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Abstract

For each field F and positive integers m,n, d with (m,n) 6= (1, 1),
Farb and Wolfson defined the certain affine variety Polyd,mn (F) as gen-
eralizations of spaces first studied by Arnold, Vassiliev, Segal and
others. As a natural generalization, for each fan Σ and r-tuple D =
(d1, · · · , dr) of positive integers, the authors also defined and consid-
ered a more general space PolyD,Σ

n (F), where r is the number of one
dimensional cones in Σ. This space can also be regarded as a gener-
alization of the space Hol∗D(S

2, XΣ) of based rational curves from the
Riemann sphere S2 to the toric variety XΣ of degree D, where XΣ

denotes the toric variety (over C) corresponding to the fan Σ.
In this paper, we define a space QD,Σ

n (F) (F = R or C) which is its
real analogue and can be viewed as a generalization of spaces consid-
ered by Arnold, Vassiliev and others in the context of real singularity
theory. We prove that homotopy stability holds for this space and
compute the stability dimension explicitly.

1 Introduction

1.1 Historical survey. For a complex manifold X, let Map∗(S2, X) =
Ω2X (resp. Hol∗(S2, X)) denote the space of all based continuous maps
(resp. based holomorphic maps) from the Riemann sphere S2 to X. The
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relationship between the topology of the space Hol∗(S2, X) and that of the
space Ω2X has played a significant role in several different areas of geometry
and mathematical physics (e.g. [5], [4]). In particular there arose the question

whether the inclusion Hol∗(S2, X)
⊂−→ Ω2X is a homotopy equivalence (or

homology equivalence) up to a certain dimension, which we will refer to as
the stability dimension. Since G. Segal [32] studied this problem for the case
X = CPm, a number of mathematicians have investigated various closely
related ones (e.g. [1], [16], [18], [23], [24], [28], [29], [30]).

Similar stabilization results appeared in the work of Arnold ([2], [3]), and
Vassiliev ([33], [34]) in connection with singularity theory. They considered
spaces of polynomials without roots of multiplicity greater than a certain nat-
ural number. These spaces are examples of “complement of discriminants”
in Vassiliev’s terminology [33] (cf. [21]).

Inspired by these results, Farb and Wolfson [14] introduced a new family
of spaces Polyd,mn (F), which is defined for every field F and integersm,n, d ≥ 1
with (m,n) 6= (1, 1). The present authors generalised this further in [27], by
considering a fan Σ (or toric variety) and a field F, and defined a space
PolyD,Σ

n (F) as follows.

Definition 1.1 ([27]). Let F be a field with its algebraic closure F, and let
Σ be a fan in Rm such that

(1.1) Σ(1) = {ρ1, · · · , ρr},

where Σ(1) denotes the set of all one dimensional cones in Σ.1 Let XΣ denote
the toric variety over C associated to the fan Σ, and let N denote the set of
all positive integers.

For each r-tuple D = (d1, · · · , dr) ∈ Nr, let PolyD,Σ
n (F) denote the space

of all r-tuples (f1(z), · · · , fr(z)) ∈ F[z]r of monic polynomials satisfying the
following two conditions (1.1a) and (1.1b):

(1.1a) fi(z) ∈ F[z] is an F-coefficients monic polynomial of the degree di for
each 1 ≤ i ≤ r.

(1.1b) For each σ = {i1, · · · , is} ∈ I(KΣ), polynomials fi1(z), · · · , fis(z) have
no common root α ∈ F of multiplicity ≥ n.

Here, KΣ denotes the underlying simplicial complex of the fan Σ on the
index set [r] = {1, 2, · · · , r} defined by (2.8), and the set I(KΣ) is defined by
I(KΣ) = {σ ⊂ [r] : σ 6∈ KΣ} as in (2.2).

1Formal definitions and a description of the notation related to toric varieties and their
fans will be given in §2.
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Remark 1.2. (i) By using the classical theory of resultants, one can show
that PolyD,Σ

n (F) is an affine variety over F and that it is the complement of
the set of solutions of a system of polynomial equations (called a generalized
resultant) with integer coefficients. For this reason, we call it the space of
non-resultant systems of bounded multiplicity determined by a toric variety.

(ii) Let 0m = (0, · · · , 0) ∈ Rm, and let Σ denote the fan in Rm such that
Σ(1) = {ρ1, · · · , ρr} as in (1.1). For each 1 ≤ k ≤ r, let nk ∈ Zm denote the
primitive generator of ρk as in Definition 2.4. Then

(1.2) PolyD,Σ
n (C) = Hol∗D(S

2, XΣ) if n = 1 and
∑r

k=1 dknk = 0m,

where Hol∗D(S
2, XΣ) denotes the space of based rational curves f : S2 → XΣ

of degree D (see [24] for further details). Thus, the space PolyD,Σ
n (C) can be

regarded as a generalization of the space Hol∗D(S
2, XΣ).

Now recall the following homotopy stability result.

Theorem 1.3 ([27]). Let D = (d1, · · · , dr) ∈ Nr, n ≥ 2, and let XΣ be an
m dimensional simply connected non-singular toric variety over C such that
the condition (2.19a) holds.

(i) If
∑r

k=1 dknk = 0m, then the natural map

iD : PolyD,Σ
n (C)→ Ω2

DXΣ(n) ' Ω2
0XΣ(n) ' Ω2ZKΣ

(D2n, S2n−1)

is a homotopy equivalence through dimension dpoly(D; Σ, n), where we denote
by ZK(X,A) and XΣ(n) the polyhedral product of a pair (X,A) and the orbit
space given by (2.12) and Definition 2.3, respectively.

(ii) If
∑r

k=1 dknk 6= 0m, there is a map

jD : PolyD,Σ
n (C)→ Ω2ZKΣ

(D2n, S2n−1)

which is a homotopy equivalence through dimension dpoly(D; Σ, n).
Hereafter we will denote by bxc the integer part of a real number x. More-

over, we let dmin = min{d1, · · · , dr} and rmin(Σ) denote the positive integers
given by (2.38), and dpoly(D; Σ, n) denote the positive integer defined by

(1.3) dpoly(D; Σ, n) = (2nrmin(Σ)− 3)bdmin/nc − 2.

1.2 Basic definitions. In this paper, we replace the space PolyD,Σ
n (F) by

its real analogue QD,Σ
n (F), where F = C or R. Since the space QD,Σ

n (F) is
defined only for the fields F = R and C, we will use the letter K to refer to
both of them at the same time.

The formal definition of QD,Σ
n (K) is given below.
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Definition 1.4. Let Σ be a fan in Rm such that Σ(1) = {ρ1, · · · , ρr} as in
(1.1).

(i) For each r-tuple D = (d1, · · · , dr) ∈ Nr and K = C or R, let QD,Σ
n (K)

denote the space of all r-tuples (f1(z), · · · , fr(z)) ∈ K[z]r of K-coefficients
monic polynomials satisfying the following two conditions (1.3a) and (1.3b):

(1.3a) For each 1 ≤ i ≤ r, fi(z) ∈ K[z] is an K-coefficients monic polynomial
of the degree di.

(1.3b) For each σ = {i1, · · · , is} ∈ I(KΣ) = {τ ⊂ [r] : τ /∈ KΣ}, polynomials
fi1(z), · · · , fis(z) have no common real root α ∈ R of multiplicity ≥ n
(but may have a common root α ∈ C \ R of any multiplicity).

(ii) Let d(D; Σ, n,K) denote the positive integer defined by

d(D; Σ, n,K) = (nrmin(Σ) dimR K− 2)bdmin/nc − 2

=

{
(2nrmin(Σ)− 2)bdmin/nc − 2 if K = C,
(nrmin(Σ)− 2)bdmin/nc − 2 if K = R.

(1.4)

Remark 1.5. (i) It is easy to see that the following inclusion holds:

(1.5) PolyD,Σ
n (K) ⊂ QD,Σ

n (K) for K = R or C.

(ii) Note that the space QD,Σ
n (C) was already investigated for the case

n = 1 in [25],2 and that the space QD,Σ
n (K) was already extensively studied

in [26] for the the case (XΣ, D) = (CPm−1, Dm(d)),
3 where Dm(d) ∈ Nm

denotes the m-tuple of positive integers defined by

(1.6) Dm(d) = (d, d, · · · , d) (m-times).

1.3 The main results. In this paper we will study the homotopy type
of the space QD,Σ

n (K) for K = C or R. In particular, we will show that
Atiyah-Jones-Segal type homotopy stability holds for the space QD,Σ

n (K).
In our result we will need the following two conditions (1.6a) and (1.6b).4

(1.6a) dmin ≥ n ≥ 1.

2It is denoted by Pol∗D(S1, XΣ) = QD,Σ
n (C) for n = 1 in [25].

3It is denoted by Qd,m
n (K) = QD,Σ

n (K) in [26] for (XΣ, D) = (CPm−1, Dm(d)).
4If the condition (1.6a) (resp. (1.6b)) is satisfied, the space QD,Σ

n (C) (resp. QD,Σ
n (R))

is simply connected (see Corollary 7.7). Moreover, if the condition (1.6a) or (1.6b) is
satisfied, the two conditions bdmin/nc ≥ 1 and d(D; Σ, n,K) ≥ 1 hold. Thus, the main
results (Theorem 1.6, Corollary 2.17) are not vacuous. Note that the condition (1.6a)
holds if the condition (1.6b) is satisfied.
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(1.6b) One of the following three conditions holds:

(i) dmin ≥ n ≥ 2.

(ii) n = 1, dmin ≥ 2, and rmin(Σ) ≥ 4.

(iii) n = dmin = 1 and rmin(Σ) ≥ 5.

Then we can state the main result of this article as follows.

Theorem 1.6 (Theorems 2.14 and 2.15). Let n ∈ N, let D = (d1, · · · , dr) ∈
Nr, and let XΣ be an m dimensional simply connected non-singular toric
variety satisfying the condition (2.19a).

(i) If the condition (1.6a) is satisfied, the map (given by (2.28) and (10.1))

jD,n,C : QD,Σ
n (C)→ ΩZKΣ

(D2n, S2n−1)

is a homotopy equivalence through dimension d(D; Σ, n,C).
(ii) If the condition (1.6b) is satisfied, the map (given by (2.33) and (10.3))

jD,n,R : QD,Σ
n (R)→ ΩZKΣ

(Dn, Sn−1)

is a homotopy equivalence through dimension d(D; Σ, n,R).

Remark 1.7. Let g : V → W be a based map.
(i) The map g : V → W is called a homotopy (resp. homology) equivalence

through dimension N if the induced homomorphism

(1.7) g∗ : πk(V )→ πk(W ) (resp. g∗ : Hk(V ;Z)→ Hk(W ;Z))

is an isomorphism for any k ≤ N .
(ii) The map g : V → W is called a homotopy (resp. homology) equiva-

lence up to dimension N if the induced homomorphism (1.7) is an isomor-
phism for any k < N and an epimorphism for k = N .

(iii) When G is a topological group and a map g is a G-equivariant map
between G-spaces V and W , the map g is called a G-equivariant homo-
topy (resp. G-equivariant homology) equivalence through dimension N if the
restriction gH = g|V H : V H → WH is a homotopy (resp. homology) equiva-
lence through dimension N for any subgroup H ⊂ G. Here, for each G-space
X and a subgroup H ⊂ G, let XH denote the H-fixed subspace of X defined
by

(1.8) XH = {x ∈ X : h · x = x for any h ∈ H}.
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1.4 Organization. This paper is organized as follows. In §2 we recall the
basic definitions and facts which are needed for the statements of the results
of this article. After that, precise statements of the main results (Theorems
2.14, 2.15, and Corollary 2.16) are given. In §3 we recall several basic facts
related to polyhedral products and toric varieties. In §4, we define and
summarize the main facts about the non-degenerate simplicial resolution.
By using this non-degenerate simplicial resolution we construct the Vassiliev
spectral sequence. In §5 we define the stabilization maps, and in §6, we
construct the truncated spectral sequence induced from the spectral sequence
obtained in §4. By using this truncated spectral sequence, we shall prove the
homology stability result (Theorems 6.5, 6.8, and Corollary 6.6). In §7 we
investigate the connectivity of the space QD,Σ

n (K). In particular, we prove
that the space QD,Σ

n (C) (resp. QD,Σ
n (R)) is simply connected if the condition

(1.6a) (resp. (1.6b)) is satisfied. In §8 we consider the configuration space
model for the space QD,Σ

n (K) and recall the stabilized horizontal scanning
map (see Theorem 8.7). In §9 we prove the stability result (Theorem 9.2),
and in §10 we use it to prove the main results (Theorems 2.14, 2.15, and
Corollary 2.16).

2 Toric varieties and the main results

In this section we recall several basic definitions and facts related to toric
varieties (convex rational polyhedral cones, toric varieties, fans of toric va-
rieties, polyhedral products, homogenous coordinate, rational curves on a
toric variety etc). Then we use these definitions and notations to give pre-
cise statements of the main results of this paper. From now on, we al-
ways assume that K = C or R. Moreover, if dmin < n, bdmin/nc = 0 and
d(D; Σ, n,K) = −2 < 0. So we also assume that dmin ≥ n ≥ 1.

2.1 Fans, toric varieties and Polyhedral products. A convex rational
polyhedral cone in Rm is a subset of Rm of the form

(2.1) σ = Cone(S) = Cone(m1, · · · ,ms) =

{
s∑

k=1

λkmk : λk ≥ 0

}

for a finite set S = {m1, · · · ,ms} ⊂ Zm. The dimension of σ is the dimen-
sion of the smallest subspace of Rm which contains σ. A convex rational
polyhedral cone σ is called strongly convex if σ ∩ (−σ) = {0m}, where we
set 0m = 0 = (0, 0, · · · , 0) ∈ Rm. A face τ of a convex rational polyhedral
cone σ is a subset τ ⊂ σ of the form τ = σ ∩ {x ∈ Rm : L(x ) = 0} for some
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linear form L on Rm, such that σ ⊂ {x ∈ Rm : L(x) ≥ 0}. Note that if σ is
a strongly convex rational polyhedral cone, so is any of its faces.5

Definition 2.1. Let Σ be a finite collection of strongly convex rational poly-
hedral cones in Rm.

(i) The set Σ is called a fan (in Rm) if the following two conditions hold:

(2.1a) Every face τ of σ ∈ Σ belongs to Σ.

(2.1b) If σ1, σ2 ∈ Σ, σ1 ∩ σ2 is a common face of each σk and σ1 ∩ σ2 ∈ Σ.

(ii) An m dimensional irreducible normal variety X (over C) is called a
toric variety if it has a Zariski open subset Tm

C = (C∗)m and the action of
Tm

C on itself extends to an action of Tm
C on X.

The most significant property of a toric variety is that it is characterized
up to isomorphism entirely by its associated fan Σ. We denote by XΣ the
toric variety associated to a fan Σ (see [11] for the details).

(iii) Let K be some set of subsets of [r]. Then the set K is called an
abstract simplicial complex on the index set [r] if the following condition
(†)K holds:

(†)K τ ⊂ σ and σ ∈ K, then τ ∈ K.

Remark 2.2. (i) It is well known that there are no holomorphic maps CP1 =
S2 → Tm

C except the constant maps, and that the fan Σ of Tm
C is Σ = {{0m}}.

