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Abstract

We investigate the compact submanifolds in Riemannian space
forms of nonnegative sectional curvature that satisfy a lower bound
on the Ricci curvature, that bound depending solely on the length of
the mean curvature vector of the immersion. While generalizing the
results, we give a positive answer to a conjecture by H. Xu and J.
Gu in (2013, Geom. Funct. Anal. 23). Our main accomplishment is
the elimination of the need for the mean curvature vector field to be
parallel.

Let f : Mn → Qn+m
c be an isometric immersion of a compact Riemannian

manifold of dimension n into a simply-connected space form of sectional
curvature c and substantial codimension m. Throughout this paper, the
(not normalized) Ricci curvature of Mn is assumed to satisfy at any point
the pinching condition

RicM ≥ (n− 2)(c+H2), (∗)

where H stands for the norm of the (normalized) mean curvature vector.
By the condition (∗) being satisfied with equality at x ∈ Mn we mean

that the inequality at that point is not strict, that is, there exists a unit
vector X ∈ TxM such that RicM(X) = (n − 2)(c + H2). If otherwise, we
call the inequality (∗) at x ∈ Mn strict. Notice that if the inequality holds
strictly at any given point, it will persist in its strict form after subjecting
the submanifold to a sufficiently small smooth deformation.
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A complete classification of the submanifolds as above for c > 0 was
obtained by N. Ejiri [3] in 1979 under the assumptions that f is a minimal
immersion and that the manifold Mn is both, oriented and simply connected.
H. Xu and J. Gu [10] in 2013 generalized Ejiri’s result under the assumption
that c + H2 > 0 by only requiring the mean curvature vector to be parallel
and the submanifold orientable. Additionally, they proved that when the
assumption regarding the mean curvature is removed, but a strict inequality
in (∗) holds at every point, the manifold must be homeomorphic to a sphere.

In the same paper, Xu and Gu put forward a conjecture, suggesting that
their findings should hold true even when eliminating the condition on the
mean curvature vector altogether. In this paper, we give affirmative con-
firmation to their conjecture. To achieve that result we do not require the
manifold to be oriented. Furthermore, to reach the conclusion that the man-
ifold is homeomorphic to a sphere we only ask for strict inequality in the
condition (∗) at some point.

Theorem 1. Let f : Mn → Qn+m
c , n ≥ 4, c ≥ 0, be an isometric immersion

of a compact Riemannian manifold that satisfies the condition (∗) at any
point. Then either Mn is homeomorphic to Sn or one of the following holds:

(i) Mn is Sn/2(r/
√

2)× Sn/2(r/
√

2), r = 1/
√
c+H2, and f = j ◦ g, where

g : Mn → Sn+1(r) is the standard embedding and j : Sn+1(r) → Qn+2
c

an umbilical inclusion.

(ii) Mn is the projective plane CP2
r of constant holomorphic curvature 4r2/3

with r = 1/
√
c+H2 and f = j ◦ g, where g is the standard immersion

of CP2
r into S7(r) and j : S7(r)→ Q8

c an umbilical inclusion.

Remarks : (i) In both cases the umbilical inclusion may be totally geodesic.
(ii) If n is even and c > 0 the result generalizes Theorem 2 in [2] by means
of a lower bound for the Ricci curvature.

When Mn possesses the topological structure of a sphere, the conjecture
put forth by Xu and Gu proposes that it should not merely be topologically
equivalent but diffeomorphic to a sphere. This holds true for dimensions
n = 5, 6, 12, 56, 61 as in these cases, it is established that the differentiable
structure is unique; as stated by Corollary 1.15 in [8].
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1 The pinching condition

In this section, we analyze the relation between our pinching condition (∗)
and the one for c > 0 due to Lawson and Simons in their seminal paper [5].
Their result was later strengthened by Elworthy and Rosenberg [4, p. 71] by
only requiring the bound to be strict at some point of the submanifold. The
case c = 0 was later considered by Xin [9].

