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Abstract. The notion of the Yau sequence was introduced by Tomaru, as an
attempt to extend Yau’s elliptic sequence for (weakly) elliptic singularities to normal
surface singularities of higher fundamental genera. In this paper, we obtain the
canonical cycle using the Yau cycle for certain surface singularities of degree two.
Furthermore, we obtain a formula of arithmetic genera and an upper bound of
geometric genera for these singularities. We also give some properties about the
classification of weighted dual graphs of certain surface singularities of degree two.
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1. Introduction

Let (V, o) be an isolated singular point on a surface V , and π : X → V be a
resolution of V . Due to the negative definiteness of the intersection matrix of π−1(o),
there exists a non-zero effective divisor with support π−1(o) that has a non-positive
intersection number with every exceptional curve. We define Z as the unique minimal
such divisor and refer to it as the fundamental cycle. Notably, −Z2 represents one of
the most fundamental invariants of (V, o) that remains independent of any choice in
resolutions. We denote −Z2 as the degree of (V, o).

In this paper, we investigate surface singularities by examining decompositions of
various cycles. A primary focus is the Yau sequence, introduced by Tomaru [8], which
extends the first author’s elliptic sequence [9] to singularities with larger fundamental
genera. Additionally, we consider the Yau cycle (see [4]), defined as the sum of all
curves present in the Yau sequence (see Definition 2.15). Notably, the Yau cycles
exhibit a strong connection with canonical cycles in certain types of singularities.
Konno explores applications of the Yau cycle in degree one singularities in [4]. In this
paper, we extend Konno’s results to degree two singularities and establish additional
properties within a more restrictive context.

Firstly, we discussed the relation between the canonical cycle and the Yau cycle
of surface singularities of degree two. Compared to degree one situations, the degree
two situations are more complicated. In the degree one situations, we know that
the canonical cycle is obtained as a multiple of the Yau cycle, when Z is essentially
irreducible. But the property doesn’t hold in the degree two situations, so we consider
a more restrictive condition Dm = Zmin in Theorem 3.6 to generalize the property,
where m denotes the length of the Yau sequence for Z and Dm is the smallest cycle
in the Yau sequence. And we point out that the condition Dm = Zmin holds when
(V, o) are singularities of degree one.
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Theorem A. Let (V, o) be a normal surface singularity of degree two with pf (V, o) >
0, and π : X → V be a minimal resolution of V . Assume that fundamental cycle Z
is essentially irreducible and Dm = Zmin. Then (V, o) is numerically Gorenstein with
canonical cycle pf (V, o)Y .

For surface singularities of degree one, Konno obtains a lower bound on the arith-
metic genus by using the Yau cycle Y in [4]. For those with essentially irreducible Z
(see Definition 3.1), we have found that the arithmetic genus is equal to this lower
bound.

Theorem B. Let (V, o) be a normal surface singularity of degree one with pf (V, o) >
0, Z is the fundamental cycle on the minimal resolution. Assume that Z is essentially

irreducible, then pa(V, o) =
p(p−1)m

2
+ 1, where p = pf (V, o) and m denotes the length

of the Yau sequence for Z.

We want to get a formula for the arithmetic genus of a singular point of degree 2
with essentially irreducible Z like in the Theorem B. For the degree two case, unlike
the degree one case, if we add the additional condition that Z is essentially irreducible
which still doesn’t imply that Dm = Zmin. However, the condition Dm = Zmin is
necessary when the arithmetic genus is equal to the lower bound. In order to study
singularities of degree two under the conditionDm = Zmin, In Theorem 3.9, we classify
the weighted dual graphs of surface singularities of the degree two when m > 1. By
classifying these graphs, we compute Dm and Zmin for each case in Theorem 3.9 and
obtain all cases which satisfy the conditions of m > 1 and Dm = Zmin. From the
classification of weighted dual graphs for these singularities, we obtain a formula in
Theorem 3.14 (i.e., Theorem C) for their arithmetic genera.

Theorem C. Let (V, o) be a normal surface singularity of degree two with pf (V, o) >
0, and π : X → V be a minimal resolution of V . Assuming that the fundamental

cycle Z is essentially irreducible and Dm = Zmin, then pa(V, o) = [p
2

4
]m + 1 and

pg(V, o) ≤ [ (p+1)2

4
]m.

2. Preliminaries

2.1. Riemann-Roch and fundamental cycle. Let (V, o) be an isolated singular
point on a surface V , and π : X → V be a resolution of V . Let π−1(o) = ∪Ei, 1 ≤ i ≤
n, be the decomposition of the exceptional set π−1(o) into irreducible components.
The cycles are divisors of the formD =

∑
diEi with di ∈ Z, where Ei are irreducible

exceptional curves. There is a natural partial ordering of the cycles: D1 =
∑

i miEi ≤
D2 =

∑
i niEi if and only if mi ≤ ni for all i. If D1 ≤ D2 but D1 ̸= D2 then we write

D1 < D2. We let supp D = ∪Ei, di ̸= 0, denote the support of D.
For a cycle D =

∑
diEi on π−1(o), χ(D) is defined by

χ(D) = dimH0(X,OD)− dimH1(X,OD),

whereOD = O/O(−D). Then by Riemann-Roch theorem [7, Proposition IV.4, p. 75],
we have

χ(D) = −1

2
(D2 +D ·K),
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where K is the canonical divisor on X and D ·K is the intersection number of D and
K. For any irreducible curve Ei, the adjunction formula [7, Proposition IV, 5, p. 75]
says

Ei ·K = −E2
i + 2gi + 2δi − 2,

where gi is the genus of Ei and δi is the degree of the conductor of Ei. The arithmetic
genus of D ≥ 0 is defined by pa(D) = 1−χ(D). It follows immediately from Riemann-
Roch theorem that if A and B are cycles, then

pa(A+B) = pa(A) + pa(B) + A ·B − 1.

Definition 2.1. Let π : X → V be a resolution, then the intersection form is negative
definite on the exceptional set π−1(o). Hence, there exists a cycle D > 0 with support
π−1(o) such that Ei ·D ≤ 0 for all Ei. We denote by Z the smallest one among such
cycles and call it the fundamental cycle [1, 131-132].

Because the fundamental cycle Z is the smallest, for any proper subcycle D of
Z, there exists an Ei such that Ei · D > 0 and such that Ei < Z − D. In fact,
the fundamental cycle Z can be computed from the intersection as follows via a
computation sequence for Z in the sense of Laufer [5, Proposition 4.1].

Z0 = 0, Z1 = Ei1 , Z2 = Z1 + Ei2 , . . . , Zj = Zj−1 + Eij , . . . ,

Zℓ = Zℓ−1 + Eiℓ = Z,

where Ei1 is an irreducible component and Eij · Zj−1 > 0, 1 < j ≤ ℓ.
Consider the computation sequence for Z, we have

pa(Zj) = pa(Zj−1) + pa(Eij) + Zj−1 · Eij − 1 ≥ pa(Zj−1)

for 1 ≤ j ≤ ℓ. Then pa(Z) ≥ pa(D) for any subcycle 0 < D < Z.

Definition 2.2. We define the arithmetic genus of Z the fundamental genus of (V, o)
and denote it by pf (V, o). The arithmetic genus and geometric genus of (V, o) are re-
spectively defined as pa(V, o) = max{pa(D)|0 < D} and pg(V, o) = dimC H1(X,OX).

2.2. Chain-connected. we recall the notion of chain-connected cycles introduced
by Konno [3] and state the fundamental properties of the chain-connected cycles.

