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Abstract. Let G = exp g be an exponential solvable Lie group with Lie

algebra g and g∗ the dual vector space of g. We take two (real) polarizations
h1, h2 of g at f ∈ g∗ which satisfy the Pukanszky condition and define a

unitary character χf of Hj = exp(hj) (j = 1, 2) by the formula χf (expX) =

eif(X)(X ∈ hj). Then, it is well known that the two monomial representations

πj = indG
Hj
χf (j = 1, 2) are mutually equivalent and we even have a natural

candidate of the intertwining operator between them. In order to verify that

it is a true intertwining operator, the principal obstacle is the convergence of

the integral in question. A property which assures this convergence, is the
closedness of the simple product set H2H1 in G. In this paper, we establish

this property, generalizing then a previous proof in the particular case when

one of the polarizations is of Vergne type.

1. Introduction

Let G = exp g be an exponential solvable Lie group with Lie algebra g. We consider

f ∈ g∗ and two (real) polarizations h1, h2 of g at f which satisfy the Pukanszky condition.

This means that f+h⊥j = Hj ·f with Hj = exp(hj)(1 ≤ j ≤ 2). Starting from the unitary

character χf of Hj defined by χf (expX) = eif(X) (X ∈ hj), we induce a monomial

representation πj = indGHjχf of G. Thus, it comes that π1, π2 are irreducible and

mutually equivalent (cf. [4]). For j = 1, 2, we denote by Hπj the Hilbert space of πj . We

propose to construct explicitly an intertwining operator between them. Our first step in

[5] was to establish the relation

Tr adh1/(h1∩h2)X + Tr adh2/(h1∩h2)X = 0

for all X ∈ h1 ∩ h2. This leads to

∆H1,G(h) = ∆H2,G(h)∆2
H1∩H2,H2

(h) (h ∈ H1 ∩H2).
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This being set, for ϕ ∈ Hπ1
and g ∈ G, the function Φg on H2 defined by

Φg(h) = ϕ(gh)χf (h)∆
−1/2
H2,G

(h)

verifies the relation

Φg(hx) = ∆H1∩H2,H2(x)Φg(h) (h ∈ H2, x ∈ H1 ∩H2).

Hence we are able to describe formally the integral

(Th2h1
ϕ) (g) =

∮
H2/(H2∩H1)

ϕ(gh)χf (h)∆
−1/2
H2,G

(h)dν(h) (g ∈ G). (1.1)

At least on the formal level, it is clair that Th2h1
ϕ verifies the covariance condition

required to belong to the space Hπ2
and that Th2h1

commutes with the action of G by left

translations. In fact, it is not exaggerated [3] to say that one of the principal problems

is the question of the convergence of the integral (1.1), which will be settled when the

following claim holds:

Claim 1.1. The product H2H1 is closed in G.

Indeed, it turns out from the Pukanszky condition that the simple product set

H2H1 is locally closed in G and hence that the space H2H1/H1 is homeomorphic to

homogeneous space H2/(H1 ∩ H2). Therefore, if Claim 1.1 holds, the integral (1.1) is

convergent for all continuous function ϕ with compact support modulo H1 of Hπ1
.

Note that Claim 1.1 holds, in the setting when G is nilpotent or at least one of

the polarisations hj is of Vergne type (cf. [10]), and also in the case where h1 + h2 is a

subalgebra of g (cf. [1]). The aim of the paper is to provide a proof in the general setting

of exponential solvable Lie groups.

The outline of the paper is as follows. The next section presents some preliminaries

about the representation theory of exponential solvable Lie groups and the orbit method.

Section 3 proves first preparations of the proof of the main result proving that Claim

1.1 holds whenever there exists an abelian ideal n between the nilpotent radical of g

and [g, g] (cf. Proposition 3.2). This is actually crucial for the proof of the general

case. Section 4 treats the setting where G is completely solvable, where by means of

the techniques of Proposition 3.2, we overcome the technical difficulties raised through

the induction procedure, (cf. Theorem 4.1). The last section proves the general case of

exponential solvable, and as a consequence the convergence of the intertwining integral

(1.1) (cf. Corollary 5.2), and also the composition formula introducing the Maslov index

(cf. Corollary 5.3).
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2. Backgrounds

2.1. Induced representations

Let dg be a left Haar measure on G and ∆G the modular function of G so that we

have

∫
G

ϕ(gx−1)dg = ∆G(x)

∫
G

ϕ(g)dg (x ∈ G)

for all functions ϕ belonging to the space K(G) of the continuous functions on G with

compact support. We have

∆G(x) = |det(Adx)|−1 (x ∈ G).

A closed subgroup H with Lie algebra h being given, we denote by ∆H,G the char-

acter of H with values in R+ defined by

∆H,G(h) =
∆H(h)

∆G(h)
(h ∈ H).

It follows that, for X ∈ h,

∆H,G(expX) = exp(Tr adg/hX).

LetK(G,H) be the space of the numerical continuous functions ϕ onG with compact

support modulo H and which verify ϕ(gh) = ∆H,G(h)ϕ(g) for all g ∈ G and h ∈ H.

G acting on K(G,H) by left translations, we know that there exists, up to a scalar

multiplication, one and only one G-invariant positive linear form. We denote it by νG,H
or more simply ν and write it in the form of an integral

νG,H(ϕ) =

∮
G/H

ϕ(g)dν(g).

If ∆H = ∆G on H, νG,H is nothing but a G-invariant measure on the homogeneous space

G/H.

Let π be a unitary representation of H in the Hilbert space Hπ, K(G,H, π) the space

of continuous functions ψ on G with values in Hπ, having the compact support modulo

H and verifying the covariance condition

ψ(gh) =
(∆H(h)

∆G(h)

)1/2
π−1(h)ψ(g) (g ∈ G, h ∈ H). (2.1)

We define the norm ‖ψ‖ in K(G,H, π) by
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‖ψ‖ =

(∮
G/H

|ψ(g)|2dνG,H(g)

)1/2

.

Then G acts isometrically in the space K(G,H, π) by left translations and we obtain the

induced unitary representation τ = IndGHπ of G in the completion Hτ of K(G,H, π).

In the case where π = χ is a unitary character of H, τ is the induced monomial

representation IndGHχ.

2.2. The orbit method theory

The Kirillov-Bernat-Vergne orbit method makes it possible to parameterize the uni-

tary dual Ĝ of G by the space of coadjoint orbits of G in g∗. For ` ∈ g∗, let B` be the

bilinear form on g defined by B`(X,Y ) = `([X,Y ]) and g(`) the radical of B`. We take a

polarization b ⊂ g at ` (a totally isotropic subalgebra of g (or Lagrangian) with respect

of B` of maximal dimension equals to 1
2 (dim g + dim g(`))), satisfying Pukanszky’s con-

dition B · ` = `+ b⊥, where B := exp b. We define the unitary character χ` : B → U(1)

associated to ` by

χ`(expX) := ei`(X) (X ∈ b), (2.2)

and denote by π`,b the induced unitary representation IndGBχ` of G. Then π`,b is an

irreducible representation of G and its equivalence class [π`,b] only depends upon the

coadjoint orbit Ω` through `. Every unitary and irreducible representation π of G is

equivalent to the representation π`,b induced from a character χ` and a Pukanszky po-

larization b at `. Moreover, the Kirillov-Bernat-Vergne mapping

θG : g∗ −→ Ĝ

Ω` 7−→ π`,b
(2.3)

which factors through the quotient to:

θ̄G : g∗/G−→ Ĝ

Ω` 7−→ [π`,b] =: πΩ`

(2.4)

is a homeomorphism. For more details, see [6].

3. Orientation of our study

We begin with groping our way to find an orientation.

Example 3.1. Let g = 〈x, y, z, a〉R : [x, y] = z, [x, a] = a. Then, the derived

algebra [g, g] is commutative. At the point f = z∗ in g∗, the subalgebra h = 〈x, a, z〉R is

a polarization satisfying the Pukanszky condition and h is not contained in the nilpotent

radical of g.
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3.1. Indices and notations

Let

S : {0} = g0 ⊂ g1 ⊂ · · · ⊂ gn−1 ⊂ gn = g,dim gj = j (0 ≤ j ≤ n)

be a good sequence of subalgebras of g which passes a nilpotent ideal n = gj0 containing

[g, g]. What is to say, if gj is not an ideal of g, then gj±1 are ideals of g and the adjoint

representation of g on gj+1/gj−1 is irreducible. If gj and gj−1 are ideals of g, we obtain

a root αj : g→ R of g :

ad(X)(Xj)− αj(X)Xj ∈ gj−1, X ∈ g, Xj ∈ gj \ gj−1.

If gj is not an ideal of g, then we take a subspace vj of dimension 2 of gj+1 such

that gj+1 = vj + gj−1 and there exists a homomorphism αj of g to the algebra of the

endomorphisms of vj such that

ad(X)v − αj(X)v ∈ gj−1, X ∈ g, v ∈ vj .

We define for a subspace v of g the index set Iv ⊂ {1, 2, . . . , n} by

Iv = {1 ≤ j ≤ n; v + gj = v + gj−1}
= {1 ≤ j ≤ n; v ∩ gj 6= v ∩ gj−1}.

Choose for j ∈ Ih2\Ih1∩h2 an element Uj ∈ h2 ∩ gj outside of gj−1 and determine the

integer k = k(j) ≤ j as the smallest index such that

(Uj + (h2 ∩ gj−1) + h1) ∩ gk 6= ∅.

