Maximal Li-regularity for the linearized compressible
Navier-Stokes equations
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Abstract

In this paper, we consider the linearized compressible Navier-Stokes equations with non-
slip boundary conditions in the half space Rf . We prove the generation of a continuous
analytic semigroup associated with this compressible Stokes system with non-slip boundary
conditions in the half space Rf and its L; in time maximal regularity. We choose the
Besov space H;, = B;:‘;l(Rf) X B;T(Rf)N as an underlying space, where 1 < ¢ < oo,
1 <r<oo,and =14 1/g < s < 1/q. We prove the generation of a continuous analytic
semigroup {7T'(t)}:>0 on H;,, and show that its generator admits maximal L; regularity.
Our approach is to prove the existence of the resolvent in H7 ; and some new estimates for
the resolvent by using B;jl(Rf) X B;il” (RY) norms for some small o > 0 satisfying the
condition —1+1/¢g<s—o<s<s+o<1/q.

1 Introduction

Let RY := {z = (¢/,2n) € RY |2/ e RV"! 2y > 0}, N > 2, be the half space. In this paper,
we consider the following linear system:

Op+ydivu=0 in RY x (0,00),
du — alAu — BV divu+~Vp =0 in RY x (0,00), )
u=20 on ORY x (0, 00), '
(P7 u)(ovx) = (p(),ll()) in RJX
Here, p and u = (uyg, - -+ , uy) are unknown functions, while the initial datum (pg, ug) is assumed

to be given. Moreover, the coefficients «, £, and ~ are assumed to be constants such that o > 0,
a+ [ >0 and v > 0. The aim of this paper is to show the generation of a continuous analytic
semigroup associated with equations (1.1) and its L; in time maximal regularity property in
some Besov spaces.

The system (1.1) is the linearized system of the compressible Navier-Stokes equations with
homogeneous Dirichlet boundary conditions:

0o+ div(ov) =0 in RY x (0, 00),
0OV + (v-V)V) — pAv — (u+v)Vdivv + VP(p) =0 in RY x (0, 00), (1.2)
v=0 on ORY x (0,00), '

(0,v)(0,2) = (00,vo)  inRY,
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where p and v describe the unknown density and the velocity field of the compressible viscous
field, respectively, while the initial datum (gg, vo) is a pair of given functions. The coefficients
@ and v are assumed to satisfy the ellipticity conditions p > 0 and g + v > 0. In addition,
the pressure of the fluid P is a given smooth function with respect to o, which is assumed to
satisfy the stability condition P’(p,) > 0. Here, p, stands for the reference density that is a
positive constant, and the initial density gg is given as a perturbation from p,. As discussed in
[9, Sect. 8], the coefficients «, 8, and v are defined by o = pu/p«, B = v/p«, and v = /P’ (p),
respectively. Clearly, «, 8, and ~ satisfy the aforementioned given conditions.

There are a lot of results concerning the compressible Navier-Stokes equations (1.2). Let us
briefly summarize the results. Mathematical studies on the compressible Navier-Stokes equations
started with the uniqueness results in a bounded domain by Graffi [10], whose result is extended
by Serrin [25] in the sense that there is no assumption on the equation of state of the fluid. In the
studies [10] and [25], the fluid occupies a bounded domain surrounded by a smooth boundary.
A local in time existence theorem in Holder continuous spaces was first proved by Nash [24] and
Itaya [12,13], independently, for the whole space case. As for the boundary value problem case,
Tani [34] proved a local in time existence theorem in a similar setting provided that a (bounded
or unbounded) domain © has a smooth boundary. In Sobolev-Slobodetskii spaces, the local
existence was shown by Solonnikov [31], see also the work due to Danchin [5] for an improvement
of Solonnikov’s result. Matsumura and Nishida [19] made a breakthrough in proving a unique
global-in-time solution for the initial value problem of the compressible Navier-Stokes equations
for the multidimensional case. More precisely, Matsumura and Nishida [19] investigated the
system with heat-conductive effects in R? and proved the global existence theorem with the aid
of a local existence theorem together with a priori estimates for the solution. In particular,
the a priori estimates were established by a combination of the linear spectral theory and the
Lo-energy method. They also succeeded to prove the global existence result in the half space
and exterior domains cases with sufficiently small given data, see [20]. We here mention that
the rate of convergence (as t — 00) of the solution to the system, which is constructed in [20], is
established in [16] for the half space case and [14] for the exterior domains cases provided that
the initial data are close to the constant equilibrium state. We also refer to a recent work due
to Shibata and Enomoto [28] as well as Shibata [26] for some refinement of [16] in the sense that
the class of initial data (09 — p«, v) may be weakened. Notice that the approach of Shibata and
Enomoto [28] and Shibata [26] are completely different from Kawashita’s argument [15], where
Kawashita [15] also required less regularity on the initial conditions, in contrast to [19].

In the aforementioned works, the proof of the global existence theorem was mainly based on
the Lo-energy method (excluded the contribution due to Shibata [26]), but another approach
was established by Strohmer [33]. His idea was to rewrite the system in Lagrangian coordinates,
which is often said to be Lagrangian transformation. Thanks to this reformulation, the convec-
tion term in the density equation, namely g - Vv, may be dropped off, so that the transformed
system becomes the evolution equation of parabolic type, and he used the semigroup theory.
On the basis of a different approach, Mucha and Zajaczkowski [22] applied Ly-energy estimates
to show the global existence theorem in the L, in time and L, in space framework. Recently,
maximal L,-regularity approach was developed by Enomoto and Shibata [9], which extended
the result of Mucha and Zajaczkowski [22] in the sense that it was allowed to construct global
strong solution in the L, in time and L, in space framework. We emphasize that, on page 418
in [22], it was declared that there is no possibility to obtain a global existence theorem in the
L,-framework whenever we investigate the system in Eulerian coordinates, but this was wrong
if the domain 2 is a bounded smooth domain. In fact, Kotschote [17] constructed global strong
L,-solutions in Eulerian coordinates, without making use of transformation to Lagrangian coor-
dinates. For a list of relevant references of studies of the local or global existence theorem (for



classical or strong solutions), the readers may consult [28, Section 2| and references therein.

Recall that the Jacobian of Lagrange transformation is given by I + fot Vu(r,§) dr, where
u(r, &) stands for the velocity field of a fluid particle at time ¢ which was located in £ at initial time
t = 0. Hence, to obtain the global existence theorem with the aid of Lagrangian transformation,
it is always crucial to get a control of fg Vu(7,§) dr in a suitable norm. In particular, it is
necessary to find a small constant ¢ > 0 such that

H /Ot Vu(r,§) dr

which ensures that Lagrangian transformation is invertible. If the estimate (1.3) is stemmed
from an L, in time estimate for u with 1 < p < oo, then we may only expect to have a t-
dependent bound, if 2 is unbounded. Of course, as we mentioned before, it is still possible to
prove the global existence theorem even if the constant ¢ appearing in (1.3) depends on ¢, but
the proof becomes more involved.

Recently, Danchin and Tolksdorf [7] proved maximal L;-regularity estimate for u, which
implies that one may find a t-independent constant ¢ such that (1.3) is valid. Here, they studied
the system in the L; in time and B;; in space framework, where p and s are taken such that
1 <p<ooand s =—1+ N/p. Their function space is similar to the spaces used in [3,4],
but it was not necessary to consider homogeneous Besov spaces in [7], since it is well-known
that homogeneous Besov spaces B;yl(Q) coincide with inhomogeneous Besov spaces B]“j,l(Q) if
—1+1/p < s < 1/p and if the domain Q is bounded of class C?, see [6, Remark 2.2.1]. The
essential assumption in [7] is that the fluid domain is bounded, which is required to prove their
extension version of Da Prato-Grisvard theory [8].

We want to consider the viscous compressible fluid flow in general domains, which is described
in (1.2) when the fluid domain is Rﬂ\_[ . The L,-L4, 1 < p,q < oo, maximal regularity theorem
for (1.2) was constructed in the paper due to Enomoto-Shibata [9], but following this paper, we
want to construct the L;-B, ; maximal regularity theory for equations (1.2), where 1 < p < oo
and —1 +1/p < s < 1/p for the Stokes equations and 1 < p < oo and —1 + N/p < s < 1/p for
the Navier-Stokes equations.

We want to study the viscous barotropic compressible fluid flow in an unbounded domain in
an L; in time maximal regularity framework. Because, L in time maximal regularity is the best
framework to use the Lagrange transformation to solve the nonlinear problem. As a first step,
in this paper we establish the Lq- Z’l(Rf ) maximal regularity theorem in the half space ]Rf
with 1 <p <ooand —1+4 1/p < s < 1/p for equations (1.1), which is the model problem. The
local well-posedness of the nonlinear problem (1.2) is treated in another paper [18]. Although
there are several contributions toward this topic [7,9,17,33], we intend to study the problem in
the half space within inhomogeneous Besov spaces setting.

Before stating our main results, we introduce basical spaces in our paper as follows. Let
l1<g<oo,-1+1/g<s<1/qg,1<r<oo, ueR and Q€ {RN,R_]X}. Let Bl ,(2) denote
standard Besov spaces on (). Let

<g¢ (1.3)

(8
RN

@) x By (@)Y,
s+l (RN) Bs+2 (RN)N
{(p,v) € BS“(RN) x By (RN | v]gry = 0}, (1.4)

B
B,

(

(M
g
8

In addition, we introduce the operator A7, corresponding to equations (1.1) which is defined

)
)
)
(f:8)llag ) = fll gzt o) + 18l Bs ()
(f:8)

Ipg,) = 1 Fll g3 (o) + I8l 5252 ()



by setting
Aj-(psv) = (vdivv, —aAv — gV divv +9Vp) for (p,v) € D;,T(Rf)' (1.5)

Using Ay ,., equations (1.1) are written as

Be(p,u) + A5 (p,u) = (0,0) fort >0, (p,u)|—o = (po, wo) € Hy, (RY) (1.6)
for (p,u) with
(1) € C7[(0, 00), Hj, (BY) N €1 (0, 00), Hy,, (BY)) 1 C((0, 00), D, (BY)).
Our main results of this paper read as follows.

Theorem 1.1. Let 1 < g < oo, =1+ 1/g<s<1/q, and 1 <r < oo. Then, the operator A,
generates a continuous analytic semigroup {T(t)}i>0 on HE . (RY).
Moreover, there exists a large wg > 1 such that, for any w > wy and (pp,ug) € ngl(Rf),

[e.e]
| 10T m0) e sy + IO 50) )l < o0 0 g -

To prove Theorem 1.1, we consider the following resolvent problem:

M +ydiva=f  inRY,
Au— aAu— pgVdivu+Vp=g in Rﬁ, (1.7)

N
u=20 on ORY,
for A € A ,,. Here, A, is a subset of C defined as follows:

Ye={AeC\{0} | |arg\| <7 —¢€},

04 2 2 v 2
Kez{Aec\(ReH—ﬂ) + (Im\) z( —I—e) } (1.8)
a—+p «
Ay =KNEN{AeC| A >w}.
Remark 1.1. If one considers the inhomogeneous problem:

e(p,u) + A; (pu) = (F.G) fort >0, (p,u)li—o = (0,0) € A, (RY),

then one may infer from Theorem 1.1 that there holds

| e 0000l )+ 14510 Wl )it < € [ PG g

This estimate follows from the Duhamel principle and the estimate for the semigroup, that is,
by virtue of the Duhamel principle, the solution (p,u) to the inhomogeneous problem is given
by

t
() = [ Tt = )(F.G)(s)is.
0
Then,
t
0l a2y < C [ 1T = 9)(F. G5y e



Therefore, by Fubini’s theorem, change of variables (let ¢ — s = ¢) and Theorem 1.1, we have

| e ol @< [ T = )(F GOl i)t
<c [T T - E Gyt
<o [Te ([T rOr el @ d0ds
<0 [T IR G g s

We first prove the maximal Ly regularity for 0;T(t)(po, uo), and then by (1.6), the L; estimate
of A7, T(t)(po, o) follows, which is

le™ " AG 1 T () (0, )l 1y (0,00) 24z, ) < Clle™ T () (p0, 00) |, 0,000,782

Thus, we have the standard maximal L, regularity, which read as

> —wt s
/0 e (1T (t) (o, wo)ll3gs )y + [Aga T () (Pos o) llggs | wyy)dt < Cl[(po, w0)ll3gs  (rey):

Theorem 1.1 may be proved by real interpolation theorem with the help of the following
theorem.

Theorem 1.2. Let 1 <g<oo,1<r<oo, —1+1/¢g<s<1/q, and e € (0,7/2). Then, there
exists a large constant w > 0 such that for every X € Acy, and (f,g) € HS,(RY), there exists a
unique solution (p,u) € D;T(Rf) to (1.7) satisfying

1M Wy ) + Tl geszry < CICE @l )

Moreover, let o be a small positive number such that —14+1/qg < s—o < s < s+o < 1/q. Then,
there exist up, us € Bgﬁ(Rf)N such that u = u; 4+ uy and for any X € Ac,, there hold

g
||u1Hng:2(R$) < CIN72 Hg”ng;f’(Rf)a

Ha/\UIHB;ﬁ(Rf) < C’)"_(l_i)”gHBg;U(Rf)
for any g € CP(RY)N as well as

1(p, u2)||Dgyr(]Rf) < NI, g)Hszr(Rf)v
10z (p, w2)llps vy < CIAT2N(S: &)l )

for any (f,g) € Hj, (RY).

Remark 1.2. The conditions 1 < ¢ < 00, 1 < r < oo and -1+ 1/q < s < 1/q assure that
C°(9) is a dense subset of By .(Q) for 2 € {RN RY}. This fact is an important point for our
analysis in this paper. For a proof of this fact, refer to [35, Theorems 2.9.3 and 2.10.3].

The rest of this paper is unfold as follows. In the next section, we recall the notation of
functional spaces. Then, in Sect. 3, we prove boundedness properties of integral operators that
will appear in the solution formula for (1.7) given in Sect. 4. Finally, in Section 5 Theorem
1.2 will be proved in the RY case and in Sect. 6, Theorem 1.2 is proved in the half space case.
Finally, in Sect. 7, we shall prove Theorem 1.1.