Definition 2.3. A line bundle on a cycle is nef if it is of non-negative degree on all
irreducible components.

Definition 2.4. A cycle D is chain-connected if OD−C(−C) is not nef for any proper
subcycle 0 < C < D.

According to the minimality of the fundamental cycle Z, the fundamental cycle is
chain-connected cycle. In fact, it is the largest chain-connected cycle with support
π−1(o).

Proposition 2.5. Let D be a chain-connected cycle, then pa(D) ≥ pa(C) for any
subcycle 0 < C < D.

Proof. Since D is a chain-connected cycle, we have OD−A(−A) is not nef for any
subcycle 0 < A < D. So we can find an irreducible component Ei < D−A such that
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Ei ·A > 0. For any subcycle 0 < C < D, like Laufer’s computation sequence, we can
get an increasing sequence of cycles. Let

D0 = C,D1 = D0 + Ei1 , D2 = D1 + Ei2 , . . . , Dj = Dj−1 + Eij , . . . ,

Dℓ = Dℓ−1 + Eiℓ = D,

where Eij is an irreducible component and Eij ·Dj−1 > 0, 1 ≤ j ≤ ℓ.
We have pa(Dj) = pa(Dj−1) + pa(Eij) + Eij · Dj−1 − 1 ≥ pa(Dj−1) for 1 ≤ j ≤ ℓ,

since pa(Eij) ≥ 0 and Eij · Dj−1 > 0. We conclude that pa(Dℓ) ≥ pa(D0), i.e.,
pa(D) ≥ pa(C). Q.E.D.

We remark that, when pa(D) = pa(C), we have pa(Dj) = pa(Dj−1) for 1 ≤ j ≤ ℓ.
It means that pa(Eij) = 0 and Eij ·Dj−1 = 1 for 1 ≤ j ≤ ℓ.

Definition 2.6. Let D be a reducible curve. An irreducible component E of D is
said to be a (−m)D − curve if pa(E) = 0 and E · (D − E) = m.

Proposition 2.7 ([3]). Given a (−1)D−curve E of D. If D is chain-connected, then
the subcycle D′ = D − E is also chain-connected.

Corollary 2.8 ([3]). Let D be a chain-connected cycle. If pa(C) = pa(D) for a
subcycle C < D, then the subcycle C is also chain-connected.

Proposition 2.9 ([3]). Let D be a chain-connected cycle. If OD(−C) is nef for a
cycle C, then either D ≤ C or supp C ∩ supp D = ∅.

Definition 2.10. If D is chain-connected and pa(D) > 0, then there uniquely exists a
minimal subcycle Dmin of D such that pa(Dmin) = pa(D). We call Dmin the minimal
model of D.

Theorem 2.11 (Chain-connected component decomposition, [3]). Let D be a cycle.
Then there exists a sequence D1,D2,. . . , Dr of chain-connected subcycles of D and a
sequence m1, . . . , mr of positive integers which satisfy

(1) D = m1D1 + · · ·+mrDr.
(2) For i < j, the cycle −Di is nef on Dj.
(3) If mi ≥ 2, then −Di is nef on Di.
(4) For i < j, either Di > Dj or supp Di ∩ supp Dj = ∅.

2.3. The canonical cycle.

Definition 2.12. The rational cycle ZK is called the canonical cycle if ZK · Ei =
−KEi for all i, i.e.

ZK · Ei = E2
i − 2δi − 2gi + 2 for all i,

where δi is the “number” of nodes and cusps on Ei.

Definition 2.13. If the coefficients of ZK are integers, then the singularity is called
numerical Gorenstein singularity.
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2.4. Yau sequence and Yau cycle. Assume that pf (V, o) = pa(Z) > 0. By
Definition 2.10, there uniquely exists a minimal subcycle Zmin of Z such that pa(Zmin) =
pa(Z).

Lemma 2.14. Assume that −Z is numerically trivial on Zmin. Then there uniquely
exists a maximal subcycle D < Z such that OD(−Z) is numerically trivial and
pa(D) = pf (V, o). Moreover, D is the fundamental cycle on its support.

Proof. Let S = {0 < D < Z|OD(−Z) is numerically trivial and pa(D) = pa(Z)}.
By the assumption, Zmin ∈ S. Since the coefficients of subcycle D are integers, the
nonempty set S contains a maximal element.
We show the maximal element of S is the fundamental cycle on its support. Let D

be a maximal element of S and Z1 be the fundamental cycle on supp D. Assume that
there exists an irreducible component C ≤ D satisfying C ·D > 0. Since OD(−Z) is
numerically trivial and C ≤ D, we have C(Z−D) < 0 and, hence, C ≤ Z−D. Then
C+D is a subcycle of Z and OC+D(−Z) is numerically trivial. Furthermore, we have
pa(Z) ≥ pa(C +D) = pa(C)+ pa(D)+C ·D− 1 ≥ pa(D) = pa(Z), hence C +D ∈ S.
This contradicts the assumption that D is maximal. Then we have OZ1(−D) is nef
and Z1 ≤ D. Since D < Z and pa(D) = pa(Z), the cycle D is chain-connected
according to Corollary 2.8. Furthermore, we have D ≤ Z1 according to Proposition
2.9, since OD(−Z1) is nef and supp D ∩ supp Z1 ̸= ∅. Hence we get D = Z1.
Assume D1 and D2 are different maximal elements in S. If OD2(−D1) is not nef,

then there exists an irreducible component C < D2 such that C ·D1 > 0. Since D1 is
the fundamental cycle on its support, this shows C ≰ D1 and it follows C +D1 ≤ Z.
Then we have pa(Z) ≥ pa(C+D1) = pa(C)+pa(D1)+C ·D1−1 ≥ pa(D1) = pa(Z) and
OC+D1(−Z) is numerically trivial, hence C+D ∈ S. This contradicts the assumption
thatD1 is maximal, hence we getOD2(−D1) is nef. SinceD2 is chain-connected, either
D2 ≤ D1 or supp D1 ∩ supp D2 = ∅. By the uniqueness of the minimal model Zmin,
we get Zmin ≤ D1 and Zmin ≤ D2. It means that D2 ≤ D1, contradicting that D1

and D2 are different maximal elements in S. Hence there uniquely exists a maximal
element in S. Q.E.D.

Definition 2.15 ([4]). We call D as in the Lemma 2.14 the Tyurina component of
Z. Since D is the fundamental cycle on its support and Zmin is also the minimal
model of D, we can get the Tyurina component of D when −D is numerically trivial
on Zmin. By the induction, we get the sequence of cycles

0 < Dm < Dm−1 < · · · < D2 < D1 = Z

such that Di+1 is the Tyurina component of Di for 1 ≤ i ≤ m− 1 and Dm ·Zmin < 0.
We call it the Yau sequence for Z and call Y =

∑m
i=1 Di the Yau cycle. The case

Z · Zmin < 0 is corresponds to m = 1.

Proposition 2.16 (Theorem 3.7, [9]). If (V, o) is a numerically Gorenstein elliptic
singular point and π : X → V is the minimal resolution, then the Yau cycle is the
canonical cycle.

The lengthm of the Yau sequence is a numerical invariant of (V, o), and gives us the
arithmetic genus for singular points of fundamental genus two in [4]. When pf (V, o) >
2, length m also gives us a lower bound of pa(V, o) since pa(Y ) =

∑m
i=1(pa(Di)− 1)+∑

1≤i<j≤m DiDj + 1 = m(pf (V, o)− 1) + 1.
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2.5. Classfication of weighted dual graphs. Let (V, o) be an isolated singular
point on a surface V , and π : X → V be a minimal resolution of V . There are two
beautiful results given by Artin in [1].