Theorem 2. ([4],[5],[9]) Let f : Mn → Qn+m
c , n ≥ 4, c ≥ 0, be an isometric

immersion of a compact manifold and p an integer such that 1 ≤ p ≤ n− 1.
Assume that at any point x ∈Mn and for any orthonormal basis {e1, . . . , en}
of TxM the second fundamental form αf : TM × TM → NfM satisfies

Θp =

p∑
i=1

n∑
j=p+1

(
2‖αf (ei, ej)‖2 − 〈αf (ei, ei), αf (ej, ej)〉

)
≤ p(n− p)c. (#)

If the inequality (#) is strict at a point of Mn, then there are no stable
p-currents and the homology groups satisfy Hp(M

n;Z) = Hn−p(M
n;Z) = 0.

Recall that a vector in the normal bundle η ∈ NfM(x) at x ∈ Mn is
named a Dupin principal normal of f : Mn → Qn+m

c if the vector subspace

Eη(x) = {X ∈ TxM : αf (X, Y ) = 〈X, Y 〉η for all Y ∈ TxM}

is at least two dimensional. That dimension is called the multiplicity of η.

The proof of the following results is inspired by computations given by
us in [2] and by Xu and Gu in [10].

Proposition 3. Let f : Mn → Qn+m
c , n ≥ 4, be an isometric immersion

satisfying the inequality (∗) at x ∈ Mn. Then the following assertions at
x ∈Mn hold:

(i) The inequality (#) is satisfied for any integer 2 ≤ p ≤ n/2 and any
orthonormal basis of TxM . Moreover, if the inequality (∗) is strict then also
(#) is strict for any integer 2 ≤ p ≤ n/2.

(ii) Assume that equality holds in (#) for a certain integer 2 ≤ p ≤ n/2 and
a given orthonormal basis {ej}1≤j≤n of TxM . Then the Ricci tensor satisfies

RicM(X) = (n− 2)(c+H2) for any unit X ∈ TxM.

Moreover, we have:
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(a) If n ≥ 5 then either c = 0 and f is totally geodesic or we have that
p = n/2 and there are distinct Dupin principal normals η1 and η2 such
that Eη1 = span{e1, . . . , ep} and Eη2 = span{ep+1, . . . , en}.

(b) If n = 4 and p = 2 there are normal vectors ηj, j = 1, 2, such that

πVj ◦ Aξ|Vj = 〈ξ, ηj〉I for any ξ ∈ Nf (x) (1)

where V1 = span{e1, e2}, V2 = span{e3, ee} and πVj : TxM → Vj denotes
the projection.

Proof. We first recall that the Gauss equation of f : Mn → Qn+m
c implies

that the Ricci curvature for any unit vector X ∈ TxM satisfies

RicM(X) = (n− 1)c+
m∑
α=1

(trAα)〈AαX,X〉 −
m∑
α=1

‖AαX‖2, (2)

where the Aα, 1 ≤ α ≤ m, are the shape operators of f associated to an or-
thonormal basis {ξα}1≤α≤m of the normal space NfM(x) of the submanifold.

From now on, we agree that {ξα}1≤α≤m satisfies that the (normalized)
mean curvature vector is H(x) = H(x)ξ1 when H(x) 6= 0. For a given
orthonormal basis {ej}1≤j≤n of TxM , we denote for simplicity αij = αf (ei, ej),
1 ≤ i, j ≤ n. Then, we have

Θp = 2

p∑
i=1

n∑
j=p+1

‖αij‖2 − n
p∑
i=1

〈αii,H〉+

p∑
i,j=1

〈αii, αjj〉

= 2

p∑
i=1

n∑
j=p+1

∑
α

〈Aαei, ej〉2 − nH
p∑
i=1

〈A1ei, ei〉+
∑
α

( p∑
i=1

〈Aαei, ei〉
)2

≤ 2

p∑
i=1

n∑
j=p+1

∑
α

〈Aαei, ej〉2 − nH
p∑
i=1

〈A1ei, ei〉+ p
∑
α

p∑
i=1

〈Aαei, ei〉2, (3)

where the inequality part was obtained using the Cauchy-Schwarz inequality

( p∑
i=1

〈Aαei, ei〉
)2 ≤ p

p∑
i=1

〈Aαei, ei〉2. (4)
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Since p ≥ 2 by assumption, then

2

p∑
i=1

n∑
j=p+1

∑
α

〈Aαei, ej〉2 + p

p∑
i=1

∑
α

〈Aαei, ei〉2

≤ p

p∑
i=1

n∑
j=p+1

∑
α

〈Aαei, ej〉2 + p

p∑
i=1

∑
α

〈Aαei, ei〉2

≤ p

p∑
i=1

∑
α

‖Aαei‖2 (5)

and thus (3) implies that

Θp ≤ p

p∑
i=1

∑
α

‖Aαei‖2 − nH
p∑
i=1

〈A1ei, ei〉.