2 Preliminaries

2.1 Notation

Let us fix the symbols in this paper. Let R, N, and C be the set of all real, natural, complex
numbers, respectively, while let Z be the set of all integers. Moreover, K stands for either R or
C. Set Ny := NU {0}.

For N € N and a Banach space X, let S(RY; X) be the Schwartz class of X-valued rapidly
decreasing functions on RY. We denote S'(R"; X) by the space of X-valued tempered distri-
butions, which means the set of all continuous linear mappings from S (RN ) to X. For N € N,
we define the Fourier transform f +— F[f] from S(RV; X) onto itself and its inverse as

FNO = [ e =idn Fllal) = ey [ o e

respectively. In addition, we define the partial Fourier transform F'[f(-,zn)] = f(¢,xn) and
partial inverse Fourier transform ]-'57 U by

FICan)]E) = f(E€ an) = / (! on)e ™ dat,

RN-1
1 et
—1 . AN / iz’ d/
]:5’ [g( 7$N)](:E) (27_[_)1\],1 /Rng(g,xN)e 57
where we have set 2’ = (z1,--- ,xy_1) € RVt and & = (&, ,&én_1) € RV~ For N > 2,

we set (f, g)Rf = fRf f(z) - g(z) dx for N-vector functions f and g on Rf, where we will write
(f,g) = (f, g)Rﬁ for short if there is no confusion. For a Banach space X, || - ||x denotes
its norm. For Banach spaces X and Y, X x Y denotes the product of X and Y, that is
X xY ={(z,y) | z € X, y € Y}, while || - || xxy denotes its norm. X < Y means that
X is continuously imbedded into Y, that is X C Y and ||z||y < C||lz||x with some constant
C. For any interpolation couple (X,Y’) of Banach spaces X and Y, the operations (X,Y) —
(X,Y)gp and (X,Y) — (X,Y)g are called the real interpolation functor for each 6 € (0,1) and
p € [1,00] and the complex interpolation functor for each 6 € (0, 1), respectively. By C' > 0
we will often denote a generic constant that does not depend on the quantities at stake. For
differentiation with respect to space variables = (z1,...,zy), D?f := 00f = 8|5|f/81“i1
836‘]5\1/\’ for multi-index 6 = (d1,...,dx) with [§| = 1 + -+ + dn. For the notational simplicity, we
write V.f = {03 f | 0] = 1}, V2f = {02 [ 16| = 2}, Vf = (f,V[), and V2[ = (f, V[, V2[).

2.2 Function spaces on RY

Let us recall the definitions of Bessel potential spaces and inhomogeneous Besov spaces. In the
following, let s € N and p € (1,00). Bessel potential spaces H, (RN) are defined as the set of all
f € S'(RY) such that Hf||H5(RN) < 00, where the norm || - HHZ(RN) is defined by

Ly(RN)

I gy = || [+ I EFLA©)]|

It is well-known that, if s = m € Ny, then H, (RN) coincides with the classical Sobolev space
W:”(RN), see, e.g., [1, Theorem 3.7].

To define inhomogeneous Besov spaces, we need to introduce Littlewood-Paley decomposi-
tion. Let ¢ € S(RY) with supp¢ = {¢£ € RY | 1/2 < [¢| < 2} such that Y, ., #(27%¢) =1 for
all £ € RV \ {0}. Then, define

o= F0Q27rO) kez,  Fl=1-) ¢(27%). (2.1)

keN



For 1 < p,q < oo and s € R we denote

q\ /4 .
o Tz + (0 (24100 fliyn)') - ir1<a <o
£l B3, ) == keN (2.2)
19 fllL, @~y + sup (28k”¢k*f||Lp(RN)> if ¢ = oc.
keN

Here, f * g means the convolution between f and g. Then inhomogeneous Besov spaces B;CI(RN )
are defined as the sets of all f € S’(RY) such that ||fHBg JRY) < 0.

It is well-known that B;,q(RN ) may be characterized by means of real interpolation. In fact,
for —co < 59 <81 <00, 1 <p<oo,1<g<oo,and 0 <0 <1, it follows that

Byt ®N) = (3 RY), Hy (RY)),

q

cf. [23, Theorem 8], [36, Theorem 2.4.2].

2.3 Function spaces on RY

Let D’ (]Rf ) be the collection of all complex-valued distributions on ]Rf . Let se R, p e (1,00),
and g € [1,00]. Then for any X € {H,, B; .}, the space X (RY) is the collection of all f € D'(RY)
such that there exists a function g € X (R"V) with g|R$ = f. Moreover, the norm of f € X (Rf )
is given by

||f||X(Rf) = iang”X(RN)a

where the infimum is taken over all g € X (RY) such that its restriction g‘Rf coincides in D'(RY)
with f. We also define L
Xo(RY) := {f € X(RY) | supp f C RY}.
Clearly, we always have Xo(RY) — X (RY).
According to [35, Section 2.9], for s € R, p € (1,00), and ¢ € [1,00), we have the following
density result:
Here, X (RY) and Xo(RY) may coincide if one restricts s such that —1 +1/p < s < 1/p.

Proposition 2.1. Let 1 < p < o0, 1 < g < o0, and =1+ 1/p < s < 1/p. Then H;(Rf) =

H5o(RY) as well as By (RY) = B o(RY).

Finally, let us mention duality results. If one considers function spaces on RY, then it
follows that (H3(RY)) = HI;S(RN) and (Bj  (RY)) = B};fq/(RN) for all s € R, p € (1,00),
and ¢ € [1,00), where p’ and ¢’ stand for the Holder conjugate of p and ¢, respectively. Indeed,
these proofs may be found in [23, Sect. 6], [36, Theorem 2.11.2]. However, if one considers
function spaces on RY, one has to pay attention to discuss the dual of function spaces due to
the existence of the boundary 8Rf . Let us summarize the duality results and real interpolation
functors for the half space case.

Proposition 2.2. Let p € (1,00). Then the following assertions are valid.

(1) For s € R, there holds
(Hyo(RY)) = Hy*(RY).

(2) For —oo < s < 1/p, there holds

(Hy(RY)) = H,5(RY).

7



(3) For —oco<sy< s <00, l<p<oo,1<qg<o0,and0<68<1, there holds

By 0-On ) = (@Y, 1 ®Y)),,

Proof. For proofs of (1) and (2), refer to [35, Section 2.10], and for a proof of (3), refer to
[23, Theorem 8, Theorem 11}, [35, Theorem 1.2.4]. d

2.4 Class of multipliers

Let U be a domain in C. Let m()\,¢') be a function defined on U x (RV~1\ {0}) which is
holomorphic in A € U and infinitely many times differentiable with respect to & € RN=1\ {0}.
If there exists a real number x such that for any multi-index ¢’ € Névfl and (A, ¢’) € ez, X
(RN=1\ {0}) there hold the estimate

’Dg:’m()\,gl) < Cy (|/\‘1/2 n K,,)H—\&’\

for some constant Cg depending on ¢, then m(\, ¢’) is called a multiplier of order x with type
M, (U).

Obviously, for any m; € My, (U) (i = 1,2), we see that mimg € M, 44, (U). Notice that
€2 € M2(C) and &; € M;(C), but any functions of |¢’| is usually not in M, (U) for any & and
U.

2.5 Interpolation of small /7 spaces of vector-valued sequences

Let X be a Banach space, and (a, )72, be a sequence in X. For s € R, the norm | - [|gs(x) is
defined by
1
e q
< > (stllau\lx)q> (1<g<o0),
[(@)lles(x) = § \ve—oo
sup2”*[a, |l x (4= o),
VEZ
where

(X)) = {(@)pZco | lawllgsx) < o0}

Theorem 2.3. [2, Theorem 5.6.1]. Assume that 1 < gy < 00, 1 < q1 < 0o and that sy # 1.

Then we have, for all 1 < g < oo
g1

(5 (X), 61(X)) g, = £5(X)

where s = (1 — 0)sg + Os;.

3 Technical tools

We know the following three lemmas due to Enomoto-Shibata [9, Lemma 3.1].

Lemma 3.1. Let 0 < € < /2 and vy > 0. Let ¥ and A, be the sets defined in (1.8). Then,
we have the following assertions.

(1) For any A € % and &€ € RN, there holds

o™ A+ [ > (sin(e/2)) (@™ A + [€[%).



(2) Let p(A) = (a + nx)"1A, where gy = B+ ¥2A"L. For any vy > 0 there exist constants
¢ € (0,7/2) and ¢ > 0 depending solely on € and vy such that for any X € Ac,, and
£ € RN, there hold

largp(A)] <7 — ¢, [p(N) + €7 = e (A + [¢).
(3) There exists a constant ca > 0 depending solely on a,  and € such that for any A € %,
there holds |oc + x| > ca.

By Lemma 3.1, we have the following multiplier estimates which is used to estimate solution
formulas in RV,

Lemma 3.2. Let 0 < e < 7/2, vg >0 and s € R. Let ¥ and A.,, be the sets defined in (1.8).
Then, for any § € N} there hold

DI (e A+ IE1P)*] < Cs (A2 + ¢
for any (X, €) € 2 x (RN /{0}) as well as
IDI(p(N) + [€1)°] < Co(IA* + ¢l

for any (X, &) € Acy X (RN /{0}), where p(\) = (a +nx) "X and gy = B+ 2171

et
; A=+pN)+1¢?, B=+vVaIX\+[¢]?, K= (a+n)A+aB,
e—ATN _ o—Bry (3.1)
A-B
These symbols appear in the solution formula (4.7) below. We know the following multiplier’s
estimates.

M(zy) =

Lemma 3.3. Let 0 < € < /2, vg > 0 and s € R. Then, for any multi-index §' € Névfl there
hold
IDEM| < o (A2 + J¢ )

for any (A, &) € Acyy x (RN71/{0}), where M € {A, B, K}.
Using Lemma 3.3 we have the following lemma.

Lemma 3.4. Let0 < e < 7/2,19 >0, s € R, and xy > 0. Then, for any multi-index &' € Név_l
and X € A, , there hold
[Dge™MN] < Cy (N7 + [y~ e Wi D, (3.2)
D (BM(an))| < Cy (A + |¢/)) e NE 1D (33)
with some positive constant ¢, where M € {A, B}.
Proof. For any 6 € [0,1], by Bell’s formula we have
|Dg:€—((l—0)A+GB)LL‘N|

6]
< Cp Yy alyle” =04 (ST DU (1= 0) A+ 0B)| -+ [D%((1 - 9)A+0B))).

. / v
=1 8+ tb)=0
|6p1>1



Using Lemma 3.3, there exists a constant ¢ > 0 such that
‘6_((1_9)A+93)IN)| < o 2N HE N

Therefore, we have

‘Dgl’e—((l—G)AJrf)B)wN‘ < Cy(IAY? + |§/’)—|5/|6—C(|M1/2+|§/|)$N. (3.4)
Therefore, setting # = 0 or # = 1, we have (3.2).
We write .
BM(zy) = B.CUN/ e~ (1=0)A+0B)zN) g,
0
Applying (3.4) and Lemma 3.3 implies (3.3). This completes the proof of Lemma 3.4. O

In this section, we record the following proposition, which plays a crucial role in the proof
of Theorem 1.2.

Proposition 3.5. Let 1 < ¢ < 00, € € (0,7/2), Ao > 0, and X\ € A \,. Suppose that mg € M.
Define the integral operators L;, i =1,--- ,6, by the formula:

LS = [ 7 [moln )8 Man) M) £ )] o) i,
LS = [T 7 [mon B Mln)e )] @) do
Lif = [ ! [molh ) B Man)e B g )] o) d

Las(\) f = /O Fot [mor &) B2 A Myw) F(€yw) | (') dy,

LsS = [ 7! [man €08 B M) £ (€ o) @)

LS = [ 7 [mon€)Be e (e )] o)

respectively, where (J, Q) stands for an element of {(A, A), (A, B), (B, A), (B, B)} in the formula
of Ls. Then for every f € Ly(R ), it holds

ILi)fll Ly < Callfllp,myy (0= 1,2,3,4,5,6).

Proposition 3.6. Let 1 < ¢ < o0, € € (0,7/2), Ao > 0, and X\ € A \,. Suppose that mg € M.
Define the integral operators P;, i =1,--- ,6, by the formula:

PIV)f = /0 T o0 €) B0y (B M) M) € um)] (o) dy,
Py(\)f = /0 TR mo(,€)B20x (B2 M(zx)e™ ) f(€'yn)| (') dyw.
POVS = [ 75" [mon€)B20n (B*Mlax)e ™) F(€' )] () du.

PyN)f = /Ooo Fo! :mo(>\7§')32ax (B%e™ 4" M(yn)) f(f',yN): (z") dyn,

Ps(A\)f = /Ooo Fot :mo(A7§')323A (B%e~ 5™ M(yn)) f(€'7yN): (z') dyn,

Ps(\) f = /OOO Fa :77”00(%,5’)326A (Be~ex e~Qux) f(f’,yzv)} (") dyn,
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respectively, where (J, Q) stands for an element of {(A, A), (A, B), (B, A), (B, B)} in the formula
of Ps. Then for every f € Ly(RY), it holds

1PNl Ly @yy < Call fllz,myy (0=1,2,3,4,5,6).
To show Proposition 3.5, we need the following propositions.
Proposition 3.7. [32, A.3 p.271]. Let 1 < g < oo. Define the integral operator G by the

formula: )
[ flyn
Gf(zn) —/0 P dyn -

Then, for every f € Lqy(0,00) there exists a constant Ay such that

G Ly((0,00)) < Agll fllLy((0,00))-

Proposition 3.8. [29, Theorem 2.3]. Let X be a Banach space, o be a real number satisfying
0 <o <1, and m be a nonnegative integer. Set ( = m + o — (N —1). In addition, let {(c) be
an integer part of o. Suppose that a function f(€') € CHHO)(RN=1\ {0}), X) satisfies the
following conditions:

(1) For every &' € NN~ satisfying |8'| < m, it holds D% f(&') € Li(RN~1, X).

