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ABSTRACT. We give a first example of a pair of 2-knots that share the
same knot group but have different knot quandles. In fact, we give
infinitely many triples of twist spins that share the same knot group but
have mutually different knot quandles. To this end, we prove that the
type of the knot quandle of an n-twist spin of a non-trivial knot is equal
to n. By using the latter result, we also complete the classification of
the twist spins with finite knot quandles by distinguishing the 2-knots
in Inoue’s list.

1. INTRODUCTION

A 1-knot is a circle embedded in the 3-sphere S3, a 2-knot is a 2-sphere
embedded in the 4-sphere S*, and they are collectively referred to as knots
in this paper, where we work in the smooth category. There are two related
topological invariants of an oriented knot /C defined by using information of
an exterior of . One is the knot group G(K), the fundamental group of
the exterior, and the other is the knot quandle Q(K) introduced in [17,20].
While the underlying set of G(K) is the set of homotopy classes of loops
in the exterior, that of Q(K) is the set of homotopy classes of paths in the
exterior. In fact, G(K) is constructed functorially from Q(K), and hence the
former is determined from the latter; see the second paragraph of Section 2.
In this paper, we investigate difference between these two invariants.

Joyce [17] and Matveev [20] independently proved that the knot quandle
of an oriented 1-knot is determined from the peripheral system [7] of the 1-
knot, and vice versa. On the other hand, it is a classical result due to Fox [7]
that the square knot and the granny knot share the same knot group but
have different peripheral systems. Thus these two results imply that there
exists a pair of 1-knots that share the same knot group but have different
knot quandles; see also [33].

The purpose of this paper is to give a first example of a pair of such 2-
knots by using an algebraic property, called the type, of the knot quandle. By
applying Zeeman’s twist-spinning construction [34] to torus knots, Gordon
[9, 10] gave infinitely many triples of oriented 2-knots that share the same
knot group but have mutually homotopy inequivalent complements. Hence
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it is natural to expect that Gordon’s triples would be good candidates. In
fact, we compute in Theorem 3.3 the type of the knot quandle for a twist
spin, and show in the proof of Theorem 3.1 that each of Gordon’s triples
have mutually different knot quandles.

This paper is organized as follows. In Section 2, we review the basics of
quandles including the type of a quandle, the knot quandle of an oriented
knot and a generalized Alexander quandle. We compute the type of the
knot quandle for a twist spin (Theorem 3.3) and prove our main result
(Theorem 3.1) in Section 3. As an application of Theorem 3.3, we give
a classification of all twist spins with finite knot quandles in Section 4.
Appendix A is devoted to proving Proposition 3.2, which is a key proposition
for the proof of Theorem 3.3. Finally, in Appendix B, we compute the types
of the knot quandles for a certain class of 2-knots called branched twist spins
including all twist spins.

2. PRELIMINARIES

A quandle X [17,20] is a non-empty set with a binary operation * that
satisfies the following conditions:

e For any z € X, we have x x z = x.
e For any y € X, the map S, : X — Xz — x *y is bijective.
e For any z,y,z € X, we have (zxy) *x 2z = (x * 2) * (y * 2).

For any z,y € X and n € Z, we denote Sy (x) by z *" y. The type of the
quandle X is defined by min{n € Z-o | x*"y = x for any x,y € X}, where
min () = co. We denote the type of X by type(X). The associated group of
the quandle X is the group generated by the elements of X subject to the
relations  * y = y~'zy for all z,5 € X. We denote the associated group
of X by As(X). The associated group As(X) acts on X from the right by
x-y:=xx*xy for any z,y € X. A quandle X is connected if the action
of As(X) on X is transitive. A map f : X — Y between quandles is a
(quandle) isomorphism if f(x *xy) = f(x) * f(y) for any z,y € X and f is a
bijection. When there is an isomorphism f : X — Y, we say that X and YV
are (quandle) isomorphic.