Definition 2.17. The singularity (V, o) is said to be rational if χ(Z) = 1.

If (V, o) is a rational singularity, then π is also a minimal good resolution, i.e.,
exceptional set with nonsingular Ei and normal crossings. Moreover, each Ei is a
rational curve and E2

i = −2.

Theorem 2.18 ([1]). If (V, o) is a hypersurface rational singularity, then (V, o) is
a rational double point. Moreover the set of weighted dual graphs of hypersurface
rational singularities consists of the following graphs:

(1) An, n ≥ 1
−2 −2 −2u u u Z = 1 1 . . . 1.

(2) Dn, n ≥ 4
−2 −2 −2 −2
u uu−2 uu u Z = 1

1

2 2 . . . 2 1.

(3) E6
−2 −2 −2 −2 −2
u u−2u u u u Z = 1 2

2

3 2 1.

(4) E7
−2 −2 −2 −2 −2 −2
u u−2u u u u u Z = 2 3

2

4 3 2 1.

(5) E8
−2 −2 −2 −2 −2
u u−2u u u u u u

−2 −2
Z = 2 4

3

6 5 4 3 2.

To each such weighted dual graph is associated an intersection matrix whose (i, j)th
entry is Ei · Ej.

These graphs (1) − (5) in Theorem 2.18 are called ADE graphs in the literature.
This theorem completely classifies the weighted dual graphs with all E2

i = −2. In
general, according to [1] and [2], to classify the weighted dual graphs we need to
classify the corresponding negative-definite matrices:

Proposition 2.19 ([1]). Let {Ei}i=1,··· ,n be a connected bunch of complete curves on
a regular two-dimensional scheme:

(i) Suppose that Ei · Ej is negative-definite, then there exists positive cycles Z =∑
riEi such that Z · Ei ≤ 0 for all i.

(ii) Conversely, if there exists a positive cycle Z =
∑

riEi such that Z ·Ei ≤ 0 for
all i, then Ei ·Ej is negative semi-definite. If in addition Z2 < 0, then Ei ·Ej

is negative-definite.

3. Singularities of degree two

3.1. The relation between the canonical cycle and the Yau cycle. Let (V, o)
be an isolated singular point on a surface V , and π : X → V be a minimal resolution of
V . We know the Yau cycle is the canonical cycle if (V, o) is a numerically Gorenstein
elliptic singular point. This property doesn’t hold when pf (V, o) > 0. But if the
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degree of (V, o) is small, we can get a similar property under restrictive conditions.
If the fundamental cycle Z satisfying Z2 = −1, the relation between the canonical
cycle and the Yau cycle is given by Konno in [4].

Definition 3.1. Since pf (V, o) > 0, there exists an irreducible component A ≤ Z
such that A is not a (−2)-curve. Let k be the coefficient of cycle A of Z. We say that
Z is essentially irreducible if either Z = kA or Z − kA consists of (−2)-curves.

Proposition 3.2 (Lemma 3.4, [4]). Let (V, o) be a normal surface singularity with
pf (V, o) > 0 and Z2 = −1, and π : X → V be a minimal resolution of V . Assume
that Z is essentially irreducible. Then (V, o) is numerically Gorenstein with canonical
cycle (2pf (V, o)− 1)Y .

For the case with Z2 = −2, we consider a similar property: (V, o) is numerically
Gorenstein with canonical cycle pf (V, o)Y . However this property doesn’t hold when
only Z is essentially irreducible. So we need a more restrictive situation.

Lemma 3.3. Let (V, o) be a normal surface singularity with pf (V, o) > 0 and Z2 =
−2, and π : X → V be a minimal resolution of V . Assume that Z is essentially
irreducible, then either m = 1 or Z −Dm consists of (−2)-curves, where m denotes
the length of the Yau sequence for Z and Dm is the smallest term in the Yau sequence
for Z.

Proof. If m > 1, we can get an increasing sequence of cycles like the proof of propo-
sition 2.4:

Z0 = Dm, Z1 = Z0 + Ei1 , Z2 = Z1 + Ei2 , . . . , Zj = Zj−1 + Eij , . . . ,

Zℓ = Zℓ−1 + Eiℓ = Z,

where Eij is an irreducible component and Eij · Zj−1 > 0, 1 ≤ j ≤ ℓ.
By the definition of Yau sequence, we have pa(Dm) = pa(Z). Since pa(Zj) =

pa(Zj−1) + pa(Eij) + Eij · Zj−1 − 1 ≥ pa(Zj−1) for 1 ≤ j ≤ ℓ, we can get pa(Eij) = 0
and Eij · Zj−1 = 1 for 1 ≤ j ≤ ℓ.

Consider that Z2
j−1 = Z2

j − 2Eij · Zj−1 − E2
ij
= Z2

j − 2− E2
ij
and π is minimal, we

have that −2 = Z2
ℓ ≤ Z2

ℓ−1 ≤ · · · ≤ Z2
1 ≤ Z2

0 ≤ −1. Assume Z−Dm does not consists
of (−2)-curve, then the Eij that is not (−2)-curve is (−3)-curve and only one. Since
D2

m = −1, we have the unique non-multiple component A with A · Dm = −1 and
ODm−A(−Dm) is numerically trivial. Since Dm ·Zmin < 0, A is not (−2)-curve. Thus
we can get that π−1(o) = ∪Ei satisfying all Ei are (−2)-curves except for one (−3)-
curve A, and the coefficient of cycle A of Z is 2. Thus pa(Z) = (2A·K−2)/2+1 = 1 by
the Riemann-Roch theorem. These weighted dual graphs consisting of (−2)-curves
and exactly one (−3)-curve are classified in [10], there is no situation where the
conditions are met. This means Z −Dm consists of (−2)-curves. Q.E.D.

Remark 3.4. If we don’t use the classification results of weighted dual graphs in [10],
we can still prove Lemma 3.3 by discussing the irreducible components with a negative
intersection number with Z. This is the main approach to proving Theorem 3.9 later
on, however, the process may be more cumbersome. Here, let’s briefly explain the
train of thought.
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Continuing from the process of Lemma 3.3, we now need to prove that there are no
singularities where the coefficient of A in Z is 2 and the coefficient in Dm is 1. Since
Dm ̸= Z and Z is essentially irreducible, we know that the irreducible component
with a negative intersection number with Z is a (−2)-curve. We assert that such an
irreducible component is unique. Otherwise, there exists an irreducible component B
such that B · Z = −1, and the coefficient of cycle B of Z is 1. It means there exists
a unique irreducible component B1 connected with B and the coefficient of cycle B1

of Z is 1. If B1 is a (−2)-curve, then we can find the unique irreducible component
B2 connected with B1, excluding B. We can continue repeating this step until Bn is
not longer a (−2)-curve. Since Z is essentially irreducible, we have Bn = A, but the
coefficient of A of Z is 2, contradicting.
Then we have the unique irreducible component C such that C · Z = −1, and the

coefficient of cycle C of Z is 2. After removing A, we observe that Z can be divided
into several connected branches consisting of (−2)-curves. We will only consider the
branch where C is located. Its weighted dual graph is an ADE. The number of the
irreducible components connected with C is either 1 or 2. By using a similar method
as mentioned above, we can determine the weighted dual graph of the branch where
C is located is An for some n when the number is 1, and it is Dn for some n when
the number is 2. In these cases, we can conclude that the coefficient of A of Dm is 2.
The specific process can be referred to case (2) and case (5) of Theorem 3.9.