(2) For every &' € N1 satisfying |6'| < m + 1+ £(0), there exists a constant Cs such that
IDEF(E)llx < Cole/| for all ¢ € RN\ {0}.

Then, there exists a constant Cn ¢ depending on N and ¢ such that

H}-Tl[f](x/)HX < CN,Q <|5’|<717£1+1X+£( ) 7) |.’L'/‘_N_1+<’ (.’E/ c RN—I \ {0})

Proof of Proposition 3.5. Here, we only consider the estimate for L;(A)f, since the others may
be proved in a similar way. First, we rewrite B as

B2 )\1/2 L |§/|
- _ 4 /2 1S 1ygr
5 A+ 5 [
We set my(\, €') = mo(\, €)AY2B~1 and mZ(\, &) = mo(\, €)|€|B~". Define

B =

EPWf = [ FG [mhO N B M) M) F€ )] &) di,
L0 = /0 Fo' [m3On€)Ig 1B M@n)Mum)F(E yn)| @) dyy.
Since for all ¢ € N)'~! we have

_|5l‘ ! Y
<Cy (INV2+1¢1) ", |DEm3(A€)| < Colé 17 (3.5)

DEmi(A,€)

as well as
y ’\
[DEBM()| < Cpe D (1312 1 jg/))
6]

“
’D?BM(yN) < Cgre— (N2 +HE Dyn ( 1/2+|§,‘)_
~ 15"

D% B| < oy (N2 +1€)’

11



as follows from Lemma 3.4, we see that

! 7|5/| /
|DE (mb(\ N2 B2M(an) M(yw) ) | < ColNY2 (A2 4 [¢]) e RN o),
(3.6)
By virtue of the identity:

we may write

=

Fg' [mb NS B M(n) M) | ()
AN
S (i) ot 5/) b\ €N BEM () M) d€’

1
-~ (2m) /]sz_l (5/N

5/ !/ ’
= N Z (7]| /’2> /RN 1 m: éDg/ (m(l)()\,5'))\1/232/\/1(561\/)/\/1(3/1\/)) dfl

|6"|=N

Hence, we obtain
-N
7t [ N M Maum)| )] < Y [N (I ) g
RN-1
By changing of variables & = |A\|'/21/, it follows that

/ Y2 (A2 4 je) T de = / (1+1n'l) ™" dnf < oc.
RN-1 RN-1
Therefore, we have
‘ [mo A €) A1/2BQM(xN>M(yN)} (x’)‘ < Cl/|V. (3.7)
In addition, if we take ¢’ = 0 in (3.6), it follows that

Fat [mbO €N B M) M) ()

<cC |)\|1/26’(0/2)(\)‘|1/2+|€'\)(xNerN) de’

RN-1

C / A2 /
(v +yn)N Jry— (|)\|1/2+ \g/y)N

C N
— 1 / d/
[CRESTOL /RNI( +n']) " dn,

which together with (3.7) implies
’ Hmb O €N B M) M(yw)| (x’)( <O (2| +an +un) V. (3.8)

To shorten notation, set £(z') := .7-"5, (MmN, EVN2B2 M (zn) M(yn)] (2). ThenL J(A)f may
be bounded by

LS ) f 1Ly v S/O 165 (s yn)llz, my-1) dyn

< [T Wl o)y d
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Then (3.8) together with changing of variables ' = (zy + yn )2’ yields

C
o [
H ||L1(RN 1) RN-1 (|x/’+$N+yN)N

dz’

C / 1 ,
= ~ dz.
TN+ YN Jry-1 (14 |2])

Thus, we observe

) /°° 1FCyn) i, -1y
Li7 (A 1y <C d 3.9
IO gy < € [ F (39)
From Proposition 3.7 and (3.9), we have
(1)
1L ey
< C’/Oo 1fC s yn) i, -1y dyn
o (@N +yn) Lg((0,00))
.
< Gy |Gl fll L, @mn—1) L ((000)
< Coll Fll -
It remains to establish the estimate for LgQ)()\). In a similar way as in (3.6), we obtain
DY (B2 M(an) M(yv))|
< Oy e+ Doy o= (e/2) (N2 +€ N (WW n ,§/|)"5"
< Cye= (/DN 2HE D a+un) 1|16
Moreover, by (3.5),, we have
|DE (m3(n €| < ol 1,
which yields
|DE (mB(\ €)' BM(@n) M(yw)) | < Cole/ |17/ D@+ (3.10)
By (3.10) and Proposition 3.8 we obtain
Fa 3¢ IB2M(en) Myw))] (@) < Cla| Y. (3.11)
By (3.10) we also obtain
/ e m(\ e BEM(an)M () €| < © / ¢/l (/DI Nan ) i
RN-1 RN-1
¢ Ne—(e/2In'] gy
- v e &,
v L] .
where we have replaced 1’ by &'(zn + yn) =n'. Thus, we have
- C
3t [ I B M(zn) M) ()] € ——. (312)
(zn +yn)
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From (3.11) and (3.12), we deduce that

— C
Fot O €)1 B M) M) ()] < — .
(J2'| + x5 +yn)
In a similar way as in (3.9), we arrive at
(2) ee ”f('ayN)”Lq(RN—l)
L 1y <
POy < € [ S gy

which together with Proposition 3.7 implies that LEZ) is a bounded linear operator on L, (RY).
The proof is complete. ]

Proof of Proposition 3.6. Here, we only consider the estimate for P;(A)f and P5(\)f, since the
others may be proved in a similar way. First, by Taylor formula, we obtain

1
M(zx) = zn / o~ (A+0(B—A)ay gg.
0

Thus, we have
1
WM (zy) = —z% / (OzA + (5B — 9y A)f)e~ ATOB=D)zn gg.
0

Since we know that 0\B = 1/2aB, 0yA = p/(\)/2A, and [p'(A)| < C for A € A, ),, using Lemma
3.1 with s = —1, we see that for any ¢’ € NJ'~*

IDE(B20\M(an))| < Cyaky (N2 + [¢/]) 2717 e 2N A1 Dax o)
< C (N2 + |¢)) 18 emeA 2 e Dan ‘

with some positive constants Cy and c. Here and in the following ¢ denotes a constant indepen-
dent of §’. Writing

BOA(B*M(zn)M(yn)) = 3B*(0rB)M(xn)M(yn) + BH (M (2n)) M(yn)
+ B*M(zn)(0sM(yn)),

and using Lemma 3.4 and (3.13), we see that for any ¢ € N}~
/ 18l —e / N
‘Dg/ (Ba,\(B3M(1:N)M(yN)))‘ < Oy (A + €)1 le=elA 2 HE DN +un)

By the similar method as Proposition 3.5, we can derive ||P1()‘)f||Lq(Rf) < C\|f||Lq(R§).
As for P5(\)f, writing Oye 47~ = —(9y\A)xye 4%V, using Lemma 3.4, we see that for any
& e NJ'H
DY B2(9he~AN)| < CemcAHE DN (3.14)
with some positive constants Cs and c¢. Writing
Bo\(B2e "N M(yn)) = 2B*(0\B)e 4™ M(yn) — B¥(Ore *M)M(zn)
+ B3e AN (M (yn))

using (3.13), (3.14) and Lemma 3.4, we see that for any &' € NJ' ™!,

’ _|5l| !
D (Bos(B2 ¥ M(yn)))| < G (INV2 1) el 2 Dan

with some positive constants Cy and ¢. By the similar method as Proposition 3.5 again, we can
derive ||P5()\)fHLq(R$) < CHfHLq(Rf)- The proof is completed. O
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4 Solution formula

In this section, we shall discuss solution formulas of equations (1.7). From the first equation in
(1.7), we have p = A™1(f — ydivu), and inserting this formula into the second equation in (1.7)
implies the complex Lamé equations

Au—aAu—mVdivu=g—y\"'Vf in Rﬁ, U—‘aRf =0. (4.1)

Here, we have set ny = 8+ v2A~L

If we find a solution u of equations (4.1) and if we set p = A™'(f — ydivu), then p and u
are solutions of equations (1.7). Thus, in this section, we shall drive solution formulas of the
complex Lamé equations

Au—aAu—Vdivu=g inRY, ulypy = 0. (4.2)

4.1 Whole space case

For e € (0,m/2) and X9 > 0 let A € Ay, be the resolvent parameter, where \g is assumed to
be sufficiently large if necessary. In this subsection, we derive the representation of the solution
formula for the following model problem in R :

M —aAu—pVdivu=g inRY, (4.3)

where g € B;l(RN)N, with 1 < ¢ < oo and —14 1/¢ < s < 1/q. Applying the divergence to
equation (4.3) yields
Adivu — (a +ny\)Adiva =divg in RY. (4.4)

Applying Fourier transform to (4.4) yields
A+ (a + ) [€7) Fldivu] (€) = i€ - Flg] ()
Applying Fourier transform to equation (4.3) yields
(A + al¢l?)a — g Fldivu] = g.

Thus,
(&) = A+ alg?) N () + mai (A + (a+m)[¢[*) 7 hig - g(€))
8O, om0
Atalf? (A4 al€P)(A+ (a+m)IEP)
18 m (i€ ® i€)g(€)
aa A+ 5 ala+m) (@ ]A+[ER) () + [€2)
where we have set
() = A A2
b Catm (a+ BN+
Applying the Fourier inverse transform implies that
aalse | et [ €eos©
Atalf?| (a+B)A+7? A+ al€l?)(p(N) +[€17) |
Thus, for the later use, we define an operator So(\) by
o _ 1| _8E | B (E®98(9)
S e =75 a\fP] @+ A2 | Br e + 16D | o)

which is a solution operator of equation (4.3).
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4.2 Half space case

Let € € (0,7/2) and vy > 0. Let 79 > 0 be a large number such that X, 4+~ C K.NX.N{A € C|
|A| > v0}. In this subsection, we derive the representation of the solution formula for equations
(4.2). To this end, we extend g = (g1,--- ,gn) by

. gj(z) forxny >0, gn () for zy > 0,
() = , gy () = )
gij(z', —xnN) for xy <0, —gn(2', —xN) for zn < 0.

Here and in the sequel j and k run from 1 through N —1. We now set G := (97, -+ , 9% _1, 9%)-
Let u be a solution of equations (4.2) and let w = u — S°(\)G, and then w should satisfy the
equations

AW — aAw -\ Vdivw =0 in RY, W|3R§ = —SO(A)G]aRf. (4.6)

In view of (4.5), we may have

G A+ 72 G
SO()\)G —_ ]:-—1 (5) - - /8 + - —1 (5 @2) 5) (g) =~
A+ alg] (a+B)A+~ (A + al€l?)(p(A) + [€]%)
Let w = (w1,...,wy), and we shall investigate the formula of the partial Fourier transform

F'lw;](¢,xn) of wj. Applying the partial Fourier transform F’ to equations (4.6), we have the
ordinary differential equations in x variable, which reads as

(A + o€ ) FTwj](2n) — a0 F'lwj](2n)

—mi&; (i - F'[w](zn) + OnF'[wy](zn)) =0, for x> 0,
A+ al¢' ) F'lwn](zn) — ad} F'lwn](zy)
— n)\aN(if/ . f’[wl](ZCN) + 8]\[.7:/[1111\[](33]\[)) = O, for TN > 0,

F'Iw](0) = —F'[S°(N)G](0).

Here, we have set F'[f](¢', zn) = F'[f](zn), i’ - F/[W](zn) = S0 & F [wj](zw).

To obtain F'[w;](¢',zn), first we derive the representation of F'[S°(A\)G](0). Notice that
F[S"(NGI(0)
_11 GO
Ca2m Jg Aol 4 [€)?

B A+ 1 / (@G
a((a+ BN +72) 2r Jp Qo=+ € (0N +[EP)

Notice that o'\ + [£]? = (éx 4+ iB)(Enx — iB) and p(\) + [£]? = (éx +iA)(En — iA). By the
residue theorem in the theory of one complex variable, we have

. 1 95(€)
hii= o /R ot e v

Y e , 1 e~ WYNEN | oWYNEN
:2/0 f[gj](£7yN)(2m/R(5N+iB)(€N—iB) dgN) dyn

, Oo‘]:/ / eTivb e D d
—Z/O [gj](&yzv)(— 5B " 2B ) N
o0 e—yNB , /
— —F [9;1(€", yn) dyn;
0

N o Jp a4 €2

dény — dén.

dén
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—YNEN _ olUNEN
/ F'lgn](€, yN)<271”/ (§N—yHB)(§Ny— )d§N> dyn

) , e~ UNB  o—ynB g
=i [ Flanle ) (S~ ) Ao =0

Likewise, for each 1 < j,k < N — 1, we also have

h(2) _ i fj&kgli(f) d
T 0 o It D) (O + )

1 e WNEN eWNEN
—Z/ fgfk]‘- gk](f yN)( / (A2+§]2v)(32+§12\7)

déy ) dyw

21
—ynB e~ YNA

. / / ) e
0, o—Ayn —Byn &€ ) )
:/0 (6 A : B )BZJ_kAQ‘F[gk](évyN)dyN;

while for each 1 < j < N — 1, we obtain

h(~2) _ i §]§N97\7( ) d¢
N %/ (@ A+ [EP)(p() + [€P2 > o
/ 1 e~ WNEN _ elyNiN)
_7,/ ]: gN 5 ?JN J(? A2+£N (BZ"’&N) dgN) dyn
, e yNB(— e BN (iB)
/ Fllgn)(€ yn fj( 2’LB) (AQ — B?)(2iB)

*AyN( 1A) *AyN (zA)
(B2 - A42)(=2iA)  (B? — A2)(2iA)

[ e AYN _ o~ Byn / /
N Z/o A2 — B2 §F [gn](€ yn) dyn .