Setting ϕ = A1 −HI and using (2), we obtain

Θp ≤ p

p∑
i=1

((n− 1)c− RicM(ei)) + (p− 1)nH

p∑
i=1

〈A1ei, ei〉

= p

p∑
i=1

((n− 1)(c+H2)− RicM(ei))− p(n− p)H2

+ (p− 1)nH

p∑
i=1

〈ϕei, ei〉. (6)

Then, we have

Θp ≤ p2
(
(n− 1)(c+H2)− Ricmin

M (x)
)
− p(n− p)H2

+ (p− 1)nH

p∑
i=1

〈ϕei, ei〉. (7)

where Ricmin
M (x) = min {RicM(X) : X ∈ TxM, ‖X‖ = 1}.

We claim that
(n− 1)(c+H2) ≥ Ricmin

M (x) (8)

and that equality holds if f is umbilical at x ∈ Mn. Indeed, it follows from
the Gauss equation that the scalar curvature τ is given by

τ = n(n− 1)c− S + n2H2, (9)
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where S denotes the norm of the second fundamental form. Hence

S ≤ n(n− 1)c+ n2H2 − nRicmin
M (x). (10)

Therefore, we have

(n− 1)(c+H2)−Ricmin
M (x) ≥ 1

n
(S − nH2) =

1

n
‖φ‖2,

where φ = α−〈 , 〉H is the traceless second fundamental form, and the claim
now follows.

From (8) and having that p ≤ n/2, then

p2
(
(n−1)(c+H2)−Ricmin

M (x)
)
≤ p(n−p)

(
(n−1)(c+H2)−Ricmin

M (x)
)
. (11)

Therefore, it follows from (7) the estimate

Θp ≤ p(n−p)
(
(n−1)(c+H2)−Ricmin

M (x)−H2
)
+(p−1)nH

p∑
i=1

〈ϕei, ei〉. (12)

Next, we provide a second estimate of

Θp =
∑
α

(
2

p∑
i=1

n∑
j=p+1

〈Aαei, ej〉2 −
p∑
i=1

〈Aαei, ei〉
n∑

j=p+1

〈Aαej, ej〉
)

Decomposing

p∑
i=1

〈Aαei, ei〉
n∑

j=p+1

〈Aαej, ej〉

=
n− p
n

p∑
i=1

〈Aαei, ei〉
n∑

j=p+1

〈Aαej, ej〉+
p

n

p∑
i=1

〈Aαei, ei〉
n∑

j=p+1

〈Aαej, ej〉,

we have

Θp =
∑
α

(
2

p∑
i=1

n∑
j=p+1

〈Aαei, ej〉2 −
n− p
n

trAα

p∑
i=1

〈Aαei, ei〉

+
n− p
n

( p∑
i=1

〈Aαei, ei〉
)2 − p

n
trAα

n∑
j=p+1

〈Aαej, ej〉+
p

n

( n∑
j=p+1

〈Aαej, ej〉
)2)

.
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Using the Cauchy-Schwarz inequality, we obtain

Θp ≤
∑
α

(
2

p∑
i=1

n∑
j=p+1

〈Aαei, ej〉2 −
n− p
n

trAα

p∑
i=1

〈Aαei, ei〉

+
p(n− p)

n

p∑
i=1

〈Aαei, ei〉2 −
p

n
trAα

n∑
j=p+1

〈Aαej, ej〉

+
p(n− p)

n

n∑
j=p+1

〈Aαej, ej〉2
)

≤ p(n− p)
n

S − (n− p)H
p∑
i=1

〈A1ei, ei〉 − pH
n∑

j=p+1

〈A1ej, ej〉

=
p(n− p)

n
S − pnH2 − (n− 2p)H

p∑
i=1

〈A1ei, ei〉

=
p(n− p)

n
S − 2p(n− p)H2 − (n− 2p)H

p∑
i=1

〈ϕei, ei〉.

