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Abstract

We consider the complete system of equations governing the motion of a general com-
pressible, viscous, electrically and heat conductive fluid driven by non–conservative bound-
ary conditions. We show the existence of a bounded absorbing set in the energy space and
asymptotic compactness of trajectories. As a corollary, the set of all entire globally bounded
solutions is identified as a natural attractor. Examples of boundary conditions giving rise to
unbounded solutions are also discussed.
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1 Introduction

Dissipative systems are thermodynamically open systems often in the out of equilibrium regime.
They are examples of the most interesting real world phenomena developing patterns, structures,
or behaviours that they did not have when first formed. The dissipative systems exchange energy
and matter with their environment, while dissipating mechanical and other forms of energy in
accordance with the Second law of thermodynamics. In continuum fluid mechanics, dissipative
systems are modelled by a family of field equations accompanied with inhomogeneous boundary
conditions.

Many spectacular events occurring in geophysics or astrophysics, among which the dynamics
of the solar convection zone, are attributed to the action of the magnetic field, see e.g. Thompson
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and Christensen-Dalsgaard [35]. As direct measurements and data collecting are often hampered
by obvious technical limitations, reliable mathematical models are indispensable for understanding
the observed phenomena. As pointed out by Gough [23], a correct choice of boundary conditions
plays a crucial role.

The state of a viscous, compressible, electrically and heat conducting fluid is characterized by
its mass density ϱ = ϱ(t, x), the (absolute) temperature ϑ = ϑ(t, x), the velocity u = u(t, x) and
the magnetic field B = B(t, x). The time evolution is governed by the system of field equations of
compressible magnetohydrodynamics (MHD), see e.g. Weiss and Proctor [36]:

Equation of continuity:
∂tϱ+ divx(ϱu) = 0. (1.1)

Momentum equation:

∂t(ϱu)+divx(ϱu⊗u)+ (ω× ϱu)+∇xp(ϱ, ϑ) = divxS(ϑ,∇xu)+ curlxB×B+ ϱ∇xM. (1.2)

Induction equation:

∂tB+ curlx(B× u) + curlx(ζ(ϑ)curlxB) = 0, divxB = 0. (1.3)

Internal energy balance:

∂t(ϱe(ϱ, ϑ)) + divx(ϱe(ϱ, ϑ)u) + divxq(ϑ,∇xϑ)

= S(ϑ,∇xu) : ∇xu+ ζ(ϑ)|curlxB|2 − p(ϱ, ϑ)divxu. (1.4)

The system is written in a general rotating frame frequently used in astro/geophysics, where
ω × ϱu is the Coriolis force and the potential M ,

M = G+
1

2
|ω × x|2,

includes the gravitational component G = G(t, x) as well as the centrifugal force. Note that G
may depend on the time t in the rotating frame if the source of gravitation is located outside the
fluid domain.

We consider a Newtonian fluid, with the viscous stress tensor

S(ϑ,∇xu) = µ(ϑ)

(
∇xu+∇t

xu− 2

3
divxuI

)
+ η(ϑ)divxuI, (1.5)

where the viscosity coefficients µ > 0 and η ≥ 0 are continuously differentiable functions of the
temperature. Similarly, the heat flux obeys Fourier’s law,

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ, (1.6)
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where the heat conductivity coefficient κ > 0 is a continuously differentiable function of the
temperature.

As pointed out in the introduction, the boundary conditions play a crucial role in the long time
behaviour of the system. We suppose that the fluid occupies a bounded domain Ω ⊂ R3 with a
smooth boundary,

∂Ω = Γu
D ∪ Γu

N = Γϑ
D ∪ Γϑ

N = ΓB
D ∪ ΓB

N ,

Γu
D,Γ

u
N ,Γ

ϑ
D,Γ

ϑ
N ,Γ

B
D,Γ

B
N compact,

Γu
D ∩ Γu

N = ∅, Γϑ
D ∩ Γϑ

N = ∅, ΓB
D ∩ ΓB

N = ∅. (1.7)

Accordingly, each Γ∗
D, Γ

∗
N (∗ = u, ϑ,B) is either empty or coincides with a finite union of connected

components of ∂Ω. We impose the following boundary conditions:

Boundary velocity:

u|Γu
D
= 0, (1.8)

u · n|Γu
N
= 0, [S(ϑ,∇xu) · n]× n|Γu

N
= 0. (1.9)

Boundary temperature/heat flux:

ϑ|Γϑ
D
= ϑB, (1.10)

q(ϑ,∇xϑ) · n|Γϑ
N
= 0. (1.11)

Boundary magnetic field:

B× n|ΓB
D
= bτ , (1.12)

B · n|ΓB
N
= bν , [(B× u) + ζcurlxB]× n|ΓB

N
= 0. (1.13)

Clearly, the boundary conditions prescribed on Γ∗
D are of Dirichlet type, while those on Γ∗

N of
Neumann type. The fluxes on Γ∗

N are set to be zero for the sake of simplicity. More general fluxes
are shortly discussed in Section 5.3. In accordance with (1.8), (1.9), the boundary is impermeable,
meaning the fluid velocity is always tangent to the boundary. In particular, the total mass

m0 =

∫
Ω

ϱ(t, ·) dx (1.14)

is a constant of motion. Accordingly, there is no exchange of mass with the outer world and the
system is therefore driven by the imposed boundary temperature and/or magnetic field.
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1.1 Levinson dissipativity

The compressible MHD system admits a natural energy

E(ϱ, ϑ,u,B) =
1

2
ϱ|u|2︸ ︷︷ ︸

kinetic energy

+ ϱe(ϱ, ϑ)︸ ︷︷ ︸
internal energy

+
1

2
|B|2︸ ︷︷ ︸

magnetic energy

.

Our goal is to show that the system is dissipative in the sense of Levinson in terms of the total
energy

E =

∫
Ω

E(ϱ, ϑ,u,B) dx.

Specifically, there exists a universal constant E∞ such that

lim sup
τ→∞

∫
Ω

E(ϱ, ϑ,u,B)(τ, ·) dx < E∞ (1.15)

for any solution (ϱ, ϑ,u,B) of the compressible MHD system defined on (T,∞). We point out
that E∞ depends only on the “data” but it is the same for any global trajectory. In particular, it
is independent of the initial energy of the system.

The data are:

• the total mass m0 of the fluid, cf. (1.14);

• the gravitational potential G;

• the rotation vector ω;

• the boundary temperature ϑB;

• the boundary tangential magnetic field bτ , the boundary normal magnetic field bν .

We shall use the symbol ∥(data)∥ to denote the norm of the above data in suitable function spaces
specified below.

Besides the total mass m0, there might be other conserved quantities. As shown e.g. by Bauer,
Pauly, and Schomburg [4], see also Kozono and Yanagisawa [25], any vector field b defined on Ω
admits a decomposition

b = ∇xP + h+ curlxA, (1.16)

where

h ∈ H(Ω) =
{
h ∈ L2(Ω;R3)

∣∣∣ curlxh = divxh = 0,h× n|ΓB
D
= 0, h · n|ΓB

N
= 0
}
. (1.17)

It follows from the induction equation (1.3) and our choice of the boundary conditions (1.12),
(1.13) that

d

dt

∫
Ω

B · h dx = 0 for any h ∈ H(Ω).
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For the sake of simplicity, we shall assume∫
Ω

B · h dx = 0 for all h ∈ H(Ω). (1.18)

The general case can be handled in a similar way provided the projection of B on the space H(Ω)
is included in the “data”. Note that the space H(Ω) is always finite dimensional, see [4, Section
5.1]. Moreover, it is easy to see that H = {0} whenever Ω is simply connected and ΓB

D connected.
If ΓB

N = ∂Ω or ΓB
D = ∂Ω, the dimension of H(Ω) coincides with the first and second Betti number

of Ω, respectively, see Kozono and Yanagisawa [26].
In view of (1.15), the boundary conditions must allow the outflow of the thermal energy. We

suppose the pressure p = p(ϱ, ϑ) and the internal energy e = e(ϱ, ϑ) are interrelated through Gibbs’
equation

ϑDs = De+ pD

(
1

ϱ

)
, (1.19)

where s = s(ϱ, ϑ) is the entropy. Consequently, the internal energy balance (1.4) may be reformu-
lated in the form of entropy balance equation

∂t(ϱs(ϱ, ϑ)) + divx(ϱs(ϱ, ϑ)u) + divx

(
q(ϑ,∇xϑ)

ϑ

)
=

1

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
,

(1.20)

see e.g. Weiss and Proctor [36]. The quantity on the right–hand side of (1.20) represents the
entropy production rate, and, in accordance with the Second law of thermodynamics, it is always
non–negative. Consequently, all forms of energy are eventually transformed to heat that must be
allowed to leave through ∂Ω. Thus, necessarily,

Γϑ
D ̸= ∅. (1.21)

Next, to avoid development of rapidly rotating fluid in a rotationally symmetric domain, we
impose

Γu
D ̸= ∅. (1.22)

Finally, we impose a technical condition to control the boundary magnetic oscillations. First,
we introduce the class of stationary magnetic boundary data.

Definition 1.1. [Stationary magnetic field]
We say that the boundary data bν , bτ are stationary, if there exists a continuously differ-
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entiable vector field BB such that

divxBB = 0, curlxBB = 0 in Ω, BB × n|ΓB
D
= bτ , BB · n|ΓB

N
= bν .