Hence, without loss of generality, we will always assume that XΣ 6= Tm
C , and

that any fan Σ in Rm satisfies the condition {{0m}} $ Σ.
(ii) In this paper by a simplicial complex K we always mean an abstract

simplicial complex and we always assume that a simplicial complex K con-
tains the empty set ∅.

Definition 2.3. Let K be a simplicial complex on the index set [r] =
{1, 2, · · · , r}, and let (X,A) be a pair of based spaces.

(i) Let I(K) denote the collection of subsets σ ⊂ [r] defined by

(2.2) I(K) = {σ ⊂ [r] : σ /∈ K}.

(ii) Define the polyhedral product ZK(X,A) with respect to K by

ZK(X,A) =
⋃
σ∈K

(X,A)σ, where(2.3)

(X,A)σ = {(x1, · · · , xr) ∈ Xr : xk ∈ A if k /∈ σ}.
5When S is the emptyset ∅, we set Cone(∅) = {0m} and regard it as a strongly convex

rational polyhedral cone in Rm.

7



(iii) For each subset σ = {i1, · · · , is} ⊂ [r], let Lσ(Kn) denote the sub-
space of Knr defined by

Lσ(Kn) = {(x 1, · · · ,x r) ∈ (Kn)r = Knr : x i1 = · · · = x is = 0n}(2.4)

and let LK
n (K) denote the subspace of Knr defined by

(2.5) LK
n (K) =

⋃
σ∈I(K)

Lσ(Kn) =
⋃

σ⊂[r],σ /∈K

Lσ(Kn).

It is easy to see that

(2.6) ZK(Kn, (Kn)∗) = Knr \ LK
n (K), where (Kn)∗ = Kn \ {0n}.

2.2 Homogenous coordinates. Next we recall the basic facts about ho-
mogenous coordinates on toric varieties.

Definition 2.4. Let Σ % {{0m}} be a fan in Rm such that Σ(1) = {ρ1, · · · , ρr}
as in (1.1).

(i) For each 1 ≤ k ≤ r, we denote by nk ∈ Zm the primitive generator of
ρk, such that ρk ∩ Zm = Z≥0 · nk. Note that

(2.7) ρk = Cone(nk) = {xnk : x ≥ 0}.

(ii) Let KΣ denote the underlying simplicial complex of Σ defined by

(2.8) KΣ =
{
{i1, · · · , is} ⊂ [r] : n i1 ,n i2 , · · · ,n is span a cone in Σ

}
.

It is easy to see that KΣ is a simplicial complex on the index set [r].
(iii) Let GΣ,K ⊂ Tr

K = (K∗)r be the subgroup

(2.9) GΣ,K = {(µ1, · · · , µr) ∈ Tr
K :

r∏
k=1

(µk)
⟨nk,m⟩ = 1 for all m ∈ Zm},

where 〈u , v〉 =
∑m

k=1 ukvk for u = (u1, · · · , um) and v = (v1, · · · , vm) ∈ Rm.
(iv) There is a naturalGΣ,K-action on ZKΣ

(Kn, (Kn)∗) given by coordinate-
wise multiplication,

(2.10) (µ1, · · · , µr) · (x 1, · · · ,x r) = (µ1x 1, · · · , µrx r)

for ((µ1, · · · , µr), (x 1, · · · ,x r)) ∈ GΣ,K ×ZKΣ
(Kn, (Kn)∗), where we set

(2.11) µx = (µx1, · · · , µxn) if (µ,x ) = (µ, (x1, · · · , xn)) ∈ K∗ ×Kn.
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(v) Let XΣ,K(n) denote the corresponding orbit space

(2.12) XΣ,K(n) = ZKΣ
(Kn, (Kn)∗)/GΣ,K, where

(2.13) qn,K : ZKΣ
(Kn, (Kn)∗)→ XΣ,K(n) = ZKΣ

(Kn, (Kn)∗)/GΣ,K

denotes the corresponding canonical projection. In particular, we also write

(2.14) XΣ(n) = XΣ,C(n) and GΣ = GΣ,C if K = C.

Theorem 2.5 ([9]). If the set {nk}rk=1 of all primitive generators spans Rm

(i.e.
∑r

k=1 R · nk = Rm), there is a natural isomorphism

(2.15) XΣ
∼= ZKΣ

(C,C∗)/GΣ,C = XΣ(1) = XΣ,C(1).

Hence, we can identify XΣ(n) with the toric variety XΣ if n = 1.

Remark 2.6. (i) The notion of the quotient in algebraic geometry has sev-
eral variants (see [9, Theorem 2.1], [11, Theorem 5.1.11] for further details).
However, in this paper we only consider smooth varieties (as in the assump-
tions in section 2.3).

(ii) Let Σ be a fan in Rm as in Definition 2.4. Note that the fan Σ is
completely determined by the pair (KΣ, {nk}rk=1) (see [24, Remark 2.3] for
the details).

For each 1 ≤ i ≤ r, let Fi = (f1;i, · · · , fn;i) ∈ K[z0, · · · , zs]n be an n-tuple
of homogenous polynomials of the same degree di satisfying the following
condition:

(†) For each σ ∈ I(KΣ), the homogenous polynomials {fk;i}k∈σ have no
common real root except 0s+1 ∈ Rs+1.

In this situation, consider the map

F = (F1, · · · , Fr) : Rs+1 \ {0s+1} → (Kn)r = Krn given by

(2.16)

{
F (x ) = (F1(x ), · · ·Fr(x )) for x ∈ Rm+1 \ {0m+1},
Fi(x ) = (f1;i(x ), f2;i(x ), · · · , fn;i(x )) for 1 ≤ i ≤ r.

By the assumption (†), the homogenous polynomials {fk;i}k∈σ have no com-
mon real root except 0s+1 ∈ Rs+1 for each 1 ≤ i ≤ r and each σ ∈ I(KΣ).
Thus, we see that the image of the map F is contained in ZKΣ

(Kn, (Kn)∗),
and we may regard the map F as the map

(2.17) F = (F1, · · · , Fr) : Rs+1 \ {0s+1} → ZKΣ
(Kn, (Kn)∗).

The following lemma, whose proof we postpone until the end of §3, plays a
key role in the proof of the main result of this paper.
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Lemma 2.7 (cf. [10], Theorem 3.1; [20], Lemma 2.6). Suppose that the
set {nk}rk=1 of all primitive generators spans Rm. For each 1 ≤ i ≤ r, let
Fi = (f1;i, · · · , fn;i) ∈ K[z0, · · · , zs]n be an n-tuple of homogenous polynomials
of the same degree di satisfying the above condition (†).

Then there is a unique map f : RPs → XΣ,K(n) such that the diagram

(2.18)

Rs+1 \ {0s+1}
(F1,··· ,Fr)−−−−−−→ ZKΣ

(Kn, (Kn)∗)

γs,R

y qn,K

y
RPs f−−−−−−−→ XΣ,K(n)

is commutative if and only if the following condition holds:

(2.19)
r∑

k=1

dknk = 0m.

Here, we identify XΣ,K(n) = ZKΣ
(Kn, (Kn)∗)/GΣ,K, γs,R : Rs+1 \ {0s+1} →

RPs denotes the canonical Hopf fibering, and the map F = (F1, · · · , Fr) is
given by (2.17).

2.3 Assumptions. (i) From now on, let Σ % {{0m}} be a fan in Rm with
the set of one dimensional cones Σ(1) = {ρ1, · · · , ρr} as in Definition 2.4.
We also assume that XΣ is a simply connected and smooth (not necessarily
compact) toric variety satisfying the following condition:

(2.19a) There is an r-tuple D∗ = (d∗1, · · · , d∗r) ∈ Nr such that
∑r

k=1 d
∗
knk = 0m,

where nk ∈ Zm denotes the primitive generator of ρk for each 1 ≤ k ≤
r.

(ii) In this paper, we always identify

(2.20) XΣ,K(n) = ZKΣ
(Kn, (Kn)∗)/GΣ,K (K = R or C),

and for each (a1, · · · ,ar) ∈ ZKΣ
(Kn, (Kn)∗) ⊂ (Kn)r, we let [a1, · · · ,ar] ∈

XΣ,K(n) denote the point given by this equivalence class.
(iii) We also make the identification RP1 = S1 = R ∪ ∞, and let e =

(1, 1, · · · , 1) ∈ Kn. Under this identification, we choose the points ∞ and
∗ = [e , · · · , e ] as the base-points of RP1 and XΣ,K(n), respectively.

Remark 2.8. (i) Consider the toric variety XΣ = C2. Its fan Σ is given by

Σ =
{
{02}, ρ1 = Cone(e1), ρ2 = Cone(e2),Cone(e1, e2)

}
,
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where 02 = (0, 0), e1 = (1, 0), and e2 = (0, 1). The set of one dimensional
cones is Σ(1) = {ρ1, ρ2}, and the primitive generator of ρk (k = 1, 2) is
nk = ek. Thus r = 2 and

r∑
k=1

dknk =
2∑

k=1

dkek = 02 ⇔ (d1, d2) = (0, 0).

Hence, when XΣ = C2, there are no non-constant maps f : RPs → XΣ = C2

satisfying the condition (2.19), which is why we need the condition (2.19a).

(ii) It follows from [11, Theorem 12.1.10] that XΣ is simply connected if
and only if the following condition (††) holds:
(††) The set {nk}rk=1 of all primitive generators spans Zm over Z, i.e.∑r

k=1 Z · nk = Zm.

Thus we see that if XΣ is simply connected then the set {nk}rk=1 of all
primitive generators spans Rm. In particular, if XΣ is a compact smooth
toric variety then XΣ is simply connected (see Lemma 3.8).

(iii) Note that the space XΣ,R(n) is simply connected if n ≥ 2 (see Lemma
7.1). However, the space XΣ,R = XΣ,R(1) is not simply connected in general.
For example, consider XΣ = CPk for k ≥ 2. Then XΣ,R = XΣ,R(1) = RPk,
which not simply connected. However, the loop space ΩXΣ,R = ΩRPk has
two path-components ΩϵRPk (ϵ = 0, 1) and there is a homotopy equivalence
ΩϵRPk ' ΩSk for each ϵ = 0, 1. So each path-component ΩϵRPk is simply
connected if k ≥ 3.

(iv) Let s = 1 and suppose that all assumptions of Lemma 2.7 and the
condition (2.19) hold and that the coefficient of (z0)

di of the homogenous
polynomial fj;i(z0, z1) ∈ K[z0, z1] is 1 for 1 ≤ j ≤ n and 1 ≤ i ≤ r. By
Lemma 2.7, we obtain the map f : RP1 → XΣ,K(n) such that the diagram
(2.18) is commutative. Note that fj;i(z0, z1) = (z1)

difj;i(z0/z1, 1) for each
j, i. By setting z = z0/z1, we can identify each homogenous polynomial
fj;i(z0, z1) ∈ K[z0, z1] with the monic polynomial gj;i(z) = fj;i(z, 1) ∈ K[z] of
degree di in one variable z. Since

lim
|α|→∞

[F1(α), · · · , Fr(α)] = lim
|α|→∞

[α−d1F1(α), · · · , α−drFr(α)] = [e , · · · , e ]

(by (3.16)), this map f is the based map (RP1,∞)→ (XΣ,K(n), ∗) given by

(2.21) f(α) =

{
[F1(α), · · · , Fr(α)] if α ∈ R
[e , e , · · · , e ] if α =∞

for α ∈ R ∪ ∞ = RP1 = S1, where e = (1, · · · , 1) ∈ Kn and we set
Fi(α) = (g1;i(α), · · · , gn;i(α)) for each 1 ≤ i ≤ r.
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2.4 Spaces of algebraic maps of real bounded multiplicity. Now we
can define the space of algebraic maps. Recall that we use K to denote C or
R.

Definition 2.9. For a monic polynomial f(z) ∈ K[z] of degree d, let Fn(f)(z)
denote the n-tuple of monic polynomials of the same degree d defined by

(2.22) Fn(f)(z) = (f(z), f(z) + f ′(z), f(z) + f ′′(z), · · · , f(z) + f (n−1)(z)).

Note that a monic polynomial f(z) ∈ K[z] has a root α ∈ C of multiplicity
≥ n iff Fn(f)(α) = 0n ∈ Cn.

Remark 2.10. (i) Note that QD,Σ
n (C) is path-connected, and QD,Σ

n (R) is
path-connected if (n, rmin(Σ)) 6= (1, 2) (this will be explained in the proof of
Lemma 7.1 and Remark 8.4).

(ii) Let Z2 = {±1} denote the multiplicative cyclic group of order 2, and
let XZ2 denote the Z2-fixed point set of a Z2-space X as in (1.8). Complex
conjugation on C extends to a Z2-actions on the spaces ZKΣ

(Cn, (Cn)∗) and
QD,Σ

n (C) so that

(2.23) ZKΣ
(Rn, (Rn)∗) = ZKΣ

(Cn, (Cn)∗)Z2 , QD,Σ
n (R) = QD,Σ

n (C)Z2 .

It is easy to see that complex conjugation on C also naturally extends to a
Z2-action on XΣ(n) = ZKΣ

(Cn, (Cn)∗)/GΣ so that

(2.24) XΣ,R(n) = XΣ(n)
Z2 .

It follows from the definitions of the above actions that the following diagram
is commutative:

(2.25)

QD,Σ
n (R)

qn,R−−−→ XΣ,R(n) = ZKΣ
(Rn, (Rn)∗)/GΣ,R

iDn

y∩ iXn

y∩

QD,Σ
n (C)

qn,C−−−→ XΣ(n) = ZKΣ
(Cn, (Cn)∗)/GΣ,C

where let iDn and iXn denote the corresponding inclusion maps.
Note that QD,Σ

n (C) (resp. QD,Σ
n (R)) is simply connected if the condition

(1.6a) (resp. (1.6b)) is satisfied (this will be proved in Corollary 7.7).

Definition 2.11. Suppose that the condition (2.19a) holds, and let D =
(d1, · · · , dr) ∈ Nr be an r-tuple of positive integers satisfying the condition

(2.26)
r∑

k=1

dknk = 0m.

12



(i) First, consider the case K = C. By Lemma 2.7 and (2.21), one can
define a map

(2.27) iD,n,C : QD,Σ
n (C)→ ΩXΣ(n) by

iD,n,C(f)(α) =

{
[Fn(f1)(α), Fn(f2)(α), · · · , Fn(fr)(α)] if α ∈ R
[e , e , · · · , e ] if α =∞

for f = (f1(z), · · · , fr(z)) ∈ QD,Σ
n (C) and α ∈ R ∪ ∞ = S1, where we set

e = (1, 1, · · · , 1) ∈ Cn.

Since the space QD,Σ
n (C) is simply connected and Ωqn,C is a universal

covering (by (ii) of Remark 2.10 and (ii) of Corollary 3.10), the map iD,n,C
lifts to the space ΩZKΣ

(D2n, S2n−1), and there is a based map

(2.28) jD,n,C : QD,Σ
n (C)→ ΩZKΣ

(D2n, S2n−1) ' ΩZKΣ
(Cn, (Cn)∗)

such that the following equality holds:

(2.29) Ωqn,C ◦ jD,n,C = iD,n,C.

