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Abstract. In Part I, the present authors introduced the notion of a quasi-Galois

point, for investigating the automorphism groups of plane curves. In this second

part, the number of quasi-Galois points for smooth plane curves is described. In

particular, sextic or quartic curves with many quasi-Galois points are character-

ized.

1. Introduction

In Part I [5], the present authors introduced the notion of a quasi-Galois point for

a plane curve C ⊂ P2, for investigating the automorphism group Aut(C) of C. In

this second part, we describe the arrangement of quasi-Galois points. It is inferred

that quasi-Galois points are useful to classify algebraic curves.

Let C ⊂ P2 be a smooth plane curve of degree d ≥ 4 over an algebraically

closed field K of characteristic zero, and let P ∈ P2. We define the set G[P ] as

the group consisting of all birational transformations of C preserving the fibers of

the projection πP . If |G[P ]| ≥ 2, then we say that P is a quasi-Galois point. This

is a generalization of the Galois point, which was introduced by Hisao Yoshihara

([4, 11, 17]).

In this second part, the number of quasi-Galois points for smooth plane curves

is described. The number δ[n] (resp., δ′[n]) of quasi-Galois points P ∈ C (resp.,

P ∈ P2 \ C) with |G[P ]| = n is described explicitly for any n ≥ 3, in Theorems

3.4, 3.10 and 3.14. Furthermore, when d = 4 or 6, all possibilities of δ′[d/2] are

determined (Theorems 4.1 and 5.12).
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Quasi-Galois points are related to reflections or finite unitary reflection groups in

group theory. In fact, a generator of the associated group G[P ] at a quasi-Galois

point is represented by a reflection (see [5, Theorem 2.3] or Fact 2.4). Finite unitary

reflection groups are well studied, and were classified in 1950s when such groups are

irreducible (Shephard–Todd [14], [8, Theorem 8.29]). Proofs of our results do not

depend on the results of them. Some parts of our proofs of Theorems 3.10 and 3.14

are related to the methods of Mitchell in [10, Sections 5 and 6]. Our proofs come

from the point of view of algebraic geometry.

2. Preliminaries

We introduce the system (X : Y : Z) of homogeneous coordinates on P2, and take

x = X/Z, y = Y/Z. If P ∈ C, then the (projective) tangent line at P is denoted by

TPC. For a projective line ℓ ⊂ P2 and a point P ∈ C∩ℓ, the intersection multiplicity

of C and ℓ at P is denoted by IP (C, ℓ). The line passing through points P and Q

is denoted by PQ, when P 6= Q, and the projection from a point P ∈ P2 by πP ,

which is the rational map from C to P1 represented by Q 7→ PQ. If Q ∈ C, the

ramification index of πP at Q is denoted by eQ. We note the following elementary

fact.

Fact 2.1. Let P ∈ P2, and let Q ∈ C. Then, for πP we have the following.

(1) If P = Q, then eP = IP (C, TPC)− 1.

(2) If P 6= Q, then eQ = IQ(C, PQ).

If |G[P ]| ≥ 2, then the fixed fieldK(C)G[P ] is an intermediate field ofK(C)/π∗
PK(P1),

and we have a Galois covering C → C/G[P ].

Remark 2.2. The order |G[P ]| divides the degree of πP .

In general, the following fact holds for a Galois covering θ : C → C ′ with a Galois

group G between smooth curves, where G(P ) is the stabilizer subgroup of P (see

[15, III. 7.2, 8.2]).

Fact 2.3. Let θ : C → C ′ be a Galois covering of degree d, and let G be the Galois

group. Then:

(1) The order of G(P ) is equal to eP at P for any point P ∈ C.

(2) Let P,Q ∈ C. If θ(P ) = θ(Q), then eP = eQ.
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Note that any automorphism is the restriction of a linear transformation (see [1,

Appendix A, 17 and 18] or [3]), since C is smooth and of degree d ≥ 4. According

to Part I [5, Remark 2.2 and Theorem 2.3], we have the following fact and two

corollaries.

Fact 2.4 ([5], Theorem 2.3). The group G[P ] is a cyclic group. Furthermore, for

an integer n ≥ 2, n divides |G[P ]| if and only if there exists a linear transformation

ϕ such that

(1) ϕ(P ) = (1 : 0 : 0),

(2) there exists an element σ ∈ G[ϕ(P )] ⊂ Bir(ϕ(C)) which is represented by the

matrix

Aσ =

 ζ 0 0

0 1 0

0 0 1

 ,

where ζ is a primitive n-th roof of unity, and

(3) ϕ(C) is given by ∑
i

Gd−ni(Y, Z)X
ni = 0,

where Gd−ni is a homogeneous polynomial of degree d− ni in variables Y, Z.

Corollary 2.5. For σ ∈ G[P ] \ {1}, we define F [P ] := {Q ∈ P2 | σ(Q) = Q}. If

we use the standard form as in Fact 2.4, F [P ] = {P} ∪ {X = 0}. In particular, the

set F [P ] does not depend on σ.

Corollary 2.6. Let P1, P2 ∈ P2. If P1 6= P2, then G[P1] ∩G[P2] = {1}.

We will use the following two well-known facts.

Fact 2.7. Let G ⊂ Aut(C) be a finite subgroup, and let Q ∈ C be a point. If

σ(Q) = Q for any σ ∈ G, then G is a cyclic group.

Fact 2.8. Let G be a finite subgroup of PGL(2, K). Then G is isomorphic to one

of the following:

(1) a cyclic group;

(2) a dihedral group;

(3) the alternating group A4 of degree four;

(4) the symmetric group S4 of degree four;

(5) the alternating group A5 of degree five.
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To study the number of quasi-Galois points, we introduce some symbols here. The

set of all quasi-Galois points P ∈ C with |G[P ]| = n (resp., |G[P ]| ≥ n) is denoted

by ∆n (resp., ∆≥n). The number of quasi-Galois points P ∈ C with |G[P ]| = n

(resp., |G[P ]| ≥ n) is denoted by δ[n] (resp., δ[≥ n]). Similarly, we define ∆′
n, ∆

′
≥n,

δ′[n] and δ′[≥ n], when we consider the case P ∈ P2 \ C.

3. The number of quasi-Galois points

Let P ∈ P2 be a quasi-Galois point for C with |G[P ]| = n ≥ 2. We consider

ramification points for the projection πP .

Proposition 3.1. There exist d points Q1, . . . , Qd ∈ C ∩ (F [P ] \ {P}) such that

P ∈ TQi
C and IQi

(C, TQi
C) = lin for some integer li ≥ 1.

Proof. Let Q ∈ C ∩ (F [P ] \ {P}). By Corollary 2.5, σ(Q) = Q for each σ ∈ G[P ].

By Fact 2.3(1), the ramification index at Q for the covering map C 7→ C/G[P ] is

equal to n. Since the projection πP is the composite map of C → C/G[P ] and

C/G[P ] → P1, the ramification index eQ at Q for πP is equal to ln for some l ≥ 1.

By Fact 2.1(2), eQ = IQ(C, PQ) = ln and PQ = TQC. Furthermore, the line given

by F [P ] \ {P} intersects with C at exactly d points. □

If P ∈ C, we have the following.

Proposition 3.2. If P ∈ C, then IP (C, TPC) = ln+ 1 for some integer l ≥ 1.

Proof. By Corollary 2.5, for any σ ∈ G[P ], σ(P ) = P . Then the covering map

C → C/G[P ] is ramified at P with index n, by Fact 2.3(1). Since the projection πP

is the composite map of C → C/G[P ] and C/G[P ] → P1, the ramification index eP

at P is equal to ln for some l ≥ 1. Note that eP = IP (C, TPC)− 1, by Fact 2.1(1).

It follows that IP (C, TPC) = ln+ 1. □

Using Fact 2.7, we have the following.

Proposition 3.3. Let P1, P2 ∈ P2 be points with |G[P1]| = n1 ≥ 2, |G[P2]| = n2 ≥ 2.

(1) If P1, P2 ∈ C, then C ∩F [P1]∩F [P2] ⊂ {P1, P2}. Furthermore, if n1 and n2

are not coprime, then C ∩ F [P1] ∩ F [P2] = ∅.
(2) If P1, P2 ∈ P2 \ C, then C ∩ F [P1] ∩ F [P2] = ∅.

Proof. Assume that there exists a point Q ∈ C ∩ F [P1] ∩ F [P2]. Note that, by the

definition of F [Pi] and Proposition 3.1, points P1, P2 and Q are collinear.
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First, we assume that n1 and n2 are divisible by some integer n ≥ 2. Since G[P1]

and G[P2] are cyclic by Fact 2.4, there exist subgroups of G[P1] and G[P2] of order

n respectively. Let G be the group generated by such subgroups. Then G fixes the

point Q. By Fact 2.7, G is a cyclic group. Therefore, by Corollary 2.6, G is a cyclic

group of order n2. However, the cyclic group of order n2 has a unique subgroup of

order n. This is a contradiction. In particular, the latter assertion of (1) follows.

Next, we consider the case where Q 6= P1, P2. Let σ ∈ G[P1] \ {1}. Since σ

fixes P1 and Q on the line P1Q = P2Q, it follows that P3 := σ(P2) 6= P2. Then

G[P3] = σG[P2]σ
−1 and Q ∈ C ∩ F [P2]∩ F [P3]. By the above discussion, we have a

contradiction. Assertions (1) and (2) follow. □

For the number of quasi-Galois points on C, we have the following.

Theorem 3.4. Let n ≥ 3. Then

δ[n] = 0, 1 or 4.

Furthermore, δ[n] = 4 only if n = 3, and d = 6m+ 4 for some integer m ≥ 0.

Proof. Let P1 and P2 ∈ C be quasi-Galois points with |G[P1]| = |G[P2]| = n, and

let ℓ = P1P2. Note that σ(ℓ) = ℓ for each σ ∈ G[Pi] for i = 1, 2. Let

G := {σ ∈ Aut(C) | σ(ℓ) = ℓ} ⊂ PGL(3, K),

and let φ : G → Aut(ℓ) ∼= PGL(2, K) be the homomorphism defined by σ 7→ σ|ℓ.
Since σ(P2) 6= P2 for each element σ ∈ G[P1] \ {1} by Proposition 3.3, we have

mn+1 quasi-Galois points P1, P2, . . . , Pmn+1 on the line ℓ for some integer m. Note

that the restriction of φ over G[Pi] is injective for each i. By Fact 2.8, φ(G) = A4,

S4 or A5. Since the stabilizer subgroup φ(G)(Pi) of φ(G) acts on the projective line

ℓ, φ(G)(Pi) is a cyclic group such that

n ≤ |φ(G)(Pi)| ≤ 5,

for each i.

Assume that n = 5. Then |φ(G)(Pi)| = 5 and φ(G) ∼= A5. Since φ(G)(Pi) is

a Sylow 5-group, it follows from Proposition 3.3 that φ(G) acts on the set {Pi}
transitively. The orbit-stabilizer theorem (see, for example, [9, p.75]) implies that

5(5m+ 1) = 60

holds. This is a contradiction.
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Assume that n = 4. Then |φ(G)(Pi)| = 4 and φ(G) ∼= S4. Note that S4 has

exactly three cyclic subgroups of order 4. Since φ(G) has at least 5 cyclic subgroups

of order 4, this is a contradiction.

Assume that n = 3. Then |φ(G)(Pi)| = 3. Since φ(G)(Pi) is a Sylow 3-group,

φ(G) acts on the set {Pi} transitively. The orbit-stabilizer theorem implies that

3(3m+ 1) = 12, 24 or 60.