Stationarity imposes certain restrictions to be satisfied by bτ ,

divτbτ = 0 on ΓB
D, where divτ denotes the tangential divergence, (1.23)

see Alexander and Auchmuty [2]. To establish the existence of a bounded absorbing set, we need
an extra hypothesis imposed on the boundary data if the magnetic boundary field is not stationary,
namely

ΓB
D ⊂ Γu

D. (1.24)

In accordance with Kirchhoff’s rule for currents, we have

divτbτ + curlxB · n = 0 on ΓB
D,

whenever
divxB = 0 in Ω, B× n|ΓB

D
= bτ ,

see Alexander and Auchmuty [2]. Thus prescribing a non–stationary vector field bτ yields an
inhomogeneous boundary condition satisfied by the normal component of the electric current J
proportional to curlxB, cf. Section 5.4.

1.2 Absence of static solutions - an example from astrophysics

Although all global in time solutions eventually enter a bounded absorbing ball, it is worth noting
that the system in question may not admit a static stationary solutions, meaning

u = 0, ϱ = ϱ(x), ϑ = ϑ(x), B = B(x).

Indeed consider a simple model of a solar convective zone discussed by Tao et al. [34]. The domain
boundary is determined by two concentric balls,

Ω =
{
x ∈ R3

∣∣∣ 0 < r1 < |x| < r2

}
, (1.25)

with the gravitational potential G = g 1
|x| . The boundary temperature distribution is determined

by two positive constants Θint, Θext,

ϑB = Θint if |x| = r1, ϑB = Θext if |x| = r2, 0 < Θext < Θint. (1.26)

Finally, the boundary magnetic field is oriented in the normal direction,

ΓB
N = ∅, bτ = 0. (1.27)
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The whole system rotates with the rotation axis ω ̸= 0.
Suppose the system (1.1)–(1.4) endowed with the above boundary conditions admits a static

solution, meaning

∇xp(ϱ, ϑ) = ϱ∇xM + curlxB×B,

curlx(ζ(ϑ)curlxB) = 0, divxB = 0,

divxq(ϑ,∇xϑ) = ζ(ϑ)|curlxB|2. (1.28)

The first observation is
curlxB = 0,

which follows easily via multiplying the induction equation on B and integrating by parts. Con-
sequently, the system reduces to

∇xp(ϱ, ϑ) = ϱ∇xM, divxq(ϑ,∇xϑ) = 0. (1.29)

Applying curlx to the first equation, we get

∇xϱ×∇xM = 0. (1.30)

Similarly, writing
∇xp(ϱ, ϑ) = ∂ϱp(ϱ, ϑ)∇xϱ+ ∂ϑp(ϱ, ϑ)∇xϑ = ϱ∇xM

we deduce from (1.30) ∇xϱ×∇xϑ = 0 anticipating the condition

∂p(ϱ, ϑ)

∂ϑ
̸= 0. (1.31)

We conclude
∇xM ×∇xϑ = 0. (1.32)

Since q is given by Fourier’s law q = −κ(ϑ)∇xϑ, the unique solution ϑ of divxq(ϑ,∇xϑ) = 0
with the boundary conditions (1.26) admits a non–zero gradient ∇xϑ parallel to the gravitational
force, i.e.,

∇xG×∇xϑ = 0.

Consequently, condition (1.32) implies

∇xϑ×∇x|ω × x|2 = 0,

which is impossible as soon as ω ̸= 0.
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1.3 Asymptotic compactness

The existence of global–in–time classical solutions for the compressible MHD system in the far
from equilibrium regime is not known. Here, we adopt the concept of weak solution developed in
[14]. Unfortunately, the weak solutions may not be uniquely determined by the initial/boundary
data. Adapting the approach of Sell [31], see also Málek and Nečas [29], we consider solutions
of the compressible MHD system in the space of trajectories with a natural group operation of
forward time shift:

(ϱ, ϑ,u,B)(t, ·) 7→ (ϱ, ϑ,u,B)(t+ τ), τ ≥ 0.

Anticipating the existence of a bounded absorbing set, we consider a sequence of global in time
solutions (ϱn, ϑn,un,Bn) along with a sequence of time shifts τn → ∞. We say the system is
asymptotically compact if

(ϱn, ϑn,un,Bn)(·+ τn) → (ϱ, ϑ,u,B) locally on compact time intervals (−L,L),

where (ϱ,u, ϑ,B) is a solution of the same problem with suitable data defined for t ∈ (−∞,∞).
Here “suitable data” means limits of the corresponding time shifts of the original data. In partic-
ular, the problem is the same if the data are independent of time.

Solutions defined for all t ∈ (−∞,∞) are called entire solutions. The set of all bounded entire
solutions,

A =
{
(ϱ, ϑ,u,B)

∣∣∣(ϱ, ϑ,u,B)− solution of the compressible (MHD) system for t ∈ (−∞,∞)∫
Ω

E(ϱ, ϑ,u,B) dx < E∞
}

is shift invariant and captures the essential features of the long time behaviour of the system.

1.4 Organization of the paper

The results of the present paper can be seen as a continuation of an ongoing research programme
[12], [18], [19] extending the classical theory of the dynamics of incompressible viscous fluid flows
(see e.g. Constantin et al. [6], [7], Foias et al. [20] ) to the compressible case. To the best of
our knowledge, the present paper is the first result addressing the problem of long–time behaviour
of the compressible MHD system far from equilibrium. There is a large number of literature
concerning the incompressible case, see e.g. Duvaut and Lions [10], Eden and Libin [11], Sermange
and Temam [32], Jiang and Jiang [24] and the references therein.

The concept of weak solution and other preliminaries are introduced in Section 2. The bulk of
the paper consists of three parts. In Section 3, we show the existence of a bounded absorbing set.
Section 4 contains the proof of asymptotic compactness. Applications and possible extensions are
discussed in Section 5.
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2 Main hypothesis, weak solutions

Before introducing the concept of weak solution, let us state the main hypotheses concerning the
structural properties of the constitutive relations.

2.1 Equation of state

The hypotheses imposed on the form of the equations of state are the same as in [15, Chapter 4].
They are based on the Second law of thermodynamics enforced through Gibbs’ relation (1.19) and
the hypothesis of thermodynamics stability

∂p(ϱ, ϑ)

∂ϱ
> 0,

∂e(ϱ, ϑ)

∂ϑ
> 0. (2.1)

We suppose the pressure obeys the thermal equation of state

p(ϱ, ϑ) = pM(ϱ, ϑ) + pR(ϑ), pR(ϑ) =
a

3
ϑ4, a > 0, (2.2)

where pR is the radiation pressure. Augmenting the pressure by a radiation component is not only
technically convenient but also relevant to problems in astrophysics, cf. Battaner [3]. The internal
energy satisfies the caloric equation of state

e(ϱ, ϑ) = eM(ϱ, ϑ) + eR(ϱ, ϑ), eR(ϱ, ϑ) =
a

ϱ
ϑ4. (2.3)

The gas pressure components pM and eM satisfy the relation characteristic for monoatomic gases:

pM(ϱ, ϑ) =
2

3
ϱeM(ϱ, ϑ). (2.4)

Now, it follows from Gibbs’ relation (1.19) applied to pM , eM that they must take a general
form

pM(ϱ, ϑ) = ϑ
5
2P

(
ϱ

ϑ
3
2

)
, eM(ϱ, ϑ) =

3

2

ϑ
5
2

ϱ
P

(
ϱ

ϑ
3
2

)
(2.5)

for some function P ∈ C1[0,∞). In addition, the hypothesis of thermodynamics stability (2.1)
applied to pM , eM yields

P (0) = 0, P ′(Z) > 0,
5
3
P (Z)− P ′(Z)Z

Z
> 0 for all Z ≥ 0. (2.6)

In accordance with (2.5), the entropy takes the form

s(ϱ, ϑ) = sM(ϱ, ϑ) + sR(ϱ, ϑ), sM(ϱ, ϑ) = S
(
ϱ

ϑ
3
2

)
, sR(ϱ, ϑ) =

4a

3

ϑ3

ϱ
, (2.7)
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where

S ′(Z) = −3

2

5
3
P (Z)− P ′(Z)Z

Z2
. (2.8)

Finally, we impose two technical but physically grounded hypotheses in the degenerate area

ϱ

ϑ
3
2

= Z >> 1.

First, it follows from (2.6) that the function Z 7→ P (Z)/Z
5
3 is decreasing, and we suppose

lim
Z→∞

P (Z)

Z
5
3

= p∞ > 0. (2.9)

Second, by the same token, the function Z 7→ S(Z) decreasing, and we suppose

lim
Z→∞

S(Z) = 0. (2.10)

Hypothesis (2.9) reflects the effect of the electron pressure in the degenerate area, while (2.10) is
nothing other than the Third law of thermodynamics.

It follows from (2.5)–(2.10) that

p(ϱ, ϑ) ≈ ϱe(ϱ, ϑ),

ϱ
5
3 + ϑ4 <∼ p(ϱ, ϑ)

<∼ ϱ
5
3 + ϑ4 + 1,

0 ≤ ϱs(ϱ, ϑ)
<∼ ϑ3 + ϱ

(
1 + [log ϱ]+ + [log ϑ]+

)
. (2.11)

Here and hereafter, the symbol a
<∼ b means there is a positive constant c such that a ≤ cb, the

symbol a ≈ b is used to denote a
<∼ b and b

<∼ a. The reader may consult [15, Chapter 4] for the
physical background of the above hypotheses as well as the proof of (2.11).

