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Abstract. We introduce a refinement of bounded cohomology and prove
that the suitable comparison homomorphisms vanish for an amenable group.
We investigate in this context Thompson’s group F and provide further evi-
dence towards its amenability. We show that the space of 1-bounded cocycles
of degree two is essentially as big as the space of Lipschitz functions on the un-
derlying group. We also explain that such classes define metrics on the group.

1. Introduction

Although the cohomology of a space is a homotopy invariant, it sometimes cap-
tures geometric information. For example, existence of a Kähler metric on a 2n-
dimensional manifoldM implies that the dimension of the odd degree cohomol-
ogy ofM is even [13]. Another impressive example is simplicial volume, which is
a cohomological counterpart of the minimal volume of a Riemannian manifold.
Here, however, one has to put more structure on the space of cochains. Namely,
consider those that are bounded functions on the spaces of singular chains. This
has been done by Gromov in [14] where he introduced the bounded cohomol-
ogy. Since then it became a standard tool in various branches of mathematics like
group theory, differential geometry, dynamical systems and others [21]. Gromov
observed that the bounded cohomology of a space depends only on its funda-
mental group which, in principle, reduced the theory to group cohomology.
It is well known that the bounded cohomology of an amenable group is trivial
[14, Section 3]. If one looks closely at the proof of this fact [9, 19], it is clear
that the standard averaging argument yields more. Not only bounded cocycles
become coboundaries but also cocycles that are bounded after fixing a number of
variables do so. This observation (presented in the proof of Theorem 2.1 below)
led us to defining semibounded cohomology which is the main subject of this
paper.
We investigate the properties of semibounded cohomology in relation to other
geometric properties of spaces or groups. For example, we show that a cohomol-
ogy class of a group is hyperbolic if and only if it admits a 1-bounded representa-
tive; see Section 5 for definitions and more details.
It is well known that the kernel of the comparison mapH2

b (Γ;R) → H2(Γ;R)
consists of quasimorphisms and is often an infinite dimensional space. This
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holds, for example, for non-elementary hyperbolic groups, mapping class group
which are not virtually abelian and many others [2, 7]. Quasimorphisms on a
groupΓ form a function theory tightly related to the geometry of the stable com-
mutator length on the commutator subgroup [Γ, Γ]; see [6] for more details. In
this spirit we show in Section 4 that the kernel of the comparison map between
1-bounded degree 2 cohomology and the standard cohomology consist of func-
tions which we call abstractly Lipschitz. These are functions for which there
exists a length on Γ with respect to which the function is Lipschitz.
A similar concept to 1-bounded cocycles was defined by Neumann and Reeves [23]
for 2-cocycles and by Frigerio and Sisto [10] for any degree under the name weakly
bounded cocycles. Both papers consider cocycles that take finite set of values after
fixing all but the first argument.
Weakly bounded 2-cocycles were used to characterise central extensions of finitely
generated groups that are quasi-isometric with trivial extensions. It was a folklore
that this holds if the defining cocycle for an extension is bounded. Necessary and
sufficient condition in terms of ℓ∞-cohomology (see [20]) was given by Kleiner
and Leeb [18, Proposition 8.3]. The characterisation in terms of weakly bounded
cocycles is due to Frigerio and Sisto [10, Corollary 2.5]. The connection between
weakly bounded cocycles and ℓ∞-cohomology is a direct analogy to our Theo-
rem 3.3.
It is a longstanding open problem (popularised by R. Geoghegan around 1979)
to determine whether Thopson’s group F is amenable 1. It is a recent result of
Monod that the bounded cohomology of F vanishes [22] and in Section 7 we ap-
ply our refined theory to test the amenability of F . Unfortunately, we prove that
no class in the standard cohomology of F can be represented by a 1-bounded co-
cycle. This shows that the comparison homomorphisms between semibounded
and the standard cohomology are trivial and, as in the case of Monod’s vanishing
result, provides inconclusive answer as to whether F is amenable. The remaining
line of attack within our framework is to investigate the comparison homomor-
phisms between various semibounded cohomology of F . However, they seem to
be very hard to compute.