(ii) Next, consider the case K = R.
Recall the Z2-action on the spaces QD,Σ

n (C) andXΣ induced from complex
conjugation on C, and note that the map iD,n,C is a Z2-equivariant map.
Then, by (2.23) and (2.24), we see that

(2.30) iD,n,C(Q
D,Σ
n (R)) ⊂ ΩXΣ(n)

Z2 = ΩXΣ,R(n).

Thus, the restriction iD,n,C|QD,Σ
n (R) defines a map

(2.31) iD,n,R = iD,n,C|QD,Σ
n (R) : QD,Σ

n (R)→ ΩXΣ,R(n)

such that the following diagram is commutative:

(2.32)

QD,Σ
n (R)

iD,n,R−−−−−−→ ΩXΣ,R(n)
Ωqn,R←−−−−−
≃

ΩZKΣ
(Rn, (Rn)∗)

iDn

y ΩiXn

y Ωjn

y
QD,Σ

n (C)
iD,n,C−−−−−−→ ΩXΣ(n)

Ωqn,C←−−−−− ΩZKΣ
(Cn, (Cn)∗)

where the jn : ZKΣ
(Rn, (Rn)∗)

⊂−→ ZKΣ
(Cn, (Cn)∗) denotes the inclusion

map. Note that Ωqn,R is a homotopy equivalence (this will be proved in
Corollary 3.10). Thus, there is a based map

(2.33) jD,n,R : QD,Σ
n (R)→ ΩZKΣ

(Rn, (Rn)∗) ' ΩZKΣ
(Dn, Sn−1)

which satisfies the following equality:

(2.34) Ωqn,R ◦ jD,n,R = iD,n,R (up to homotopy).
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Remark 2.12. When
∑r

k=1 dknk = 0m, by (2.28) and (2.34), we obtain the
map

(2.35) jD,n,K : QD,Σ
n (K)→ ΩZKΣ

(Kn, (Kn)∗) ' ΩZKΣ
(Dd(K)n, Sd(K)n−1),

where the number d(K) is defined by

(2.36) d(K) = dimR K =

{
2 if K = C,
1 if K = R.

2.5 The numbers rmin(Σ) and d(D; Σ, n,K). Before stating the main
results of this paper, we need to define the positive integers rmin(Σ) and
d(D; Σ, n,K) (which already appeared in the statements of our results).

Definition 2.13. (i) We say that a set S = {n i1 , · · · ,n is} is a primitive
collection if Cone(S) /∈ Σ and Cone(T ) ∈ Σ for any proper subset T $ S.

(ii) For each r-tuple D = (d1, · · · , dr) ∈ Nr, define the positive integer
d(D,Σ, n,K) by

d(D; Σ, n,K) =

{
(2nrmin(Σ)− 2)bdmin

n
c − 2 if K = C

(nrmin(Σ)− 2)bdmin

n
c − 2 if K = R

(2.37)

as in (1.4), where rmin(Σ) and dmin are the positive integers given by

(2.38)

{
rmin(Σ) = min{s ∈ N : {n i1 , · · · ,n is} is a primitive collection},
dmin = min{d1, d2, · · · , dr}.

Note that

(2.39) rmin(Σ) ≥ 2.

2.6 The main results. The space QD,Σ
n (C) has already been extensively

studied in the case n = 1 in [25]. The main purpose of this paper is to
generalize the results of [25] to the space QD,Σ

n (K) for K = C or R and for
any n ≥ 1. These generalizations are stated below as the next two theorems
and their corollaries.

Theorem 2.14 (The case K = C). Let n ∈ N, let D = (d1, · · · , dr) ∈ Nr,
and let XΣ be an m dimensional simply connected non-singular toric variety
such that the two conditions (2.19a) and (1.6a) hold.

(i) If
∑r

k=1 dknk = 0m, then the map (given by (2.28))

jD,n,C : QD,Σ
n (C)→ ΩZKΣ

(D2n, S2n−1)
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is a homotopy equivalence through dimension d(D; Σ, n,C).
(ii) If

∑r
k=1 dknk 6= 0m, there is a map

jD,n,C : QD,Σ
n (C)→ ΩZKΣ

(D2n, S2n−1)

which is a homotopy equivalence through dimension d(D; Σ, n,C).6

Theorem 2.15 (The case K = R). Let n ∈ N, let D = (d1, · · · , dr) ∈ Nr,
and let XΣ be an m dimensional simply connected non-singular toric variety
such that the two conditions (2.19a) and (1.6b) hold.

(i) If
∑r

k=1 dknk = 0m, then the map (given by (2.33))

jD,n,R : QD,Σ
n (R)→ ΩZKΣ

(Dn, Sn−1)

is a homotopy equivalence through dimension d(D; Σ, n,R).
(ii) If

∑r
k=1 dknk 6= 0m, there is a map

jD,n,R : QD,Σ
n (R)→ ΩZKΣ

(Dn, Sn−1)

which is a homotopy equivalence through dimension d(D; Σ, n,R).

Corollary 2.16. Let n ∈ N, let D = (d1, · · · , dr) ∈ Nr, and let XΣ be an
m dimensional simply connected non-singular toric variety such that the two
conditions (2.19a) and (1.6a) hold.

(i) If
∑r

k=1 dknk = 0m, then the map iD,n,C : QD,Σ
n (C)→ ΩXΣ(n) induces

an isomorphism

(iD,n,C)∗ : πs(Q
D,Σ
n (C))

∼=−→ πs(ΩXΣ) ∼= πs+1(XΣ(n))

for any 2 ≤ s ≤ d(D; Σ, n,C).
(ii) If

∑r
k=1 dknk 6= 0m, the map iD,n,C : QD,Σ

n (C)→ ΩXΣ(n) defined by

(2.40) iD,n,C := Ωqn,C ◦ jD,n,C

induces an isomorphism

(iD,n,C)∗ : πs(Q
D,Σ
n (C))

∼=−→ πs(ΩXΣ(n)) ∼= πs+1(XΣ(n))

for any 2 ≤ s ≤ d(D; Σ, n,C).

6This map has to be constructed in a slightly different way from the one in (i) but we
shall use the same notation for both.
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Consider the Z2-action on the spaces QD,Σ
n (C) and ZKΣ

(D2n, S2n−1) in-
duced from the complex conjugation on C, where we identify

(2.41) D2n = {(x1, · · · , xn) ∈ Cn :
n∑

k=1

|xk|2 ≤ 1}.

Note that we can regard the space D2n as a Z2-space whose Z2 action is given
by the complex conjugation.

(2.42) (−1) · (x1, · · · , xn) = (x1, · · · , xn) for (x1, · · · , xn) ∈ D2n.

Since QD,Σ
n (R) = QD,Σ

n (C)Z2 , ZKΣ
(Dn, Sn−1) = ZKΣ

(D2n, S2n−1)Z2 , and
jD,n,R = (jD,n,C)

Z2 , we also obtain the following result.

Corollary 2.17. Let n ∈ N, let D = (d1, · · · , dr) ∈ Nr, and let XΣ be an
m dimensional simply connected non-singular toric variety satisfying the two
conditions (2.19a) and (1.6b). Then the map

jD,n,C : QD,Σ
n (C)→ ΩZKΣ

(D2n, S2n−1)

is a Z2-equivariant homotopy equivalence through dimension d(D; Σ, n,R).

Finally, we easily obtain the following result.

Corollary 2.18. Let n ∈ N, let D = (d1, · · · , dr) ∈ Nr, and let XΣ be a
simply connected compact non-singular toric variety such that the the condi-
tion (2.19a) holds. Let Σ(1) denote the set of all one dimensional cones in
Σ, and let Σ1 be any fan in Rm satisfying the condition

(2.43) Σ(1) ⊂ Σ1 $ Σ.

(i) If the condition (1.6a) holds and
∑r

k=1 dknk = 0m, then the map

jD,n,C : QD,Σ1
n (C)→ ΩZΣ1(D

2n, S2n−1)

is a homotopy equivalence through the dimension d(D; Σ1, n,C).
Moreover, the map iD,n,C : QD,Σ1

n (C)→ ΩXΣ1 induces an isomorphism

(iD,n,C)∗ : πs(Q
D,Σ1
n (C))

∼=−→ πs(ΩXΣ1(n))
∼= πs+1(XΣ1(n))

for any 2 ≤ s ≤ d(D; Σ1, n,C).
(ii) If the condition (1.6a) holds and

∑r
k=1 dknk 6= 0m, then there is a

map
jD,n,C : QD,Σ1

n (C)→ ΩZKΣ1
(D2n, S2n−1)

16



which is a homotopy equivalence through dimension d(D; Σ1, n,C). Moreover,
the map iD,n,C : QD,Σ1

n (C)→ ΩXΣ1 defined by

(2.44) iD,n,C := Ωqn,C ◦ jD,n,C

induces an isomorphism

(iD,n,C)∗ : πs(Q
D,Σ1
n (C))

∼=−→ πs(ΩXΣ1(n))
∼= πs+1(XΣ1(n))

for any 2 ≤ s ≤ d(D; Σ1, n,C).
(iii) If the condition (1.6b) holds and

∑r
k=1 dknk = 0m, then the map

jD,n,R : QD,Σ1
n (R)→ ΩZΣ1(D

n, Sn−1)

is a homotopy equivalence through the dimension d(D; Σ1, n,K).
(iv) If the condition (1.6b) holds and

∑r
k=1 dknk 6= 0m, there is a map

jD,n,R : QD,Σ1
n (R)→ ΩZKΣ1

(Dn, Sn−1)

which is a homotopy equivalence through dimension d(D; Σ1, n,R).

3 Basic facts about toric varieties

In this section, we recall some basic definitions and known results.

Definition 3.1 ([7], Definition 6.27, Example 6.39). Let K be a simplicial
complex on the index set [r], and let I(K) = {σ ⊂ [r] : σ /∈ K} as in (2.2).

(i) An element σ ∈ I(K) is called a minimal non-face of K if τ ∈ K for
any proper subset τ $ σ.

(ii) Then we denote by Imin(K) the set of all minimal non-faces of K. It
is easy to see that the following equality holds.

K = {σ ⊂ [r] : τ 6⊂ σ for any τ ∈ Imin(K)}.(3.1)

(iii) We denote by ZK and DJ(K) the moment-angle complex of K and
the Davis-Januszkiewicz space of K ([12]) which are defined by

(3.2) ZK = ZK(D
2, S1), DJ(K) = ZK(CP∞, ∗).

Remark 3.2. Let Σ be a fan in Rm and let XΣ be a smooth toric va-
riety such that the condition (2.19a) holds. Then it is easy to see that
{n i1 ,n i2 , · · · ,n is} is primitive if and only if σ = {i1, i2, · · · , is} ∈ Imin(KΣ).
Thus, we also obtain the following equality:

(3.3) rmin(Σ) = min{card(σ) : σ ∈ I(KΣ)}.
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Lemma 3.3 ([7]; Corollary 6.30, Theorems 6.33, 8.9). Let K be a simplicial
complex on the index set [r].

(i) The space ZK is 2-connected, and there is a fibration sequence

(3.4) ZK −→ DJ(K)
⊂−→ (CP∞)r.

(ii) There are Tr-equivariant deformation retraction

(3.5) ret : ZK(Kn, (Kn)∗)
≃−→ ZK(D

d(K)n, Sd(K)n−1).

where we set Tr = (S1)r.

Lemma 3.4 ([31]). Let Σ be a fan in Rm defining smooth toric variety XΣ

such that the condition (2.19a) holds.
(i) There is an isomorphism

(3.6) GΣ,K ∼= Tr−m
K = (K∗)r−m.

(ii) The group GΣ,K acts on the space ZKΣ
(Kn, (Kn)∗) freely as in (2.10)

and there is a principal GΣ,K-bundle sequence

(3.7) GΣ,K −−−→ ZKΣ
(Kn, (Kn)∗)

qn,K−−−→ XΣ,K.

(iii) If K = R, there is a homotopy equivalence Tr
R ' (Z2)

r−m and the
map qn,R is a covering projection with fiber (Z2)

r−m (up to homotopy).

Proof. First, consider the case K = C. Then the assertions (i) and (ii) follow
from [31, (6.2) page 527; Proposition 6.7].

Next, let K = R. Since GΣ = GΣ,C ∼= (C∗)r−m and GΣ,R = GΣ ∩
(R∗)r, we have an isomorphism GΣ,R ∼= (R∗)r−m = Tr−m

R . Since GΣ,C acts on
the space ZKΣ

(Cn, (Cn)∗) freely, the subgroup GΣ,R also acts on the space
ZKΣ

(Rn, (Rn)∗) freely and we obtain the GΣ,R-principal fibration sequence
(3.7) for the case K = R. This proves (i) and (ii) for the case K = R. Since
GΣ,R ' (Z2)

r−m, qn,R is a covering projection with fiber (Z2)
r−m and we

obtain (iii).

Definition 3.5 (c.f. [27], (5.26)). Let n ≥ 2, and let Σ be a fan in Rm

defining smooth toric variety XΣ such that the condition (2.19a) holds.
(i) Let KΣ(n) denote the simplicial complex on the index set [r] × [n]

defined by

(3.8) KΣ(n) = {τ ⊂ [r]× [n] : σ × [n] 6⊂ τ for any σ ∈ I(KΣ)}.
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(ii) For each (i, j) ∈ [r] × [n], let n i,j ∈ Zmn denote the lattice vector
defined by

(3.9) n i,j = (a1, · · · ,an), where we set ak =

{
n i (k = j)

0m (k 6= j)

and define a fan Fn(Σ) in Rmn by

(3.10) Fn(Σ) = {cτ : τ ∈ KΣ(n)},

where cτ denotes the strongly convex rational polyhedral cone given by

(3.11) cτ = Cone({n i,j : (i, j) ∈ τ}) =
{ ∑

(i,j)∈τ

xi,jn i,j : xi,j ≥ 0
}
.

Lemma 3.6. Let n ≥ 2.

(i) If Tr = (S1)r, there is a Tr-equivariant homeomorphism

(3.12) ZKΣ
(D2n, S2n−1) ∼= ZKΣ(n)(D

2, S1).

(ii) If Tr
C = (C∗)r, there is a Tr

C-equivariant homeomorphsim

(3.13) ZKΣ
(Cn, (Cn)∗) ' ZKΣ(n)(C,C

∗).

(iii) The space ZKΣ
(D2n, S2n−1) is 2-connected.

Proof. (i) Let J = (n, n, · · · , n) ∈ Nr and let KΣ(J) denote the simplical
complex on the index set [r] × [n] defined by [6, Definition 2.1].7 Then it
follows from [6, Definition 2.1] that the following equality holds:

(3.14) Imin(KΣ(J)) = {τ × [n] : τ ∈ Imin(KΣ)}.

Hence, by (3.1) and (3.8), we obtain the following equality:

KΣ(J) = {σ ⊂ [r]× [n] : τ × [n] 6⊂ σ for any τ ∈ Imin(KΣ)}.

Thus, we have KΣ(J) = KΣ(n) by (3.14). Hence, by [6, Theorem 7.5], there
is a Tr-equivariant homeomorphism ZKΣ

(D2n, S2n−1) ∼= ZKΣ(n)(D
2, S1), and

the assertion (i) follows.

