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Sections of time-like twistor spaces with light-like or zero
covariant derivatives

By Naoya ANDO

Abstract. The conformal Gauss maps of time-like minimal surfaces in
the Lorentz-Minkowski 3-space E% give sections of the time-like twistor spaces
associated with the pull-back bundles such that the covariant derivatives are
fully light-like, that is, these are either light-like or zero, and do not vanish at
any point. For an oriented neutral 4n-manifold (M, h), if J is an h-reversing
almost paracomplex structure of M such that VJ is locally given by the tensor
product of a nowhere zero 1-form and an almost nilpotent structure related
to J, then we will see that VJ is valued in a light-like 2n-dimensional dis-
tribution D such that (M,h,D) is a Walker manifold and that the square
norm || V.J||2 of V.J vanishes. We will obtain examples of h-reversing almost
paracomplex structures of Eéﬁ as above. In addition, we will obtain all the
pairs of h-reversing almost paracomplex structures of E'% such that each pair
gives sections of the two time-like twistor spaces with fully light-like covariant
derivatives.

1. Introduction

Neutral metrics are already investigated in various situations. The space of oriented
lines in the Euclidean 3-space E3 admits a neutral Kihler structure ([23]). Analogous
spaces are found in [1], [28]. See [29] for fibrations of E® by oriented lines. See [21] for
almost paracomplex structures on neutral 4-manifolds. See [16] for anti-self-dual null-
Kahler structures. The ultra-hyperbolic equation is a neutral analogue of the Laplace
equation (see [9], [13], [26]), and related to tomography ([22]). See [27] for quantum
field theories in neutral spaces.

Let F be an oriented vector bundle of rank 4. Let h be a positive-definite or neutral
metric of £ and V an h-connection of E. An h-preserving complex structure I of E
satisfies VI = 0 if and only if the corresponding section €2 of one of the twistor or
space-like twistor spaces associated with E is horizontal with respect to the connection
V induced by V. If E is the tangent bundle TM of an oriented Riemannian or neutral
4-manifold M and if h, V are its metric and the Levi-Civita connection of respectively,
then I is an almost complex structure of M and VI = 0 just means that (]\Zf, h,I) is a
Kéhler or neutral Kéahler surface. If E is the pull-back bundle F *TM over a Riemann
surface M by a space-like and conformal immersion F : M —» M with zero mean
curvature vector, then VI = 0 for a twistor lift 2 of F' just means that F' is isotropic
(refer to [19], [2]). For the twistor spaces and the space-like twistor spaces, refer to [18],
[11] respectively. Suppose that M is neutral. Then, even if the square norm || VI ||? of
V1 vanishes, VI does not necessarily vanish. We say that (M, h,I) is isotropic Kihler if
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| VI||?= 0. See [14], [20] for examples of isotropic Kéhler but non-Kihler 4-manifolds.
See [10] for examples of isotropic Kéhler but non-Kéhler 6-manifolds.

Let E be as in the beginning of the previous paragraph. Let h, V be a neutral metric
and an h-connection of E respectively. Then an h-reversing paracomplex structure J of
E satisfies VJ = 0 if and only if the corresponding section 2 of one of the time-like
twistor spaces associated with E is horizontal with respect to V. If E = TM for an
oriented neutral 4-manifold M then J is an almost paracomplex structure of M and
V.J = 0 just means that (M, h,.J) is a ~paraKéhler surface. If £ = F “TM for a time-like
and conformal immersion F : M —s M of a Lorentz surface M into M with zero mean
curvature vector and if € is a twistor lift of F', then VJ = 0 implies that F is isotropic.
Refer to [24], [25] for the time-like twistor spaces. Even if F' is isotropic, V.J does not
necessarily vanish ([2]). It is possible that V2 is either light-like or zero, and does not
vanish at any point. In such a case, VQ determines a light-like one-dimensional subspace
of the fiber of /\2E at each point of M and then we say that VQ is fully light-like. Let F
be the conformal Gauss map of a time-like minimal surface with nowhere zero curvature
in the Lorentz-Minkowski 3-space E3. Then M = S, and we see that F' has zero mean
curvature vector and isotropicity and that the covariant derivatives of the twistor lifts Q4
are fully light-like. We will see that for a paracomplex structure J = J. corresponding
to Q. (e € {+,—}), VJ is locally represented as VJ = o ® N for a nowhere zero 1-form
« and a nilpotent structure N related to J and therefore V.J is valued in a light-like
subbundle of the pull-back bundle of rank 2 (Theorem 5.2). We will define a nilpotent
structure of an oriented vector bundle E of rank 4n with a neutral metric h. Then
a nilpotent structure N gives a null structure on each fiber of F such that the image
is a light-like 2n-dimensional subspace and h is null-Hermitian with respect to N (see
Section 3 and refer to [17]). We will characterize an h-reversing paracomplex structure
J of F such that for an h-connection V of E, VJ is locally represented as VJ = a @ N
for a 1-form « and a nilpotent structure N related to J (Theorem 4.1). See [3], [8] for
nilpotent structures for n = 1.

Let M be an oriented neutral 4n-manifold. Then M has a neutral metric h and
h gives the Levi-Civita connection V. Let J be an h-reversing almost paracomplex
structure of M such that V.J is locally represented as VJ = a® N for a nowhere zero 1-
form « and an almost nilpotent structure N related to J. Then V.J is valued in a light-like
2n-dimensional distribution D on M. We will see that (M ,h,Dy) is a Walker manifold,
that is, the covariant derivatives of local generators of D by any tangent vector of M are
contained in Dy (Theorem 6.1). This implies that Dy is involutive and therefore N is a
null structure. See [12], [30] for Walker manifolds and see [17] for null structures. We will
see that the square norm || V.J || of VJ vanishes, that is, (M, h, J) is isotropic paraKahler
(Theorem 7.1). See [15] for isotropic paraKéhler manifolds. Suppose n = 1. Let J be
an h-reversing almost paracomplex structure of M such that the covariant derivative of
the corresponding section of one of the time-like twistor spaces is fully light-like. Then
VJ is locally represented as above and therefore (M ,h,Dy) is a Walker manifold. Let
D be a light-like two-dimensional distribution on an oriented neutral 4-manifold M such
that (M ,h, D) is a Walker manifold. Then D is locally given by Im N for an almost
nilpotent structure N. We will find an h-reversing almost paracomplex structure J of a
neighborhood of each point of M satisfying VJ = a® N for a nowhere zero 1-form o and
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that N is related to J (Theorem 6.3). In particular, for an almost nilpotent structure N
of M satisfying VN = 0, there exists J as above on a neighborhood of each point, since
(M, h,D) with D = Im N is a Walker manifold.