Throughout the paper when we consider group cohomology we use nonhomo-
geneous notation for chains [4] with exceptions in Section 5.

2. Semibounded cohomology

Let Γ be a discrete group. An n-cochain ω : Γn → R is called p-bounded if for
fixed gp+1, . . . , gn ∈ Γ the function

Γp ∋ g1, . . . , gp ↦→ ω(g1, . . . , gp, gp+1, . . . , gn)
is bounded. For example, ann-bounded cochain is bounded in the usual sense. It
is straightforward to check thatC∗

(p) (Γ;R) ⊆ C∗(Γ;R) consisting of p-bounded

1A short historical account is given here: https://mathoverflow.net/questions/

55214/does-the-amenability-problem-for-thompsons-group-f-predate-1980

https://mathoverflow.net/questions/55214/does-the-amenability-problem-for-thompsons-group-f-predate-1980
https://mathoverflow.net/questions/55214/does-the-amenability-problem-for-thompsons-group-f-predate-1980
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cochains is preserved by the codifferential and hence it is a subcomplex. Indeed, if
α ∈ Cn

(p) (Γ;R) is a p-bounded n-chain and gp+1, . . . , gn+1 ∈ Γ are fixed elements
then the following computation shows that δα is p-bounded.

δα(g1, . . . , gn+1) = α(g2, . . . , gp+1, gp+2, . . . , gn+1)

+
p∑︁
k=1

(−1)kα(g1, . . . , gkgk+1, . . . , gp+1, gp+2, . . . , gn+1)

+
n∑︁

k=p+1
(−1)kα(g1, . . . , gp, gp+1, . . . , gkgk+1, . . . , gn+1)

+ (−1)n+1α(g1, . . . , gp, gp+1, . . . , gn).

The cohomology of the complexC∗
(p) (Γ;R) will be denoted byHn

(p) (Γ;R). The
inclusions C∗

(p) (Γ;R) ⊆ C∗
(p−1) (Γ;R) induce maps in cohomology

Hn
(n) (Γ;R) → Hn

(n−1) (Γ;R) → · · · → Hn
(1) (Γ;R) → Hn

(0) (Γ;R) = Hn(Γ;R),

called comparison homomorphisms. Notice that Hn
(n) (Γ;R) = Hn

b (Γ;R).
In what follows, we will refer to Hn(Γ;R) as the standard cohomology.
Recall that a group Γ is called amenable if it admits a left-invariant mean. That
is, a linear functional ℓ∞Γ → R, on the left module of bounded functions on
Γ, such that

(1)
∫
F (gh)𝔪(g) =

∫
F (g)𝔪(g) for all h ∈ Γ and all F ∈ ℓ∞Γ;

(2)
∫

1𝔪(g) = 1;
(3) if F ≥ 0 almost everywhere then

∫
F (g)𝔪(g) ≥ 0.

It is well known [14, Section 3.0] that if a group Γ is amenable then its bounded
cohomology vanishes in positive degrees. In particular, the comparison homo-
morphisms between bounded and standard cohomology are trivial. We gener-
alise this result to the p-bounded cohomology.

Theorem 2.1. If Γ is an amenable group then the comparison homomorphisms

Hn
(p) (Γ;R) → Hn

(p−1) (Γ;R)

vanish for all n > 0 and p = 1, 2, . . . , n.

Proof. The argument follows the proof of the fact that bounded cohomology of
an amenable group vanishes in positive degree. Let 𝔪 be a right-invariant mean
on Γ. Define a map M : Cn+1

(p) (Γ;R) → Cn
(p−1) (Γ;R) by

Mω(g1, . . . , gn) =
∫

ω(h, g1, . . . , gn)𝔪(h).

To see that Mω is (p − 1)-bounded fix gp, . . . , gn and observe that the func-
tion h ↦→ ω(h, g1, . . . , gp−1, gp, . . . , gn) is bounded uniformly for any choice of
g1, . . . , gp−1. This shows (p − 1)-boundedness of Mω.
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Then

Mδω(g1, . . . , gn) =
∫

δω(h, g1, . . . , gn)𝔪(h)

=

∫
ω(g1, . . . , gn)𝔪(h)

−
∫

ω(hg1, g2, . . . , gn)𝔪(h) +
∫

ω(h, g1g2, . . . , gn)𝔪(h) − . . .