The ambient space of a knot is always assumed to be oriented, and a knot
with a fixed orientation (of a circle or a 2-sphere) is called an oriented knot.
Two oriented knots are said to be equivalent if there exists an orientation-
preserving self-diffeomorphism of the ambient space carrying one to the other
with respect to the orientations. Let K be an oriented n-knot for n = 1, 2.
Let N(K) be a tubular neighborhood of K and E(K) = S"2\intN(K) an
exterior of K. We fix a base point p € E(K). Let Q(/C,p) be the set of
homotopy classes of all paths in E(K) from a point in 0E(K) to p. The set
Q(K, p) is a quandle with an operation defined by [a]*[f] := [aﬂ*l-mﬁ(o) -],
where mg is a meridian loop starting from ((0) and going along in the
positive direction. We call Q(K, p) the knot quandle of K. The isomorphism
class of the knot quandle does not depend on the base point p. Thus,
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we denote the knot quandle simply by Q(K). It is known that the knot
quandle is an invariant for oriented knots, that is, if two oriented knots
K and K’ are equivalent, then their knot quandles Q(K) and Q(K’') are
isomorphic; see [17,20] and [6] for oriented 1-knots and 2-knots. We note
that the associated group As(Q(K)) of Q(K) is group isomorphic to the
knot group G(K) := m(E(K)) and that Q(K) is connected; see for example
[25, Theorem 2.31] and [25, Lemma 2.27].

Let G be a group and f : G — G a group automorphism. We define the
operation * on G by z *y := f(zy~!)y. Then, GAlex(G, f) = (G, *) is a
quandle, which is called the generalized Alexander quandle. Although it is
difficult to compute the type of a quandle in general, the type of a generalized
Alexander quandle can be computed as follows. This proposition holds the
key to the proofs of the main results, Theorem 3.1 and 4.1.

Proposition 2.1. We have type(GAlex(G, f)) = order(f).

Proof. We first prove that xx'y = fi(xy~ 1)y for any z,y € G and i € Z> by
induction on 7. The base case ¢ = 0 is trivial, since x y=x=faxy )y
By the induction hypothesis z ** y = f(zy~!)y, it holds that

ey = (' y) vy = (flay Dy *v.
Then, by the definition of GAlex(G, f), we have

(f'ley Dy vy = F((F ey Dy Dy = F( ey )y = [Ty Dy,
and hence we have z 'ty = fitl(zy=1)y.

Let j be a positive integer. For any = € G, x #/ e is equal to f7(x) by the
identity proved in the above, where e is the identity element of G. Thus, if
j < order(f), there exists an element y such that y*’e is not equal to y. This
implies that type(GAlex(G, f)) > order(f). In particular, if order(f) = oo,
then we have GAlex(G, f) = oo. Hence, we assume that the order of f is
finite.

For any z,y € G, we have

T *order(f) y = forder(f)(xyfl)y — xyfly =7,

which implies that type(GAlex(G, f)) < order(f). By the above discussion,
we see that order(f) = type(GAlex(G, f)). O

3. KNOT QUANDLES OF TWIST SPINS

In this section, we discuss the knot quandle of twist spins. The purpose
of this section is to show the following theorem:

Theorem 3.1. There exist infinitely many triples {F1, Fa, F3} of oriented
2-knots such that
(1) the groups G(F1), G(F2) and G(F3) are mutually isomorphic, but
(2) no two of the quandles Q(F1), Q(F2) and Q(Fs) are isomorphic.

Moreover, the isomorphism class of Q(F;) is independent of the orientation
of F; for each i.
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For an oriented knot K, we denote by —IC (or K!, respectively) the oriented
knot obtained from an oriented knot X by inverting the orientation (or
taking the mirror image) of K. The oriented knot K is said to be invertible
(resp. (+)-amphicheiral) if K is equivalent to —K (resp. K!). Since it is
known in [17,20] that Q(—K!) is isomorphic to Q(K), if K is invertible or
(4)-amphicheiral then the isomorphism class of Q(K) is independent of the
orientation of K.