Let E be an oriented vector bundle over R™ (m > 2) of rank 4n. Let h be a
neutral metric of E and V a flat h-connection of . We will find examples of h-reversing
paracomplex structures of E such that for each J, V.J is represented as VJ = a ® N
for a nowhere zero 1-form « and a nilpotent structure N related to J (Example 8.1 ~
Example 8.4). In particular, we will find examples of h-reversing almost paracomplex
structures of F3" as above (Remark 8.6). Suppose n = 1. We will characterize sections
of the time-like twistor spaces associated with F such that the covariant derivatives are
fully light-like and we will see that the covariant derivative of a paracomplex structure
J corresponding to such a section can be represented as VJ = a ® N for a nowhere
zero 1-form « and a nilpotent structure N satisfying VN = 0 (Proposition 9.1). In
addition, we will obtain all the pairs of sections of the two time-like twistor spaces with
fully light-like covariant derivatives (Theorem 9.3). Then we will find two types of such
pairs (Remark 9.5). One type corresponds to the pair of the lifts of the conformal Gauss
map of a time-like minimal surface in E and the other type corresponds to the pair
of the lifts of a time-like surface in a 4-dimensional neutral space form with zero mean
curvature vector given in [4]. Based on these studies, we can obtain the results in the
case of E = TE3 (Corollary 9.2, Remark 9.4). Therefore we can find all the pairs of
h-reversing almost paracomplex structures of Ej such that each pair gives sections of the
two time-like twistor spaces with fully light-like covariant derivatives.

2. Elements of SO(2n,2n) preserving oriented light-like 2n-planes

Let V be an oriented 4n-dimensional vector space and hy a neutral metric of V. Let
W be a light-like 2n-dimensional subspace of V. Let (e1,...,ean,€2n41,-.-,€4n) be an
ordered pseudo-orthonormal basis of V' giving the orientation of V' such that ey, ..., eq,
(respectively, €ap41,- .., €4n) are space-like (respectively, time-like). Suppose that W is
spanned by

§1:=e1 — ey, covy &n = en — esn, (2.1)
£n+1 = €Ep+1 + €3n+1y - £2n 1= eap t+ E4n.

Let T be an automorphism of V which preserves hy and the orientation of V. Then
there exists an element A of SO(2n,2n) satisfying

(Tela s 7T62n7 T€2n+17 e )Te4n) = (ela sy €2ny€2n41, - 76477,)A'
We represent A as

Ay Ag Ayz Agy
Aoy Agg Az Agy
Aszy Ay Agz Ay |’
Agy Agp Ayz Ay
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where A;; (i,j = 1,2,3,4) are n x n matrices. We call A;; the (4, j)-block of A. We use
not only A;; but also A; ;) in order to represent the (4, j)-block of A. We set

Agy —Agy Ay Ay
—Ap Ann Az Az
Aoy Azg Ay —Aus
Ay Az —Asq Asg

A* =

Let T be an endomorphism of V' such that A* is the representation matrix with respect
t0 (€1, -+, €2m, €2nt1y- -, Cdn)-

PRrROPOSITION 2.1.  The following are mutually equivalent:

T induces an endomorphism &1 of W;

(a)
(b) Agij)y + (=17 Aqjry = (1) (Apirag) + (=1 Agyajr2) fori,j =1,2;
)
)

b
(©) A + (=D gy = (C1)7 7 (A jro) + (1) 7 Aga,12) forij=1,2
(d) T* induces an endomorphism ®rx of W.

ProOOF. We see that (a) and (b) are equivalent. We can rewrite (b) into (c)
immediately. We see that (c¢) and (d) are equivalent. O

For 7,7 = 1,2, we set
Pij = A(Z,j) + (—1)jA(i,j+2),
P = (1) (Ag gy + (1) T Ao n),

where {i,7'} = {j,7'} = {1,2}. We set

Py P12} x |:P1X1 P1><2:|
P = , P* = .
[P21 Pys Py Py,

If T induces an endomorphism ®7 of W, that is, if 7> induces an endomorphism ®7x
of W, then P, P* are the representation matrices of 7, &« respectively with respect
to &1,...,&,. Let A, be a 4n x 4n matrix defined by

where I,, is the n x n unit matrix and O,, is the n x n zero matrix. We obtain

PROPOSITION 2.2.  An automorphism T satisfies not only one of (a)~(d) in Propo-
sition 2.1 but also P = P* if and only if A and A,, are commutative.

REMARK 2.3. The condition AA,, = A, A just means that T is null-linear (see
[17]).
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Let G be a Lie subgroup of SO(2n,2n) defined by AA,, = A, A for A € SO(2n,2n).
Then each element of the Lie algebra of G is represented as

Ui Uiz U +72 —Upp + X
—Us9 Usa —U+Y —Uxp+'Z
—Uq1 +tz Ui +Y —U11—Z+tZ Uo—X-Y ’
—Wie+X Ux+72 —-Up+X4+Y —Upxp—-2+tZ

where
Ui =-Un, "Wa=-Un X=X 'Y=V
Therefore we obtain dim G = 4n?. We will prove

PROPOSITION 2.4.  Suppose that T satisfies one of (a)~(d) in Proposition 2.1.
Then

(a) |PI[P*]=1;

(b) if P = P>, that is, if A € G, then |P| =1, that is, £ := & A -+ Aoy is invariant
by @T = q)Tx .

PROOF. Since A € SO(2n,2n), we have |A| = 1. Using (b) in Proposition 2.1, we
obtain

All A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

Ay Ayp Az — A A+ Agg
Agy Agy Agz — Agy Aoy + Ag
Azr Asy Azz — Az1 Azg+ Az
Ay Ay Auz— Ay Agg + Ay

Ay Ap Az — A A+ A
Ay Agp Agz— Asp A+ Aao
A3y Azz Ay — Az —Ay— Agg
Ay Agp Apz— Agy A+ Aoy

A+ Az A + Az On On
Ao — Ay Agy — Ay On On
B Az Az A — Az —Ay — A’
A Ay Agz — Ay Agp + Ay

Therefore we obtain (a) in Proposition 2.4. We will prove (b) in Proposition 2.4 by
induction as follows.
Part 1 Suppose n = 1. Then an element A of SO(2,2) is represented as A = BC, where
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by —by b3 by
B_ by by —bybs by, b2, b3,bs € R,
o b3 —by by ba b%-l—b%—bg—bi:l
by by —by by
and
10 0 O

0 ca2 o3 €24
C= cii] € SO(1,2)).
Demen el (o) € 5001,2)

0 c42 43 Ca4

Suppose C' = I;. Then A = B satisfies (b) in Proposition 2.1, P = P* and |P| = 1.
Suppose B = I4. Then A = C satisfies (b) in Proposition 2.1 if and only if [¢;;] € SO(1, 2)
satisfies

€22 €23 Cay g(cosht+e7tc?/2) ¢ e(sinht —e~tc?/2)
C32C33C34 | = ce te 1 —cete , (2.2)
€42 C43 Ca4 g(sinht +e7tc?/2) ¢ e(cosht —e~tc?/2)

where e = +1 or —1, and ¢, ¢t € R. Suppose that [¢c;;] € SO(1,2) satisfies (2.2). Then

we have
1 0 « | ee7t 0
P= [—c set] » P = [—5etc 1} ‘

Therefore the following are mutually equivalent: (i) ¢ = 1 and ¢t = 0; (ii) P = P*;
(iii) |P| = |P*| = 1. In particular, if P = P*, then |P| = 1. In general, if A = BC
satisfies not only one of (a)~(d) in Proposition 2.1 but also P = P*, then noticing
Proposition 2.2, we see that both B and C satisfy these conditions. Therefore we obtain
|P| =1 for T given by A = BC'. Hence we obtain (b) in Proposition 2.4 in the case of
n =1

