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Abstract. In this paper, we consider the Floquet Hamiltonian K associated with a
three-body Schrédinger operator with time-periodic pair potentials H (¢). By introducing a
conjugate operator A for K in the standard Mourre theory, we prove the Mourre estimate
for K. As by-products of the Mourre estimate for K, the minimal velocity estimates
for the physical propagator U (¢, 0) generated by H (t) as well as the propagator ¢ ~?7 &
generated by K can be obtained.

1. Introduction

In this paper, we consider a three-body quantum system with time-periodic pair interactions.
Since we would like to introduce some notation in many body scattering theory, we denote the
number of particles in the system by N for a while. Of course, we mainly consider the case where
N = 3. The system under consideration is governed by the following Schrédinger operator with
time-periodic potentials

N
H(t) = Z (—Q;jAJ) +V(), V)= Y Vilt,rj—re) (1.1)

1<j<k<N

acting on L?(R**"), where m; and 1; € R are the mass and position vector of the j-th
particle, respectively, A; = Zle 631,1 , is the Laplacian with respect to r;, and Vi (t,7; — r)’s
are pair potentials. We suppose that V (¢, y)’s are real-valued functions on R X R? which are
periodic in ¢ with a period T' > 0:

Vis(t + T,y) = Vji(t,y), (t,y) € Rx R". (1.2)

We would like to watch the motion of the system in the center-of-mass frame. To this end,
we will introduce the following configuration spaces: We equip RN with the metric r - 7 =
Z;\le my(r, 7)) r = (r,...,rn), 7 = (71,...,7n) € RN, where (-,-) is the standard
inner product on R%. We will denote this R**™ by X. We usually write 7 - r as 72. We put
|r| = v/r2. H(t) can be written as

A1) = — 5 Mg + V(1) = 3 (px)? + V()
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acting on L?(X), where A is the Laplace-Beltrami operator on X and pg is the velocity
operator pg = (p1/ma,...,pn/my) = (=iV,, /m1,..., =iV, /my) on X. From now on,
the kinetic energies will be represented by the velocity operators, for simplicity. We define two
subspaces X and Xy, of X as

N
X=<(reX ijrjzo ) XcmZ{T€X|T1="':7”N:0}~
j=1

Then X and X, are perpendicular to each other, and satisfy X=X0Xpy 7: X > X
and 7oy, : X — X, denote the orthogonal projections onto X and Xy, respectively. We put
x = 7r and Tey = Tem for € X. Now we introduce the time-dependent Hamiltonian

H(t) = %pQ + V(1) (1.3)

acting on .# = L?(X). Then H (t) is represented as

Ht)=H(t)®ld+1d® <;(pcm)2)
on L2(X) = s @ L*(Xcm). Here p and pep, are the velocity operators on X and X, re-
spectively. We would like to study some scattering problems for this Hamiltonian H (¢) with
N =3.

A non-empty subset of the set {1,..., N} is called a cluster. Let C;,1 <5 < m,be
clusters. If Ui<j<,, C; = {1,...,N}and C;NCy =Pforl1 < j <k <m,a={Cq,...,Cy}
is called a cluster decomposition. #(a) denotes the number of clusters in a. Let &7 be the set of
all cluster decompositions. Suppose a, b € <7. If b is obtained as a refinement of a, that is, if
each cluster in b is a subset of a cluster in a, we say b C a, and its negation is denoted by b ¢ a.
Any a is regarded as a refinement of itself. The one and N-cluster decompositions are denoted
by Gmax and anmin, respectively. For the sake of brevity, we write

% = \ {amax}a JZ{O = \ {amin}a %0 = \ {amaxvamin} = % N *52{0-

The pair (j,k) is identified with the (N — 1)-cluster decomposition {(j,k),(1),...,
(G)s--s k), ..., (N)}. If N = 3, then {(1,2), (1,3), (2,3)} is the set of all two-cluster de-
compositions, and is equal to .27, .

Let a € o/. We introduce two subspaces X and X, of X:

X*=<reX ijrj =0 for each cluster C' in a p,
jec
Xo ={r e X|r; =r foreach pair (j,k) C a}.
@ : X — X%and 7, : X — X, denote the orthogonal projections onto X* and X, re-

spectively. We put 2% = 7%z and z, = 7, « for x € X. Since XU is identified with the
configuration space for the relative position of j-th and k-th particles, one can put



V(j’k)(t,l‘(j’k)) = ‘/}‘k(t,Tj — Tk).

As for {X}aer, X@ C XY is equivalent to @ C b. On the other hand, as for {X,}ueor,
X, C Xpisequivalenttoa D b. Fora, b € o, alUb stands for the smallest cluster decomposition
¢ € of witha C cand b C ¢. Then we see that X + X? = X9 and X, N X}, = X, hold.
We now define the cluster Hamiltonian

1 . .
Ha(t) = 5}72 + Va(t), Va(t) = Z V(]vk) (t7 1-(.77/@))7
(4,k)Ca

which governs the motion of the system broken into non-interacting clusters of particles. Then
H,(t) is represented as

H,(f) = H(H) @ 1d + d ® (;@aﬁ) L) = LMV

on H# = H#* @ H, = L*(X*) ® L*(X,), where p® and p, are the velocity operators on X
and X, respectively. The intercluster potential I,,(¢) is given by

L(t,x) =V(t,z) = Ve(t,z)= Y VO, z0h)
(4,k)Za

Under some suitable conditions on Vj(t), the existence and uniqueness of the unitary prop-
agator U (t, s) generated by H(t) can be guaranteed, even if N > 3 (see e.g. Yajima [38, 39]).
In the study of the asymptotic behavior of U(t,s)¢, ¢ € 2, as t — Foo, we will frequently
utilize the so-called Floquet Hamiltonian K associated with H(¢) (see e.g. Howland [19, 20],
Yajima [37]): Let T = R/(TZ) be the torus. Set # = L*(T;#) = L*(T) ® 5, and
introduce a strongly continuous one-parameter unitary group {U(c)}scr on % given by