2.2 Diffusion and the transport coefficients

The transport coefficients appearing in (1.5), (1.6) satisfy

0 < µ (1 + ϑ) ≤ µ(ϑ) ≤ µ (1 + ϑ) , |µ′(ϑ)| ≤ c for all ϑ ≥ 0,

0 ≤ η(ϑ) ≤ η (1 + ϑ) , (2.12)

and
0 < κ

(
1 + ϑβ

)
≤ κ(ϑ) ≤ κ

(
1 + ϑβ

)
for some β > 6. (2.13)

Finally, we suppose the coefficient of magnetic diffusion ζ = ζ(ϑ) is a continuously differentiable
function of the temperature,

0 < ζ(1 + ϑ) ≤ ζ(ϑ) ≤ ζ(1 + ϑ), |ζ ′(ϑ)| ≤ c for all ϑ ≥ 0. (2.14)
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2.3 Boundary data

It is convenient to assume the boundary data are given as restrictions of functions defined on Ω
and for any t ∈ R. Specifically,

ϑB = ϑ̃|Γϑ
D
, bτ = BB × n|ΓB

D
, bν = BB · n|ΓB

N

for suitable extensions ϑ̃, BB. Accordingly, certain regularity of the boundary data is necessary.
We suppose the boundary temperature ϑB = ϑB(t, x) belongs to the class

ϑB ∈ BC(R;C2(Γϑ
D)), ∂tϑB ∈ BC(R;C1(Γϑ

D)),

inf
R×Γϑ

D

ϑB > 0. (2.15)

Similarly, we suppose

bτ ∈ BC(R;C2(ΓB
D;R

3)), ∂tbτ ∈ BC(R;C1(ΓB
D;R

3)) (2.16)

bν ∈ BC(R;C2(ΓB
N)), ∂tbν ∈ BC(R;C1(ΓB

N)). (2.17)

Moreover, we impose the necessary compatibility conditions

bτ · n|ΓB
D
= 0, and

∫
∂Ω

bν dσ = 0 if ΓB
D = ∅. (2.18)

Finally, we introduce the space

H0,σ =
{
b ∈ L2(Ω;R3)

∣∣∣ curlxb ∈ L2(Ω;R3), divxb = 0,b× n|ΓB
D
= 0, b · n|ΓB

N
= 0
}
. (2.19)

The space H0,σ is a Hilbert space with the norm ∥b∥2H0
= ∥curlxb∥2L2(Ω;R3) + ∥b∥2L2(Ω;R3). The

space H introduced in (1.17) is a closed subspace of H0,σ, and the following version of Poincaré
inequality

∥b∥W 1,2(Ω;R3)
<∼ ∥curlxb∥L2(Ω;R3) holds for all b ∈ H⊥ ∩H0,σ, (2.20)

see Csató, Kneuss and Rajendran [8, Theorem 2.1].
The specific extensions of the boundary data will be constructed in Section 3.1.

2.4 Weak solutions

As we are interested in the long-time behaviour when the system “forgets” its initial state, the
choice of initial data plays no role in the analysis. Accordingly, it is convenient to introduce the
concept of global in time weak solutions defined for t ∈ (T,∞).
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Definition 2.1. (Global in time weak solutions)
A quantity (ϱ, ϑ,u,B) is termed weak solution of the compressible MHD system (1.1)–

(1.4), with the boundary conditions (1.8) – (1.13) in the time–space cylinder (T,∞)×Ω if the
following holds:

• Equation of continuity. ϱ ∈ L∞
loc(T,∞;L

5
3 (Ω)), ϱ ≥ 0, and the integral identity∫ ∞

T

∫
Ω

(
ϱ∂tφ+ ϱu · ∇xφ

)
dx dt = 0 (2.21)

holds for any φ ∈ C1
c ((T,∞)× Ω). In addition, the renormalized version of (2.21)∫ ∞

T

∫
Ω

(
b(ϱ)∂tφ+ b(ϱ)u · ∇xφ+

(
b(ϱ)− b′(ϱ)ϱ

)
divxuφ

)
dx dt = 0 (2.22)

holds for any φ ∈ C1
c ((T,∞)× Ω) and any b ∈ C1(R), b′ ∈ Cc(R).

• Momentum equation.

ϱu ∈ L∞
loc(T,∞;L

5
4 (Ω;R3)), u ∈ L2

loc(T,∞;W 1,2(Ω;R3)), u|Γu
D
= 0, u · n|Γu

N
= 0, and

the integral identity∫ ∞

T

∫
Ω

(
ϱu · ∂tφ+ ϱu⊗ u : ∇xφ+ (ϱu× ω) ·φ+ p(ϱ, ϑ)divxφ

)
dx

=

∫ τ

0

∫
Ω

S(ϑ,∇xu) : ∇xφ dx dt−
∫ ∞

T

∫
Ω

(
B⊗B− 1

2
|B|2I

)
: ∇xφ dx dt

−
∫ ∞

T

∫
Ω

ϱ∇xM ·φ dx dt (2.23)

for any φ ∈ C1
c ((T,∞)× Ω;R3), φ|Γu

D
= 0, φ · n|Γu

N
= 0.

• Induction equation. B ∈ L∞
loc((T,∞);L2(Ω;R3)),

divxB(τ, ·) = 0 for any τ ∈ (T,∞), (2.24)

(B−BB) ∈ L2
loc(T,∞;H0,σ(Ω;R

3)). (2.25)

The integral identity∫ ∞

T

∫
Ω

(
B · ∂tφ− (B× u) · curlxφ− ζ(ϑ)curlx B · curlx φ

)
dx dt = 0 (2.26)
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holds for any φ ∈ C1
c ((T,∞)× Ω;R3),

φ× n|ΓB
D
= 0, φ · n|ΓB

N
= 0. (2.27)

• Entropy inequality. ϑ ∈ L∞
loc(T,∞;L4(Ω)) ∩ L2

loc(T,∞;W 1,2(Ω)), ϑ > 0 a.a. in
(T,∞)× Ω, log(ϑ) ∈ L2

loc(T,∞;W 1,2(Ω)),

ϑ|Γϑ
D
= ϑB.

The integral inequality∫ ∞

T

∫
Ω

(
ϱs(ϱ, ϑ)∂tφ+ ϱs(ϱ, ϑ)u · ∇xφ+

q(ϑ,∇xϑ)

ϑ
· ∇xφ

)
dx dt

≤ −
∫ ∞

T

∫
Ω

φ

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

(2.28)

holds for any φ ∈ C1
c ((T,∞)× Ω), φ ≥ 0, φ|Γϑ

D
= 0.

• Ballistic energy inequality. The inequality∫ ∞

T

∂tψ

∫
Ω

(
1

2
ϱ|u|2 + ϱe(ϱ, ϑ) +

1

2
|B|2 − ϑ̃ϱs(ϱ, ϑ)−BB ·B

)
dx dt

−
∫ ∞

T

ψ

∫
Ω

ϑ̃

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

≥
∫ ∞

T

ψ

∫
Ω

(
ϱs(ϱ, ϑ)∂tϑ̃+ ϱs(ϱ, ϑ)u · ∇xϑ̃+

q(ϑ,∇xϑ)

ϑ
· ∇xϑ̃

)
dx dt

+

∫ ∞

T

ψ

∫
Ω

(
B · ∂tBB − (B× u) · curlxBB − ζ(ϑ)curlx B · curlxBB

)
dx dt

−
∫ ∞

T

ψ

∫
Ω

ϱ∇xM · u dx dt (2.29)

holds for any ψ ∈ C1
c (T,∞), ψ ≥ 0, and any ϑ̃ ∈ C1([T,∞)× Ω), ϑ̃ > 0, ϑ̃|Γϑ

D
= ϑB.

Remark 2.2. Note carefully that the ballistic energy inequality (2.29) remains valid if we replace

BB by any other extension B̃ such that

divxB̃ = 0, B̃× n|ΓB
D
= BB × n|ΓB

D
, B̃ · n|ΓB

N
= BB · n|ΓB

N
,

respectively. Indeed the difference BB − B̃ becomes an eligible test function for the weak formu-
lation of the induction equation (2.26), (2.27).
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The existence of global–in–time weak solutions as well as the weak–strong uniqueness property
for any finite energy initial data was shown in [14] under more restrictive hypotheses on the
boundary data.

3 Bounded absorbing set

We are ready to state the first main result of the present paper concerning the existence of a
bounded absorbing set. It is convenient to suppose that both the potential G as well as the
boundary data ϑB, bτ , and bν are defined for all t ∈ R. Accordingly, we introduce

∥(data)∥ = m0 +m−1
0 + ∥G∥W 1,∞(R×Ω) + |ω|+ ∥ϑ−1

B ∥L∞(R×∂Γϑ
D)

+ sup
t∈R

∥ϑB(t, ·)∥W 2,∞(Γϑ
D) + sup

t∈R
∥∂tϑB∥W 1,∞(Γϑ

D)

+ sup
t∈R

∥bτ (t, ·)∥W 2,∞(ΓB
D;R3) + sup

t∈R
∥bν∥W 2,∞(ΓB

N )

+ sup
t∈R

∥∂tbτ (t, ·)∥W 1,∞(ΓB
D;R3) + sup

t∈R
∥∂tbν∥W 1,∞(ΓB

N ). (3.1)

In what follows, we shall use the symbol c(∥(data)∥) to denote a generic positive function of
∥(data)∥ bounded for bounded arguments.