Let k be an oriented 1-knot in S3. For an integer n, Zeeman [34] defined
the oriented 2-knot 7"(k), which is called the n-twist spun k or the n-twist
spin of k. We note that the orientation of the 1-knot k naturally induces
that of the 2-knot 7"(k); see also [19] and [30, Section 5| for orientation
conventions. It was shown in [34] that the n-twist spun £ is a fibered 2-knot
whose fiber is the once punctured M]' for n > 0, where M’ is the n-fold
cyclic branched covering space of S? branched along k. In particular, the
1-twist spun k is trivial for any oriented 1-knot k, and the n-twist spin of the
trivial 1-knot is also trivial for any n > 0. Litherland [19] showed that, for
any oriented 1-knot k and any integer n, the (—n)-twist spun knot 7= (k) is
equivalent to 7"(—k!). Hence, we consider the case where n is greater than
one and k is non-trivial, because we are interested in fibered 2-knots.

Let ¢ be the group automorphism of 71 (A4}') induced by the monodromy
of the fibered 2-knot complement S$*\7"(k). We note that the monodromy
of §*\7"(k) coincides with the canonical generator of the covering transfor-
mation group of M;'. Then we have the following proposition, whose proof
will be given in Appendix A:

Proposition 3.2. Let ¢ be the group automorphism of mi(M]') induced by
the monodromy of S*\7"(k). Then the order of ¢ is equal to n.

Inoue [15, Theorem 3.1] showed that the knot quandle Q(7"(k)) of 7™ (k)
is isomorphic to GAlex(m(M}}), ¢). Thus, we have:

Theorem 3.3. The type of Q(7"(k)) is equal to n.

Proof. It follows from Proposition 2.1 and Proposition 3.2 that we have
type(Q(7™(k))) = type (GAlex(mi1(M}), p)) = order(yp) = n. O

Corollary 3.4. Let k, k' be non-trivial oriented 1-knots and n,n’ integers
greater than 1. If Q(7"(k)) is isomorphic to Q(r™ (k')), then we have n = n'.

Proof. Since the type of quandles is an invariant of quandles, it holds that

’

n = type(Q(7"(k))) = type(Q(r" (K'))) = n’
by Theorem 3.3 and the assumption. O
Proof of Theorem 3.1. Let p, g and r be coprime integers. Gordon [9] showed
that G(7"(tp,q)) is isomorphic to mi(M{ ) x Z, where t,4 is the (p,q)-
torus knot. It is known in [21] that M} My ~and My = are homeomor-
phic, which implies that G(7P(t,,)), G(7%(trp)) and G(7"(tp4)) are mutu-
ally group isomorphic. Thus, putting Fy := 7P(t,,), Fp» = 79(t,p) and
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F3 := 1"(tp4), we see that the 2-knots Fi, F; and Fj satisfy the condition
(1). By Theorem 3.3, we have type(Q(7”(tqr))) = p, type(Q(7(trp))) = ¢
and type(Q(7" (tp,q))) = r. This implies that the 2-knots F, F, and F3 also
satisfy the condition (2). Since any torus knot in S? is invertible, any twist
spun torus knot in S* is (+)-amphicheiral by [19]; see also Subsection 4.2.
Since the isomorphism class of the knot quandle of a (+)-amphicheiral 2-knot
is independent of its orientation, the last assertion holds. Varying a triple
of comprime integers, we obtain infinitely many such triples of 2-knots. [

Remark 3.5. Although the square knot k and the granny knot &’ share the
same knot group but have different knot quandles, it is known that 7°(k) and
79(k') are equivalent [11,28], and hence they share the same knot quandle.
Moreover it follows that 7"(k) and 7" (k) share the same knot quandle for
any integer n, even if we do not know whether they are equivalent or not.'

