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ABsTrRACT. We introduce a refinement of bounded cohomology and prove
that the suitable comparison homomorphisms vanish for an amenable group.
We investigate in this context Thompson’s group F and provide further evi-
dence towards its amenability. We show that the space of 1-bounded cocycles
of degree two is essentially as big as the space of Lipschitz functions on the un-
derlying group. We also explain that such classes define metrics on the group.

1. Introduction

Although the cohomology of a space is a homotopy invariant, it sometimes cap-
tures geometric information. For example, existence of a Kihler metric on a 22-
dimensional manifold A/ implies that the dimension of the odd degree cohomol-
ogy of M is even [13]. Another impressive example is simplicial volume, which is
a cohomological counterpart of the minimal volume of a Riemannian manifold.
Here, however, one has to put more structure on the space of cochains. Namely,
consider those that are bounded functions on the spaces of singular chains. This
has been done by Gromov in [14] where he introduced the bounded cobomol-
ogy. Since then it became a standard tool in various branches of mathematics like
group theory, differential geometry, dynamical systems and others [21]. Gromov
observed that the bounded cohomology of a space depends only on its funda-
mental group which, in principle, reduced the theory to group cohomology.

It is well known that the bounded cohomology of an amenable group is trivial
[14, Section 3]. If one looks closely at the proof of this fact [9, 19], it is clear
that the standard averaging argument yields more. Not only bounded cocycles
become coboundaries but also cocycles that are bounded after fixing a number of
variables do so. This observation (presented in the proof of Theorem 2.1 below)
led us to defining semibounded cohomology which is the main subject of this
paper.

We investigate the properties of semibounded cohomology in relation to other
geometric properties of spaces or groups. For example, we show that a cohomol-
ogy class of a group is hyperbolic if and only if it admits a 1-bounded representa-
tive; see Section 5 for definitions and more details.

It is well known that the kernel of the comparison map Hb2 (I;R) — H?*(T;R)
consists of quasimorphisms and is often an infinite dimensional space. This
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holds, for example, for non-elementary hyperbolic groups, mapping class group
which are not virtually abelian and many others [2, 7]. Quasimorphisms on a
group I" form a function theory tightly related to the geometry of the stable com-
mutator length on the commutator subgroup [I', I']; see [6] for more details. In
this spirit we show in Section 4 that the kernel of the comparison map between
1-bounded degree 2 cohomology and the standard cohomology consist of func-
tions which we call abstractly Lipschitz. These are functions for which there
exists a length on I" with respect to which the function is Lipschitz.

A similar concept to -bounded cocycles was defined by Neumann and Reeves [23]
for 2-cocycles and by Frigerio and Sisto [10] for any degree under the name weakly
bounded cocycles. Both papers consider cocycles that take finite set of values after
fixing all but the first argument.

Weakly bounded 2-cocycles were used to characterise central extensions of finitely
generated groups that are quasi-isometric with trivial extensions. It was a folklore
that this holds if the defining cocycle for an extension is bounded. Necessary and
sufficient condition in terms of ¢*°-cohomology (see [20]) was given by Kleiner
and Leeb [18, Proposition 8.3]. The characterisation in terms of weakly bounded
cocycles is due to Frigerio and Sisto [10, Corollary 2.5]. The connection between
weakly bounded cocycles and ¢*°-cohomology is a direct analogy to our Theo-
rem 3.3.

It is a longstanding open problem (popularised by R. Geoghegan around 1979)
to determine whether Thopson’s group F is amenable *. It is a recent result of
Monod that the bounded cohomology of F vanishes [22] and in Section 7 we ap-
ply our refined theory to test the amenability of 7. Unfortunately, we prove that
no class in the standard cohomology of F can be represented by a 1-bounded co-
cycle. This shows that the comparison homomorphisms between semibounded
and the standard cohomology are trivial and, as in the case of Monod’s vanishing
result, provides inconclusive answer as to whether F is amenable. The remaining
line of attack within our framework is to investigate the comparison homomor-
phisms between various semibounded cohomology of F. However, they seem to
be very hard to compute.