Part 2 Suppose n > 2. We set

Ay —As Az Ay
Axp Ay —Ag Az
Az —Agy A Ay
Ay Az —Ag A

€ 50(2n,2n) » . (2.3)

Then H is a Lie subgroup of G with dim H = 2n? 4+ n. Since there exists a path in H
from the unit element to each element of H, any element of H satisfies |P| = 1. For each
element A of G, there exists an element B of H such that C := AB satisfies
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1 0 - 0 00 ---
0 % --- % X ke %
Cu=1|. .. . |>Cu=|. .. . (1 =23,4),
0 % - x P
0 e
Ca=1. . . | (=2,3,4).
10 * - * |

In addition, noticing AA,, = A, A and A € SO(2n,2n), we see that C satisfies
10 --- 00 ---

0 * --+ * 0 * .-+ =%

Therefore noticing Part 1, we see by induction that A satisfies |P| = 1. Hence we obtain
(b) in Proposition 2.4 in the case of n > 2. O

REMARK 2.5. Suppose n > 2 and that A € SO(2n,2n) satisfies one of (a)~(d) in
Proposition 2.1. Then even if |P| = 1, it is possible that P # P*. For example, if X, Y
are distinct elements of SO(n), then

X O'V’L OTL O’!L
O, Y 0,0,
0,0, X O,
0, 0,0, Y

satisfies one of (a)~(d) in Proposition 2.1 and |P| = 1 but does not satisfy P # P*.
REMARK 2.6. We set
G :={A € GL(4n,R) | A\, = A, A}.

Then G is a Lie subgroup of GL(4n, R) with dim G = 8n? and G is a Lie subgroup of
G. Referring to the proof of (a) in Proposition 2.4, we see that G is contained in the
connected component G Lg(4n, R) of GL(4n, R) with the unit element. Since each A € G
gives an automorphism of W, we obtain a homomorphism ¢ from G to GL(2n, R). Since
dim Ker ) = 4n2, 9 is a surjective homomorphism from the connected component of G
with the unit element onto GLy(2n, R). In addition, if A is an element of G given by

I, O, O, O,
On In On _2Zn
22, Op I O |’
On On On In_

A:
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where
-1 0 0
IL* = —1, In’, = 0 1 A (n Z 2) (24)
0 0 1
and
10 - 0
00 - 0
Zl = ]., Zn = . (TL Z 2),
00 - 0

then P satisfies P11 = I, Poo = I, and Pi3 = P»; = O,. Therefore 9 : G —
GL(2n, R) is surjective. We see from (b) in Proposition 2.4 that Im|g is contained in
SL(2n, R), and since dim Ker ¢|g = 2n? —n, ¢|¢ : G — SL(2n, R) is not surjective if
n > 2.

3. Nilpotent structures

Let M be a manifold and F an oriented vector bundle over M of rank 4n. Let h
be a neutral metric of E. Let N be a section of End E. We say that N is a nilpotent
structure of E if on a neighborhood of each point of M, there exists an ordered pseudo-
orthonormal local frame field e = (eq, ..., e, €2n41,-- -, €4n) of E satisfying Ne = eA,,
and that ey, ..., ea, (respectively, eapi1,...,€4,) are space-like (respectively, time-like).
Let N be a nilpotent structure of £. Then we have

(i) InN =Ker N,

(ii) 7y := ImN = Ker N is a subbundle of E of rank 2n such that each fiber is
light-like,

(iii) h(¢, N¢) = 0 for any local section ¢ of E.

In particular, N gives a null structure on each fiber of ' and h is null-Hermitian with
respect to N (see [17]).

Let N be a section of End F satisfying (i), (ii), (iii) in the previous paragraph. Then
there exist local sections &1, . .., &, of mx which form a local frame field of 7 and local
sections &1, ...,&,, of F satisfying

(i)

(i)

(iil) N(&) = &npir N(Ep)) =& fori=1,...,n,

(iv) fori=1,...,n, h(&, &) = 1, that is, h(En s &, ) = —1.

h(§i, &) =0fori,j=1,...,2n,

h(&, & -)—Ofori,j:1,...,2nwithz’7éj,
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Fori=1,...,n, we set

1 1
€; = 5(252 +&i), enti i= 5(—2&“ +&nti)s

1 1
€2 4i 1= 5(2&‘ — &), €anyi = 5(2§§L+¢ + Enti)-

Then (e1, ..., €2n, €141, .- ., €4,) is an ordered pseudo-orthonormal local frame field of E
such that eq, ..., e, (respectively, eant1,. .., e4n) are space-like (respectively, time-like).
From N (&) = &nti, N(§,4;) = &, we see that IV is a nilpotent structure of E. Let S be
an element of GL(4n, R) satisfying

(61,...,64n) = (fia"'afén?fla"'?an)S'

Then det S > 0. Therefore (&1, ...,85,,&1,-..,&n) gives the orientation of E if and only
if (e1,...,ean) gives the orientation of E.
Let N be a nilpotent structure of E. For € € {+, —}, we set

I, 0,0, O,
Il OTL On
n On I, O

n

)

3

n

T = |9
0]

5

,E

where I,, 4 := I, and I, _ is as in (2.4). For ¢ € {+,—}, we say that N is an e-
nilpotent structure if we can choose an ordered pseudo-orthonormal local frame field e
of E on a neighborhood of each point of M giving the orientation of E and satisfying
Nely, . = el}, .A,. Let N be an e-nilpotent structure of £. Then such a frame field as
e for N is called an admissible frame field of N. For an admissible frame field e of N,

&1 i=e1 — eant1, §i = €; — €an1i, i=2,...n) (3.1)
Ent1 = €ny1 t€e3n41, Enti 1= €nigi + €3n4g

form a local frame field of 7mx ((3.1) with ¢ = + coincides with (2.1)). Let f =
(f1,--+, fon, font1s-- -5 fan) be an ordered pseudo-orthonormal local frame field of E
giving the orientation. Then f is an admissible frame field of N if and only if for each
admissible frame field e of N, an SO(2n, 2n)-valued function A on the intersection of the
domains of e and f given by fI;, . = el}, A is valued in G. Therefore we see by (b)
in Proposition 2.4 that for &,...,&, asin (3.1), £ = & A -+ A€oy, does not depend on
the choice of an admissible frame field of NV and this means that N gives a section & of
A"E.

Let £ be a section of /\an and suppose that £ is locally represented as & = & A
-+ A &g for local light-like sections &1, ...,&2, of F defined on a neighborhood U of
each point of M such that at each point of U, they span a light-like 2n-dimensional
subspace of the fiber of E. Then &,..., &, are represented as in (3.1) for ¢ € {+,—}
and an ordered pseudo-orthonormal local frame field e = (eq,..., e, €2n41,- .-, €4n) Of
E giving the orientation of E. Suppose that n is even. Then noticing that there exists
A € 50(2n,2n) satisfying one of (a)~(d) in Proposition 2.1, |P| = 1 and P # P~
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(Remark 2.5), we see that £ gives plural e-nilpotent structures of the restriction of F
on a neighborhood of each point of M. Suppose that n is odd. Then £ gives at least
one e-nilpotent structure as above and we see in particular that n = 1 if and only if £
determines a unique e-nilpotent structure of E. See [3], [8] for the case of n = 1.