4. CLASSIFICATION OF TWIST SPINS WHOSE KNOT QUANDLES ARE FINITE

In this section, we complete the classification of the twist spins with the
finite knot quandles by distinguishing the oriented 2-knots in Inoue’s list [15]
of such 2-knots. Let k£ be an oriented 1-knot and n an integer greater than 1.
Since the knot quandle Q(7"(k)) is isomorphic to the generalized Alexander
quandle GAlex(71(M]!), ¢), the knot quandle Q(7"(k)) is finite if and only
if the fundamental group m1(M]!) is finite. Then Inoue [15, Theorem 4.1]
proved that the knot quandle Q(7"(k)) is finite if and only if the pair (n, k)
belongs to one of the following six sets; see also the list? after the proof of
[15, Theorem 4.1].

e S1 ={(2,k) | k: a non-trivial 2-bridge knot}.

e Sy ={(2,k) | k: a Montesinos knot M (b; (2, 1), (3, 52),(3,53))}.
e S3={(2,k) | k: a Montesinos knot M (b; (2, 1), (3, 52), (5, 53))}.
o Sy ={(3,k) | k: the torus knot ¢33 or the torus knot t35}.

o S5 ={(4,k) | k: the torus knot ¢ 3}.

e S¢ = {(5,k) | k: the torus knot t33}.

4.1. Classification up to weak equivalence. We say that two oriented
knots K and K’ are weakly equivalent if at least one of KC, —K, K! and —K!
is equivalent to K'. We classify twist spins whose knot quandles are finite
up to weak equivalence for oriented 2-knots.

Theorem 4.1. Let k, k' be non-trivial oriented 1-knots and n, n’ integers
greater than 1. Suppose that Q(7"(k)) and Q(7" (k")) are finite. Then 7" (k)
s weakly equivalent to T”,(k:’) if and only if n = n' and k is weakly equivalent
to k.

1We can check that 7™ (k) and 7" (k') are not equivalent for n = 2,3 by using quandle
cocycle invariants [3].

2His list contains a pair of an integer n and a 1-link £ with two or more components
such that m (M]) is finite. Here we exclude such pairs.
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Proof. Tt is obvious that 7" (k) and 7" (k') are weakly equivalent if n = n/
and k and k' are weakly equivalent. We discuss the converse. Suppose that
(k) and 7" (K'), whose knot quandles are finite, are weakly equivalent.
Then Q(7"(k)) and Q(7" (k')) are isomorphic, since 7" (k) and 7" (k) are
(+)-amphicheiral by Proposition 4.3, which is proved in Subsection 4.2.

Case 1. (n,k) € S; U S U Ss.

By Corollary 3.4, we have n' = n = 2. Since Q(7" (k') is finite, the pair
(n', k") is also an element of S; U Se U S3. By [16], we see that k and k" are
weakly equivalent.

Case 2. (n,k) € Sy.

By Corollary 3.4, we have n' = n = 3. Since Q(7" (k') is finite, the pair
(n/, k") is also an element of Sy, and hence k and k' are weakly equivalent
to to 3 or tg 5. It is known that

QT (t23))] = Imi (Mg, ,)| =8 and |Q(7°(t25))| = |m (M5, )| = 120,

which implies that 73(t2 3) and 73(t25) are not weakly equivalent. Thus, we
see that k and k' are weakly equivalent.

Case 3. (n, k) € S5 U Se.

By Corollary 3.4, we have n = n’ € {4,5}. Since Q(r™ (k') is finite, the
pair (n/, k") is also an element of S5 U Sg, and hence k and k' are weakly
equivalent to t23. O

Remark 4.2. We note that most parts of Theorem 4.1 follows from

(i) the classical work due to Gordon [10, Section 3] that classifies 72(¢35),
73(t572> and 7’5 (t273),
(ii) the classical work due to Plotnick [27, Theorem 6.3] that classifies
all 2-twist spun 2-bridge knots, and
(iii) the recent works by Kataoka [18], Jang—Kataoka—Miyakoshi [16] and
Miyakoshi [22].