Then, k ≥ 1. This gives us, retaking Uj again if necessary, an element Sj ∈ h1 and an

element Vj ∈ gk(j) \ gk(j)−1 such that

Uj = Vj + Sj .

We see that j ∈ Ih2\Ih1 if and only if k(j) = j. In this case, we can take Sj = 0 and

Vj = Uj . Because of the minimality of k(j), we know that k(j) 6∈ Ih1 and that the

mapping

Ih2 ∩ Ih1\Ih1∩h2 3 j 7→ k(j) ∈ Ih2+h1\(Ih1 ∪ Ih2)

is injective.

We set

Îh2 = {j ∈ Ih2\Ih1∩h2 ; k(j) ≤ j0}.

For 0 ≤ j ≤ j0, we put mj = gj + h1 and

Ih2
m = {1 ≤ j ≤ j0; h2 ∩mj 6= h2 ∩mj−1}.
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Let j ∈ Ih2
m . Let us show that there exists Xj in h2 ∩mj outside of h2 ∩mj−1 such that

we have [Xj , gj ] ⊂ gj−1. When we can take Xj in n, our assertion is trivial.

We first prove the following:

Proposition 3.2. Let G = exp g be an exponential solvable Lie group with Lie

algebra g such that there exists an abelian ideal n between the nilpotent radical of g and

[g, g]. Let f ∈ g∗, h1, h2 two polarizations at f satisfying the Pukanszky condition and

Hj = exp hj for j = 1, 2. Then, Claim 1.1 holds.

Proof. Let us proceed by induction on dimG. If there exists a non-trivial ideal

on which f vanishes, then this ideal is contained in h1 ∩ h2 and we can descend to the

quotient by this ideal and apply there the induction hypothesis, because the image of n

in the quotient is found between the nilpotent radical and the derived algebra. Suppose

hereafter that there is no such an ideal, what brings that the dimension of the center z

of g is inferior or equal to 1. If there exists a minimal ideal a 6= {0}, then, since f does

not vanish on a, the subalgebra

g̃ = {X ∈ g; f([X, a]) = {0}}

turns out to be proper in g. Since the Pukanszky condition requires that h1, h2 are

contained in g̃, the induction hypothesis suffices for us. These observations apply to the

general setting without any assumption and we can assume in what follows z = RZ with

f(Z) = 1.

In this way, we are led to the following situation: g1 = z, f does not vanish on g1 and

a = g2 or a = g3 is a minimal non-central ideal of g. In order to simplify the notation,

designate g̃ by k, which is a proper subalgebra of g. Remark that g = k + [g, g] except

the case where a = g2 and where [g, a] = z, namely that α2 = 0. In this last case, k is an

ideal of g and our hypothesis on the existence of n regulate this eventuality. All taken

into account, we obtain a good sequence of subalgebras of k by taking the intersection S ′
of S with k and k ∩ n is found between the nilpotent radical of k and [k, k].

This taken in mind, if a ⊂ h1∩h2, it suffices for us to apply the induction hypothesis

to the subgroup K = exp k. For i = 1, 2, put h0
j = hj ∩ k and h′j = h0

j + a. When h2

contains a and h1 does not contain a, it suffices for us to apply the induction hypothesis

to the data (k, h′1, h2,S ′).
Suppose that h1 contains a and so does not h2. Since gj0 is commutative and gj0

contains a, gj0 is contained in k. It follows that mj0 ∩ h2 ⊂ h0
2. Therefore, our assertion

results from that already established for h1 and h′2.

Suppose from now on that neither h1 nor h2 contains a. If h1∩h2 is not contained in

k, our assertion follows from that already established for h′1 and h′2. It remains to examine

the situation where a ⊂ h1 +h2. Recall that g1 = z and a = g2. So, let z = RZ, f(Z) = 1,

and g2 = RY + RZ with f(Y ) = 0.

First, suppose that a ⊂ h0
1 + h0

2. Write Y = X2 − X1 with Xk ∈ h0
k(1 ≤ k ≤ 2).

Let i0 be the smallest index in Ih2
m such that h2 ∩ mi0 6⊂ h0

2. If there does not exist

such an index i0, we have nothing to do. It comes that h0
2 ∩mi0 ⊂ mi0−1 and then that

there exists V ∈ gi0 \ gi0−1 which is written as V = T2 − T1 with Tk ∈ hk \ h0
k verifying
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[Tk, Y ] = Z (1 ≤ k ≤ 2) (cf. Lemma 4.4 in the sequel). Modifying the elements X2, X1

by elements of h1∩h2, we can choose X2, X1 in such a manner that Bf (Xk, gi0−1) = {0}.
Write [T2, X2] = βX2 +w2 with β ∈ R and w2 ∈ h0

2 such that Bf (T1, w2) = 0. As n = gj0
is commutative, we have

0 = f([V, [T2, X2]]) = Bf (V, [T2, X2]) = −Bf (T1, [T2, X2])

= −βBf (T1, X2) = −βBf (T1, Y ) = −β.

Hence, [T2, X2] = w2. Similarly, [T1, X1] = w1 with w1 ∈ h0
1 verifying Bf (T2, w1) = 0.

Then, we have

[V,X2] = [T2 − T1, X2] = [T2, X2]− [T1, X1 + Y ] = w2 − w1 − Z

and consequently

0 = Bf (T2, [V,X2]) = Bf ([T2, V ], X2) +Bf (V, [T2, X2])

= Bf ([T2, V ], X2),

what says that [T2, V ] belongs to gi0−1.

Second, suppose that a 6⊂ h0
1+h0

2. Writing Y = T2−T1 with Tk ∈ hk\h0
k (1 ≤ k ≤ 2),

we know that the Pukanszky condition allows us to choose Tk in such a manner that

[Tk, Y ] belongs to g1 (cf. Lemma 4.4).

We can treat similarly the case where dim a = 3. Let i0 be the smallest index in

Ih2
m such that h2 ∩ mi0 6⊂ h0

2. Then, there exists V ∈ gi0 \ gi0−1 which is written as

V = T2 − T1 with Tk ∈ hk \ h0
k verifying [Tk, Y ] = Z (1 ≤ k ≤ 2) because of Lemma 4.4.

Following the same way as above, we find [Tk, V ] ∈ gi0−1.

Now, putting Mj = expmj for 1 ≤ j ≤ j0, let us show by induction on j that

H2H1∩Mj is a closed subset of Mj . When j = 1, it is trivial. Suppose that H2H1∩Mj−1

is closed in Mj−1. If j 6∈ Ih2
m , it turns out that H2H1 ∩Mj = H2H1 ∩Mj−1. Suppose

that j ∈ Ih2
m . Take Xj in h2∩mj outside of mj−1 in the way that we have [Xj , gj ] ⊂ gj−1.

Let Xj = Vj + X ′j with Vj ∈ gj \ gj−1 and X ′j ∈ h1. Let now {xi}∞i=1 be a sequence in

H2H1 ∩Mj , convergent in G. Write

xi = exp(tiXj)·gi (ti ∈ R, gi ∈ H2H1 ∩Mj−1).

Because

xi = exp(ti(Vj +X ′j))·gi = exp(tiVj)·g′i

with g′i ∈ Mj−1, the sequence {ti}∞i=1 is convergent and consequently the sequence gi =

exp(−tiXj)·xi too. Say, limi→∞ ti = t0 ∈ R and limi→∞ gi = g0 ∈ Mj−1. Since

H2H1 ∩Mj−1 is closed in Mj−1, we confirm that g0 ∈ H2H1. After these observations,

limi→∞ xi = exp(tiXj)·gi is found in H2H1. We see in this way that H2H1 ∩Mj is a

closed subset of Mj .

Finally, H2H1 ∩Mj0 is closed in Mj0 . By adding to the subalgebra mj0 a coexpo-

nential basis {W1, . . . ,Wp} in h2 to h2 ∩mj0 , we conclude that
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H2H1 = exp(RW1) · · · exp(RWp)(H2H1 ∩Mj0)

is a closed subset in G. �

4. Case of completely solvable Lie groups

Suppose here that g is completely solvable, and we shall provide a proof of Claim

1.1. Our main result in this section is the following:

Theorem 4.1. Let G = exp g be a completely solvable Lie group with Lie algebra

g, f ∈ g∗ and hj ∈ S(f, g)(j = 1, 2) two Pukanszky (real) polarizations of g at f ∈ g∗.

Put Hj = exp(hj)(j = 1, 2). Then, the product H2H1 is closed in G.

4.1. First preparations

Let n be a nilpotent ideal of g containing [g, g]. Put n0 = {0} and let n1 be an ideal

of g contained in n and having the dimension 1. We denote by c(n1, n0) the centralizer

of n1 in n, what evidently leads the equality c(n1, n0) = n. Take now an ideal n2 of g

included in n, containing n1 and having the dimension 2. If we put

c(n2, n0) = {X ∈ n; [X, n2] ⊂ n0},

then,

{0} = n0 ( n1 ( n2 ⊂ c(n2, n0) ⊂ n, dim
(
n/c(n2, n0)

)
≤ 1.

If n2 6= c(n2, n0), we take an ideal n3 of g such that

n2 ⊂ n3 ⊂ c(n2, n0), dim(n3/n2) = 1.

Next we consider the ideal

c(n3, n1) = {X ∈ c(n2, n0) : [X, n3] ⊂ n1}.

of g. Then,

n1 ( n2 ( n3 ⊂ c(n3, n1) ⊂ c(n2, n0), dim
(
c(n2, n0)/c(n3, n1)

)
≤ 1.