In the rest of this section, suppose n = 1. Let h be the metric of /\2E in-
duced by h. Then h has signature (2,4). Noticing the double covering SOy(2,2) —
S00(1,2) x SOy(1,2), we see that A’E is represented as the direct sum of its two ori-
entable subbundles /\iE, A’ E of rank 3. We see that /\iE is orthogonal to A\ E with

respect to h and that the restriction of h on each of /\iE, A2 E has signature (1,2).
Let (e1,e9,€e3,e4) be an ordered pseudo-orthonormal local frame field of E giving the
orientation of E. We set

Qj:,l = 72(61 Ney ez A 64)7
1

Qiyg = 72(61 Negteq A 62), (32)
1

Oy g:= 7(61 NeygEtes A 63).

V2

Then Q4 ; are space-like and Q4 2, Q4 3 are time-like, and we can suppose that Q_ i,
Q4 2, Q4 3 (vespectively, Q4 1, Q_ o, Q_ 3) form a pseudo-orthonormal local frame field
of /\iE (respectively, /\3E) The light-like twistor spaces associated with E are fiber
bundles

Us (/\‘iE) — {9 e \2E\ {0} ‘ h(6,0) = o}
in /\iE respectively. We can refer to [3], [8] for the light-like twistor spaces. Let Q be
a section of Uy (/\iE) (e € {+,—1}). Then we can find (e, €2, 3, e4) as above satisfying
Q= Q—E,l + &‘9573.

Therefore 2 is locally represented as @ = (1/ \@)51 A&s. Then € gives a unique e-nilpotent
structure N of E. It satisfies

(Ney,Nea, Nes, Neey) = (e1,e2,e3,ee4)Aq, (3.3)

that is, (e, eq,es,e4) is an admissible frame field of N. Notice that in (3.3), € is put
before e4, while in the corresponding equation in [3], ¢ is put before e3. Each e-nilpotent

structure of E gives a unique section of Uy (/\iE) and therefore there exists a one-to-

one correspondence between the set of sections of Uy (/\iE) and the set of e-nilpotent

structures of E.
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4. The covariant derivatives of paracomplex structures

Let E, h be as in the beginning of the previous section. Let V be an h-connection of
E, i.e., a connection of F satisfying Vh = 0. Let J be a section of End E. For e € {+, —},
we say that J is an e-paracomplex structure of E if J satisfies

(i) J is a paracomplex structure of F,
(ii) J is h-reversing, that is, J*h = —h,

iii ere exists an ordere seudo-orthonormal local frame fie e =

iii) th ist dered pseudo-orth 1 local f field
(e1,...€2n,€2n41,...,€4n) of E on a neighborhood of each point of M giv-
ing the orientation and satisfying

(J@l, ey Jezn, J62n+1, ey J64n)14/1n,5

On On In On
— (6 e e e )I/ On On On _In (4]‘)
- 1y+++962n,€2n41,.-.,64n 4n,e In On On On

On _In On On

Let J be an e-paracomplex structure of E. Then such a frame field as e is called an
admissible frame field of J. For an admissible frame field e of J, let w = [w;] be the
connection form of V with respect to e: Ve = ew. Then we have

((2,7) € (B1mzn X Eiozn) U (Banti~an X Bonti~an)),

, —u!
wi = { Wi (4.2)
w] ((4,5) € (Z1~zn X Bantican) U (Zonti~an X Licon)),

where X1apn = {1,...,2n}, Yopt1~an = {2n+1,...,4n}. For u € {4, —}, we set

e(/”L) = (613 ceey €2ny €201, . - 7#64774)'

Suppose that VJ is locally represented as the tensor product of a 1-form a and an e-
nilpotent structure N so that e(u) is an admissible frame field of N. In the following,
we say that such an e-nilpotent structure as N is related to J (by (e,p)). Then using
(VJ)(er) = V(Jer) — J(Vey), we obtain

p(IT (1) Wity = Wi 4 (1) Wi = adl,

7 2n+1i __ 1 2n+1i __

Wi =Wy = Wopyj —W; =0, (4.3)
n+i 814051, 3n+i _ , nti 814051, 3n+i __

Wyt (e1) PWant = Winyj (e1) Pw, =0

for i,5 € {1,...,n}. Conversely, if we suppose (4.3), then V.J is locally represented as
above. Therefore we obtain

THEOREM 4.1.  Let J be an e-paracomplex structure of E fore € {4+,—} and e an
admissible frame field of J. Then for p € {+,—}, the following are equivalent:

(a) VJ is locally represented by the tensor product of a 1-form « and an e-nilpotent
structure N related to J by (e, p);
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(b) the connection form w = [w;] of V with respect to e satisfies (4.3).

REMARK 4.2. The main object of study in the present paper is an e-paracomplex
structure J of E such that VJ is locally represented by the tensor product of a 1-form
and an e-nilpotent structure related to J. In [6], the author studies nilpotent structures
of an oriented vector bundle E of rank 4n with a neutral metric h and an h-connection V.
For a Lie subgroup K of SO(2n,2n), K-nilpotent structures of (E, h, V) are defined. For
each K-nilpotent structure, a principal K-bundle P is constructed, by choosing special
admissible frame fields. In addition, V gives a connection in P, so that the connection
form of V with respect to such an admissible frame field is valued in the Lie algebra of K.
A G-nilpotent structure N of (E, h, V) is characterized by VN = 0 ([6]). If there exist a
complex structure I and paracomplex structures Ji, Jo such that h, V, I, Jy, Jo form a
neutral hyperKéhler structure of F, then there exist H-nilpotent structures of (E, h, V)
([6]), where H is as in (2.3). In addition, if there exists an H-nilpotent structure of
(E,h,V), then N has the dual H-nilpotent structure N*, and h, V, I := (1/2)(N+N*),
Jy = —1J3, Jy:= (1/2)(N — N*) form a neutral hyperKéhler structure of E ([6]).

In the followmg, suppose n = 1. Let V be the connection of /\ F induced by V.
Then V is an h-connection and it gives connections of /\ LK, /\ E. Fiber bundles

U_ (/\iE) - {9 e NLE ’ h(6,6) = 71}
in /\iE respectively are the time-like twistor spaces associated with E. There exists

a one-to-one correspondence between the set of sections of U_ (/\?E) and the set of

e-paracomplex structures of E. Let 2 be a section of U_ (/\iE) for € € {+,—}. Then

we can find e = (eq, ez, e3,€4) satisfying Q = Q. 5. Let w = [w;] be the connection form
of V with respect to e. Then we have

0 (i=J),
wi =9~ ({ig} € ({1,2},{3,4}}), (4.4)
wi (i 5} € {{1,3},{1,4},{2,3},{2,4}}).

Suppose that the covariant derivative of € is fully light-like. Then for u = 4+ or —, we
obtain

Wi + ewi = p(ws + ew?) (4.5)
and VQ = a ® Qq, where
o= wg + Ew‘f, Qo :=Q_c1 + e 3.