In fact, Kataoka [18] classified the twist spins corresponding to the elements
in S1US9US3, which consists of all 2-twist spun spherical Montesinos knots,
by computing the orders of the knot quandles, and using dihedral group
representations of the knot groups (and the classification by Plotnick [27]
mentioned above). Then Jang—Kataoka—Miyakoshi [16] simplified its proof
by using 3-colorings rather than dihedral group representations. With these
in mind, Miyakoshi [22] almost proved our Theorem 4.1 by further com-
puting the orders of the knot quandles for the twist spins corresponding to
the elements in S4 U .S5U S, and using 3-colorings (and the classification by
Gordon [9] mentioned above). The only remaining part was whether 72(¢3 4)
is equivalent to 74(t2,3) or not, where the torus knot ¢3 4 is nothing but the
Montesinos knot M (0; (2, —1),(3,1),(3,1)). Note that, for both 2-knots, the
order of the knot quandle is 24 and the number of 3-colorings is 9.
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4.2. Classification up to equivalence. We classify twist spins whose knot
quandles are finite up to equivalence for oriented 2-knots. Litherland [19]
showed that, for an oriented 1-knot k and an integer n, 7"(—k) is equivalent
to (7"(k))! and 7"(k!) is equivalent to —(7"(k)). Hence, if the oriented 1-
knot k is invertible (resp. (+)-amphicheiral), then the oriented 2-knot 7" (k)
is (4)-amphicheiral (resp. invertible). Although it is not known whether
or not the converse holds in general, it holds for twist spins whose knot
quandles are finite. More precisely, we can show the following:

Proposition 4.3. Suppose that Q(7"™(k)) is finite for a non-trivial oriented
1-knot k and an integer n greater than 1.

(1) k is invertible and (k) is (+)-amphicheiral.

(2) k is (+)-amphicheiral if and only if T (k) is invertible.

Proof. We prove the assertion (1). Since Q(7"(k)) is finite, it follows from
Subsection 4.1 that the 1-knot k is a 2-bridge knot or a Montesinos knot of
type (b;(2,51), (3, P2), (a3, 53)), where ag = 3 or 5, which implies that the
oriented 1-knot k is invertible; see [2, Proposition 12.5 and Theorem 12.42].
Hence, by [19], the oriented 2-knot 7" (k) is (+)-amphicheiral.

We prove the assertion (2). Since Q(7"(k)) is finite, the pair (n,k) is an
element of S} U---USg. Gordon [13, Theorem 1(1)] showed that, when the
pair (n, k) is an element of Sp, the oriented 1-knot k is (+)-amphicheiral if
and only if the oriented 2-knot 7" (k) is invertible. Now suppose that (n, k)
belongs to S5 U S5 U Sg. Then the oriented 1-knot k is a torus knot and so
the oriented 2-knot 7" (k) is not invertible by Gordon [13, Theorem 1(2)].
Since torus knots are not (4)-amphicheiral, this implies the assertion (2) for
(n,k) € S4US5U Sg.

Hence, it is sufficient to consider the case where the pair (n,k) is an
element in So U S3. In this case, we have that n = 2 and the 1-knot k
is a Montesinos knot of type (b; (2, 1), (3, 52), (a3, 83)), where ag = 3 or 5.
Since the oriented 1-knot & is not (+)-amphicheiral by [2, Proposition 12.41],
all need is to prove that the oriented 2-knot 72(k) is not invertible. To this
end, note that the fiber M7 of the fibered 2-knot 72(k) has a finite non-
abelian fundamental group. Thus the fiber M ,3 does not admit an orientation
reversing self homotopy equivalence; see the proof of [24, Theorem 8.2].
Hence, by Gordon’s result [13, Proposition 3], the oriented 2-knot 72(k) is
not invertible. O

Combining Theorem 4.1 with Proposition 4.3, we have the following:

Theorem 4.4. Let k, k' be non-trivial oriented 1-knots and n, n’ integers
greater than 1. Suppose that Q(7"(k)) and Q(t" (k")) are finite. Then 7" (k)
is equivalent to 7" (k') if and only if n =n' and k is equivalent to k'

APPENDIX A. PROOF OF PROPOSITION 3.2

In this appendix, we will show Proposition 3.2. For a non-trivial oriented
I-knot k in S® and an integer n greater than 1, let M. i+ be the n-fold cyclic
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branched covering space of S? branched along &, and ¢ the group automor-
phism of 71 (M) induced by the monodromy of the complement S*\7" (k)
of the fibered 2-knot 7" (k). Then, by [4, Proposition A.11.] and [27, Lemma
2.3], we have the following;:

Lemma A.1. If the universal covering space of M;' is homeomorphic to
R3, then the order of ¢ is equals to n.