(U(o)®)(t) =U(t,t —0)®(t — 0) (1.4)
for ® € .# . By virtue of Stone’s theorem, U (¢) is written as
Ulo) = e oK (1.5)

with a unique self-adjoint operator K on .#". K is called the Floquet Hamiltonian associated
with H (t), and is equal to the natural self-adjoint realization of —i0; + H (t). Here we denote by
D, the operator —id; with domain AC(T"), which is the space of absolutely continuous functions
on T with their derivatives being square integrable (following the notation in Reed-Simon [30]).
As is well-known, D; is self-adjoint on L?(T), and its spectrum o (D;) is equal to wZ with
w = 27 /T. For a € o, we also introduce the cluster Floquet Hamiltonian K, associated with
the cluster Hamiltonian H,(¢) by K, = D; + H,(t) on J¢ . In particular, we have K, = K.
We also write K, _, as Ko = D; + Hj, which is the free Floquet Hamiltonian associated
with the free Hamiltonian Hy = p?/2 acting on J#, for the sake of simplicity. Moreover, we
introduce the subsystem Floquet Hamiltonian K* associated with the subsystem Hamiltonian
He(t)by K% = D; + H%(t) on #* = L*(T; %) = L*(T) ® #*. In particular, we see that
Komax = [ K%min = D, and for a € &7, K, is represented as
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K,=K°®Id+1d® (;(pa)2>
on ¥ =X H,=L*(T; H#) @ H,.

If H(t) is strictly time-dependent, the lack of energy conservation becomes a barrier in the
study of the asymptotic behavior of U(t, s)¢. Howland [19] proposed the stationary scattering
theory for time-dependent Hamiltonians, by introducing a new Hamiltonian —id; + H (t) acting
on L?(R; 7). As mentioned above, its formulation was the quantum analogue to the procedure
in the classical mechanics in order to recover the conservation of energy. Yajima [37] applied
this Howland method to the two-body quantum system with a time-periodic short-range potential,
and studied the problem of the asymptotic completeness of the wave operators

Wi(s) = g-lim U(t,s)*e*i(t*S)HO

t—+oo

(see also Howland [20]). In fact, he proved the asymptotic completeness of

WE = slim K¢ Ko
o—+o0

firstly, and deduced that of W= (s) from this result. Such a method is called the Howland-
Yajima method. This method, together with the Faddeev method, was applied to the three-
body case under some very short-range conditions by Korotyaev [23] and Nakamura [28] later.
However, even in the case where N = 3, the problem of the asymptotic completeness under a
general short-range condition on pair potentials V (/%) (t, zU %)) has not been solved yet, unlike
in the case of time-independent many body Schrddinger operators (see e.g. Sigal-Soffer [31],
Graf [15], Yafaev [36], Derezinski [11], Derezinski-Gérard [12], and so on), as far as we know.
Thus it is worth continuing the study of the spectral and scattering theory for N-body Floquet
Hamiltonians, even in the case where N = 3.

In this paper, we would like to propose the definition of a conjugate operator for K with
N = 3 in the standard Mourre theory. We will impose the following well-regulated condition
(Vawr)p on V with p > 0:

(Vawvr), Vik(t,y), (4, k) € o, belongs to C?(R x R%; R), is T-periodic in t, and satisfies the
decaying conditions

sup (97" 9y Vi) (1, 9)| < Crma(y) =~ 0 <o < 2. (1.6)
tER

Here (y) = (1 + %?)/2. In Adachi-Kiyose [5], the condition (1.6) was imposed on the regular
parts of pair potentials. First we recall known results in the case where N = 2 for reference.
Yokoyama [41] introduced the self-adjoint operator

Ap1 = %{x pp) 2+ ) Ppak ()= (1Y) (1.7)

on % as a conjugate operator for K. For the sake of brevity, we will use the notation Re 1" for an
operator on J#~ in this paper, which is defined by Re T = (T + T*)/2. Then ]1071 can be written
as Re (z - p(p)~2). Roughly speaking, Ay ; is defined by multiplying the generator of dilations



Ay =Re(z-p) (1.8)

and the resolvent (p) ~2 of p?. He established the following Mourre estimate under some suitable
conditions on V, by using the commutation relation i[Ko, Ao 1] = p?(p) =2 = p?(1 + p?)~! by
simple calculation. Put

do(N) = dist(A\,wZ), di(N\) =dist(A\,wZ N (—o0, A])

for A € R. Here we note that wZ = o(D;) is equal to © = ¢(K i), which is the threshold
set for K with N = 2. Suppose \g € R\ wZ, that is, Ag is a non-threshold energy, and
0 < 0 < dist(Ag,wZ) = do(No). Then, forany fi, s € C5°(R; R) supported in [A\g—J, Ag+],
the Mourre estimate

o _2(di(Xo) = 9)
~ 1+ 2(d1(No) — 0)

Fros (K)i[K, Ag 1] frg,s(K) Fros(K)?+C (1.9)

holds with some compact operator C; on JZ". This estimate (1.9) is slightly better than the one
obtained in [41]

fAO15(K)7;[K, A(),l]ng,J(K) > 2(d0()‘0) _5)

~ 14 2(do(Xo) — 9) Fros(K)2+Cy

with some compact operator C; on ¢, since dy(Ag) < d1(\g). Here we note that the positive
constant of the Mourre estimate (1.9) depends on A strictly but the conjugate operator Ag ;
is independent of \y. However, its extension to the case where N > 3 has not been obtained
yet, as far as we know (see also Mgller-Skibsted [27]). Recently, Adachi-Kiyose [5] proposed an
alternative conjugate operator for K with N = 2 at a non-threshold energy A\g: Let Ay € R\wZ.
Then there exists a unique n, € Z such that \g € I, . Take das 0 < § < dist(A\g,wZ) =
do(Np)- Since A\g — 4§ € I, itis obvious that Ao — 6 € R \ wZ = p(D;). Then we introduce
the self-adjoint operator

