is
not Noetherian by Corollary 7.3.

There exists m = (m1, . . . ,mn) 6= 0 such that Lm 6= 0. Without loss
of generality, we can assume that m1 6= 0. Define the weakly Z-graded Lie
algebra L′ (which is L as Lie algebra) by the requirement that

L′m =
⊕

(m2,...,mn)∈Zn−1

L(m,m2,...,mn).

We can assume that all homogeneous components of L′ are finite-dimen-
sional, otherwise U(L) is not Noetherian by Lemma 6.1.

Therefore L′ is a simple Z-graded Lie algebra. If L′ has rank one, U(L) is
not Noetherian by Corollaries 4.3 and 5.9. Otherwise L′ has rank ≥ 2 and
U(L) is not Noetherian by Corollary 6.6. �

Remark 7.4. Let L be a Zn-graded Lie algebra. If L has a simple infinite-
dimensional graded section, then Theorem 1.3 implies that U(L) is not Noe-
therian. In other words, if U(L) is Noetherian, then any simple graded sec-
tion has finite dimension, in particular any maximal graded ideal has finite
codimension.

Remark 7.5. In the theorem, we had assumed that all homogenous com-
ponents of L are finite-dimensional. In fact we can replace this condition by
the weaker hypothesis that L 6= L0, see Lemma 6.1.
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