) dyn

In addition, for the case 1 < j < N — 1 we see that

@ _ 1 ENERIL(E)
h ‘%/( I ) (o) + 6P
1

, é"N(e*infN 4 einﬁN)
=i [Pl s (o [ e e )
S

[ e e B (~iB) e B (i)
= Z/o F [gk] (5 ,yN)fk - A2 _ Bz)(—QiB) (A2 _ B2)(2iB)
e~ Aun (—iA) e (i4)

(B2 - A2)(=2i4) (B - A2)(2z’A)) N

as well as

2 _ 1 g% (€)
Wiv =5 /. @1 RN T 1ep)
, 1 52 —lyNEN_elyNEN)
/FgNéyN<2 fNJ“LXQ(&VJFB%)yN
e yNB ZB _ByN(iB)2
( (—2iB) (A2 — B2)(2iB)

/ F'lgn](€ yn
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e AN (—jA)? e AUN (1A)?
(B2 — A2)(—2iA) (B2 — A2>(2iA)) 4

=0.
We write
(e—AyN - e_ByN> L M) e e AN —em B M(yw)
A B — A2 A(A+B) AB(A+B)’ A2 B2 A+ B’

Let h;j be the j-th component of —F'[S°(A\)G](0), and then we have

N
(1 BA+9? )
7 allat BN +?) = ik

_B/ Fllg1(€,yn)e VB dyy
0

BA+7 > pg ] ,
Sy M) (S G ) il
N—-1

BA+ v /°° _B € §k
+ A § Sk 7| dyn,
a((@+Br+12) Jo € A+B "~ A l9x] (&', yn) dyn

for j=1,...,N —1and hy = 0. According to [9, (4.9)], we have
. A
./T“/[’wj](fl,x]v) = hjeiBmN - Z&%M(xN)'lfl ’ h/, }-/[wN](gla :I;N) = %M(xN)'lf/ ’ h/a
where K = (a+n)\)A+ aB and i’ - b/ = Z;V:_ll i&h;j.

We calculate the right hand side. For notational simplicity, we write F'[g;](¢, yn) = F'[g;],
namely, (¢, yy) is omitted. We have

hoe [T

A+ &% o i
a((a+ B)A +1?) / M) ;(A+B)A~F[9k]_A+Bf[gN])dyN
B)\—F’YQ > eiByN N-1 lgjgk . '

o
—_

—1 [ ¢~ Byn
S / 5 i€ Flgle P dyy
(67

N 1 /12 /12

((a—l—ﬁ)\—l-V :lz(A—l-B)A A+B
- 5 / & ST rig,) dyw.
a((a+ )X+ +?) B — (A+B)A
Thus, we have
o0 1
Flusl¢an) = [ B v B plg gy
0 OZB
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N-1

> —Bzxy /8)\+’72 3193 / i /
—/0 B2 B M(yN)a((aJrﬁ))\Jrfy )(Zl (AJFB)ABz-F[gk]—m}— lgn]) dyn

* —B(zn+yn) BA + 72 Zgjgk !
+/0 Ber a((oH—B))\—i—'y)z:l(A—i—B)AB?]:[gk]dyN

N-1

* o —Byszjn/\ 1 T A
+ [T B M B R i P dy

o0 N-1 /
_/ B?)M(I'N)M(y]\[)gjn/\ 6)\+'7 Z A ‘§| é.k ]:/[gk;]

0 K a((a+ B8)X+~?) — + B)AB3
(A+ B)p3~ WNVAUN
g e B S P
+/0 BMGav)e 7T a((a+ B)A+2) Z: (A+ B)AB? Flon)dyn,
o0 Any 1
Flunl(€'an) = = [ BMay)e P R i g dy
~ Ap B+ N E€Pa
+ [ B M) Ml G2 S s S e pam
/112
- (AE|B)B3]:/[QN])dyN
o —Byx A BA+ 2 = P ,
/0 B Mlen)e o e+ Ar T ) Z (A+ Byaps” 19Kl dun: (47)

=1

5 Estimates of solution operators in the whole space

In this section, we shall estimate the solution operator S°()\) defined in (4.5). To this end, we use
the Fourier multiplier theorem of Mihlin-Hérmander type [11,21]. Let m(&) be a complex-valued
function defined on RY \ {0} which satisfies the multiplier conditions:

[DEm(€)] < Csl¢| ™" (5.1)

for any multi-index § € NY with some constant Cs depending on §. We say that m(¢) is a
multiplier. Then, the Fourier multiplier operator with kernel function m(&) is defined by

Tf = F (O FIE) = g [ e mOFA© & for fSEY. (2)

2m)N Jrw
Then, we have the following theorem called the Fourier multiplier theorem.

Theorem 5.1. Let 1 < g < oo and m(§) be a multiplier. Then, the Fourier multiplier T,, is an
Lq(RN ) bounded operator, that is there exists a constant depending on q and N such that

T < .
| f”Lq(RN) = C(|5|§I[I]l\?/)§]+1 C6)Hf||Lq(RN)

Here, [N/2] denotes the integer part of N/2.
T, is extended uniquely to an operator on Lq(RN), which is also written by T, .

To estimate solution operators, we use the following lemma.
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Lemma 5.2. Let 1 <g< oo, 1 <r <oo and s, o be two real numbers. Let m(§) be a complex
valued C™ function defined on RN \ {0} satisfying (5.1) and let Ty, be an operator defined by
(5.2). Then, for any f € B;T(RN), there holds

HTmeBST(RN) < CS,q,r( Cé)HfHBST(RN)-
a, q,

max
6] <[N/2]+1
Here, C,, are constants appearing in (5.1).

Moreover, let

<D>7f=F 1+ FIA) = (2;>N /[R T EEFIAE) de.

Then,
| <D >° f”B;yT(RN) < C\‘f‘|3;¢G(RN)‘ (5.3)

Proof. Let 1, ¢, and ¢ be functions given in (2.1). Since m satisfies the condition (5.1), by
Theorem 5.1 we have

19 % T fll vy = I1F5 (€ FLAUE | L, vy < CDIFE T (EFFUEN Ly

where D = max|5/<[n/2+1 Cs. Likewise, we have

16 * T f |y vy = 1F¢ [m(€) () FIFIEN Loy < CDIFE SO F AN )

Thus, from the definition (2.2) we have
[T fll s, wvy < CD|fl s, &)-

~ To prove (5.3), we choose two C°(RYN) functions ¢ and 1 such that ¢(¢) = 1 on supp b,
¥(€) =1 on supp ¢, and ¢ vanishes outside of {& € RN | 1/4 < |¢] < 4}. We see that

g

DL+ [€%)59)| < Cslel 7,
[DE277F((L+[€P) 2 o(27¢))| < Cslé| ™"

for any multi-index 6 € NY. By Theorem 5.1, we have

I < D> fllp,@ny = IFHFRIEQ + 1€ FHEF I Ly
< Coll FHFNEFIANEN Loy = Collto * flly@ny.

Likewise,

2| < D >7 fllp mvy = 27278 | F T F o] (€) (1 + [€1%) 5 27F 3275 F AU oy vy
< Co2 R FUF (o (O F LU 1,y vy = Co2F g % £l 1, (mv)-

Thus, from the definition (2.2) we have
| <D >° fHB;VT(RN) < CJHfHBﬁ”(RN)-
This completes the proof of Lemma 5.2. O

Now, we shall prove the following theorem which is a main result of this section.
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Theorem 5.3. Let 1 < g< oo, 1 <r<oo, —1+1/g<s5<1/q, and e € (0,7/2). Let S°()\)
be the operator defined in (4.5). Then, there exists a large constant wg > 0 such that for any
AE Xew, and g € Bgﬁr(]RN)N, there hold

IO A29, V)8 (Vg s vy < Cllgllps, @v)- (5.4)
H(/\>Al/QV?Vz)aASO()\)gHBg,T(RN) < C‘)“_lugHBgm(RN)' (5.5)

Moreover, let o > 0 be a small number such that —14+1/qg<s—o0 <s<s+o < 1/q. Then,
there exist a large number wy > wo and two operators T (A\) and TL(\) which are holomorphic
on Aeg, such that S°(\) = TP(\) + T2(N\) and for any g € C§°(RY) and \ € A, , there hold

[OV29, V2T Mgl ) < CIN2 gl o (5.6)
|29 V2T Vel ey < CAOD gl o vy (57)
as well as for any A € Ay, and g € B;l(RN), there hold
IOV2Y, VAT Nl 5s. ) < Ol . (5.5)
IV, VAT (Mgl gs vy < CINTC 72 gl gy, mv)- (5.9)
Proof. To prove the theorem, we divide SY(\) as

SO0 = ~800) + —B s,

where we have defined S]Q()\) (j=1,2) by

1 7 F
St = 7[5ty )

e e)
ST ER) RO + 6P

By Lemma 3.2 with s = —1 we have for any multi-index § € Név there exists a constant Cs such
that

S80g =7 [

‘ 1) ()‘7 )\1/21.57 (25)2

) P
& a1+ g2 ‘SC‘”E' °

‘ 5 (i€ @A A/2iE, (i€)%)
SN+ D) DAt + €2

Here and in the following, we denote i = (i1, .. .,i€N) (N —vector), and (i€)? = (i&;i& | j, k =
1,...,N) (N? —vector). In particular, i¢ and (i¢)? are corresponding to V and V? through the
Fourier transform. By Lemma 5.2, we have

’S%’f\_w-

A28, 1) 0]
Aot [eP

< Cllglls, &),

(i€ @ i) (N, N/2ig, (i€)*) Flg] (5)} ‘
(p(A) + €)= (Aat + )
< C”gHBg‘T(RN)'

IO A2V, V) SY (Mgl gy, 2y = Hfgl[

By . (RN)

(5.10)

1/2 2\ <0 _ -1
|29, 9SS Vgl g, ey = ||| -
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Note that

\M;ﬁmﬂﬁc

for any A € ¥ 4+ w; as follows from Lemma 3.1 (3). Combining these estimates gives (5.4).

Now, we estimate 9\SY(\). Noting that

2\ —
N A
o|l—— )=,
A(Ma+mﬁ (a + )2
we have

1
1S (Vg = ~OrSI (Vg -

Notice that

L F
1S (Ng =~ !¢ Aa_l[gi(%Q)z} :

1S3 (Vg = —5,\1?(/\)]:5_1[ — e

(P(A) + [€12)?

By Lemma 3.2 with s = —2, we have

Mhp(A) = —

a+ B+ 272)\_1
(a4 mp)?

(aﬁ-nﬂéﬁé&(A)

(i€ ®i&)F

Flgl(€) } 1 F-1

DA 1))
a0 TP
IOAN, A2, (1€)%)

5
2

(i€
(p(A )+\£I )T2at + €2
‘Dg@5®¢><AA“%&ao%

(p(A) + €2 (Aot + [¢]2)?
Thus, by Lemma 5.2, we have

||>\()\7Al/gvaV2)3A32(>\)g\|Bg7I(RN) < Clglps,@®v) forf=1,2.

Moreover, by Lemma 3.1 (3), we have
) 72)\72
(a+m)?
for any A € A¢ y,. Thus, by (5.11) we have
2y —2

AN N2y w2y A
[ A( )(044—77,\)

( < C|A2

[8](§) ] _

[(p(A) +[E2) (hat +[]2)?

< Csle)=,
< Csle)~,

< Cslg| 7P

(5.11)

SINells; @) < NIV, V2SI Vel s, @)

< O\ Il B, @ny-

Combining these estimates gives (5.5).
Now, we shall prove (5.6)-(5.9). To this end, we write

B ¥\
 ala+pB) ;;<_(a+ﬂ))\> '

L2 2 2 —1y—1y—1
= 1%—7 (14‘6 A =
alatm) alatp)l TTOTHTAT)
Thus, choosing Ag > 0 in such a way that R ﬁ) N < 1, we have
mo B
ala+m)  ala+p)
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where ((7) be a C* function defined for |7| < 79 := (a + 3)y~2. Thus, we set

B
ala+ P)

Obviously, S°(A) = T2(\) + TX(\). By (5.10), we have

') =S + SN, T = AT THS ().

143

H(/\a)\l/zv7VQ)BO(A)g\\B;,T(RN) < C|/\|71Hg”Bg,T(RN) <C)y |>‘|7%HgHng(RN)'

We write

AT (Vg = {OATHCATISE Vg + AT CATHASI(N)
and then, applying (5.10) and (5.11) gives
I\, A2V, V)T Vel ss, wvy < CIAiglss, @) < C)\aiV)\|_(1_%)Hg||B;,T(RN)-

Combining these two estimates gives (5.8) and (5.9).
Finally, we shall prove (5.6) and (5.7). Let g € C§°(RY). Writing

A (N/2(08), ()?) g
vesarmysar ARG O]

XS (NV2(i€), (i€)2) (i€ © i€)
(V) + [EP) Aot + [E2) (1 + €)%

MV TS g = 7

N2V, VS (Vg = F (1+ ¢ Flel(©)]

and observing that

% / l Z
’Dg /\_1(/\1 2(25)7(5)2)2 | < eyl
T Oatt e [EP)
D? )\5()\1/2(2'5)7 (25)2)(7{@15) U . L
P+ lema + e + emyE | < i

for any multi-index § € Név , by Lemma 5.2 we have

[

INE 2T, V2SI (Nl ey < CIIF M+ 63 Flgllss, ) < Cllglgo .
INE (A2, V)82Vl ey < CIIF M+ 6P)F Flglllg, ) < Cllglgs o .

Combining these two estimates gives (5.6).