Remark 3.5. It is easy to see that when Z − Dm consists of (−2)-curves, then
D2

i = Z2 for 1 ≤ i ≤ m.

Theorem 3.6 (i.e. Theorem A). Let (V, o) be a normal surface singularity with
pf (V, o) > 0 and Z2 = −2, and π : X → V be a minimal resolution of V . Assume that
Z is essentially irreducible and Dm = Zmin. Then (V, o) is numerically Gorenstein
with canonical cycle pf (V, o)Y .

Proof. Assume A is an irreducible component A ≤ Z such that A is not a (−2)-
curve, and k is the coefficient of cycle A of Z. Since −2 = Zmin · (kA) = kY · A,
we have KX · A = 1

k
KX · Z =

2pf (V,o)

k
= −pf (V, o)Y · A. We claim that B · Y = 0

for any component B < Z − kA. Let j be the largest index such that B ≤ Dj. If
j = m, then OB(−Di) is numerically trivial for 1 ≤ i ≤ m − 1 by the definition
of the Yau sequence and B · Dm = 0 by Dm = Zmin, hence B · Y = 0. If j <
m, then Dj+1 is the Tyurina component of Dj. We have OB(−Di) is numerically
trivial for 1 ≤ i ≤ j − 1 and ODk

(−(Dj − Dj+1)) is numerically trivial for j +
2 ≤ k ≤ m. Since Dk is chain-connected, we have either Dk ≤ Dj − Dj+1 or
supp Dk ∩ supp (Dj − Dj+1) = ∅. However, Dk ≤ Dj − Dj+1 is impossible, since
pa(Dk+Dj+1) = pa(Dk)+pa(Dj+1)−1 ≥ pa(Dj+1) and ODk+Dj+1

(−Dj) is numerically
trivial. Thus supp Dk ∩ supp (Dj − Dj+1) = ∅ and C · Dk = 0 for any irreducible
component C ≤ Dj −Dj+1. In particular, B ·Dk = 0 for j + 2 ≤ k ≤ m. In sum, we
get B · Y = B ·Dj +B ·Dj+1.

By Lemma 3.3 and Remark 3.5, we have that D2
j = −2 and Dj −Dj+1 consists of

(−2)-curves. Since Dj is the fundamental cycle on its support, there either exist two
components C1 and C2 of Dj such that C1 ·Dj = C2 ·Dj = −1 and the coefficient of
cycle Ci of Dj is 1 for i = 1, 2, or exists a component C3 of Dj such that C3 ·Dj = −1
and the coefficient of cycle C3 of Dj is 2. If the first alternative happens, then
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ODj−C1−C2(−Dj) is numerically trivial and C1 ·C2 = 0. This implies that Dj−C1−C2

is the Tyurina component of Z, and B ∈ {C1, C2}. We have B · Dj = −1 and
B ·Dj+1 = B · (Dj −C1−C2) = B ·Dj −B2 = 1, hence B ·Y = B ·Dj +B ·Dj+1 = 0.
If the last alternative happens, we can get an increasing sequence of cycles like the
proof of Proposition 2.5:

Z0 = Dj+1, Z1 = Z0 + Ei1 , Z2 = Z1 + Ei2 , . . . , Zj = Zj−1 + Eij , . . . ,

Zℓ = Zℓ−1 + Eiℓ = Dj,

where Eij is an irreducible component and Eij · Zj−1 = 1 for 1 ≤ j ≤ ℓ by pa(Dj) =
pa(Dj+1). Then we have Ei1 = C3 and C3 · Y = C3 ·Dj + C3 ·Dj+1 = 0. If B ̸= C3,
it means that B ·Dj = 0. Since B ≰ Dj+1 and ODj+1+B(−Dj) is numerically trivial,
we have B ·Dj+1 ≥ 0 and B ·Dj+1 ≤ 0, furthermore, B · Y = B ·Dj +B ·Dj+1 = 0.
In sum, we have shown that (V, o) is numerically Gorenstein with canonical cycle

pf (V, o)Y . Q.E.D.

We remark that, when Z2 = −1, the condition that Z is essentially irreducible
assuming that Dm = Zmin. However when Z2 = −2, there exists a singularity (V, o)
satisfies that Z is essentially irreducible and Dm ̸= Zmin.

Proposition 3.7. Let (V, o) be a normal surface singularity with pf (V, o) > 0, and
π : X → V be a minimal resolution of V . Assume that Z is essentially irreducible
with KX · A + Z2 ≥ 0 and Dm = Zmin, where A is the unique cycle in Z that is not

a (−2)-curve. Then we have ZK = (
2−2pf (V,o)

Z2 + 1)Y .

Proof. Since this property is not relevant to the main conclusions of this paper, only
a brief outline of the proof is provided here.

First, let us retain the notations used in Lemma 3.3. We have that −Z2 = Z2
ℓ ≤

Z2
ℓ−1 ≤ · · · ≤ Z2

1 ≤ Z2
0 = D2

m ≤ −1. Since Z is essentially irreducible, assume k is
the coefficient of cycle A of Z, and k′ is the coefficient of cycle A of Dm. Then we
have that pa(Z) = 1 + 1

2
(Z2 + kA · K) and pa(Dm) = 1 + 1

2
(D2

m + k′A · K) by the
Riemann-Roch theorem. Since Z2+A ·K ≥ 0, we have k′ = k. It means that Z−Dm

consists of (−2)-curves and D2
i = Z2 for 1 ≤ i ≤ m.

To prove ZK = (
2−2pf (V,o)

Z2 + 1)Y , we need to demonstrate (
2−2pf (V,o)

Z2 + 1)Y · A =
−KX · A and Y · B = 0 for any (−2)-curve B. The former can be derived from that
Z2 = Zmin · (kA) = kY · A and pa(Z) = 1 + 1

2
(Z2 + kA · K). Similar to the proof

process of Theorem 3.6, the latter can be converted to B · (Dj +Dj+1) = 0, where j
is the largest index such that B ≤ Dj. We can assume B ·Dj = −1, since the case
when B ·Dj = 0 is similar to the last part of the proof of Theorem 3.6.

After removing A, we observe that Dj can be divided into several connected
branches consisting of (−2)-curves; we will only consider the branch where B is
located, and claim that B is the only irreducible component in this branch satisfying
B ·Dj < 0. Otherwise, if we can find a path connecting two irreducible components
with a negative intersection number with Dj, subtracting 1 from the coefficients of
the curves in this path of Dj would result in a new curve with an arithmetic genus
larger than that of Dj, contradicts the chain-connectivity of Dj. Additionally, as
shown in the proof of Proposition 2.5, we can transform Dj into Dj+1 by progres-
sively removing irreducible components. We further claim that during this process,
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B is the last irreducible component to be removed in this branch. This implies that
B ·Dj+1 = 1. Thus, we have proven this remark. Q.E.D.

3.2. Classification of weighted dual graphs of the singularities of degree
two with the fundamental cycle Z being essentially irreducible. Let (V, o)
be a normal surface singularity with pf (V, o) > 0 and Z2 = −2, and π : X → V be a
minimal resolution of V . Assume that Z is essentially irreducible and the irreducible
componet A ≤ Z is not a (−2)-curve. Let k be the coefficient of cycle A of Z and
m be the length of the Yau sequence for Z. If m = 1, the condition Dm = Zmin

means OZ−kA(−Z) is numerically trivial. In order to study the relation between Z
and Dm, we aim to classify the weighted dual graphs of the singularities of degree
two with the fundamental cycle Z being essentially irreducible. We use Γ to denote
the weighted dual tree graph of the exceptional set π−1(o). After removing the point
corresponding to the A, the remaining connected graphs are denoted as Γ1, · · · ,Γn.