This implies that m = 1.

We have to show that ℓ is a unique line containing exactly four quasi-Galois

points on C, in the case where n = 3. By Lemma 3.5 below, it is inferred that for

each four quasi-Galois points on a line ℓ, there exists a quasi-Galois point Q such

that ℓ = F [Q] \ {Q}. Assume that δ[3] ≥ 5. Since quasi-Galois points are not

collinear, there exist two lines ℓ and ℓ′ containing two quasi-Galois points such that

the point P ∈ ℓ ∩ ℓ′ is a quasi-Galois point on C. In this case, there exist exactly

four quasi-Galois points for each line ℓ and ℓ′. Then there exist two quasi-Galois

points Q and Q′ such that ℓ = F [Q] \ {Q} and ℓ′ = F [Q′] \ {Q′}. This implies that

P ∈ F [Q] ∩ F [Q′], and hence, this is a contradiction to Proposition 3.3(2). □

Lemma 3.5. Let ℓ be a line containing four points P1, P2, P3 and P4 ∈ P2 with

|G[Pi]| = 3 for each i. If the group 〈G[P1], G[P2]〉 acts on the set {P1, P2, P3, P4},
then there exists a point Q /∈ ℓ such that |G[Q]| = 2m for some integer m ≥ 1, and

F [Q] \ {Q} = ℓ. Furthermore, Q ∈ P2 \ C and d is even.

Proof. Let ω2 + ω + 1 = 0. We can take a system of coordinates so that P1 = (1 :

0 : 0), P2 = (1 : −1 : 0), P3 = (1 : −ω2 : 0) and P4 = (1 : −ω : 0), and a generator

of G[P1] is represented by

σ1 =

 ω 0 0

0 1 0

0 0 1

 .

Let Q ∈ F [P1] ∩ F [P2]. If Q ∈ ℓ, then φ(〈G[P1], G[P2]〉) admits a cyclic subgroup

of order at least 32 = 9, according to Fact 2.7. This is a contradiction. Therefore,

Q 6∈ ℓ and we can assume that Q = (0 : 0 : 1). Let σ2 ∈ G[P2] be a generator. By

the condition that σ2(Q) = Q, σ2(P2) = P2, σ2(P1) = P4, σ2(P3) = P1, it follows
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that σ2 is represented by  −ωα 2ω2α 0

ω2α α 0

0 0 1


for some α ∈ K. Since the projection πP2 from P2 = (1 : −1 : 0) is represented by

(x : y : 1) 7→ (x+y : 1), the condition σ∗
2(x+y) = x+y implies that α = 1/(2ω2+1).

Note that α2 = −1/3. Then it follows that

(σ2σ
2
1)

2 =

 −1 0 0

0 −1 0

0 0 1

 ,

and hence, G[Q] contains an element of order 2. Therefore, |G[Q]| is even and

F [Q] \ {Q} = ℓ. If Q ∈ C, the tangent line at Q contains P1 and P2. This is a

contradiction. Therefore, Q ∈ P2 \ C and d is even. □

Corollary 3.6. We have

δ[≥ 3] = 0, 1, 2 or 4.

Furthermore, δ[≥ 3] = 4 only if δ[≥ 3] = δ[3] = 4.

Proof. Assume that δ[≥ 3] ≥ 3 and δ[≥ 4] ≥ 1. Let P1, P2, P3 ∈ C be different points

with |G[P1]| ≥ 3, |G[P2]| ≥ 3 and |G[P3]| ≥ 4. It follows from Theorem 3.4 that

P3 ∈ F [P1] ∩ F [P2]. By Facts 2.1(2) and 2.3(1), P1, P2 ∈ TP3C. In this case, points

P1, P2 and P3 are collinear. By Corollary 2.5, P1 6∈ F [P3] or P2 6∈ F [P3]. Assume

that P1 6∈ F [P3]. In this case, there exists a point P ′
1 ∈ C such that |G[P ′

1]| = |G[P1]|
and P3 ∈ F [P ′

1]. By Proposition 3.3, this is a contradiction. □

We consider the number of quasi-Galois points in P2 \C. To do this, we introduce

the notion of “G-pairs”. Let P, P ′ ∈ P2 \ C be points such that P 6= P ′ and |G[P ]|
and |G[P ′]| are divisible by n ≥ 2. We call the pair (P, P ′) a G-pair with respect to n

if σ(P ′) = P ′ and σ′(P ) = P for generators σ ∈ G[P ] and σ′ ∈ G[P ′]. By Corollary

2.5, the definition does not depend on the choice of generators.

Lemma 3.7. Let n ≥ 2, let P1, P2 ∈ P2 \ C be different points such that n divides

|G[P1]| and |G[P2]|, and let σi ∈ G[Pi] be a generator for i = 1, 2. If σ1(P2) = P2,

then σ2(P1) = P1. In particular, (P1, P2) is a G-pair with respect to n.

Proof. By the assumption, P2 ∈ F [P1] \ {P1}. It follows from Corollary 2.5 and

Proposition 3.1 that the set F [P1]\{P1} is a line containing d points Q1, . . . , Qd ∈ C
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with P1Qi = TQi
C for each i. Since F [P1] \ {P1} is a line passing through P2, it

follows that σ2(Q1) = Qi and σ2(Q2) = Qj for some i, j. Since P1Q1 and P1Qi are

tangent lines at Q1 and Qi respectively, σ2(P1Q1) = P1Qi. Then σ2(P1Q1∩P1Q2) ⊂
P1Qi ∩ P1Qj = {P1}. It follows that σ2(P1) = P1. □

Proposition 3.8. There exists a G-pair (P, P ′) with respect to n, if and only if C

is projectively equivalent to the curve defined by

g(xn, yn) = 0

for some polynomial g. In this case, there exists a point P ′′ ∈ P2 \ (C ∪ PP ′) such

that pairs (P, P ′′) and (P ′, P ′′) are G-pairs. In particular, δ′[≥ n] ≥ 3.

Proof. We consider the if part. According to Fact 2.4, for the defining equation

g(xn, yn) = 0, it follows that P = (1 : 0 : 0) and P ′ = (0 : 1 : 0) form a G-pair with

respect to n.

We prove the only-if part. Assume that (P, P ′) be a G-pair with respect to n.

By the assumption, P ′ ∈ F [P ] and P ∈ F [P ′]. By Fact 2.4, for a suitable system

of coordinates, we can assume that P = (1 : 0 : 0) and there exists an element

σ ∈ G[P ] of order n which is represented by the matrix

Aσ =

 ζ 0 0

0 1 0

0 0 1

 ,

where ζ is a primitive n-th root of unity. Then the line given by F [P ] \ {P} is

defined by X = 0. Since P ′ ∈ F [P ] \ {P}, P ′ = (0 : 0 : 1) or (0 : 1 : a) for

some a ∈ K. If we take a linear transformation (X : Y : Z) 7→ (X : Z : Y ) or

(X : Y : Z) 7→ (X : Y : Z − aY ), we can assume that P ′ = (0 : 1 : 0). Then there

exists an element σ ∈ G[P ′] of order n which is represented by the matrix

Aσ′ =

 1 0 0

a ζ b

0 0 1

 ,

for some a, b ∈ K. Since the line given by F [P ′]\{P ′} is defined by aX+(ζ−1)Y +

bZ = 0 and P ∈ F [P ′] \ {P ′}, it follows that a = 0. If we take

B =

 1− ζ 0 0

0 1 b

0 0 1− ζ

 ,
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then

B−1AσB =

 ζ 0 0

0 1 0

0 0 1

 , B−1Aσ′B =

 1 0 0

0 ζ 0

0 0 1

 .

By taking the linear transformation represented by B−1, the defining polynomial of

C is of the form

g(xn, yn) = 0.

The assertion follows.

In this case, the automorphism ζ 0 0

0 1 0

0 0 1

×

 1 0 0

0 ζ 0

0 0 1

 =

 ζ 0 0

0 ζ 0

0 0 1

 ∼

 1 0 0

0 1 0

0 0 ζ−1


acts on C. Then the point P ′′ = (0 : 0 : 1) is a quasi-Galois point with |G[P ′′]| ≥ n.

We have δ′[≥ n] ≥ 3. □

Corollary 3.9. Let d be even, n = d/2 and let (P, P ′) be a G-pair. Then C is

projectively equivalent to the curve defined by

X2n + Y 2n + Z2n + aXnY n + bY nZn + cZnXn = 0,

where a, b, c ∈ K.

Proof. Since n = d/2, by Proposition 3.8, the defining polynomial of C is of the

form

F = X2n + (aY n + bZn)Xn + (αY 2n + βY nZn + γZ2n).

We can assume α = γ = 1. □

We consider the case where there exist two quasi-Galois points P1, P2 ∈ P2 \ C.

Let ℓ = P1P2, let

G := {σ ∈ Aut(C) | σ(ℓ) = ℓ} ⊂ PGL(3, K),

and let φ : G → Aut(P1P2) ∼= PGL(2, K) be the homomorphism defined by σ 7→ σ|ℓ.
Note that σ(ℓ) = ℓ for each σ ∈ G[Pi], and the induced homomorphism G[Pi] →
φ(G[Pi]) is injective, for i = 1, 2.
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Theorem 3.10. Assume that n ≥ 4, and points P1 and P2 ∈ P2 \ C are different

quasi-Galois points with |G[P1]| = |G[P2]| = n. Then there exists a point P ′
1 ∈ ℓ :=

P1P2 such that (P1, P
′
1) is a G-pair with respect to n. Furthermore, the following

hold.

(1) If n ≥ 6, then δ′[≥ n] = 3, and each two of the three quasi-Galois points

form a G-pair. Furthermore, δ′[≥ 3] = δ′[≥ n] = 3.

(2) If n = 5, then #∆′
5 ∩ ℓ = 2 or 12. Furthermore, if #∆′

5 ∩ ℓ = 12, then

#∆′
≥5 ∩ (P2 \ ℓ) = #∆′

≥10 ∩ (P2 \ ℓ) = 1. In particular, δ′[5] = 2, 3 or 12.

(3) If n = 4, then #∆′
4 ∩ ℓ = 2 or 6. Furthermore, if #∆′

4 ∩ ℓ = 6, then

#∆′
≥4 ∩ (P2 \ ℓ) = 1. In particular, δ′[4] = 2, 3, 6 or 7.

Proof. Assume that (P1, P2) is not a G-pair. Since σ(P2) 6= P2 for each element

σ ∈ G[P1] \ {1}, there exist at least n + 1 quasi-Galois points P1, P2, . . . , Pn+1 on

the line ℓ. Since φ(G) contains at least (n+ 1)/2 ≥ 2 subgroups of order n ≥ 3, by

Fact 2.8, φ(G) = A4, S4 or A5. Then n ≤ 5.

Assume that n ≥ 6. Then (P1, P2) is a G-pair. By Proposition 3.8, there exists

a point P3 such that (P1, P2), (P2, P3), (P3, P1) are G-pairs. If there exists a point

Q 6∈ {P1, P2, P3} with |G[Q]| ≥ 3 and Q ∈ P2 \ C, then Pi 6∈ F [Q] for some i. Then

there exists a point P ′
i with |G[Pi]| = |G[P ′

i ]| ≥ 6 such that (Pi, P
′
i ) is not a G-pair

on the line QPi. This is a contradiction. It follows that δ′[≥ 3] = δ′[≥ n] = 3.

Hereafter, for the case where n = 3, 4 or 5, we can assume that δ′[mn] ≤ 1 for any

m ≥ 2.