· · · ±
∫

ω(h, g1, . . . , gn−1)𝔪(h)

!
= ω(g1, . . . , gn)

−
∫

ω(h, g2, . . . , gn)𝔪(h) +
∫

ω(h, g1g2, . . . , gn)𝔪(h) − . . .

· · · ±
∫

ω(h, g1, . . . , gn−1)𝔪(h)

= ω(g1, . . . , gn) −Mω(g2, . . . , gn) +Mω(g1g2, . . . , gn) − . . .
· · · ±Mω(g1, . . . , gn−1)

= ω(g1, . . . , gn) − δMω(g1, . . . , gn),
where, in the marked equality, we used the invariance of the mean in the second
term. We obtain that

Mδω + δMω = ω = i(ω),
where i : Cn

(p) (Γ;R) → Cn
(p−1) (Γ;R) is the inclusion of p-bounded cochains

into (p − 1)-bounded ones. Consequently, the map M is a homotopy for the
comparison map. □

Remark 2.2. Notice that we only prove the vanishing of the comparison maps.
We don’t know whether p-bounded cohomology of an amenable group vanishes
for p ≠ n. ♦

Remark 2.3. One could use another definition of p-boundedness. Namely, an
n-cochain ω : Γn → R is called left-p-bounded if for fixed g1, . . . , gn−p ∈ Γ the
function

Γp ∋ gn−p+1, . . . , gn ↦→ ω(g1, . . . , gp−n, gp−n+1, . . . , gn)
is bounded. Such definition (of 1-bounded 2-cocycle) appears in [11, Section
4] under the name of semibounded cocycle, where the authors use it to prove
Polterovich’s theorem stating that on the group of symplectic diffeomorphisms
of a symplectically hyperbolic manifold all its elements are undistorted [11, The-
orem 5.2].
Nevertheless, the involution

ω̂(g1, . . . , gn) = ω(g−1
n , . . . , g−1

1 )
is a chain map that interchanges p-bounded and left-p-bounded cocycles (with
trivial coefficients), so both notions define isomorphic objects. ♦
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3. The 1-bounded cohomology

Let ℓ∞Γ denote the left module of bounded functions on Γ with the action de-
fined by (hF ) (g) = F (gh).

Lemma 3.1. The map Λ0 : Cn
(1) (Γ;R) → Cn−1(Γ; ℓ∞Γ) given by the formula

Λ0ω(g1, . . . , gn) (h) = ω(h, g1, . . . , gn)

is a homotopy, i.e. δΛ0ω + Λ0δω = ω.

Proof.

Λ0δω(g0, . . . , gn) (h) = δω(h, g0, . . . , gn)
= ω(g0, . . . , gn)
− ω(hg0, . . . , gn) + ω(h, g0g1, . . . , gn) ± . . .

= ω(g0, . . . , gn)
− Λ0ω(g1, . . . , gn) (hg0) + Λ0ω(g0g1, . . . , gn) (h) ± . . .

= ω(g0, . . . , gn) − δΛ0ω(g0, . . . , gn) (h).

□

Let Λ : Cn
(1) (Γ;R) → Cn−1(Γ; ℓ∞Γ/R) be the composition of Λ0 followed by

the map Cn−1(Γ; ℓ∞Γ) → Cn−1(Γ; ℓ∞Γ/R) induced by the quotient of the
coefficients. The map Λ is surjective and anticommutes with the codifferential.
Its kernel consists of cocycles that do not depend on the first variable. We call
them 1-constant and denote by Cn

[1] (Γ,R).

Lemma 3.2. The complex of 1-constant cochains with restricted codifferential is
acyclic.