Lemma 3.8. With the notations as above, we have Γi must be ADE for any 1 ≤
i ≤ n. Let Z|Γi

be the fundamental cycle Z restricted to each Γi. If m > 1, we have
{i|(Z|Γi

·Z) < 0} = {i|supp Γi ∩ supp (Z −Dm) ̸= ∅}, where m denotes the length of
the Yau sequence for Z and Dm denotes the smallest component of the Yau sequence.

Proof. Firstly, we have Z|Γi
· Ej ≤ 0, ∀Ej ∈ supp Γi. Assume cycle Ej0 ∈ supp Γi

connected with A, then Z|Γi
· Ej0 < 0. By Proposition 2.19, we conclude that Γi is

negative-definite. Hence Γi must be ADE.
According to Lemma 3.3, we have an increasing sequence of cycles when m > 1:

Z0 = Dm, Z1 = Z0 + Ei1 , Z2 = Z1 + Ei2 , . . . , Zj = Zj−1 + Eij , . . . ,

Zℓ = Zℓ−1 + Eiℓ = Z,

where Eij is a (−2)-curve and Eij · Zj−1 = 1, 1 ≤ j ≤ ℓ.
For any 1 ≤ i ≤ n, if Z|Γi

· Z = 0, we prove that OZ|Γi
(−Zj) is numerically trivial

for each j by induction on j. Firstly, since Z|Γi
· Z = 0, we have OZ|Γi

(−Zℓ) is

numerically trivial. Assume OZ|Γi
(−Zj) is numerically trivial for any 1 ≤ j ≤ ℓ,

notice that Eij · Zj = Eij · Zj−1 + E2
ij
= −1, we have Eij /∈ supp Γi and Eij ̸= A.

It means that Eij is disjoint from Z|Γi
, so that −Zj−1 = −(Zj − Eij) is numerically

trivial Z|Γi
. By induction, we have OZ|Γi

(−Zj) is numerically trivial for each j, hence

supp Γi ∩ supp (Z −Dm) = ∅.
Since ODm(−Z) is numerically trivial when m > 1, it is obvious that supp Γi ∩

supp (Z − Dm) ̸= ∅ when Z|Γi
· Z < 0. Hence, we have {i|(Z|Γi

· Z) < 0} =
{i|supp Γi ∩ supp (Z −Dm) ̸= ∅}. Q.E.D.

Let S = {i|(Z|Γi
· Z) < 0}, by the proof of the Lemma 3.8, in order to study the

relation between Z and Dm, we only need to observe that the subgraph Γ′ of Γ by
removing all the Γi, i /∈ S. In a dual graph, the ∗ represents the point corresponding
to cycle A. We still call it the cycle A later. The others are the points corresponding
to the (−2)-curves, denoted by u, we call them (−2)-curves later.

Theorem 3.9. With the notations as above, when m > 1 case, Γ′ and Z|Γ′ must be
one of the following(the underlined number represents the A):
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(1) Am′ + A+ An′.

m′ points
︸ ︷︷ ︸

n′ points
︸ ︷︷ ︸∗u u u u Z|Γ′ = 1 ... 1 ... 1.

(2) A+ An′: n′ ≥ 3.

n′ points
︸ ︷︷ ︸ ∗u u Z|Γ′ = 1 2 2 ... 2 2,or

n′ points
︸ ︷︷ ︸ ∗u u Z|Γ′ = 1 2 2 ... 2 1.

(3) A+ (1− An′): n′ ≥ 3.

∗u uu Z|Γ′ = 1 2 ...

1

2 1.

(4) A+ (k′ −Dn′): k’ is an even number and 0 ≤ k′ ≤ n− 3.

k′ + 1 points
︸ ︷︷ ︸ u uuu u∗ Z|Γ′ = 2 3 ...

1

k + 2 ...

k′+2
2

k′ + 2 k′+2
2

.

In particular, when n′ is an odd number and k′ = n′ − 3, we have:

uuu u∗ Z|Γ′ = 2 3 ...

1

n′ − 1
n′−1
2

n′−1
2

.

In additional, when k′ = 0, we have:

uuu u∗ Z|Γ′ = 1 2 2 ...

1

2 1.

(5) A+ (D′
n′): n′ is an odd number.

uuu u ∗ Z|Γ′ = 2 3 ...

n′−1
2

n′ − 1 n′+1
2

2,

or uuu u ∗ Z|Γ′ = 2 3 ...

n′−1
2

n′ − 1 n′+1
2

1.

(6) A+ (D′′
n′): n′ is an even number.

uuu u ∗
Z|Γ′ = 2 3 ...

n′

2

n′ − 1

1
n′

2
.

(7) A+ E6.

u u u uu u ∗ Z|Γ′ = 2 3

2

4 3 2 1.

(8) A+D′′′
5 :

u u u uu
∗ Z|Γ′ = 1 2

2

3 2 1.

The weighted dual graph of case (8) is the same as case (5), but Z|Γ′ differs.
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Proof. Since m > 1, Z · A = 0 and −2 = Z2 =
n∑

i=1

(Z · Z|Γi
), hence, the number of

elements in S is either 1 or 2. If S has two elements, we can assume S = {1, 2}.
Then we know that Z · Z|Γ1 = −1 and, hence, there exists an irreducible componet
C1 ≤ Z|Γ1 such that C1 · Z = −1 and the coefficient of C1 of Z is 1. Since C1 is a
(−2)-curve, there exists a unique cycle in Γ connected with C1. If the cycle isn’t A,
we call it C2. Then we have C2 · Z = −1 and the coefficient of C1 of Z is 1. Except
for C1, there exists a unique cycle in Γ connected with C2. Now, by the obvious
induction, we can show that the weighted dual graph of Γ1 is Am′ for any m′ and
similarly the weighted dual graph of Γ2 is An′ for any n′, and the weighted dual graph
of Γ′ and Z|Γ′ is the same as in case (1).
Then we consider that S has only one element, we can assume S = {1}. Then we

know that Z ·Z|Γ1 = −2 and there exists a unique cycle C in Γ1 such that C ·Z < 0.
That is because if there exist two cycles C and D, we can find a connection way of C
and D in Γ1. We denote the points of the connection way by C1 = C,C2,. . . ,Ck′ = D,

then OZ(−(Z −
k′∑
i=1

Ci)) is nef, contradicting the minimality of Z. Since C·Z =

pa(Z)− pa(Z − C)− 1 ≥ −1, the coefficient of C of Z is 2.
Referring to [6], for an ADE graph, with abuse of notations, Ei denotes exceptional

curve, and E =
∑

Ei is the exceptional cycle. Let δi = (E − Ei) · Ei be the number
of irreducible components of E connected with Ei. A cycle Ei is called an end (resp.
a node), if δi = 1 (resp. δi ≥ 3).

If C isn’t an end in Γ1, we claim that Γ1 is An′ for any n′. If not, then Γ1 has a node
D, we can find a connection way of C and D. We denote the points of the connection
way by C1 = C,C2,. . . ,C

′
k = D(If C = D, denote k′ = 1). If C ̸= D, we denote the

cycles connected with D in Γ1 by Ck′−1,B1,B2, and the another cycle connected with
C in Γ1 as B3. If C = D, we denote the cycles connected with D in Γ1 as B1,B2,B3.