Write
B

ma)\sg()‘)g-

WTY(Ng = 0rSY(\)g +
Writing
A=EA2Y, V2)0,8V(\)g

AT A€, (i€)%) (L + [€1%)?
(Aot +[£1%)

= 2R (1+ 16772 Flel©)].

and observing that

< Cl¢|~!

| AT ENYiE, (i)*) (L + [6)3
‘ (Aot +[¢]?)?

for any multi-index § € Név , by Lemma 5.2 we have

INT5 (A2, V2)0nS) (gl sy vy < CIF ML+ [6P) 5 FI©)] sy vy
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< CHgHB;;“(RN)-
Writing
ATEO NV, VHSI (Vg

B AR AY2(i6), (1€)2) (i€ @ i) (1 + [€]?)
= o [ T G €]

1 [Al—iu, N2(i), (i€)) (i€ ® i€)(1 + )
ot B + [62) (et 1 EP)2

w[Q

(1+ €)% Fle] (¢)]

(1+ €)% Flel (€)]

and observing that

| pAT2ONPE (PN @I ULE2 |yl g ¢ — g, 1

-3
(P(A) + [€12)2~ (Aot 4 [€]2) 1+
for any multi-index § € Név , by Lemma 5.2 we have
N2 N2Y, V) 0AS) (Nl s mv) < CIIFE L+ €172 Flgl(©)]l sy, @)
< CHgHB;—,,U(RN)'

Combining these two estimates gives (5.7), which completes the proof of Theorem 5.3. O

6 Estimates of solution formulas of complex Lamé equations

Let S°(\) = (S2(\), ..., S%()\)) be the solution operator corresponding to equations (4.3) defined
by
Si(Ng = w;

for J =1,..., N, where the partial Fourier transform F'[w;] of w; are defined by (4.7). In this
section, we shall estimate Sg(A). Namely, we shall prove the following theorem.

Theorem 6.1. Let 1 < g < o0, 1 <r <oo, -1+1/g<s<1/q, ¢ € (0,7/2) and g > 0.
Then, for any A € A¢ ), and g € B;T(Rf)N, there hold
1AV, V)8 Vel s @2y < Cliglas, @)
1AV, V)08 (Mgl ps ) < CIN gl sy, @y)-

Moreover, let o > 0 be a small number such that —14+1/qg < s—o0 <s<s+o <1/q. Then,
there exist a large number Ao > 0 and two operators T?(\) and T3 () which are holomorphic on

Acy, such that S*(\) = TP(\) + T2(\) and for any g € C§(RY)YN, there hold

I A2V, V)T Vel s, wy) < CIA72llgl pyte @y, (6.1)
I AY2, VAT (N8l 5, ) < O 2 lgll sz . (6.2)
1AV, V)T (Nl g @y) < O lgllsy @) (6.3)
IV, V)T (gl g gy < CIA2lgll sy, my)- (6.4)

To prove Theorem 6.1, the argument based on interpolation theory due to Shibata [27] and
Shibata and Watanabe [30] play an important role. We quote this in the following subsection.
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6.1 Spectral analysis based on interpolation theory

Below, we assume that 1 < g <ooand —1+4+1/¢ <s<1/q, e € (0,7/2), and w > 0. Let T ()
be an operator valued holomorphic function acting on f € C’(‘)’O(Rf ) defined for A € A¢,,. In
this subsection, we shall show our strategy how to obtain the estimates of T'(\) as an operator
from one Besov space into another Besov space. The following argument is due to Shibata [27],
see also Shibata and Watanabe [30]. Since this gives one of main ideas, for the convenience of
readers we record arguments there.

We consider two operator valued holomorphic functions T;(A) defined on A ), acting on
f € C(RY). We denote the dual operator of T;(\) by Ti(A\)*, namely, T;(\)* satisfies the
equality:

(LS 9) = (LT ) (i=1,2)

for any f, ¢ € C§°(RY). Here, (f,9) = Jpn f(2)g(z) dz. Namely, we do not take the complex
conjugate. "

We consider the following two cases.

Assumption 6.2. Let 1 < g < o0, € € (0,7/2), and w > 0. We assume that the starting
evaluations hold as follows:
For any f € C(‘)’o(]Rf) and X\ € Acy, the following estimates hold:

HTI()\)fHH;(Rﬁ) < C”fHH;(Rf)a (
||T1()\)f||Lq(R$) < C”fHLq(Rf)a (
17 ) Ly < CIAY20 Ly ey (
||T1()\)*f||Lq,(Rﬁ) < C”fHLq,(Rﬁ)a (
||T1(/\)*f||Hq1,(Rﬁ) < C”fHH;,(Rf)a (
1T A fllr, my < C\)\\fl/zllfHH;,(M)- (6.10
Assumption 6.3. Let 1 < ¢ < o0, € € (0,7/2), and w > 0. We assume that the starting

evaluations hold as follows:
For any f € Cgo(]Rf) and X\ € Acy, the following estimates hold:

IT2(N) il )y < CIMTHIL iy ey, (6.11)
IT2(N) £l @) < CNTH Nz, @) (6.12)
12Nl @y < CATY21 Sl @) (6.13)
T2 Fllz,, @y < CT ISl vy (6.14)
1T Fll s, ey < C!Alfl\lfllH;,(My (6.15)
IO Fll, @y < CT2 1AL, - (6.16)

Then, we have the following theorems.

Theorem 6.4. Let 1 < g< oo, 1 <r<oo, -1+1/¢g<s<1/q, e€ (0,7/2), and w > 0.
Let o > 0 be a small number such that —1+1/¢ < s—o0 < s < s+o0 < 1/q. Assume that
Assumptions 6.2 and 6.3 hold. Then, for any f € C°(RY) and X € A, there hold

HTI(/\)fHBg’T(Rf) < CHfHBgm(Rf),
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ITs (N Flls;, ) < CIA 21l gt gy
TN fll s vy < C|>\|_1Hf||BgYT(R$)a
IT2(N) Ny, vy < O 2 F oy

for some constant C.

We divide the proof into the case 0 < s < 1/q and the case —1 4+ 1/¢ < s < 0. The s =0
case follows from the real interpolation between B, and B2 for some small v; > 0 (i = 1,2).

Lemma 6.5. Assume that Assumption 6.2 above holds. Let q, €, and w be the same as in
Assumption 6.2. Let 1 < r < oco. Let 0 < s < 1/q and let o > 0 be numbers such that
0<s+o<1/q. Then, for any X\ € Ac, and f € C°(RY), there hold

1Ty < Ol s e (6.17)
LN 3y, ey < CAE 1l gy (6.1)
Proof. Below, we always assume that f € C°(RY) and A € A.,. Choose p and g in such a

way that 0 < s < s+ 0 < p/ < u < 1/q. Estimates (6.5), (6.6), and (6.7) are interpolated with
complex interpolation method to obtain

||T1()\)f||Lq(Rﬁ) < C”fHLq(Rf)a (6.19)
||T1()\)f||H5(R§) < CHfHH;(Rﬁ)v (6.20)
T g gy < O ey (6.21)
1T ) fllz,@y) < CINT21 Nl s ey)- (6.22)
By interpolating (6.19) and (6.20) with real interpolation method,
TN Pl ey < Cll L ey (6.23)

Choosing 6 = s/y/ and setting A = u(1 — s/u’), by (6.21) and (6.22) with real interpolation
method,

_A
ITs S g, ey < CIAI™ 215 g sa - (6.24)

Now, we choose p and p/ in such a way that s < s+ o < s+ A, that is, we choose u and p’ in
such a way that o/u+s/p/ <1 and s+ 0 < p/ < pu < 1/q. Thus, choosing 6 € (0,1) in such a
way that s+ 0 = (1 —0)s+ 6(s+ A), that is, § = /A, by (6.23) and (6.24) we have

TNl ey < CIM 1l sy
Therefore, we have (6.17) and (6.18). This completes the proof of Lemma 6.5. O

Lemma 6.6. Assume that Assumption 6.2 above holds. Let q, ¢, and w be the same as in
Assumption 6.2. Let 1 <r < oo. Let =14+ 1/q < s <0 and let o > 0 be a number such that
—1+4+1/g<s+0 <0. Then, for any A € Ac,, and f € C5°(RY), there hold

ITs N Fllgs ey < CI s, (6.25)
ITs 1L, 2y < CINE 171 gty (6.26)
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Proof. Since —1+1/g < s <0, we have 0 < |s| <1—1/q¢=1/q¢. Let pu, i/ and o be positive
numbers such that
O<u <|s|—o<|s|<pu<l/q. (6.27)

Using the complex interpolation method, by (6.8), (6.9), and (6.10), we have
ITY ¢l @) < Cllells, ey
I (A el wy) < Clielas @),
* / < /

1T A ellr,, myy < C\)\’_”/QHWHH;‘,(Rf)-

By the duality argument, we have

HTI(A)JCHLQ(RQ) < CHfHLq(Rf)v (6.28)
ITu O gy < Ol sy (6.29)
1T oo gy < Ot (6.30)
1Ty )l gy < ISl ) (6.31)

In fact, note that Hy *(RY) = (H} oRY)). For any f and ¢ € C3°(RY), by the dual argument
we have

(TN f ) = [, Ti(A) )
< Wy T )l e
< ||f”H;M(R§)C||SDHH;(Rf)a
which implies (6.29). Likewise, we have (6.30) and (6.28). And also,
(TN = (£ T )
< HfHLq(Rf)HTI()\)*w”Lq,(Rf)
< HfHLq(]Rf)CMr“/QH(/OHH(‘;,(]Rf)u
which implies (6.31).

Now, we shall prove (6.25) and (6.26). Combining (6.28) and (6.29) with real interpolation
method, we have

T ey < e (6.52)

which shows (6.25).
Next, recall that 0 < p/ < |s| — o < |s| < p < 1/q" as follows from (6.27). Choose 6 € (0,1)
£ 151 Gombining (6.30) and (6.31)

IR

in such a way that —|s| = —u(1 — ) — 1/, that is 0§ =

with real interpolation method which implies that
K=
1Tl gy < CAI 2D o

Therefore, we have
o lsl=4
||T1()\)f||B;'f|(R$) S CIA 2 o= I s - (6.33)

7
H—p
By,
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Since 0 < ¢/ < |s| —o and 0 < pu — |s| < p — p/, we have

#p—lsl)

—|s] < —|s|+0 < — —y

Choose 6 € (0,1) in such a way that

s (0l + g =I5
|s|+ 0= (1-0)(—|s]) +6( u—u’)

Combining (6.32) and (6.33) with real interpolation method implies that

23 ‘S‘*Hle
"
I3

HTl(/\)fHB;\Ts\(M) < CA[ 20 ‘fHB;LS'”(M)'

)
Inserting 6 = M, we have
plls| = u')
”Tl()\)fHB;‘TS‘(Rf) < C||)‘|_§||f||3(;\TS\+U(R$)7
which shows (6.26). O

Lemma 6.7. Assume that Assumption 6.3 holds. Let q, €, and w be the same as in Assumption
6.3. Let 1 <r < oo. Let 0 < s < 1/q and let o > 0 be numbers such that 0 < s — o < 1/q.
Then, for any A € Ac,, and f € C(‘)X’(]Rf), there hold

ITs (0, ) < CIN 1l ey (6.34)
175wy < OO fll ooy (6.35)

Proof. Let p be a number such that 0 < s < s+ 0 < p < 1/q. Combining (6.11) and (6.12),
and (6.11) and (6.13) with complex interpolation method, implies that

ITa(M fll Ly ey < C|)\|_1||f||Lq(R$), (6.36)
1T Fll gy < CINTH ey (6.37)
IT2 (M) fll ey < CITC 2N F L, ey (6.38)

Combining (6.36) and (6.37) with real interpolation method yields
HT2(>‘)JCHB;7T(RQ) < C|/\|71HfHBgYT(Rf)7 (639)

which shows (6.34).
Now, choosing p' and 6 in such a way that 0 < ¢/ < pand 0 = ¢//p € (0,1) and combining
(6.37) and (6.38) with complex interpolation, we have

T2 ) fll ey < CIAIZA- 20 ) (6.40)

HY (RY)
as follows from 0 + (1 — p/2)(1 = 0) =1 — (u/2)(1 — ) =1 — 4(1 — &) = 1 — (1/2)(u — ).

Next, we will combine (6.36) and (6.40) with real interpolation method for s = 0, Namely,
we choose 0 = s/p € (0,1) and so Ou’ = (' /p)s, and so

0

(1= (/2= )0+ (1= 0) = 1= 50— p) = (1= - (p = 1))
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Thus, we have

IT2 (N Ly, vy < CIATE 720D p) (6.41)
’ B (RY)

Finally, we will combine (6.39) and (6.41) with real interpolation method. We choose 0 <
p' < pin such a way that (u'/p)s < s —o < s, that is 0 < p/ < (1 — g),u. And, we choose
s

0 € (0,1) in such a way that s —o = (1 —0)s+0(u'/pn)s, that is 0 = 0 /A with A = s(1—u//p).
In this case, we have

_ N =11y =122
(1-06)+0(1 o (—1)) 5(1 . )0 1
Thus, by (6.39) and (6.41), we have

TN fli s, mivy < C’)\Hl*%)HfHB;*U(My

which shows (6.35). Therefore, we have proved Lemma 6.7. O

Lemma 6.8. Assume that Assumption 6.8 holds. Let q, €, and w be the same as in Assumption
6.3. Let 1 <r <oo. Let =1+ 1/q < s <0 and let 0 > 0 be numbers such that —1 +1/q <
s —o0 < 0. Then, for any A\ € Ac,, and f € Cgo(Rf), there hold

1NNl @) < CINTHIF N, 2y (6.42)
TN fll s, rvy < C’)\’_(l_%)”f”B;;a(Rﬁ)' (6.43)

Proof. Combining (6.14), (6.15) and (6.16) with complex interpolation method for |s| < p, ' <
1-1/¢=1/¢, we have

IT2(N) el wy) < C’)\’71||80HL(1,(R1)7
||T2()\)*90HH;‘,(R$) < C’)‘rlH@HH:,(Rf)?
I 6l ) < O ol gy
||T2(>\)*90||H;‘,(Rf) < C||)\|_(1_%)”80||Lq,(11§ﬁ)~

Thus, by the duality argument, we have

TN fll 2, @y < C’/\rleHLq(Rf)v (6.44)
12N Fll e iy = C|)\|_1||f||Hq—u(Rg)a (6.45)
HTz(/\)fHH;u'(Rf) < C’)\|_1Hf||H;m(Rf)a (6.46)

T ) < CNOB gy (6.47)

Noting that —141/¢ < —p < —|s| < 0 and combining (6.44) and (6.45) with real interpolation
method implies

—1

which shows (6.42).
Choosing 0 € (0,1) in such a way that |s| = /6 and combining (6.46) and (6.47) with real
interpolation method, we have

20N 5ot gy < O ey
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Here,

o= —6-(1-oa- 14 Ea_bly

2 2 !
|s| |s| sl |s|
o= =0 — 1= 0) = = = By = - = By = - B,
Thus, we have obtained
—(1—-4& 1_@
ITo gy < T2 A ity (6.49)
ar ORE)
Now, we choose p/ € (0,1) in such a way that
5] > ~Isl — o > ~Is| — u(1 - )
/“L ILI,/ )
that is sl
M| /
<pw<l-=1/q. 6.50
o /q (6.50)

Since o > 0 may be chosen so small that u/(u — o) is very close to 1, we can choose p/ in such
a way that |s| < p/ and (6.50) holds.
We choose 6 € (0,1) in such a way that

—|s| —o=—|s|0 — (|s _M _
sl 516 — (Is| + u’))(l 0).