Proof. We need to show that δ preserves 1-constant cochains. That is, if Λω = 0
then Λδω = 0. This is equivalent to showing that if for any g′1, . . . , g

′
n−1 ∈ Γ the

function Λ0ω(g′1, . . . , g′n−1) is constant then so is the function Λ0δω(g1, . . . , gn)
for any g1, . . . , gn+1 ∈ Γ. According to Lemma 3.1, we have Λ0δω = ω − δΛ0ω.
Evaluating both sides on g1, . . . , gn we get that both terms on the right hand side
are constant, which proves that 1-constant cochains form a subcomplex.
The map H defined by

Hω(g2, . . . , gn) = ω(1, 1, g3, . . . , gn)

is a homotopy proving acyclicity. Indeed, we have

Hδω(g1, . . . , gn) + δHω(g1, . . . , gn) = ω(1, g2, . . . , gn).

Since h ↦→ ω(h, g2, . . . , gn) is a constant function, the right hand side of the
above equality is equal to ω(g1, . . . , gn). □
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Consider the following short exact sequence

0 → Cn
[1] (Γ,R) → Cn

(1) (Γ;R) → Cn−1(Γ; ℓ∞Γ/R) → 0

and the induced long exact sequence in cohomology. As a corollary, we deduce
the following theorem.

Theorem 3.3. The map induced by Λ,

Hn
(1) (Γ;R) → Hn−1(Γ; ℓ∞Γ/R)

is an isomorphism. Its composition with the Bockstein homomorphism

Hn−1(Γ; ℓ∞Γ/R) → Hn(Γ;R)
corresponding to the short exact sequence of coefficients R → ℓ∞Γ → ℓ∞Γ/R is
equal to the comparison map Hn

(1) (Γ;R) → Hn(Γ;R).

Proof. Let ω ∈ Cn
(1) (Γ;R) be a cocycle. Then Λ0(ω) ∈ Cn−1(Γ; ℓ∞Γ) is the

lift of Λ(ω) ∈ Cn−1(Γ; ℓ∞Γ/R). By definition [16, Section 3.E], the Bockstein
homomorphism sends [Λ(ω)] to [δΛ0(ω)]. Since ω is a cocycle, it follows from
Lemma 3.1 that δΛ0(ω) = ω − Λ0(δω) = ω, which proves the statement. □

Notice that a group Γ is amenable if and only if the short exact sequence of coef-
ficients 0 → R → ℓ∞Γ → ℓ∞Γ/R → 0 splits. Indeed, if s : ℓ∞Γ/R → ℓ∞Γ is
a section then F ↦→ F − s(F ·R) is a mean. Conversely, if there exists a mean then
s[F ] = F −

∫
F (g)𝔪(g) is a well defined section. In such a case the Bockstein

map is trivial in accordance with Theorem 2.1.

4. 1-bounded 2-cocycles

In this section we discuss two constructions of pseudometrics on a group defined
by 1-bounded 2-cocycles (in what follows, we will abuse terminology and refer to
them as metrics). The first metric is defined by cocycles that are trivial in the
standard cohomology. The second construction is defined for arbitrary cocycles.
We start with the first construction. Recall, that any bounded 2-cocycle in the
kernel of the comparison homomorphismH2

b (Γ;R) → H2(Γ;R) is a codiffer-
ential of a quasimorphism, i.e., a function ϕ : Γ → R such that supg,h∈Γ |ϕ(g) −
ϕ(gh) + ϕ(h) | < ∞. Thus the kernel of the comparison map can be identified
with the space of quasimorphisms divided by the sum of the space of homomor-
phisms (annihilated by the codifferential) and the space of bounded functions
(which correspond to coboundaries). See Calegari [6, Chapter 2] for a survey.
Similarly, any 1-bounded 2-cocycle in the kernel of the comparison homomor-
phism H2

(1) (Γ;R) → H2(Γ;R) is a codifferential of a function ϕ : Γ → R
such that for each fixed h ∈ Γ we have supg∈Γ |ϕ(g) − ϕ(gh) + ϕ(h) | < ∞. That
is,

∥hϕ − ϕ∥0 := sup
g∈Γ

|ϕ(gh) − ϕ(g) | < ∞.
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We call such functions abstractly Lipschitz. The above argument can be then
summed up as follows.