7More precisely, if we set (K,m) = (KΣ, r) and J = (j1, j2, · · · , jr) = (n, n, · · · , n)
(r-times) in the notation of [6, Definition 2.1], we obtain a simplicial complex K(J) on
the index set [r]× [n].
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(ii) By [27, (5.32)] that there is a homeomorphism

ZKΣ
(Cn, (Cn)∗) ∼= ZKKΣ(n)

(C,C∗).

One can easily check that this homeomorphism is Tr
C-equivariant, and we

obtain assertion (ii).
(iii) It follows from (i) and (ii) that there are the following homotopy

equivalences

ZKΣ
(D2n, S2n−1) ' ZKΣ

(Cn, (Cn)∗) ∼= ZKΣ(n)(C,C
∗) ' ZKΣ(n)(D

2, S1).

Since the moment-angle complex ZKΣ(n)(D
2, S1) is 2-connected by [7, Theo-

rem 6.33], the space ZKΣ
(D2n, S2n−1) is also 2-connected.

Definition 3.7 ([11]). Let Σ be a fan in Rm. Then a cone σ ∈ Σ is called
smooth if it is generated by a subset of a basis of Zm.

Lemma 3.8 ([11]). Let XΣ be a toric variety determined by a fan Σ in Rm.

(i) XΣ is compact if and only if Rm =
⋃

σ∈Σ σ.

(ii) XΣ is smooth if and only if every cone σ ∈ Σ is smooth.

Lemma 3.9. Let n ≥ 2. Then the space XΣ(n) is homeomorphic to the
smooth toric variety XFn(Σ) associated to the fan Fn(Σ), and KΣ(n) is the
underlying simplicial complex of the fan Fn(Σ).

Proof. To see this, consider the toric variety XFn(Σ) determined by the fan
Fn(Σ). By considering the homogenous coordinate representation of XFn(Σ),
we easily see that there is a homeomorphism XFn(Σ)

∼= XΣ(n). Moreover,
one can easily show that XFn(Σ) is non-singular (by using Lemma 3.8). Thus,
XFn(Σ) is a smooth toric variety. Moreover, by (3.10) we easily see that KΣ(n)
is the underlying simplicial complex of the fan Fn(Σ).

Corollary 3.10. Let Σ be a fan in Rm defining smooth toric variety XΣ such
that the condition (2.19a) holds.

(i) The map Ωqn,C : ΩZKΣ
(Cn, (Cn)∗) −→ ΩXΣ(n) is a universal covering

(up to homotopy) with fiber Zr−m.

(ii) The map Ωqn,R : ΩZKΣ
(Rn, (Rn)∗)

≃−→ ΩXΣ,R(n) is a homotopy equiv-
alence.

(iii) There is the following fibration sequence (up to homotopy)

(3.15) Tmn
C −→ XΣ(n) −→ DJ(KΣ(n)).
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Proof. (i) It follows easily from Lemma 3.4, that the map Ωqn,C is a covering
projection with fiber Zr−m. Since ΩQD,Σ

n (C) is simply connected (by (i)),
Ωqn,C is a universal covering with fiber Zr−m.

(ii) The assertion (ii) easily follows from (iii) of Lemma 3.4.
(iii) The assertion (iii) follows from Lemmas 3.6, 3.9 and [24, Proposition

4.4].

Lemma 3.11 ([24]; Lemma 3.4). If the condition (2.19a) is satisfied, the
space XΣ is simply connected and π2(XΣ) = Zr−m.

We end this section with a proof of Lemma 2.7.

Proof of Lemma 2.7. Consider the map F = (F1, · · · , Fr) is given by (2.17).
We let K = C, as the proof for K = R is completely analogous. It suffices
to show that F (λx) = F (x) up to GΣ,C-action for any (λ,x) ∈ R∗ × (Rs+1 \
{0s+1}) iff

∑r
k=1 dknk = 0m.

Since all homogenous polynomials {fk;i}nk=1 have the same degree di, for
each (λ,x ) ∈ R∗ × Rs+1,

Fi(λx ) = (f1;i(λx ), · · · , fn;i(λx )) = (λdif1;i(x ), · · · , λdifn;i(x ))
= λdi(f1;i(x ), · · · , fn;i(x )) = λdiFi(x ).

Thus, we have

F (λx) = (F1(λx), · · · , Fr(λx)) = (λd1F1(x), · · · , λdrFr(x))

= (λd1 , · · · , λdr) · (F1(x), · · · , Fr(x)) = (λd1 , · · · , λdr) · F (x).

Hence, it remains to show that (λd1 , · · · , λdr) ∈ GΣ,C for any λ ∈ R∗ iff∑r
k=1 dknk = 0m. However, (λ

d1 , · · · , λdr) ∈ GΣ,C for any λ ∈ R∗ iff

r∏
k=1

(λdk)⟨nk,m⟩ = λ⟨
∑r

k=1 dknk,m⟩ = 1 for any m ∈ Zm ⇔
r∑

k=1

dknk = 0m

and this completes the proof.

The following result easily follows from the proof of Lemma 2.7.

Corollary 3.12. If D = (d1, · · · , dr) ∈ Nr and
∑r

k=1 dknk = 0m,

(3.16) (λd1 , λd2 , · · · , λdr) ∈ GΣ,K for any λ ∈ K∗.
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4 The Vassiliev spectral sequence

4.1 Simplicial resolutions. First, recall the definitions of the non-degenerate
simplicial resolution and the associated truncated simplicial resolution ([22],
[28], [29], [33], [34]).

Definition 4.1. (i) For a finite set v = {v1, · · · , vl} ⊂ RN , let σ(v) denote
the convex hull spanned by v . Let h : X → Y be a surjective map such that
h−1(y) is a finite set for any y ∈ Y , and let i : X → RN be an embedding.
Let X∆ and h∆ : X∆ → Y denote the space and the map defined by

(4.1) X∆ =
{
(y, u) ∈ Y ×RN : u ∈ σ(i(h−1(y)))

}
⊂ Y ×RN , h∆(y, u) = y.

The pair (X∆, h∆) is called the simplicial resolution of (h, i). In particular, it
is called a non-degenerate simplicial resolution if for each y ∈ Y any k points
of i(h−1(y)) span (k − 1)-dimensional simplex of RN .

(ii) For each k ≥ 0, let X∆
k ⊂ X∆ be the subspace of the union of the

(k − 1)-skeletons of the simplices over all the points y in Y given by

(4.2) X∆
k =

{
(y, u) ∈ X∆ : u ∈ σ(v), v = {v1, · · · , vl} ⊂ i(h−1(y)), l ≤ k

}
.

We make the identification X = X∆
1 by identifying x ∈ X with the pair

(h(x), i(x)) ∈ X∆
1 , and we note that there is an increasing filtration

(4.3) ∅ = X∆
0 ⊂ X = X∆

1 ⊂ X∆
2 ⊂ · · · ⊂ X∆

k ⊂ · · · ⊂
∞⋃
k=0

X∆
k = X∆.

Since the map h∆ : X∆ → Y is a proper map, it extends to the map h∆+ :
X∆

+ → Y+ between the one-point compactifications, where X+ denotes the
one-point compactification of a locally compact space X.

Definition 4.2. Let h : X → Y be a surjective semi-algebraic map between
semi-algebraic spaces, j : X → RN be a semi-algebraic embedding, and
let (X∆, h∆ : X∆ → Y ) denote the associated non-degenerate simplicial
resolution of (h, j). Then for each positive integer k ≥ 1, we denote by
h∆k : X∆(k) → Y the truncated (after the k-th term) simplicial resolution of
Y as in [29]. Note that that there is a natural filtration

X∆
0 ⊂ X∆

1 ⊂ · · · ⊂ X∆
l ⊂ X∆

l+1 ⊂ · · · ⊂ X∆
k ⊂ X∆

k+1 = X∆
k+2 = · · · = X∆(k),

where X∆
0 = ∅, X∆

l = X∆
l if l ≤ k and X∆

l = X∆(k) if l > k.
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4.2 Vassiliev spectral sequences. Next, we shall construct the Vassiliev
spectral sequence for computing the homology of the space QD,Σ

n (K).

From now on, we always assume that Σ is a fan in Rm such that XΣ is
simply connected toric variety satisfying the condition (2.19a). Moreover, let
D = (d1, · · · , dr) ∈ Nr will always be a fixed r-tuple of positive integers.

Definition 4.3. (i) For each d ∈ N, let PK
d ⊂ K[z] denote the space of all

monic polynomials f(z) = zd + a1z
d−1 + · · · + ad ∈ K[z] of degree d. Then

for each D = (d1, · · · , dr) ∈ Nr, let PK
D denote the space of r-tuples of monic

polynomials defined by

(4.4) PK
D = PK

d1
× PK

d2
× · · · × PK

dr .

(ii) For each f = (f1(z), · · · , fr(z)) ∈ PK
D, let F(n)(f)(z) denote the rn-

tuple of monic polynomials defined by

(4.5) F(n)(f)(z) = (Fn(f1)(z), · · · , Fn(fr)(z)) ∈ K[z]rn,

where we denote by Fn(fi)(z) the n-tuple of monic polynomials of degree di
given by

(4.6) Fn(fi)(z) = (fi(z), fi(z) + f ′
i(z), fi(z) + f ′′

i (z), · · · , fi(z) + f
(n−1)
i (z))

for each 1 ≤ i ≤ r (as in (2.22)).
(iii) Let ΣD denote the discriminant of QD,Σ

n (K) in PK
D given by the com-

plement

ΣD = PK
D \QD,Σ

n (K)

= {f = (f1(z), · · · , fr(z)) ∈ PK
D : F(n)(f)(x) ∈ LKΣ

n (K) for some x ∈ R},

where LKΣ
n (K) denotes the set given by K = KΣ in (2.5).

(iv) Let ZD ⊂ ΣD × R denote the tautological normalization of ΣD con-
sisting of all pairs (f , x) = ((f1(z), . . . , fr(z)), x) ∈ ΣD × R satisfying the
condition F(n)(f)(x) = (Fn(f1)(x), · · · , Fn(fr)(x)) ∈ LKΣ

n (K). Projection on
the first factor gives a surjective map πD : ZD → ΣD.

Remark 4.4. Let σk ∈ [r] for k = 1, 2. It is easy to see that Lσ1(Kn) ⊂
Lσ2(Kn) if σ1 ⊃ σ2. Letting

Pr(Σ) = {σ = {i1, · · · , is} ⊂ [r] : {ni1 , · · · ,nis} is a primitive collection},

we see that LKΣ
n (K) =

⋃
σ∈Pr(Σ)

Lσ(Kn), and by using (2.38) we obtain the

equality

(4.7) dimLKΣ
n (K) = nd(K)(r − rmin(Σ)) =

{
2n(r − rmin(Σ)) if K = C,
n(r − rmin(Σ)) if K = R.
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Our goal in this section is to construct, by means of the non-degenerate
simplicial resolution of the discriminant, a spectral sequence converging to
the homology of QD,Σ

n (K).

Definition 4.5. (i) For an r-tuple D = (d1, · · · , dr) ∈ Nr of positive integers,
let N(D) denote the positive integer given by

(4.8) N(D) =
r∑

k=1

dk.

(ii) For each based space X, let F (X, d) denote the ordered configuration
space of distinct d points in X defined by

(4.9) F (X, d) = {(x1, · · · , xd) ∈ Xd : xi 6= xj if i 6= j}.

Note that the symmetric group Sd of d-letters acts on F (X, d) freely by
permuting coordinates. Let Cd(X) denote the unordered configuration space
of d-distinct points in X given by the orbit space

(4.10) Cd(X) = F (X, d)/Sd.

(iii) Let Lk;Σ,K ⊂ (R× LKΣ
n (K))k denote the subspaces defined by

Lk;Σ,K = {((x1, s1), · · · , (xk, sk)) ∈ (R× LKΣ
n (K))k : xi 6= xj if i 6= j}.

The symmetric group Sk on k letters acts on the space Lk;Σ,K by permuting
k-elements., and let Ck;Σ,K denote the orbit space defined by

(4.11) Ck;Σ,K = Lk;Σ,K/Sk.

Note that the space Ck;Σ,K is a cell-complex of dimension (by (4.7))

(4.12) dimCk;Σ,K =

{
k + 2kn(r − rmin(Σ)) if K = C,
k + kn(r − rmin(Σ)) if K = R.

(iv) Let (XD, π∆
D : XD → ΣD) be the non-degenerate simplicial resolution

associated to the surjective map πD : ZD → ΣD with the natural increasing
filtration as in Definition 4.1,

∅ = XD
0 ⊂ XD

1 ⊂ XD
2 ⊂ · · · ⊂ XD =

∞⋃
k=0

XD
k .
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By [33, Lemma 1 (page 90)], the map π∆
D extends to a homology equiv-

alence π∆
D+ : XD

+
≃→ ΣD+. Since XD

k +/XD
k−1+

∼= (XD
k \ XD

k−1)+, we have a
spectral sequence

(4.13)
{
Ek,s

t;D, dt : E
k,s
t;D → Ek+t,s+1−t

t;D

}
⇒ Hk+s

c (ΣD;Z),

where Ek,s
1;D = Hk+s

c (XD
k \ XD

k−1;Z) and Hk
c (X;Z) denotes the cohomology

group with compact supports given by Hk
c (X;Z) = H̃k(X+;Z).

Since there is a homeomorphism PK
D
∼= KN(D) ∼= Rd(K)N(D), by Alexander

duality there is a natural isomorphism

(4.14) H̃k(Q
D,Σ
n (K);Z) ∼= Hd(K)N(D)−k−1

c (ΣD;Z) for any k.

By reindexing we obtain a spectral sequence{
Et;D

k,s , d̃
t : Et;D

k,s → Et;D
k+t,s+t−1

}
⇒ Hs−k(Q

D,Σ
n (K);Z),(4.15)

where E1;D
k,s = H

d(K)N(D)+k−s−1
c (XD

k \ XD
k−1;Z).

Lemma 4.6. If dmin ≥ n and 1 ≤ k ≤ bdmin

n
c, the space XD

k \ XD
k−1 is

homeomorphic to the total space of a real affine bundle ξD,k,n over Ck;Σ,K
with rank lD,k,n = d(K)(N(D)− nrk) + k − 1.

Proof. Since the proof is completely analogous to that of [27, Lemma 4.9],
we omit detail of the proof.

Lemma 4.7. If dmin ≥ n and 1 ≤ k ≤ bdmin

n
c, there is a natural isomorphism

E1;D
k,s
∼= Hd(K)nrk−s

c (Ck;Σ,K;±Z),

where the twisted coefficients system ±Z comes from the Thom isomorphism.

Proof. Suppose that 1 ≤ k ≤ bdmin

n
c. By Lemma 4.6, there is a homeomor-

phism (XD
k \ XD

k−1)+
∼= T (ξD,k), where T (ξD,k,n) denotes the Thom space of

ξD,k,n. Since (d(K)N(D) + k − s − 1) − lD,k,n = d(K)nrk − s, the Thom
isomorphism gives a natural isomorphism

E1;d
k,s
∼= H̃d(K)N(D)+k−s−1(T (ξd,k,n);Z) ∼= Hd(K)nrk−s

c (Ck;Σ,K;±Z),

and the assertion follows.
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5 Stabilization maps

We will now define two stabilization maps

(5.1)

{
sD,D+a : QD,Σ

n (C)→ QD+a ,Σ
n (C)

sRD,D+a : QD,Σ
n (R)→ QD+a ,Σ

n (R)
for each a 6= 0r ∈ (Z≥0)

r.