Using the lemma above, we give a proof of Proposition 3.2, in which we
call a 1-knot in S3 a knot for simplicity.

Proof of Proposition 3.2. If order(y) = 1, the quandle GAlex(m(M}}), ¢) is
trivial, that is,  xy = x for any z,y € m(M}}). Since GAlex(m(M}),¢) is
isomorphic to the knot quandle Q(7"(k)), the quandle GAlex(mi (M), ¢) is
connected. Since the cardinality of the connected trivial quandle is 1, the
group 71 (M}') must be trivial. Then, by the Smith conjecture [23], the knot
k must be the unknot. Hence, we have order(p) # 1.

Since ¢ is induced by the canonical generator of the covering transforma-
tion group of M}*, we see that " is the identity map, and hence n is divisible
by order(y). Then, if n is a prime number, it follows from order(y) # 1 that
order(¢) = n. Hence, we assume that n is a composite number.

If k£ is the composite knot of k; and ko, then the fundamental group
w1 (M}?) is the free product of 71 (M) and m(My,). For i = 1,2, let ¢; be
the group automorphism induced by the canonical generator of the covering
transformation group of M}', and 7; the injective group homomorphism from
m1(My) to m (Mj). It holds that the restriction ¢|, (asn ) coincides with the
group homomorphism 7; o ¢; : w1 (My) — m1(My') for i€ {1,2}. Thus, if
order(¢;) = order(py) = n, we see that order(p) = n. Hence it is sufficient
to consider the case where k is a prime knot, that is, k is a torus knot, a
hyperbolic knot or a satellite knot. We note that, by an argument similar to
the proof of [29, Theorem 2], the branched covering space M} of the prime
knot k is irreducible. This fact will be used in Case 1 and Case 3 below.

Case 1. The knot k is a torus knot.

Since S3\k is a Seifert fibered space, M7} is also a Seifert fibered space.
Thus, the universal covering space of M;’ is homeomorphic to either S 382 x
R or R? (see [31, Lemma 3.1]).

e Suppose that the universal covering space of M} is S 2 xR. Then mo(M 2)
is non-trivial. By the sphere theorem [26], M}' is not irreducible. This
contradicts the fact that M is irreducible as mentioned above.

e Suppose that universal covering space of M;' is S 3. Since n is a composite
number, we see that k = to3 and n = 4. Then we have order(yp) | 4.
Moreover, it follows from order(y¢) # 1 that order(¢) = 2 or 4. It is
known that Q(7%(t2,3)) has the following presentation (see [30]):

(a,b] (bxa)xb=a,axb=a).
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If order(¢) = 2, then type(Q(7(t2,3))) = 2 by Proposition 2.1. Hence,
the following is also a presentation of Q(7%(t2,3)):

(a,b]| (bxa)xb=ua,ax*b=a,a**b=a).
Using Tietze’s moves, we see that Q(7%(t2,3)) has the following presenta-
tion:
(a,b] (bxa)*b=a,a+>b=a).
In fact, it follows from the relator a *?> b = a that
ax*b=(a¥*b)x*b=a+b=a.

This implies that Q(74(t2,3)) is isomorphic to Q(72(t23)). On the other
hand, by Inoue’s result, we have

QT4 (t2,3))] = [m1(My, )| = 24 and |Q(r%(t2,3))| = |m1 (M, )| = 3.

This is a contradiction. Hence we have order(y) = 4.
e Suppose that the universal covering space of M] is R3. By Lemma A.1,
we have order(p) = n.

Case 2. The knot k is a hyperbolic knot.

Since n is a composite number, n is greater than 3. By [5, Corollary 1.26],
which is a consequence of the orbifold theorem (cf. [1]), M} is a hyperbolic
manifold, and therefore the universal covering space of M;' is homeomorphic
to R3. By Lemma A.1, we have order(y) = n.

Case 3. The knot £ is a satellite knot.