Let n = 5. Assume that there does not exist a G-pair on the line ℓ. Then there

exist 5m + 1 subgroups of φ(G) ∼= A5 of order five for some integer m. Since such

groups are Sylow 5-groups, φ(G) acts transitively on the set {P1, . . . , P5m+1} of all

quasi-Galois points on the line ℓ. The orbit-stabilizer theorem implies that 5(5m+

1) = 60. This is a contradiction. Therefore, there exists a G-pair (P, P ′) on the line

ℓ. By Proposition 3.8, there exists a quasi-Galois point P ′′ with F [P ′′] \ {P ′′} = ℓ.

Since P1 ∈ ℓ = F [P ′′] \ {P ′′}, it follows from Lemma 3.7 that (P1, P
′′) is a G-pair.

By Proposition 3.8, there exists a quasi-Galois point P ′
1 ∈ ℓ ∩ F [P1]. Then (P1, P

′
1)

is a G-pair. In particular, #∆′
5 ∩ ℓ is even. If #∆5 ∩ ℓ ≥ 3, then φ(G) ∼= A5. Since

there exist exactly six subgroups of A5 of order 5, we have exactly 12 quasi-Galois

points on the line ℓ.

We consider the case where #∆′
5 ∩ ℓ = 12. Then φ(G) ∼= A5. Note that (P1, P

′
1),

(P ′
1, P

′′) and (P ′′, P1) are G-pairs, and F [P ′′] \ {P ′′} = ℓ. By Lemma 3.11 below,
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|G[P ′′]| = 10m for some m ≥ 1. In our situation, a point R with |G[R]| = 10m

is unique, by assertion (1). This implies that Aut(C) fixes P ′′. Let R 6= P ′′ be a

point with |G[R]| = 5. Then F [R] 3 P ′′. By Lemma 3.7, (R,P ′′) is a G-pair. Since

F [P ′′] \ {P ′′} = ℓ, it follows that R ∈ ℓ. The proof of assertion (2) is completed.

Let n = 4. Assume that there does not exist a G-pair on the line ℓ. Then there

exist at least 5 cyclic subgroups of φ(G) ∼= S4 of order four. This is a contradiction,

since S4 has exactly three cyclic subgroups of order four. Therefore, there exists

a G-pair (P, P ′) on the line ℓ. Similarly to the previous paragraph, there exists a

point P ′
1 ∈ ℓ such that (P1, P

′
1) is a G-pair. If #∆′

4 ∩ ℓ ≥ 3, then φ(G) ∼= S4. Then,

by the action of G[P1], we have 6 such points on ℓ. Since S4 has exactly three cyclic

subgroups of order four, we have exactly 6 quasi-Galois points on this line. Note

that, by Proposition 3.8, there exists a point P ′′
1 6∈ ℓ such that (P1, P

′
1), (P

′
1, P

′′
1 ) and

(P ′′
1 , P1) are G-pairs.

Assume that P2 ∈ ℓ is a quasi-Galois point with |G[P2]| = 4 and P2 6= P1, P
′
1, and

that R 6∈ ℓ is a quasi-Galois point with |G[R]| = 4. If R 6∈ P ′
1P

′′
1 , then there exists a

quasi-Galois point R′ ∈ P1R such that (P1, R
′) is a G-pair, and hence, R′ must be in

P ′
1P

′′
1 . Therefore, we can assume that R ∈ P ′

1P
′′
1 with R 6= P ′

1, P
′′
1 . Let η ∈ G[P2] be

the involution. By Lemma 3.12 below, η(P1) = P ′
1 and η(P ′

1) = P1. Since η(P ′′
1 ) =

P ′′
1 , it follows that η(R) ∈ P ′′

1 P1. By Lemma 3.12 again, (R, η(R)) is a G-pair. Since

P1, η(R) ∈ F [R] \ {R}, it follows that F [R] \ {R} = P1η(R) = P ′′
1 P1 = F [P ′

1] \ {P ′
1}.

By Proposition 3.3(2), this is a contradiction. Therefore, ∆′
4 ⊂ (∆′

4 ∩ ℓ)∪{P ′′
1 }. □

Lemma 3.11. Let ℓ be a line containing 12 quasi-Galois points P ∈ P2 with |G[P ]| =
5, let P, P ′ ∈ ℓ form a G-pair, and let P ′′ ∈ F [P ] ∩ F [P ′]. If φ(G) ∼= A5, then

|G[P ′′]| = 10m for some integer m ≥ 1.

Proof. We can assume that points P = (1 : 0 : 0), P ′ = (0 : 1 : 0) form a G-pair

with P, P ′ ∈ ℓ and |G[P ]| = |G[P ′]| = 5, and σ ∈ G[P ], σ′ ∈ G[P ′] are generators

represented by

Aσ =

 ζ 0 0

0 1 0

0 0 1

 , Aσ′ =

 1 0 0

0 ζ 0

0 0 1

 ,

where ζ is a primitive 5-th roof of unity. Further, we can assume that P ′′ = (0 :

0 : 1) ∈ F [P ] ∩ F [P ′]. Let σ = φ(σ). Since φ(G) ∼= A5, it follows that there exists

an involution τ ∈ φ(G) such that σ(τστ)σ = τ . We consider τ as an element of

PGL(2, K). Since τ is an involution and τ does not fix (1 : 0) or (0 : 1), it follows
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that τ is represented by the matrix

Aτ =

(
1 b

c −1

)
for some b, c ∈ K. Let

B =

 √
b
c

0

0 1

 .

Then

B−1AτB =

 √
b
c

b

b −
√

b
c

 .

Therefore, we can assume that

Aτ =

(
1 α

α −1

)
for some α ∈ K. It follows that

AτAσAτ =

(
ζ + α2 (ζ − 1)α

(ζ − 1)α ζα2 + 1

)
, Aσ(AτAσAτ )Aσ =

(
ζ2(ζ + α2) ζ(ζ − 1)α

ζ(ζ − 1)α ζα2 + 1

)
.

Since σ(τστ)σ = τ , it follows that

α2 = 1− ζ − ζ4.

The fixed locus of the linear transformation τστ consists of two points

(1 : α), (α : −1).

Since τστ is of order five and is contained in φ(G), it follows that P2 := (1 : α : 0) is

a quasi-Galois point with |G[P2]| = 5 and there exists a generator σ2 ∈ G[P2] such

that φ(σ2) = τστ . Let P ′
2 := (α : −1 : 0). Then F [P2] = {P2}∪{X+αY = 0}. With

the condition that σ(−αt : t : 1) = (−αt : t : 1) for any t ∈ K being considered, it

is inferred that σ2 is represented by the matrix

Aσ2 =

 ζ + α2 (ζ − 1)α 0

(ζ − 1)α ζα2 + 1 0

0 0 α2 + 1

 .

Then

AσAσ2Aσ =

 ζ3 + ζ2α2 (ζ2 − ζ)α 0

(ζ2 − ζ)α ζα2 + 1 0

0 0 α2 + 1

 .
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Note that ζ3 + ζ2α2 = ζ(ζ − 1) and ζα2 + 1 = ζ(1− ζ). It follows that

(AσAσ2Aσ)
2 ∼

 ζ2(ζ − 1)2 0 0

0 ζ2(ζ − 1)2 0

0 0 α2 + 1

 ∈ G[P ′′].

It can be confirmed that
α2 + 1

ζ2(ζ − 1)2
= −ζ2.

Since (σσ2σ)
2 is of order 10, it follows that |G[P ′′]| = 10m for some m ≥ 1. □

Lemma 3.12. Let P,R ∈ P2 \ C be points with |G[P ]| = |G[R]| = 4, and let

η ∈ G[P ] be an involution. If η(R) 6= R, then (R, η(R)) is a G-pair.

Proof. Let ℓ′ = PR. Similar to the definition of G and φ, we define

Gℓ′ := {σ ∈ Aut(C) | σ(ℓ′) = ℓ′} ⊂ PGL(3, K),

and φℓ′ : Gℓ′ → Aut(ℓ′); σ 7→ σ|ℓ′ . Since R 6∈ F [P ], φℓ′(〈G[P ], G[R]〉) ∼= S4. Note

that S4 has exactly three cyclic subgroup of order four, and φℓ′(G[P ]) acts on the

set of subgroups of order four different from φℓ′(G[P ]). This implies that φℓ′(η) fixes

each cyclic subgroup of order four. Then φℓ′(G[η(R)]) = φℓ′(ηG[R]η−1) = φℓ′(G[R]).

This implies that F [R] 3 η(R). By Lemma 3.7, (R, η(R)) is a G-pair. □

Corollary 3.13. Assume that d ≥ 8, d is even, and n = d/2. Then, δ′[≥ n] ≥ 2 if

and only if C is projectively equivalent to the curve defined by

X2n + Y 2n + Z2n + aXnY n + bY nZn + cZnXn = 0,

where a, b, c ∈ K. In this case, if d ≥ 10 (resp., d = 8), then δ′[≥ n] = 3 (resp.,

δ′[≥ 4] = 3 or 7).

Proof. The former assertion is derived from Corollary 3.9 and Theorem 3.10. The

latter assertion for the case where d ≥ 12 or d = 8 is obvious, by Theorem 3.10.

Assume that d = 10. Let P ∈ P2 \ C be a point with |G[P ]| ≥ 5. By Proposition

3.1, there exist d = 10 points Q ∈ C ∩ (F [P ] \ {P}) such that P ∈ TQC and

IQ(C, TQC) ≥ 5. Therefore, for each quasi-Galois point P ∈ P2 \ C with |G[P ]| ≥
5, we need at least 10 × (5 − 2) = 30 flexes with multiplicities. It follows from

Proposition 3.3 that there exists no point Q ∈ C such that Q ∈ F [P1] ∩ F [P2] for

different quasi-Galois points P1 and P2 with |G[P1]| ≥ 5 and |G[P2]| ≥ 5. By the flex

formula [12, Theorem 1.5.10], we have δ′[≥ 5] × 30 ≤ 3d(d − 2) = 240. Therefore,

δ′[≥ 5] ≤ 8. By Theorem 3.10, it follows that δ′[≥ 5] = 3. □
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Theorem 3.14. Assume that n = 3, and points P1 and P2 ∈ P2 \ C are different

quasi-Galois points with |G[P1]| = |G[P2]| = 3. Let ℓ = P1P2. Then the following

hold.

(1) #∆′
3∩ ℓ = 2, 4, 8 or 20. Furthermore, if #∆′

3∩ ℓ = 8 or 20, then there exists

P ′
1 ∈ ℓ such that (P1, P

′
1) is a G-pair.

(2) If #∆′
3 ∩ ℓ = 8, then δ′[3] = 8 and there exists a unique integer m ≥ 1 such

that δ′[6m] = 1.

(3) If #∆′
3 ∩ ℓ = 20, then δ′[3] = 20 and there exists a unique integer m ≥ 1

such that δ′[6m] = 1.

(4) If #∆′
3 ∩ ℓ = 4, then δ′[3] = 4 or 12.

In particular, δ′[3] = 2, 3, 4, 8, 12 or 20.

Proof. Assume that there does not exist a G-pair on the line ℓ. Then there exist

3m + 1 quasi-Galois points for some integer m by the actions associated with one

quasi-Galois point. Then, by Fact 2.8,

3(3m+ 1) = 12, 24 or 60.

This implies that m = 1 and #∆′
3 ∩ ℓ = 4.