We have a # 0 and ) is a local section of a light-like twistor space Uy (/\?E) Let

J be an e-paracomplex structure of E corresponding to 2. Then we obtain Je; = eg,
Jey = —eey and therefore e is an admissible frame field of J. In addition, we obtain
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Vi=a® (@' @& —0%2&), (4.6)
where

§1:=e1 —cue3, & := ex + ey, A7
0! = e +epe®, 62 :=e? — pet (4.7)

and (e!, €2, e3, e*) is the dual frame field of (eq, 2, €3, e4). We see that N := 01 @&, —02®€;
is an e-nilpotent structure corresponding to a local light-like section €y and related to
J by (e,ep). Noticing that e = (e1, ez, €3, €4) satisfying Q = . o is not unique, we see
that Qg and N are not uniquely determined by 2. However, £ is uniquely determined
by Q up to a nowhere zero function. Therefore E has a light-like subbundle of rank 2
given by  and locally generated by &1, £&. Hence we obtain

PROPOSITION 4.3.  Let Q be a section of U_ (/\gE) for e € {+, =} such that VQ

is fully light-like. Then VQ s locally represented as VQ =a®Q for a nowhere zero
1-form « and a light-like section Qq. In addition, if J is an e-paracomplez structure of
E corresponding to 2, then VJ is locally represented as VJ = a @ N, where N is an
e-nilpotent structure corresponding to Qg and related to J.

In the next section, we will see that the lifts of the conformal Gauss maps of time-like
minimal surfaces in E} are examples of sections of the time-like twistor spaces with fully
light-like covariant derivatives.

Let J be an e-paracomplex structure of F for ¢ € {4, —}. Suppose that the covariant
derivative of a section Q of U_ (/\gE) corresponding to J is fully light-like. Then whether
we can find an ordered pseudo-orthonormal local frame field e = (e1,e9,€3,¢4) of E as
above for €2 such that € is horizontal is determined by J. Referring to [3], we see that
Qg is horizontal if and only if the corresponding nilpotent structure IV satisfies VIV = 0.
The following proposition will be used in Section 9.

ProproSITION 4.4.  The following two conditions are equivalent to each other:

(a) there exists an ordered pseudo-orthonormal local frame field e of E as above for §)
such that Qg is horizontal,

(b) there exists an ordered pseudo-orthonormal local frame field e of E as above for §)
such that the connection form [wi] of V with respect to e satisfies d(ws —ew?) = 0.

PROOF. Suppose (a). Then we see that Qg is horizontal for an ordered pseudo-
orthonormal local frame field e. Using (4.5), we obtain

V2VQy = V(61 A &) = p(wh — ewl) @ &1 A . (4.8)

Therefore VQ = 0 means wi — ew? = 0. Hence e is a suitable frame field for Condition

(b). Suppose (b) and let e be as in (b). Then there exists a function f satisfying
w3 — ew? = —df. Using this and (4.8), we obtain @(e”f& A &) =0. We set
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e} :=ey1, e :=(cosh f)eg + (sinh f)ey,
ey :=e3, €y = (sinh f)es + (cosh f)ey.
Then e’ = (e, €h, e}, e}y) is an ordered pseudo-orthonormal local frame field satisfying
(i) e}, e} are space-like and e}, e/ are time-like,
(ii) e’ gives the orientation of E,
(i) Q= QL 5, where ¥, , are defined for ¢’ as in (3.2),
(iv) Qo for ¢’ is horizontal.

Hence e’ = (e}, €}, €5, €}) is a suitable frame field for Condition (a). O

5. The conformal Gauss maps of time-like minimal surfaces in E3

Let M be a Lorentz surface. Let ¢ : M — E? be a time-like and conformal
immersion of M into F3. Let (, ) be the metric of ES and set

L:={x=(z', 22, 2% 2% 25 € E5\ {0} | (z,2) = 0}.

We identify E with L N {z° = 2! + 1} and therefore we consider ¢ to be an L-valued
function. Suppose that ¢ is minimal. Let -y be the unit normal vector field of ¢ determined
by the orientations of M and E3. Then « is a map from M into S3. Let g™ be the
induced metric of M by ¢ and K™ the curvature of g™. Let Reg (1) be the set of nonzero
points of KM . Then the restriction of v on Reg (¢) is a time-like and conformal immersion
which induces a Lorentz metric g given by g = —KMgM. We call v : M — S3 the
conformal Gauss map of «. We can refer to [7] for the conformal Gauss maps of time-like
minimal surfaces in E3.

Let w = u+ jv be a local paracomplex coordinate of Reg (+). Then we represent g
as gM = e? dwdw and we see that there exist functions I, m satisfying

buu = Auby + Aoty F 1V, byw = Aply + Ayty +my (5.1)

and Lyy = Lyy. By (5.1), we obtain

(Yu ) = (tu Lv)e% {;nl _lm] : (5.2)

Therefore we can consider ¢ to be a light-like normal vector field of F' := 7|geg (,). Since
KM 20 on Reg (1), we have I2 # m2. Let A, be the shape operator of F' with respect
to ¢. Then from (5.2), we obtain

(+ () (%))
(o (52) o (30)) e [ )

Let v be a light-like normal vector field of F' satisfying (v, t) = —1.

(5.3)
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PROPOSITION 5.1.  The shape operator A, of F with respect to v vanishes.

PRrROOF. We can prove Proposition 5.1, referring to [2]. Since ¢ is minimal, a para-
complex quartic differential Q defined on M vanishes. This means that a paracomplex
quartic differential @ defined on Reg (¢) and given by F' vanishes. Therefore v is contained
in a constant direction in E3. This means that A, vanishes. (]

From (5.3) and Proposition 5.1, we see that F' has zero mean curvature vector. This
is also seen from a fact that a time-like minimal immersion ¢ is of Willmore type ([2]).
Suppose KM < 0, i.e., 1> > m?. Then F, is space-like and F, is time-like. We set
1 1
e = ——F, e3:=——F,

VKM " _KMex
Let eq, e4 be normal vector fields of F' satisfying

1 1
es,e2) =1, (eg,e4) = —1, 1t = —=(eq4 —e2), v = —=(e4 + €2).
(e2,€2) (e4, €4) \/5(4 2) \/5(4 2)

Then e = (e1, ea,e3,e4) is an ordered pseudo-orthonormal local frame field of the pull-
back bundle F := F*TS3 by F : Reg (1) — S5 and we can suppose that e = (e1, ez, €3, €4)
gives the orientation of S5. Let (e!,e3) be the dual frame field of an ordered pseudo-
orthonormal local frame field (e, e3) of the tangent bundle TM. Let h, V be the metric
and the Levi-Civita connection of S3. Then they naturally give a metric and an h-
connection of E and these are also denoted by h, V. Let w = [w;] be the connection form
of V with respect to e. Then we obtain

w? =wh = —(le! +me’), wd=wh=—(me! +1e%) (5.4)

with
_ l€2>\ 2
li=———, m:=

R o)

Let V be the connection of A® E induced by V. Then by (5.4), we obtain V. 3 = a® Qg
for ¢ € {4, —}, where

o= —(el +m)(e! +ee?), Q=0 .1+0.3

and Qg 1, Q4 0, Q4 3 are as in (3.2). We have a # 0. Let Fy be the lifts of F. Then
F‘i are sections of U_ (/\iE) and locally represented as Fy = Q4 o respectively. Let
Je be an e-paracomplex structure of E corresponding to F.. Then we have J.e; = es,
Jees = —eey. For J = J., we obtain (4.6) with (4.7) and u = +. We see from (4.6) for
J = J. that VJ. is valued in a light-like subbundle of E = F*TS3 of rank 2 which is
locally generated by e; — ees, es + e4. Hence we obtain
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THEOREM 5.2.  The covariant derivatives of the lifts Fy are fully light-like. In
addition, for an e-paracomplex structure Je corresponding to F,, VJ. is locally represented
as VJ. = a® N, where a := —(el +m)0*, N 1= 0' ®@ & — 02 ® & with (4.7) and p = +.