Since the complement S3 \ k of k is irreducible by sphere theorem, the
assumption implies that the knot k is sufficiently large in the sense of [12,
Section 2]. Hence, we see that M’ is sufficiently large by [12, Theorem 1],
where we use the obvious fact that S does not contain a non-separating 2-
sphere. Recall here that M;® is also irreducible as metioned above. Hence, by
Waldhausen'’s result [32, Remark in Section 8], the universal covering space
of M} is homeomorphic to R®. By Lemma A.1, we have order(¢) =n. O

APPENDIX B. BRANCHED TWIST SPIN

In this appendix, we compute the types of the knot quandles for a certain
class of oriented 2-knots called branched twist spins [14, Subsection 16.3]
including all twist spins. We also give an alternative proof of [8, Theorem
1.1] quoted below as Theorem B.2, which followed from [8, Theorem 4.1] on
knot group representations for branched twist spins.

Let 7™*(k) be the branched twist spin obtained from an oriented 1-knot
k and a pair of coprime positive integers n and s with n > 1. Since the
branched twist spin 7"°(k) is the branch set of the s-fold cyclic branched
covering space of S* branched along the twist spin 77(k), it is a fibered
2-knot whose fiber is the once punctured n-fold cyclic branched covering
space of S branched along k and whose monodromy is the s-times com-
posite of the canonical generator of the covering transformation group of
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M. We note that 7%!(k) is nothing but 7" (k). By [15, Theorem 3.1], the
knot quandle Q(7™*(k)) is isomorphic to the generalized Alexander quan-
dle GAlex(m(M}}),¢®), where ¢ is the group automorphism of 71 (M}}) as
before. Then, for a non-trivial oriented 1-knot k, we have the following;:

Theorem B.1. The type of Q(7"™°(k)) is equal to n.

Proof. Tt follows from Proposition 3.2 and the coprimeness of n and s that
order(¢®) = order(¢) = n. Hence, by Proposition 2.1, the type of Q(7™*(k))
is equal to n. [l

This theorem immediately implies the following, which was first proved
by Fukuda [8] using dihedral group representations of the knot groups.

Theorem B.2 ([8, Theorem 1.1]). Let ki and kg be non-trivial oriented
1-knots, and 7% (k1) and 722 (ka) be branched twist spins. If n1 and ng
are different, then 7751 (k1) and 7"2%2(kg) are not equivalent.

ACKNOWLEDGEMENT

The authors would like to thank Seiichi Kamada and Makoto Sakuma
for their helpful comments. They also would like to thank the anonymous
referee for comments to improve the paper. The first author was supported
by JSPS KAKENHI Grant Number 17K05242 and 21K03220. The second
author was supported by JSPS KAKENHI Grant Number 21J21482.

REFERENCES

[1] M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, Astérisque 272
(2001), 208. Appendix A by Michael Heusener and Porti. MR1844891

[2] G. Burde, H. Zieschang, and M. Heusener, Knots, extended, De Gruyter Studies in
Mathematics, vol. 5, De Gruyter, Berlin, 2014. MR3156509

[3] JS. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, Quandle cohomology
and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355
(2003), no. 10, 3947-3989.

[4] P. E. Conner and F. Raymond, Manifolds with few periodic homeomorphisms, Pro-
ceedings of the Second Conference on Compact Transformation Groups (Univ. Mas-
sachusetts, Amherst, Mass., 1971), Part II, 1972, pp. 1-75. MR0358835

[5] D. Cooper, C. D. Hodgson, and S. P. Kerckhoff, Three-dimensional orbifolds and
cone-manifolds, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000.
With a postface by Sadayoshi Kojima. MR1778789

[6] R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Theory Rami-
fications 1 (1992), no. 04, 343—406.

[7] R. H. Fox, On the complementary domains of a certain pair of inequivalent knots,
Indag. Math. 14 (1952), 37-40. Nederl. Akad. Wetensch. Proc. Ser. A 55. MR48024

[8] M. Fukuda, Representations of branched twist spins with a non-trivial center of order
2. available at arXiv:2209.11583.

[9] C. McA. Gordon, Twist-spun torus knots, Proc. Amer. Math. Soc. 32 (1972), 319~
322.