We assume that #∆′
3∩ ℓ ≥ 5. Then there exists a G-pair (P, P ′) on the line ℓ. By

Proposition 3.8, there exists a quasi-Galois point P ′′ with F [P ′′] \ {P ′′} = ℓ. Since

P1 ∈ ℓ = F [P ′′] \ {P ′′}, it follows from Lemma 3.7 that (P1, P
′′) is a G-pair. By

Proposition 3.8, there exists a quasi-Galois point P ′
1 ∈ ℓ ∩ F [P1]. Then (P1, P

′
1) is a

G-pair.

By the discussion in the previous paragraph, #∆′
3∩ℓ is even, and hence, #∆′

3∩ℓ ≥
8. By Fact 2.8, φ(G) = A4, S4 or A5. Since φ(G[P ]) is a Sylow 3-group of φ(G),

each subgroup of order three is realized as φ(G[P ]) (= φ(G[P ′])) for some exactly

two quasi-Galois points P, P ′ ∈ ∆′
3 ∩ ℓ. If φ(G) ∼= A4 or S4 (resp., φ(G) ∼= A5),

then the number of subgroup of order three is 4 (resp., 10). Therefore, the number

of quasi-Galois points on ℓ is 8 or 20. Assertion (1) follows.

Assume that #∆′
3 ∩ ℓ = 8. Then φ(G) ∼= A4 or S4. In this case, for points P1

and P2 such that (P1, P2) is not a G-pair, φ(〈G[P1], G[P2]〉) ∼= A4. Then the orbit

A4P1 has length four. Note that (P1, P
′
1), (P

′
1, P

′′
1 ) and (P ′′

1 , P1) are G-pairs. By

Lemma 3.5, there exists a point Q 6∈ ℓ such that |G[Q]| is even and F [Q] \ {Q} = ℓ.

Then Q = P ′′
1 , because the intersection point of tangent lines at d points of C on

the line ℓ is unique. Since G[P ′′
1 ] contains elements of order three and two, the order



QUASI-GALOIS POINTS, II: ARRANGEMENTS 15

|G[P ′′
1 ]| is equal to 6m for some m. In our situation, a point R with |G[R]| = 6m is

unique, by Theorem 3.10(1). This implies that Aut(C) fixes P ′′
1 . Let R 6= P ′′

1 be a

point with |G[R]| = 3. Then F [R] 3 P ′′
1 . By Lemma 3.7, (R,P ′′

1 ) is a G-pair. Since

F [P ′′
1 ] \ {P ′′

1 } = ℓ, it follows that R ∈ ℓ. Assertion (2) follows.

Assume that #∆′
3 ∩ ℓ = 20. Then φ(G) ∼= A5. Note that all subgroups of A5 of

order three are realized as the image φ(G[P ]) of associated groups G[P ] of quasi-

Galois points P ∈ ∆′
3∩ℓ under the restriction φ. This implies that there exists a pair

of points P1, P2 ∈ ∆′
3 ∩ ℓ such that (P1, P2) is not a G-pair and φ(〈G[P1], G[P2]〉) ∼=

A4. The same argument as assertion (2) can be applied to assertion (3).

We consider assertion (4). Assume that #∆′
3 ∩ ℓ = 4. According to assertions

(1), (2) and (3), we can assume that for all lines ℓ′ ⊂ P2, #∆′
3 ∩ ℓ′ = 0, 1, 2 or 4.

By Lemma 3.5, there exists a quasi-Galois point Q 6∈ ℓ such that |G[Q]| is even and

F [Q] \ {Q} = ℓ. Let τ ∈ G[Q] be an involution. We prove that there does not exist

a line ℓ′ 3 Q with #∆′
3 ∩ ℓ′ = 4. Assume by contradiction that #∆′

3 ∩ ℓ′ = 4 and

∆′
3 ∩ ℓ′ = {P ′

1, P
′
2, P

′
3, P

′
4}. Note that ℓ′ ∩ ℓ∩∆′

3 = ∅, by considering the action of τ .

Let Q′ 6∈ ℓ′ be a quasi-Galois point such that |G[Q′]| is even and F [Q′] \ {Q′} = ℓ′.

Since the point Q′ is contained in the tangent line for any point in C ∩ ℓ′ and G[Q]

acts on ℓ′, it follows that Q′ ∈ F [Q], namely, Q′ ∈ ℓ. Note that G[Q′] acts on the

set ∆′
3 ∩ ℓ. The group G[Q′] does not fix any point in ∆′

3 ∩ ℓ, since Q′ 6∈ ∆′
3 and

ℓ′∩ℓ∩∆′
3 = ∅. Let τ ′ ∈ G[Q′] be an involution. Then there exist a quasi-Galois point

P ∈ ∆′
3 ∩ ℓ and an automorphism σ ∈ G[P ] such that three points Q′, σ(Q′), σ2(Q′)

are different. Let Q′
2 = σ(Q′), Q′

3 = σ2(Q′). Then τ ′2 := στ ′σ−1 ∈ G[Q′
2] and

τ ′3 := σ2τ ′σ−2 ∈ G[Q′
3]. Since τ ′ and σ act on ∆′

3 ∩ ℓ, it follows that τ ′|ℓ, (στ ′σ−1)|ℓ,
(σ2τ ′σ−2)|ℓ are different involutions on ℓ. Since the number of involutions acting

on four points given by ∆′
3 ∩ ℓ not fixing any point of them is at most three, it

follows that (τ ′2τ
′
3)|ℓ = τ ′|ℓ. Note that (Q′

2, Q
′
3) is not a G-pair, since if (Q′

2, Q
′
3) is

a G-pair, then τ ′2|ℓ = τ ′3|ℓ. It follows from Lemma 3.7 that τ ′3(Q
′
2) 6= Q′

2. If τ ′2τ
′
3 is

an involution as an automorphism of P2, then τ ′3(Q
′
2) is a quasi-Galois point with

τ ′3τ
′
2τ

′
3 = τ ′2 ∈ G[τ ′3(Q

′
2)]∩G[Q′

2]. By Corollary 2.6, this is a contradiction. Therefore,

the order of τ ′2τ
′
3 is at least 3. Since (τ

′
2τ

′
3)(ℓ∩ℓ′) = τ ′(ℓ∩ℓ′) = ℓ∩ℓ′ and τ ′2τ

′
3(Q) = Q,

it follows that (τ ′2τ
′
3)(ℓ

′) = ℓ′. It follows that τ ′2τ
′
3 acts on ∆′

3 ∩ ℓ′ faithfully, namely,

τ ′2τ
′
3|ℓ′ is of order four. Let G′ ⊂ Aut(ℓ′) be the group arising from the restrictions

of all automorphisms in 〈G[P ′
1], G[P ′

2], τ
′
2τ

′
3〉 on the line ℓ′. Then G′ ∼= S4. As the
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group S4, the stabilizer subgroup of P ′
1 is S3. As a finite subgroup of Aut(ℓ′), the

stabilizer subgroup of P ′
1 is a cyclic group. This is a contradiction.

Assume that there exists a point P ∈ ∆′
3 with P 6∈ ℓ = P1P2. Then there exists a

point P ′ ∈ ∆′
3 ∩QP with P ′ 6∈ ℓ ∪ {P}, according to the action of an involution in

G[Q]. Since the group 〈G[P1], G[P2]〉 acts on the set of all lines passing through Q,

it follows that δ′[3] ≥ 12. If (P, P ′) is not a G-pair, then #∆′
3 ∩QP = 4. According

to the above discussion, this is a contradiction. Therefore, (P, P ′) is a G-pair.

There exists a point P ′′ 6∈ QP such that (P, P ′′) and (P ′, P ′′) are G-pairs. Since

P ′′ ∈ F [P ]∩F [P ′] ⊂ F [Q]\{Q} = ℓ, it follows that P ′′ ∈ ∆′
3∩ ℓ or |G[P ′′]| ≥ 6. For

the latter case, by the action of G[P ′′], there exist at least six points P ′′′ ∈ ∆′
3 ∩ ℓ

with |G[P ′′′]| = 3. This is a contradiction. Therefore, P ′′ ∈ ∆′
3 ∩ ℓ holds. This

implies that δ′[3] = 12. □

4. Curves of degree six

We consider the case where d = 6 and n = 3. We determine the number δ′[3].

Theorem 4.1. Let C ⊂ P2 be a smooth plane curve of degree d = 6. Then

δ′[3] = 0, 1, 2, 3, 4, 8 or 12.

Furthermore, the following hold.

(1) δ′[3] = 12 if and only if C is projectively equivalent to the curve defined by

X6 + Y 6 + Z6 − 10(X3Y 3 + Y 3Z3 + Z3X3) = 0.

(2) δ′[3] = 8 if and only if C is projectively equivalent to the curve defined by

X6 + 20X3Y 3 − 8Y 6 + Z6 = 0.

(3) δ′[3] = 4 if and only if C is projectively equivalent to the curve defined by

Z6 + a(X3Y + Y 4)Z2 + (X6 + 20X3Y 3 − 8Y 6) = 0

for some a ∈ K \ {0}, and C is not in the case (1).

Proof. Let P ∈ P2 \ C be a point with |G[P ]| = 3. By Proposition 3.1, there exist

d = 6 points Q ∈ C ∩ (F [P ] \ {P}) such that P ∈ TQC and IQ(C, TQC) ≥ 3.

Therefore, for each quasi-Galois point P ∈ C with |G[P ]| = 3, we need at least

6 flexes. It follows from Proposition 3.3 that there exists no point Q ∈ C such

that Q ∈ F [P1] ∩ F [P2] for different quasi-Galois points P1 and P2 with |G[P1]| =
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|G[P2]| = 3. By the flex formula [12, Theorem 1.5.10], we have δ′[3] × 6 ≤ 72.

Therefore, δ′[3] ≤ 12.

Assume that δ′[3] ≥ 5. First, we prove that there exists a G-pair. Assume by

contradiction that σ(P2) 6= P2 for any quasi-Galois points P1, P2 and any generator

σ ∈ G[P1]. By Theorem 3.14, if a line contains two quasi-Galois points, then we

obtain other two quasi-Galois points on the line. We consider a quasi-Galois point P

and a line ℓ 63 P containing four quasi-Galois points P1, P2, P3, P4. In this case, the

lines PPi contains four quasi-Galois points for i = 1, 2, 3, 4. Then it is inferred that

there exist 3 × 4 + 1 = 13 quasi-Galois points. This is a contradiction. Therefore,

there exists a G-pair (P, P ′). According to Proposition 3.8, for a suitable system of

coordinates, we can assume that P = (1 : 0 : 0), P ′ = (0 : 1 : 0), generators σ of

G[P ] and σ′ of G[P ′] are given by the matrices

Aσ =

 ω 0 0

0 1 0

0 0 1

 , Aσ′ =

 1 0 0

0 ω 0

0 0 1


respectively, where ω2 + ω + 1 = 0, and C is given by

X6 + aY 6 + bZ6 + cX3Y 3 + dY 3Z3 + eZ3X3 = 0,

where a, b, c, d, e ∈ K. Then P ′′ = (0 : 0 : 1) is also quasi-Galois.

Next, we consider the case where there exists a quasi-Galois point not contained

in the set S := PP ′ ∪ P ′P ′′ ∪ P ′′P = {XY Z = 0}. Let (α : β : 1) be a quasi-

Galois point on P2 \ S. By using the linear transformation given by (X : Y : Z) 7→
((1/α)X : (1/β)Y : Z), we can assume that (α : β : 1) = (1 : 1 : 1). Then points

Pij := (ωi : ωj : 1)

are quasi-Galois for i, j = 0, 1, 2, and the set {P, P ′, P ′′}∪{Pij | i, j = 0, 1, 2} consists
of all quasi-Galois points for C.