Combining (6.48) and (6.49) with real interpolation method implies that
—d
HTQ()\)fHB;LS‘(Rf) S C‘)\‘ HfHB;LSl_U(RﬁY)’

where sl
7 s
d=06+(1-0)1-( u’>)

| Q

Thus, we have
||T2(A)f||B;|:|(M) < C’/\|7(1f§)”fHB;Ls\—a(Rf).

Namely, we have (6.43), which completes the proof of Lemma 6.8. O

The end of the proof of Theorem 6.4. In view of Lemmas 6.5-6.8, it suffices to prove the case
s =0. Let 0 < 0 < 1/q and let 11 and v, be positive numbers such that -1+ 1/¢ < —11 <
-1 +0<0<w1y <o+1vy <1/q. By Lemmas 6.5 and 6.6, we have

”Tl(A)fHB‘;?’fl(Rf) < CHfHB(;;’I (Rﬁy ||T1()‘)f||Bg’2r(Rf) < CHfHBZ’Q,A(]Rf)
Let 6 be a number € (0, 1) such that 0 = (1 — 0)(—w1) 4 fve. Since
By, (RY) = (B (RY), BE2(RY))or,
by real interpolation we have

17y Ly @) < Cllf Ly, o).
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Moreover, by Lemmas 6.5 and 6.6, we have
ITL )l vy < CIA 2Nty 1Tl gz gy < CINTE Il g -
Since BZ,(RY) = (B, (RY), B2+ (RY))g,,, by real interpolation, we have

1Tyl g, vy < CINE 7Ly ey
Analogously, we have

HTQ()‘)fHBg’T(Rf) < C|)‘|_1||f||Bg,T(Rf)a
T g, ) < OO Loy

This completes the proof of Theorem 6.4. O

6.2 A proof of Theorem 6.1.

A 2
In this subsection, we shall prove Theorem 6.1. First, we divide L2 and m__ Aty

K K (a+B)A+~2

appearing in (4.7). To this end, we start with the following lemma.

Lemma 6.9. Let e € (0,7/2) and \g > 0. Set K1 = (o + B)A + aB. Then, there exists a
constant c3 > 0 depending on o, 3, € and € appearing in Lemma 3.1 such that for any X € A¢ 5,
and £ € RN=1\ {0}, there holds

K| > es(IA2 + [€))- (6.51)
Moreover, for any multi-index &' € NY 1, X € Acy, and € € RN=1\ {0} there holds

IDIK < Cyr (A2 + (€)1,

/ , 6.52
IDZONKT| < Cy (M2 + (€)1 (6:32)

Proof. By Lemma 3.1, we have

/

|arg(a + B)A| < “o—,  |argaB| < .
Moreover, we see that
a+p a _
(a+B)|A] = 7 —=—Va(MN?+[¢), alB] Zﬁ\/sm(E/Q)(Wma Y2 1e)).

From geometric interpretation of the sum of complex numbers we see that (6.51) holds with

min(o, €)

c3 = (sin

)min((\[ Ve, — \/51116/2 min(a~/2,1))

By Bell’s formula,

18
(S _ &4 &
IDEETY < Cy > Ky |7 > DK |-+ | D K. (6.53)

=1 189 [4+-+187 =8|
[671>1
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By Lemma 3.2 with s = 1, we have
&t & —18
IDEK| - D K| < Gy (A2 + 1€/,

which, combined with (6.53), implies (6.52).
Writing 0\ K7 = (a + 5)0yA + ad\B, by Lemma 3.3 we have

|Dg(OrE1)| < Cor (A2 + €)1,

Since (%\Kl_l = —(8>\K1)K1_2, (6.52) follows from 9y K7 € M_; and Kl_l € M_;. This completes
the proof of Lemma 6.9. 0

Recall that K = (a+n\)A + aB = K1 +~v2A\7'4 (cf. (3.1)). In particular,
[A] < max(ey %, (A + 1€).
By (6.51) \72AK1_1] <2 max(cglm, 1)63:1. Setting A\; = 272 max(cgl/Z, 1)051, we have
IVAKTIAT < 1/2 (6.54)
for any A € A, and ¢ € RV=1\ {0}. Thus, we have

K—l _ i B i ,YZAKI—I)\fl ‘
Ky Ki1 —I—’yQAKfl)\_l

From this observation, it follows that

m_ B 18 PAKT
K K1 MKi1+42AK7'A 1 MK’
Thus, setting
B YAK{! 7B

Ka(\) = (6.55)

[ — _.l_ ,
Ki1+~2AK; ' 1 K

we may write

m B

A= NSO,
KK 2(A)

Lemma 6.10. Let € € (0,7/2) and let A\1 be a positive number defined in (6.54). Let Ko be the

function defined in (6.55). Then, for any X € A¢y,, & € RN=I\{0}, and multi-index &' € Névfl,
there hold

D K2(N)] < C (A2 +1¢) 71, (6.56)

|Dg (A K2(N)| < Cy (I + 1&/) 77 IA (6.57)

with some constant Cg:.

Proof. In what follows, we assume that A € A, and & € RV=1\ {0}. By (6.52) and Lemma
3.2, we have
D& (AKTH] < Cor(IAIY2 + €)= (6.58)

for any multi-index ¢’ € N)Y~!. We may assume that |1 +~v2AK;*A7!|~! < 2 from (6.54), and
so by Bell’s formula, (6.54), and (6.58)

IDE(1+~2AK A 7Y

32



|6']
—1N—1|— o4 —1\— Y —1y—
< Gy Yy L+7PAKTNT YN D (PARTIATY| - D (PAKTIATY)

/=1 8- t8)=06"
|851>1
6] _
<c 21\ [~ Lylol+ 11 (| \[1/2 4 ¢/ -19] < Ay A1 A2 4 1N (659
< Co{D (I FAAY2 1) < 6’—(1_272|/\|_1)(| |2+ 1€) (6.59)
=1

provided that 2¢2|A\|~! < 1. Combining Lemma 3.3 with M = K, (6.52), (6.58) and (6.59) gives
(6.56).
To prove (6.57), we write

,.YQAKI—I
1+~2AK; A1
B YATTONAKT)YARTY 20N(AKTY)
K1 (1+72AK;]A1D)2 1T+ 2AK; 21

K2 (N) = —BONK

- a)\Kfl.

By (6.52), we have ,K; ' € M_3. Since O\K = (a + 8+ v*A71)O\A + BB — 72\ 72A, by
Lemma 3.3, we have

DG (OAK)| < Cor{(INMZ + 1/ N2 A2 + 1€/ (6.60)
Writing O\K ~! = —K 20, K and using Lemma 3.3 and (6.60), we have
DY (OAK )] < Cor|A[THIAM2 4 [, (6.61)

Writing O\ (AK; ') = (WA K[! — AK 205K, by (6.59), Lemma 3.3 and (6.52) we have

IDEONAKT Y| < Cor(IA2 4 [¢/]) 7271, (6.62)
Thus, by (6.52), (6.59), (6.64), (6.52), (6.61), and (6.62), we have (6.57). This completes the
proof of Lemma 6.10. ]
We write B ) 8 0 8 )
+7 q U
= — = —+ K\
(a4 B)X+~2 a+ﬁ+ AT K K1+)\ 2(V), (6.63)
L2 BA+ _ B LleK()\) |
K(a+BA+12 a+B8K A °
where 2\
a(\) = - =
@+ B)((a + BA+77) 660
aBy? A BA 472 '
K3(\) = Ko(\)——i———.
R )y o) PR} A P P

Notice that |(a + B)X + 2| > (1/2)(a + B)|A| for |A] > 272 (a + B) L.

Corollary 6.11. Let € € (0,7/2) and let A1 be a positive number defined in (6.54). Set Ay =
max(A1,2v%/(a + B)). Let K3 be the function defined in (6.64). Then, for any A € Ay,
¢ € RN=1\ {0}, and multi-index &' € NY ', there hold

D& KN < Cor (A2 + ¢,
D (OrE5(N)| < Cor(IAY2 + 1€)AL,

with some constant Cy .
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Applying the decompositions (6.63) to the formulas in (4.7), we define 7;%;()\) and 7;(\) by

ToWe= [ Ft [Be e o Flg (¢ )] @) dow

1
aB
OOJ—_'—I 32 —BJ:NM /8 ply ’nggk _/_-'/ ,
+/0 ¢ [ € (yN)a+ﬁ(; (A+B)A32 [gk}(ﬁij)

- it T o€ )] @) don

g B i
- /0 Tol et 2 AB 5T 9 )| @) dyx
_/0 ]:5_’1 B2M PN Z ngzé;; k(' ?JN)} (z') dyn

® B%& N~ P&
+/0 Fel B3M(9UN)M(3/N)(Q+IB)]K1(; ey [9e] (€, yn)

/12
- S F o€ )] ) du

< r pue PG N~ PG :
—/0' ]:/1 BQM(m )6 By (Oé+6)jK1 ABg(A+B)~F[gk](gvyN)}(x)dyJ\ﬁ
T = [ 7! [BMawe > j;gg (€] @) dy

k=1

* BPA N~ P&

—/0 ffl[B3M($N)M(9N)(a+ﬁ)Kl(; m]: 9k (€', yn)
/12
- L P o€ )] @)

o -1 —Byn BQA play |§/|2§k / / /
+/0 Fe [B2M(xN)e TR > ABS(AJFB)f[gk](g,yN)} (') dyn,
T (Mg
_ [T 1 p2 - Bay aO) "~ ik , ,

_/0 ot [B2e B miym) % O Ty By o€ )
- Gt T o€ ) @) o

o0 A N-1 .

- T _BB‘B“’“’N”N’Q&) ABifjfi By 98] (€uw) (@) dy
- [ 7 e A” Lo FIENE )| ) du

© r N_lK A . 112

+/0 Fo | B M(an)Myw) () 3; )(iiggimf’[gk](g’,w)

KN igle?

A (A+B)B3]:/[9N](§,,y1v)) (2') dyn
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o s | ¢l)2
- [T syt Y ST P )€ ) ) du

e Ko(N) i€ A
e = [ F B atan)e P Y B S g€ )] @) do

k=1
o K3(\) €7 I
- [T F [ Memmen S Pl

k=1
/12
- KBA(A) (A?B?Bgf’[gzv](ﬁ’,yzv)} (') dyn
+/0 [B ./\/l :EN —Byy Z )\)\ Bg|£A f_kB) /[gk](ﬁl,yzv)} (:L‘/) dyx.

And then, we have
S'Ng=T'Ng+ T (Mg
where we have set T2(\) = (T3 (N\),..., T (\) (i = 1,2).
To estimate T(A) = (TH(A), ..., T (N)), we introduce the multiplier class Ny defined by
Ng = {m()‘u‘g/) € Mk(Ae,)\o) ‘ a}\m()\’é-/) € Mk*Q(AE,/\o)}'

By Lemmas 3.3 and 6.9, all the following symbols appearing in the definition of 7%()\) (J =
1,...,N —1,N):

1 i&1k i§j i&;18k i&;1€' 1k
B2 (A+B)AB® (A+B)B® KB K (A+B)ABY
i€ Ai&, A1, AlE'P

Ki(A+B)B3 K.B3 K| (A+B)ABY K (A+ B)B?
belong to N_s. To represent Tf’ (M) in a little bit simple way, we define symbols P; (i = 1,2, 3,4)
by
Pi(zn,yn) = Be  BENTUN - Py(zy,yy) = Be BN M(yw),
Ps(zn,yn) = BPM(zn)e PV, Py(an,yn) = BEM(zn) M(yy).

Then, we may assert that there exist four N x N matrices of N_5 symbols Tli’jo()\, ¢’) such that
TL()) is represented by

00 4
TP (Vg = /O Fot | (XS Pitaw, yn) T L)) Flel(€ ) | (@) dyw. (6.65)
j=1

First, we shall prove the Ly-L, estimate. Below, we write V' = (01,...,0nv-1), V" = (9;0k |
jk=1,...,N —1), and V" = (9° | |§] = 3). Corresponding symbols are written by & =
(&1, En21), (1) = (i&i&k | 4,k = 1,...,N—1), and (&')® = (i&i&i& | j, k, 0 =1,...,N—1).