Axgs =R_pyrg-s®Ao; R_p,rg—s=o—0— D) (1.10)

on ¥ = L*(T)® s, by multiplying Ag and the resolvent R_ Dy, xo—6 Of D;. Here we note that
R_p, »,—s is bounded and self-adjoint, and A, s satisfies the commutation relation

i[Ko, Axg,6] = P’ R_D, xng—5 = 2(Ko — D) (Ao — 6 — Dy) ™"
Then the Mourre estimate

Fro.s (KK, Axg 6] frg.s (K) > 2f5,.6(K)* + Chyys (1.11)

holds with some compact operator C'y,  , on .%". Here we note that the positive constant of the
Mourre estimate (1.11) is independent of Ao but the conjugate operator Ay, s depends on Xg
strictly. Its extension to the case where /N > 3 has not been obtained generally yet, except in the
case where all the pair potentials are independent of ¢.

The aim of this paper is that we will introduce a conjugate operator for K with N = 3.
As is pointed out by Mgller-Skibsted [27], it is important in obtaining the Mourre estimates for

5



time-independent many body Schrodinger operators that the generator of dilations Ag in (1.8)
can be decomposed into the sum

(Ap)* @ Td +1d ® (Ag),

acting on S = 7 ® I, for a € of, where

1
(Ao)* = 5(a* - p" +p* - 2%) = Re (2" - p"),
2 (1.12)
(AO)a = 5(37(1 *Pa +pa : wa) =Re (xa 'pa)~

Unfortunately, the conjugate operator Ay ; in (1.7) does not have such a property. This seems
one of the reasons why its extension to the case where N > 3 has not been given yet. On the
other hand, the conjugate operator Ay, s in (1.10) can be decomposed into the sum

R_p, x5 @ {(Ag)* @Td +1d ® (Ag)a}

acting on ¥ = L*(T) ® #° ® #,, fora € «/. If N = 3 and a € & is a pair, that
is, a € @ = o \ {Gmax,amin}, then one can recognize the operator R_p, \,—5 ® (/Alo)“
as a conjugate operator for K¢ = D; + H%(t) acting on ¥ * = L*(T;¢*) = L*(T) ®
F€%, by virtue of a result of Adachi-Kiyose [5]. However, we cannot interpret the operator
R_p, xy—5 @ (Ag), as a conjugate operator for the intercluster Hamiltonian (p,)?/2 acting on
4, unfortunately. The operator R_p, »,—s ® (AO)a can be a conjugate operator for the Floquet
Hamiltonian D; + (p,)?/2 acting on L?(T;57,) = L*(T) ® %, associated with (p,)?/2.
But, since K, = K* ® Id + Id ® (p,)?/2, what we need here is not a conjugate operator for
Dy + (pa)?/2 but that just for (p,)?/2. We think that this is one of the reasons why any extension
of Ay, s to the case where N > 3 has not been given yet.

In order to overcome the difficulty mentioned above, roughly speaking, we will recognize
the operator

Aa1 = Re (24 'pa<pa>_2)§ <pa>_2 =1+ (pa)Q)_l
acting on 7%, as a conjugate operator for (p, )2 /2, and the sum
R p,x-5®(Ag)? @Td+1d®1d® A,

as a conjugate operator A, for K, = D; + H,(t) acting on ¥ = L*(T) ® #* @ . After
introducing A,’s, we will glue these together by using a partition of unity of X. This is our
strategy of introducing a conjugate operator A for K with NV = 3. Obtaining a conjugate operator
for K with N = 3 is the first step for the definition of conjugate operators for K with N > 4. In
our strategy, for example, to define a conjugate operator for K with N = 4, we need conjugate
operators for not only two-body subsystem Floquet Hamiltonians but also three-body subsystem
Floquet Hamiltonians. The latter has not been obtained until now.

Now we will give the precise definition of A. Without loss of generality, we may assume that
an energy Ao belongs to the interval [0,w), because the spectrum o (K) of K is w-periodic (see
Proposition 3.4), as is well-known. As for a conjugate operator for the free Floquet Hamiltonian
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Ko = Dy + p?/2, we introduce
Ao = (D1)5,? Ag(Dy)3"* = Re (z - p(Dy)3)) (1.13)

acting on %, where (Dy)a,, = ((2w)? + (D;)?)'/2. In this work, we have found that one can
utilize the positive Weight (Dt>§w in place of the signed weight R_p, »,—s in the definition of a
conjugate operator AO for K. We think that (Dt> is more suitable for Ao than R_p, »,—s. For
instance, i[Ko, Ag] = (D¢)yip® = (Dt)%l/ 2(Dy )le/ holds (see Lemma 4.1 in §4), which
makes its non-negativ- ity available. This is a big advantage of (Dt>2*w1. As for the detailed
arguments, see §4 and §5. The term (2w)? in the definition of (D;)2., may be replaced by 1, that
is, in (1.13), (D)5 can be replaced by (D;)~' = (1 + (D;)?)~1/2. However, for the sake of
simplifying the proof of the Mourre estimate in the case where N = 3, we will adopt not (D;) !
but (Dt> as the positive weight for Ay in this paper. For a € <7, we also introduce

(A0)® = (Dy)a”*(Ao)*(Dy)as’® = Re (z® - p™(Dy)3.)),
(Ao)a = (D)5 (Ag)alD) 5 "? = Re (2o - palD2)3)), (1.14)

Aq =Re(zq - palpa) )i (Pa)” 2=( + (pa)*) !