If n3 6= c(n3, n1), we take an ideal n4 of g such that

n3 ⊂ n4 ⊂ c(n3, n1), dim(n4/n3) = 1.

Next we consider the ideal

c(n4, n2) = {X ∈ c(n3, n1); [X, n4] ⊂ n2}

of g. Then,
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n1 ( n2 ( n3 ( n4 ⊂ c(n4, n2) ⊂ c(n3, n1) ⊂ c(n2, n0) ⊂ n

and dim
(
c(n3, n1)/c(n4, n2)

)
≤ 1.

We continue the same process until we have an index k0 such that

nk0 = c(nk0 , nk0−2).

By this way, we arrive to a sequence of ideals of g:

{0} = n0 ( n1 ( n2 ( · · · ( nk0 = c(nk0 , nk0−2)

⊂ c(nk0−1, nk0−3) ⊂ · · · ⊂ c(n2, n0) ⊂ n.

Denote this sequence made by different terms by S:

{0} = n0 ⊂ n1 ⊂ · · · ⊂ nm−1 ⊂ nm = n, dim(nj/nj−1) = 1 (1 ≤ j ≤ m).

For 1 ≤ j ≤ m, we set mj = nj + h1 and

Ih2 = {1 ≤ j ≤ m; h2 ∩mj 6= h2 ∩mj−1}.

Now, we propose the following claim:

Claim 4.2. Let j ∈ Ih2 . There exists Xj in h2 ∩mj outside of h2 ∩mj−1 such that

we have [Xj , nj ] ⊂ nj−1.

Then the following is immediate from the proof of Proposition 3.2:

Proposition 4.3. If Claim 4.2 holds, then so does Claim 1.1, so a proof of The-

orem 4.1.

Proof of Theorem 4.1. We shall draw a proof through different steps, here is the

first one:

4.2. Step 1: An induction procedure

We proceed by induction on dim g. If h2 = h1 = g(f) = g, H2H1 = H1 = H2 = G.

If f vanishes on an ideal a 6= {0} of g, a ⊂ g(f) ⊂ h1∩h2 and we can pass to the quotient

g/a to which applies the induction hypothesis. Hence, we can suppose that the center z

satisfies dim z ≤ 1, and that f does not vanish on z when dim z = 1. Let a be a minimal

non-central ideal of g and g̃ = {X ∈ g;Bf (X, a) = {0}} which is a proper subalgebra

of g. If a is a minimal ideal of g, then the Pukanszky condition implies hj(j = 1, 2) are

contained in g̃ (cf. [4]) and the result commes immediately from the induction hypothesis

applied to G̃ = exp(g̃).

Suppose hereafter that a is not a minimal ideal of g. This means n1 = dim z =

1,dim a = 2 and z ⊂ a. Let z = RZ, a = RY ⊕ z such that f(Z) = 1 and f(Y ) = 0. Note

that the intersection of g̃ with n is nothing but c(n2, n0) = c(n2, {0}).
Now let a 6⊂ h1 ∩ h2 and put h0

i = hi ∩ g̃, h′i = h0
i + a for 1 ≤ i ≤ 2. It is well

known that h′1 is a polarization at f verifying the Pukanszky condition (cf. [4]). Let us

introduce
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g0 = {X ∈ g; [X, a] ⊂ n1}.

Case 1. h1 ⊂ g̃ and h2 6⊂ g̃. It matters only that j = m, otherwise we can apply

the induction hypothesis to h1, h
′
2 contained in g̃. If h2 ⊂ g0, then [h2, n] ⊂ n ∩ g̃ and

hence [h2, nj ] ⊂ nj−1, from which comes the result. If h2 6⊂ g0, the Pukanszky condition

implies (cf. [4]) h0
2 6⊂ g0 and hence there is a nilpotent element in h2 \ h0

2 which serves as

a coexponential basis in g to g̃.

Case 2. h1 6⊂ g̃ and h2 ⊂ g̃. Just as in the case 1, we are led to the situation where j =

m. If h1 ⊂ g0, [h1 + n, n] ⊂ nj−1 and hence [mj , nj ] ⊂ nj−1, further [h2 ∩mj , nj ] ⊂ nj−1.

If h1 6⊂ g0, the Pukanszky condition demands just as in Case 1 that h1 ∩ nj 6= h1 ∩ nj−1.

Namely, mj = mj−1 and hence j 6∈ Ih2 .

Case 3. h1 6⊂ g̃ and h2 6⊂ g̃. First, let a 6⊂ h1 +h2. Then, there exists 0 6= X ∈ h1∩h2

outside of g̃. If j < m, modifying by X the concerned elements of h1, h2, we immediately

see that

h′2 ∩ (nj + h′1) 6= h′2 ∩ (nj−1 + h′1).

If j = m, we can proceed as in the previous cases. Indeed, if h2 6⊂ g0, we can take

in [h2, X] a coexponential basis in g to g̃. Let h2 ⊂ g0. If h1 ⊂ g0, we can apply the

induction hypothesis to g0. If h1 6⊂ g0, we have that h1 ∩ nm 6= h1 ∩ nm−1. Namely,

mm = mm−1 and hence m 6∈ Ih2 .

Suppose in what follows that a ⊂ h1 + h2. First of all let a 6⊂ h0
1 + h0

2. Write

Y = T2 − T1 with Ti ∈ hi\h0
i for 1 ≤ i ≤ 2. We know that Ti ∈ g0 (1 ≤ i ≤ 2) from the

Pukanszky condition (cf. Lemma 4.4 below). By replacing X by T1, T2 we can make

the same argument as in the precedent situation.

Finally, let us treat the essential case where a ⊂ h0
1 +h0

2. Let j0 be the smallest index

such that there exists V ∈ nj0\nj0−1 which is written V = T2 − T1 with Ti ∈ hi\h0
i (1 ≤

i ≤ 2). Then (h0
1 + h0

2) ∩ nj0 ⊂ nj0−1. If j0 = m, we can repeat the arguments utilized

in the case 1 or 2. Thus, let j0 < m, namely V ∈ g̃. When we write Y = X2 −X1 with

Xi ∈ h0
i (1 ≤ i ≤ 2), we have h′1 ∩ h2 = RX2 + (h1 ∩ h2) and h1 ∩ h′2 = RX1 + (h1 ∩ h2).

Since (h1 + h2) ∩ nj0−1 ⊂ h0
1 + h0

2, we ascertain

Bf (X2, nj0−1) = Bf (X1, nj0−1) = {0}

by modifying Xi by the elements of h1∩h2 if necessary. In fact, let nk = RVk+nk−1 with

k ≤ j0−1. If Vk 6∈ h1 +h2, there exists xk ∈ h1∩h2 such that Bf (xk, Vk) 6= 0. Modifying

Xj by xk, we can assume Bf (Xj , Vk) = 0. If Vk ∈ h1+h2, then Vk = x2−x1 with xj ∈ h0
j .

This means Bf (X1, x2) = Bf (X2, x1) = 0 and hence Bf (X2, Vk) = Bf (X1, Vk) = 0.

Moreover, we can suppose that f(X1) = f(X2) = 0 by modifying Xi by Z if necessary.

Let us normalize Ti or Y so that Bf (Ti, Y ) = 1. This leads to

Bf (T1, X2) = 1, Bf (T2, X1) = Bf (V,X1) = Bf (V,X2) = −1.

Lemma 4.4. Let us assume more generally that g is exponential here. We can take

Tj in g0, for 1 ≤ j ≤ 2.
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Proof. Suppose for a while that g is completely solvable and that Tj 6∈ g0. Then,

from the Pukanszky condition there exist (cf. [4]) T ′j ∈ h0
j outside g0 and hence two

elements 0 6= vj = [T ′j , Tj ] ∈ (hj ∩ n)\h0
j (j = 1, 2) and let k0 be the smallest index

satisfying a = v2 − v1 ∈ nk0 by the use of such nilpotent elements v1, v2 in hj \ h0
j . This

brings that j0 ≤ k0 ≤ m− 1. If k0 = j0, we can choose Tj = vj ∈ n ⊂ g0. Suppose hence

j0 < k0. This being done, from the induction hypothesis there exists Sj ∈ h0
j (j = 1, 2)

such that

b = S2 − S1 ∈ nk0\nk0−1, [Sj , nk0 ] ⊂ nk0−1.

This says that

[S2, a] = [S2, v2]− [S2, v1] ∈ nk0−1,

namely,

[S2, a] = [S2, v2]− [S1 + b, v1]

= [S2, v2]− [S1, v1]− [b, v1] ∈ nk0−1.

Consequently,

[S2, v2]− [S1, v1] ∈ nk0−1,

which contradicts the choice of k0 unless Sj ∈ g0 (j = 1, 2).

By considering an appropriate multiple of Sj , we can suppose that

b+ a = (S2 + v2)− (S1 + v1) ∈ nk0−1.

Then,

nk0−1 3 [T2, b+ a] = [T2, S2 + v2]− [T2, S1 + v1]

= [T2, S2 + v2]− [T1 + V, S1 + v1]

= [T2, S2 + v2]− [T1, S1 + v1]− [V, S1 + v1].

Since [V, S1 + v1] ∈ nj0 and j0 ≤ k0 − 1, we have

[T2, S2 + v2]− [T1, S1 + v1] ∈ nk0−1.

All taken into account, if Tj 6∈ g0, this contradicts the choice of k0 because [Tj , Sj +vj ] 6∈
h0
j (j = 1, 2). In sum, Tj ∈ g0.