Theorem 3.1. [Bounded absorbing set]
Let Ω ⊂ R3 be a bounded domain of class C2+ν, the boundary of which admits the decom-

position (1.7). Let the pressure p be related to the internal energy e through the equations of
state (2.2), (2.3), (2.4), where the functions P and S satisfy (2.9), (2.10). Let the transport
coefficients µ, η, κ, and ζ be continuously differentiable functions of the temperature satisfying
(2.12)–(2.14). Finally, let G ∈ BC1(R × Ω) and let the boundary data belong to the class
(2.15)–(2.18), where

Γu
D ̸= ∅, Γϑ

D ̸= ∅. (3.2)

If, in addition, the boundary magnetic field bν(τn, ·), bτ (τn, ·) is not stationary for some se-
quence of times τn → ∞, we assume

ΓB
D ⊂ Γu

D. (3.3)

Then there exists a positive constant E∞(∥(data)∥) depending only on the amplitude of
the data specified in (3.1) such that following holds. For any weak solution (ϱ, ϑ,u,B) of the
compressible MHD system in (T,∞)× Ω satisfying∫

Ω

ϱ dx = m0,

∫
Ω

B · h dx = 0 for all h ∈ H(Ω),

14



there exists a time τ > 0 such that∫
Ω

E(ϱ, ϑ,u,B)(t, ·) dx < E∞ for all t > T + τ.

Moreover, the length of the time τ depends only on ∥(data)∥ and on the “initial energy”

ET ≡ lim sup
t→T−

∫
Ω

E(ϱ, ϑ,u,B)(t, ·) dx.

The rest of this section is devoted to the proof of Theorem 3.1. A similar result in the context
of the Rayleigh–Bénard convection problem was shown in [19]. The influence of the magnetic field
on the fluid motion, however, requires essential modifications of the proof presented in [19]. In
particular, we construct a two component extension of the boundary magnetic field, where the
first component is solenoidal, irrotational and satisfies the Neumann boundary condition, while
the second one is solenoidal and small in a suitable Lebesgue norm in Ω with bounded rotation,
see Section 3.1.2 below.

As already pointed out, the condition Γϑ
D ̸= ∅ is essential, and, in fact, necessary for the

existence of a universal absorbing set. Indeed we show an example of a flow driven by an external
magnetic field with thermally insulated boundary, where the total energy becomes unbounded for
t→ ∞, see Section 5.

3.1 Extension of the boundary data

We start by specifying the extension of the boundary data for the temperature and the magnetic
field.

3.1.1 Extension of the boundary temperature

Given ϑB we consider its harmonic extension ϑ̃,

∆xϑ̃(τ, ·) = 0, ϑ̃(τ, ·)|Γϑ
D
= ϑB(τ, ·), ∇xϑ̃(τ, ·) · n|Γϑ

N
= 0, τ ∈ R. (3.4)

We shall use the same symbol ϑB for the boundary data and their extension ϑ̃ hereafter.

3.1.2 Extension of the boundary magnetic field

If the boundary data bν , bτ are stationary, we simply consider the solenoidal irrotational extension
BB claimed in Definition 1.1.

Extension of the non–stationary boundary magnetic field is more delicate. First, we find an
extension B̃N satisfying

divxB̃N = 0, curlxB̃N = 0, B̃N · n|ΓB
N
= bν , B̃N × n|ΓB

D
= 0. (3.5)

15



Indeed we may consider B̃N = ∇xΦN , where ΦN is the unique solution of the mixed boundary
value problem

∆xΦN = 0, ΦN |ΓB
D
= 0, ∇xΦN · n|ΓB

N
= bν .

To find a suitable extension of the Dirichlet data bτ , we introduce the so–called Bogovskii
operator B enjoying the following properties, see e.g. Galdi [21], Geißert, Heck, and Hieber [22]:

• B is a bounded linear operator mapping Lq
0(Q) to W

1,q
0 (Q;R3), where Q is a bounded Lip-

schitz domain in Rd and the symbol Lq
0 denotes the space of Lq−integrable functions with

zero mean:

divxB[f ] = f in Q for any f ∈ Lq(Q),

∫
Q

f = 0, B[f ]|∂Q = 0,

∥B[f ]∥W 1,q(Q;R3)
<∼ ∥f∥Lq(Q), 1 < q <∞. (3.6)

• If, moreover, f = divxg, g ∈ Lr(Q;R3), g · n|∂Q = 0, then

∥B[divxg]∥Lr(Q;R3)
<∼ ∥g∥Lr(Q;R3), 1 < r <∞. (3.7)

Now, consider the boundary vector

BD = n× bτ on ΓB
D ⇒ BD × n = bτ on ΓB

D. (3.8)

First, let B̃D be an arbitrary, not necessarily solenoidal, Lipschitz extension of BD inside Ω.
Consider a cut-off function

χ ∈ C∞
c [0, 1), 0 ≤ χ ≤ 1, χ(z) = 1 for z ∈ [0, d), 0 < d < 1,

together with

Bδ,D(t, x) = χ

(
dist[x,ΓB

D]

δ

)
B̃D(t, x), δ > 0.

It follows from (3.8) that

Bδ,D × n = bτ on ΓB
D,

supp[Bδ,D] ⊂ Uδ0(Γ
B
D) for all 0 < δ ≤ δ0, (3.9)

where Uδ0 denotes the δ0−neighbourhood.
Next, fix δ0 so that Uδ0(Γ

B
D) ∩ ΓB

N = ∅ and consider

B̃δ,D =


Bδ,D − Bδ0 [divxBδ,D] in Uδ0(Γ

B
D) ∩ Ω,

0 in Ω \ Uδ0(Γ
B
D)

, (3.10)
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where Bδ0 is the Bogovskii operator defined on each component of the open set Uδ0(Γ
B
D) ∩ Ω. It is

easy to check that B̃δ,D enjoys the following properties:

B̃δ,D × n|ΓB
D
= bτ , B̃δ,D|ΓB

N
= 0,

divxB̃δ,D = 0 in Ω. (3.11)

In addition, as a consequence of boundedness of the Bogovskii operator (3.6),

∥B̃δ,D∥W 1,p(Ω;R3) ≤ c(p, δ)∥bτ∥W 1,∞(ΓB
D), 1 < p <∞. (3.12)

Note we might have c(p, δ) → ∞ for δ → 0. Finally, by virtue of (3.7),

∥B̃δ,D∥Lr(Ω;R3) ≤ o(r, δ)∥bτ∥W 1,∞(ΓB
D), where o(r, δ) → 0 as δ → 0 for any 1 < r <∞. (3.13)

We consider the extension of the boundary data in the form

BB = Bδ,B = B̃N + B̃δ,D (3.14)

for a suitable 0 < δ < δ0 to be fixed below. By virtue of (3.5),

divxBδ,B = 0, curlxBδ,B = curlxB̃δ,D, Bδ,B × n|ΓB
D
= bτ , Bδ,B · n|ΓB

N
= bν . (3.15)

Remark 3.2. A similar ansatz for the function B̃δ,D was used by Zhang and Zhao [37] based on
the construction proposed by Alekseev [1].

3.2 Ballistic energy inequality

The proof of Theorem 3.1 is based on the ballistic energy inequality (2.29) evaluated for ϑ̃ = ϑB,
BB = Bδ,B specified in Section 3.1. In accordance with (3.15), we get:

d

dt

∫
Ω

(
1

2
ϱ|u|2 + ϱe(ϱ, ϑ) +

1

2
|B|2 − ϑBϱs(ϱ, ϑ)−Bδ,B ·B

)
dx

+

∫
Ω

ϑB

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx

≤ −
∫
Ω

(
ϱs(ϱ, ϑ)∂tϑB + ϱs(ϱ, ϑ)u · ∇xϑB +

q(ϑ,∇xϑ)

ϑ
· ∇xϑB

)
dx

−
∫
Ω

(
B · ∂tBδ,B − (B× u) · curlxB̃δ,D − ζ(ϑ)curlx B · curlxB̃δ,D

)
dx

+

∫
Ω

ϱ∇xM · u dx. (3.16)

in D′(T,∞). Note that we may suppose curlxB̃δ,D = 0 if the boundary magnetic field is stationary.
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Remark 3.3. Strictly speaking, the pointwise values of the ballistic energy are defined only for
a.a. τ ∈ (T,∞). However, thanks to the inequality (3.16), we may identify the ballistic energy
with its càglàd representative∫

Ω

(
1

2
ϱ|u|2 + ϱe(ϱ, ϑ) +

1

2
|B|2 − ϑBϱs(ϱ, ϑ)−Bδ,B ·B

)
(τ, ·) dx

= ess lim
t→τ−

∫
Ω

(
1

2
ϱ|u|2 + ϱe(ϱ, ϑ) +

1

2
|B|2 − ϑBϱs(ϱ, ϑ)−Bδ,B ·B

)
(t, ·) dx (3.17)

defined for any τ > T .