Then using (10) we obtain

Θp ≤ p(n−p)
(
(n−1)(c+H2)−Ricmin

M (x)−H2
)
−(n−2p)H

p∑
i=1

〈ϕei, ei〉. (13)

Finally, by computing (n − 2p)×(12)+n(p − 1)×(13) and using (∗) it
follows that

Θp ≤ p(n− p)
(

(n− 1)(c+H2)− Ricmin
M (x)−H2

)
≤ p(n− p)c,

and (#) has been proved. Clearly, if the inequality (∗) is strict then also (14)
becomes strict, and this completes the proof of part (i).

We now prove part (ii). Thus, we assume that equality holds in (#) for
a certain integer 2 ≤ p ≤ n/2 and a given orthonormal basis {ej}1≤j≤n of
TxM . Then, all the inequalities from (3) to (7) as well as the ones from (11)
to (14) become equalities. In particular, from (4) we obtain that

〈Aαei, ei〉 = ρα for all 1 ≤ i ≤ p, 1 ≤ α ≤ m. (14)
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From (5) it follows that

(p− 2)〈Aαei, ej〉 = 0 for all 1 ≤ i ≤ p, p+ 1 ≤ j ≤ n, 1 ≤ α ≤ m, (15)

and
〈Aαei, ei′〉 = 0 for all 1 ≤ i 6= i′ ≤ p, 1 ≤ α ≤ m. (16)

We obtain from (11) that

(p− n/2)
(
Ricmin

M (x)− (n− 1)(c+H2)
)

= 0. (17)

From (6) and (7) we have RicM(ei) = Ricmin
M (x) and then (14) gives

RicM(ei) = Ricmin
M (x) = (n− 2)(c+H2) for all 1 ≤ i ≤ p. (18)

At first suppose that p 6= n/2. Then (17) implies that equality holds in
the inequality (8), and we have seen that this gives that f is umbilical at x.
At umbilical points, it now follows from (18) that RicM(x) = (n−1)(c+H2),
that c = 0 and f is totally geodesic.

Hereafter, let 2p = n. Then equality also holds in (#) for the reordered
orthonormal basis {ep+1, . . . , en, e1, . . . , ep} of TxM . Thus, we also have

〈Aαej, ej〉 = µα for all p+ 1 ≤ j ≤ n, 1 ≤ α ≤ m, (19)

〈Aαej, ej′〉 = 0 for all p+ 1 ≤ j 6= j′ ≤ n, 1 ≤ α ≤ m, (20)

and

RicM(ej) = Ricmin
M (x) = (n− 2)(c+H2) for all p+ 1 ≤ j ≤ n. (21)

Hence, we obtain from (18) and (21) that the Ricci tensor satisfies

RicM(X) = (n− 2)(c+H2) for any unit X ∈ TxM. (22)

In particular, if n ≥ 6 then it follows from (14), (15), (16), (19) and (20)
that η1 =

∑
α ραξα and η2 =

∑
α µαξα are Dupin principal normals with

Eη1 = span{e1, . . . , ep} and Eη2 = span{ep+1, . . . , en}.

If η1 = η2, then f is umbilical at x and equality holds in (8). This combined
with (22) yields c = 0 and that f is totally geodesic at x. Otherwise η1
and η2 are distinct Dupin principal normals, and this concludes the proof of
part (a).

Finally, if n = 4 then for any ξ ∈ Nf (x) we have (1) where η1 =
∑

α ραξα
and η2 =

∑
α µαξα, and part (ii) has also been proved.
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2 The proof of Theorem 1

We first establish a topological result necessary for proving the theorem.

Lemma 4. Let f : Mn → Qn+m
c , n ≥ 4, c ≥ 0, be an isometric immersion of

a compact manifold satisfying

RicM ≥
n(n− 1)

n+ 2
(c+H2) (23)

with strict inequality at some point. Then π1(M
n) = 0 and Hn−1(M

n,Z) = 0.

Proof. From (9) and (23) we obtain that φ = α− 〈 , 〉H satisfies

‖φ‖2 ≤ 2n(n− 1)

n+ 2
(c+H2). (24)

Let {ei}1≤i≤n be an orthonormal tangent basis and let {ξα}1≤α≤m be an
orthonormal normal basis at x ∈Mn. Using (2) we have

n∑
j=2

(
2‖α1j‖2 − 〈α11, αjj〉

)
= 2

∑
α

n∑
j=2

〈Aαe1, ej〉2 −
∑
α

〈Aαe1, e1〉
n∑
j=2

〈Aαej, ej〉

=
∑
α

n∑
j=2

〈Aαe1, ej〉2 −
∑
α

trAα〈Aαe1, e1〉+
∑
α

‖Aαe1‖2

=
n∑
j=2

‖φ(e1, ej)‖2 + (n− 1)c− RicM(e1).