Definition 5.1. (i) For an r-tuple D = (d1, · · · , dr) ∈ Nr, let UD ⊂ C denote
the subspace defined by

(5.2) UD = {w ∈ C : Re(w) < N(D)},

and let φD : C
∼=−→ UD be any homeomorphism (which we now fix) satisfying

the following two conditions:

(5.3) φD(R) = (−∞, N(D)) and φD(α) = φD(α) for any α ∈ H+,

where N(D) is the positive integer given by (4.8), and H+ ⊂ C denotes the
upper half plane in C given by

(5.4) H+ = {α ∈ C : Im α > 0}.

(ii) Now let us choose and fix any r points (x1, · · · , xr) ∈ (C \ UD)
r

satisfying the condition xi 6= xj if i 6= j.

For each monic polynomial f(z) =
∏d

k=1(z − αk) ∈ C[z] of degree d, let
φD(f) denote the monic polynomial of the same degree d given by

(5.5) φD(f) =
d∏

k=1

(z − φD(αk)).

(iii) For each r-tuple a = (a1, · · · , ar) 6= 0r ∈ (Z≥0)
r, define the stabiliza-

tion map

sD,D+a :QD,Σ
n (C)→ QD+a ,Σ

n (C) by(5.6)

sD,D+a(f) = (φD(f1)(z − x1)a1 , · · · , φD(fr)(z − xr)ar)

for f = (f1(z), · · · , fr(z)) ∈ QD,Σ
n (C).

Remark 5.2. (i) Note that the definition of the map sD,D+a depends on the
choice of the homeomorphism φD and the r-tuple (x1, · · · , xr) ∈ (C \ UD)

r

of points, but one can show that the homotopy type of it does not depend
on these choices.
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(ii) Let a , b ∈ (Z≥0)
r be any two r-tuples such that a , b 6= 0r. Then it

is easy to see that the equality

(5.7) (sD+a ,D+a+b) ◦ (sD,D+a) = sD,D+a+b (up to homotopy)

holds. Thus we mostly only consider the stabilization map sD,D+ei
for

each 1 ≤ i ≤ r, where e1 = (1, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), · · · , er =
(0, 0, · · · , 0, 1) ∈ Rr denote the standard orthogonal basis of Rr.

(iii) From (5.3) it easily follows that

(5.8) φD(f) ∈ R[z] if f = f(z) ∈ R[z].

Thus, for each r-tuple a = (a1, · · · , ar) 6= 0r ∈ (Z≥0)
r, one can easily show

that the following holds:

(5.9) sD,D+a(Q
D,Σ
n (R)) ⊂ QD+a ,Σ

n (R).

Definition 5.3. By (5.9), one can define the stabilization map

sRD,D+a : QD,Σ
n (R)→ QD+a,Σ

n (R) by the restriction(5.10)

sRD,D+a = sD,D+a|QD,Σ
n (R).

Remark 5.4. From the definition (5.6) and (5.8) we see that the following
equality holds:

(5.11) sRD,D+a = (sD,D+a)
Z2 for each a 6= 0r ∈ (Z≥0)

r.

6 Homology stability

We will now consider homology stability of the space QD,Σ
n (K).

6.1 The case K = C. First, consider the case K = C. Let 1 ≤ i ≤ r and
consider the stabilization map

(6.1) sD,D+ei
: QD,Σ

n (C)→ QD+ei,Σ
n (C).

It is easy to see that it extends to an open embedding

(6.2) sD,i : C×QD,Σ
n (C)→ QD+ei,Σ

n (C)

by adding the points from the infinity as in Definition 5.1. It also naturally
extends to an open embedding s̃D,i : C× PC

D → PC
D+ei

and by restriction we
obtain an open embedding

(6.3) s̃D,i : C× ΣD → ΣD+ei .

27



Since one-point compactification is contravariant for open embeddings, this
map induces a map in the opposite direction

(6.4) s̃D,i+ : (ΣD+ei)+ → (C× ΣD)+ = S2 ∧ ΣD+.

We obtain the following commutative diagram

(6.5)

H̃k(Q
D,Σ
n (C);Z)

(sD,D+ei
)∗−−−−−−−→ H̃k(Q

D+ei,Σ
n (C);Z)

AD1

y∼= AD2

y∼=

H
2N(D)−k−1
c (ΣD;Z)

(s̃D,i+)∗

−−−−−−→ H
2N(D)−k+1
c (ΣD+ei ;Z).

Here, ADk (k = 1, 2) denote the corresponding Alexander duality isomor-
phisms and s̃ ∗

D,i+ denotes the composite of the suspension isomorphism with
the homomorphism (s̃D+)

∗ given by

(6.6) HM
c (ΣD;Z)

∼=−−−→ HM+2
c (C× ΣD;Z)

(s̃D,i+)∗

−−−−−→ HM+2
c (ΣD+ei ;Z),

where M = 2N(D)− k − 1.
By the universality of the non-degenerate simplicial resolution [28], the

map s̃D,i also naturally extends to a filtration preserving open embedding

(6.7) s̃D,i : C×XD → XD+ei

between non-degenerate simplicial resolutions. This induces a filtration pre-
serving map

(6.8) (s̃D,i)+ : XD+ei
+ → (C×XD)+ = S2 ∧ XD

+ ,

and we finally obtain the homomorphism of spectral sequences

{θ̃tk,s : E
t;D
k,s → Et;D+a

k,s }, where(6.9) {{
Et;D

k,s , d̃
t : Et;D

k,s → Et;D
k+t,s+t−1

}
⇒ Hs−k(Q

D,Σ
n (C);Z),{

Et;D+ei
k,s , d̃t : Et;D+ei

k,s → Et;D+ei
k+t,s+t−1

}
⇒ Hs−k(Q

D+ei,Σ
n (C);Z),{

E1;D
k,s = H

2N(D)+k−1−s
c (XD

k \ XD
k−1;Z),

E1;D+ei
k,s = H

2N(D)+k+1−s
c (XD+ei

k \ XD+ei
k−1 ;Z).

Lemma 6.1. If 1 ≤ i ≤ r and 0 ≤ k ≤ bdmin

n
c, θ̃1k,s : E

1;D
k,s → E1;D+ei

k,s is an
isomorphism for any s.

Proof. Since the proof is completely analogous to that of [27, Lemma 4.13],
we omit its details.
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Now we consider the spectral sequences induced by truncated simplicial
resolutions.

Definition 6.2. Let X∆ denote the truncated (after the bdmin

n
c-th term)

simplicial resolution of ΣD with the natural filtration

∅ = X∆
0 ⊂ X∆

1 ⊂ · · · ⊂ X∆
⌊dmin/n⌋ ⊂ X∆

⌊dmin/n⌋+1 = X∆
⌊dmin/n⌋+2 = · · · = X∆,

where X∆
k = XD

k if k ≤ bdmin

n
c and X∆

k = X∆ if k ≥ bdmin

n
c+ 1.

Similarly, let Y ∆ denote the truncated (after the bdmin

n
c-th term) simplicial

resolution of ΣD+ei with the natural filtration

∅ = Y ∆
0 ⊂ Y ∆

1 ⊂ · · · ⊂ Y ∆
⌊dmin/n⌋ ⊂ Y ∆

⌊dmin/n⌋+1 = Y ∆
⌊dmin/n⌋+2 = · · · = Y ∆,

where Y ∆
k = XD+ei

k if k ≤ bdmin

n
c and Y ∆

k = Y ∆ if k ≥ bdmin

n
c+ 1.

By [29, §2 and §3], we obtain the following truncated spectral sequences{{
Et;C

k,s , d
t : Et;C

k,s → Et;C
k+t,s+t−1

}
⇒ Hs−k(Q

D,Σ
n (C);Z),{ ′Et;C

k,s , d
t : ′Et;C

k,s →
′Et

k+t,s+t−1

}
⇒ Hs−k(Q

D+ei,Σ
n (C);Z),

(6.10)

where{
E1;C

k,s = H
2N(D)+k−1−s
c (X∆

k \X∆
k−1;Z),

′E1;C
k,s = H

2N(D)+k+1−s
c (Y ∆

k \ Y ∆
k−1;Z).

(6.11)

By the naturality of truncated simplicial resolutions, the filtration preserving
map s̃D,i : C × XD → XD+ei gives rise to a natural filtration preserving
map s̃′D,i : C × X∆ → Y ∆ which, in a way analogous to (6.9), induces a
homomorphism of spectral sequences

(6.12) {θtk,s : E
t;C
k,s →

′Et;C
k,s}.

Lemma 6.3. (i) If k < 0 or k ≥ bdmin

n
c+ 2, E1;C

k,s = ′E1;C
k,s = 0 for any s.

(ii) E1;C
0,0 = ′E1;C

0,0 = Z and E1;C
0,s = ′E1;C

0,s = 0 if s 6= 0.

(iii) If 1 ≤ k ≤ bdmin

n
c, there are isomorphisms

E1;C
k,s
∼= ′E1;C

k,s
∼= H2nrk−s

c (Ck;Σ;±Z).

(iv) If 1 ≤ k ≤ bdmin

n
c, E1;C

k,s = ′E1;C
k,s = 0 for any s ≤ (2nrmin(Σ)− 1)k − 1.

(v) If k = bdmin

n
c+1, E1;C

k,s = ′E1;C
k,s = 0 for any s ≤ (2nrmin(Σ)−1)bdmin

n
c−1.
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Proof. Let us write rmin = rmin(Σ) and d′min = bdmin

n
c. Since the proofs of

both cases are identical, it suffices to prove the assertions for E1;C
k,s .

(i), (ii), (iii): Since X∆
k = X∆ for any k ≥ d′min +2, the assertions (i) and

(ii) are clearly true. Since X∆
k = XD

k for any k ≤ d′min, the assertion (iii)
easily follows from Lemma 4.7.

(iv) Suppose that 1 ≤ k ≤ d′min. By using the equality (4.12),

2nrk − s > dimCk;Σ ⇔ s ≤ (2nrmin − 1)k − 1.

Thus, the assertion (iv) follows from the isomorphism given by (iii).
(v) By Lemma [29, Lemma 2.1], we see that

dim(X∆
d′min+1 \X∆

d′min
) = dim(XD

d′min
\ XD

d′min−1) + 1 = lD,d′min,n
+ dimCd′min;Σ

+ 1

= 2N(D) + 2d′min − 2nrmind
′
min.

Since E1;C
d′min+1,s = H

2N(D)+d′min−s
c (X∆

d′min+1 \X∆
d′min

;Z) (by (6.11)) and

2N(D) + d′min − s > dim(X∆
d′min+1 \X∆

d′min
) = 2N(D) + 2d′min − 2nrmind

′
min

⇔ s < (2nrmin − 1)d′min ⇔ s ≦ (2nrmin − 1)d′min − 1,

we see that E1;C
d′min+1,s = 0 for any s ≤ (2nrmin − 1)d′min − 1.

Lemma 6.4. If 0 ≤ k ≤ bdmin

n
c, θ1k,s : E

1;C
k,s

∼=−→ ′E1;C
k,s is an isomorphism for

any s.

Proof. Since (X∆
k , Y

∆
k ) = (XD

k ,X
D+ei
k ) for k ≤ bdmin

n
c, the assertion follows

from Lemma 6.1.

Theorem 6.5. For each 1 ≤ i ≤ r, the stabilization map

sD,D+ei : Q
D,Σ
n (C)→ QD+ei,Σ

n (C)

is a homology equivalence through dimension d(D; Σ, n,C).

Proof. We write rmin = rmin(Σ) and d
′
min = bdmin

n
c as in the proof of Lemma

6.3. Without loss of generality, we may assume that dmin ≥ n ≥ 1.
Let us consider the homomorphism θtk,s : Et;C

k,s → ′Et;C
k,s of truncated

spectral sequences given in (6.12). By using the commutative diagram (6.5)
and the comparison theorem for spectral sequences, we see that it suffices to
prove that the positive integer d(D; Σ, n,C) has the following property:

(†) θ∞k,s is an isomorphism for all (k, s) such that s− k ≤ d(D; Σ, n,C).
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By Lemma 6.3, we can easily see that:

(†)1 if k < 0 or k ≥ d′min + 1, θ∞k,s is an isomorphism for all (k, s) such that
s− k ≤ d(D; Σ, n,C).

Next, assume that 0 ≤ k ≤ d′min, and investigate the conditions that
ensure that θ∞k,s is an isomorphism. Note that the groups E1;C

k1,s1
and ′E1;C

k1,s1

are not known for (u, v) ∈ S1 = {(d′min + 1, s) ∈ Z2 : s ≥ (2nrmin − 1)d′min}.
By considering the differentials d1’s of E1;C

k,s and ′E1;C
k,s , and applying Lemma

6.4, we see that θ2k,s is an isomorphism if (k, s) /∈ S1 ∪ S2, where

S2 = {(u, v) ∈ Z2 : (u+1, v) ∈ S1} = {(d′min, v) ∈ Z2 : v ≥ (2nrmin−1)d′min}.
A similar argument shows that θ3k,s is an isomorphism if (k, s) /∈

⋃3
t=1 St,

where S3 = {(u, v) ∈ Z2 : (u + 2, v + 1) ∈ S1 ∪ S2}. Continuing in the same
fashion: considering the differentials dt’s on Et;C

k,s and ′Et;C
k,s and applying the

inductive hypothesis, we see that θ∞k,s is an isomorphism if (k, s) /∈ S :=⋃
t≥1

St =
⋃
t≥1

At, where At denotes the set

At =


There are positive integers l1, · · · , lt such that,

(u, v) ∈ Z2 1 ≤ l1 < l2 < · · · < lt, u+
∑t

j=1 lj = d′min + 1,

v +
∑t

j=1(lj − 1) ≥ (2nrmin − 1)d′min

 .

Note that if this set was empty for every t, then, of course, the conclusion
of Theorem 6.5 would hold in all dimensions (this is known to be false in
general). If At 6= ∅, it is easy to see that

a(t) = min{s− k : (k, s) ∈ At} = (2nrmin − 1)d′min − (d′min + 1) + t

= (2nrmin − 2)d′min + t− 1 = d(D; Σ, n,C) + t+ 1.

Hence, we obtain that min{a(t) : t ≥ 1, At 6= ∅} = d(D; Σ, n,C) + 2. Since
θ∞k,s is an isomorphism for any (k, s) /∈

⋃
t≥1At for each 0 ≤ k ≤ d′min, we

have the following:

(†)2 If 0 ≤ k ≤ d′min, θ
∞
k,s is an isomorphism for any (k, s) such that s− k ≤

d(D; Σ, n,C) + 1.

Then, by (†)1 and (†)2, we know that θ∞;C
k,s : E∞;C

k,s

∼=→ ′E∞;C
k,s is an isomorphism

for any (k, s) if s − k ≤ d(D; Σ, n,C). Hence, by (†) we have the desired
assertion and this completes the proof of Theorem 6.5.