Our goal is to show that all terms on the right–hand side of (3.16) can be controlled by the
dissipation rate appearing on the left–hand side. This is relatively straightforward for the integrals
independent of the density.

3.2.1 Coercivity of the dissipation rate

It follows from coercivity of the transport coefficients stated in the hypotheses (2.12)–(2.14), and
hypothesis (3.2) Γu

D ̸= ∅ that∫
Ω

ϑB

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx

>∼ inf ϑB

[
∥u∥2W 1,2(Ω;R3) + ∥∇xϑ

β
2 ∥2L2(Ω;R3) + ∥∇x log ϑ∥2L2(Ω;R3) + ∥curlxB∥2L2(Ω;R3)

]
.

In addition, as Γϑ
D ̸= ∅, we may apply Poincaré inequality obtaining

∥∇xϑ
β
2 ∥2L2(Ω;R3) + ∥∇x log ϑ∥2L2(Ω;R3)

>∼ ∥ϑ
β
2 ∥2W 1,2(Ω) + ∥ log ϑ∥2W 1,2(Ω) − c(∥(data)∥).

Similarly, by virtue of inequality (2.20),

∥curlxB∥2L2(Ω;R3)
>∼ ∥B∥2W 1,2(Ω;R3) − c(∥(data)∥).

Indeed we may use the extension Bδ0,B of the boundary field constructed in Section 3.1.2, together

with its projection B̂δ0,B on the space H⊥ to deduce

∥curlxB∥2L2(Ω;R3) = ∥curlx(B− B̂δ0,B)∥2L2(Ω;R3) − c1(∥(data)∥)
>∼ ∥B− B̂δ0,B∥2W 1,2(Ω;R3) − c1(∥(data)∥)

>∼ ∥B∥2W 1,2(Ω;R3) − c2(∥(data)∥).

It is important to notice that the above estimate is independent of the value of the parameter δ
to be fixed later in the course of the proof.

Summing up the previous estimates we may infer that[
∥u∥2W 1,2(Ω;R3) + ∥ϑ

β
2 ∥2W 1,2(Ω) + ∥ log ϑ∥2W 1,2(Ω) + ∥B∥2W 1,2(Ω;R3)

]
18



≤ c(∥(data)∥)
[
1 +

∫
Ω

ϑB

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx

]
.

(3.18)

We point out that hypothesis (3.2) plays a crucial role in this step.

3.2.2 Estimates of the integrals containing the magnetic field

We use again hypothesis (3.2) together with (3.3) and (3.10) to perform integration by parts∫
Ω

(B× u) · curlxB̃δ,D dx =

∫
Ω

curlx(B× u) · B̃δ,D dx,

where ∣∣∣∣∫
Ω

curlx(B× u) · B̃δ,D dx

∣∣∣∣ ≤ ∥B̃δ,D∥L3(Ω;R3)∥curlx(B× u)∥
L

3
2 (Ω;R3)

<∼ ∥B̃δ,D∥L3(Ω;R3)

(
∥B∥L6(Ω;R3)∥∇xu∥L2(Ω;R3×3) + ∥∇xB∥L2(Ω;R3×3)∥u∥L6(Ω;R3)

)
.

Consequently, by virtue of (3.13) and the Sobolev embedding W 1,2 ↪→ L6,∣∣∣∣∫
Ω

(B× u) · curlxB̃δ,D dx

∣∣∣∣ ≤ o(δ, ∥(data)∥)
(
∥u∥2W 1,2(Ω;R3) + ∥B∥2W 1,2(Ω;R3)

)
, (3.19)

where o(δ, ∥(data)∥) → 0 as δ → 0 uniformly for t ∈ R.
Similarly, using (3.12) for p = 2, we get∣∣∣∣∫

Ω

B · ∂tBδ,B dx

∣∣∣∣ ≤ δ∥B∥2L2(Ω;R3) + c(δ, ∥(data)∥) for any δ > 0, (3.20)

and, by the same token,∣∣∣∣∫
Ω

ζ(ϑ)curlx B · curlxB̃δ,D dx

∣∣∣∣
≤ δ∥curlxB∥2L2(Ω;R3) + c(δ, ∥(data)∥, r)∥ζ(ϑ)∥2Lr(Ω) for some r > 2.

Furthermore, as β
2
> 3(> 2) and the growth of ζ is restricted by (2.14), we may infer that∣∣∣∣∫

Ω

ζ(ϑ)curlx B · curlxB̃δ,D dx

∣∣∣∣ ≤ δ
(
∥curlxB∥2L2(Ω;R3) + ∥ϑ

β
2 ∥2W 1,2(Ω)

)
+ c(δ, ∥(data)∥) (3.21)

for any 0 < δ ≤ δ0.
Thus fixing δ > 0 sufficiently small we may use (3.18), together with the bounds (3.19)–(3.21)

to rewrite inequality (3.16) in the form

d

dt

∫
Ω

(
1

2
ϱ|u|2 + ϱe(ϱ, ϑ) +

1

2
|B|2 − ϑBϱs(ϱ, ϑ)−BB ·B

)
dx
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+
3

4

∫
Ω

ϑB

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx

≤ −
∫
Ω

(
ϱs(ϱ, ϑ)∂tϑB + ϱs(ϱ, ϑ)u · ∇xϑB +

q(ϑ,∇xϑ)

ϑ
· ∇xϑB

)
dx

+

∫
Ω

ϱ∇xM · u dx+ c(∥(data)∥), (3.22)

where we have set BB = Bδ,B.

3.2.3 Estimates of the integrals containing the density and temperature

First, write ∫
Ω

ϱ∇xM · u dx =
d

dt

∫
Ω

ϱM dx−
∫
Ω

ϱ∂tM dx. (3.23)

Next, in accordance with the choice of ϑB in (3.4),∫
Ω

q(ϑ,∇xϑ)

ϑ
· ∇xϑB dx = −

∫
Ω

κ(ϑ)

ϑ
∇xϑ · ∇xϑB dx = −

∫
Γϑ
D

K(ϑB)∇xϑB · n dσ, (3.24)

where K′(ϑ) = κ(ϑ)
ϑ

.
In view of (3.23), (3.24), the inequality (3.22) can be rewritten in the form

d

dt

∫
Ω

(
1

2
ϱ|u|2 + ϱe(ϱ, ϑ) +

1

2
|B|2 − ϑBϱs(ϱ, ϑ)−BB ·B− ϱM

)
dx

+
3

4

∫
Ω

ϑB

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx

≤ −
∫
Ω

(
ϱs(ϱ, ϑ)∂tϑB + ϱs(ϱ, ϑ)u · ∇xϑB

)
dx+ c(∥(data)∥). (3.25)

The integrals containing entropy can be handled in the same way as in [19, Section 4.4]. In
accordance with hypothesis (2.7),

ϱs(ϱ, ϑ) = ϱS
(
ϱ

ϑ
3
2

)
+

4a

3
ϑ3.

On the one hand, as s complies with the Third law of thermodynamics enforced by the hypotheses
(2.8), (2.10), we have

ϱS
(
ϱ

ϑ
3
2

)
≤ ϱS(r) provided ϱ

ϑ
3
2

≥ r, where S(r) → 0 as r → ∞. (3.26)

On the other hand, if ϱ < rϑ
3
2 , we get

0 ≤ ϱS
(
ϱ

ϑ
3
2

)
≤ c

(
1 + rϑ

3
2

[
log+(rϑ

3
2 ) + log+(ϑ)

])
, (3.27)
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cf. also [15, Chapter 12, formula (12.35)].
Thus we may conclude, exactly as in [19, Section 4.4],

d

dt

∫
Ω

(
1

2
ϱ|u|2 + ϱe(ϱ, ϑ) +

1

2
|B|2 − ϑBϱs(ϱ, ϑ)−BB ·B− ϱM

)
dx

+
1

4

∫
Ω

ϑB

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx

≤ S(r)c1(∥(data)∥)
∫
Ω

ϱ|u| dx+ c2(r, ∥(data)∥), S(r) → 0 as r → ∞, (3.28)

where c2(r, ∥(data)∥) → ∞ as r → ∞.

3.3 Pressure estimates

The integral on the right–hand side of (3.28) contains ϱ and as such is not directly controllable
by the dissipation rate. Following the same strategy as in [19] we evoke the pressure estimates
obtained by using the quantity

φ = ψ(t)B
[
ϱα − 1

|Ω|

∫
Ω

ϱα dx

]
as a test function in the momentum balance (2.28), where B is the Bogovskii operator introduced
in Section 3.1.2. As a consequence of (3.6) and the Sobolev embedding W 1,p ↪→ L∞, p > 3,∣∣∣∣B [ϱα − 1

|Ω|

∫
Ω

ϱα dx

]∣∣∣∣ ≤ c(m0) as soon as α <
1

3
. (3.29)

Following step by step the arguments of [19, Section 4.6.1] we deduce the inequality∫ τ+1

τ

∫
Ω

ϱ
5
3
+α dx dt ≤ c(m0)

[
1 +

∫ τ+1

τ

∥ϑ∥4L4(Ω) dt(
1 + sup

t∈(τ,τ+1)

∥ϱ(t, ·)∥
L

5
3 (Ω)

)∫ τ+1

τ

∥u∥2W 1,2(Ω;R3) dt+ sup
t∈(τ,τ+1)

∫
Ω

ϱ|u| dx

+

∫ τ+1

τ

∫
Ω

|curlxB×B| dx dt

]
, α =

1

15
, (3.30)

which is nothing other than [19, Section 4, formula (4.28)] augmented by the contribution of the
Lorentz force.