As will be seen in §4, (fio)a can be recognized as a conjugate operator for the two-body subsys-
tem Floquet Hamiltonian K on ¢, A, (fio)“’s and A,’s are all self-adjoint. For the sake of
glueing these together, we have mainly three choices of partitions of unity of X; the reducing par-
tition of unity (see e.g. Cycon-Froese-Kirsch-Simon [10]), which was used in Froese-Herbst [13]
for the sake of showing the Mourre estimate for time-independent N-body Schrodinger opera-
tors, the Graf partition of unity (see e.g. Graf [15], Derezifiski [11], Derezifiski-Gérard [12]
and Gérard-Laba [14]), and the Yafaev partition of unity (see e.g. Yafaev [36], Hunziker-
Sigal [21] and Gérard-Laba [14]). In this paper, we utilize the Yafaev partition of unity
{Ja}acw C C®°(X;R) of X such that 3", cot Ja(x)? = 1. In §2, we will give its definition

and state its useful properties. By using {Ja}ae > we will introduce

= > Ja@)Aga(x) + D Jal@)(A0)"Ja(@) + Lo D Ju(wa)Aada(za)

acot\ ot acol acgly
- - - - - . (1.15)
=Ao+ Y Ja(@){~(A0)a}a(@) + Lo Y Ja(ra)AsTa(xa),
acd acd

with sufficiently large Ly > 0. As will be seen in §2, the second representation of A can be
derived directly from the first one, by > ., Jo(x)? = 1. In our dealing with the errors like
i[Ko, Ja(2)](A0)ada(z) and i[Ko, Jo(x4)] AaJa (), which come from the overlap width of
glueing Ay, (flo)“’s and A,’s by some partition of unity of X, the Yafaev partition of unity is
much handier than the other two ones: In our analysis, we give importance to that ja(x) with
a € 9 is homogeneous of degree 0 outside some compact neighborhood of the origin 0 of X.
Unfortunately, the Graf one does not satisfy the property, unlike the reducing one and the Yafaev
one. Moreover, as for the Yafaev partition of unity, by introducing the so-called intercluster
distance |z|, = minpe .y bra |z| for a € o (see (2.3) in §2), the estimate |x|, > c,|z| holds
for € supp.J, with some ¢, > 0 (see Lemma 2.3 in §2). This property is important in our
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analysis. For instance, one can utilize the decay estimates with respect to (x), which are stated in
Corollary 2.4 in §2. By taking account of these, we adopt the Yafaev one for the sake of glueing
Ay, (Ag)*’s and A,’s. The factor J,(z,) of the last term in (1.15) cannot be replaced by .J, (z),
because we need the Ky-boundedness of i[K(, A]. We also need the large parameter L for the
sake of dealing with the errors mentioned above. As for the detailed arguments, see §5.

Now we state the main results of this paper.

THEOREM 1.1.  Suppose N = 3. Assume V satisfies (Vivr), with some p > 0. Put

0= oK), 6= opp(K*) =0 Uo,(K).
a€ acod

Let Ao € [0,w) \ © and € > 0. Then there exist the Yafaev partitions of unity {Jo }acer’s and
sufficiently large Ly > 0 in the definition (1.15) of A such that for A defined by using these, the
following hold:

(1) Pur

do(\) = dist(\,0), di(N) = dist(), € N (—o0, A])

for A € R. Note do(\) < di(N). Then there exists a small §co > 0 such that 5.0 < do(Ao)/2
and the following holds: Let 0 < 6 < 0.o. Then, for any fx, s € C3°(R; R) supported in
Ao — 0, Ao + 0],

di(ho) —d ¢

" Fro.s(K)? + Co (1.16)

Sro s (K[, Al fag,6(K) =
holds with some compact operator Cy on X .
Hence, for any & such that 0 < § < 6, UPP(K)Q()\O—& )\0+(§) is finite, and the eigenvalues
of K in (Mg — 8, X\g + ) are of finite multiplicity.
(2) Suppose Ao € [0,w) \ . Take ¢ as 0 < 2 < di(Xo) — do(Xo)/2. Then there exists a
small 6,1 > 0 such that 6.1 < 0.0 < do(Xo)/2, and for any f», s € C5°(R; R) supported in
[AO — 5, Ao + 5} with0 < § < 6671,

. di(XNg) — 6 — 2¢
Fros BNIK, Al 1) > POV 022 gy a1
holds. Suppose s > 1/2 and 0 < 5 < O¢ 1. Then
sup  [{A) T (K = 2)"HA) " lar) < 00 (1.18)
RCZG[AO*;Z(»)AOJHS]
Im z

holds. Moreover, (A)™%(K — z)"Y(A)~% is a B(* )-valued 0(s)-Holder continuous function
onz €S, 5 withsome(0 <0(s) <1 whereS, s = {cecC ‘ Re( € [Ag—9, 0+0], 0 <
+Im ( < 1}. And, there exist the norm limits

(A) 75 — (A=£10))7HA) ™ = Tim ()75 (K — (A i2)) 71 (A)



in B(A) for any X € [\ — 8, Mo + 6], (A)75(K — (A £ i0)) " (A)~* are also 0(s)-Hélder
continuous in \.

If \p € [0,w) N O, then a weaker estimate like

Iro,s (K)i[K, A] a5 (K) > %fxo,a(K)Z + Co

holds with some compact operator Cyy on .#". When we will introduce a conjugate operator for
the Floquet Hamiltonian K with N = 4, not only (1.16) but also this estimate will be needed.

COROLLARY 1.2.  Assume V satisfies (Viyr) , with some p > 0. Then the following hold:
(1) The eigenvalues of K in R\ © can accumulate only at ©. Moreover, © is a countable closed
set.
(2) Let I be a compact interval in R\ ©. Suppose 1/2 < s < 1. Then

sup [(z) (K = 2)7H{z) |l < o0 (1.19)

Rezel

Im z#0
holds. Moreover, (x)~*(K — 2z)~Yx) ™% is a B(¥ )-valued (s )-Holder continuous function on
z € 81+, where St 4 = {( eC | Re(el, 0 <+Im( < 1}. And, there exist the norm limits

()75 = (A=£10)) ™ o)™ = Tim () 75 (K — (A i) (o)~

in B(KH ) for X € I. (x)~*(K — (X +i0)) "1 {x) =% are also §(s)-Holder continuous in \.