Corollary 6.6. For each a 6= 0r ∈ (Z≥0)
r, the stabilization map

sD,D+a : QD,Σ
n (C)→ QD+a,Σ

n (C)

is a homology equivalence through dimension d(D; Σ, n,C).
Proof. The assertion easily follows from (5.7) and Theorem 6.5.
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6.2 The case K = R. Next, we shall consider the case K = R. By using
exactly the same approach as in Lemmas 4.6, 4.7, 6.1, 6.3, 6.4, Theorem 6.5,
and Corollary 6.6, we can obtain the following result.

Lemma 6.7. There is the following truncated spectral sequence

(6.13)
{
Et;R

k,s , d
t : Et;R

k,s → Et;R
k+t,s+t−1

}
⇒ Hs−k(Q

D,Σ
n (R);Z)

satisfying the following conditions:

(i) If k < 0 or k ≥ bdmin

n
c+ 2, E1;R

k,s = 0 for any s.

(ii) E1;R
0,0 = Z and E1;R

0,s = 0 if s 6= 0.

(iii) If 1 ≤ k ≤ bdmin

n
c, there is a natural isomorphism

E1;R
k,s
∼= Hnrk−s

c (Ck;Σ,R;±Z).

(iv) If 1 ≤ k ≤ bdmin

n
c, E1;R

k,s = 0 for any s ≤ (nrmin(Σ)− 1)k − 1.

(v) If k = bdmin

n
c+ 1, E1;R

k,s = 0 for any s ≤ (nrmin(Σ)− 1)bdmin

n
c − 1.

Theorem 6.8. For each a 6= 0r ∈ (Z≥0)
r, the stabilization map

sRD,D+a : QD,Σ
n (R)→ QD+a,Σ

n (R)

is a homology equivalence through dimension d(D; Σ, n,R), where d(D; Σ, n,R)
denotes the integer given by (2.37).

Proof. This assertion can be proved by using the spectral sequence (6.13) in
exactly the same way as in the case of QD,Σ

n (C), so we omit the details.

7 Connectivity

Lemma 7.1. (i) The space QD,Σ
n (C) is simply connected.

(ii) If n ≥ 2, the space QD,Σ
n (R) is simply connected. If n = 1 and

rmin(Σ) ≥ 3, the fundamental group π1(Q
D,Σ
n (R)) is abelian.

Proof. Note that an element of π1(Q
D,Σ
n (K)) can be represented by an r-

tuple (η1, · · · , ηr) of strings of r-different colors where each ηk (1 ≤ k ≤ r)
has total multiplicity dk, as in the case of strings representing elements of the
classical braid group Brd = π1(Cd(C)) [19]. However, in our case an r-tuple
(η1, · · · , ηr) of strings of r-different colors can move continuously representing
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the same element of the fundamental group,8 as long as the following situation
(∗)σ does not occur for each σ = {i1, · · · , is} ∈ I(KΣ):

(∗)σ The strings {ηi}i∈σ of s-different colors with multiplicity ≥ n pass
through a single point of the real line R.

(i) In the case K = C, we can continuously deform the strings (η1, · · · , ηr)
and, if necessary, make them pass through one another in C \R, so that any
collection of strings can be continuously deformed to a trivial one. Thus, the
space QD,Σ

n (C) is path-connected and simply connected.
(ii) Let K = R. If n ≥ 2, a similar argument as above shows that the

fundamental group must be trivial, since any string of multiplicity ≥ n can be
split into stings of multiplicity less than n (by the continuous deformation).
Thus, the space QD,Σ

n (R) is path-connected and simply connected if n ≥ 2.

Next, consider the case n = 1 with rmin(Σ) ≥ 3. Then the space QD,Σ
1 (R)

is path-connected and π1(Q
D,Σ
1 (R)) is commutative. To see this, let a, b ∈

π1(Q
D,Σ
1 (R)) be any two elements, and suppose that r-tuple (η1, · · · , ηr) of

strings of r-different colors which represents the product a · b ∈ π1(QD,Σ
n (R)).

Let σ ∈ I(KΣ) and {i, j} ⊂ σ. Since card(σ) ≥ rmin(Σ) ≥ 3 (by (3.3)),
there is some number k ∈ σ such that k /∈ {i, j}. But this means that
the i-th string and the j-th string can pass through one another on the real
line, as long as they both don’t pass through the k-th string at the same
time. By using this fact, we see that the i-th string and the j-th string
can pass though one another and change the order on the real line (by the
continuous deformation). Thus, the r-tuple (η1, · · · , ηr) of strings can be
deformed continuously to an r-tuple of strings representing the product b · a.
Thus, we proved that the space QD,Σ

n (R) is path-connected and π1(Q
D,Σ
n (R))

is commutative if n = 1 and rmin(Σ) ≥ 3.

Remark 7.2. The space QD,Σ
n (R) is not path-connected if (n, rmin(Σ)) =

(1, 2). But each of its path-components is simply connected.
To see this, suppose that (n, rmin(Σ)) = (1, 2). Since rmin(Σ) = 2, there

has to exist σ ∈ I(KΣ) such that σ = {i, j} (by (3.3)). Since n = 1, this
means that particles on the real line corresponding to the i-th and the j-th
polynomial cannot cross one another on the real line (i.e. the i-th and the
j-th polynomials cannot have common real roots). Thus, QD,Σ

1 (R) is not
path-connected. However, since there are no restrictions on the movement
of roots (particles) within a connected component, each path-component is
simply connected.

8Let f(z) ∈ R[z] be a real coefficient polynomial and α ∈ C \ R be a complex root of
f(z) of multiplicity nα. Then α is a root of f(z) of the same multiplicity nα. Thus, in the
case K = R, each string ηk moves symmetrically along the real axis R.

33



Lemma 7.3. (i) If k < 0, or k ≥ bdmin

n
c+2, or k = 0 and s 6= 0, E1;K

k,s = 0.

(ii) If 1 ≤ k ≤ bdmin

n
c and s− k ≤ (d(K)nrmin(Σ)− 2)k − 1, E1;K

k,s = 0.

(iii) If k = bdmin

n
c+1 and s−k ≤ (d(K)nrmin(Σ)−2)bdmin/nc−2, E1;K

k,s = 0.

Proof. The assertions follow from Lemmas 6.3 and 6.13.

Lemma 7.4. (i) If bdmin

n
c ≥ 2,

H̃i(Q
D,Σ
n (K);Z) = 0 for any i ≤ d(K)nrmin(Σ)− 3.

(ii) If bdmin

n
c = 1,

H̃i(Q
D,Σ
n (K);Z) = 0 for any i ≤ d(K)nrmin(Σ)− 4.

Proof. Let us write d′min = bdmin

n
c. Consider the spectral sequences (6.10)

and (6.13). Define the integer a(k) by

a(k) = (d(K)nrmin(Σ)− 2)n0(k)− ϵ(k) for each 1 ≤ k ≤ d′min + 1,

where n0(k) and ϵ(k) denote the integers given by

(n0(k), ϵ(k)) =

{
(k, 1) if 1 ≤ k ≤ d′min,

(d′min, 2) if k = d′min + 1.

Then, by Lemma 7.3, we see that E1;K
k,s = 0 for any (k, s) 6= (0, 0) if s− k ≤

m0 = min{a(k) : 1 ≤ k ≤ d′min + 1} is satisfied. Hence, H̃k(Q
D,Σ
n (K);Z) = 0

for any k ≤ m0. We also see that

m0 = min{a(k) : 1 ≤ k ≤ d′min + 1} = min{a(1), a(d′min + 1)}

=

{
d(K)nrmin(Σ)− 3 if d′min ≥ 2,

d(K)nrmin(Σ)− 4 if d′min = 1.

Hence, we obtain the assertions (i) and (ii).

Corollary 7.5. (i) If n ≥ 2 and bdmin

n
c ≥ 2, QD,Σ

n (C) is (2nrmin(Σ) − 3)-
connected.

(ii) If n ≥ 2 and bdmin

n
c = 1, QD,Σ

n (C) is (2nrmin(Σ)− 4)-connected.
(iii) If n = 1 and dmin ≥ 2, QD,Σ

n (C) is (2rmin(Σ)− 3)-connected.
(iv) Let n = dmin = 1. Then QD,Σ

n (C) is (2rmin(Σ) − 4)-connected if
rmin(Σ) ≥ 3, and it is simply connected if rmin(Σ) = 2.
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Proof. Since QD,Σ
n (C) is simply connected (by Lemma 7.1), the assertions

follow from the Hurewicz Theorem and Lemma 7.4.

Corollary 7.6. (i) Let n ≥ 2 and bdmin

n
c ≥ 2. Then QD,Σ

n (R) is (nrmin(Σ)−3)-
connected.

(ii) Let n ≥ 2 and bdmin

n
c = 1. Then QD,Σ

n (R) is (nrmin(Σ)− 4)-connected
if nrmin(Σ) ≥ 5. and it is simply connected if n = rmin(Σ) = 2.

(iii) Let n = 1, dmin ≥ 2. Then QD,Σ
n (R) is (rmin(Σ) − 3)-connected if

rmin(Σ) ≥ 4.
(iv) Let n = dmin = 1. Then QD,Σ

n (R) is (rmin(Σ) − 4)-connected if
rmin(Σ) ≥ 5.

Proof. If n = 1 and rmin(Σ) ≥ 3, the group π1(Q
D,Σ
n (R)) is commutative (by

Lemma 7.1), and there is an isomorphism π1(Q
D,Σ
n (R)) ∼= H1(Q

D,Σ
n (R);Z).

Thus the assertions follow from Lemmas 7.1 and 7.4.

Corollary 7.7. (i) If the condition (1.6a) holds, the space QD,Σ
n (C) is simply

connected.
(ii) If the condition (1.6b) holds, the space QD,Σ

n (R) is simply connected.

Proof. The assertions follow from Lemma 7.1 and Corollary 7.6.

Corollary 7.8. Let a 6= 0r ∈ (Z≥0)
r.

(i) If the condition (1.6a) holds, the stabilization map

sD,D+a : QD,Σ
n (C)→ QD+a,Σ

n (C)

is a homotopy equivalence through dimension d(D; Σ, n,C).
(ii) If the condition (1.6b) holds, the stabilization map

sRD,D+a : QD,Σ
n (R)→ QD+a,Σ

n (R)

is a homotopy equivalence through dimension d(D; Σ, n,R).
(iii) If the condition (1.6b) holds, the stabilization map

sD,D+a : QD,Σ
n (C)→ QD+a,Σ

n (C)

is a Z2-equivariant homotopy equivalence through dimension d(D; Σ, n,R).

Proof. The assertions (i) and (ii) follow from Theorem 6.8, Corollaries 6.6
and 7.7. Since d(D; Σ, n,R) < d(D; Σ, n,C) and (sD,D+a)

Z2 = sRD,D+a , the
assertion (iii) follows from (i) and (ii).
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8 Scanning maps

In this section we study a configuration space model of QD,Σ
n (K) and the

corresponding scanning map.

8.1 Configuration space models. First, consider the following configu-
ration space model of QD,Σ

n (K).

Definition 8.1. For a positive integer d ≥ 1 and a based space X, let SPd(X)
denote the d-th symmetric product of X defined as the orbit space

(8.1) SPd(X) = Xd/Sd,

where the symmetric group Sd of d letters acts on the d-fold product Xd in
the natural manner.

Remark 8.2. (i) Note that an element η ∈ SPd(X) may be identified with
a formal linear combination

(8.2) η =
s∑

k=1

nkxk,

where {xk}sk=1 ∈ Cs(X) and {nk}sk=1 ⊂ N with
∑s

k=1 nk = d. In this situation
we shall refer to η as a configuration (or 0-cycle) of points, the point xk ∈ X
having a multiplicity nk.

(ii) For example, when X = C, we have the natural homeomorphism

(8.3) ψd : P
C
d

∼=−→ SPd(C)

given by using the above identification

(8.4) ψd(f(z)) =
s∑

k=1

dkαk for f(z) =
∏s

k=1(z − αk)
dk ∈ PC

d .

Definition 8.3. (i) For a closed subspace A ⊂ X, let SPd(X,A) denote the
quotient space

(8.5) SPd(X,A) = SPd(X)/ ∼

where the equivalence relation ∼ is defined by

(8.6) ξ ∼ η ⇔ ξ ∩ (X \ A) = η ∩ (X \ A) for ξ, η ∈ SPd(X).
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Thus, the points of A are ignored. When A 6= ∅, by adding a point in A
we have the natural inclusion SPd(X,A) ⊂ SPd+1(X,A). Thus, when A 6= ∅,
one can define the space SP∞(X,A) by the union

(8.7) SP∞(X,A) =
⋃
d≥0

SPd(X,A),

where we set SP0(X,A) = {∅} and ∅ denotes the empty configuration.
(ii) From now on, we always assume that X ⊂ C. For each r-tuple

D = (d1, · · · , dr) ∈ Nr, we let SPD(X) =
∏r

i=1 SP
di(X) and define a space

QΣ
D,n(X) by

QΣ
D,n(X) = {(ξ1, · · · , ξr) ∈ SPD(X) : the condition (∗)Σn holds},(8.8)

where the condition (∗)Σn is given by

(∗)Σn : The configuration (
⋂

k∈σ ξk)∩R contains no point x ∈ X of multiplicity
≥ n for any σ ∈ I(KΣ).

(iii) When A ⊂ X is a closed subspace, define an equivalence relation
“∼” on the space QΣ

D,n(X) by

(ξ1, · · · , ξr) ∼ (η1, · · · , ηr) if ξi ∩ (X \ A) = ηi ∩ (X \ A)

for each 1 ≤ j ≤ r. Let QΣ
D,n(X,A) be the quotient space defined by

(8.9) QΣ
D,n(X,A) = QΣ

D,n(X)/ ∼ .

When A 6= ∅, by adding points in A we get a natural inclusion

(8.10) QΣ
D,n(X,A) ⊂ QΣ

D+ei,n
(X,A) for each 1 ≤ i ≤ r,

where D + e i = (d1, · · · , di−1, di + 1, di+1, · · · , dr).
Thus, when A 6= ∅, one can define a space QΣ

n (X,A) as the union

(8.11) QΣ
n (X,A) =

⋃
D∈Nr

QΣ
D,n(X,A),

where the empty configuration (∅, · · · , ∅) is the base-point of QΣ
n (X,A).

Remark 8.4. (i) Let D = (d1, · · · , dr) ∈ Nr. Then by using the identifica-
tion (8.3) we easily obtain a homeomorphism

(8.12)
QD,Σ

n (C) ΨD−−−→∼= QΣ
D,n(C)

(f1(z), · · · , fr(z)) −−−→ (ψd1(f1(z)), · · · , ψdr(fr(z)))
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(ii) Now let φD : C
∼=−→ UD and xD = (xD,1, · · · , xD,r) ∈ F (C \ UD, r) be

the homeomorphism and the point used in defining the stabilization map sD
given in Definition 5.1. We define a map

sΣD : QΣ
D,n(C)→ QΣ

D+e,n(C) by(8.13)

sΣD(ξ1, · · · , ξr) = (φD(ξ1) + xD,1, · · · , φD(ξr) + xD,r)

for (ξ1, · · · , ξr) ∈ QΣ
D,n, where we write

(8.14) e = (1, 1, · · · , 1) ∈ Nr,

and φD(ξ) =
∑s

k=1 nkφD(xk) if ξ =
∑s

k=1 nkxk ∈ SPd(C) and (nk, xk) ∈
N× C with

∑s
k=1 nk = d.