21



3.4 Proof of Theorem 3.1

The estimates (3.28), (3.30) are the main tools for proving Theorem 3.1. Denote

F (ϱ, ϑ,u,B) =
1

2
ϱ|u|2 + ϱe(ϱ, ϑ) +

1

2
|B|2 − ϑBϱs(ϱ, ϑ)−BB ·B− ϱM.

It follows from the structural restrictions imposed through the hypotheses (2.5)–(2.10) that

1

λ
E(ϱ, ϑ,u,B)− c1(λ, ∥(data)∥) ≤ F (ϱ, ϑ,u,B) ≤ λE(ϱ, ϑ,u,B) + c2(λ, ∥(data)∥) (3.31)

for any λ > 1. Similarly to [19, Section 4.6], we show the following result.

Lemma 3.4. Under the hypotheses of Theorem 3.1, suppose∫
Ω

F (ϱ, ϑ,u,B)(τ, ·) dx−
∫
Ω

F (ϱ, ϑ,u,B)(τ + 1, ·) dx ≤ K (3.32)

for some τ > T , K ≥ 0.
Then there is L = L(K, ∥(data)∥) such that

sup
t∈(τ,τ+1)

∫
Ω

F (ϱ, ϑ,u,B)(t, ·) dx ≤ L(K, ∥(data)∥). (3.33)

Proof. Step 1:
If (3.32) holds, then the estimates (3.18), (3.28) give rise to∫ τ+1

τ

(
∥u∥2W 1,2(Ω;R3) + ∥ϑ

β
2 ∥2W 1,2(Ω) + ∥ log(ϑ)∥2W 1,2(Ω) + ∥B∥2W 1,2(Ω;R3)

)
dt

≤ c1(∥(data)∥)S(r)
∫ τ+1

τ

∫
Ω

ϱ|u| dx dt+ c2(r,K, ∥(data)∥). (3.34)

Next, ∫ τ+1

τ

(
∥ϑ∥4L4(Ω) +

∫
Ω

|curlxB×B| dx

)
dt

<∼
(
1 +

∫ τ+1

τ

(
∥ϑ

β
2 ∥2W 1,2(Ω) + ∥B∥2W 1,2(Ω;R3)

)
dt

)
≤ c(K, ∥(data)∥)

(
1 +

∫ τ+1

τ

∫
Ω

ϱ|u| dx dt

)
,

where we have used (3.34) with r = 1. Consequently, inequality (3.30) reduces to∫ τ+1

τ

∫
Ω

ϱ
5
3
+α dx dt
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≤ c(K, ∥(data)∥)

[
1 +

(
1 + sup

t∈(τ,τ+1)

∥ϱ(t, ·)∥
L

5
3 (Ω)

)∫ τ+1

τ

∥u∥2W 1,2(Ω;R3) dt+ sup
t∈(τ,τ+1)

∫
Ω

ϱ|u| dx

]
,

α =
1

15
.

In addition, using once more (3.34) with r = 1, together with the estimates (2.11) and (3.31), we
may infer that∫ τ+1

τ

∫
Ω

ϱ
5
3
+α dx dt

≤ c(K, ∥(data)∥)

1 +( sup
t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B| dx

) 3
5 ∫ τ+1

τ

∥u∥2W 1,2(Ω;R3) dt

+

(
sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B| dx

) 1
2

 ,
α =

1

15
. (3.35)

Here, we have used Hölder’s inequality to estimate∫
Ω

ϱ|u| dx ≤ ∥√ϱ∥L2(Ω)∥
√
ϱu∥L2(Ω;R3) ≤ c(∥(data)∥)

[
1 +

(∫
Ω

|F (ϱ, ϑ,u,B| dx

) 1
2

]
. (3.36)

Step 2:
Similarly to [19, Section 4.6], under the hypothesis (3.32), we claim that the pointwise values

of the functional
∫
Ω
F dx are controlled by its average:

sup
t∈(τ,τ+1)

∫
Ω

F (ϱ, ϑ,u,B)(t, ·) dx ≤ c(K, ∥(data)∥)
[
1 +

∫ τ+1

τ

∫
Ω

F (ϱ, ϑ,u,B)(t, ·) dx dt

]
. (3.37)

Indeed there is ξ ∈ (τ, τ + 1) such that∫
Ω

F (ϱ, ϑ,u,B)(ξ, ·) dx ≤
∫ τ+1

τ

∫
Ω

F (ϱ, ϑ,u,B)(t, ·) dx dt.

Next, using (3.28) with r = 1 and (3.36), we get

d

dt

∫
Ω

F (ϱ, ϑ,u,B) dx ≤ c(∥(data)∥)
[
1 +

∫
Ω

F (ϱ, ϑ,u,B) dx

]
.

Consequently,∫
Ω

F (ϱ, ϑ,u,B)(s, ·) dx ≤
∫
Ω

F (ϱ, ϑ,u,B)(ξ, ·) dx+

∫ s

ξ

d

dt

∫
Ω

F (ϱ, ϑ,u,B) dx
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≤ c(∥(data)∥)
[
1 +

∫ τ+1

τ

∫
Ω

F (ϱ, ϑ,u,B)(t, ·) dx dt

]
(3.38)

whenever ξ ≤ s ≤ τ + 1. Finally, by virtue of hypothesis (3.32) and (3.38),∫
Ω

F (ϱ, ϑ,u,B)(τ, ·) dx ≤ K +

∫
Ω

F (ϱ, ϑ,u,B)(τ + 1, ·) dx

≤ K + c(∥(data)∥)
[
1 +

∫ τ+1

τ

∫
Ω

F (ϱ, ϑ,u,B) dx dt

]
.

Consequently, we may repeat the same arguments as in (3.38) replacing ξ by τ , which yields (3.37).

Step 3:
We use Hölder’s inequality and Sobolev embedding theorem W 1,2 ↪→ L6 to bound the integral

on the right–hand side of (3.34),∫
Ω

ϱ|u| dx ≤ ∥√ϱ∥L2(Ω)∥
√
ϱ∥L3(Ω)∥u∥L6(Ω;R3) ≤ c

√
m0∥

√
ϱ∥L3(Ω)∥u∥W 1,2(Ω;R3).

Consequently, going back to (3.34) we obtain∫ τ+1

τ

(
∥u∥2W 1,2(Ω;R3) + ∥ϑ

β
2 ∥2W 1,2(Ω) + ∥B∥2W 1,2(Ω;R3)

)
dt

≤ c1(∥(data)∥)S(r)
∫ τ+1

τ

∥ϱ∥
L

3
2 (Ω)

+ c2(r,K, ∥(data)∥), (3.39)

where possibly c2(r,K, ∥(data)∥) → ∞ as r → ∞. In particular, inequality (3.35) may be rewritten
in the form∫ τ+1

τ

∫
Ω

ϱ
5
3
+α dx dt

≤ c1(K, ∥(data)∥)

1 +( sup
t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B| dx

) 3
5

S(r)
∫ τ+1

τ

∥ϱ∥
L

3
2 (Ω)

dt

+ c2(r,K, ∥(data)∥)

(
sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B| dx

) 3
5

 , α =
1

15
. (3.40)

Step 4:
Using (3.39) we derive a bound on the kinetic energy:∫ τ+1

τ

∫
Ω

ϱ|u|2 dx dt ≤ sup
t∈(τ,τ+1)

∥ϱ∥
L

3
2 (Ω)

∫ τ+1

τ

∥u∥2L6(Ω;R3) dt
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<∼ sup
t∈(τ,τ+1)

∥ϱ∥
L

3
2 (Ω)

∫ τ+1

τ

∥u∥2W 1,2(Ω;R3) dt

≤ c1(r,K, ∥(data)∥) sup
t∈(τ,τ+1)

∥ϱ∥
L

3
2 (Ω)

+ c2(K, ∥(data)∥)S(r) sup
t∈(τ,τ+1)

∥ϱ∥
L

3
2 (Ω)

∫ τ+1

τ

∥ϱ∥
L

3
2 (Ω)

dt.

Next, by interpolation,

∥ϱ∥
L

3
2 (Ω)

≤ ∥ϱ∥
5
6

L
5
3 (Ω)

∥ϱ∥
1
6

L1(Ω);

whence∫ τ+1

τ

∫
Ω

ϱ|u|2 dx

≤ c1(r,K, ∥(data)∥) sup
t∈(τ,τ+1)

∥ϱ∥
5
6

L
5
3 (Ω)

+ c2(K, ∥(data)∥)S(r) sup
t∈(τ,τ+1)

∥ϱ∥
5
6

L
5
3 (Ω)

∫ τ+1

τ

∥ϱ∥
5
6

L
5
3 (Ω)

dt

≤ c3(K, ∥(data)∥)

1 + c4(r,K, ∥(data)∥)

(
sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

) 1
2

+

(
sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

) 1
2

S(r)
∫ τ+1

τ

(∫
Ω

|F (ϱ, ϑ,u,B)| dx

) 1
2

dt


≤ c3(K, ∥(data)∥)

1 + c4(r,K, ∥(data)∥)

(
sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

) 1
2

+ S(r) sup
t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

]
. (3.41)

Step 5:
We estimate the pressure/internal energy term by interpolation between L1 and L

5
3
+α,∫ τ+1

τ

∫
Ω

ϱ
5
3 dx dt ≤ c(m0)

(∫ τ+1

τ

∫
Ω

ϱ
5
3
+α dx dt

) 10
11

for α =
1

15
.