We compute a generator τ ∈ G[P00], where P00 = (1 : 1 : 1). It follows that

τ(P ) = Pi0, τ(P
′) = P0j and τ(P ′′) = Pkk for some i, j, k 6= 0. We can assume that

k = 2 and τ(P ′′) = (1 : 1 : ω). Then τ is represented by the matrix

Aτ =

 λωi µ 1

λ µωj 1

λ µ ω

 ,
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for some λ, µ ∈ K \ {0}. By using the condition τ((1 : 1 : 1)) = (1 : 1 : 1), it follows

that

λ =
ω − 1

ωi − 1
, µ =

ω − 1

ωj − 1
.

If i = 2, then λ = 1/(ω + 1) = −ω and τ((1 : 0 : 1)) = (0 : 1 : 0). Since (1 : 0 : 1) is

not quasi-Galois, this is a contradiction. It follows that i = 1 and λ = 1. Similarly,

it follows that j = 1 and µ = 1.

Note that

AσAτAσAτ =

 3ω 0 0

0 0 3ω

0 3ω 0

 .

The linear transformation given by (X : Y : Z) 7→ (X : Z : Y ) acts on C. Similarly,

σ′τσ′τ acts on C by (X : Y : Z) 7→ (Z : Y : X). Therefore, the defining equation of

C is of the form

F = X6 + Y 6 + Z6 + a(X3Z3 + Y 3Z3 + Z3X3) = 0

for some a ∈ K. We consider the action by τ . Polynomials (τ−1)∗F and F are the

same up to a constant. We consider the coefficient of X4Y Z. It follows that the

coefficient of X4Y Z is 30ω for (ωX + Y +Z)6, (X + ωY +Z)6 and (X + Y + ωZ)6.

The coefficient is 3ω for (ωX+Y +Z)3(X+ωY +Z)3, (X+ωY +Z)3(X+Y +ωZ)3

and (X + Y + ωZ)3(ωX + Y + Z)3. It follows that a = −10.

We consider the case where all quasi-Galois points are contained in the set S.

If there exist two quasi-Galois points P2, P3 6∈ {P, P ′, P ′′} which are contained in

X = 0 and Y = 0 respectively, then (P2, P3) is not a G-pair, since (P2, P ) is a G-pair,

(P2, P
′) is not a G-pair, and P3 ∈ PP ′′. We can find quasi-Galois points in P2 \S by

the actions associated with P2. Therefore, we can assume that quasi-Galois points

different from 6= P, P ′, P ′′ are contained in one line ⊂ S. We can assume that such

a line is PP ′. Then, by Theorem 3.14, #∆′
3 ∩ PP ′ = 8. Furthermore, |G[P ′′]| = 6,

that is, P ′′ is a Galois point. Let P1 = P . We use the same symbols in the proof of

Lemma 3.5. It follows that σ2σ
2
1 is represented by the matrix

Aσ2σ2
1
=

 −α 2ω2α 0

ωα α 0

0 0 1

 .

Note that the restriction of σ2σ
2
1 on the line PP ′ is of order two, and fixed points

of σ2σ
2
1 on the line PP ′ are ((−1 +

√
3)ω2 : 1 : 0) and ((−1−

√
3)ω2 : 1 : 0). Since
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A4 acts on the six points given by C ∩ PP ′ and contains exactly three elements of

order two, it follows that

C ∩ PP ′ = {(−1 +
√
3)ωi : 1 : 0) | i = 0, 1, 2} ∪ {((−1−

√
3)ωi : 1 : 0) | i = 0, 1, 2}.

Then the defining equation of C is of the form

F (X,Y, Z) = X6 + 20X3Y 3 − 8Y 6 + Z6 = 0.

Assume that δ′[3] = 4. Then the four quasi-Galois points P1, P2, P3, P4 are con-

tained in a unique line ℓ, and φ(G) ∼= A4. We can assume that P1 = (1 : 0 : 0),

P2 = (1 : −1 : 0), σ1 ∈ G[P1] and σ2 ∈ G[P2] are generators represented by

Aσ1 =

 ω 0 0

0 1 0

0 0 1

 , Aσ2 =

 −ωα 2ω2α 0

ω2α α 0

0 0 1


respectively. By Lemma 3.5, it follows that |G[Q]| ≥ 2 and ℓ = F [Q] \ {Q} for the

point Q = (0 : 0 : 1) ∈ F [P1]∩F [P2]. Then the defining equation of C is of the form

F (X,Y, Z) = Z6 + aY 2Z4 + (bX3Y + cY 4)Z2 +G(X,Y ) = 0,

where a, b, c ∈ K and G is a homogeneous polynomial of degree 6. Similarly to the

previous paragraph, we can assume that

G(X,Y ) = X6 + 20X3Y 3 − 8Y 6.

By comparing the coefficient of Y 2Z4 of F (−ωαX + 2ω2αY, ω2αX + αY, Z) and

F (X,Y, Z), it follows that a = 0. By comparing the coefficient ofX4Z2 of F (−ωαX+

2ω2αY, ω2αX+αY, Z) and F (X,Y, Z), it follows that b = c. Then the defining equa-

tion of C is of the form

Z6 + c(X3Y + Y 4)Z2 + (X6 + 20X3Y 3 − 8Y 6) = 0.

On the contrary, we consider the curve C given by

X6 + Y 6 + Z6 − 10(X3Y 3 + Y 3Z3 + Z3X3) = 0.

By Fact 2.4, points P = (1 : 0 : 0), P ′ = (0 : 1 : 0) are quasi-Galois, and groups

G[P ], G[P ′] are generated by the linear transformations σ, σ′ given by

Aσ =

 ω 0 0

0 1 0

0 0 1

 , Aσ′ =

 1 0 0

0 ω 0

0 0 1


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respectively. Let τ be the linear transformation given by the matrix

Aτ =

 ω 1 1

1 ω 1

1 1 ω

 .

Then τ(C) = C and

τ ∗
(
x− y

y − 1

)
=

x− y

y − 1
.

Therefore, the point (1 : 1 : 1) is quasi-Galois on P2 \ {XY Z = 0}. By considering

the actions of σ and σ′, it follows that δ′[3] ≥ 12. Since we confirmed δ′[3] ≤ 12 in

the first paragraph, it follows that δ′[3] = 12.

We consider the curve C defined by

F (X,Y, Z) = X6 + 20X3Y 3 − 8Y 6 + Z6 = 0.

To prove δ′[3] = 8, we have to prove that the linear transformation σ2 represented

by

Aσ2 =

 −ωα 2ω2α 0

ω2α α 0

0 0 1


acts on C. To do this, we prove that the linear transformation σ2σ

2
1 represented by

Aσ2σ2
1
=

 −α 2ω2α 0

ωα α 0

0 0 1


acts on C. Let G(X,Y ) = X6 + 20X3Y 3 − 8Y 6. It is easily verified that the

coefficient of X6 for G(−αX + 2ω2αY, ωαX + αY ) is 1. Further, it is inferred that

the set

{(−1 +
√
3)ωi : 1 : 0) | i = 0, 1, 2} ∪ {((−1−

√
3)ωi : 1 : 0) | i = 0, 1, 2}

is invariant under the action of Aσ2σ2
1
. The claim follows.

We consider the curve defined by

F (X,Y, Z) = Z6 + a(X3Y + Y 4)Z2 + (X6 + 20X3Y 3 − 8Y 6) = 0,

where a ∈ K \ {0}. Assume that C is not in the case (1). It is obvious that

F (ωX, Y, Z) = F . According to the previous paragraph, for the polynomial G(X,Y ) =
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X6 + 20X3Y 3 − 8Y 6,

G(−ωαX + 2ω2αY, ω2αX + αY ) = G(X,Y ).

It is not difficult to confirm that for the polynomial H(X,Y ) = X3Y + Y 4,

H(−ωαX + 2ω2αY, ω2αX + αY ) = H(X,Y )

(see also [6, Lemma 1]). Therefore, the linear transformation represented by

Aσ2 =

 −ωα 2ω2α 0

ω2α α 0

0 0 1


acts on C, and hence, δ′[3] = 4 or 8. If δ′[3] = 8, then the point (0 : 0 : 1) must be

a Galois point. This forces a = 0. The claim δ′[3] = 4 follows. □

Remark 4.2. If δ′[3] = 2, then δ′[6] = 1. If δ′[3] = 4, then δ′[2] = 1.

Remark 4.3. We can prove that if the curve defined by

Z6 + a(X3Y + Y 4)Z2 + (X6 + 20X3Y 3 − 8Y 6) = 0

is projectively equivalent to the curve defined by

X6 + Y 6 + Z6 − 10(X3Y 3 + Y 3Z3 + Z3X3) = 0,

then a3 = 18000.

As an application, on the automorphism group Aut(C), we have the following

(see Part I [5] for the definition of G3(C)).

Theorem 4.4. Let C be the plane curve defined by X6 + Y 6 + Z6 − 10(X3Y 3 +

Y 3Z3 + Z3X3) = 0. Then

G3(C) = Aut(C).

Proof. Let P = (1 : 0 : 0), P ′ = (0 : 1 : 0), P ′′ = (0 : 0 : 1), and let Pij = (ωi : ωj : 1)

for i, j = 0, 1, 2, where ω2 +ω+1 = 0. Then the set ∆′ := {P, P ′, P ′′}∪ {Pij | i, j =
0, 1, 2} consists of all quasi-Galois points P with |G[P ]| = 3.

Let σ ∈ Aut(C) ⊂ Aut(P2). Then σ acts on ∆′. If σ(P ) = P ′ or P ′′, then there

exists ϕ1 ∈ G3(C) such that ϕ1σ(P ) = P , since the automorphisms (X : Y : Z) 7→
(Y : X : Z) and (X : Y : Z) 7→ (Z : Y : X) are contained in G3(C) as in the

proof of Theorem 4.1. If σ(P ) = Pij for some i, j, then there exists ϕ2 ∈ G[Pkj]

for k 6= i such that ϕ2σ(P ) = P . Therefore, there exists ϕ ∈ G3(C) such that
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ϕσ(P ) = P . The line F [P ] \ {P} is a unique line ℓ such that IQ(C, PQ) = 3 for

any Q ∈ C ∩ ℓ. By this fact and ϕσ(P ) = P , ϕσ(F [P ] \ {P}) = F [P ] \ {P}. Since
∆′ ∩ F [P ] \ {P} = {P ′, P ′′} and the automorphism (X : Y : Z) 7→ (X : Z : Y ) is

contained in G3(C), there exists ϕ3 ∈ G3(C) such that ϕ3σ(P ) = P , ϕ3σ(P
′) = P ′

and ϕ3σ(P
′′) = P ′′. Then ϕ3σ is represented by the matrix of the form α 0 0

0 β 0

0 0 1


for some α, β ∈ K. By considering the action on the defining equation, it follows

that α3 = 1 and β3 = 1. If we take

ϕ4 =

 α−1 0 0

0 1 0

0 0 1

 ∈ G[P ], ϕ5 =

 1 0 0

0 β−1 0

0 0 1

 ∈ G[P ′],

then ϕ5ϕ4ϕ3σ = 1 on P2. Therefore, σ = ϕ−1
3 ϕ−1

4 ϕ−1
5 ∈ G3(C). □

Remark 4.5. For the curve defined by X6+Y 6+Z6−10(X3Y 3+Y 3Z3+Z3X3) = 0,

it is known that the group Aut(C) is isomorphic to the Hessian group of order 216

([2]).