, Some higher-dimensional knots with the same homotopy groups, Quart. J.

Math. Oxford Ser. (2) 24 (1973), 411-422. MR326746

[10]



2-KNOTS WITH THE SAME KNOT GROUP BUT DIFFERENT KNOT QUANDLES 11

(11]
(12]
(13]
(14]
(15]
[16]
(17]
18]
(19]
20]

21]

(22]

23]

24]

(25]
[26]
27]
(28]
29]
(30]
(31]
32]
33]

34]

, A note on spun knots, Proc. Amer. Math. Soc. 58 (1976), 361-362.
MR413119

C. McA. Gordon and R. A. Litherland, Incompressible surfaces in branched coverings,
The Smith conjecture (New York, 1979), 1984, pp. 139-152. MR758466

C. McA. Gordon, On the reversibility of twist-spun knots, J. Knot Theory Ramifica-
tions 12 (2003), no. 7, 893-897. MR2017959

J. A. Hillman, Four-manifolds, geometries and knots, Geometry & Topology Mono-
graphs, vol. 5, Geometry & Topology Publications, Coventry, 2002. MR1943724

A. Inoue, On the knot quandle of a fibered knot, finiteness and equivalence of knot
quandles, Topology Appl. 265 (2019), 106811, 8.

Y. Jang, M. Kataoka, and R. Miyakoshi, On 2-twist-spun spherical Montesinos knots,
J. Knot Theory Ramifications 29 (2020), no. 14, 2050099, 7. MR4216043

D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra
23 (1982), no. 1, 37-65.

M. Kataoka, On twist-spun knots with finite fundamental quandles, Master Thesis
(Japanese), January 2020.

R. A. Litherland, Symmetries of twist-spun knots, Knot theory and manifolds (Van-
couver, B.C., 1983), 1985, pp. 97-107. MR823283

S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. 161 (1982), no. 1,
78-88.

J. Milnor, On the 3-dimensional Brieskorn manifolds M (p,q,r), Knots, groups, and
3-manifolds (Papers dedicated to the memory of R. H. Fox), 1975, pp. 175-225.
MR0418127

R. Miyakoshi, On twist-spun knots with finite fundamental quandles, Master Thesis
(Japanese), January 2022.

J. W. Morgan and H. Bass (eds.), The Smith conjecture, Pure and Applied Mathe-
matics, vol. 112, Academic Press, Inc., Orlando, FL, 1984. Papers presented at the
symposium held at Columbia University, New York, 1979. MR758459

W. D. Neumann and F. Raymond, Seifert manifolds, plumbing, p-invariant and ori-
entation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ.
California, Santa Barbara, Calif., 1977), 1978, pp. 163-196. MR518415

T. Nosaka, Quandles and topological pairs: Symmetry, knots, and cohomology,
Springer, 2017.

C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of
Math. 66 (1957), 1-26.

S. P. Plotnick, The homotopy type of four-dimensional knot complements, Math. Z.
183 (1983), no. 4, 447-471. MR710763

D. Roseman, The spun square knot is the spun granny knot, Bol. Soc. Mat. Mexicana
(2) 20 (1975), no. 2, 49-55. MR515725

M. Sakuma, On regular coverings of links, Math. Ann. 260 (1982), no. 3, 303-315.
MR669298

S. Satoh, Surface diagrams of twist-spun 2-knots, 2002, pp. 413-430. Knots 2000
Korea, Vol. 1 (Yongpyong). MR1905695

P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5,
401-487. MR705527

F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math.
(2) 87 (1968), 56-88. MR224099

S. K. Winker, Quandles, knot invariants, and the n-fold branched cover, Ph.D. Thesis,
1984.

E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.




12 KOKORO TANAKA AND YUTA TANIGUCHI

DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY, 4-1-1, NUKUIKITA, KOGANEI,
TOKYO 184-8501, JAPAN
E-mail address: kotanaka@u-gakugei.ac.jp

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, 1-1,
MACHIKANEYAMA, TOYONAKA, OSAKA, 560-0043, JAPAN
E-mail address: yuta.taniguchi.math@gmail.com