Proposition 4.1. The kernel of the comparison mapH2
(1) (Γ;R) → H2(Γ;R) is

isomorphic to the quotient on abstractly Lipschitz functions divided by the sum of
the space of homomorphisms and the space of bounded functions. □

On the other hand, given abstractly Lipschitz functionϕ, the mapΦ : Γ → ℓ∞Γ
given by Φ(g) = gϕ − ϕ is a cocycle. Indeed, we have

δΦ(g, h) = gΦ(h) −Φ(gh) +Φ(g)
= g

(
hϕ − ϕ

)
− ghϕ + ϕ + gϕ − ϕ

= ghϕ − gϕ − ghϕ + gϕ = 0.

Taking the class of Φ in H 1(Γ; ℓ∞Γ/R) � H2
(1) (Γ;R) corresponds to taking

class of ϕ modulo homomorphisms (constant cocycles) and bounded functions
(coboundaries).
The name abstractly Lipschitz is motivated by the following observation.

Proposition 4.2. Let ϕ be a function on a group Γ. The following are equivalent

(1) ϕ is abstractly Lipschitz,
(2) there exists a length function | · | on Γ, such that ϕ is Lipschitz with respect

to | · |.

Proof. Assume (1). Then ϕ is Lipschitz with respect to

|g |ϕ = ∥gϕ − ϕ∥0.

Assume (2). Then ∥gϕ − ϕ∥0 ≤ |g |. □

Notice that if Γ is finitely generated then abstractly Lipschitz functions are Lip-
schitz with respect to the word norm associated with a finite generating set.
The second construction goes as follows. Let ω ∈ C2

(1) (Γ;R) be an arbitrary
1-bounded 2-cocycle. For a function ψ ∈ ℓ∞Γ define |ψ |osc = suph,h′∈Γ |ψ (h) −
ψ (h′) | and define ∥g∥ω = |ω(g, ·) |osc.

Proposition 4.3. The function ∥ · ∥ω is a well defined metric on Γ. Moreover, if η
is a bounded 1-cochain, then ∥ · ∥ω and ∥ · ∥ω+δη are within finite (at most 2|η|osc)
distance.

Proof. By cocycle identity

ω(g1g2, h) − ω(g1g2, h′) = ω(g2, h) + ω(g1, g2h) − ω(g1, g2)
− ω(g2, h′) − ω(g1, g2h′) + ω(g1, g2)

= ω(g2, h) − ω(g2, h′) + ω(g1, g2h) − ω(g1, g2h′).
Taking supremum of the absolute value of the above over all h and h′ we get the
triangle identity.
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To show that ∥ · ∥ω is symmetric first write

0 = δω(1, 1, h) = ω(1, h) − ω(1, h) + ω(1, h) − ω(1, 1),
thus ω(1, h) does not depend oh h. Then

0 = δω(g−1, g, h) = ω(g, h) − ω(1, h) + ω(g−1, gh) − ω(g−1, g),
hence

ω(g, h) + ω(g−1, gh) = ω(1, 1) + ω(g−1, g) = ω(g, k) + ω(g−1, gk),
or, equivalently

ω(g, h) − ω(g, k) = ω(g−1, gk) − ω(g−1, gh).
Taking the supremum on both sides we derive ∥g∥ω = ∥g−1∥ω.
The last statement is obvious. □

One can rephrase the above statement by saying that every element ofH2
(1) (Γ,R)

defines a class of metrics on Γ which are within finite distance from each other.
In [11, Theorem 5.2] we essentially prove that a certain 1-bounded 2-cocycle 𝔊
defines a metric on the group of Hamiltonian diffeomorphisms Ham(X, σ) of
a symplectically hyperbolic manifold (X, σ) and prove that each element of this
group is undistorted with respect to ∥ · ∥𝔊. Notice, that in [11] the function
∥ · ∥𝔊 was defined slightly differently and did not satisfy triangle inequality (cf.
[11, Lemma 4.1]).
Let us compare the two constructions. Given a 1-bounded 2-cocycle in the kernel
of the comparison map, we defined two norms ∥ · ∥δϕ and | · |ϕ. Since

δϕ(g, h) − δϕ(g, h′) = ϕ(g) − ϕ(gh) + ϕ(h) − ϕ(g) + ϕ(gh′) − ϕ(h′)
= (gϕ − ϕ) (h′) − (gϕ − ϕ) (h),

we see that ∥g∥δϕ = |gϕ − ϕ|osc ≤ 2|g |ϕ.