Theorem 4.6. Let C be the plane curve defined by X6 + 20X3Y 3 − 8Y 6 + Z6 = 0.

Then there exist two exact sequences

0 → Z/6Z → G3(C) → A4 → 1,

0 → Z/6Z → Aut(C) → S4 → 1.

In particular, |Aut(C)| = 144 and |G3(C)| = 72.

Proof. Let ℓ be the line defined by Z = 0, which contains 8 points P with |G[P ]| = 3.

Since ℓ is a unique line containing 8 points P with |G[P ]| = 3, there exists a

homomorphism φ : Aut(C) → Aut(ℓ) ∼= P1. Since φ(G3(C)) = φ(〈G[P1], G[P2]〉) for
each points P1 and P2 such that (P1, P2) is not a G-pair, it follows that φ(G3(C)) ∼=
A4. Since Q = (0 : 0 : 1) is a unique Galois point, the group Aut(C) fixes Q. This

implies that Ker φ = G[Q] ∼= Z/6Z. The former exact sequence is obtained. On the
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other hand, the linear transformation 0
√
2i 0

1√
2i

0 0

0 0 1


acts on C, where i2 = −1. This implies that φ(Aut(C)) ∼= S4. The latter exact

sequence is obtained. □

5. Curves of degree four

In this section, we assume that C is smooth and of degree d = 4. The set ∆′
≥2 of

all quasi-Galois points in P2 \C for C is denoted by ∆′. If P ∈ ∆′, then there exists

a unique involution in G[P ], since G[P ] is a cyclic group of order 2 or 4. First, we

note the following.

Lemma 5.1. If P ∈ ∆′, then we have the following.

(1) There exist exactly four lines ℓ 3 P such that C ∩ ℓ consists of one or two

points, and the tangent line at each point of C ∩ ℓ is equal to ℓ.

(2) There does not exist a line ℓ 3 P such that IQ(C, ℓ) = 3 for some Q ∈ C ∩ ℓ.

Proof. Let σ ∈ G[P ] be the involution. The projection πP is the composite map of

gP : C → C/σ and fP : C/σ → P1. Since gP is ramified at exactly four points by

Corollary 2.5 and Fact 2.3(1), by Hurwitz formula, the genus of the smooth model

of C/σ is equal to 1. Then fP : C/σ → P1 has exactly four ramification points.

Therefore, we have (1). Assertion (2) is obvious, since πP is the composite map of

double coverings gP and fP . □

We recall the notion of G-pairs and the following proposition (see Proposition 3.8

and Corollary 3.9 in Section 3).

Proposition 5.2. Let (P, P ′) be a G-pair. Then there exists a linear transformation

ϕ such that ϕ(P ) = (1 : 0 : 0), ϕ(P ′) = (0 : 1 : 0), and ϕ(C) is given by

X4 + Y 4 + Z4 + aX2Y 2 + bY 2Z2 + cZ2X2 = 0,

where a, b, c ∈ K. In this case, there exists a quasi-Galois point P ′′ with ϕ(P ′′) =

(0 : 0 : 1) such that (P ′, P ′′) and (P ′′, P ) are G-pairs. In particular, C∩PP ′ consists

of exactly four points.

Furthermore, if P is a Galois point, then we can take a = c = 0.
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Proof. Assertions except for the last one are derived from Proposition 3.8 and Corol-

lary 3.9. We consider the last assertion. Assume that |G[P ]| = 4. In the proof of

Proposition 3.8, we can take

B−1Aσ1B =

 i 0 0

0 1 0

0 0 1

 , B−1Aσ2B =

 1 0 0

0 ζ 0

0 0 1

 ,

where i2 = −1 and ζ2 = ±1. Then the defining equation of the form

X4 + Y 4 + Z4 + bY 2Z2 = 0

for some b ∈ K. □

Let ℓ ⊂ P2 be a projective line. We would like to calculate the number of quasi-

Galois points on the line ℓ. We treat the cases #C ∩ ℓ = 4, 3, 2 and 1 separately.

Proposition 5.3. Let ℓ be a line with #C ∩ ℓ = 4. Then #∆′ ∩ ℓ = 0, 1, 2, 4 or

6. Furthermore, if #∆′ ∩ ℓ = 2 (resp., 4, 6), then we have exactly one (resp., two,

three) G-pair.

Proof. Let C ∩ ℓ = {Q1, Q2, Q3, Q4}. We consider the possibilities of involutions

acting on C ∩ ℓ. There are at most three types:

(1) Q1 ↔ Q2, Q3 ↔ Q4,

(2) Q1 ↔ Q3, Q2 ↔ Q4,

(3) Q1 ↔ Q4, Q2 ↔ Q3.

If P1, P2 ∈ ∆′ ∩ ℓ, and involutions σ1 ∈ G[P1] and σ2 ∈ G[P2] are of type (1), then

we have σ1|ℓ = σ2|ℓ. Then σ1(P2) = σ2(P2) = P2 and σ2(P1) = σ1(P1) = P1, i.e.

(P1, P2) is a G-pair. For each types (1)-(3) we have at most two quasi-Galois points,

and hence, #∆′ ∩ ℓ ≤ 6.

Let σ1 ∈ G[P1] and σ2 ∈ G[P2] give involutions of types (1) and (2) respectively.

Then σ1σ2σ1(Q1) = Q3, and hence, σ1σ2σ1 is of type (2). Since σ1(P2) 6= P2 and

σ1(P2) is quasi-Galois, (P2, σ1(P2)) is a G-pair. Similarly, (P1, σ2(P1)) is a G-pair.

We have two G-pairs.

Assume that #∆′ ∩ ℓ ≥ 5. There are at least two G-pairs. We can assume

that (P1, P2) and (P3, P4) are G-pairs, and give involutions on ℓ of type (1) and

(2) respectively. Let P5 be another quasi-Galois point, and let σi ∈ G[Pi] be the

involution. Then σ1(P5) 6= P5 and the involution σ1σ5σ1 ∈ G[σ1(P5)] gives an

involution on ℓ of type (3). Therefore, σ1(P5) 6= P1, . . . , P5. We have #∆′∩ℓ = 6. □
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Hereafter, we consider the curve C defined by

F = X4 + Y 4 + Z4 + aX2Y 2 + bY 2Z2 + cZ2X2 = 0.

Then P = (1 : 0 : 0), P ′ = (0 : 1 : 0), P ′′ = (0 : 0 : 1) ∈ ∆′. The lines F [P ] \ {P},
F [P ′] \ {P ′} and F [P ′′] \ {P ′′} are defined by X = 0, Y = 0 and Z = 0 respectively.

Since C is smooth, we have a 6= ±2, b 6= ±2 and c 6= ±2.

Proposition 5.4. We have the following.

(1) If there exist two G-pairs on the line defined by Z = 0, then b = ±c. Fur-

thermore, when c = −b, we take the linear transformation given by X 7→ iX,

where i2 = −1, so that we have the defining equation with c = b.

(2) If there exist three G-pairs on the line defined by Z = 0, then b = c = 0.

Proof. Assume that (P1, P
′
1) and (P2, P

′
2) are two G-pairs on the line Z = 0. Then

the point P ′′
1 = (0 : 0 : 1) is contained in F [P1] ∩ F [P2]. Let σ1 ∈ G[P1] and

σ2 ∈ G[P2] be involutions. Then σ1σ2 satisfies

P1 ↔ P ′
1, P2 ↔ P ′

2

(see the second paragraph of the proof of Proposition 5.3). Since σ1σ2(F [P1]) =

F [P ′
1], we have σ1σ2(P

′′
1 ) = P ′′

1 . Then σ1σ2 is represented by the matrix 0 λ 0

µ 0 0

0 0 1


for some λ, µ ∈ K. Then ((σ1σ2)

−1)∗F and F are the same up to a constant.

Therefore, we have

λ4Y 4 + µ4X4 + Z4 + aλ2µ2X2Y 2 + bµ2X2Z2 + cλ2Y 2Z2 = F.

Considering the coefficients of Y 4 and Y 2Z2, we have λ2 = ±1 and b = ±c.

Assume that (P1, P
′
1), (P2, P

′
2) and (P3, P

′
3) are three G-pairs on the line Z = 0.

Let σ2 ∈ G[P2] and σ3 ∈ G[P3] be involutions. Then σ2σ3 satisfies

P1 → P1, P ′
1 → P ′

1, P2 ↔ P ′
2, P3 ↔ P ′

3

(see the second paragraph of the proof of Proposition 5.3). Since σ2σ3(P1) = P1 and

σ2σ3(P
′
1) = P ′

1, we have σ2σ3(P
′′
1 ) = P ′′

1 . Note that the order of σ2σ3 is at least 3
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and the order of the restriction (σ2σ3)|{Z=0} on the line Z = 0 is two. Then σ2σ3 is

represented by the matrix  −η 0 0

0 η 0

0 0 1

 ,

where η2 6= 1. Then ((σ2σ3)
−1)∗F and F are the same up to a constant. Therefore,

we have

η4X4 + η4Y 4 + Z4 + aη4X2Y 2 + bη2Y 2Z2 + cη2Z2X2 = F.

Considering the coefficients of Y 2Z2 and Z2X2, we have b = c = 0. □

On the contrary, we have the following.

Proposition 5.5. Let a, b ∈ K, and let C be the smooth plane curve given by

X4 + Y 4 + Z4 + aX2Y 2 + bY 2Z2 + bZ2X2 = 0.

Then we have the following.

(1) Points (1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 0) and (1 : −1 : 0) are quasi-Galois

points. Furthermore, if b 6= 0, they are not Galois.

(2) If b = 0, then points (±i : 1 : 0) are quasi-Galois, where i2 = −1. Further-

more, we have the following.

– If a 6= 0, then points (1 : 0 : 0) and (0 : 1 : 0) are not Galois.

– If a 6= 6, then points (±1 : 1 : 0) are not Galois.

– If a 6= −6, then points (±i : 1 : 0) are not Galois.

– If a = 0 or ±6, then there exists a linear transformation ϕ such that

ϕ({Z = 0}) = {Z = 0} and ϕ(C) is the Fermat curve X4+Y 4+Z4 = 0.

(3) If b = 0, then δ′[2] = 6 or 12. Furthermore, δ′[2] = 12 if and only if C is

projectively equivalent to the Fermat curve X4 + Y 4 + Z4 = 0.

Proof. We consider points (±1 : 1 : 0). We set

X̃ =
1

2
(X + Y ), Ỹ =

1

2
(X − Y ), Z̃ = Z

and take the linear transformation ϕ : (X : Y : Z) 7→ (X̃ : Ỹ : Z̃). Then ϕ−1((1 : 1 :

0)) = (1 : 0 : 0), ϕ−1((−1 : 1 : 0)) = (0 : 1 : 0), and ϕ−1(C) is given by

G = (2 + a)X4 + (2 + a)Y 4 + Z4 + (12− 2a)X2Y 2 + 2bY 2Z2 + 2bX2Z2 = 0.
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By Theorem 2.4, ϕ−1((±1 : 1 : 0)) are quasi-Galois. Therefore, (±1 : 0 : 0) are

quasi-Galois. Furthermore, if ϕ−1((1 : 1 : 0)) is Galois, then the matrix i 0 0

0 1 0

0 0 1


acts on G. This implies 12− 2a = 0 and 2b = 0.