Let M be a Lorentz surface and F : M — S5 a time-like and conformal immersion
with zero mean curvature vector. According to [4], if the covariant derivatives of the lifts
F are fully light-like, then F' has one of the following two properties:

(i) the shape operator of F' with respect to a light-like normal vector field vanishes;
(ii) the shape operator of F' with respect to any normal vector field is light-like or zero.

As was already seen by Proposition 5.1, the conformal Gauss maps of time-like minimal
surfaces in E3 satisfy (i). We can find a characterization of a time-like and conformal
immersion F' : M — S5 with zero mean curvature vector and (ii) in terms of the Gauss-
Codazzi-Ricci equations ([4]). The immersion F' satisfies either (i) or (ii) if and only
if the curvature K of the induced metric on M by F is identically equal to 1 ([5]). In
addition, K =1 if and only if not only the paracomplex quartic differential @ is null or
zero but also the normal connection V* of F is flat ([5]). Notice that @ is null or zero
if and only if at least one of the covariant derivatives of Fyy is light-like or zero ([5]) and
that K = 1 means that V- is flat, while the converse is not necessarily true ([5]).

6. Walker 4n-manifolds

Let M be an oriented neutral 4n-manifold and h its metric. Let V be the Levi-Civita
connection of h. Let D be a light-like 2n-dimensional distribution on M. We say that
(M, h,D) is a Walker manifold if the covariant derivatives of local generators of D by
any tangent vector of M with respect to V are contained in D. See [12], [30] for Walker
manifolds. If (M, h, D) is a Walker manifold, then D is involutive. In the case of n =1,
D is involutive if and only if the covariant derivatives of local generators of D by any
tangent vector in D are contained in D (see [3]).

Let J be an almost e-paracomplex structure of M for e € {4, —}. Suppose that
VJ satisfies (a) in Theorem 4.1 for a nowhere zero 1-form «. Then V.J gives a light-like
subbundle of TM of rank 2n, i.e., a light-like 2n-dimensional distribution D; on M.

THEOREM 6.1.  Let J be as above. Then (M, h,Dy) is a Walker manifold.

PRrROOF. Let e = (e1,...e€2n,€2n41,---,€4n) be an admissible frame field of J such
that VJ is locally represented as VJ = o ® N for an almost e-nilpotent structure N
related to J by (e, ). Then we have (4.3). Let &1,...,&, be as in (3.1) for e(u). For
1,7 € {1,...,n}, we obtain

h(V&, &) = sz - Mw%nJri + Mw?nﬂ - ngiZ,

h(V&i, &ntj) = —h(&, Vnyj)

T — o — (e W 4 (1) win (6.1)
h(V&ntis&nti)

‘ i j i1, .3 j ) 3 :
= W]+ p(e) Wi — u(el) it — (1) .

_.n
=w;
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Applying (4.3) to (6.1), we obtain h(V§;, &) = 0ford,j = 1,...,2n. Therefore (M, h, D)
is a Walker manifold. O

REMARK 6.2. Suppose n = 1. Let J be an almost e-paracomplex structure of M
such that the covariant derivative of the corresponding section of U_ (/\?TM ) is fully

light-like. Then noticing Proposition 4.3, we see from Theorem 6.1 that (M, h,Dy) is a
Walker manifold.

Suppose n = 1. Let D be a light-like two-dimensional distribution on M. Then D is
locally generated by light-like vector fields &1, & such that (1/v/2)&; Ay is a local section

of Uy (/\?TM ) for € = 4+ or —. Therefore there exists an almost e-nilpotent structure N
of a neighborhood of each point of M such that D is locally given by mx. We will prove

THEOREM 6.3. Suppose n = 1. Let D be a light-like two-dimensional distribution
on M such that (M, h, D) is a Walker manifold. Let N be an almost e-nilpotent structure
as above. Then there exists an almost e-paracomplex structure J of a neighborhood of the
point satisfying

(a) VJ=a® N for a nowhere zero 1-form «,

(b) N is related to J.

PrROOF. Let D, N be as in Theorem 6.3. Suppose that N corresponds to a local
section Qg of Uy (/\iTM) Let (e1,ea,es3,eq4) be an admissible frame field of N. Then
Qo = Q_ 1 +Q4 3 and D is locally generated by {1 = e; —e3, &2 = ea+e4. Since (M, h, D)
is a Walker manifold, we have h(V¢;, £>) = 0 and this is rewritten into wj +wi = w3 +w?.
In addition, we can suppose wj +wj # 0, rechoosing (ey, es, €3, e4) if necessary: if we set

1 0 0 O

052 L

(é17é25é37é4) = (61762363764) 0 ']2( 1 _;-
2 2_,

0 f? f_f 2

for a function f, then

(i) (é1,é2,€3,€4) is an ordered pseudo-orthonormal local frame field of M giving the
orientation of M,

(ii) (€1, €9, €3,€4) is an admissible frame field of N,

i

(iii) for the connection form [@}] of V with respect to (€1, €, €3, €4),

=2 45 4 > 2 4 3
(wy +wyp) + 5 (ws +wi) + flwy —wi).

O+t =df — 5

Therefore the covariant derivative of € = €4 5 is fully light-like. Let J be an almost
+-paracomplex structure corresponding to . Then J satisfies (a), (b) in Theorem 6.3.

In the case where Qg is a local section of Uy (/\27TM), we can obtain the same result. [
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REMARK 6.4. Let N be an almost e-nilpotent structure of M satisfying VN =
0. Then (M, h,D) is a Walker manifold for a light-like two-dimensional distribution D
on M given by my. Therefore there exists an almost e-paracomplex structure J on a
neighborhood of each point of M satisfying (a), (b) in Theorem 6.3.

7. The square norm of the covariant derivative of an h-reversing almost
paracomplex structure

Let M, h, V be as in the beginning of the previous section. Let J be an h-reversing
almost paracomplex structure of M. Then the square norm ||V.J||? of V.J is defined by

4n

IVIIP= Y 6:8h((Ve, ) (es), (Ve T)(e5),
ij=1
where e = (eq,..., €, €2n41, - -, €4,) is an ordered pseudo-orthonormal local frame field
of M giving the orientation and 0y = 1, dop4r = —1 (k = 1,...,2n). The square norm

| VJ ||? does not depend on the choice of e. Let Q* be a 2-form on M defined by
O*(X,Y) := h(X,JY) for tangent vectors X, Y of M. Then the square norm || VQ* ||?
of VQ* is defined by

IV 2= ) 6:8;01((Ve, )¢5, er)). (7.1)

ij,k=1

Noticing
h(Ve, J)(€), ex) = =(Ve,2%) (e, €x),

we obtain || VJ||?=| VQ*|?.
Suppose that J is an almost e-paracomplex structure of M for € € {4, —}. Let e be
an admissible frame field of .J. Then we have

n
O = Z(ez A €2n+i _ (61)6i16n+i A 63n+i)7
=1

where (el,... e2" 2t . ei") is the dual frame field of e and €1 denotes 1 or —1

according to e = + or —. Suppose that VJ satisfies (a) in Theorem 4.1. Then we have
(4.3). Therefore we see

(i) (Ve,2%)(ej,er))* = ale:)? if
Goky e {ln+ 0, {03n+ 1 {n+L2n+1} {20+ L3n+1}) (7.2)
forl e {1,...,n},
(i) (Ve,Q%)(e;,ex))? = 0 if {j, k} does not satisty (7.2) for any I € {1,...,n}.