Throughout the paper when we consider group cohomology we use nonhomo-
g pap group gy
geneous notation for chains [4] with exceptions in Section s.

2. Semibounded cohomology

Let I" be a discrete group. An #-cochain w: I — R is called p-bounded if for
fixed g5+1, ..., gn € I the function

FP agb- . 7g]J = w(gl;---;gp;g])+17" -;gn)
isbounded. For example, an #-bounded cochain is bounded in the usual sense. It
is straightforward to check that C, Zﬂ) (I'; R) € C*(I'; R) consisting of p-bounded

A short historical account is given here: https://mathoverflow.net/questions/
55214/does-the-amenability-problem-for-thompsons-group-f-predate-1980


https://mathoverflow.net/questions/55214/does-the-amenability-problem-for-thompsons-group-f-predate-1980
https://mathoverflow.net/questions/55214/does-the-amenability-problem-for-thompsons-group-f-predate-1980
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cochains is preserved by the codifferential and hence it is a subcomplex. Indeed, if
a € C”)(F R) is a p-bounded 7-chain and gy41, ..., gn+1 € I are fixed elements

then the following computation shows that du is p-bounded.

5“(g1) e )g}’l+1) = “(gz: e :gp+1:gp+2, cee }gn+1)

Va4
+ Z(_l)kﬂ(gb co s ZhLk 1 - oo Lp+ 1 Lp+25 - - - :gn+1)
k=1

+ Z (_l)k“(gb oo )gp)gp+l; e s Tkl - - ;gn+1)
k=p+1

+ ( I)nﬂﬂ(gb .. 7g]J) ])+1; oo ;g}’l)

The cohomology of the complex C (;) (I'; R) will be denoted by (7,; ) (I';R). The

inclusions C* )(F R)CC )(F; R) induce maps in cohomology

(Pl

0y (R) = HY | (T;R) — -+ — H "

called comparison homomorphisms. Notice that A (”n) (IGR) = Hy(I';R).

(IGR) — H, (T5R) = H*(T;R),

In what follows, we will refer to 4" (I'; R) as the standard cohomology.

Recall that a group I' is called amenable if it admits a left-invariant mean. That
is, a linear functional ¢°I" — R, on the left module of bounded functions on

I', such that
1) [ F(ghym(g) = [ F(g)m(g) forallh € Tand all F € (T
2) [1Im(g) =1
(3) if F > 0 almost everywhere then /F(g)m(g) > 0.

It is well known [14, Section 3.0] that if a group I is amenable then its bounded
cohomology vanishes in positive degrees. In particular, the comparison homo-
morphisms between bounded and standard cohomology are trivial. We gener-
alise this result to the p-bounded cohomology.

Theorem 2.1. If T is an amenable group then the comparison homomorphisms
H}, (TiR) > H,_ (T;R)
vanish foralln > 0andp=1,2,...,n

Proof. The argument follows the proof of the fact that bounded cohomology of
an amenable group vanishes in positive degree. Let m be a right-invariant mean
on I'. Define a map A1 : C”“(F R) — C” 1)(lﬂ R) by

Mw(gy,...,g,) = / w(h,gi,..., g,) m(h).

To see that Mw is (p — 1)-bounded fix g, ..., g, and observe that the func-
tion b > w(h,g1,...,gp-1,gp - - -»gn) is bounded uniformly for any choice of
&1+ > gp-1. This shows (p — 1)-boundedness of Mw.
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Then
Mis(gy. ) = [ 3olhgo o) m(h

- [ st gm)

—/a)(bgl,gz,...,gn)m(h)+/a)(b,g1g2,...,gn)m(h)—...
N / (b g r gn) M(B)

@(gy-- > gn)

- [othgagimr+ [ athggng)mit) -

+ / (b g r gn) M(B)

=w(gL,...,82) = Mw(ga, ..., 2,) + Mw(g192, ..., 8,) —
o iMw(gb---:gn—l)
=w(g,...,g0) — Maw(g1,..., 2n)

where, in the marked equality, we used the invariance of the mean in the second
term. We obtain that