This inequality together with (23) and (24) give

n∑
j=2

(
2‖α1j‖2 − 〈α11, αjj〉

)
≤ 1

2
‖φ‖2 + (n− 1)c− RicM(e1)

≤(n− 1)c+
n(n− 1)

n+ 2
(c+H2)− RicM(e1) ≤ (n− 1)c.

Clearly, if (23) is a strict inequality at a point then also is the above. Then
by Theorem 2 there are no stable 1-currents on Mn and thus H1(M

n,Z) =
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Hn−1(M
n,Z) = 0. Since in each nontrivial free homotopy class there is a

length minimizing curve, we conclude that π1(M
n) = 0.

Proof of Theorem 1: According to part (i) of Proposition 3 the inequality
(#) is satisfied at any point of Mn for any 2 ≤ p ≤ n/2 and any orthonormal
tangent basis at that point. Since n(n− 1)/(n+ 2) < (n− 2), then for c > 0
we have that

RicM ≥ (n− 2)(c+H2) >
n(n− 1)

n+ 2
(c+H2). (25)

If c = 0, then compactness implies that there exists a point x ∈ Mn where
H(x) 6= 0, and (25) holds at that point. Now Lemma 4 yields that Mn is
simply connected and that Hn−1(M

n,Z) = 0.

We need to distinguish two cases:

Case I. Suppose first that

Hp(M
n;Z) = 0 = Hn−p(M

n;Z) for all 2 ≤ p ≤ n/2, (26)

which by Theorem 2 is necessarily the case if (∗) is strict at some point
of Mn. Hence Mn is a simply connected homology sphere and it follows
from the Hurewicz isomorphism theorem that Mn is a homotopy sphere.
Then the resolution of the generalized Poincaré conjecture gives that Mn is
homeomorphic to Sn.

Case II. Suppose now that (26) does not hold. Consider the nonempty set

P = {2 ≤ p ≤ n/2 : Hp(M
n;Z) 6= 0 or Hn−p(M

n;Z) 6= 0}

and set k = maxP . Hence Hk(M
n;Z) 6= 0 or Hn−k(M

n;Z) 6= 0. Then, by
Theorem 2, there exists at any point x ∈ Mn an orthonormal tangent basis
such that equality holds in (#) for p = k. Moreover, at any point x ∈ Mn

we have from part (ii) of Proposition 3 that

RicM(X) = (n− 2)(c+H2) for any unit X ∈ TxM.

Then the manifold Mn is Einstein and H is constant.

If H = 0 then c > 0. Since RicM = (n− 2)c, it follows from the Theorem
of Ejiri in [3] that the submanifold is as in parts (i) or (ii) of the statement.
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We assume hereafter that H > 0. We have to distinguish two cases
according to the dimension of the submanifold.

Case n ≥ 5. Part (ii) of Proposition 3 yields k = n/2 and that there
are smooth Dupin principal normal vector fields η1 and η2 of multiplicity
k and corresponding smooth distributions E1 and E2. Let {X`}1≤`≤n be
a smooth local orthonormal frame satisfying that Eη1 = span {X1, . . . , Xk}
and Eη2 = span {Xk+1, . . . , Xn}. Then αf (Xi, Xi) = η1 if 1 ≤ i ≤ k and
αf (Xj, Xj) = η2 if k + 1 ≤ j ≤ n.

If follows from (2) that

RicM(X) = (n− 1)c‖X‖2 + n〈H, αf (X,X)〉 − III(X) for any X ∈ X(M),

where III(X) =
∑n

`=1 ‖αf (X,X`)‖2 is the third fundamental form of f . Since
we have that H = (η1 + η2)/2, then

4H2 = ‖η1‖2 + ‖η2‖2 + 2〈η1, η2〉. (27)

Moreover, we have for 1 ≤ i ≤ k that

III(Xi) =
n∑
`=1

‖α(X`, Xi)‖2 = ‖η1‖2

and

(n− 2)(c+H2) = RicM(Xi) = (n− 1)c+ n〈H, α(Xi, Xi)〉 − III(Xi)

= (n− 1)c+ k〈η1 + η2, η1〉 − ‖η1‖2.