In order to obtain Corollary 1.2, we use the argument of Perry-Sigal-Simon [29], and the
boundedness of A(K — X\g —4)~(x) =1, which can be given by that (D;) ~1(K — \g — i) 1 (p)?
is bounded (see Proposition 3.5 in §3). By virtue of this, one can show that A(K — X\ —
i)~ p)(x) "t and A(K —\g—1i) " (D;)*/? ()~ are also bounded. Then the limiting absorption
principle like

sup |[(@) D% (K — 2) "D (&) |l < 00
I 2520

with s > 1/2 and some s’ > 0 may be expected, where D = (p) + (D;)'/? is equivalent to
P2 = ((p)* + (D;)?)'/* as weights, which was introduced in Kuwabara-Yajima [24] for the
sake of obtaining a refined limiting absorption principle for K with N = 2 in the Besov space
setting. In fact, the result of [24] yields the estimate

sup (@) 2VA(K —2) ") |l < o0
T 2520

with s > 1/2. By virtue of complex interpolation, one can also obtain a refined limiting absorp-
tion principle

Sup [(z)~* 24K = 2)7' 2V @) |y < o0
ez€E
Im z#0



with s > 1/2. But this has not been given by our analysis yet. It is caused by the unboundedness
of (K — X — i)~ Y(p)(z)~ " and (K — Ao — i)~ 1(D;)'/?(x) 1. As for general N-body Floquet
Hamiltonians, a refined limiting absorption principle for K

sup @) (p)" (K — 2) 7 (p)" (@) ™" [l < o0

Rezel

Im 2#0
with 0 < r < 1/2 < s < 1 was obtained by Mgller-Skibsted [27]. They used an extended
Mourre theory due to Skibsted [34], and took a conjugate operator for K in the extended Mourre
theory as Ag. However, we would like to stick to find an option of a conjugate operator for K
not in an extended but in the standard Mourre theory.

As is well-known, the limiting absorption principle (1.19) yields the local K -smoothness of

(x)~* with s > 1/2

/ ()= e~k o, 5(K)B|2, do < C|18]% (1.20)

— 00

for Ao € [0,w) \ o. (1.20) was already obtained by [27], even if N > 3. However, (1.20) is
not enough for the proof of the asymptotic completeness in the case where N > 3, unlike in
the case where N = 2. For instance, when K is a time-independent many body Schrodinger
operator p?/2 + V with short-range pair interactions, instead of the propagation estimate (1.20)
with #" = L?(X), the so-called minimal velocity estimate

> - ~ —i0
/ HF <k‘-| S C)\0> ‘ Kf)\o’a(K)@
1

with &y, > 0 and ¢ = L?(X) has been used as a key propagation estimate in the proof of the
asymptotic completeness (see e.g. Graf [15]). Here we used the following convention for smooth
cut-off functions F' with 0 < F' < 1: For sufficiently small § > 0, we define

2 do

— < C|o|?
P~ 19115

A

)=1 for s<d—-9¢, =0 for s>d,
1 for s>d+9, =0 for s<d,

and F(dy < s < dy) = F(s > dy) F(s < dz). The above minimal velocity estimate can be
obtained by the Mourre estimate for K = p?/2 + V. At the present stage, we have gotten the
Mourre estimate (1.17) for the Floquet Hamiltonian K = D; + p*/2 + V/(t). Hence, it can
be expected that the Mourre estimate (1.17) will yield the minimal velocity estimate for e =7 %
In fact, there is an abstract theory for getting the minimal velocity estimate from the Mourre
estimate, which was initiated by Sigal-Soffer (see e.g. [31, 32]). For the detail, see e.g. Sect.
4.4 “Minimal velocity estimates” of Gérard-Laba [14]. By virtue of the abstract theory, one can
obtain the following minimal velocity estimate for e ~*7X:

THEOREM 1.3.  Suppose N = 3. Assume V satisfies (Viyr), with some p > 0. Let
Ao € [0,w) \ ©. Put

10



B = (14 B+ B1)Y? By = (Dy)"'2Qo(z)(Ds)~ "/,

Bl = Z Bla‘“ Bl,a = <pa>71Q17a($a)<pa>7l’ (121)
acdty

where

Qox)= > 2PJa(@)’+ D (@) a(2)? =2 = D (2a)*Ja(2)?,
ac A\ A acdY ac ot
Ql,a(xa) = (xa)2ja(xa)2a
with a € <. Then there exists an e9(\o) = £o(No;€,8) > 0, which is determined by the
positive constant (dy(Ag) — 6 — 2€) /w in the Mourre estimate (1.17) such that

2

o B , do

/ HF ( < 50()\0)> e K f L S(K)P| — < C|P|%, (1.22)
1 g w O
. B —iocK

S—EmF = <eo(Xo) | e Fros(K) =0 (1.23)

hold. In particular, these yield

2

0o 1/2 )
/ HF (Q(z) S €O(>\0)> eingf)\o,égwl(K)@ dj S CH¢||3{7 (124)
1 o 2 w O
1/2 )
slim F (Q(i < 60(2“)) 77 frg 6.4 (K) = 0. (1.25)

Here

Q(z) = Qo)+ Y Qualwa) =2+ Y (#a){Ja(wa)® = Ju(z)*}.
acd a€ad
Here we note that

B*=1+By+ B <1+ Qo)+ Y Qualr) =1+Q(x)
acd

holds, in deriving (1.24) from (1.22).
By using the arguments of Yajima-Kitada [40] and Mgller-Skibsted [27], one can translate
(1.24) into the minimal velocity estimate for the physical propagator U (t, s) generated by H (¢):

COROLLARY 1.4.  Suppose that the hypotheses of Theorem 1.3 are satisfied. Let gy, s be
the function on {z € C'| |z| = 1} such that Dros(e72™NY = f) 5(N) for X € [0,w). Then

2

00 1/2
[ e (B9 < =0 veomswons| T <cio aze)
1 I
/
slim F <Q(”‘21 | < 50(;“) U(t,0)9,.5(U (T, 0)) = 0 (1.27)

11



hold, where U (T, 0) is the Floquet operator associated with H (t).