Using the formulas:

IM(zy) = (1) AM(zn) + fﬁ:gee&w) (0>1),
we write
o 4
AT Vg = (~1)f /0 Fo (X Pian, y) T () Flel€ yw) | (@) dyw (6.66)
j=1
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for £ = 1,2, where we have set

Al — B? BTbO

T ) = BTN + S5 BT, Th(0,€) = AT (A €)

for k = 1,2 and m = 3,4. We see that Ti”f(k,f’) € N_gyy for £ = 1,2,3. Then, for
(A, A2V, V?), using (6.65) and (6.66), we may write

()\7 )\I/QVI’ V”)le(A)g

:Amgﬂgi

(A2 V)aNT? (Vg

Pj ($N7 yN)()‘7 )‘1/2i£/7 (15/)2)’1‘1{7]0()‘7 £I)>f, [g] (5/7 yN)] (ZL‘,) dva
1

4

= (-1) /0 T EM (P )OI (0, €) Flal (€ )] (o) dy,
j=1
o0 J 4
ATOE = [ 72 [( Pilon o) T OLE)) P el )] @) v
j=1

sm;e (N AV (i€)2)Th (X, &), (AV2,i€") T} and T} (A, €') belong to Mo, by Proposition 3.5,
we nave

IA2Y V)T Vel ) < Clelz, o) (6.67)
Next, we consider H;—H C} estimate. To this end, we use the formulas:
Pi(zn,yn) = =B 'Oy Plan,yn), Polan,yn) = —A7'0y, (Pe(zn,yn) — Pi(zn, yn)),
Ps(xn,yn) = =B 'Ps(an,yn),  Palen,yn) = A0y (Pa(xn, yn) — Ps(zn, yn)),

which follows from

1 1 1
-Bty _ —B(yn) = - e By~
€ gone . Myw) 8N{ A MN) + e }

Since g € C§°(RY)Y, by integration by parts, we rewrite the formulas in (6.65) and (6.66) as
follows:

4

oo
_ Tb,0
NTP(N)g = /0 Fot | (DS Piten un) T 0 €)) Flowel (€ yn) | (@) dyn. (668
j=1

Here, we have set
T T AT, T - AT,
R

Since Tl{’f € N_o 4, we see that ’i‘l{’f €N_3g,pfor £=0,1,2,3.

Using (6.68), we may write

v/(}\7 )\1/2vl7 v//),]—lb,()()\)g

o0 4 ~
= 7 (S P € 0 G E0,0) P onsl(€ )] 0 do
=
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IV, VT (Vg

— /OOO Fo' [(g Pj(xn, yn) (N, AV 2g (if’)Q)Tl{’jl(A, §/)>.7:’[8Ng](§', yN)} () dyn,
VA2 VONT (Ve

— /OOO Fo' [(g Pj(zn, ?JN>Z'§/<)\1/2,ifl)'i‘li’jl(/\,f’))]-"/[(?]vg](gl,yN)} (') dyn,
INONY2 VONTE (Vg

- =l

s 4
VAT Mg = [ F (30 Pl i€ T 0,€)) P owel €' )| ) du.

0

“-

Pilan,yn) N2, i€V TL (A €)) F [0ng)(€' ) | () dy,
1

J

j=1

. 4
RTIOE = [ 7 (3 Pilowoun) T 0 €))7 onel €' o) ) diy.

j=1
Since the following symbols:
i€ (W NYEE L GEDTR (N E),  (WAVZE (G€)) TV (N €), i (W20 TY (A, €),
W2V (NE), €T (NE), TP (NE)
belong to Mg(Ac »,), by Proposition 3.5, we have

”V(Aw\lﬂv,V2)71b(/\)g||Lq(R§) < CHaNgHLq(Rﬁ) < CHVgHLq(Rﬁ) (6.69)

for any A € A, and g € C°(RY)N.
We also have

NPONPY VT (Vg
_ /OOO Fo' Kﬁ:l Py, yn) N2 N2 (i€ T (), g’))f’[aNg](g’, yN)} (') dyn,
AW(AI/Q,V')aN;{”(A)g
- _ /Doo J-'gl [(JZ: Pj(xn, yn)A 2NV, ifl)’i‘l{’jl()\,f’))]—"[aNg](g/, yN)} (') dyy,
4

NP2R T (g = /0 T (P NPT, €)) Flowel (€l )| )

j=1
Since the following symbols:

MOV DT (A€, ANPAZHETH (N ), MPTI(NE)
belong to Mg(A,,),), by Proposition 3.5, we have

[N, )T (Vg @y < CAIT2IVEL, @) (6.70)
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for any A € A, ), and g € C°(RY)V.

Now, we consider the dual operator 95 TP(A\)* of 95T () acting on h € C§°(RY)™N, which
satisfies the equality: |(057(\)*g,h)| = |(g, 7(A\)*h)|. In fact, from (6.65) and (6.66) by
Fubini’s theorem and Plancherel’s theorem, we have

(1) (@4 T (Ve )
4
= [ [ 7 [ Pion ) T 0.0 P el(€ )| 01 o Y o) ddny
j=1

oo poo , 4
= [ (P 0.0 P lel(€ o) F B ) ) iz
j=1

4

_ /0 - /R o g(y’,ym( /0 mf’[(;Pj(xN,yN) es 5)) Uh)(¢', xN)} (yf)de) dy'dyx.
which yields
afleb(A)*h:/O f’[(ZP (zn, yn) T} 1 (N, g)) )¢, :EN)](y’)d:nN. (6.71)

Namely, 057(\)*h is obtained by exchanging Fer ! and 7' in the representation of 9%7(\).
Thus, employing the completely same argument as in proving (6.67), (6.69), and (6.70), we have

IV, V)T () Rl @) < ClbllL @)
1A, A”QV,VQ)Tl”(A)*hHH;,(M) < Clbflg, @), (6.72)
[NV, VTN Bl wy) < CT2 I, ey

From (6.67), (6.69), (6.70), and (6.72) it follows that T%(\) satisfies Assumption 6.2, and so by
Theorem 6.4 we have obtained

(A, A2, VAT (Nells;, @) < Clglig;, L(RY)s
IOV, VAT Nelgs @y < CIN 2 I8l goto @ RY)

for any A € A, and g € Cg°(RY)V. In particular, we have obtained (6.1).
Now, we consider 9,T4()), which is represented by

0o 4
AT (Vg = /0 Fo' [ (X B2 @xPylan.yn)) BT (0,€)) F[)(  yw) | @) dyw
j=1
0o 4
+ [ (Pt im0, ) e o
as follows from (6.65). Moreover, from (6.66) and (6.68), we have

o 4
ROTIME = (1) [ 3 (30 B0 an i) BT 0. )) Flel(€ )] @) di
j=1

+ (-1 /0 TF [(i Py, yn)) (N3 (0, €)) ) F [8)(€'yn) | (@) dy

J=1
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0o 4

NONT! (Vg = /O Fo' | (X B 0nPi(wn . yn) BT (0. €)) F [owe] (€ yw) | (0') dyw
j=1
4

>~ P, um) T (A ) ) F [one] (€ yw) | (@) dy.

|
+ /OOO F! szl

If we write

oo 4
WRNTINE = (1) [ 7 (30 BONPs . i) AB T O €) F eI o) | )

J=1

w0 TR [(24: Py yn)JAONT (0, €)) Fle] (€, ) | (@) dyvs

<.
Il
—

4

MROTINE = [ 7o [(30 BOnPs e )AB T4 (0,€)) 7 ovel (€. w) (2 duw

0 =

w5 (32 Plow i NOTH 0. €) Flowel (€. m)] o)

j=1

for £ = 0,...,3, then using the facts that AB~2T{1 (), €) € M_air(Acr,), AT (N, €)) €

M_gse(Aeng)s ABT2TY/ (X&) € M_gyo(Acyy), and AONTY (N, €) € M_gi(Acy,) for £ =
0,1,2,3 and employing the same argument as in the proof of (6.67), (6.69), (6.70), and (6.72),
by Propositions 3.5 and 3.6, we have

(A, A2V, V)06 TP (A )8llL, RY) <A™ 1HgHL (RY)>

(6.73)
1A, )T (Nl gy < CIA Mgl -

Moreover, writing
N2 oTE (Vg
00 4
=0 [ (3 B0 v )N BT O €)) F eI )] 01 d
J=1

) 4
(0 [T F (Pl AT O €) Pl ) )y

j=1

and using the facts that \V/2B2T} (X, &) € M_g.¢(Ac,) and AV2(O3 T (A, €)) € N_gig(Ac,)
for £ =0,1,2,3, by Propositions 3.5 and 3.6, we have

1AV, V)T (el gy < CIN2llgl L, @y, (6.74)
for any A € Ay, and g € Cgo(Rf)N

Employing the same argument as in the proof of (6.71), we see that the dual operators
INONTL(N)* of 050\TL(N) are defined by

o 4
RATINh = [ F[(3 BOPan,un)) BT () 7o (€ ) (o) duy

0 e
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4

T /0 T F[(X Py ) O T €)) P (€ )| () dyw

j=1
Employing the same argument as in the proof of (6.68), we have
o 4 -
RATIN D = [ F[(32 BOPan,un)) B EY (€))7 owhl(€ )| o) du

0 =

o 4 ~
T /0 d 'K; Py )T (A €))) Fo owhI(E!, u)| () du

Thus, we have
[X2V, V20T () B,y < CIA B, )
I A2, 2T (N) Bl 1, ) < CIA I, ey (6.75)
q q
[T, )05 TE ) Bl ) < CIN 2 bl ey
From (6.73), (6.74), and (6.75) it follows that 0,7{(\) satisfies Assumption 6.3, and so by
Theorem 6.4, we have
[N Nl ey < CIA gl -
13TVl g, sy < CA~O~ gl o e
for any A € A, and g € C°(RY)VN. In particular, we have (6.2).
Now, we consider 77()\) and we shall prove (6.3) and (6.4). To this end, we introduce the
class of multipliers Ng defined by
Ni ={m(X, &) € Mg(Ac»,) | there hold
[DEm(A )] < CIAT A2 + /1)<
D @xmED] < CINZ2(AIM2 + ¢/
for any multi-index ¢ € Névfl, A€ Ay and £ € RN_l}.
For mi(A,¢) € Ny and ma(X, &) € NY, we have mi(X,&)ma(X, &) € Ni,,. For m(\,¢) €
N_p, we have ¢q(A\)A"tm()\, &) € N?,. From Lemma 6.10 and Corollary 6.11, it follows that
Ko(MA™t € N4, K3(A)A™! € N4, and so Ka(AA " Im(A, &) € N4, and K3(\)A"tm()\, ¢) €

N¢ o for m(\, §’) € N_j. From these observations, we see that all the following symbols appearing
in the definition of T;()):

q(\)  i&ig qg(A) 1§ Ko(\)i&  K3(\) i&i&le'?
N (AL B)ABT X A+ B)B. A B A (A+BABY
K3(\) i&le Ky(A\)igeA  K3(\)  |¢]PA
N A+B)BY A B A (A+ BB

belong to NiQ. Thus, we may assert that there exist four N x N matrices of N‘iz symbols TS’JQ
(j =1,2,3,4) such that 72()\) is represented by

I 4
BOe= [ 7! [(3 Prlow ) TH ) FlelE )| @) dyw. (670)
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Employing the same arguments as in (6.66) and (6.68), we have
s 4
NTI (Vg = (-1 /0 Fot | (O Pitan, yn) T (0 €)) F Il um) | @) dyw - (677)
j=1

for £ = 1,2, where we have set

Al — Bt

bt
T3, (A &) = BT}, (A &) + A-B

BT 5 Th (A€ = ATE(N¢€)

for k=1,2 and ¢ = 3,4, and

4

ATWE= [ 7! [(3 Potow o) B L) Flovel(€om)] () . (678)

0 =
Here, we have set
T - T AT T, T - AT
T = B'Thy + A7'Th), Th = —A~'Th.
Since Tg’,f()\, ¢ e N‘fQH (¢ =0,1,2,3), applying Proposition 3.5 to the formulas in (6.77) yields
[T, VYT Vgl ey < CIN gl e
IOY2, VO TNl ey < CIN gl e
3TNl 1, ey < CIN gl e (6.79)
Since ’i‘gf()\, ¢ e Ni3+€ (¢ =0,1,2,3), applying Proposition 3.5 to the formulas in (6.78) yields
IV ANV, V)T
|On (A, N2V, V) TS
[V (N2, ) on Ty
lon (A2, V) ON'Ty
IV'OR T3 (A gllz,@y) < C|>\|_1||8NgHLq(Rf)v
103 T2l ey < O 0wl ey (6.50)

Nellz, @) < CIN 10Nl @),
N8l L, ey) < C|/\|71H8NgHLq(Rf)a
A
A

gllz,@y) < C|/\|71H8NgHLq(Rf)’
gHLq(Rf) < C!AI*I\If?NgHLq(M)a

(A)
(A)
()
(A)
(A)
()

Combining these estimates yields

1AV, V)T (Nl 1, @y < O gl @) (6.81)

[N/2Y, V)T Ml gy ey < CIA gl e (6:52)
When 0 < s < 1/q, applying real interpolation to (6.81) and (6.82) yields
A9, V)T el ) < O el e (6.59)

The dual operator (A, AY/2V, V2)TP(\)* of (A, \/2V, V2)TL()\) is obtained by exchanging

]-'g,l and F in (6.76) and (6.77). Thus, employing the same argument as in (6.81) and (6.82),
we have

I A2, VAT Bl )y < CIA R, gy,
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1((A, AI/QVV2)75b(>\))*h||Hl,(M) < CIN g, ey,
q q
for any A € A ), and h € C§° (Rf )N, Thus, by duality argument, we have

(A, /\1/2V,V2)7'2b(>\)gl|Lq(M) < CI/\l_IHglqu(M), (6.84)
1AV, VTR (Ve 1y < O lgl i gy- (6.85)
Applying real interpolation (6.84) and (6.85) yields
[T, VTNl ey < CIA gl - (6.56)
provided that —1 +1/g < s < 0. Finally, interpolating (6.83) and (6.86) yields
[, VT el ey < CIN gl e (687

Thus, we have obtained (6.3).
Now, we consider 8>\Tl2’()\), which is represented by

4

nNe= [ 7 (B 0P ) BT PRI )] o) o

/ [(Z (e yw) 3 TH (A €))) P el (€ )| () dy

as follows from (6.76). Moreover, from (6.66) and (6.68), we have
o 4
NONTF (Vg = (—1)" /0 Fot [ (3 BAONPy(an, yn ) B2 (0,€)) Flgl(€' ) | (07) dyw
j=1

00 4
+ (-1 /0 Fo' [ (X Piten yn) @3 T3 (. €)) ) F el y) | () dys
j=1

4

NONTS (Vg = /0 " (30 BN,y )BT (L €)) Flowel (€ )] ()