5. Hyperbolic classes

Let p : X̃ → X be the universal cover of a CW-complex X and let Γ = π1X . Let
C∗(X̃ ) andC∗(X ) denote CW-cochains on X̃ andX , respectively. The cochains
are considered with trivial real coefficients. We say that a cochain α ∈ Cn(X̃ ) is
tamed by ν ∈ Cn(X̃ ) if for every g ∈ Γ and every cell △ in X̃

| (gα − α) (△)| ≤ ν(△).
Clearly, a cochain is equivariant (it is a lift of a cochain from C∗(X )) if and only
if it is tamed by a cochain vanishing identically.
We say that a cocycle α ∈ Cn(X ) is hyperbolic if p∗α can be expressed as δβwith
β tamed by some cochain lifted from X . A class in Hn(X ;R) is hyperbolic if it
has a hyperbolic representative.
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The notion of a hyperbolic class is inspired by Gromov [15] who considered dif-
ferential forms α with the property that the lift p∗α to the universal cover has a
primitive that is bounded with respect to the induced Riemannian metric (see
also the recent paper of Ascari and Milizia [1] for new developments). By in-
tegrating such classes over cells we get that they yield hyperbolic classes in our
sense. Indeed, if the n-skeleton of X is finite, then any homogeneous cochain
takes only finitely many values. Thus, a ∈ Hn(X ;R) is hyperbolic if one can
choose β ∈ Cn−1(X̃ ;R) with [δβ] = p∗a, and M ∈ R, such that for any cell △
in X̃ , |β(△)| < M.
Hyperbolicity as defined above depends on the cellular structure ifX is not com-
pact. We need it so we can speak of hyperbolic classes in BΓ. Clearly, hyperbol-
icity is preserved by cellular maps.

Proposition 5.1. Hyperbolicity does not change under subdivisions of a given CW-
structure.

Proof. Let X ′ be a subdivision of X . Wherever we write that a cell in X ′ divides
a cell in X we implicitly assume that they are of the same dimension.
Maps inducing the natural isomorphism on H∗(X ;R) and H∗(X ′;R) are in-
duced by q : C∗(X ;R) → C∗(X ′;R) and b : C∗(X ′;R) → C∗(X ;R) defined
as qα(△′) = 1

n△ α(△), where △ is the cell which △′ divides and n△ denote the
number of cells in X ′ dividing △, and bα′(△) = ∑

α′(△′), where the sum runs
over all cells △′ in X ′ dividing △. We denote corresponding maps for X̃ and its
induced subdivision X̃ ′ by the same letters. We observe, in particular, that they
commute with p∗.
If α = p∗δβ and β is tamed by ν then qα = p∗δqβ and qβ is tamed by qν. Similarly,
if α′ = p∗δβ′ and β′ is tamed by ν′ then bα′ = p∗δbβ′ and bβ′ is tamed by bν′. □

The aim of this section is to prove the following connection between hyperbolic
and 1-bounded classes.

Theorem 5.2. Let X be a finite connected CW–complex with π1(X ) = Γ and let
c : X → BΓ be the classifying map. Then a pullback of a 1-bounded class is hyper-
bolic. Moreover, if the universal cover of X is (n−1)-connected and a ∈ Hn(X ;R)
is a hyperbolic class, then there exists a 1-bounded cocycle ω ∈ Cn

(1) (BΓ;R) such that
c∗ [ω] = a.