One can utilize the above results in the study of quantum systems of /V particles under the
so-called AC Stark effect with N = 3: We suppose that £(t) € C°(R; R%), &(t) has a period
T > 0, thatis, &(t +T) = &(t) forany t € R, and

1 /7
é”m:—/ &(s)ds =0, (1.28)
T Jo

which is the condition for the AC Stark effect. Let m; > 0, ¢; € Rand r; € Rd, 1<j57<N,
denote the mass, charge and position vector of the j-th particle, respectively. We suppose that
the particles under consideration interact with one another through the time-independent pair
potentials Vj(r; — ri), 1 < j < k < N. The system under consideration is governed by the
total Hamiltonian in the laboratory frame

N

Hip(t) = Z (—2;jAj —qj (é"(t),rj>> +V(r); V(r)= Vik(r; —ri). (1.29)

j=1 1<j<k<N

In the same way as in Mgller [26] and Adachi [1, 2] (as for the detail, see §7), we have only to
consider the Hamiltonian in the moving frame

Hyr(t) = %pQ +V(x +c(t)) (1.30)

acting on 5% = L?(X), where c(t) is defined as follows:

t T
Enslt) = E(t) — Em, g_(t):/ &0u(s) ds, 5:%/ £(s) ds,
0 0
t

%®=5®—&,5@=AéM$%,dﬂ=ﬂ@h@@&~ﬂwﬁmﬁ@)

Now we impose the following condition (Vsr); on Vjy’s with p > 0:
(Vsr)s Vik(y), (4, k) € 7, belongs to C?(R%; R), is independent of ¢, and satisfies the decaying
conditions

(05 Vi) W)l < Caly) P71, 0 <ol <2. (1.31)

Y

As is shown in §7, if p > 1, then one can regard Vjj,(t,y) = Vi (y + €, & (t)) with &; =
q; / m; — Gk /my; as a time-periodic potential satisfying the condition (Viygr) 5—1. Therefore, in
the case where N = 3, the following theorem is a direct consequence of Theorem 1.1, Corollary
1.2, Theorem 1.3, and Corollary 1.4.

THEOREM 1.5.  Suppose &, = 0 and N = 3. Introduce K = D; + fIMF(t) acting on
. Assume ij s satisfy (VST)ﬁ with some p > 1. Put

0= |J  owE"), 6= op(K*) =0Uoy(K).
a€\{amax} acef

12



Then, the statements of Theorem 1.1, Corollary 1.2, Theorem 1.3, and Corollary 1.4 hold.

As for the asymptotic completeness for Hyr (t) with N = 2, Yajima [37] proved it in the
short-range case via the Howland-Yajima method, and Kitada-Yajima [22] proved it in the long-
range case via the Enss method. On the other hand, for ﬁMF(t) with N = 3, Korotyaev [23]
and Nakamura [28] gave some partial results on it in the very short-range case via the Howland-
Yajima and the Faddeev methods. The study of the problem of the asymptotic completeness for
ﬁMF(t) with N = 3 should be done by using some useful propagation estimates like (1.22) and
(1.24) in future research.

The plan of this paper is as follows: In §2, we will give the definition of the Yafaev partition
of unity and its properties which are useful for our analysis. In §3, we collect frequently used
propositions which are useful for our analysis. In §4, we will revisit the case where N = 2. The
construction of A in (1.15) is based on the arguments and results in §4. In §5, we will give the
proof of Theorem 1.1, in particular, (1.16). In §6, we will obtain the minimal velocity estimates
for e 77K and U(t, s). In §7, we will deal with the AC Stark effect case.

Acknowledgement
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#25K07031 from JSPS. The author is grateful to the referee for many valuable comments and
suggestions.

2. Yafaev partition of unity

In this section, we give the definition of the Yafaev partition of unity {ja}ae z of X,
and its properties which are useful especially for the sake of dealing with the errors like
i[Ko, Ja(2)](A0)ada(z) and i[Ko, Jo(€4)] AaJa(2,), which come from our construction of A
by (1.15).

First of all, for references, we will give an outline of the construction due to Yafaev [36]
by following the arguments in [36], Hunziker-Sigal [21] and Gérard-Laba [14] (also refer to
Graf [15], Derezinski [11], Derezinski-Gérard [12] and Gérard-Laba [14] on the construction
of the Graf partition of unity, for comparison): Let 0 = {0, }acr be a sequence of numbers
greater than 1 indexed with the elements of .o/ such that 1 < o, < o holds if @ C b with
a, b € o = o \ {amax}. The argument below is based on the fact that there exists an M > 0
such that

M|z "] < |27 + [2*|

holds for any a, b € <7, because X?“* = X% + X° Now we suppose that for sufficiently
small ¢ > 0, 0, = 1 + O(e%) holds for a € o, where d, = dim X,. For each z € X \
{0}, we consider the family {o.|z.|}cces,, and watch its maximum max.e o, {oc|zc|}. Since
Tap., = 0, when watching max e, {0c|zc|}, Oa,,., 1 insignificant. This o, will be used
when guaranteeing the smoothness of the functions defined later on a neighborhood of the origin
0 of X. Moreover, in order to control the size of errors, o4, .. > 0 will be taken as sufficiently
large. We put