Thus
(n− 2)(c+H2) = (n− 1)c+ (k − 1)‖η1‖2 + k〈η1, η2〉. (28)

Arguing similarly for k + 1 ≤ j ≤ n, we obtain

(n− 2)(c+H2) = (n− 1)c+ (k − 1)‖η2‖2 + k〈η1, η2〉. (29)

It follows from (28) and (29) that ‖η1‖ = ‖η2‖, and hence (27) becomes

2H2 = ‖η1‖2 + 〈η1, η2〉. (30)

Combining (28) with (30) gives

c+ 〈η1, η2〉 = 0. (31)
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Then, we conclude from (30) that

‖η1‖2 = ‖η2‖2 = 2H2 + c. (32)

The Codazzi equation for f is easily seen to yield

〈∇XY, Z〉(ηi − ηj) = 〈X, Y 〉∇⊥Zηi if i 6= j (33)

for all X, Y ∈ Ei, Z ∈ Ej. Using (31) and (32) then (33) gives

2〈∇XY, Z〉H2 = 〈X, Y 〉〈∇⊥Zηi, ηi〉 = 0 for all X, Y ∈ Ei and Z ∈ Ej, i 6= j,

that is, the distributions E1 and E2 are totally geodesic. Being simply con-
nected, it is well-known that Mn is a Riemannian product Mk

1 ×Mk
2 (cf. The-

orem 8.2 in [1]) such that TMk
j = Ej, j = 1, 2. Since the second fundamental

form of f is adapted to the distributions E1 and E2, then Theorem 8.4 and
Corollary 8.6 in [1] imply that the submanifold is an extrinsic product of iso-
metric immersions each of which is totally umbilical. Hence, if c = 0 then the
submanifold is a torus Sn/2(r/

√
2)× Sn/2(r/

√
2) in a sphere Sn+1(r) ⊂ Rn+2.

If c > 0, then the submanifold is a torus Sn/2(r/
√

2)×Sn/2(r/
√

2) in a sphere
Sn+1(r) ⊂ Sn+2(1/

√
c).

Case n = 4. We have k = 2 and H2(M
4;Z) 6= 0. Since RicM = 2(c + H2)

then τ = 8(c + H2) and (9) gives S = 4c + 8H2. Thus equality at any
point of the submanifold holds in the pinching condition (1) in [6]. Since
‖φ‖2 = S − 4H2, it then follows from Proposition 16 in [6] that the Bochner
operator B[2] : Ω2(M4)→ Ω2(M4), a certain symmetric endomorphism of the
bundle of 2-forms Ω2(M4), satisfies for any ω ∈ Ω2(M4) the inequality

〈B[2]ω, ω〉 ≥ (4c+ 8H2 − S)‖ω‖2 = 0. (34)

We claim that there exists a nonzero 2-form for which equality holds in
(34) at any point. By the Bochner-Weitzenböck formula the Laplacian of
any 2-form ω ∈ Ω2(M4) is given by

∆ω = ∇∗∇ω + B[2]ω,

where ∇∗∇ is the rough Laplacian. From this we obtain

〈∆ω, ω〉 = ‖∇ω‖2 + 〈B[2]ω, ω〉+
1

2
∆‖ω‖2. (35)
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If ω is an harmonic 2-form, it follows from the maximum principle, (34)
and (35) and it is parallel. Then, for any harmonic 2-form we have that (34)
holds as an equality at any point. On the other hand, the universal coefficient
theorem of cohomology yields that the torsion subgroups of H1(M

4;Z) and
H2(M4;Z) are isomorphic (cf. [7, p. 244 Corollary 4]). Since M4 is simply
connected, we have that H1(M

n;Z) = 0 and thus H2(M4;Z) is torsion free.
Then the Poincaré duality yields that also H2(M

4;Z) is torsion free. Hence,
0 6= H2(M

4;Z) = Zβ2(M). Thus M4 supports a nonzero parallel harmonic
2-form, and the claim has been proved.