Therefore noticing
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5. ::{ 1 ({7, k} e U {ln+1},{2n +1,3n +1}}),
3%k —1 ({4, k} e U, {,3n + 1}, {n+1,2n+1}}),

we see by (7.1) that || VQ*||?= 0. This means || V.J||?= 0.
Hence we obtain

THEOREM 7.1. Let J be an almost e-paracomplex structure of M such that VJ is
locally represented as in (a) in Theorem 4.1. Then ||V.J||?*= 0, that is, (M,h) equipped
with J is isotropic paraKdhler.

8. Frame fields of neutral vector bundles of rank 4n with flat metric
connections

Let E be an oriented vector bundle over R™ of rank 4n (m > 2, n > 1). Let h be
a neutral metric of £ and V an h-connection of E. Suppose that V is flat, that is, the
curvature tensor R of V vanishes.

Let J be a +-paracomplex structure of E. Then there exists an ordered pseudo-
orthonormal frame field e = (ey, ..., e, €2n41,--.,€4,) of F giving the orientation and
satisfying (4.1) with & = 4. Let w = [w!] be the connection form of V with respect to e.
Then we have (4.2). Suppose that VJ is nowhere zero and satisfies (a) in Theorem 4.1
for € = +. Then we have (4.3) for a nowhere zero 1-form o on R™. Suppose = +. Let
D;; be the (i, j)-block of w (4,5 € {1,2,3,4}). Then we have

Dll D12 D13 D14
D21 D22 D23 D24

w =
D31 D33 D33 D3y
Dy1 Dy Dy3 Dyy
From (4.2), we obtain
Dy (i,j=1,20ri,j=34)
tDi‘ _ Ji ) ) ) VR 8.1
i Dji (i=1,2,j=340ri=347j=12). (8.1)

From (4.3), we obtain

D11 = D33, Di3= D31, D= Dy, Dzy= Dy,

8.2
Doy + Dyz = D41 + Doz = alj,. (8.2)

Let W;; be the (4, j)-block of w Aw (i,j € {1,2,3,4}). Suppose
D11 = Dy3, D13 = Day. (8.3)

Then from (8.2) and (8.3), we obtain W91 +Wy3 = O,,, Uy1 + Va3 = O,,. Since R vanishes,
dw 4w Aw vanishes. Therefore we obtain d(Dgy + Dy3) = Oy, d(Dy1+ Da3) = O,,. These
mean da = 0. Therefore a function f on R™ satisfies df = a. Suppose Da; = Dys,
D41 = Dsy3. Then we see by (8.1) that w is represented as in the form of
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Dy —idfI, D31 idfI,
3dfl, Diu  3dfI, Ds

w = , 8.4
Dy Ldfl, D —idfl, (84)
%dfjn D31 %df-[n Dll
where 1)117 D31 satisfy tDll = _D117 tD31 = D31 and
dD11 + D11 A D11 + D31 A D31 = Oy, (8.5)

dD31 + D3y A D11+ D11 A D3y = O,,.

Let Dq1, D3; be n x n matrices such that each component is a 1-form on R™.
Suppose that D1, D3y satisfy 'Dy; = —D11, 'D3; = D31 and (8.5). Let f be a function
on R™ such that df is nowhere zero. Then a 4n X 4n matrix w defined by (8.4) satisfies
(4.2) and (4.3) with a = df and € = y = +, and dw +w Aw vanishes. Therefore, noticing
R =0, we see that there exists an ordered frame field e = (e, ..., ean, €ant1,- .-, €4n) of
FE such that w is a connection form of V with respect to e. Such a frame field is uniquely
determined by an initial value at a point. If e satisfies

1 (i=j=1,...,2n),
h(ei,ej) =¢ -1 (i=j=2n+1,...,4n), (8.6)
0 (i#J)

at a point of R™, then noticing that V is an h-connection, we see that e satisfies (8.6)
on R™. Therefore there exists an ordered pseudo-orthonormal frame field e of E giving
the orientation of E and satisfying Ve = ew. Let J be a +-paracomplex structure of F
satisfying (4.1) for e = + and e. Then V.J is nowhere zero and satisfies (a) in Theorem 4.1
with a = df for e = p = +.

EXAMPLE 8.1. We set Dq; := O,, and D3, := d¢Cy, where ¢ is a function on R™
and Cj is a constant symmetric matrix. Then Dqq, D3 satisfy ‘D = — D11, D3y = D33
and (8.5).

ExaMPLE 8.2. We set D7 := O,, and

Cdfydfy 0 - 0
dfz dfy dfz -
Dsi:=10af " . 0
L
L 0 --- 0 df2dfi ]

for functions fi, fo on R™. Then Dyy, D3 satisfy ‘Dyy = —D;yq, 'D3; = D3; and (8.5).

ExAMPLE 8.3. We set D3y := O,, and Dy; := dyCy, where 9 is a function on
R™ and () is a constant skew-symmetric matrix. Then D11, D3 satisfy D1y = —Dqq,
tDBl = D31 and (85)
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EXAMPLE 8.4. Suppose n = 4p for p € N. We set

[Ci1 Cio Og -+ O4]

Ci2 Ci1 Cin -
Din==|0,0C . . 0, (i=13),
Lo
L O4 -+ O4 Cip Ci1 |
where
0 —dak 0 —dbk 0 dak 0 dbk
Chy = dak 0 dbk 0 C L dCLk 0 dbk 0
W=l 0 —dby 0 —dak|” T | 0 db, 0 dag
dbk 0 dak 0 dbk 0 dak 0
and ay, by are functions on R™ (k = 1,2). Then D;;, D3y satisfy ‘Dy; = —Dy,

‘D31 = D31, and noticing
Cik NCjr, =04, CiaNCja+CioNCj1i =04 (1,5 =1,3k=1,2),
we obtain Dj; A Dj1 = O,, (4,j = 1,3). Therefore D11, D3y satisfy (8.5).

REMARK 8.5. For any of the above examples, w is exact and represented as w = dx
for a function = on R™ valued in the Lie algebra of SO(2n,2n). Therefore a suitable
frame field e is given by €exp(z) for an ordered pseudo-orthonormal parallel frame field
€ of E giving the orientation of E.

If we suppose i = —, then we have similar discussions and examples. In addition,
we can have similar discussions and examples of —-paracomplex structures.