Remark 5.3. We do not know wheather one can replace the assumption on higher
connectivity of X̃ by assuming that a lies in the image of c. ♦

Until the end of this section we use the homogeneous notation, since we need to
talk about chains on EΓ.
We say that a (n−1)-cochain λ controls an n-cochainω if for all h, g1, . . . , gn ∈ Γ

|ω(h, g1, . . . , gn) − ω(1, g1, . . . , gn) | < λ(g1, . . . , gn). (5.1)
By definition, a homogeneous cochain ω is 1-bounded if it is controlled by a ho-
mogeneous cochain.
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It is straightforward to verify that the map H : Cn(EΓ;R) → Cn−1(EΓ;R)
given by the formula (Hω) (g1, . . . , gn) = ω(1, g1, . . . , gn) is a homotopy satis-
fying δHω +Hδω = ω (see [3, Page 18]).

Lemma 5.4. Assume that ω ∈ Cn(EΓ;R) is closed, Γ-invariant and controlled
by λ. Then Hω is tamed by λ.

Proof.
| (gHω −Hω) (g1 . . . , gn) | = |Hω(g1g, . . . , gng) −Hω(g1, . . . , gn) |

= |ω(1, g1g, . . . , gng) − ω(1, g1, . . . , gn) |
= |ω(g−1, g1, . . . , gn) − ω(1, g1, . . . , gn) |
≤ λ(g1, . . . , gn).

□

Given η ∈ Cn−1(EΓ) define η̄ ∈ Cn−1(EΓ)Γ by the formula

η̄(g1, . . . , gn) = η(1, g2g−1
1 , . . . , gng−1

1 ).

Lemma 5.5. Assume that η ∈ Cn−1(EΓ;R) is tamed by ν and δη is Γ-invariant
then δ(η − η̄) is controlled by ν.

Proof. Since δ(η − η̄) is Γ-invariant,

δ(η − η̄) (h, g1, . . . , gn)eta = δ(η − η̄) (1, g1h−1, . . . , gnh−1)
= η(g1h−1, . . . , gnh−1) − η(1, g2h−1, . . . , gnh−1) ± · · ·
− η(1, g2g−1

1 . . . , gng−1
1 ) + η(1, g2h−1, . . . , gnh−1) ∓ · · ·

= η(g1h−1, . . . , gnh−1) − η(1, g2g−1
1 , . . . , gng−1

1 )
= (h−1η − g−1

1 η) (g1, . . . , gn).
Thus, since, by assumption, η is tamed by ν,

|δ(η − η̄) (h, g1, . . . , gn) − δ(η − η̄) (1, g1, . . . , gn) | = | (h−1η − η) (g1, . . . , gn) |
≤ ν(g1, . . . , gn).

□

Corollary 5.6. Let a ∈ Hn(BΓ;R). Then a is hyperbolic if and only if a has
1-bounded representative.

Proof of Theorem 5.2. Let ω be a 1-bounded cocycle. Then [ω] is hyperbolic, so,
by the above corollary, is c∗ [ω].
Let a ∈ Hn(X ;R) be hyperbolic. Taking Ỹ , an Γ-invariant subdivision of the k-
skeleton of the simplicial complex EΓ, we may build an equivariant cellular map
f̃ : Ỹ → X̃ . Let f : Y = Ỹ /Γ → X be the corresponding map of the quotients.
Let α ∈ Ck(X ;R) be a hyperbolic cocycle and let p∗(α) = δβ, where β is a tamed
cochain. Define η = b(f̃ ∗β). By Proposition 5.1, η is tamed. By Lemma 5.5
δ(η − η) is controlled.
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The equivariant cocycle δ(η − η) is a lift of a cocycle ω ∈ Ck(BΓ;R). Being
controlled for δ(η − η) translates to 1-boudedness of ω; see comment after (5.1).
Since η is a lift of a cocycle from BΓ we see that [ω] = f ∗ [α]. Since c ◦ f is
homotopic to the inclusion Y → BΓ, it follows that c∗ [ω] = [α] which finishes
the proof. □

6. Hyperbolic classes and amenability

It immediately follows from Theorems 2.1 and 5.2 that any hyperbolic class on
a CW–complex X as above is trivial if π1(X ) is amenable. However, a more
direct proof yields the following slightly stronger observation originally due to
Brunnbauer Kotschick [5, Theorem 3.2] who used an isoperimetric characterisa-
tion of manifolds with amenable fundamental group due to Brooks. A different
argument was used in [17] to show that the fundamental group of a closed sym-
plectically hyperbolic manifold cannot be amenable.