Now suppose that g is exponential. Let k0 = j0. If [Tj , nj0 ] 6⊂ nj0−1, the equation

[T2, a] = [T2, v2]− [T1, v1]− [V, v1]

shows that we can take Tj in hj ∩ n. Thus, we can assume j0 < k0 and we can repeat

the above arguments done for the completely solvable case. �
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Remark 4.5. In the proof of Lemma 4.4, if j0 = k0, we establish our assertion by

taking Tj = vj(j = 1, 2). Besides, if j0 < k0, it is obligatory that Tj ∈ g0(j = 1, 2). So,

when we write an element A of ni, i ≤ j0, as A = a2 − a1 with ai ∈ hi(i = 1, 2), we can

always suppose that ai ∈ g0(i = 1, 2). For example, this is the case for Xi introduced

above. (See the proof of the next lemma.)

Taking into account Bf (T1, X2) = 1 and Bf (T2, X1) = −1, write

[T1, X1] = βX1 + w1, [T2, X2] = γX2 + w2

with wj ∈ h0
j (j = 1, 2) verifying

Bf (T1, w2) = Bf (T2, w1) = 0.

Then, it is immediate that

[V,X1] = [V,X2] = [T2 − T1, X2] = [T2, X2]− [T1, X2]

= [T2, X2]− [T1, X1 + Y ] = γX2 + w2 − (βX1 + w1)− Z
= (γ − β)X2 + w2 − w1 + βY − Z (4.1)

= (γ − β)X1 + w2 − w1 + γY − Z.

Let us calculate further

Bf (T2, [V,X2]) = f([T2, [V,X2]]) = (γ − β)f([T2, X2]) + βf(Z) = β.

On the other hand,

Bf (T2, [V,X2]) = Bf ([T2, V ], X2) +Bf (V, [T2, X2])

=Bf ([T2, V ], X2) +Bf (V, γX2 + w2) = Bf ([T2, V ], X2)− γ.

Consequently,

[T1, V ] = [T2, V ] = −(β + γ)V +W (4.2)

with a certain element W ∈ nj0−1. So, the task consists in showing that β + γ = 0,

which will close the proof thanks to Proposition 4.3. Note that this aim is immediately

attained if both h1 and h2 are abelian.

4.3. Step 2: Toward β + γ = 0

Let us first compute:

[T2, [V,X2]] = (γ − β)[T2, X2] + [T2, w2]− [T2, w1] + βZ

=− (β + γ)[V,X2] + [W,X2] + γ[V,X2] + [V,w2]

=− β{(γ − β)X2 + w2 − w1 + βY − Z}+ [W,X2] + [V,w2].

Hence,
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(γ − β)[T2, X2] + [T2, w2]− [T2, w1] (4.3)

= −β(γ − β)X2 − βw2 + βw1 − β2Y + [W,X2] + [V,w2].

Thus, in particular f([W,X2]) = 0.

The three equations (4.1)-(4.3) are our poor tools.

As we may replace V by any element of gj0 which is found in h1 + h2 but outside of

h0
1 + h0

2, think for a while about the possibility to modify V so that we would have γ = 0

for instance. Let U = R2 − R1 ∈ nj0−1 with Rj ∈ h0
j (j = 1, 2). Let us compute γ′, the

new γ, for V + αU . We find that

γ′ = Bf (T1 + αR1, [T2 + αR2, X2]).

Namely,

γ′ =Bf (R1, [R2, X2])α2 +
(
Bf (R1, [T2, X2]) (4.4)

+Bf (T1, [R2, X2])
)
α+ γ

and similarly

−β′ =Bf (R2, [R1, X1])α2 +
(
Bf (R2, [T1, X1]) (4.5)

+Bf (T2, [R1, X1])
)
α− β.

Thus,

β′ + γ′ = β + γ

+
(
Bf (R1, w2) +Bf (T1, [R2, X2])−Bf (R2, w1)−Bf (T2, [R1, X1])

)
α

and we may choose α ∈ R in such a manner that

β′ + γ′ = 0

provided that

Bf (R1, w2) +Bf (T1, [R2, X2])−Bf (R2, w1)−Bf (T2, [R1, X1]) 6= 0.

We can hence suppose that

Bf (R1, w2) +Bf (T1, [R2, X2])−Bf (R2, w1)−Bf (T2, [R1, X1]) = 0.

When we make the changes

Tj 7→ kTj , Xj 7→ k−1Xj (k ∈ R \ {0}, j = 1, 2)

in the expressions of (4.4) and (4.5), we check that

Bf (R1, [R2, X2]) = Bf (R2, [R1, X1]) = 0,
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otherwise we can choose the sign of Bf (R1, [R2, X2]) by multiplying it by k−1 so that we

would have a real α such that γ′ = 0 for example. Consequently,

Bf (R1, [T2, X2]) +Bf (T1, [R2, X2]) (4.6)

= Bf (R2, [T1, X1]) +Bf (T2, [R1, X1]) = 0,

otherwise we may arrive to the situation β + γ = 0 by a suitable choice of α. The last

equation (4.6) is written again

Bf (R1, w2) +Bf (T1, [R2, X2]) = Bf (R2, w1) +Bf (T2, [R1, X1]) = 0.

Next, as

Bf (T2, [R1, X1]) = Bf ([T2, R1], X1) +Bf (R1, [T2, X1])

= Bf (R1, [V,X1]) = Bf (R1, w2),

we have

Bf (U,w1 − w2) = Bf (R2 −R1, w1 − w2) = Bf (R1, w2) +Bf (R2, w1) = 0.

Lemma 4.6. Rj ∈ g0 for 1 ≤ j ≤ 2.

Proof. If Rj 6∈ g0, we find

[R2, T2]− [R1, T1] = [R2, V ]− [T1, U ]

in nj0 . We can take this relation instead of T2 − T1 = V , if [R2, V ] 6∈ nj0−1. Otherwise,

[R2, V ] ∈ nj0−1 and

[Rj , Tj ] 6∈ h0
j (j = 1, 2)

if Rj 6∈ g0, the above relation contradicts the choice of j0. �

Now let us start the following computations. Put

Bf (T1, [T1, w2]) = p, Bf (T2, [T2, w1]) = q, (4.7)

Bf (T1, [T2, w1]) = r, Bf (T2, [T1, w2]) = s.

and let us begin our calculations. From (4.3),

[T1, w2]− [T2, w1] = (β2 − γ2)X2 + βw1 − γw2 − β2Y + [W,X2]. (4.8)

Since

Bf (T2, [W,X2]) = Bf (W, [T2, X2]) = Bf (W,w2)

Bf (T1, [W,X1]) = Bf (W, [T1, X1]) = Bf (W,w1),



The closedness of the product set of two Pukanszky polarizations 15

it follows from (4.8) that

p− r = Bf (W,w1)− γ2, q − s = β2 −Bf (W,w2). (4.9)

Furthermore,

r = Bf (T2, [T1, w1]) +Bf (W,w1),

s = Bf (T1, [T2, w2])−Bf (W,w2). (4.10)

We emphasize

Bf (W,X1) = Bf (W,X2) = 0. (4.11)

Suppose first r 6= 0, s 6= 0 and put

mi = {X ∈ hi;Bf (Tj , X) = Bf (Ti, [Tj , X]) = 0}

for 1 ≤ i 6= j ≤ 2. Then, as vector spaces,

hi = RXi ⊕ Rwi ⊕mi (1 ≤ i ≤ 2).

Let

[T1, w1] = (Bf (W,w1)− r)X1 + bw1 + u, u ∈ m1, (4.12)

[T2, w2] = (s+Bf (W,w2))X2 + dw2 + v, v ∈ m2.

Further, let us consider the subspaces

wi = {X ∈ g;Bf (T1, X) = Bf (T2, X)

= Bf (Ti, [Tj , X]) = Bf (Ti, [Ti, X]) = 0}

for 1 ≤ i 6= j ≤ 2. Then, supposing first pq 6= 0, we have

g = RX2 ⊕ RX1 ⊕ Rw1 ⊕ Rw2 ⊕wi.

We immediately see that {X1, X2, w1, w2} are linearly independent if pq 6= 0, what

will turn out little important in the future situation where sr = 0 or pq = 0. In fact, if

r = 0 or s = 0, we can take as mi or wi(i = 1, 2) a subspace of hi or g complementary to

RXi ⊕ Rwi or RX1 ⊕ RX2 ⊕ Rw1 ⊕ Rw2. Let

[T1, w2] = pX2 + aw2 − sX1 + ew1 +m, m ∈ w1, (4.13)

[T2, w1] = rX2 + cw2 − qX1 + hw1 + n, n ∈ w2.

From these, the relations (4.9), (4.13) give us
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[W,X1] = [W,X2]

=[T1, w2]− [T2, w1] + (γ2 − β2)X2 + γw2 − βw1 + β2Y

=(p− r + γ2)X2 + (a− c+ γ)w2 + (q − s− β2)X1

+ (e− h− β)w1 +m− n (4.14)

=(a− c+ γ)w2 + (e− h− β)w1 +Bf (W,w2)Y

+ (Bf (W,w1)−Bf (W,w2))X2 +m− n.

We further calculate:

[T2, [T1, w1]] = (Bf (W,w1)− r)[T2, X1] + b[T2, w1] + [T2, u]. (4.15)

Taking the value Bf (T1, ·) of both members, we have

Bf (T1, [T2, [T1, w1]]) = (Bf (W,w1)− r)γ + br(+Bf (T1, [T2, u]) if r = 0).