Mow + oMo = w = i(w),
where 7: C ”)(F R) — (’; _1)(F; R) is the inclusion of p-bounded cochains

into (p — 1)-bounded ones. Consequently, the map A is a homotopy for the
comparison map. O

Remark 2.2. Notice that we only prove the vanishing of the comparison maps.
We don’t know whether p-bounded cohomology of an amenable group vanishes
forp # n. 0

Remark 2.3. One could use another definition of p-boundedness. Namely, an
n-cochain w: I — Ris called left-p-bounded if for fixed g1, ..., g, € I the

function

I73 gupitseeosfn = (1 Cpom Gontlo - > &n)
is bounded. Such definition (of 1-bounded 2-cocycle) appears in [11, Section
4] under the name of semibounded cocycle, where the authors use it to prove
Polterovich’s theorem stating that on the group of symplectic diffeomorphisms
of a symplectically hyperbolic manifold all its elements are undistorted [11, The-
orem s.2].

Nevertheless, the involution

B(guee ) = w8 81)
is a chain map that interchanges p-bounded and left-p-bounded cocycles (with
trivial coefficients), so both notions define isomorphic objects. O
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3. The 1-bounded cohomology

Let ¢*°T denote the left module of bounded functions on I" with the action de-

fined by (hF)(g) = F(gh).

Lemma 3.1. The map Ag: C* (I;R) — C* N5 0°T) given by the formula

(1)
Now(gi, ..., g2)(B) = w(h gi,...,2,)

is a homotopy, i.e. dA\ow + Nodw = w.

Proof-
Node(gos ... > gn) (h) = dw(h, g0, ..., gn)
= w(go,..->2n)
—w(hgo, ..., gn) + @b, gogi, ..., g0) £ ...
- w(go: [ :gn

— Ao (g ..., g0) (hgo) + Now(gogy,--->2x) (D) £...
= w(g0,...>4n) — 0MNow(g0, ..., 20) (D).

O

LetA: C (”1) ([3R) — C" (T ¢°T'/R) be the composition of A followed by

the map C* /(I ¢°T) — C"I(T;¢*T'/R) induced by the quotient of the
coefhicients. The map A is surjective and anticommutes with the codifferential.
Its kernel consists of cocycles that do not depend on the first variable. We call
them 1-constant and denote by C ﬁ] (I, R).

Lemma 3.2. The complex of 1-constant cochains with restricted codifferential is
acyclic.

Proof. We need to show that J preserves 1-constant cochains. That is, if Aw = 0
then Adw = 0. This is equivalent to showing that if for any ¢/,..., g/ | € I" the
function Agw(gy, ..., g, ;) is constant then so is the function Agdw(gy, ..., g,)
forany g1,..., gyn+1 € I'. According to Lemma 3.1, we have Agdw = w — dAow.
Evaluating both sides on g3, . . ., g, we get that both terms on the right hand side
are constant, which proves that 1-constant cochains form a subcomplex.

The map H defined by
Heo(go, s g0) = 0(L, 1, g3...,24)
is a homotopy proving acyclicity. Indeed, we have
How(gy, ..., gn) + 0Hw(gy, ..., 8,) = (1, g2,...,8n)

Since b +— w(h,go,...,g,) is a constant function, the right hand side of the
above equality is equal to w(gy, ..., g,). O
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Consider the following short exact sequence

and the induced long exact sequence in cohomology. As a corollary, we deduce

the following theorem.

Theorem 3.3. The map induced by A,
H{)(T5R) — H"Y(T;0°T/R)

is an isomorphism. Its composition with the Bockstein homomorphism
H"Y(T;6°T/R) — H*(T;R)

corvesponding to the short exact sequence of coefficients R — (T" — (*T'/R is
equal to the comparison map H Eil) (I';R) —» H*(T;R).