By using the above homeomorphism (8.12), we now obtain the following
commutative diagram

(8.15)

QD,Σ
n (C)

sD,D+e−−−−→ QD+e,Σ
n (C)

ΨD

y∼= ΨD+e

y∼=

QΣ
D,n(C)

sΣD−−−→ QΣ
D+e,n(C)

(iv) Note that QΣ
D,n(C) is path-connected. Indeed, for any two points

ξ0, ξ1 ∈ QΣ
D,n(C), one can construct a path ω : [0, 1] → QΣ

D,n(C) such that
ω(i) = ξi for i ∈ {0, 1} by means of the string representation used in [17,
§Appendix]. Thus the space QD,Σ

n (C) is also path-connected. By choosing
the path ω in a Z2-equivariant way, one can show that QD,Σ

n (R) is also path-
connected if n ≥ 2 or if n = 1 and rmin(Σ) ≥ 3 ⇔ (n, rmin(Σ)) 6= (1, 2) (see
also the proof of Lemma 7.1 and Remark 7.2).

Definition 8.5. Define the stabilized space QD+∞,Σ
n (C) as the colimit

(8.16) QD+∞,Σ
n (C) = lim

k→∞
QD+ke,Σ

n (C),

where the colimit is taken over the family of stabilization maps

(8.17) {sD+ke,D+(k+1)e : Q
D+ke,Σ
n (C)→ QΣ,D+(k+1)e

n (C)}k≥0

8.2 Scanning maps. Now we are ready to define the scanning map. From
now on, we identify C = R2 in a usual way.

Definition 8.6. For a rectangle X in C = R2, let σX denote the union of the
sides of X which are parallel to the y-axis, and for a subspace Z ⊂ C = R2,
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let Z be the closure of Z. From now on, let I denote the interval I = [−1, 1]
and let 0 < ϵ < 1

1000000
be any fixed real number.

For each x ∈ R, let V (x) be the set defined by

V (x) = {w ∈ C : |Re(w)− x| < ϵ, |Im(w)| < 1}(8.18)

= (x− ϵ, x+ ϵ)× (−1, 1),

and let us identify I × I = I2 with the closed unit rectangle {t+ s
√
−1 ∈ C :

−1 ≤ t, s ≤ 1} in C.
For each D = (d1, · · · , dr) ∈ Nr, we define the horizontal scanning map

(8.19) scD : QΣ
D,n(C)→ ΩQΣ

n (I
2, ∂I × I) = ΩQΣ

n (I
2, σI2)

as follows. For each r-tuple α = (ξ1, · · · , ξr) ∈ QΣ
D,n(C) of configurations, let

scD(α) : R→ QΣ
n (I

2, ∂I × I) = QΣ
n (I

2, σI2) denote the map given by

R 3 x 7→ (ξ1 ∩ V (x), · · · , ξr ∩ V (x)) ∈ QΣ
n (V (x), σV (x)) ∼= QΣ

n (I
2, σI2),

where we use the canonical identification (V (x), σV (x)) ∼= (I2, σI2).

Since lim
x→±∞

scD(α)(x) = (∅, · · · , ∅), by setting scD(α)(∞) = (∅, · · · , ∅)
we obtain a based map scD(α) ∈ ΩQΣ

n (I
2, σI2), where we identify S1 =

R ∪ ∞ and we choose the empty configuration (∅, · · · , ∅) as the base-point
of QΣ

n (I
2, σI2). One can show that the following diagram is homotopy com-

mutative:

(8.20)

QΣ
D+ke,n(C)

scD+ke−−−−→ ΩQΣ
n (I

2, σI2)

sΣD+ke

y ‖

QΣ
D+(k+1)e,n(C)

scD+(k+1)e−−−−−−→ ΩQΣ
n (I

2, σI2)

By using the above diagram and by identifying QD+ke,Σ
n (C) with QΣ

D+ke,n(C),
we finally obtain the stable horizontal scanning map

(8.21) SH = lim
k→∞

scD+ke : Q
D+∞,Σ
n (C)→ ΩQΣ

n (I
2, σI2),

where QD+∞,Σ
n (C) is defined in (8.16).

Theorem 8.7 ([32], (cf. [15], [26])). The stable horizontal scanning map

SH : QD+∞,Σ
n (C) ≃−→ ΩQΣ

n (I
2, σI2)

is a homotopy equivalence.
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Proof. The proof is analogous to the one given in [32, Prop. 3.2, Lemma
3.4] and [15, Prop. 2]. However, as it appears to be probably most difficult
and least familiar part of the article [32], we gave a rigorous proof in [26,
Theorem 5.6] (see also [26, Remark 5.8]).

Definition 8.8. (i) We define the stabilized space QD+∞,Σ
n (R) as the colimit

(8.22) QD+∞,Σ
n (R) = lim

k→∞
QD+ke,Σ

n (R),

where the colimit is taken over the family of stabilization maps

(8.23) {sRD+ke,D+(k+1)e : Q
D+ke,Σ
n (R)→ QΣ,D+(k+1)e

n (R)}k≥0.

(ii) Recall that there is a Z2-action on the space QD,Σ
n (C) induced from

the complex conjugation on C. Then by using (5.11), one can easily see the
following:

(8.24) QD+∞,Σ
n (R) = (QD+∞,Σ

n (C))Z2 .

Moreover, since sRD,k = (sD,k)
Z2 as in Remark 5.4, one can define the hori-

zontal scanning map

(8.25) SZ2 = lim
k→∞

(scD+ke)
Z2 : QD+∞,Σ

n (R)→ ΩQΣ
n (I

2, σI2)Z2

in the same way as in (8.21).
Since QD,Σ

n (R) = QD,Σ
n (C)Z2 ⊂ QD,Σ

n (C), one can identify the space
QD+∞,Σ

n (R) with a subspace of QD+∞,Σ
n (C). By means of this identification,

we can also identify

(8.26) QD+∞,Σ
n (R) = QD+∞,Σ

n (C)Z2 and SZ2 = SH |QD+∞,Σ
n (R) = (SH)Z2 .

Theorem 8.9 ([32], (cf. [15], [26])). The stable horizontal scanning map

(SH)Z2 : QD+∞,Σ
n (R) ≃−→ ΩQΣ

n (I
2, σI2)Z2

is a homotopy equivalence if (n, rmin(Σ)) 6= (1, 2).

Proof. If (n, rmin(Σ)) 6= (1, 2), the group π1(Q
D,Σ
n (R)) is an abelian group.

The proof is completely analogous to that of Theorem 8.7.

Corollary 8.10. The stable horizontal scanning map

SH : QD+∞,Σ
n (C) ≃−→ ΩQΣ

n (I
2, σI2)

is a Z2-equivariant homotopy equivalence if (n, rmin(Σ)) 6= (1, 2).

Proof. The assertion follows from Theorems 8.7 and 8.9.
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9 The stable result

In this section we prove the stable theorem (Theorem 9.2).

Definition 9.1. From now on, let a = (a1, a2, · · · , ar) ∈ Nr such that∑r
k=1 aknk = 0m, and let D = (d1, · · · , dr) ∈ Nr be an r-tuple of posi-

tive integers such that
∑r

k=1 dknk = 0m. Then it is easy to see that the
following two diagram is homotopy commutative for K = R or C:

QD,Σ
n (K)

jD,n,K−−−→ ΩZKΣ
(Kn, (Kn)∗) ' ΩZKΣ

(Dd(K)n, Sd(K)n−1)

sKD,D+a

y ‖

QD+a,Σ
n (K)

jD+a,n,K−−−−−→ ΩZKΣ
(Kn, (Kn)∗) ' ΩZKΣ

(Dd(K)n, Sd(K)n−1)

where we set

(9.1) sKD,D+a = sD,D+a if K = C.

Hence, for K = R or C, we obtain the stabilized map

(9.2) jD+∞,n,K : QD+∞,Σ
n (K)→ ΩZKΣ

(Dd(K)n, Sd(K)n−1),

where we set

(9.3) jD+∞,n,K = lim
t→∞

jD+ta ,D+(t+1)a ,K.

The main purpose of this section is to prove the following result.

Theorem 9.2. Let K = R or C, and let D = (d1, · · · , dr) ∈ Nr be an r-tuple
of positive integers such that

∑r
k=1 dknk = 0m. Then the stabilized map

jD+∞,n,K : QD+∞,Σ
n (K)

≃−→ ΩZKΣ
(Dd(K)n, Sd(K)n−1)

is a homotopy equivalence.

Before proving Theorem 9.2 we need the following definition and lemma.

Definition 9.3. Let K = R or C as before. Now we identify C = R2 in
a usual way and let us write U = {w ∈ C : |Re(w)| < 1, |Im(w)| < 1} =
(−1, 1)× (−1, 1) and I = [−1, 1].

(i) For an open set X ⊂ C, let FK
n (X) denote the space of r-tuples

(f1(z), · · · , fr(z)) ∈ K[z]r of (not necessarily monic) polynomials satisfying
the following condition (∗)n,R:
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(∗)n,R For any σ = {i1, · · · , is} ∈ I(KΣ), the polynomials fi1(z), · · · , fis(z)
have no common roots of multiplicity ≥ n in X ∩ R.

(ii) Let ev0,K : FK
n (U)→ ZKΣ

(Kn, (Kn)∗) denote the map given by evalu-
ation at 0, i.e.

(9.4) ev0,K(f1(z), · · · , fr(z)) = (Fn(f1)(0), · · · , Fn(fr)(0))

for (f1(z), · · · , fr(z)) ∈ FK
n (U), where Fn(fi)(z) denotes the n-tuple of monic

polynomials of the same degree di given by (4.6).

(iii) Let F̃K
n (U) ⊂ FK

n (U) denote the subspace of all (f1(z), · · · , fr(z)) ∈
FΣ,K
n (U) such that no fi(z) is identically zero.
Let evK : F̃K

n (U)→ ZKΣ
(Kn, (Kn)∗) denote the map given by the restric-

tion

(9.5) evK = ev0,K|F̃K
n (U).

It is easy to see that the following two equality holds:

(9.6) evR = (evC)
Z2 .

(iv) Note that the group Tr
K = (K∗)r acts freely on the space F̃K

n (U) in
the natural way, and let

(9.7) pK : F̃K
n (U)→ F̃K

n (U)/Tr
K

denote the natural projection, where F̃K
n (U)/Tr

K denotes the corresponding
orbit space.

Lemma 9.4. Let XΣ be a simply connected non-singular toric variety such
that the condition (2.19a) is satisfied.

(i) If the condition (1.6a) is satisfied, the space QD+∞,Σ
n (C) is simply

connected. Similarly, if the condition (1.6b) is satisfied, the space QD+∞,Σ
n (R)

is simply connected.
(ii) The map evK : F̃K

n (U)
≃−→ ZKΣ

(Kn, (Kn)∗) is a homotopy equivalence.

Proof. (i) The assertion easily follows from Corollary 7.7.
(ii) For each b = (b0, b1, · · · , bn−1) ∈ Kn, let fb(z) ∈ K[z] denote the

polynomial of degree ≤ n defined by

(9.8) fb(z) = b0 +
n−1∑
k=1

bk − b0
k!

zk.
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Let i0 : ZKΣ
(Kn, (Kn)∗)→ FK

n (U) be the inclusion map given by

(9.9) i0(b1, · · · , br) =
(
fb1(z), · · · , fbr(z)

)
for (b1, · · · , br) ∈ ZKΣ

(Kn, (Kn)∗). Since the degree of each polynomial fb1(z)
has at most n − 1, it has no root of multiplicity ≥ n. Thus, the map i0 is
well-defined, and clearly the equality ev0 ◦ i0 = id holds.

Let f : FK
n (U)× [0, 1]→ FK

n (U) be the homotopy given by

f((f1, · · · , fr), t) = (f1,t(z), · · · , fr,t(z)),

where fi,t(z) = fi(tz). This gives a homotopy between the map i0 ◦ ev0,K and
the identity map, and this proves that the map

ev0,K : FK
n (U)

≃−→ ZKΣ
(Kn, (Kn)∗)

is a deformation retraction. Since FK
n (U) is an infinite dimensional manifold

and the complement of F̃K
n (U) is a closed submanifold of FK

n (U) of infinite
codimension, it follows from [13, Theorem 2] that the inclusion

(9.10) iΣ,K
n : F̃K

n (U)
≃−→ FK

n (U)

is a homotopy equivalence. Hence the restriction evK = ev0,K ◦ iΣ,K
n is also a

homotopy equivalence.

Definition 9.5. Note that (U, σU) = (I2, σI2) = (I × I, ∂I × I). Let

(9.11)

{
wC

n : F̃C
n (U)→ QΣ

n (U, σU) = QΣ
n (I

2, σI2)

wR
n : F̃R

n (U)→ QΣ
n (U, σU)

Z2 = QΣ
n (I

2, σI2)Z2

denote the natural maps which assigns to an r-tuple (f1(z), · · · , fr(z)) ∈
F̃K
n (U) (K = C or R) the r-tuple of their configurations represented by their

real roots which lie in U = I2. These maps clearly induce the maps

(9.12)

{
vCn : F̃C

n (U)/Tr
C → QΣ

n (U, σU) = QΣ
n (I

2, σI2)

vRn : F̃R
n (U)/Tr

R → QΣ
n (U, σU)

Z2 = QΣ
n (I

2, σI2)Z2

such that the following diagram is commutative:

F̃C
n (U)

wC
n−−−→ QΣ

n (U, σU) ←−−−⊃
QΣ

n (U, σU)
Z2

wR
n←−−− F̃R

n (U)

pC

y ‖ ‖ pR

y
F̃C
n (U)/Tr

C
vCn−−−→ QΣ

n (U, σU) ←−−−⊃
QΣ

n (U, σU)
Z2

vRn←−−− F̃R
n (U)/Tr

R
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Lemma 9.6. Any fiber of the map wK
n is homotopy equivalent to the space

Tr
K.

Proof. Any fiber of the map wK
n is homeomorphic to the space fib(r) con-

sisting of all r-tuples (f1(z), · · · , fr(z)) ∈ K[z]r of K-coefficients polynomials
such that each polynomial fi(z) has no root in U . It suffices to show that
there is a homotopy equivalence

(9.13) fib(r) ' Tr
K.

First define the inclusion map j0 : Tr
K → fib(r) by j0(x) = (x1, · · · , xr)

for x = (x1, · · · , xr) ∈ Tr
K. Next, let f = (f1(z), · · · , fr(z)) ∈ fib(r) be

any element. Since 0 ∈ U , (f1(0), · · · , fr(0)) ∈ Tr
K. Hence, one can define

the evaluation map ϵ0 : fib(r) → Tr
K by ϵ0(f) = (f1(0), · · · , fr(0)) for f =

(f1(z), · · · , fr(z)) ∈ fib(r). It is easy to see that ϵ0 ◦ j0 = idTr
K
.

Now consider the map j0 ◦ ϵ0. Note that if a polynomial g(z) ∈ K[z] has
a root α ∈ C\U and 0 < t ≤ 1, the polynomial g(tz) has a root α/t ∈ C\U .
Thus, one can define the homotopy F : fib(r)× [0, 1]→ fib(r) by F (f, t) =
(f1(tz), · · · , fr(tz)) for (f, t) = ((f1(z), · · · , fr(z)), t) ∈ fib(r) × [0, 1]. It is
easy to see that the map F gives a homotopy between the maps j0 ◦ ϵ0 and
idfib(r). Hence, we see that the map ϵ0 : fib(r)

≃−→ Tr
K is a desired homotopy

equivalence.