On the other hand,

Bf (T1, [T2, [T1, w1]]) =Bf (T1, [(β + γ)V −W,w1])

+Bf (T1, [T1, rX2 + cw2 − qX1 + hw1 + n])

=(β + γ)r −Bf (T1, [W,w1]) + cp+Bf (T1, [T1, n]).

Hence

Bf (T1, [W,w1]) = (r −Bf (W,w1))γ + (β + γ − b)r (4.16)

+cp+Bf (T1, [T1, n])(−Bf (T1, [T2, u]) if r = 0).

Taking the value Bf (T2, ·) of both members of equation (4.15), we have

Bf (T2, [T2, [T1, w1]]) = bq +Bf (T2, [T2, u]).

On the other hand,

Bf (T2, [T2, [T1, w1]]) = Bf (T2, [(β + γ)V −W,w1])

+Bf (T2, [T1, rX2 + cw2 − qX1 + hw1 + n])

=(β + γ)(q +Bf (W,w1)− r)−Bf (T2, [W,w1])

+β(q − r) + cs+ h(r −Bf (W,w1))(+Bf (T2, [T1, n]) if s = 0).

Hence,

Bf (T2, [W,w1]) = cs+ (2β + γ − b)q + (h− 2β − γ)r

+(β + γ − h)Bf (W,w1)−Bf (T2, [T2, u]) (4.17)

(+Bf (T2, [T1, n]) if s = 0).

Now,
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[T1, [T2, w2]] = (s+Bf (W,w2))[T1, X2] + d[T1, w2] + [T1, v]. (4.18)

Taking the value Bf (T1, ·) of both members of this relation, we see

Bf (T1, [T1, [T2, w2]]) = dp+Bf (T1, [T1, v]).

On the other hand,

Bf (T1, [T1, [T2, w2]]) = Bf (T1, [−(β + γ)V +W,w2])

+Bf (T1, [T2, pX2 + aw2 − sX1 + ew1 +m])

=− (β + γ)(s+Bf (W,w2)− p) +Bf (T1, [W,w2])

+γ(p− s) + a(s+Bf (W,w2)) + er(+Bf (T1, [T2,m]) if r = 0).

Thus,

Bf (T1, [W,w2]) = (d− β − 2γ)p+ (β + 2γ − a)s− er
+(β + γ − a)Bf (W,w2) +Bf (T1, [T1, v]) (4.19)

(−Bf (T1, [T2,m]) if r = 0).

Next, we take the value Bf (T2, ·) of both members of the equation (4.18).

On one hand,

Bf (T2, [T1, [T2, w2]]) = −β(s+Bf (W,w2)) + ds(+Bf (T2, [T1, v]) if s = 0).

On the other hand,

Bf (T2, [T1, [T2, w2]]) =Bf (T2, [−(β + γ)V +W,w2])

+Bf (T2, [T2, pX2 + aw2 − sX1 + ew1 +m])

=(β + γ)s+Bf (T2, [W,w2]) + eq +Bf (T2, [T2,m]).

Therefore,

Bf (T2, [W,w2]) =(d− 2β − γ)s− eq − βBf (W,w2)−Bf (T2, [T2,m])

(+Bf (T2, [T1, v]) if s = 0). (4.20)

Now,

[V, [V,X2]] =(γ − β){(γ − β)X2 + w2 − w1 + βY − Z}
+ [V,w2 − w1]. (4.21)

Hence, on one hand

Bf (T2, [T2, [V, [V,X2]]])

=Bf (T2, [T2, (γ − β){(γ − β)X2 + w2 − w1}+ [V,w2 − w1]])

=(β − γ)Bf (T2, [T2, w1]) +Bf (T2, [T2, [V,w2 − w1]])
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=(β − γ)q +Bf (T2, [T2, sX1 − ew1 −m+ qX1 − hw1 − n
+(Bf (W,w1)− r)X1 + bw1 + u]) (4.22)

=(β − γ)q + (b− e− h)q −Bf (T2, [T2,m+ n]) +Bf (T2, [T2, u])

=(β − γ + b− e− h)q −Bf (T2, [T2,m+ n]) +Bf (T2, [T2, u]).

On the other hand,

Bf (T2, [T2, [V, [V,X2]]])

=Bf (T2, [−(β + γ)V +W, (γ − β)X2 + w2 − w1])

+Bf (T2, [V, [−(β + γ)V +W,X2]])

+Bf (T2, [V, [V, γX2 + w2]])

=(β2 − γ2)β − (β + γ)Bf (T2, [V,w2 − w1])

+(γ − β)Bf (W,w2) +Bf (T2, [W,w2 − w1])

−(β + γ)Bf (T2, [V, (γ − β)X2 + w2 − w1])

+Bf (T2, [V, (a− c+ γ)w2 + (e− h− β)w1

+(Bf (W.w1)−Bf (W,w2))X2 +m− n])

+γBf (T2, [V, (γ − β)X2 + w2 − w1])

+Bf (T2, [V, (s+Bf (W,w2))X2 + dw2 + v

−pX2 − aw2 + sX1 − ew1 −m])

=β(β2 − γ2) + (β + γ)(s+ q +Bf (W,w1)− r)
+(γ − β)Bf (W,w2) +Bf (T2, [W,w2 − w1])− (γ2 − β2)β

−(β + γ)Bf (T2, [V,w2 − w1])− (a− c+ γ)s

+(e− h− β)(q +Bf (W,w1)− r)
+β(Bf (W,w1)−Bf (W,w2))

+Bf (T2, [V,m− n]) + βγ(γ − β) + γBf (T2, [V,w2 − w1])

+β(s+Bf (W,w2))− ds+Bf (T2, [V, v]) + β(s− p) + as

−e(q +Bf (W,w1)− r)−Bf (T2, [V,m])

=2β(β2 − γ2) + (2β + γ)(s+ q − r +Bf (W,w1))

+(γ − β)Bf (W,w2) +Bf (T2, [W,w2 − w1])− (a− c+ γ)s

+(e− h− β)(q +Bf (W,w1)− r)
+β(Bf (W,w1)−Bf (W,w2)) (4.23)

+Bf (T2, [V,m− n]) + βγ(γ − β) + β(s+Bf (W,w2))

+(a− d)s+Bf (T2, [V, v]) + β(s− p)
+e(r −Bf (W,w1)− q)−Bf (T2, [V,m]).
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4.4. Step 3: (2β + 3γ)q = 0.

Putting in equality the results of the two last calculations, we have

Bf (T2, [W,w2 − w1])

=2β(γ2 − β2) + (2β + γ)(r − s− q −Bf (W,w1))

+(β − γ)Bf (W,w2) + (a− c+ γ)s

+(β + h− e)(q +Bf (W,w1)− r)− βBf (W,w1)

−Bf (T2, [V,m− n]) + βγ(β − γ) (4.24)

+(d− a− β)s−Bf (T2, [V, v]) + β(p− s)
+e(q +Bf (W,w1)− r) +Bf (T2, [V,m])

+(β + b− γ − e− h)q −Bf (T2, [T2,m+ n]) +Bf (T2, [T2, u]).

On the other hand, equations (4.17) and (4.20) become

Bf (T2, [W,w2 − w1])

=(d− 2β − γ)s− βBf (W,w2)− eq +Bf (T2, [T1, v])

−Bf (T2, [T2,m])− cs− (2β + γ − b)q − (h− 2β − γ)r

−(β + γ − h)Bf (W,w1) +Bf (T2, [T2, u])−Bf (T2, [T1, n]).

Now, we have from (4.21):

Bf (T1, [T2, [V, [V,X2]]]) = Bf (−(β + γ)V +W,

(γ − β)((γ − β)X2 + w2 − w1) + [V,w2 − w1])

+Bf (T2, [−(β + γ)V +W, (γ − β)X2 + w2 − w1])

+Bf (T2, [V, [−(β + γ)V +W,X2]]) +Bf (T2, [V, [V, βX1 + w1]])

=(β + γ)(β − γ)2 − (β + γ)Bf (V, [V,w2 − w1])

+(γ − β)Bf (W,w2 − w1) +Bf (W, [V,w2 − w1])− β(γ2 − β2)

−(β + γ)Bf (T2, [V,w2 − w1]) + (γ − β)Bf (T2, [W,X2])

+Bf (T2, [W,w2 − w1])− (β + γ)Bf (T2, [V, (γ − β)X2 + w2 − w1])

+Bf (T2, [V, [W,X2]]) + βBf (T2, [V, (γ − β)X2 + w2 − w1])

+Bf (T2, [V, [V,w1]])

=(β + γ)(γ − β)2 − (β + γ)Bf (V, [V,w2 − w1])

+(γ − β)Bf (W,w2 − w1) +Bf (W, [V,w2 − w1]) + β(β2 − γ2)

−(β + 2γ)Bf (T2, [V,w2 − w1]) + (γ − β)Bf (W,w2)

+Bf (T2, [W,w2 − w1]) + β(β2 − γ2) +Bf (T2, [V, (a− c+ γ)w2

+(e− h− β)w1 + (Bf (W,w1)−Bf (W,w2))X2 +m− n])

+β2(γ − β) +Bf (T2, [V, rX2 + cw2 − qX1 + hw1 + n

−(Bf (W,w1)− r)X1 − bw1 − u])
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=(β + γ)(γ − β)2 + (β + γ)Bf (T1, [V,w2 − w1])

−(2β + 3γ)Bf (T2, [V,w2 − w1]) + (γ − β)Bf (W,w2)

+(β − γ)Bf (W,w1) +Bf (W, [T2, w2 − w1])−Bf (W, [T1, w2 − w1])

+β(β2 − γ2) + (γ − β)Bf (W,w2) +Bf (T2, [W,w2 − w1])

+β(β2 − γ2)− (a− c+ γ)s+ (e− h− β)(q +Bf (W,w1)− r)
+β(Bf (W,w1)−Bf (W,w2)) +Bf (T2, [V,m− n]) + β2(γ − β)

+β(r − q + r −Bf (W,w1))− cs+ (h− b)(q +Bf (W,w1)− r)
+Bf (T2, [V, n− u])

=(β + γ)(γ − β)2 + (β + γ)(s+Bf (W,w2)− p− r)
−(2β + 3γ)(q − s+ r −Bf (W,w1)) + (γ − β)Bf (W,w2)

+(β − γ)Bf (W,w1) +Bf (W,dw2 + v − cw2 − hw1 − n)

−Bf (W,aw2 + ew1 +m− bw1 − u) + β(β2 − γ2)

+(γ − β)Bf (W,w2) +Bf (T2, [W,w1 − w2]) + β(β2 − γ2)

−(a− c+ γ)s+ (e− h− β)(q +Bf (W,w1)− r)
+β(Bf (W,w1)−Bf (W,w2)) +Bf (T2, [V,m− n]) + β2(γ − β)

+β(2r − q −Bf (W,w1))− cs+ (h− b)(q +Bf (W,w1)− r)
+Bf (T2, [V, n− u]).