Proof. Letw € C(”l)(F; R) be a cocycle. Then Ag(w) € C*7(I5¢%T) is the
lift of A(w) € C*1(T';¢*T"/R). By definition [16, Section 3.E], the Bockstein
homomorphism sends [A(w)] to [0A¢(w)]. Since w is a cocycle, it follows from
Lemma 3.1 that dAg(w) = @ — Ag(dw) = w, which proves the statement. O

Notice thata group I' is amenable if and only if the short exact sequence of coef-
ficients 0 - R — ¢*°I" — ¢*I'/R — 0 splits. Indeed, if s: ¢*T'/R — (=T is
asection then '+ F—s(F-R) isamean. Conversely, if there exists a mean then
s[F] = F - f F(g)m(g) is a well defined section. In such a case the Bockstein
map is trivial in accordance with Theorem 2.1.

4. 1-bounded 2-cocycles

In this section we discuss two constructions of pseudometrics on a group defined
by 1-bounded 2-cocycles (in what follows, we will abuse terminology and refer to
them as metrics). The first metric is defined by cocycles that are trivial in the
standard cohomology. The second construction is defined for arbitrary cocycles.

We start with the first construction. Recall, that any bounded 2-cocycle in the
kernel of the comparison homomorphism A, ;‘ (T;R) — H?(T;R) is a codiffer-
ential of a quasimorphism, ze., a function ¢: I' — R such that SUP, e l¢(g) =
¢(gh) + ¢(h)| < oo. Thus the kernel of the comparison map can be identified
with the space of quasimorphisms divided by the sum of the space of homomor-
phisms (annihilated by the codifferential) and the space of bounded functions
(which correspond to coboundaries). See Calegari [6, Chapter 2] for a survey.

Similarly, any 1-bounded 2-cocycle in the kernel of the comparison homomor-
phism A (21) (I3;R) — H?*(T;R) is a codifferential of a function ¢: ' — R
such that for each fixed 5 € T" we have sup . |¢(g) — ¢(gh) + ¢(h)| < oo. That

is,

15 = ¢llo := sup |$(gh) = $(g)] < co.

g€l
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We call such functions abstractly Lipschitz. The above argument can be then
summed up as follows.
Proposition 4.1. The kernel of the comparison map H (21) (T;R) — H?(T;R) is

isomorphic to the quotient on abstractly Lipschitz functions divided by the sum of
the space of homomorphisms and the space of bounded functions. O

On the other hand, given abstractly Lipschitz function ¢, the map ®@: I' — ¢*°I"
given by ®(g) = g¢ — ¢ is a cocycle. Indeed, we have

0D (g, h) = g®(h) — D(gh) + D(g)
=g(bp—¢) —ghp+p+gp—¢
=gh¢ —gp —ghp +g¢ = 0.
Taking the class of @ in H'(I';¢*T'/R) = Hé)(r; R) corresponds to taking

class of ¢ modulo homomorphisms (constant cocycles) and bounded functions
(coboundaries).

The name abstractly Lipschitz is motivated by the following observation.

Proposition 4.2. Let ¢ be a function on a group I'. The following are equivalent

(1) ¢ is abstractly Lipschitz,
(2) there exists a length function | - | on I, such that ¢ is Lipschitz with respect
to]|-|.

Proof. Assume (1). Then ¢ is Lipschitz with respect to

lgls = llgg = ¢llo.
Assume (2). Then ||gg — dllo < |g]. O

Notice that if I is finitely generated then abstractly Lipschitz functions are Lip-
schitz with respect to the word norm associated with a finite generating set.

The second construction goes as follows. Letw € C (21)(F; R) be an arbitrary
r-bounded 2-cocycle. For a function ¢ € (%I define [¢/|osc = supy, o [¢(h) —
¥ (b')] and define [|g|l, = [@(g -)losc-

Proposition 4.3. The function || - ||, is a well defined metric on I'. Moreover, if y
is a bounded 1-cochain, then || - ||, and || - || o+, are within finite (at most 2|y|os)
distance.

Proof. By cocycle identity

w(g1g2, h) — w(g122, W) = w(g2, h) + w(g, g2h) — w(g1, £2)
—w(g2, ') — w(g, 22V) + (g1, 22)
= w(g2, h) — (g2, V') + w(g1, ©2h) — (g1, g27).