REMARK 8.6. Suppose m = 4n and that E is the tangent bundle TE3" of E3". Let
h be the metric of E4" and V the Levi-Civita connection of h. Then the curvature tensor
R of V vanishes. Therefore we can find examples of almost e-paracomplex structures of
E3" such that the covariant derivatives are nowhere zero and satisfy (a) in Theorem 4.1.

9. Frame fields of neutral vector bundles of rank 4 with flat metric con-
nections

In the following, suppose n = 1. Let e = (e1,es,€e3,e4) be an ordered pseudo-
orthonormal frame field of E giving the orientation of E such that @QE’Q (ee{+ -}
is fully light-like. Let w = [w;] be the connection form of V with respect to e. Then
we have (4.4). Since R vanishes, dw + w A w vanishes. Since @Qg,g is fully light-like,
we have (4.5) for p = pe € {+,—}. We set ¢ = [¢!] :== w Aw. Then from (4.5), we
obtain 93 = e¢)$. Since dw + 9 vanishes, we obtain d(wj — ew}) = 0. Therefore noticing
Proposition 4.4, we can choose e so that € for {2 = ). 5 is horizontal. If e is such a frame
field, then referring to the proof of Proposition 4.4, we obtain wj — ew$ = 0. However,
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in the following, we suppose only d(wi — ewj) = 0. Then there exists a function f¢ on
R satisfying wj — ew? = —df¢. Applying this to ¢ and noticing that dw + v vanishes,
we obtain

d(wd + ew) = pdf® A (w5 + ewi),

ie., dle " (wd+ew})) = 0. This means that there exists a function ¢° on R™ satisfying
dg® # 0 and

dg® = e M (W5 + ew}) = pe M (Wi + ew?).
Therefore we obtain

€
wi =eet dg® —ewd, wi = ewd — dfe,

. (9.1)
wi = petd " dgf — ew?.

Then the condition that dw + w A w vanishes is rewritten into a system of three equations
as follows:
dw? =20} Awi — et WP A dge
+ ewd AdfF + e dfe A dg,
dw? =202 AWl — et W Adgf 4 epett W3 A dgf, (9.2)
dws = — 2w? Aw? + ewl A df°

— Eue“fawf Adg® + pe!"dfe A dge.

Let f¢, g° be functions on R™ with dg® # 0. Let w?, w}, wj be 1-forms on R™
satisfying (9.2). Let wi, wj, wi be as in (9.1) and w a 4 x 4 matrix such that the (i, 5)-
component is given by w;- with (4.4). Then dw+wAw vanishes. Therefore, noticing R = 0,
we see that there exists an ordered pseudo-orthonormal frame field e = (eq, es, €3, e4) of
E giving the orientation of E and satisfying Ve = ew. Then for €. 5 as in (3.2), we
obtain @Q&g = a ® (g, where

o= eufedgﬁ7 Qo :=Q_c1 + puQe 3. (9.3)

Since dg® # 0, we have o # 0. Since d(wj — ew?) = 0, we see from Proposition 4.4 that
Qo can be horizontal for a suitable frame field. Let J. be an e-paracomplex structure of
E corresponding to €. 2. Then we have J.e; = e3, J.ea = —cey, and J = J. satisfies
(4.6) with (4.7) and (9.3).

Hence we obtain

ProprosITION 9.1.  The following two conditions are equivalent:
(a) the covariant derivative of Q. o is fully light-like;

(b) the conmection form w = [wi] of V with respect to the frame field e = (eq, ez, e3, €4)

satisfies (9.1), (9.2) and dg® # 0 for functions f€, g on R™ and p € {4+, —}.



Sections of time-like twistor spaces 23

In addition, if one of (a), (b) holds, then @QE’Q is represented as ﬁQE,Q =a®Qy, where
a, Qo are as in (9.3) and Qo can be horizontal for a suitable frame field.

Suppose m = 4 and that F is the tangent bundle TE3 of E3. Let h be the metric of
E3 and V the Levi-Civita connection of h. Then the curvature tensor R of V vanishes.
Therefore, referring to the above discussions, we obtain

COROLLARY 9.2. For E = TE3, (a), (b) in Proposition 9.1 are equivalent to
each other. In addition, if one of (a), (b) in Proposition 9.1 holds, then the remaining
statements in Proposition 9.1 hold.

Suppose that there exist sections Q4 of U_ (/\iE) respectively such that the co-
variant derivatives are fully light-like. Then noticing the double covering SOq(2,2) —
S0p(1,2) x S0y(1,2), we see that there exists an ordered pseudo-orthonormal frame field
e = (e1,ea,e3,¢e4) of E such that both of VQ. o are fully light-like. Let w = [w;] be the
connection form of V with respect to e. Then we have (4.5) for p = p., € = +, —.

Therefore we have the second relation in (9.1) for ¢ = 4+, —. Therefore we have
5 _ Lot - 4 Lypr -
Wl = Sl =), wh= (). (94)
Noticing (4.5), we obtain either w} = pw?, wj = pw3 or wi = uw? wi = uwi for

p € {+,—}. Suppose wi = pw? and wj = pws. Then by (9.1), we obtain

wi= a (e’”ﬂrdg+ - e“f_dg*>
2 )
3 _ Lo o wf= - (9:5)
wy = 5 (e dg™ + et dg )
and
1 + -
wfll I (euf dgt — ettt dg )
2 ’ (9.6)
Oy (TN e T e
w3 = 5 e g +e qg .
Suppose wi = pw? and wi = pwi. Then by (9.1), we obtain
wi = % (e"f dgt 4 et ’dg‘) :
9.7)
1 . (
wg =3 (e“f+dg+ +e S dgf)
and
wf =5 (g™ — e dg) 9.8)

m

1
2

wgl = g (e“erdg+ — e*“f_dg*> .
R

Let f*, g% be functions on with dg* # 0 and w?, wj 1-forms on R™ given by



24 N. Ando

(9.4). Let w?, w3, w}, wi be 1-forms on R™ given by either (9.5), (9.6) or (9.7), (9.8).
Then w?, wf, w3, wi, wi, wj satisfy (9.1), (9.2) for ¢ = +, — and p = p.. Let w be a
4 x 4 matrix such that the (7, j)-component is given by wé with (4.4). Then there exists
an ordered pseudo-orthonormal frame field e = (eg, eq, e3,e4) of E with Ve = ew giving
the orientation of E and both of @Qig are fully light-like.

Hence we obtain

THEOREM 9.3.  The following two conditions are equivalent:
(a) the covariant derivatives of both of Qi o are fully light-like;

(b) the connection form w = [w!] of V with respect to the frame field e = (e1, e2, €3, €4)
satisfies (9.4) and either (9.5), (9.6) or (9.7), (9.8) for functions f*, g* on R™
with dg* # 0.

REMARK 9.4. Based on Theorem 9.3, we see that each pair of almost =-
paracomplex structures of Ej giving sections Q4 5 of the two time-like twistor spaces
as in (a) in Theorem 9.3 is given by functions f*, g* on E§ with dg* # 0.

REMARK 9.5. Suppose that the covariant derivatives of €)1 o are fully light-like.
Then as was already seen, we have either w} = uw?, wi = pwi or w3 = pw?, Wi = pwt
for u € {4+,—}. The former (respectively, latter) case corresponds to (i) (respectively,
(ii)) in the last paragraph of Section 5.
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