Then we have OZ(−(Z − 2
k′∑
i=1

Ci −
3∑

i=1

Bi)) is nef, contradicting the minimality of Z.

Since the coefficient of C of Z is 2 and C isn’t an end in Γ1, we have there exists a
cycle D connected with C in Γ1 such that the coefficient of D of Z is 1, hence, D is
an end. Then either C is connected with A or the coefficient of the another cycle C2

that connected with C in Γ1 of Z is 2. If the first alternative happens, there are two
situations. One is that C is connected with another cycle C2 and C2 is an end when
kA · C = 1, the other is that C is an end in Γ1 when kA · C = 2(which contradicts
the assumption that C isn’t an end). If the last alternative happens, for C2, either
C2 is connected with A , or the coefficient of the another cycle C3 that is connected
with C2 in Γ1 of Z is 2. By induction, we can get case (2) and case (3).

If C is an end, we have Γ1 isn’t An′ for any n′ by m > 1. Then Γ1 has a node
called D, we can find a connection way of C and D, and denote the points of the
connection way by C1 = C,C2,. . . ,C

′
k = D, and denote B1,B2 as the other cycles

connected with D. Assume ci(resp. bi) is the coefficient of Ci(resp. Bi) of Z. By

induction, we have cj = j + 1 −
j−1∑
i=1

((j − i)kA · Ci) for 2 ≤ j ≤ k′. Since b1, b2 ≥
c′k
2
,
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we have 0 ≤ ck′ − ck′−1 − kA · Ck′ = 1−
k′∑
i=1

(kA · Ci). If A ·
k′∑
i=1

Ci > 0, we have B1,B2

are the ends and k = 1, then we get case (4).

If A ·
k′∑
i=1

Ci = 0, we have cj = j + 1 for 1 ≤ j ≤ k′. If k′ is an odd number, then we

can assume b1 = k′+1
2

and b2 = k′+3
2

, hence, B1 is an end and kA · B2 ≤ 2. We can
get case (5) when kA · B2 = 2, and get case (7) when kA · B2 = 0. If kA · B2 = 1,
there exists a cycle B3 connected with B2, and the coefficient of B3 of Z is 1. But
B3 · Z ≥ −2 + k′+3

2
> 0, it’s impossible.

If k′ is an even number, then we can assume b1 = b2 = k′+2
2

. We can get case (6)
when kA ·B1 > 0 and kA ·B2 > 0, and get case (8) when kA ·B1 = 0 or kA ·B2 = 0. If
kA ·B1 = 0 and kA ·B2 = 0, we can prove that A ·Z|Γ1 = 0, it’s impossible. Q.E.D.

Proposition 3.10. With the notations as above, when m > 1 and Dm = Zmin case,
Γ′ must be one of the following:

(1) An′ + A+ An′.
(2) A+ An′: n′ is an odd number and n′ ≥ 3.
(3) A+ (1− An′): n′ is an odd number and n′ ≥ 3.
(4) A+ (k′ −Dn′): k’ is an even number and 0 ≤ k′ ≤ n− 3.
(5) A+ (D′

n′): n′ is an odd number.
(6) A+ (D′′

n′): n′ is an even number.
(7) A+ E6.

remark: The weighted dual graphs Γ′ of cases (1)-(7) in the Proposition 3.10 are the
same as those of cases (1)-(7) mentioned in the Theorem 3.9.

Proof. We only need to compareDm|Γ′ with Zmin|Γ′ , since supp (Z−Dm) ⊂ supp (Z−
Zmin) ⊂ supp Γ′. We can compute the Dm|Γ′ and Zmin|Γ′ for each case in the Theorem
3.9. Computations for cases (1)-(8) are simple, so let us take the computation of the
case (1) as an example here.

In case (1), there exist two different irreducible components B1 and C1 in D1 = Z
such that B1·D1 = −1, C1·D1 = −1, and B1·C1 = 0. In fact, the points corresponding
to the B1 and C1 are the ends of Am′ and An′ that are not connected with the point
corresponding to the A. Then we have D2 = D1 −B1 −C1. We can assume m′ ≥ n′.
By induction, we know that m = n′+1 and the weighted dual graph of Dm|Γ′ consists
of Am′−n′ and the point corresponding to the A. If m′ − n′ ̸= 0, since the cycle C
corresponding to the end of Am′−n′ that is not connected with the point corresponding
to the A, and it satisfies C ·Dm = −1, we have pa(Dm) = pa(Dm−C). By induction,
we have Zmin|Γ′ = A.
Now we give the Dm|Γ′ and Zmin|Γ′ for each case in the Theorem 3.9.

(1) Am′ + A+ An′ : assume m′ ≥ n′.

Dm|Γ′ :

m′ − n′ points
︸ ︷︷ ︸ ∗u u 1 ... 1 .

Zmin|Γ′ : ∗ 1.



14 S. YAU, H. ZUO, AND H. ZUO

(2) A+ An′ : n′ ≥ 3.

Dm|Γ′(when n’ is an even number): u u ∗ 1 2 2 or u u ∗ 1 2 1.

Dm|Γ′(when n’ is an odd number): u ∗ 1 2 or u ∗ 1 1.

Zmin|Γ′ : u ∗ 1 2 or u ∗ 1 1.

(3) A+ (1− An′): n′ ≥ 3.

Dm|Γ′(when n’ is an even number): uu ∗
1

1 1.

Dm|Γ′(when n’ is an odd number): ∗ 1.

Zmin|Γ′ : ∗ 1.

(4) A+ (k′ −Dn′): k’ is an even number and 0 ≤ k′ ≤ n− 3.

Dm|Γ′ :

k′ points
︸ ︷︷ ︸ u uuu u∗ 1 2 ...

1

k ...

k′

2

k′ k′

2
.

Zmin|Γ′ :

k′ points
︸ ︷︷ ︸ u uuu u∗ 1 2 ...

1

k ...

k′

2

k′ k′

2
.

(5) A+ (D′
n′): n′ is an odd number.

Dm|Γ′ :

n′ − 3 points
︸ ︷︷ ︸ uuu u ∗ 1 ...

n′−3
2

n′ − 3 n′−1
2

2

or

n′ − 3 points
︸ ︷︷ ︸ uuu u ∗ 1 ...

n′−3
2

n′ − 3 n′−1
2

1.

Zmin|Γ′ :

n′ − 3 points
︸ ︷︷ ︸ uuu u ∗ 1 ...

n′−3
2

n′ − 3 n′−1
2

2

or

n′ − 3 points
︸ ︷︷ ︸ uuu u ∗ 1 ...

n′−3
2

n′ − 3 n′−1
2

1.

(6) A+ (D′′
n′): n′ is an even number.

Dm|Γ′ :

n′ − 3 points
︸ ︷︷ ︸ uuu u ∗

1 ...

n′−2
2

n′ − 3

1
n′−2
2

.
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Zmin|Γ′ :

n′ − 3 points
︸ ︷︷ ︸ uuu u ∗

1 ...

n′−2
2

n′ − 3

1
n′−2
2

.

(7) A+ E6.

Dm|Γ′ : ∗ 1.

Zmin|Γ′ : ∗ 1.

(8) A+D′′′
5 :

Dm|Γ′ : u u u u ∗ 1 1 1 1 1.

Zmin|Γ′ : ∗ 1.