Taking supremum of the absolute value of the above over all » and /" we get the
triangle identity.
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To show that || - ||,, is symmetric first write
0=0w(LLh) =w(l,h) —w(l,h) +o(l,h) —w(l,1),
thus w(1, ») does not depend oh 4. Then
0=0w(g g h) =w(gh) —o,h) +wg,gh) —w(g™g)

hence

w(g h) + a)(g_l,g/o) =w(l,1)+ a)(g_l,g) =w(g k) + w(g_l,g/e),

or, equivalently

w(g h) —w(g k) = w(g™, gk) — w(g™,, gh).

Taking the supremum on both sides we derive ||g|l,, = |lg7" |-

The last statement is obvious. O

One can rephrase the above statement by saying that every element of /. (21) (I R)
defines a class of metrics on I which are within finite distance from each other.

In [11, Theorem s.2] we essentially prove that a certain 1-bounded 2-cocycle ®
defines a metric on the group of Hamiltonian diffeomorphisms Ham (X, ) of
a symplectically hyperbolic manifold (X, o) and prove that each element of this
group is undistorted with respect to || - ||g. Notice, that in [11] the function
Il - || was defined slightly differently and did not satisfy triangle inequality (cf.

[11, Lemma 4.1]).

Let us compare the two constructions. Given a 1-bounded 2-cocycle in the kernel
of the comparison map, we defined two norms || - ||55 and | - |4. Since

0p(g h) —dp(g H') = ¢(g) — ¢(gh) + ¢(h) — ¢(g) + ¢(gh’) — ¢()
= (gp—p)(H) — (gp — $) (D),
we see that ||g[lsg = |g¢ — @lose < 2|gls-

s. Hyperbolic classes

Letp: X — X be the universal cover of a CW-complex X and letI" = 71.X. Let
C*(X) and C*(X) denote CW-cochains on X and X, respectively. The cochains
are considered with trivial real coefficients. We say that a cochaina« € C” (X) is
tamed by » € C” (X) if for every ¢ € I"and every cell A in X

|(ga —a)(2)] < v(2).
Clearly, a cochain is equivariant (it is a lift of a cochain from C* (X)) if and only
if it is tamed by a cochain vanishing identically.

We say thata cocycle 2 € C”(X) is hyperbolic if p*« can be expressed as J8 with
[ tamed by some cochain lifted from X. A class in " (X;R) is hyperbolic if it
has a hyperbolic representative.



Swiatostaw Gal € Jarek Kedra

The notion of a hyperbolic class is inspired by Gromov [15] who considered dif-
ferential forms 2 with the property that the lift p* to the universal cover has a
primitive that is bounded with respect to the induced Riemannian metric (see
also the recent paper of Ascari and Milizia [1] for new developments). By in-
tegrating such classes over cells we get that they yield hyperbolic classes in our
sense. Indeed, if the #-skeleton of X is finite, then any homogeneous cochain
takes only finitely many values. Thus, 2 € H”(X;R) is hyperbolic if one can
choose 8 € C*1(X;R) with [38] = p*a, and M € R, such that for any cell A
inX, |8(a)] < M.

Hyperbolicity as defined above depends on the cellular structure if X is not com-
pact. We need it so we can speak of hyperbolic classes in BI'. Clearly, hyperbol-
icity is preserved by cellular maps.

Proposition s.1. Hyperbolicity does not change under subdivisions of a given CW-
structure.

Proof. Let X’ be a subdivision of X. Wherever we write that a cell in X" divides
a cell in X we implicitly assume that they are of the same dimension.

Maps inducing the natural isomorphism on A*(X;R) and H*(X’;R) are in-
duced by ¢: C*(X;R) — C*(X’;R) and b: C*(X’;R) — C*(X;R) defined
as ga(A') = ia(A), where A is the cell which A” divides and 7, denote the
number of cells in X’ dividing A, and b2’ (A) = ) a’(A"), where the sum runs
over all cells A" in X” dividing A. We denote corresponding maps for X and its
induced subdivision X” by the same letters. We observe, in particular, that they
commute with p*.