From (4.21), we also get

Bf (T1, [T2, [V, [V,X2]]])

=Bf (T1, [T2, (γ − β){(γ − β)X2 + w2 − w1}+ [V,w2 − w1]])

=(γ − β)2γ + (γ − β)Bf (T1, [T2, w2 − w1])

+Bf (T1, [T2, [V,w2 − w1]]) (4.25)

=(γ − β)2γ + (γ − β)(s+Bf (W,w2)− r)
+Bf (T1, [T2, (s+Bf (W,w2))X2 + dw2 + v − pX2

−aw2 + sX1 − ew1 −m− rX2 − cw2 + qX1 − hw1 − n
+(Bf (W,w1)− r)X1 + bw1 + u])

=(γ − β)2γ + (γ − β)(s+Bf (W,w2)− r)
+(s+Bf (W,w2))(γ + d− a− c)
+(Bf (W,w1)− r + s− p− r + q)γ

+(b− e− h)r +Bf (T1, [T2, u−m− n+ v]).

Comparing these two computations, we find

Bf (T2, [W,w2 − w1]) = βγ2 − β(γ − β)2 − β2γ

−β(β2 − γ2) + (β + γ)(p+ r − s−Bf (W,w2))
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+(2β + 3γ)(q − s+ r −Bf (W,w1)) + (γ − β)Bf (W,w1)

−(γ − 2β)Bf (W,w2)−Bf (W,dw2 + v − n)

+Bf (W, ew1 +m− u) + (h+ β − e)(q +Bf (W,w1)− r)
+β(q − 2r) + (γ − c)s+ (b− h)q −Bf (T2, [V,m])

+Bf (T2, [V, u]) + (γ − β)(s− r)
+(s+Bf (W,w2))(γ + d) + (Bf (W,w1)− 2r − p+ s+ q)γ

−er +Bf (T1, [T2, u−m− n+ v]) (4.26)

=β(γ2 + βγ − 2β2)− (4β + c− d)s+ βp

+(β + γ − h)r + (4β + 4γ + b− e)q + (β − γ)Bf (W,w2)

−(2β + γ − h)Bf (W,w1)−Bf (T2, [T2,m]) +Bf (T2, [T2, u])

+Bf (T2, [T1, v])−Bf (T2, [T1, n]).

Combining this with (4.24), we find

β(γ2 + βγ − 2β2) + (4β + 6γ)q = 2β(γ2 − β2) + βγ(β − γ).

In sum,

(2β + 3γ)q = 0. (4.27)

4.5. Step 4: γ2(γ − β) = 0.

From (4.21) we get:

Bf (T1, [T2, [V, [V,X2]]])

=Bf (T1, [T2, (γ − β){(γ − β)X2 + w2 − w1}+ [V,w2 − w1]])

=(γ − β)2γ + (γ − β)Bf (T1, [T2, w2 − w1])

+Bf (T1, [T2, [V,w2 − w1]]) (4.28)

=(γ − β)2γ + (γ − β)(s+Bf (W,w2)− r)
+Bf (T1, [T2, (s+Bf (W,w2))X2 + dw2 + v − pX2

−aw2 + sX1 − ew1 −m− rX2 − cw2 + qX1 − hw1 − n
+(Bf (W,w1)− r)X1 + bw1 + u])

=(γ − β)2γ + (γ − β)(s+Bf (W,w2)− r)
+(s+Bf (W,w2))(γ + d− a− c)
+(Bf (W,w1)− r + s− p− r + q)γ

+(b− e− h)r +Bf (T1, [T2, u−m− n+ v]).

On the other hand,

Bf (T1, [T2, [V, [V,X2]]])

=Bf (T1, [−(β + γ)V +W, (γ − β)X2 + w2 − w1])
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+Bf (T1, [V, [−(β + γ)V +W,X2]]) +Bf (T1, [V, [V, γX2 + w2]])

=γ(β2 − γ2)− (β + γ)Bf (T1, [V,w2 − w1]) + (γ − β)Bf (W,w1)

+Bf (T1, [W,w2 − w1])− (β + γ)Bf (T1, [V, (γ − β)X2 + w2 − w1])

+Bf (T1, [V, (a− c+ γ)w2 + (e− h− β)w1

+(Bf (W,w1)−Bf (W,w2))X2 +m− n])

+γBf (T1, [V, (γ − β)X2 + w2 − w1])

+Bf (T1, [V, (s+Bf (W,w2))X2 + dw2 + v

−pX2 − aw2 + sX1 − ew1 −m])

=(β2 − γ2)γ + (γ − β)Bf (W,w1)− 2(β + γ)Bf (T1, [V,w2 − w1])

+Bf (T1, [W,w2 − w1])− γ(γ2 − β2)

+(a− c+ γ)(s+Bf (W,w2)− p) + (e− h− β)r + γ(Bf (W,w1)

−Bf (W,w2)) +Bf (T1, [V,m− n]) + γ2(γ − β)

+γ(s+Bf (W,w2)− p− r) + γ(s+Bf (W,w2))

+γ(s− p) + (d− a)(s+Bf (W,w2)− p)− er +Bf (T1, [V, v −m])

=(β2 − γ2)γ + (γ − β)Bf (W,w1)

−(2β + γ)(s+Bf (W,w2)− p− r) +Bf (T1, [W,w2 − w1])

−γ(γ2 − β2) + (c− d)(p− s−Bf (W,w2)) + 2γ(s− p)
−(β + h)r + γBf (W,w1) +Bf (T1, [V,m− n]) + γ2(γ − β)

+γ(s+Bf (W,w2)) +Bf (T1, [V, v −m]).

Equaling these two expressions, we have

Bf (T1, [W,w2 − w1]) = γ(γ2 − β2) + (β − γ)Bf (W,w1)

+(2β + γ)(s+Bf (W,w2)− p− r) + γ(γ2 − β2)− cp
+βr − γBf (W,w1) +Bf (T1, [V, n]) (4.29)

+γ2(β − γ) + dp+Bf (T1, [T1, v]) + (γ − β)2γ

+(γ − β)(s+Bf (W,w2)− r)− a(s+Bf (W,w2))− γ(s− p)
+(Bf (W,w1)− 2r + q)γ + (b− e)r +Bf (T1, [T2, u−m− n]).

On the other side, the equations (4.16) and (4.19) give

Bf (T1, [W,w2])−Bf (T1, [W,w1])

=(β + 2γ)(s− p) + (β + γ − a)Bf (W,w2) (4.30)

−er + dp+Bf (T1, [T1, v])−Bf (T1, [T2,m])− as− (β + 2γ)r

+γBf (W,w1) + br − cp−Bf (T1, [T1, n]) +Bf (T1, [T2, u]).

Equaling once again these two expressions, we have

2γ(γ2 − β2) + (β − 2γ)Bf (W,w1)− βp− 2γr
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+γ(γ − β)2 + γBf (W,w2) + γq = −2rp− βr + γs

Taking into account the equations (4.9), we get

γ2(γ − β) = 0. (4.31)

4.6. Step 5: β(2s+ p+ βγ) = 0.

We need to continue our calculations:

Bf (T2, [T1, [V, [V,X2]]])

=Bf (T2, [T1, (γ − β){(γ − β)X2 + w2 − w1}])
+Bf (T2, [T1, [V,w2 − w1]])

=− β(γ − β)2 + (γ − β)(s+Bf (W,w1)− r)
+Bf (T2, [T1, (s+Bf (W,w2))X2 + dw2 + v

−pX2 − aw2 + sX1 − ew1 −m− rX2 − cw2 (4.32)

+qX1 − hw1 − n+ (Bf (W,w1)− r)X1 + bw1 + u])

=− β(γ − β)2 + (γ − β)(s+Bf (W,w1)− r)
−β(s+Bf (W,w2)− p+ s− r + q +Bf (W,w1)− r)
+(d− a− c)s+ (b− e− h)(r −Bf (W,w1))

+Bf (T2, [T1, v −m− n+ u]).