U7 = {2 € X | oalatal > 0 la
13

tonin| = Oama |} (2 € ). 2.1



We see that U = 0 since @q,,,, = 0, UZ = () trivially, and that for a € @ = o \

Qmin
{amaxa amin}s
Ul ={zeX||a"| < Q-0 [o})/?z]}

is a conical neighborhood of X, \ {0}. Since (1—02  /52)1/2 = O(ed/2), U¢ is considerably
sharp. Let a € &) be given, x € UZ, and b € < be such that b 2 a, that is, X;, ¢ X,. By
virtue of Lemma 3.1 of [36], we see that there exist sequences o = {0, }aco’s such that

ovlu| < max{oy|zy[}
fDa

holds, because a U b 2 a by assumption, and d, — dgup > d = dim R?. Such sequences o’s are
called admissible. The above inequality implies that for z € U7,

max{oe|zc[} = max{oy|rs|}

ce
fDa
holds. Taking account of these, we put
co=u\|JU7| (@es), cg,.=x\{oh\| U c7]. 2.2)
f2a acdy

This definition yields that {C'7 } ,c., is a disjoint covering of X \ {0}, and that for x € C¢ with
a e %9

({2%{‘76‘370‘} = 04|74

holds. In particular, for a € <70, if the pair (j, k) satisfies (j, k) < a, then C7 N Cliw = 0. By
following the argument of [21], we introduce the intercluster distance

|z|q = gélgl |2b| (2.3)
ngaO

for a € o7. By virtue of Lemma 3.1 of [21], it is known that if a € <), then

[olo > | min (1 =07, /oi)"/? | |2 24)
bZa

holds for z € CJ. Now we will take a family of sets {CJ },c ., with an admissible sequence
0 = {04 }acw, and put

Co={z€C|0alral > Oup..} (@), Ci. . =X\ |J Cq. (2.5)

a€

This definition yields that {C? },c. is a disjoint covering of X, and that for - € C7

Amax’

14



max {Uan'nax’ gleli};é{O’J%H} = Oamax
holds, and that for x € 5{; with a € 4,

x4 maxlaclel) } = ol
holds. Then we will introduce
Jg(‘r) = X@g (SE) (CL € M)? (2.6)

where x5, is the characteristic function of 5‘:{ . It is known that

Y S =1

acdd

holds. By the arguments of [36] and [21], those are known that there exist admissible sequences
0~ = {0, tacw and 0T = {0} },cr such that o, < o} holds for any a € <7, and that if
0 = {04 }acw satisfies 0, < g, < O’;r for any a € 7, then o is also admissible. We fix such
two admissible sequences o~ and . For b € 7, we introduce a smoothing function sy, that is,
a function s;, € C§°(R; R) such that

supp s, C [Jb_,cf;'], sp >0, / sp(op) dop = 1.
R

Putting 30(00) = [}, S6(0p), it satisfies

supp §o C Sg = H [0,3_,02'], 50 >0, / S0(00) dog = 1,
beg, So

where doy = ®pe o, doy,. Now we define

O dmax
Jo(z) = /_ /s 50(00)Sapu (Cana ) IS () doodo,,,,, (a € ). 2.7

amax

{Ja}ac 1s called a Yafaev partition of unity. Then we have the following:

PROPOSITION 2.1.  The family of functions {J, }acer on X satisfies the following: Each
Jo () is a smooth function on X. If a € A, then J,(x) is homogeneous of degree 0 outside
some compact neighborhood of the origin 0 of X; while, J,_ . () is supported in some compact
neighborhood of the origin 0 of X. Moreover,

> Jalx) =1 2.8)
acd
holds.
PROOF. The proof was already given in [36] and [21]. As for the detail, see these papers.
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Here we will give an outline of the proof of the smoothness of J,(z) with a € @ = & \
{@max, @min } only, since we need to know the properties of (V.J,,)(x): For the sake of simplicity,
we consider the case where x € X satisfies o || > of only. If z € X satisfies o, |z4] >

. T |z|, then z € U for any o € S, because 0, > 0, and o > 04,
Then J,(y) = 1 holds in a neighborhood of x. If x € X satisfies o [z < o ||, then
x ¢ UJ forany o € S, because 0, < of and 0, < 04,,,. Then Jo(y) = 0 holds in
a neighborhood of x. Thus we have only to watch the case where x € X satisfies o, |z,| <

+ Jrland o |z.| > o |x|. Consider the rectangle [0, , 0| x[o, o Jinthec,0q,,,-

Gmin a Gmin’ ~ Gmin

plane. Since 0 — 1 = O(e%) and 0f  — 1 = O(e%emin) < O(eda) for sufficiently small

Gmin

e > 0, without loss of generality, we may consider the following three cases: (a) z satisfies

Amin

oy |zl <oy |zland o x| < of|z.] < of |z[; (b) x satisfies o |z4| < o, |z| and
of|za| > of |z]; (¢) x satisfies o, |z| < oy |ra| < of  |z|and of |z4| > oF x| In the
case (a), we have
o-‘l_minlxl/‘za‘ U:'—)nin
Ja(z) = /7 /7 50(0a)Samin (Tamin) A0 ay;, d0a
Ta Tamin
oF +
a Amin
+/ / 3a(0a)Samin (Tamin ) A0y, d0a
Tapin|Zl/|2al Y oalTal/|2]
Oainl®l/1Zal
= /7 $a(0q) dog
Oa
ot ot
Jr/ / $a(0a)Samin (Tamin) A0ap;,d0a-
Tamin 12/ 1Zal Y oalzal/|2]
In particular, we obtain
o, |zl o, |zl
VJ ) = v Amin ) s ( Amin )
@ =9 (T (P
+
oL |z oL |z Tamin
-V (anun> Sa (amn) / Samin (Tamin) A0y
[al 2ol /) Jo,,
oF OalTal CalZal
— / \Y Sa(0a)Sap, dog
Camin|Zl/1Zal || ||
+
UC',
= -V (|xu> / O'asa(o-a)samin (Ua|33a|> dog.
1zl ) Jor  jal/laal |z|
The cases (b) and (c) can be also treated similarly. These yield the smoothness of .J, (). U