If « = p*9f and £ is tamed by » then ga = p* g8 and g8 is tamed by g». Similarly,
ifa’ = p*9f’ and £’ is tamed by v’ then ba’ = p* 964’ and bf’ is tamed by b'. O

The aim of this section is to prove the following connection between hyperbolic
and 1-bounded classes.

Theorem s.2. Let X be a finite connected CW=-complex with m(X) = I and let
¢: X — BT be the dlassifying map. Then a pullback of a 1-bounded class is hyper-
bolic. Moreover, if the universal cover of X is (n—1)-connected and a € H"(X;R)
is a hyperbolic class, then there exists a 1-bounded cocyclew € C Eﬁl) (BI; R) such that

o] = a
Remark s.3. We donotknow wheather one can replace the assumption on higher
connectivity of X by assuming that « lies in the image of c. O

Until the end of this section we use the homogeneous notation, since we need to
talk about chains on ET".

We say thata (7 —1)-cochain A controls an #-cochain wif forall b, g1,..., g, € I’
lw(h, g1, ... 80) — (L g1, ... g0)| < A(g1, .- .5 20)- (s.1)

By definition, a homogeneous cochain w is 1-bounded if it is controlled by a ho-
mogeneous cochain.
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It is straightforward to verify that the map H: C*(EI3R) — C"'(EIR)
given by the formula (Hw)(g1,...,2,) = @(1,g1,...,g,) is a homotopy satis-
tying 0Hw + How = w (see [3, Page 18]).

Lemma s.4. Assume that w € C"(EI';R) s dosed, U-invariant and controlled
by A. Then Hew is tamed by J.

Proof.
|(gHw — Hw) (g1 ..., g,)| = |Ho(g1g - . . > g1g) — Ho(g1, ..., g0)|
= |lw(Lgg ..., 222) — (L g1,..., g4l

= |5<)(g_1;g1:---:gn) —&)(l,gl,...,gn)l
<2gne s g0).

Given 7 € C"}(ET) define 7 € CL(ED)T by the formula

7(gu- o gn) = 7(Lgagi - gngi -
Lemma s.5. Assume thaty € C"(ET;R) is tamed by v and 3 is U-invariant
then 3(y — 7) is controlled by v.
Proof. Since d(y — 7) is I'-invariant,
0y —=7) (b g...,gn)eta=0(y— 7'7)(1,g1h_1, . ..,gnlo_l)
= ;7(g1/9_1, .. .,gnh_l) - ;7(1,g210_1, ... ,gn/o_l) + .-
—p(Lgag o gngi) +p(Lgah™ g ) F
=p(@b™, o gnb™) = (L gagr - gy
= (7 -g D@y gn).
Thus, since, by assumption, 7 is tamed by »,
97 =D (b g 80) =37 = DL g g = 1077 = 1) (g1 )]
< V(gL gn)
O

Corollary 5.6. Let a € H"(BIsR). Then a is hyperbolic if and only if a has
1-bounded representative.

Proof of Theorem s.2. Let w be a -bounded cocycle. Then [w] is hyperbolic, so,
by the above corollary, is ¢* [«].

Leta € H"(X;R) be hyperbolic. Taking Y, an T-invariant subdivision of the £-
skeleton of the simplicial complex ET’, we may build an equivariant cellular map

f: Y - X. Let f: Y = Y/T — X be the corresponding map of the quotients.
Leta € C*(X;R) be a hyperbolic cocycle and let p* (@) = 98, where 8is a tamed

cochain. Define = b(f*8). By Proposition 5.1, 7 is tamed. By Lemma 5.5
d(» — 7) is controlled.