Comparing the Dm|Γ′ with Zmin|Γ′ , we can get this proposition. Q.E.D.

3.3. Arithmetic genus of a singularity in the essentially irreducible case.
Let i be a non-negative integer and pf (V, o) = p > 0. We have pa(iY )−1 = i(pa(Y )−
1)+ i(i−1)

2
Y 2 = m(i(p−1)+ i(i−1)

2
Z2), where m denotes the length of the Yau sequence

for Z. In the degree one case, we can get a lower bound for pa(V, o) by max
i

{pa(iY )} =

pa(pY ) = p(p−1)m
2

+ 1.

Lemma 3.11 (Lemma 3.2, [4]). pa(V, o) ≥ p(p−1)m
2

+ 1 holds for a normal surface
singularity (V, o) of degree one, where p = pf (V, o) and m denotes the length of the
Yau sequence for Z.

In fact, we have the equality sign holds when Z is essentially irreducible.

Theorem 3.12 (i.e. Theorem B). Let (V, o) be a normal surface singularity of degree
one with pf (V, o) > 0, Z be the fundamental cycle on the minimal resolution. Assume

that Z is essentially irreducible, then pa(V, o) =
p(p−1)m

2
+ 1, where p = pf (V, o) and

m denotes the length of the Yau sequence for Z.

Proof. By Lemma 3.1 in [4], we have that Ai = Di − Di+1 is a (−2)-curve with
Ai · Di = −1 for 1 ≤ i < m and Dm = Zmin. Let C be a cycle whose support is
in π−1(o) such that pa(C) = pa(V, o). Let C = C1 + · · · + Cn be a chain-connected
component decomposition, where Ci is a chain-connected cycle and OCj

(−Ci) is nef
for i < j.

Let A ≤ Z be an irreducible component such that A is not a (−2)-curve. Since
Z is essentially irreducible, we have pa(C − Ci) = pa(C) − pa(Ci) − Ci · (C1 + · · · +
Ci−1 + Ci+1 + · · ·+ Cn) + 1 ≥ pa(C)− pa(Ci) + 1 ≥ pa(C) + 1 when A ≰ Ci. So, we
can get that A ≤ Ci for any i.

We prove pa(C) ≤ p(p−1)m
2

+ 1 by induction on the length m of the Yau sequence.
When m = 1, we have Z = Zmin and Z ·A = −1. Since the coefficient of A in Z is 1
and A ≤ Ci ≤ Z, we have A · Ci ≤ A · Z = −1. Furthermore, since OCj

(−Ci) is nef,
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we have Ci · Cj = A · Cj + (Ci − A) · Cj ≤ A · Cj ≤ −1 for i < j. Then

pa(C)− 1 =
n∑

i=1

(pa(Ci)− 1) +
∑
i<j

Ci · Cj ≤ n(p− 1)− n(n− 1)

2
≤ p(p− 1)

2
.

When m > 1, assume the inequality holds for m − 1, let us proceed to show that it
is true for m. We consider all the chain-connected components Ci such that A1 ≤ Ci

and assume that n0 is the number of these cycles. Since the coefficient of A1 in Z is
1 and Ci ≤ Z, we have A1 · Ci ≤ A1 · Z = −1 when A1 ≤ Ci. Furthermore, since
OCj

(−Ci) is nef, we have Ci · Cj = A1 · Cj + (Ci − A1) · Cj ≤ −1 when A1 ≤ Ci and
A1 ≤ Cj(i < j). Then

pa(C)− 1 = (pa(C −
∑

A1≤Ci

Ci)− 1) + (pa(
∑

A1≤Ci

Ci)− 1) + (C −
∑

A1≤Ci

Ci) · (
∑

A1≤Ci

Ci)

≤ (pa(C −
∑

A1≤Ci

Ci)− 1) +
∑

A1≤Ci

(pa(Ci)− 1) +
∑

A1≤Ci,A1≤Cj ,i<j

Ci · Cj

≤ (pa(C −
∑

A1≤Ci

Ci)− 1) + n0(p− 1)− n0(n0 − 1)

2

≤ (pa(C −
∑

A1≤Ci

Ci)− 1) +
p(p− 1)

2
.

Notice that A1 ≰ C −
∑

A1≤Ci
Ci and D2 = Z − A1, we know that supp (C −∑

A1≤Ci
Ci) ⊆ supp (D2). Since D2 is the fundamental cycle on its support and the

length of the Yau sequence for D2 is m − 1, by the induction hypothesis, we have

pa(C −
∑

A1≤Ci
Ci) ≤ p(p−1)(m−1)

2
+ 1. It means that pa(C) ≤ pa(C −

∑
A1≤Ci

Ci) +
p(p−1)

2
≤ p(p−1)m

2
+ 1.

It follows from Lemma 3.11 that we have pa(V, o) =
p(p−1)m

2
+ 1. Q.E.D.

We want to get a similar formula for the higher degree case:

pa(V, o) = pa(([
p− 1

d
] + 1)Y ) =

dm

2
(
2p− 2

d
− [

p− 1

d
])([

p− 1

d
] + 1) + 1,

where d = −Z2 and [a] := max{n ∈ Z|n ≤ a} for real number a(Gauss symbol).
However this formula doesn’t hold in the general case. For example, if m = 1,
Z ̸= Zmin and p ≥ d+ 1, then

pa(([
p− 1

d
] + 1)Y ) = pa(([

p− 1

d
] + 1)Z) < pa([

p− 1

d
]Z + Zmin) ≤ pa(V, o).

Notice that, the condition Z2 = −1 implies thatDm = Zmin, so we need the restrictive
condition Dm = Zmin when d > 1.

Lemma 3.13. Let (V, o) be a normal surface singularity of degree two or degree three,
Z is the fundamental cycle on the minimal resolution. Assume that Z is essentially
irreducible and Z = Zmin, then

pa(V, o) = pa(([
p− 1

d
] + 1)Z) =

d

2
(
2p− 2

d
− [

p− 1

d
])([

p− 1

d
] + 1) + 1.
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Proof. There exists a cycle D such that pa(D) = pa(V, o) and OZ(−D) is nef since
the negative definiteness of the intersection matrix. Assume A is the irreducible
component A ≤ Z such that A is not a (−2)-curve and k is the coefficient of cycle A
of Z. Assume ak + b is the coefficient of cycle A of D, where a, b ∈ Z and 0 ≤ b < k.
Then we claim that aZ ≤ D′ < (a+ 1)Z.
If D ≰ (a + 1)Z, let B = max(D − (a + 1)Z, 0) > 0, where max(D1, D2) :=∑
max(ni,mi)Ei for D1 =

∑
niEi and D2 =

∑
miEi, then we have D−B < (a+1)Z

by the definition of B. For any irreducible components C ≤ B, we have the coefficient
of C of D −B is equal to the coefficient of C of (a+ 1)Z. Therefore, C · (D −B) ≤
C · (a + 1)Z. Notice that Z is essentially irreducible and A ≰ B and Z = Zmin, we
have that C is a (−2)-curve and C ·Z = 0. It means that B consists of (−2)-curve and
B ·(D−B) ≤ 0. Then we have pa(D−B) = pa(D)−pa(B)−B ·(D−B)+1 > pa(D),
contradicting the maximality of pa(D).