Let b = 0. We consider points (±i : 1 : 0). We set

X̃ =
1

2
(X + iY ), Ỹ =

1

2
(X − iY ), Z̃ = Z

and take the linear transformation ϕ : (X : Y : Z) 7→ (X̃ : Ỹ : Z̃). Then ϕ−1((i : 1 :

0)) = (1 : 0 : 0), ϕ−1((−i : 1 : 0)) = (0 : 1 : 0), and ϕ−1(C) is given by

H = (2− a)X4 + (2− a)Y 4 + Z4 + (12 + 2a)X2Y 2 = 0.

By Theorem 2.4, ϕ−1((±i : 1 : 0)) are quasi-Galois. Therefore, (±i : 0 : 0) are

quasi-Galois. Furthermore, if a 6= −6, then (±i : 0 : 0) are not Galois.

We prove (3). Now, we have six quasi-Galois points on the line Z = 0. By the

defining equation, we infer that Q = (0 : 0 : 1) is an outer Galois point and the

set F [Q] \ {Q} is given by Z = 0. Assume that δ′[2] > 6. Then there exists a

quasi-Galois point R ∈ P2 \ ({Z = 0} ∪ {Q}). Let τ ∈ G[R] be the involution. If

τ(Q) = Q, then by Lemma 3.7, (R,Q) is a G-pair. Then R must lie on the line

Z = 0. This is a contradiction. If τ(Q) 6= Q is not a G-pair, then we have two Galois

points. It follows from a theorem of Yoshihara [17] that C is projectively equivalent

to the Fermat curve. In this case, it is known that δ′[2] = 12 ([11, 5]). □

Corollary 5.6. If δ′[≥ 2] ≥ 2 and δ′[4] ≥ 1, then there exists a line ℓ such that

#∆′ ∩ ℓ = 6.

Proof. If δ′[4] ≥ 1, then it follows from a theorem of Yoshihara [17, Theorem 4’

and Proposition 5’] that δ′[4] = 1 or 3, and δ′[4] = 3 implies that C is the Fermat

curve. For the Fermat curve, the required line exists, by Proposition 5.5. We can

assume that δ′[4] = 1. Let P be a Galois point and let R be a quasi-Galois point.

Since δ′[4] = 1, then F [R] 3 P , that is, (R,P ) is a G-pair. By Proposition 5.2, the

defining equation is of the form

X4 + Y 4 + Z4 + bY 2Z2 = 0
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for some b ∈ K. By Proposition 5.5, the line defined by X = 0 is the required

line. □

We consider the case where C ∩ ℓ consists of three points.

Proposition 5.7. If #C ∩ ℓ = 3, then #∆′ ∩ ℓ = 0 or 1.

Proof. Let C ∩ ℓ = {Q1, Q2, Q3}, let TQ1C = ℓ, and let P1, P2 ∈ ℓ be different quasi-

Galois points. Then Q1 ∈ C ∩ F [P1]∩ F [P2]. This is a contradiction to Proposition

3.3. □

We consider the case where C ∩ ℓ consists of two points.

Proposition 5.8. Let C ∩ ℓ = {Q1, Q2}, where Q1 6= Q2.

(1) If IQ1(C, ℓ) = 3, then #∆′ ∩ ℓ = 0.

(2) If TQ1C = TQ2C = ℓ, then #∆′ ∩ ℓ = 0, 1 or 3.

(3) If #∆′∩ℓ = 3, then there exists an automorphism σ ∈ Aut(C) of order three

such that the fixed locus of σ coincides with the set {Q1, Q2, R}, where R is

the point given by R ∈ F [P ] for any P ∈ ∆′ ∩ ℓ.

Proof. Assertion (1) is derived from Lemma 5.1(2). We consider assertion (2). Let

P1, P2 ∈ ℓ be quasi-Galois points, and let σi ∈ G[Pi] be the involution. By Propo-

sition 5.2, (P1, P2) is not a G-pair. By Lemma 3.7, σ1(P2) 6= P2, and hence,

#∆′ ∩ ℓ ≥ 3. We consider σ1σ2. Then σ1σ2(Q1) = Q1 and σ1σ2(Q2) = Q2.

Let R be the intersection point of the lines F [P1] \ {P1} and F [P2] \ {P2}. Then

σ1σ2(R) = σ1(R) = R. If R ∈ C, then TRC 3 P1, P2. Therefore, R 6∈ C. For a

suitable system of coordinates, we can assume that Q1 = (1 : 0 : 0), Q2 = (0 : 1 : 0)

and R = (0 : 0 : 1). Consider the action of σ1σ2 on the lines Q1R and Q2R. Since

σ1σ2 fixes Q1, Q2 and R, σ1σ2|QiR
is identity if σ1σ2 fixes some point of C ∩ QiR

other than Qi. Therefore, the restriction σ1σ2|QiR
is identity or of order three for

i = 1, 2. Then σ1σ2 is represented by the matrix

Aσ1σ2 =

 ζ 0 0

0 η 0

0 0 1

 ,

where ζ and η are cubic roots of 1. Since Q1 and Q2 are not inner Galois (by Facts

2.1 and 2.3(2)) and R 6∈ C, we have η 6= 1, ζ 6= 1 and ζ 6= η. This implies that

η = ζ2.
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Let P3 := σ1σ2(P2) (= σ1(P2)). Since σ1σ2(F [P2]) = F [P3], R ∈ F [P3]. Assume

by contradiction that #∆′ ∩ ℓ ≥ 4. Let P4 6= P1, P2, P3 be quasi-Galois, and let

σ4 ∈ G[P4] be the involution. Since σ1σ4(Qi) = Qi for i = 1, 2 and the order of σ1σ4

is three, we have σ1σ4|ℓ = σ1σ2|ℓ or (σ1σ2)
2|ℓ. Then we find that σ1σ4(R) = R, and

hence, σ1σ4 = σ1σ2 or (σ1σ2)
2 on P2. We have σ4 = σ2 ∈ G[P2] or σ4 = σ2σ1σ2 ∈

G[P3]. This is a contradiction.

The condition as in assertion (3) is satisfied for the automorphism σ1σ2. □

We consider the case where C ∩ ℓ consists of a unique point.

Proposition 5.9. If #C ∩ ℓ = 1, then #∆′ ∩ ℓ = 0 or 1.

Proof. Let C ∩ ℓ = {Q}, and let P1, P2 be different quasi-Galois points. Then

Q ∈ F [P1] ∩ F [P2]. This is a contradiction to Proposition 3.3. □

Here, we assume that there does not exist a line ℓ such that #∆′ ∩ ℓ = 6. This

condition is equivalent to the one that there does not exist a Galois point, under the

assumption that δ′[≥ 2] ≥ 2, by Proposition 5.5 and Corollary 5.6. We introduce the

notions of “G-triple” and “G-triangle” here. We call a triple (P, P ′, P ′′) a G-triple,

if each two of points P, P ′, P ′′ form a G-pair. We call the set PP ′∪P ′P ′′∪P ′′P ⊂ P2

a G-triangle via the triple (P, P ′, P ′′).

Lemma 5.10. Let (P, P ′, P ′′) be a G-triple. Assume that R is a quasi-Galois point

not in the G-triangle PP ′∪P ′P ′′∪P ′′P . Then one of three lines RP , RP ′ and RP ′′

is not a multiple tangent line, that is, one of them contains at least three points of

C.

Proof. For a suitable system, we can assume that P = (1 : 0 : 0), P ′ = (0 : 1 : 0),

P ′′ = (0 : 0 : 1) and R = (1 : 1 : 1). Then the defining equation of C is of the form

F = X4 + Y 4 + Z4 + aX2Y 2 + bY 2Z2 + cZ2X2 = 0,

where a, b, c ∈ K and F (1, 1, 1) = 3 + a + b + c 6= 0. Assume that the three lines

are multiple tangent lines. By the condition that the line RP is a multiple tangent

line, it follows that

D1(1, 1) = (a+ c)2 − 4(b+ 2) = 0,

where D1(Y, Z) is the discriminant

(aY 2 + cZ2)2 − 4(Y 4 + bY 2Z2 + Z4).
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By the symmetry, we have the equations

D2 = (a+ b)2 − 4(c+ 2) = 0, and D3 = (b+ c)2 − 4(a+ 2) = 0.

By the relation D1 −D2 = 0,

(b− c)(2a+ b+ c+ 4) = 0.

Similarly,

(a− b)(a+ b+ 2c+ 4) = 0, and (c− a)(a+ 2b+ c+ 4) = 0.

Assume that a = b = c. Then 3a+ 3 6= 0 and (2a)2 − 4(a+ 2) = 0. This implies

that a = 2. This is a contradiction to the smoothness.

We can assume that a 6= b. Then a + b + 2c + 4 = 0. If b = c, then a = −3c− 4

and (−2c − 4)2 − 4(c + 2) = 0. Then c = −2 or a = b = c = −1. The former

is a contradiction to the smoothness, and the latter is a contradiction to a 6= b.

Therefore, b 6= c. Then

2a+ b+ c+ 4 = a+ b+ 2c+ 4 = 0,

and a = c. Therefore, b = −3c − 4 and (−2c − 4)2 − 4(c + 2) = 0. Then c = −2

or c = −1. The former is a contradiction to the smoothness, and the latter is a

contradiction to b 6= c. □

Proposition 5.11. Assume that there exists a G-triple (P, P ′, P ′′), and δ′[4] = 0.

Then

δ′[2] = 3, 5, 9 or 21.

Furthermore, the following hold.

(1) δ′[2] = 21 if and only if C is projectively equivalent to the curve defined by

X4 + Y 4 + Z4 + a(X2Y 2 + Y 2Z2 + Z2X2) = 0,

where a ∈ K satisfies a2 + 3a+ 18 = 0.

(2) δ′[2] = 9 if and only if C is projectively equivalent to the curve defined by

X4 + Y 4 + Z4 + a(X2Y 2 + Y 2Z2 + Z2X2) = 0,

where a ∈ K \ {0,−1} and a2 + 3a+ 18 6= 0.

(3) δ′[2] = 5 if and only if C is projectively equivalent to the curve defined by

X4 + Y 4 + Z4 + aX2Y 2 + b(Y 2Z2 + Z2X2) = 0,

where a, b ∈ K, b 6= 0 and b 6= ±a.



QUASI-GALOIS POINTS, II: ARRANGEMENTS 31

Proof. Assume that there exists a quasi-Galois point R 6∈ PP ′ ∪ P ′P ′′ ∪ P ′′P . By

Proposition 5.10, we can assume that RP ′′ is not a multiple tangent line. By Propo-

sitions 5.3, 5.7 and 5.8, it follows that there exist four quasi-Galois points on the

line RP ′′, and that the point P2 given PP ′ ∩ RP ′′ is a quasi-Galois point. For the

involution σ ∈ G[P ], σ(P2) is a quasi-Galois point and the line σ(P2)P ′′ contains

four quasi-Galois points. It follows that the triple (P2, σ(P2), P
′′) is a G-triple such

that two edges of the G-triangle contain four quasi-Galois points. In this case, it

follows form Proposition 5.4 that C is projectively equivalent to the curve defined

by

X4 + Y 4 + Z4 + a(X2Y 2 + Y 2Z2 + Z2X2) = 0,

and the triangle P2σ(P2)∪σ(P2)P ′′∪P ′′P2 contains 9 quasi-Galois points. By taking

a suitable system of coordinates, we can assume that P = (1 : 0 : 0), P ′ = (0 : 1 : 0),

P ′′ = (0 : 0 : 1), C is defined by

X4 + Y 4 + Z4 + a(X2Y 2 + Y 2Z2 + Z2X2) = 0

for some a ∈ K \ {0}, and #∆′ ∩ (PP ′ ∪ P ′P ′′ ∪ P ′′P ) = 9.