Proposition 6.1. Let X be a finite complex and let α be a hyperbolic cocycle on X.
If the fundamental group of X is amenable, then α is a coboundary.

Proof. Let p∗α = δβ with β bounded cochain on X̃ . By averaging this equation
with respect to a mean on the deck transformation group π1(X ) we find βwhich
is π1(X )–invariant, thus β is a lift of a cocycle β′ on X and α = δβ′ which proves
the claim. □

7. Test case: Thompson’s group F

It is a stimulating open question to determine whether Thompson’s group F is
amenable. Since it is a split extension

[F, F ] → F → Z2,

its amenability is equivalent to the amenability of its commutator subgroup. No-
tice that the commutator subgroup [F, F ] is boundedly acyclic due to a recent re-
sult of Campagnolo, Fournier-Facio, Lodha and Moraschini [8, Corollary 1.14].
The cohomology ring H∗( [F, F ];R) is isomorphic to a polynomial ring R[u],
where deg(u) = 2. The explicit cocycle α (defined in (7.1) below) representing u
has been given by Ghys and Sergiescu [12, Corollaire 4.5]. LetZ2 → [F, F ] be an
injective homomorphism generated by two commuting nontrivial elements. It is
easy to choose such elements so that the pull-back ofu is nontrivial inH2(Z2;R)
and, since Z2 is amenable, it can’t be represented by a 1-bounded cocycle. This is
explained in the first step of the proof of the following general observation which
provides further evidence for a possible amenability of F .
Let α : F ′ × F ′ → R be a cocycle defined by the following formula

α(f, g) =
∑︁
x

det
(
log2 g′L (x) log2 (f ◦g)′L (x)
log2 g′R (x) log2 (f ◦g)′R (x)

)
, (7.1)
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where the summation is over the breakpoints. The subscriptsL andR refer to the
left and right derivatives. This cocycle represents a generator of the cohomology
ring H∗(F ′;R) = R[u].

Proposition 7.1. For every positive integer n ∈ N there exists an injective ho-
momorphism ψ : Z2n → [F, F ] such that ψ∗(un) ≠ 0 in H2n(Z2n;R). Conse-
quently, un cannot be represented by a 1-bounded cocycle.

Proof. LetF ′ = [F, F ] denote the commutator subgroup of Thompson’s groupF
and let f, g ∈ F ′ be elements defined by the following pictures.

f g f ◦ g = g ◦ f

Let ψ : Z2 → F ′ be an injective homomorphism defined by

ψ (e1) = f and ψ (e2) = g,

where e1 = (1, 0) and e2 = (0, 1). It is a direct computation that α(f, g) = 1
and that α(g, f ) = −1 (only the breaking point (1/2, 1/2) contributes). Since
ζ2 = (e1 |e2) − (e2 |e1) is a cycle representing nontrivial class in H2(Z2;R) we get
that ⟨ψ∗α, ζ2⟩ = 2 and hence ψ∗(u) ≠ 0 in H2(Z2;R). Since Z2 is amenable, u
cannot be represented by a 1-bounded cocycle. We use here the bar notation for
non-homogeneous chains (see Brown [3, Section II.3]).

Consider ψ : Z2n → F ′ generated by

f1, g1, . . . , fn, gn,

where fi and gi are supported on
[ i−1
n ,

i
n
]

and are rescaled copies of f and g dis-
cussed above. Observe that

ψ∗α(fi, gi) = 2
ψ∗α(fi, gj) = ψ∗α(fi, fj) = ψ∗α(gi, gj) = 0 for i ≠ j.

It follows that cocycle ψ∗α : Z2n × Z2n → R is a symplectic form and hence
its n-th power represents a non-trivial cohomology class in H2n(Z2n;R). That
is, [ψ∗α]n = ψ∗ [α]n = ψ∗(un) ≠ 0. Since Z2n is amenable, un cannot be
represented by a 1-bounded cocycle. □
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