7=1
[e'e) 4
+ /0 Fol [(Z P, yn) (02 Ty (A, 5’)))?’[8Ng](§’, yN)} (@) dyy.  (6.89)

If we write

J=1

MhonTI e = (1) [ 7! [(fj B 03Py (en, yn)AB T3/ (A €)) F'lgl(' yw) | (@) dyn
w7

4
> Pilan, unDAOTE (A, €)) ) F el yn)| () dyw
j=1

[o@) 4 ~
NGOATI (Vg = /0 Fa' | (D2 BAOxPs (on ynDABTE (A, €) ) F [onel(€' s yn) | (o) dyw
j=1
4

|
+ /0 = 1[(2 Pi(an, yn)AOTS (1, €))) F'lowel € yw) | (+) dyn (6.89)
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for £ = 0,....3, then using the facts that AB72TYI(N€) € Ny, AN (N, €) € N9, .
/\B*2Tg’f(x\,§’) € Nd_3+é7 and )\(8,\Tg’f()\,§’)) € Ni3+é for £ =0,1,2,3 and employing the same
argument as in the proof of (6.79) and (6.80), by Propositions 3.5 and 3.6, we have

1AV, V20T Mgl @y < CINllgl @) (6.90)
1AV, )T (Mgl gy < CIA Mgl - (6.91)
If 0 < s < 1/q, interpolating (6.90) and (6.91) yields
[N, PN T Vel 5y ) < CIA2llgllg o (6.92)
To consider the case where —141/q < s < 0, we consider the dual operator (A, \'/2V, V2)9\ T2 (\)*

of (A, A2V, V2)0,T2(\), which is obtained by exchanging F,! and F’ in (6.88). Then, from
(6.89) we have

0 4
NOAOTIONh = (1) [ F[(30 B OxPy o un)ABTH €))7 Iy | &) dy

0 =

0 4
0 [T P [(SPian i )NOT O €)7o Bl )] @) d:

Jj=1
4

ARt = [ F[(3 B0vP;aw. i) AB T (€)7o owel €. uw) (o) duw

0 e

4

b P INONTE 00 o sl )| )

j=1
Since
MBI (M) €NLy s MOATH (M, €)) e Ny,
AB72TY (N €) €Ny, MOATY (N €)) e NTy

for £ =0,1,2,3, employing the same argument as in the proof of (6.79) and (6.80), by Proposi-
tions 3.5 and 3.6, we have

I A2, V2T (N) Bl @y < CIA2 L, ),
IO A2V, V20T ) Bl gy vy < C|>\|_2Hh||H;,(M)~
By duality argument, we have
I A2, V)T (Nl 1, wy) < CIN 2 lgl @y,
I AY2Y, VAT (N8l -1y < CIN 2 gl 1 vy-
Thus, by real interpolation, we have
[N, V)T Vel | ) < CINllglls; ) (6.93)
provided that —1+1/g < s < 0. Combining (6.92) and (6.93) yields
1A, A2V, VQ)a/\’TQb()‘)gHBgJ(Rﬁ) < CIN?llgll g, ) (6.94)
Therefore, from (6.83), (6.86), (6.87), (6.92), (6.93), and (6.94), we have obtained (6.3) and
(6.4). This completes the proof of Theorem 6.1.
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7 Proof of Main Results

In this section, first of all we construct solution operators of equations:

Ap+ydiva=f ian,
Au—aAu - pBVdivu+9Vp=g in Rf, (7.1)
u=20 on@Rf.

First, from the first equation in (7.1), we set p = A~1(f — ydivu), and inserting this formula
into the second equation in (7.1), we have the complex Lamé equation:

Au—aAu—mVdivau=g—~yA"'Vf in Rf, U—‘aRf =0. (7.2)
From Theorems 5.3 and 6.1, we have
u=58"M)(g—7A7'Vf) =S W) (g - V).
Thus, defining p by
p=A""(f—vydivu) =X f = AT div(S (M) (g — ATV = SP(A) (g — v ATV ),

we see that u and p are solutions of equations (7.1). In view of Theorems 5.3 and 6.1, we
decompose u as

u=T'Ng—-T'Ng+ T (Ng - T3 (\g — A 'S’ WVf + A SNV f.

Summing up, there exist solution operators S(\), St(\), S%()\) such that u = S(\)(f,g), p =
R(M(f,Vg), and

S'Ng=T"Neg- TN,
S*N(f,8) =T (Vg — Ty (Vg — 1A' S" WV + A 18P W)V,
SN(f,8) =S' Vg +S*N(/f, ), (7.3)
RO(f,8) = A f — A HdivS’Wg + A 2divS" W)V f

— A HdivSb (Vg + A2 div S () V £

We see easily that

S(A) € Hol (Acn, LB (RY) x By (RY), BiF2(RY))),
S'(A) € Hol (A, £(B; . (RY), BiH2(RY))),

S*(A) € Hol (Ac x,, (BS“(RN)XBS (RY), B2 (RI))),
R(A) € Hol (Acny, L(BEF'(RY) x B: (RY), BitH(RY))).

Moreover, by Theorems 5.3 and 6.1, we see the following theorem.

Theorem 7.1. Let 1 < g< oo, 1 <r<oo, —1+1/¢<s<1/q, and e € (0,7/2). Then, there
exists a large number \g > 0 such that for any A € Acy,, f € BSH(RN), and g € C’é’o(Rf)N
there hold

H<)‘7 )\1/2v7 VQ)S()‘)(fv g)HBg’r(Rf) < CH(f? g)HHZ,r(R{X)’
(X297, V)8 (Mgl s, ) < CIA Fllgl pgte
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|]()\1/2V,V2)6,\81()\)g||33 RY) < Q)HgHB;;"(Rf)a

129, 922N (£,8)ll 5, ) < CIN T I, 8)llags, vy,

IA2, V) RSP A (. 8)ll 5y, ) < CIA I ) gy, )
IR s ey < CIATICE ) ey

IR fll gyt vy < CIN2II(S, )l m2yy-

Theorem 1.2 follows from Theorem 7.1 immediately.

Now, we consider an initial value problem:

Ol +vdivU=0  in RY xRy,
U —aAU - fVdivU +~VII =0  in RY xRy,
U=0 on 8R_]~\_f x Ry,
(I, U) |40 = (o, Up)  in RY.

(7.4)

To formulate problem (7.4) in the semigroup setting, we introduce spaces HZ,T(RJ]Y )s D;T(Rf )
and an operator A, defined in (1.4) and (1.5), respectively. Then, as was seen in (1.6), equations
(7.4) are written as

at(H’U) + AZ,T(I‘L U) = (Oa 0) for ¢ > 07 (Ha U)|t=0 = (HO,UO) € H;,r'
And, the corresponding resolvent problem (7.1) is written as
Alp,u) + Ag(pyu) = (f,8)

for (f,g) € H:,(RY) and (p,u) € D, (RY). From Theorem 7.1 it follows that the resol-
vent operator (A + .A;,T)*1 exists for any A € A ), for sufficient large A\g > 0. In fact,
A+ A7 Hf.8) = (RN, SN)(f.8) for (f,g) € Hi,(RY). Thus, the resolvent estimate:
AN + AZ,T‘)_IHE(HZ ) < C holds for any A € Ay,

From these observations, by theory of Cy analytic semigroup ([37]), there exists a Cp analytic
semigroup {7'(t)}+>0 associated with (7.4) and (II, U) = T'(¢t)(Ily, Up) is a unique solution of
(7.4), which satisfies the regularity condition:

(I1,U) € C([0, 00), 13, (RY)) N CO((0, ), Dj, (RY)) 1 C((0,00), 3, (RY))

as well as
lim [[(T1(-, ), U, £)) — (o, Uo) gy ey = (0.0).

Finally, we shall show the following theorem about the maximal L; regularity of {T'(¢)}+>0.
Obviously, combining the results about continuous analytic semigroup theory mentioned above
and the following theorem completes the proof of Theorem 1.1.

Theorem 7.2. Let 1 < g < oo and —1+1/q < s < 1/q. Then, there exists w > 0 such that for
any (I, Up) € ’H;I(Rf), there holds

* —wt
/0 e (10T (1) (Mo, Uo) i3y , vy + 1T () (Mo, Uo)llps | ) dt < ClI(To, Uo)llggs | e

In the sequel, we shall prove Theorem 7.2. We start with the following lemma.
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Proposition 7.3. Let Xy and X1 be Banach spaces which are an interpolation couple, and Y
be another Banach space. Assume that 0 < og,01,0 < 1 satisfy 1 = (1 —6)(1 —o0) +60(1 + 01).
Let w>0. Fort>0letT(t): Y — Xo+ X1 be a bounded linear operator such that

IT@®)flly < Ce*t™ | flx,,  f € Xo,

wty—1—0o (75)
IT@)flly < Ce”t™ | fllx,,  feXu.
Then, there holds
| ey d < oo,
with a constant C' > 0 independent of w.
Proof. The proof is based on real interpolation. For k € Z set
b(f) = sup e T(t)fly-
te[2k 2k +1]
We observe that
2k+1
| eirasty =3 [ ez a < Y2 0) (7.6)
0 keZ kEZ
Then we infer from the assumptions (7.5) that
bi(f) <C sup T fllx, < C27MT fll, f € Xo,
te[2k 2k+1)
be(f) O sup 7 fllx, < C2THHE Iy, f e X
te[2k 2k+1]
Namely, there hold
”(bk)kEZHZ;UO(Z) < OHfHXm [ e Xo,
|Gokezllems ) < Cllfllx, FeXo.
Since (£159°(Z), X591 (Z))g1 = £1(Z) due to [2, Thm. 5.6.1], it follows that
> 250 f) = bk Prezller @y < Ol xo X000, (7.7)
kEZ
Thus, the desired estimates follows from (7.6) and (7.7). O

A Proof of Theorem 7.2. Let w > 0 be a large number such that ¥, +w C A.,. Let I' be a
contour in C defined by I' =I'} UT'_ with

+={A= ret(m=e) | € (0,00)}.

As was well-known in theory of Cj analytic semigroup (cf. [37]), we have

1

T'(t)(o, Ug) = 9

/ (SO, RO)) (o, Ug) dA for £ > 0.
I'4+w

To show the L; integrability of T'(¢), we use Theorem 7.1. According to the formulas in (7.3),
we divide T'(¢) into the following three parts:
1

Ti(H)Up = o— . ST\ Up d), (7.8)
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1

Ty(t)(Ho, Up) = 5~ L S*(\)(Io, Up) dA, (7.9)
73(0)(To, Uy) = [ RO, Uy) ax (7.10)

We have T(t)(Ho, U()) = (Tg(t) (Ho, .U())7 T (t)Uo + Tg(t) (H(), Uo))
We first show that

To this end, in view of Proposition 7.3, we first prove that for every ¢t > 0 and Uy € C§° (Rf WV
there hold

T30 U0l ey < O Ul ey, (1.12)
Notice that A = w + 7™ (™= for A\ € Ty + w, and thus |eM| = ewteos(T—ort — cwto—rtcose fo;

A el +w. Since ”51()‘)U||B§4;2(R§) < C\)\]*%HUHB;?(R% as follows from Theorem 7.1, using
(7.8), for t > 0 we have

oo
”Tl(t)UOHB;?LI2(Rf) S Ce“)t/(; e*T'tCOSG,,,fa'/Q dTHUOHBSjo’(Rﬁ)

o0
142 ) —5/2
= Ce*'t 1+2/0 e~toosey=a/ dﬁ”UOHB;jo(Rf)a

which yields (7.12). To prove (7.13), by integration by parts we write

1
()00 = —5— o eMOyST(N)Ug dA.

Since ”aASI()‘)UOHBS?(Rﬁ) < C’|)\|7(17%)||UOHBSEU(R£) as follows from Theorem 7.1, we have
q, q,

oo
-1 — —(1-¢
HTl(t)UOHB;jQ(Rf) <Ct e“’t/o emrteosep=1=9) qp ||U0HB;3”(R§)

oo
— wtyp—1-% —lcosep—1+2
= Ce t 2 /0 e g 2 dg HUOHB;EJ(Rﬁ)’
which yields (7.13). Choosing # = 1/2 in Proposition 7.3 and using the fact that
(B2 (RY), Bi 77 (RY))1/21 = By (RY),

by Proposition 7.3, we have (7.11) for Uy € C5°(RY)N. But, since CF°(RY)Y is dense in
B (RY)Y, the estimate (7.11) holds for any Ug € B;l(RiV)N
We now show that

™| T2(t)(Ilo, Uo) | gs+2 dt < C[|(To, Uo)lls , vy
0 " R (7.14)

oo
| e IB O, Ul s dt < CIT Vo)l
In fact, using Theorem 7.1 and |\| > Ao, we have

H()\I/QV,VQ)SQO\)(fv g)HBgW(Rf) < C!Al’lll(f, g)HH;T(RI)
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<O TENTE ()l ),
|2V, V)rS* NS 8) g, =) < CNTZINE ) g, )
< OB D (£ 8) gy ey,
IRV N g gy < CINTHICS @)l )
<O T E I ) s,
IONRON) Nl g gy < CINZCS 8l
< C)\(;(H%)P\r(l*%)”(fa g)”?—[;yr(Rﬁ)

for any A € X +w and (f,g) € H; ;. In view of (7.9) and (7.10), employing the same argument
as in the proof of (7.12) and (7.13), we have

||T2(t)(H0,U0)||B;!+12(M) < C)‘(;§€°Utt_1+%”(H07UO)H”H;N
—(1+Z _1_c

I72(t) (o, Uo) | g2 may) < oy M) gty 2 11(To, Uo)lls¢s

||T3(t)(H0,U0)||B;+11(M) < C)\(;gewtt—l—i-%n(ﬂo’UO)HH;I’

—(14+3) wt,—1-2
||T3(t)(H07U0)||B;+11(Rf) <COX eI (o, Uo)ll2s , -

Thus, using Proposition 7.3 and noting that (Hg,,H,1)1/21 = Hg1 = B;jl(Rf) X Bg’l(Rf)N,
we have (7.14). This completes the proof of Theorem 7.2. O
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