Swiatostaw Gal € Jarek Kedra

The equivariant cocycle d(y — 7) is a lift of a cocycle w € C k(BI';R). Being
controlled for 9(5 — 7) translates to 1-boudedness of w; see comment after (5.1).
Since 7 is a lift of a cocycle from BI" we see that [w] = f*[«]. Since ¢ o f is
homotopic to the inclusion ¥ — BI', it follows that ¢* [w] = [«] which finishes
the proof. O

6. Hyperbolic classes and amenability

It immediately follows from Theorems 2.1 and 5.2 that any hyperbolic class on
a CW-complex X as above is trivial if 7;(X) is amenable. However, a more
direct proof yields the following slightly stronger observation originally due to
Brunnbauer Kotschick [s, Theorem 3.2] who used an isoperimetric characterisa-
tion of manifolds with amenable fundamental group due to Brooks. A different
argument was used in [17] to show that the fundamental group of a closed sym-
plectically hyperbolic manifold cannot be amenable.

Proposition 6.1. Ler X be a finite complex and let a be a hyperbolic cocycle on X.
If the fundamental group of X is amenable, then a is a coboundary.

Proof. Let p*a = 9f with 8 bounded cochain on X. By averaging this equation
with respect to a mean on the deck transformation group 7 (X) we find £ which
is 71 (X)—invariant, thus 4 is a lift of a cocycle 8’ on X and « = 9f’ which proves
the claim. O

7. Test case: Thompson’s group F

It is a stimulating open question to determine whether Thompson’s group F is
amenable. Since it is a split extension

[EF] » F — 72,

itsamenability is equivalent to the amenability of its commutator subgroup. No-
tice that the commutator subgroup [ £ F] is boundedly acyclic due to a recent re-
sult of Campagnolo, Fournier-Facio, Lodha and Moraschini [8, Corollary 1.14].
The cohomology ring H* ([ F]; R) is isomorphic to a polynomial ring R [#],
where deg(#) = 2. The explicit cocycle 2 (defined in (7.1) below) representing #
has been given by Ghys and Sergiescu [12, Corollaire 4.5]. Let Z> — [F, F] bean
injective homomorphism generated by two commuting nontrivial elements. Itis
easy to choose such elements so that the pull-back of # is nontrivial in /7*(Z* R)
and, since Z? is amenable, it can’t be represented by a 1-bounded cocycle. This is
explained in the first step of the proof of the following general observation which
provides further evidence for a possible amenability of F.

Leta: F' X F' — R be a cocycle defined by the following formula

_ logs g7 (x)  loga (fog); (x)
d(f;g) - Z det (logz gé(x) logs (fog)i (x) ) ’ (71)
x
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where the summation is over the breakpoints. The subscripts L and R refer to the

left and right derivatives. This cocycle represents a generator of the cohomology
ring H*(F';R) = R[«].

Proposition 7.x. For every positive integer n € N there exists an injective ho-
momorphism y: Z* — [F, F) such that y*(u") # 0 in H*(Z*";R). Conse-
quently, u” cannot be represented by a r-bounded cocycle.

Proof. LetF’ = [F, F] denote the commutator subgroup of Thompson’s group F
and let f; ¢ € F” be elements defined by the following pictures.

e e

f g fog=gof

Let y: Z*> — F’ be an injective homomorphism defined by

Y(er) =fandy(e2) = g

where e; = (1,0) and ¢, = (0,1). Itis a direct computation that 2(f, ¢) = 1
and that 2(g, /) = —1 (only the breaking point (1/2,1/2) contributes). Since
& = (etlez) — (ealer) is a cycle representing nontrivial class in 5 (Z* R) we get
that (¥*2, {2) = 2 and hence y*(«) # 0in H*(Z*R). Since Z* is amenable, #
cannot be represented by a 1-bounded cocycle. We use here the bar notation for
non-homogeneous chains (see Brown [3, Section IL3]).

Consider : Z** — F’ generated by

ﬁ)gb .. uﬁugm

-1 7
n’n

where f; and g; are supported on [ ] and are rescaled copies of f and g dis-

cussed above. Observe that

valfog) =2
valfsg) =¥ alfo ;) = v'a(g,g) =0 fori # /.

It follows that cocycle y*a: 7" x 7> — Risa symplectic form and hence
its n-th power represents a non-trivial cohomology class in H*(Z*";R). That
is, [¥*a]” = y*[2]* = ¢*(«") # 0. Since Z*" is amenable, #” cannot be
represented by a 1-bounded cocycle. O
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