Lemma 9.7. The map wC
n : F̃C

n (U) → QΣ
n (U, σU) is a quasifibration with

fiber Tr
C. Similarly, the map wR

n : F̃R
n (U)→ QΣ

n (U, σU)
Z2 is a quasifibration

with fiber Tr
R.

Proof. Since the proofs are completely analogous, we give one only for the
map wC

n . The assertion may be proved by using the well-known Dold-Thom
criterion. Recall that the base space B = QΣ

n (U, σU) consists of r-tuple of
configurations (ξ1, · · · , ξr) satisfying the condition

(†)Σ The configuration (∩k∈σξk) ∩ R ∩ (U \ σU) contains no points of mul-
tiplicity ≥ n for any σ ∈ I(KΣ).

For each r-tuple (d1, · · · , dr) ∈ (Z≥0)
r of non-negative integers, we denote

by B≤d1,··· ,≤dr the subspace of B consisting of all r-tuples (ξ1, · · · , ξr) ∈ B
satisfying the condition

(9.14) deg(ξk ∩ R ∩ (U \ σU)) ≤ dk for each 1 ≤ k ≤ r.

We filter the base space B by an increasing family of subspaces {B≤d1,··· ,≤dr}.
It suffices to prove that each restriction

(9.15) wn|w−1
n (B≤d1,··· ,≤dr) : w

−1
n (B≤d1,··· ,≤dr)→ B≤d1,··· ,≤dr
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is a quasifibration. Its proof is essentially analogous to that of [26, Lemma
5.13] (cf. [32, Lemmas 3.3, 3.4]). The difference is only in the condition on
the configurations considered. In the case of [26, Lemma 5.13], we considered
the m-tuple (ξ1, · · · , ξm) of configurations which satisfies the condition (†)1,
where

(†)1 The configuration (∩mk=1ξk) ∩ R ∩ (U \ σU) contains no points of mul-
tiplicity ≥ n.

On the other hand, in our case, we need to consider r-tuple (ξ1, · · · , ξr) of
configurations satisfying the condition (†)Σ. If we replace the condition in
the proof of [26, Lemma 5.13], by (†)Σ. we can prove that each restriction
(9.15) is a quasifibration by using the same argument.

Corollary 9.8. The map vCn : F̃C
n (U)/Tr

C
≃−→ QΣ

n (U, σU) is a homotopy

equivalence. Similarly, the map vRn : F̃R
n (U)/Tr

R
≃−→ QΣ

n (U, σU)
Z2 is also a

homotopy equivalence.

Proof. Since the proofs are analogous, we give the one only for the map vCn .
Let Fn denote the homotopy fiber of the map wC

n . It follows from [8, Lemma
2.1] that there is the following homotopy commutative diagram

(9.16)

Tr
C −−−→

=
Tr
C −−−→ ∗

‖
y y

Tr
C −−−→ F̃C

n (U)
wC

n−−−→ QΣ
n (U, σU)y pC

y ‖

Fn −−−→ F̃C
n (U)/Tr

C
vCn−−−→ QΣ

n (U, σU)

where all above vertical and horizontal sequences are fibration sequences.
From this diagram, we easily see that Fn is contractible. Thus, vCn is a
homotopy equivalence.

Now we can give the proof of Theorem 9.2.

Proof of Theorem 9.2. Let D = (d1, · · · , dr) ∈ Nr and a = (a1, · · · , ar) ∈ Nr

be two r-tuples of positive integers such that
∑r

k=1 dknk =
∑r

k=1 aknk = 0m.
First, we shall prove the assertion for case K = C.

It follows from Lemma 9.4 and Lemma 3.6 that two spaces QD+∞,Σ
n (C) and

ΩZKΣ
(D2n, S2n−1) are simply connected. Thus, it suffices to prove that the

map jD+∞,n,C induces an isomorphism

(jD+∞,n,C)∗ : πk(Q
D+∞,Σ
n (C))

∼=−→ πk(ΩZKΣ
(D2n, S2n−1)) for any k ≥ 2.
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Let us identify C = R2 and let U = (−1, 1) × (−1, 1) as before. We define
the scanning map scan : F̃C

n (C)→ Map(R, F̃C
n (U)) by

(9.17) scan(f1(z), · · · , fr(z))(w) = (f1(z + w), · · · , fr(z + w))

for (f1(z), · · · , fr(z)), w) ∈ F̃C
n (C)× R, and consider the diagram

F̃C
n (U)

evC−−−→
≃

ZKΣ
(D2n, S2n−1)

pC

y
F̃C
n (U)/Tr

C
vCn−−−→
≃

QΣ
n (U, σU)

This induces the commutative diagram below

F̃C
n (C)

scan−−−→ Map(R, F̃C
n (U))

(evC)#−−−−−→
≃

Map(R,ZKΣ
(D2n, S2n−1))

pC

y (pC)#

y
F̃C
n (C)/Tr

C
scan−−−→ Map(R, F̃C

n (U)/Tr
C)

(vCn)#−−−−→
≃

Map(R,QΣ
n (U, σU))

Observe that Map(R, ·) can be replaced by Map∗(S1, ·) by extending from R
to S1 = R ∪∞ (as base-point preserving maps). Thus by setting{
ĵD,n,C : QD,Σ

n (C) ⊂−→ F̃C
n (C)

scan−→ Map∗(S1, F̃C
n (U)) = ΩF̃C

n (U)

ĵ′D,n,C : EΣ,R
D,n(C)

⊂−→ F̃C
n (C)

scan−→ Map∗(S1, F̃C
n (U)/Tr

C) = Ω(F̃C
n (U)/Tr

C)

we obtain the following commutative diagram

(9.18)

QD,Σ
n (C)

ĵD,n,C−−−−→ ΩF̃C
n (U)

ΩevC−−−−−−→
≃

ΩZKΣ
(D2n, S2n−1)

∼=
y ΩpC

y
QΣ

D,n(C)
ĵ′D,n,C−−−−→ Ω(F̃C

n (U)/Tr
C)

ΩvCn−−−−−→
≃

ΩQΣ
n (U, σU)

If we identify QD+∞,Σ
n (C) with the colimit lim

t→∞
QΣ

D+ta ,n(C), by replacing D

by D + ta (t ∈ N) and letting t → ∞, we obtain the following homotopy
commutative diagram:

(9.19)

QD+∞,Σ
n (C)

̂jD+∞,n,C−−−−−−→ ΩF̃C
n (U)

ΩevC−−−−→
≃

ΩZKΣ
(D2n, S2n−1)

‖ ΩpC

y
QD+∞,Σ

n (C)
̂j′D+∞,n,C−−−−−−−→ Ω(F̃C

n (U)/Tr
C)

ΩvCn−−−−−→
≃

ΩQΣ
n (U, σU)
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where we set ̂jD+∞,n,C = lim
t→∞

̂jD+ta ,n,C and ̂j′D+∞,n,C = lim
t→∞

̂j′D+ta ,n,C.

Since (ΩevC) ◦ ̂jD+ta,n,C = jD+ta,n,C and (ΩvCn ) ◦ ̂j′D+ta,n,C = scD+ta (by iden-

tifying QD+ta ,Σ
n (C) with the space EΣ

D+ta ,n(C)), we also obtain the following
two equalities:

(9.20) jD+∞,n,C = (ΩevC) ◦ ̂jD+∞,n,C, SH = (ΩvCn ) ◦ ̂j′D+∞,n,C.

Since the map evC is a homotopy equivalence, it suffices to prove that the
map

(††)C ̂jD+∞,n,C : QD+∞,Σ
n (C) −→ ΩF̃C

n (U)

induces an isomorphism on the homotopy group πk( ) for any k ≥ 2.

Since SH = (ΩvCn ) ◦ ̂j′D+∞,n,C and ΩvCn are homotopy equivalences (by

Theorem 8.7 and Corollary 9.8), the map ̂j′D+∞,n,C is a homotopy equivalence.
Since pC is a fibration with fiber Tr

C, the map ΩpC induces an isomorphism
on the homotopy group πk( ) for any k ≥ 2. Hence, by using the equality

(ΩpC)◦ ̂jD+∞,n,C = ̂j′D+∞,n,C (up to homotopy), we see that the map ̂jD+∞,n,C
induces an isomorphism on the homotopy group πk( ) for any k ≥ 2. This
completes the proof for the case K = C.

Next, consider the case K = R. This proof is almost identical to the case
K = C but since ΩpR is a homotopy equivalence, it is actually easier.

We define the scanning map sca : F̃R
n (C)→ Map(R, F̃R

n (U)) by

(9.21) sca(f1(z), · · · , fr(z))(w) = (f1(z + w), · · · , fr(z + w))

for (f1(z), · · · , fr(z)), w) ∈ F̃R
n (C)× R. Now we consider the diagram

F̃R
n (U)

evR−−−→
≃

ZKΣ
(Dn, Sn−1)

pR

y
F̃R
n (U)/Tr

R
vRn−−−→
≃

QΣ
n (U, σU)

Z2

This induces the commutative diagram below

F̃R
n (C)

sca−−−→ Map(R, F̃R
n (U))

(evR)#−−−−−→
≃

Map(R,ZKΣ
(Dn, Sn−1))

pR

y (pR)#

y
F̃R
n (C)/Tr

R
sca−−−→ Map(R, F̃R

n (U)/Tr
R)

(vRn)#−−−−→
≃

Map(R,QΣ
n (U, σU)

Z2)
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Observe that Map(R, ·) can be replaced by Map∗(S1, ·) by extending from R
to S1 = R ∪∞ (as base-point preserving maps). Thus by setting{

ĵD,n,R : QD,Σ
n (R) ⊂−→ F̃R

n (C)
sca−→ ΩF̃R

n (U)

ĵ′D,n,R : QΣ
D,n(C)Z2

⊂−→ F̃R
n (C)

sca−→ Ω(F̃R
n (U)/Tr

R)

we obtain the following commutative diagram

(9.22)

QD,Σ
n (R)

ĵD,n,R−−−→ ΩF̃R
n (U)

ΩevR−−−→
≃

ΩZKΣ
(Dn, Sn−1)

∼=
y ΩpR

y≃

QΣ
D,n(C)Z2

ĵ′D,n,R−−−→ Ω(F̃R
n (U)/Tr

R)
ΩvRn−−−→
≃

ΩQΣ
n (U, σU)

Z2

If we identify QD+∞,Σ
n (R) with the colimit lim

t→∞
QΣ

D+ta ,n(C)Z2 , by replacing D

by D + ta (t ∈ N) and letting t → ∞, we obtain the following homotopy
commutative diagram:

(9.23)

QD+∞,Σ
n (R)

̂jD+∞,n,R−−−−−→ ΩF̃R
n (U)

ΩevR−−−→
≃

ΩZKΣ
(Dn, Sn−1)

‖ ΩpR

y≃

QD+∞,Σ
n (R)

̂j′D+∞,n,R−−−−−→ Ω(F̃R
n (U)/Tr

R)
ΩvRn−−−→
≃

ΩQΣ
n (U, σU)

Z2

where we set ̂jD+∞,n,R = lim
t→∞

̂jD+ta ,n,R and ̂j′D+∞,n,R = lim
t→∞

̂j′D+ta ,n,R.

Since (ΩevR) ◦ ̂jD+ta,n,R = jD+ta,n,R and (ΩvRn ) ◦ ̂j′D+ta,n,R = (scD+ta)
Z2 , we

also obtain the following two equalities:

(9.24) jD+∞,n,R = (ΩevR) ◦ ̂jD+∞,n,R, (SH)Z2 = (ΩvRn ) ◦ ̂j′D+∞,n,R.

Since the map evR is a homotopy equivalence, it suffices to prove that the
map

(††)R ̂jD+∞,n,R : QD+∞,Σ
n (C) −→ ΩF̃R

n (U)

is a homotopy equivalence.

Since (SH)Z2 = (ΩvRn ) ◦ ̂j′D+∞,n,R and ΩvRn are homotopy equivalences (by

Theorem 8.9 and Corollary 9.8), the map ̂j′D+∞,n,C is a homotopy equivalence.
On the other hand, since pR is a covering projection with fiber (Z2)

r (up to
homotopy), the map ΩpR is a homotopy equivalence. Hence, by using the

diagram (9.23), we see that the map ̂jD+∞,n,R is a homotopy equivalence.
This completes the proof of Theorem 9.2.
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10 Proofs of the main results

Now we give the proofs of the main results (Theorems 2.14, 2.15, and Corol-
lary 2.16).

Proofs of Theorem 2.14. (i) Suppose that
∑r

k=1 dknk = 0n. Then the asser-
tion (i) easily follows from Corollary 7.8 and Theorem 9.2.

(ii) Next assume that
∑r

k=1 dknk 6= 0n. Recall from (2.19a) that there is
an r-tuple D∗ = (d∗1, · · · , d∗r) ∈ Nr such that

∑r
k=1 d

∗
knk = 0n. If we choose a

sufficiently large integer m0 ∈ N, then the condition dk < m0d
∗
k holds for each

1 ≤ k ≤ r. Then consider the map jD,n,C : QD,Σ
n (C) → ΩZKΣ

(D2n, S2n−1)
defined by

(10.1) jD,n,C = jD0,n,C ◦ sD,D0 ,

where D0 = m0D∗ = (m0d
∗
1,m0d

∗
2, · · · ,m0d

∗
r) and jD,n,C is given by the

composite of the following maps

(10.2) jD,n,C : QD,Σ
n (C)

sD,D0−−−−→ QD0,Σ
n (C)

jD0,n,C−−−−−→ ΩZKΣ
(D2n, S2n−1).

Since the maps sD,D0 and jD0,C are homotopy equivalences through dimen-
sions d(D; Σ, n,C) and d(D0; Σ, n,C), respectively (by Corollary 7.8 and
Theorem 2.14), by using d(D; Σ, n,C) ≤ d(D0; Σ, n,C) the map jD,n,C is
a homotopy equivalence through dimension d(D; Σ, n,C).

Proof of Theorem 2.15. (i) Suppose that
∑r

k=1 dknk = 0n. Then the asser-
tion (i) easily follows from Corollary 7.8 and Theorem 9.2.

(ii) This is proved in an analogous way to the proof of (ii) of Theorem
2.14. Indeed, under the same assumption as in (ii) of Theorem 2.14, we define
a map jD,n,R : QD,Σ

n (R)→ ΩZKΣ
(Dn, Sn−1) by

(10.3) jD,n,R = jD0,n,R ◦ sRD,D0
.

Since d(D; Σ, n,R) ≤ d(D0; Σ, n,R), it is easy to see that this map is a
homotopy equivalence through dimension d(D; Σ, n,R).

Proof of Corollary 2.16. Consider the map of composite

ΩZKΣ
(D2n, S2n−1) −−−→

≃
ΩZKΣ

(Cn, (Cn)∗)
Ωqn,C−−−−→ ΩXΣ(n).

Since Ωqn,C is a universal covering up to homotopy (by Corollary 3.10), the
assertions easily follow from Theorem 2.14.
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