If aZ ≰ D, let B = max(aZ − D, 0) > 0, then we have aZ ≤ D + B by the
definition of B. There exists an irreducible component C ≤ B such that C · B < 0
by the negative definiteness of the intersection matrix. Since C ≤ B, we know that
the coefficient of C of D + B is equal to the coefficient of C of aZ. Therefore,
C · (D + B) ≥ C · aZ = 0. But C · B < 0, contradicting that OZ(−D) is nef. So we
get aZ ≤ D′ < (a+ 1)Z.

If D ̸= aZ, assume D = aZ + B, where 0 < B < Z. We claim that pa(B) − 1 ≤
b
k
(pa(Z)− 1). By the Riemann-Roch theorem, pa(B)− 1 = 1

2
(B2 +B ·K) = 1

2
(B2 +

bA ·K) and pa(Z)− 1 = 1
2
(Z2 + kA ·K). Hence the claim is equivalent to B2 ≤ b

k
Z2.

When degree two or degree three case, we know that 1 ≤ k ≤ 3 by Z2 = kA · Z.
If k = 1, the claim is obvious by 0 ≤ b < k. If k = 2, it means that d = 2 and
b
k
Z2 ≥ −1, the claim is obvious too. If k = 3, it means that d = 3 and 0 ≤ b ≤ 2.

The claim is obvious when b ≤ 1, so we only need to observe b = 2 case. Since
B2 + 2A ·K = 2pa(B)− 2, we know that B2 is even number. Then B2 ≤ −2 = b

k
Z2.

By pa(D) = pa(aZ) + pa(B) + aZ · B − 1 ≥ pa(aZ), we have pa(V, o) = pa(D) =
pa(aZ)+ pa(B)− 1+ abZ ·A ≤ pa(aZ)+

b
k
(pa(Z)− 1+ akZ ·A) ≤ pa(aZ)+ (pa(Z)−

1 + akZ · A) = pa((a + 1)Z). So we know that max
i

{pa(iZ)} ≤ pa(V, o) = pa(D) ≤
pa(a+ 1)Z, hence

pa(V, o) = max
i

{pa(iZ)} = pa(([
p− 1

d
] + 1)Z) =

d

2
(
2p− 2

d
− [

p− 1

d
])([

p− 1

d
] + 1) + 1.

Q.E.D.

When the singular point is of degree two, according to Proposition 3.10, we can
generalized Lemma 3.13 to m > 1 case.

Theorem 3.14 (i.e. Theorem C). Let (V, o) be a normal surface singularity of degree
two with pf (V, o) > 0, Z is the fundamental cycle on the minimal resolution. Assume
that Z is essentially irreducible and Dm = Zmin, then

pa(V, o) = pa(([
p− 1

2
] + 1)Y ) = m(p− 1− [

p− 1

2
])[

p+ 1

2
] + 1 = [

p2

4
]m+ 1.

Proof. According to Proposition 3.10, we only need to prove that the theorem holds
in each case. There exists a cycle C such that pa(C) = pa(V, o) and OZ(−D) is nef
since the negative definiteness of the intersection matrix. Assume A is the irreducible
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component A ≤ Z such that A is not a (−2)-curve and k is the coefficient of cycle A
of Z.

In case (1), let C = C1 + · · ·+Cn be a chain-connected component decomposition,
where Ci is a chain-connected cycle and OCj

(−Ci) is nef for i < j. As in the proof
of Theorem 3.12, we have A ≤ Ci for 1 ≤ i ≤ n. Since Ci is chain-connected, we
have that supp Ci is connected. With the notations as in Theorem 3.9, we know the
coefficient of cycle B of Z is 1 for each cycle B in Γ′. We denote the number of the
cycle B that B ≤ Ci and B in the first An′(resp. the last An′) by ai(resp. bi) for
1 ≤ i ≤ n. Let cj(resp. dj) be the number of i that ai = j(resp. bi = j) for 0 ≤ j ≤ n′.

Then we have
n′∑
j=0

cj =
n′∑
j=0

cj = n and pa(C)− 1 =
∑n

i=1(pa(Ci)− 1) +
∑

i<j Ci · Cj ≤

n(p − 1) −
n′∑
j=0

c2j−cj+d2j−dj

2
≤ np −

∑
j=0

c2j+d2j
2

. It is easy to see that pa(C) reaches its

maximum value when c0 = c1 = c2 = · · · = cn′ = d0 = d1 = · · · = dn′ = [p−1
d
] and

m = n′ + 1, so the theorem holds in case (1).
In case (2) or case (3), there exists a unique cycle B ≤ Z such that B · Z = −1.

We consider the coefficient of cycle B of C, denote by 2a+ b(a, b ∈ Z, 0 ≤ b ≤ 1). As
in the proof of Lemma 3.13, aZ ≤ C. If b = 0, we have OC−aZ(−Z) is numerically

trivial, hence, pa(C)−1 = (pa(C−aZ)−1)+a(p−1)− a2−a
2

≤ (pa(C−aZ)−1)+[p
2

4
]

and supp (C− aZ) ⊂ supp (D2). If b = 1, there exists an end D in Γ′ that connected
with B. Denote the coefficient of cycle D of C by c, we have c = a and D · C = −1
since −1 ≤ D ·C = −2c+(2a+ b) ≤ 0, hence, OC−aZ−B−D(−Z) is numerically trivial

and pa(C)− 1 ≤ pa(C −B−D)− 1 = (pa(C − aZ −B−D)− 1)+ a(p− 1)− a2−a
2

≤
(pa(C − aZ − B −D)− 1) + [p

2

4
]. By induction, the theorem holds in case (2), case

(3).
In case (4), case (5), case (6), we have m = 2. There exists a unique cycle B ≤ Z

such that B · Z = −1, denote the coefficient of cycle B of C by 2a + b(a, b ∈ Z, 0 ≤
b ≤ 1). As in the proof of Lemma 3.13, aZ ≤ C. The theorem is trivial when
b = 0, so we only need to prove the theorem when b = 1. We have pa(C) − 1 =
(pa(aZ)−1)+(pa(C−aZ−B)−1)+(B ·(C−B)−1). Notice that B ·(C−B)−1 ≤ 1,

pa(aZ) − 1 ≤ [p
2

4
], and pa(C − aZ − B) − 1 ≤ [p

2

4
], we have pa(C) − 1 ≤ 2[p

2

4
] + 1.

Whatmore, pa(aZ) − 1 = [p
2

4
] means a ≥ [p

2
], and pa(C − aZ − B) − 1 = [p

2

4
] means

[p
2
]D2 ≤ C−aZ−B ≤ [p+3

2
]D2, then B ·(C−B)−1 = B ·aZ+B ·(C−B−aZ)−1 <

−[p
2
] + [p+3

2
]− 1 ≤ 1. So the theorem holds in case (4), case (5), case (6).

In case (7), we havem = 3. There exists a unique cycle B ≤ Z such that B·Z = −1,
denote the coefficient of cycle B of C by 2a + b(a, b ∈ Z, 0 ≤ b ≤ 1). Similarly, we

have pa(C) = pa(aZ) + pa(C − aZ − bB)− 1 ≤ pa(C − aZ − bB) + [p
2

4
] when b = 0,

and pa(C) = pa(aZ)+ pa(C − aZ − bB)− 1+ (B · (C −B)− 1) when b = 1. Since D2

is the same as case (4) with k′ = 0 and n′ = 5, we have pa(C − aZ − bB) ≤ 2[p
2

4
] + 1,

and pa(C − aZ − bB) = 2[p
2

4
] + 1 means C − aZ − bB ≤ [p+3

2
](D2 + D3). Hence,

similarly as case (4)-(6), we have the theorem holds in case (7). Q.E.D.
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