Going back to (3.40) we conclude∫ τ+1

τ

∫
Ω

ϱ
5
3 dx dt

≤ c1(K, ∥(data)∥)

1 +( sup
t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

) 3
5

S(r)
∫ τ+1

τ

∥ϱ∥
L

3
2 (Ω)

dt
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+ c2(r,K, ∥(data)∥)

(
sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

) 3
5


10
11

{ similarly to (3.41) }

≤ c1(K, ∥(data)∥)

1 + S(r)

(
sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

) 3
5
+ 1

2

+ c2(r,K, ∥(data)∥)

(
sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

) 3
5


10
11

≤ c1(K, ∥(data)∥)

[
1 + S(r) sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

+ c2(r,K, ∥(data)∥)

(
sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

) 6
11

 . (3.42)

Step 6:
Using inequality (3.37), and summing up (3.39) - (3.42) to estimate the integral on the right–

hand side we have

sup
t∈(τ,τ+1)

∫
Ω

F (ϱ, ϑ,u,B)(t, ·) dx ≤ sup
t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)|(t, ·) dx

≤ c(K, ∥(data)∥)
∫ τ+1

τ

[
1 +

∫
Ω

ϱ|u|2 dx+ ∥ϑ
β
2 ∥2W 1,2(Ω) +

∫
Ω

ϱ
5
3 dx+ ∥B∥2W 1,2(Ω;R3)

]
dt

≤ c1(K, ∥(data)∥)

1 + c2(r,K, ∥(data)∥)

(
sup

t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

) 6
11

+ S(r) sup
t∈(τ,τ+1)

∫
Ω

|F (ϱ, ϑ,u,B)| dx

]
. (3.43)

Thus choosing r = r(K, ∥(data)∥) so large that

c1(K, ∥(data)∥)S(r) < 1

in (3.43) we obtain the desired conclusion (3.33).

Having proved Lemma 3.4 we are ready to finish the proof of Theorem 3.1. Suppose that

lim sup
t→T−

∫
Ω

E(ϱ, ϑ,u,B)(t, ·) dx = ET <∞.
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In view of (3.31),

lim sup
t→T−

∫
Ω

F (ϱ, ϑ,u,B)(t, ·) dx ≤ FT (ET , ∥(data)∥) <∞.

Fix K = 1 in Lemma 3.4. First we claim there is τ ≥ T , where τ depends only on FT and ∥(data)∥
such that ∫

Ω

F (ϱ, ϑ,u,B)(τ, ·) dx ≤ L(1, ∥(data)∥), (3.44)

where L(1, ∥(data)∥) is the bound in (3.33). More precisely,

τ − T ≤ [FT + |Ω| inf F ] + 1

since otherwise, in accordance with Lemma 3.4, we would have∫
Ω

F (ϱ, ϑ,u,B)(τ, ·) dx <

∫
Ω

inf F dx.

Next, we claim the implication∫
Ω

F (ϱ, ϑ,u,B)(τ, ·) dx ≤ L(1, ∥(data)∥) ⇒
∫
Ω

F (ϱ, ϑ,u,B)(τ + 1, ·) dx ≤ L(1, ∥(data)∥).

Indeed either ∫
Ω

F (ϱ, ϑ,u,B)(τ, ·) dx−
∫
Ω

F (ϱ, ϑ,u,B)(τ + 1, ·) dx ≤ 1

and the desired conclusion follows from Lemma 3.4, or∫
Ω

F (ϱ, ϑ,u,B)(τ + 1, ·) dx <

∫
Ω

F (ϱ, ϑ,u,B)(τ, ·) dx− 1 < L(1, ∥(data)∥).

Thus we have a sequence

τ + n, n = 0, 1, . . . ,

∫
Ω

F (ϱ, ϑ,u,B)(τ + n, ·) dx ≤ L(1, ∥(data)∥)

and the desired uniform bound

sup
t≥τ

∫
Ω

F (ϱ, ϑ,u,B)(t, ·) dx ≤ F∞(∥(data)∥)

follows from (3.28) (with r = 1) by the standard Gronwall argument applied on each finite interval
(τ + n, τ + n+ 1). Note that the integral on the right-hand side of (3.28) can be absorbed by the
left-hand side, specifically

∫
Ω
ϱ|u| dx ≤ 1

2

∫
Ω
ϱ dx+ 1

2

∫
Ω
ϱ|u|2 dx. Clearly, in view of (3.31), this

yields a similar bound for
∫
Ω
E(ϱ, ϑ,u,B) dx as claimed in Theorem 3.1.

27



4 Asymptotic compactness

The proof of asymptotic compactness basically mimicks the proof of sequential stability of global
in time weak solutions with the necessary modification to ensure compactness of the density.

We consider a family of data locally precompact in the appropriate function spaces. Specifically,

0 < m0 ≤ m0,n ≤ m0, |ωn| ≤ ω, (4.1)

∥Gn∥W 1,∞(R×Ω) ≤ G, (Gn)n≥1 precompact in W 1,∞([−N,N ]× Ω) for any N > 0. (4.2)

Similarly,

0 < ϑ ≤ ϑB,n, sup
t∈R

(
∥ϑB,n(t, ·)∥W 2,∞(Γϑ

D) + ∥∂tϑB,n(t, ·)∥W 1,∞(Γϑ
D)

)
≤ ϑ,

(ϑB,n)n≥1 precompact in C([−N,N ];C2(Γϑ
D)) for any N > 0,

(∂tϑB,n)n≥1 precompact in C([−N,N ];C1(Γϑ
D)) for any N > 0; (4.3)

sup
t∈R

(
∥bτ,n(t, ·)∥W 2,∞(ΓB

D;R3) + ∥∂tbτ,n(t, ·)∥W 1,∞(ΓB
D;R3)

)
≤ Bτ ,

(bτ,n)n≥1 precompact in C([−N,N ];C2(ΓB
D;R

3)) for any N > 0,

(∂tbτ,n)n≥1 precompact in C([−N,N ];C1(ΓB
D;R

3)) for any N > 0; (4.4)

and

sup
t∈R

(
∥bν,n(t, ·)∥W 2,∞(ΓB

N ) + ∥∂tbν,n(t, ·)∥W 1,∞(ΓB
N )

)
≤ Bν ,

(bν,n)n≥1 precompact in C([−N,N ];C2(ΓB
N)) for any N > 0,

(∂tbν,n)n≥1 precompact in C([−N,N ];C1(ΓB
N)) for any N > 0. (4.5)

Theorem 4.1. [Asymptotic compactness]
Let the hypotheses of Theorem 3.1 hold. Suppose that (ϱn, ϑn,un,Bn)n≥1 is a sequence of

weak solutions to the compressible MHD system on (Tn,∞), Tn ≥ −∞, Tn → −∞, with the
data

(m0,n, ωn, Gn, ϑB,n,bτ,n, bn,n)n≥1

specified in (4.1)–(4.5),∫
Ω

ϱn dx = m0,n,

∫
Ω

Bn · h dx = 0 for all h ∈ H(Ω;R3).
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In addition, suppose

lim sup
τ→Tn+

∫
Ω

E(ϱn, ϑn,un,Bn)(τ, ·) dx < E0 <∞

uniformly for all n = 1, 2, . . . .
Then there is a subsequence (not relabelled here) such that

ϱn → ϱ in Cweak([−N,N ];L
5
3 (Ω)) and in C([−N,N ];L1(Ω)),

ϑn → ϑ in Lq([−N,N ];L4(Ω)) and weakly in L2(−N,N ;W 1,2(Ω)), 1 ≤ q <∞,

un → u weakly in L2(−N,N ;W 1,2(Ω;R3)),

Bn → B in L2(−N,N ;L2(Ω;R3)) and weakly in L2(−N,N ;W 1,2(Ω;R3)), (4.6)

and

m0,n → m0 > 0, ωn → ω,

Gn → G in W 1,∞([−N,N ]× Ω),

ϑn,B → ϑB in C([−N,N ];C2(Γϑ
D)), inf

R×Ω
ϑB > 0,

bτ,n → bτ in C([−N,N ];C2(ΓB
D;R

3)),

bν,n → bν in C([−N,N ];C2(ΓB
N)) (4.7)

for any N > 0, where (ϱ, ϑ,u,B) is a weak solution of the compressible MHD system with the
data (m0, ω,G, ϑB,bτ , bν) defined in R× Ω (entire solution) satisfying∫

Ω

E(ϱ, ϑ,u,B)(τ, ·) dx ≤ E∞ for all τ ∈ R. (4.8)

As already pointed out, the proof of Theorem 4.1 is based on ideas similar to the proof of
sequential stability of weak solutions on a compact time interval (−N,N). Here the necessary
energy bounds are provided by Theorem 3.1; whence the only missing piece of information is
the strong convergence of the densities at the “initial” time t = −N . Indeed compactness of the
sequence (ϱn)n≥1 in the existence proof proposed by Lions [28] or [13] is conditioned by compactness
of the “initial” density distributions. In the present setting, however, the “initial” state is a priori
not given.