Assume that δ′[2] ≥ 10. Let R be a quasi-Galois point with R 6∈ PP ′∪P ′P ′′∪P ′′P .

By Proposition 5.10, we can assume that RP is not a multiple tangent line. It

follows from Proposition 5.5 that P2 := (0 : 1 : 1) and P ′
2 := (0 : −1 : 1) ∈

F [P ] \ {P} = {X = 0} are quasi-Galois. Note that (P2, P
′
2) is a G-pair, since

(P ′, P ′′) is a G-pair. We can assume that R ∈ PP ′
2 with R 6= P, P ′

2. Let τ ∈ G[R]

be the involution. Note that τ(P ′
2) = P , since (P, P ′

2) is a G-pair. Since (P, P2)

and (P2, P
′
2) are G-pairs, F [P2] \ {P2} = PP ′

2 3 R, and hence, (P2, R) is a G-pair.

Therefore τ(P2) = P2. Since τ((0 : 1 : 1)) = (0 : 1 : 1), τ((0 : −1 : 1)) = (1 : 0 : 0),

and τ((1 : 0 : 0)) = (0 : −1 : 1), τ is represented by the matrix

 0 2
λ

− 2
λ

λ 1 1

−λ 1 1

 ,
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where λ ∈ K. Then (τ−1)∗F and F are the same up to a constant. Here

(τ−1)∗F =

(
2

λ

)4

(Y − Z)4 + (λX + Y + Z)4 + (−λX + Y + Z)4

+a

(
2

λ

)2

(Y − Z)2(λX + Y + Z)2 + a(λX + Y + Z)2(−λX + Y + Z)2

+a

(
2

λ

)2

(−λX + Y + Z)2(Y − Z)2.

The coefficient of X2Y Z is

12λ2 + 12λ2 − 2a

(
2

λ

)2

λ2 − 4aλ2 − 2a

(
2

λ

)2

λ2 = 0.

We have λ2 = 4a/(6− a). The coefficient of Y 3Z is

−4

(
2

λ

)4

+ 4 + 4 + 4a = 0.

We have a3 + a2 + 12a− 36 = 0. Since a 6= 2, we have a2 + 3a+ 18 = 0.

On the contrary, let a2 + 3a+ 18 = 0, and let C be the plane curve given by

F = X4 + Y 4 + Z4 + a(X2Y 2 + Y 2Z2 + Z2X2) = 0.

By Proposition 5.5, we have 9 quasi-Galois points on the union of the lines X = 0,

Y = 0 and Z = 0. Let λ be a solution of λ2 = 4a/(6−a), and let τ be the involution

given by  0 2
λ

− 2
λ

λ 1 1

−λ 1 1

 .

Then τ acts on C. It is inferred that τ is an involution, τ({Y +Z = 0}) = {Y +Z =

0}, and τ is not identity on this line. By the proof of [5, Proposition 2.6], τ is the

involution of some quasi-Galois point R on the line Y +Z = 0 other than (1 : 0 : 0)

or (0 : −1 : 1). By considering the actions associated with points (1 : 0 : 0),

(0 : 1 : 0) and (0 : 0 : 1), we have four quasi-Galois points not in {XY Z = 0}. Note
that R is different from (±1 : ±1 : 1). Using the linear transformation given by

(X : Y : Z) 7→ (Z : X : Y ), we have 4× 3 additional quasi-Galois points. Therefore,

we have δ′[2] ≥ 9 + 12 = 21.

We prove that δ′[2] ≤ 21. Let P ∈ ∆′ and let ℓ 3 P be a line. If #∆′ ∩ ℓ ≥ 2,

then #∆′ ∩ ℓ = 2, 3 or 4, by Propositions 5.3, 5.7, 5.8 and 5.9. If #∆′ ∩ ℓ = 3, then

ℓ is a multiple tangent line, and hence, it follows from Lemma 5.1 that such lines
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ℓ are at most 4. If #∆′ ∩ ℓ = 2 or 4, then there exists a point P ′ ∈ ℓ such that

P ′ ∈ F [P ] \ {P}, by Proposition 5.3. Since #∆′ ∩ (F [P ] \ {P}) ≤ 4, such lines ℓ are

at most 4. Therefore, δ′[2] ≤ 1 + 4× 2 + 4× 3 = 21.

Assume that ∆′ ⊂ PP ′∪P ′P ′′∪P ′′P and δ′[2] ≥ 4. Let R ∈ ∆′ \{P, P ′, P ′′}. We

can assume that R ∈ PP ′. By Proposition 5.3, there exist four quasi-Galois points

on the line PP ′. For a suitable system of coordinates, we can assume that the line

PP ′ is defined by Z = 0 and C is defined by

X4 + Y 4 + Z4 + aX2Y 2 + b(Y 2Z2 + Z2X2) = 0,

where a, b ∈ K. By Proposition 5.5, it follows that b 6= 0. In this case, δ′[2] ≥ 5.

If δ′[2] > 5, then the line P ′P ′′ or P ′′P contains four quasi-Galois points. It follows

from Proposition 5.4 that a = ±b. In this case, C is projectively equivalent to the

curve defined by

X4 + Y 4 + Z4 + a(X2Y 2 + Y 2Z2 + Z2X2) = 0

where a 6= 0 and a2 + 3a + 18 6= 0, and δ′[2] = 9. For the smoothness, we need the

condition a 6= −1. If δ′[2] = 5, then b 6= ±a, by Proposition 5.4. □

Theorem 5.12. Let C ⊂ P2 be a smooth curve of degree four. Then

δ′[2] = 0, 1, 3, 5, 6, 9, 12 or 21.

Furthermore, the following hold.

(1) δ′[2] = 21 if and only if C is projectively equivalent to the curve defined by

X4 + Y 4 + Z4 + a(X2Y 2 + Y 2Z2 + Z2X2) = 0,

where a ∈ K satisfies a2 + 3a+ 18 = 0.

(2) δ′[2] = 12 if and only if C is projectively equivalent to the Fermat curve.

(3) δ′[2] = 9 if and only if C is projectively equivalent to the curve defined by

X4 + Y 4 + Z4 + a(X2Y 2 + Y 2Z2 + Z2X2) = 0,

where a ∈ K \ {0,−1} and a2 + 3a+ 18 6= 0.

(4) δ′[2] = 6 if and only if C is projectively equivalent to the curve defined by

X4 + Y 4 + Z4 + aX2Y 2 = 0,

where a ∈ K \ {0} and a 6= ±6.
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(5) δ′[2] = 5 if and only if C is projectively equivalent to the curve defined by

X4 + Y 4 + Z4 + aX2Y 2 + b(Y 2Z2 + Z2X2) = 0,

where a, b ∈ K, b 6= 0 and b 6= ±a.

Proof. Assume that δ′[≥ 2] ≥ 2 and δ′[4] ≥ 1. By Proposition 5.5 and Corollary 5.6,

C is projectively equivalent to the curve defined by

X4 + Y 4 + Z4 + aX2Y 2 = 0.

Furthermore, if a = 0 or ±6, then δ′[2] = 12 and C is the Fermat curve, otherwise,

δ′[2] = 6. The assertion follows.

Hereafter, we assume that δ′[4] = 0 and δ′[2] ≥ 2. By Proposition 5.5, there does

not exist a line ℓ such that #ℓ ∩∆′ = 6. If two Galois points form a G-pair, then,

by Proposition 5.2, there exists a G-triple and δ′[2] ≥ 3. Therefore, δ′[2] ≥ 3 in any

case. If there exists a G-triple, then the assertion follows by Proposition 5.11. We

can assume that there does not exist a G-pair.

Assume that δ′[2] ≥ 4. By Propositions 5.3, 5.7, 5.8 and 5.9, there exists a line ℓ

containing exactly three quasi-Galois points P1, P2 and P3. Let P4 be a quasi-Galois

point with P4 6∈ ℓ. Then the line PiP4 contains exactly three quasi-Galois points

for each i. Therefore, δ′[2] ≥ 7. It follows from Proposition 5.8 that there exists an

automorphism σ of order three such that σ(ℓ) = ℓ and the fixed point of σ not in

ℓ coincides with the point given by F [P1] ∩ F [P2]. If δ′[2] = 7 or 8, then σ acts on

7− 3 = 4 or 8 − 3 = 5 points. Therefore, σ fixes some quasi-Galois point P . Then

P ∈ F [P1] and hence, (P, P1) is a G-pair. This is a contradiction. It follows that

δ′[2] ≥ 9.

Assume that δ′[2] = 9. Since there does not exist a G-pair, the line P1P2 contains

exactly three quasi-Galois points for each pair of different quasi-Galois points P1

and P2. We consider the set

I := {(P, ℓ) ∈ ∆′ × P̌2 | P ∈ ℓ, #∆′ ∩ ℓ = 3}

with projections p1 : I → ∆′ and p2 : I → P̌2, where P̌2 is the dual projective plane.

Since #I = 9× 4 = 36 and each fiber of p2 contains exactly 3 points, it follows that

#p2(I) = 12. Let ℓ ∈ p2(I) and let σ be an automorphism of order three on the

line ℓ as in Proposition 5.8. Since the automorphism σ acts on the set p2(I) \ {ℓ}
and #p2(I) \ {ℓ} = 11, there exists a line ℓ′ ∈ p2(I) \ {ℓ} such that σ(ℓ′) = ℓ′. Then

σ(ℓ ∩ ℓ′) = ℓ ∩ ℓ′. By Proposition 5.8, the point given by ℓ ∩ ℓ′ is contained in C.
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Since the tangent line at the point given by ℓ∩ ℓ′ coincides with lines ℓ and ℓ′. This

is a contradiction to the smoothness. It follows that δ′[2] ≥ 10.

Assume that δ′[2] ≥ 10. Let P ∈ ∆′. Since lines containing P and another

two quasi-Galois points are at most 4, there exists a line containing four quasi-

Galois points. In this case, there exists a G-pair, by Proposition 5.3. This is a

contradiction. □

Remark 5.13. It is known that the curve defined by

X4 + Y 4 + Z4 + a(X2Y 2 + Y 2Z2 + Z2X2) = 0,

where a ∈ K satisfies a2+3a+18 = 0, is projectively equivalent to the Klein quartic

X3Y + Y 3Z + Z3X = 0 ([7], [13]).

Remark 5.14. For d = 5 and n = 2, the third author determined the number δ[2]

([16]).
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[13] R. Rodriguez and V. González-Aguilera, Fermat’s quartic curve, Klein’s curve and the tetra-

hedron, Extremal Riemann Surfaces (San Francisco, CA, 1995), 43–62, Contemp. Math., 201,

Amer. Math. Soc., Providence, RI, 1997.

[14] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954),

274–304.

[15] H. Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin, 1993.

[16] T. Takahashi, Projection of a non-singular plane quintic curve and the dihedral group of order

eight, Rend. Sem. Mat. Univ. Padova 135 (2016), 39–61.

[17] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra 239 (2001),

340–355.

Faculty of Science, Yamagata University, Kojirakawa-machi 1-4-12, Yamagata

990-8560, Japan

Email address : s.fukasawa@sci.kj.yamagata-u.ac.jp

Department of Mathematics, National Institute of Technology, Ube College,

Ube, Yamaguchi 755-8555, Japan

Email address : kmiura@ube-k.ac.jp

Education Center for Engineering and Technology, Faculty of Engineering, Ni-

igata University, Niigata 950-2181, Japan

Email address : takeshi@eng.niigata-u.ac.jp