On the other hand,

Bf (T2, [T1, [V, [V,X2]]])

=Bf (T2, [−(β + γ)V +W, (γ − β)X2 + w2 − w1])

+Bf (T2, [V, [−(β + γ)V +W,X2]]) +Bf (T2, [V, [V, βX1 + w1]])

=β(β2 − γ2)− (β + γ)Bf (T2, [V,w2 − w1]) + (γ − β)Bf (W,w2)

+Bf (T2, [W,w2 − w1])− (β + γ)Bf (T2, [V, (γ − β)X2 + w2 − w1])

+Bf (T2, [V, (a− c+ γ)w2 + (e− h− β)w1

+(Bf (W,w1)−Bf (W,w2))X2 +m− n])

+βBf (T2, [V, (γ − β)X2 + w2 − w1])

+Bf (T2, [V, rX2 + cw2 − qX1 + hw1 + n

−(Bf (W,w1)− r)X1 − bw1 − u])

=β(β2 − γ2) + (β + 2γ)(s+ q +Bf (W,w1)− r)
+(γ − β)Bf (W,w2) +Bf (T2, [W,w2 − w1])− β(γ2 − β2)

−(a− c+ γ)s+ (e− h− β)(q +Bf (W,w1)− r)
+β(Bf (W,w1)−Bf (W,w2)) +Bf (T2, [V,m− n]) + β2(γ − β)

−β(s+ q +Bf (W,w1)− r)− cs+ (h− b)(q +Bf (W,w1)− r)
+Bf (T2, [V, n− u]).
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Everything as before we find from these calculations

Bf (T2, [W,w2 − w1])

=2β(γ2 − β2)− γ(q − r)− (β + γ)(s+Bf (W,w1))

+γ(r − s− q −Bf (W,w1))−Bf (T2, [V,m− n]) + γs

−eq + β2(β − γ) + bq −Bf (T2, [V, n− u])− β(γ − β)2

+(γ − β)(s− r)− β(s− p− r) + (d− c)s (4.33)

+h(Bf (W,w1)− r) +Bf (T2, [T1, v −m− n+ u])

+(γ − β)(Bf (W,w1)−Bf (W,w2)).

While we have

Bf (T2, [W,w2 − w1])

=− (2β + γ)s− βBf (W,w2) + ds− eq +Bf (T2, [T1, v])

−Bf (T2, [T2,m])− cs− (2β + γ − b)q − (h− 2β − γ)r

−(β + γ − h)Bf (W,w1) +Bf (T2, [T2, u])−Bf (T2, [T1, n]).

The equality of these two expressions gives us

β(γ2 + βγ − 2β2)

+(2β − γ)(q +Bf (W,w2)− s) + βs+ β(p−Bf (W,w1)) = 0.

Taking into account the equations (4.9),

β(s+ r) = 0. (4.34)

Further we compute

Bf (T2, [T1, [V, [V,X2]]])

=Bf ((β + γ)V −W, (γ − β)((γ − β)X2 + w2 − w1) + [V,w2 − w1])

+Bf (T1, [−(β + γ)V +W, (γ − β)X2 + w2 − w1])

+Bf (T1, [V, [−(β + γ)V +W,X2]]) +Bf (T1, [V, [V, γX2 + w2]])

=− (γ − β)2(β + γ) + (β + γ)Bf (V, [V,w2 − w1]) + (β − γ)Bf (W,w2)

+(γ − β)Bf (W,w1)−Bf (W, [V,w2 − w1]) + (β2 − γ2)γ

−(β + γ)Bf (T1, [V,w2 − w1]) + (γ − β)Bf (T1, [W,X2])

+Bf (T1, [W,w2 − w1])− (β + γ)Bf (T1, [V, (γ − β)X2 + w2 − w1])

+Bf (T1, [V, [W,X2]]) + γBf (T1, [V, (γ − β)X2 + w2 − w1])

+Bf (T1, [V, [V,w2]])

=− (β + γ)(γ − β)2 − (3β + 2γ)Bf (T1, [V,w2 − w1])

+(β + γ)Bf (T2, [V,w2 − w1]) + (β − γ)Bf (W,w2) + (γ − β)Bf (W,w1)
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−Bf (W, [V,w2 − w1]) + (β2 − γ2)γ + (γ − β)Bf (W,w1)

+Bf (T1, [W,w2 − w1])− βγ(γ − β) +Bf (T1, [V, [W,X2]])

+Bf (T1, [V, [V,w2]])

=− (β + γ)(γ − β)2 − (3β + 2γ)(s+Bf (W,w2)− p− r)
+(β + γ)Bf (T2, [V,w2 − w1]) + (β − γ)Bf (W,w2) + 2(γ − β)Bf (W,w1)

−Bf (W,dw2 + v − aw2 − ew1 − cw2 − hw1 −m− n+ bw1 + u)

+(β2 − γ2)γ +Bf (T1, [W,w2 − w1])− βγ(γ − β)

+(a− c+ γ)(s+Bf (W,w2)− p) + (e− h− β)r

+γ(Bf (W,w1)−Bf (W,w2)) +Bf (T1, [V,m− n])

+γ(s+Bf (W,w2)− p+ s) + (d− a)(s+Bf (W,w2)− p)
−er +Bf (T1, [V, v −m]).

Comparing this with (4.32),

Bf (T1, [W,w2 − w1]) = (γ − β)(2β2 + 2γ2 + 3βγ)

+(β + γ − a)s+ (d− c− 2β)p+ (b− e− 4γ)r + γq

+(β + 2γ − a)Bf (W,w2) + (β − γ)Bf (W,w1) +Bf (T1, [T1, v])

−Bf (T1, [T2,m])−Bf (T1, [T1, n]) +Bf (T1, [T2, u]). (4.35)

Now the equations (4.29), (4.35) give us

(γ − β)(2β2 + 2γ2 + 3βγ) + (β + γ − a)s+ (d− c− 2β)p

+(b− e− 4γ)r + γq + (β + 2γ − a)Bf (W,w2) + (β − γ)Bf (W,w1)

+Bf (T1, [T1, v])−Bf (T1, [T2,m])−Bf (T1, [T1, n]) +Bf (T1, [T2, u])

=(d− β − 2γ)p+ (β + 2γ − a)s− er + (β + γ − a)Bf (W,w2)

+Bf (T1, [T1, v])−Bf (T1, [T2,m])− (γ −Bf (W,w1))γ − (β + γ − b)r
−cp−Bf (T1, [T1, n]) +Bf (T1, [T2, u]).

Namely,

(γ − β)(2β2 + 2γ2 + 3βγ) + (β − 2γ)(r − p+Bf (W,w1))

+γ(q − s+Bf (W,w2)) = 0.

From (4.9) this becomes

2β(γ − β)(β + γ) = 0.

Hence, if β + γ 6= 0,

β(γ − β) = 0. (4.36)

Here, substituting (4.33) into (4.23) and comparing the result with (4.22), we get
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2β(β2 − γ2)− (2β + γ)(r −Bf (W,w1)− s− q) + (γ − β)Bf (W,w2)

+2β(γ2 − β2)− γ(q − r)− (β + γ)(s+Bf (W,w1))

+γ(r − s− q −Bf (W,w1))−Bf (T2, [V,m− n]) + γs− eq + β2(β − γ)

+bq −Bf (T2, [V, n− u])− β(γ − β)2 + (γ − β)(s− r)− β(s− p− r)
+(d− c)s+ h(Bf (W,w1)− r) +Bf (T2, [T1, v −m− n+ u])

+(γ − β)(Bf (W,w1)−Bf (W,w2)) + (c− a− γ)s

+(e− h− β)(q +Bf (W,w1)− r) + β(Bf (W,w1)−Bf (W,w2))

+Bf (T2, [V,m− n]) + βγ(γ − β) + β(Bf (W,w2) + s)

−ds+Bf (T2, [V, v]) + β(s− p) + as

−e(q +Bf (W,w1)− r)−Bf (T2, [V,m])

=(β − γ + b− e− h)q −Bf (T2, [T2,m+ n]) +Bf (T2, [T2, u]).

Thus,

2βs+ β(r +Bf (W,w1)) + β2(β − γ)− β(γ − β)2 = 0.

Taking into account the equations (4.9) again,

2βs+ β(p+ γ2)− βγ2 + β2γ = 0.

In sum,

β(2s+ p+ βγ) = 0. (4.37)

4.7. Step 6: β + γ = 0.

We add further two calculations.

Bf (T1, [T1, [V, [V,X2]]])

=Bf (T1, [−(β + γ)V +W, (γ − β)X2 + w2 − w1])

+Bf (T1, [V, [T1, (γ − β)X2 + w2 − w1]])

=− (β + γ)Bf (−(β + γ)V +W, (γ − β)X2 + w2 − w1)

−(β + γ)Bf (V, [T1, (γ − β)X2 + w2 − w1])

+Bf (T1, [W, (γ − β)X2 + w2 − w1]) + (γ − β)Bf (T1, [V, βX1 + w1])

+Bf (T1, [V, pX2 + aw2 − sX1 + ew1 +m

−(Bf (W,w1)− r)X1 − bw1 − u])

=− (β + γ)(γ2 − β2)− (β + γ)(Bf (W,w2)−Bf (W,w1))

−β(β2 − γ2)− (β + γ)(s− p+Bf (W,w1)− r) + (γ − β)Bf (W,w1)

+Bf (T1, [W,w2 − w1]) + βγ(γ − β)− (γ − β)r

+γ(p− s+ r −Bf (W,w1)) + a(s+Bf (W,w2)− p) + (e− b)r
+Bf (T1, [V,m])−Bf (T1, [T2, u])
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=(γ − β)p+ dp+Bf (T1, [T1, v])− (a+ c)p

−Bf (T1, [T1,m])−Bf (T1, [T1, n]).