Fortunately, this problem can be solved by careful analysis of propagation of the density oscil-
lations in time elaborated in [16] and further developed in [12] in the context of inhomogeneous
velocity boundary conditions. Adaptation to the present setting is straightforward as soon as we
observe compactness of the Lorentz force in the momentum equation, specifically

curlxBn ×Bn → curlxB×B weakly in L
3
2 ((−N,N)× Ω;R3).
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However, given the available energy bounds, this can be shown by the standard Aubin–Lions
argument. The remaining compactness properties necessary to establish the convergence in (4.6)
are well understood and elaborated in detail in [9].

5 Concluding discussion, applications

Suppose that the gravitational potential G as well as the boundary data ϑB, bτ , bν are independent
of the time. Under the hypotheses of Theorem 3.1, the set

A =
{
(ϱ, ϑ,u,B)

∣∣∣(ϱ, ϑ,u,B)− solution of the compressible (MHD) system for t ∈ (−∞,∞)∫
Ω

E(ϱ, ϑ,u,B) dx < E∞
}

is non–empty, time–shift invariant, meaning

(ϱ, ϑ,u,B) ∈ A ⇒ (ϱ, ϑ,u,B)(·+ τ) ∈ A, τ ∈ R,

and compact with respect to the topologies specified in (4.6).

5.1 Convergence to equilibria

A particular situation occurs when A is a singleton containing the unique stationary solution of
the problem. As a direct consequence of Theorem 4.1 we obtain unconditional convergence to
equilibrium for any weak solution of the compressible MHD system.

As an example, consider the situation:

• ϑB > 0 is a positive constant on Γϑ
D ̸= ∅;

•
bτ = BB × n|ΓB

D
, bν = BB · n|ΓB

N
,

where
curlxBB = divxBB = 0 in Ω.

Accordingly, the ballistic energy inequality (3.16) yields

d

dt

∫
Ω

(
1

2
ϱ|u|2 + ϱe(ϱ, ϑ) +

1

2
|B|2 − ϑBϱs(ϱ, ϑ)− ϱM

)
dx

+

∫
Ω

ϑB

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx ≤ 0. (5.1)

Integrating (5.1) in time we deduce that any solution belonging to A necessarily satisfies

u ≡ 0, ϑ ≡ ϑB, ∂tϱ = 0, divxB = curlxB = 0.

30



Moreover, it turns out that B is uniquely determined by the boundary conditions and the hypoth-
esis ∫

Ω

B · h dx = 0 for all h ∈ H(Ω).

Finally, ϱ = ϱ(x) solves the static problem

∇xp(ϱ, ϑB) = ϱ∇xM

that admits a unique solution determined by the mass constraint∫
Ω

ϱ dx = m0

as long as P ′(0) > 0 in (2.6), see [17].

5.2 Systems with unbounded energy

As mentioned in the introduction, the result claimed in Theorem 3.1 cannot hold if the fluid system
is thermally isolated, meaning

Γϑ
D = ∅. (5.2)

Indeed it follows from the entropy inequality (2.28) that the total entropy

τ 7→
∫
Ω

ϱs(ϱ, ϑ)(τ, ·) dx

is a non–decreasing function, which precludes the existence of a bounded absorbing set depending
solely on the data specified in (3.1).

What is more, we show that (5.2) may give rise to trajectories with unbounded energy. Indeed
suppose that there is a global–in–time solution (ϱ, ϑ,u,B) and a sequence of times τn → ∞ such
that

sup
n≥1

∫
Ω

E(ϱ, ϑ,u,B)(τn, ·) dx <∞. (5.3)

It follows from the constitutive restrictions (2.11) that boundedness of total energy implies bound-
edness of the total entropy

∫
Ω
ϱs(ϱ, ϑ)(τn, ·) dx. However, by virtue of the no–flux boundary

conditions induced by (5.2), the total entropy is a non–decreasing function of the time. Conse-
quently, we may infer that∫ ∞

T

∫
Ω

1

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt <∞. (5.4)

In particular, it follows from (5.4) that∫ τn+1

τn

∫
Ω

1

ϑ

(
S(ϑ,∇xu) : ∇xu+ ζ(ϑ)|curlxB|2

)
dx dt→ 0 as n→ ∞. (5.5)
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Consequently, introducing the time shifts

un = u(·+ τn), Bn = B(·+ τn),

we deduce

un → 0 in L2(0, 1;W 1,2(Ω;R3)), Bn → B̂ in L2(0, 1;L2(Ω;R3)) and weakly in L2(0, 1;W 1,2(Ω;R3)).

As the limits satisfy the induction equation (1.3), we conclude

B̂ = B̂(x), divxB̂ = 0, curlxB̂ = 0 in Ω, B̂× n|ΓB
D
= bτ , B̂ · n|ΓB

N
= bν . (5.6)

Thus the boundary data bν , bτ must be stationary in the sense of Definition 1.1. Otherwise, the
conclusion contradicts (5.3).

Using the necessary condition for stationarity (1.23) we obtain the following result.

Theorem 5.1. [Systems with unbounded energy]
Suppose

Γu
D ̸= ∅, Γϑ

D = ∅,

and bν, bτ independent of t,

ΓB
D ̸= ∅, where bτ · n = 0, divτbτ ̸≡ 0.

Then ∫
Ω

E(ϱ, ϑ,u,B)(τ, ·) dx→ ∞ as τ → ∞

for any global–in–time weak solution to the compressible MHD system.

5.3 General boundary fluxes

The results can be extended to general boundary fluxes. Prominent examples are the Navier–slip
boundary condition for the velocity,

u · n|Γu
N
= 0, [S(ϑ,∇xu) · n+ du]× n|Γu

N
= 0, d > 0, (5.7)

see e.g. Buĺıček, Málek, and Rajagopal [5], and the radiative heat flux condition

q(ϑ,∇xϑ) · n− d|ϑ− ϑ0|k(ϑ− ϑ0)|Γϑ
N
= 0 (5.8)

used in some models in astrophysics, cf. Weiss and Proctor [36].
If d > 0, then the conditions Γu

D ̸= ∅, Γϑ
D ̸= ∅ can be dropped in Theorem 3.1. Hypothesis

ΓB
D ⊂ Γu

D, however, is still necessary. We leave the details to the interested reader.
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5.4 “Do nothing” boundary conditions

Another interesting type of boundary conditions arises under a simple but physically grounded
assumption that the Maxwell equations, here represented by the induction equation (1.3), are
satisfied both in Ω and in the adjacent component Ωext with possibly different (discontinuous)
transport coefficients. The boundary conditions on Γ ⊂ ∂Ω separating Ω and Ωext are then
nothing other than the Rankine–Hugeniot compatibility conditions to ensure the satisfaction of
the induction equation in the weak sense.

More specifically, we write the Maxwell’s equations yielding (1.3) in a more precise way:

∂tB+ curlxE = 0,

divxB = 0,

J = σ (E+ u×B) ,

J = curlxH, B = µH, (5.9)

where E denotes the electric field, J the electric current density, H the magnetic field intensity,
σ is the electric conductivity and µ the magnetic permitivity of the material. Both σ and µ may
experience jumps over Γ. Accordingly, the Lorentz force in the momentum equation reads

J×B = curlxH×B.

The associated Rankine-Hugeniot conditions on Γ are:

B · n = Bext · n,
H× n = Hext × n,

E× n = Eext × n. (5.10)

If the adjacent component Ωext happens to be a vacuum, we have σext = 0, and (5.9), (5.10) give rise
to a non–local condition for B on Γ given by a Neumann–Dirichlet type map, see Ladyzhenskaya
and Solonnikov [27], Sakhaev and Solonnikov [30], Solonnikov [33].

At the level of the energy estimates yielding the existence of a bounded absorbing set, the
above situation does not create any additional difficulties. Indeed, in view of (5.10), the function

µ(B−BB) = H−HB, µ = µint1Ω + µext1Ωext

is still a legitimate test function for the induction equation (1.3) yielding

d

dt

∫
Ω∪Ωext

µ

(
1

2
|B|2 −BB ·B

)
dx =

∫
Ω∪Ωext

(u×B) · curlx(H−HB) dx

+

∫
Ω∪Ωext

1

σ
curlxH · curlx(H−HB) dx. (5.11)
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If we set the velocity uext = 0, all energy bounds derived in the proof of Theorem 3.1 remain valid;
whence the existence of a bounded absorbing set follows from Theorem 3.1

The proof of asymptotic compactness claimed in Theorem 4.1 may be more delicate. Still we
conjecture that the results of Bauer, Pauly, and Schomburg [4] may be used to show the asymptotic
compactness for the sequence of magnetic fields to extend Theorem 4.1 to the case of “do nothing”
boundary conditions.
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Rational Mech. Anal., 46:241–279, 1972.

[11] A. Eden and A. Libin. Explicit dimension estimates of attractors for the MHD equations in
three-dimensional space. Phys. D, 40(3):338–352, 1989.
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