From the claim and Proposition 16 in [6] it follows that the shape operator
Aξ(x) at any x ∈M4 and for any 0 6= ξ ∈ NfM(x) has at most two distinct
eigenvalues with multiplicity 2. We choose an orthonormal normal basis
{ξα}1≤α≤m at x ∈ M4 such that the mean curvature vector is H(x) = Hξ1.
By part (ii) of Proposition 3 there exists an orthonormal basis {ei}1≤i≤4 of
TxM such that the corresponding shape operators Aα, 1 ≤ α ≤ m, are as

Aαe1 = ραe1 + καe3 + λαe4

Aαe2 = ραe2 + µαe3 + ναe4

Aαe3 = καe1 + µαe2 + σαe3

Aαe4 = λαe1 + ναe2 + σαe4,

(36)

where
ρ1 + σ1 = 2H and ρα + σα = 0 for any 2 ≤ α ≤ m. (37)

Now since each shape operator has at most two distinct eigenvalues with
multiplicity 2, it follows easily using (36) that

να = ±κα and µα = ∓λα for any 2 ≤ α ≤ m. (38)

Since M4 is Einstein, then RicM(ei, ej) = 0, i = 1, 2, j = 3, 4. Using that

RicM(X, Y ) = (n− 1)c〈X, Y 〉+
m∑
α=1

(trAα)〈AαX, Y 〉 −
m∑
α=1

〈A2
αX, Y 〉,

together with (36) and (37) the above yields that {ei}1≤i≤4 diagonalizes A1.
Moreover, from RicM(ej) = 2(c+H2), 1 ≤ j ≤ 4, (2) and (36) we obtain that

2H2 − c =


4Hρ1 −

∑
α≥1 ρ

2
α − ‖α13‖2 − ‖α14‖2

4Hρ1 −
∑

α≥1 ρ
2
α − ‖α23‖2 − ‖α24‖2

4Hσ1 −
∑

α≥1 ρ
2
α − ‖α13‖2 − ‖α23‖2

4Hσ1 −
∑

α≥1 ρ
2
α − ‖α14‖2 − ‖α24‖2.
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This implies that ‖α13‖ = ‖α24‖, ‖α23‖ = ‖α14‖ and then that ρ1 = σ1 = H,
namely, the submanifold is pseudo-umbilical.

Being the submanifold pseudo-umbilical, we have from (36) and (38) that

α11 = α22, α33 = α44, α12 = α34 = 0, α13 = ±α24, α23 = ∓α14. (39)

Thus the vector subspace N1(x) ⊂ NfM(x) spanned by the second funda-
mental form at x ∈Mn satisfies dimN1(x) ≤ 4 at any x ∈Mn.

We claim that the mean curvature vector field is parallel in the normal
bundle. Let U be an open subset of Mn where the subspaces N1(x) have
constant dimension r, 1 ≤ r ≤ 4, and hence N1|U is a smooth vector subbun-
dle of the normal bundle. Then let {ei}1≤i≤4 be a local smooth orthonormal
frame with respect to which the second fundamental form is as in (39). From
the Codazzi equation

(∇⊥eiα)(ej, ek) = (∇⊥ejα)(ei, ek),

we obtain that ∇⊥eiα(ej, ek) ∈ N1|U for any 1 ≤ i, j, k ≤ 4. Hence N1|U is a
parallel subbundle of the normal bundle and, consequently, f |U reduces its
codimension, that is, it is a composition f |U = i ◦ g where i : Q4+r

c → Q4+m
c

is a totally geodesic inclusion and g is an isometric immersion into Q4+r
c .

Since the submanifold is pseudo-umbilical, from the Codazzi equation

(∇XA1)Y − (∇YA1)X = A∇⊥
Xξ1

Y − A∇⊥
Y ξ1
X, for all X, Y ∈ X(M),

we obtain that ∇⊥Xξ1 ∈ (N1|U)⊥ for any X ∈ X(M). Hence the mean curva-
ture vector field is parallel in the normal bundle of f along any open subset
where the dimension of the first normal space is constant. By continuity
this is the case globally. Thus, it is an elementary fact that the submanifold
decomposes as f = j ◦ g, where g : Mn → Q4+p

c̃ is a minimal submanifold
and j : Q4+p

c̃ → Q4+m
c is totally umbilical with c̃ = c + H2. It now follows

from the result of Ejiri [3] that the submanifold is as in parts (i) or (ii) of
the statement of the theorem.
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