Therefore,

Bf (T1, [W,w2 − w1])

=γ(γ2 − β2) + (β + γ)Bf (W,w2)− (β + γ)(p+ r)

+(γ − β)p+ dp− (a+ c)p+Bf (T1, [T1, v])−Bf (T1, [T1,m])

−Bf (T1, [T1, n]) + βγ(β − γ) + (γ − β)r (4.38)

+γ(s+Bf (W,w1)− p− r) + a(p− s−Bf (W,w2)) + (b− e)r
−Bf (T1, [V,m]) +Bf (T1, [T2, u]).

The equality of two equations (4.29) and (4.38) brings

βγ(β − γ)− βr + γ(s+Bf (W,w1))

=(β − γ)Bf (W,w1) + (2β + γ)s+ γ(γ2 − β2) + βr

+γ2(β − γ) + (γ − β)2γ + (γ − β)s− γ(s− p) + (q − 2r)γ

By means of (4.9), this reduces to

β2γ − βγ2 + γ3 = β(s+ p+ r) + γ(q − p). (4.39)

Finally,

Bf (T1, [T2, [V, [V,X2]]])

=Bf (T1, [−(β + γ)V +W, (γ − β)X2 + w2 − w1])

+Bf (T1, [V, [T2, (γ − β)X2 + w2 − w1]])

=− (β + γ)Bf (T1, [V, (γ − β)X2 + w2 − w1])

+Bf (T1, [W, (γ − β)X2 + w2 − w1])

+(γ − β)Bf (T1, [V, γX2 + w2]) +Bf (T1, [V, [T2, w2 − w1]])

=− (β + γ)Bf (−(β + γ)V +W, (γ − β)X2 + w2 − w1)

−(β + γ)Bf (V, [T1, (γ − β)X2 + w2 − w1]) + (γ − β)Bf (W,w1)

+Bf (T1, [W,w2 − w1]) + γ2(γ − β) + (γ − β)(s+Bf (W,w2)− p)
+Bf (T1, [V, (s+Bf (W,w2))X2 + dw2 + v

−rX2 − cw2 + qX1 − hw1 − n])

=(β + γ)(β2 − γ2)− (β + γ)(Bf (W,w2)−Bf (W,w1)) + β(γ2 − β2)

−(β + γ)(s− p+Bf (W,w1)− r) + (γ − β)Bf (W,w1)

+Bf (T1, [W,w2 − w1]) + γ2(γ − β) + (γ − β)(s+Bf (W,w2)− p)
+γ(s+Bf (W,w2)− r + q) + (d− c)(s+Bf (W,w2)− p)− hr
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−Bf (T1, [V, n]) +Bf (T1, [V, v])

=(γ − β)2γ + (γ − β)(s+Bf (W,w2)− p)
+(s+Bf (W,w2))(γ + d− a− c) + (Bf (W,w1)− r + s− r + q)γ

+(b− e− h)r +Bf (T1, [T2, u−m− n+ v]),

taking (4.23) into account. Thus,

Bf (T1, [W,w2 − w1]) = (β + γ)(γ2 − β2)

+(β + γ)(Bf (W,w2)−Bf (W,w1)) + β(β2 − γ2)

+(β + γ)(s− p+Bf (W,w1)− r) + (β − γ)Bf (W,w1)

−γ2(γ − β) + (β − γ)(s+Bf (W,w2)− p)
−γ(s+Bf (W,w2)− r + q) + hr +Bf (T1, [V, n]) (4.40)

+(c− d)(s+Bf (W,w2)− p)−Bf (T1, [V, v]) + (γ − β)2γ

+(γ − β)(s+Bf (W,w2)− r) + (s+Bf (W,w2))(γ + d− a− c)
+(Bf (W,w1)− 2r + s− p+ q)γ + (b− e− h)r

+Bf (T1, [T2, u−m− n+ v]).

If (β, γ) 6= (0, 0), then equations (4.31), (4.36) imply β = γ. Then, equation (4.27)

implies q = 0 and finally (4.34), (4.39) say β = γ = 0. In this way, we arrive to the

desired result β + γ = 0. From the result [T2, V ] ∈ nj0−1, we can argue just as in the

proof of Proposition 3.2 to show that the limit point of a convergent sequence {xi}∞i=1 in

H2H1 ∩Mj belongs to H2H1. �

5. The general case

We now proceed in parallel for the general exponential case. Employing the same

induction procedure, we are led to the case where the center z of g is of dimension 1 and

f does not vanish there. This being assumed, let n be a nilpotent ideal of g containing

[g, g] and a a minimal non-central ideal of g contained in n. Then,

{0} = g0 ⊂ a ⊂ n ∩ af ⊂ n ⊂ g

is a sequence of ideals of g. Cutting this sequence, we obtain a good sequence

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gn−1 ⊂ gn = g, dim(gj/gj−1) = 1(1 ≤ j ≤ n),

where n = gj0 , of subalgebras of g. Just as Proposition 3.2, in order to pass from Mj−1

to Mj for j ≤ j0 the essential case is one where there exist Y ∈ a outside of a ∩ z which

is written Y = X2 − X1 with Xi ∈ h0
i (i = 1, 2) and V ∈ gj \ gj−1 which is written

V = T2 − T1 with Ti ∈ hi(i = 1, 2) where [T2, Y ] = [T1, Y ] = Z, z = RZ, f(Z) = 1 and

f(Y ) = 0 as before. We choose such an index j minimal. In these circumstances we can
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see that the root of the adjoint action of Ti on V vanishes even if gj or gj−1 is not an

ideal of g. Indeed, let us place ourselves in this situation and put

[Tj ,W ] ≡ λW + δV

modulo the precedent ideal of the Jordan-Hölder sequence of g in question. We are

obliged to follow the route made above. We go to notice the necessary changes in the

calculations already done above in the completely solvable case.

We have

[T1, w2]− [T2, w1] = (β2 − γ2)X2 + βw1 − γw2 − β2Y + [W,X2].

and

[W,X1] = [W,X2] = (a− c+ γ)w2 + (e− h− β)w1

+(Bf (W,w2)− δ)Y + (Bf (W,w1)−Bf (W,w2))X2 +m− n.

Since

Bf (Tj , [W,Xj ]) = Bf ([Tj ,W ], Xj) +Bf (W, [Tj , Xj ]) = −δ +Bf (W,wj)

for j = 1, 2, it follows that

p− r = Bf (W,w1)− γ2 − δ, q − s = β2 + δ −Bf (W,w2).

Repeating with these changes all the calculations done in the completely solvable

case, we remark that equations (4.27) - (4.39) all hold without change. So, we arrive to

the result β + γ = 0 even in the exponential case.

Our algebra g being exponential, the result β + γ = 0 signifies that the two roots of

the action ad(Ti)(i = 1, 2) at the level of gj are zeros and this allows us to apply the same

reasoning as before about a convergent sequence in H2H1. There is a possibility that we

would have the same situation at other level, but we can treat it in parallel. Namely,

when a = RY + RY ′ + z, we repeat the same arguments for Y ′ and at other levels we

apply the induction hypothesis applied to (h′1, h
′
2) contained in the proper subalgebra g̃.

It is in this way that we achieve the proof of Claim 1.1, and verify the following:

Theorem 5.1. Let G = exp g be an exponential solvable Lie group with Lie algebra

g. Let f ∈ g∗ and hj (j = 1, 2) two polarizations verifying the Pukanszky condition of g

at f . Put Hj = exp(hj) for j = 1, 2. Then the product set H2H1 is a closed set of G.

As explained in the introduction, the followings are straightforward:

Corollary 5.2. (cf. [3]) Let G = exp g be an exponential solvable Lie group

with Lie algebra g. Let f ∈ g∗ and let hj (j = 1, 2) be two polarizations verifying the

Pukanszky condition of g at f . Put Hj = exp(hj) and πj = indGHjχf for j = 1, 2, where

χf denotes the unitary character of Hj defined by χf (expX) = eif(X) (X ∈ hj). Let

Hπ1
be the Hilbert space of π1. Then the integral T21 as defined in formula (1.1) by
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(T21ϕ)(g) := Th2h1
ϕ)(g) =

∮
H2/(H2∩H1)

ϕ(gh)χf (h)∆
−1/2
H2,G

(h)dν(h),

converges for continuous functions ϕ ∈ Hπ1
with compact supports modulo H1 and ex-

tends into an intertwining operator from π1 to π2.

For given three lagrangian subspaces for the bilinear form Bf , let τ(h3, h2, h1) des-

ignates the Maslov index for the triple (h3, h2, h1) (cf. [1]). The following is a direct

consequence from Corollary 5.2 and [1]. For more details, the readers could consult the

reference [7] for the treatment of the nilpotent contexts, and also [8], [9].

Corollary 5.3. (cf. [2]) Let G = exp g be an exponential solvable Lie group with

Lie algebra g. Let f ∈ g∗ and let hj (j = 1, 2, 3) be three polarizations verifying the

Pukanszky condition of g at f . Put Hj = exp(hj) and πj = indGHjχf for j = 1, 2, 3,

where χf denotes the unitary character of Hj defined by χf (expX) = eif(X) (X ∈ hj).

For 1 ≤ i, j ≤ 3, we normalize the intertwining operators Tij as defined in Corollary

5.2, in order to obtain an isometry Iij which intertwines πj and πi. Then, we have the

composition formula

I13◦I32◦I21 = e
iπτ(h3,h2,h1)

4 Id.
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