We put
-1/2
Ja(z) = Ja(z) {Z Jb(x)2} (a € o). (2.9)
beos

We also call {ja}ae o a Yafaev partition of unity:
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COROLLARY 2.2.  The family of functions {ja}aed on X satisfies the following: Each
J, (z) is a smooth function on X. If a € <, then ja(x) is homogeneous of degree 0 outside
some compact neighborhood of the origin 0 of X; while, jamx (z) is supported in some compact
neighborhood of the origin 0 of X. Moreover,

> Jalx)*=1 (2.10)

a€od

holds.
By virtue of (2.4), the following lemma can be obtained immediately:

LEMMA 2.3. Leta € «. Then

T|q > colx|; cq = | min 1—(of )?/(o7)?)V/? >0, 2.11)
a b
bbengﬁyo min

holds for x € supp Jo. In particular, if (j, k) € < satisfies (j,k) ¢ a, then
20| > cqlal
holds for x € supp T,

COROLLARY 2.4. Assume V satisfies (Viwr), with some p > 0. Let a € <, and
m, £ € N U{0} such that 0 < m + £ < 2. Then, for any (j, k) € o such that (j,k) ¢ a,

(@ (VIR VIR (1,209 ], (2) = O((z) ~(7+0)
holds as |x| — oc.

Now, for the sake of simplicity, we restrict to the case where N = 3. Then the following
lemma holds. Roughly speaking, it implies that V.J, with a € 2% is supported in supp J,

min *

LEMMA 2.5.  Suppose N = 3. Let a € <72, that is, a be some pair (j, k). Then

2O > el olal g = (1= (0,)°/ (0,02 > 0, (2.12)

holds for x € supp (Vj(j)k)) with |x| > of /oo

Gmax Amin”

PROOF. It follows from the proof of Proposition 2.1 that (V.J(;/ 1y)(x) is supported in
the complement of

+

Qmin

x|} = {x eX | |£L'(j/’k/)| < c'(j,yk/)|x\}

{.’,C € X ’ J(j”k/)l‘r(j’,k/)| >0

for any pair (j, k'), in which J(;/ 1) (2) is equal to 1, if || > of /o~ . This completes the
proof. O

By using the Yafaev partition of unity { ja}ae o, we will introduce a conjugate operator A
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for K by the first representation of (1.15)

By using (2.10), we have

> Ja(@)Agda(z) = > Ja(@)[ Ao, Ju(@)] + D Jalx)? A

acgl acol acd

Since (ﬁo)“ — Ay = 7(1210)a, we obtain the second representation of (1.15)

A= AO"‘ Z ja(w (AO) }J (CL‘) +LO Z ja(xa)[laja(xa)'

ac ac

By this representation of A, we have

i[Ko, A] = i[Ko, Ag] + Z S1.4+ Lo Z S.q (2.13)

a€gf a€d

with S1 , = i[Ko, ja(x){—(flo)a}ja(x)] and Sz , = i[Ky, ja(xa)flaja(xa)]. In our analysis,
we will regard

i[Ko, A™ = i[Ko, o]+ > SP+Lo Y S5,

acdd acdf

as the main part of i[Ko, A, where ST°, = Ja(2)i[Ko, {—(Ap)a}]Ja(x) and Sy = Jo(4)
i[Ko, Aa)Ja(xa). Then, S14 = S1,, — S, is represented by using the factor (VJ,)(z), and
5’2@ = Sy4 — % is represented by using the factor (Vaja)(a:a). Hence, we have to pay
attention to the properties of (V.J,)(z) and (V,J,)(24). As for (V.J,)(x), we refer to the
following corollary, which can be obtained immediately from the proof of Proposition 2.1:

COROLLARY 2.6. Let a € /0. Then maxgex{(z)|(V.J,)(x)|} can be controlled by
MaXte R Sapsy (1)-

Since maxie g S, (t) = O %amin), (Ko)715; . (Ko) ! is bounded, but is not small.
Roughly speaking, in our strategy, we will show that this is dominated by L0<K0)_1S§na
(Ko)~'/4, and that S, is also dominated by S5, /4. To this end, we refer to the following
lemma and corollary:

LEMMA 2.7. For a € 0, maxy,ex,{(€a)|(Vada)(za)|} can be controlled by
maxte r{tsa,., (t)}
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PROOF. We have only to show the lemma in which J, is replaced by J,. The proof is
quite similar to the above one of Proposition 2.1: If 2, € X, satisfies o, |x,| > o | then

QAmax
zq € UJ forany o € S, because 0, > o, and 0 > 0,,... Then J,(y,) = 1 holds in
a neighborhood of z,. If z, € X, satisfies o |z,| < og...»thenx, ¢ U7 forany o € S,
because 0, < o and 0, < 04,,,.. Then J,(y,) = 0 holds in a neighborhood of x,. Thus

we have only to watch the case where z,, € X, satisfies o, |v,| < of and o |z,| > o

Amax
Consider the rectangle [0, , 0] X [0, ol ]inthe 0,04, -plane. Since 0 — 1 = O(e?)

a

and o —1 = O(1) > O(e?) for sufficiently small ¢ > 0, without loss of generality, we
may consider the following three cases: (a) z, satisfies o |z4| < Opny ando, < o(f|xa| <

Amax

of i(b)xgsatisfies o, <oy |z <of ando, < of|re| < of 5 (c)z, satisfies
w <oy |ze <ot and o |x,| > of . Inthe case (a), we have

T amax/ |%al of O
Ja(@a) = /_ Sa(0a) doa Jr/ / 50(0a)Samax (Tamax) 40,0, A0
[og o og

a amax/|%al Y oalTal

In particular, we obtain

ot

(Vado)(wa) = —Va(|xa|)/ L asa(00)sen (Galzal) do.

Tamax/|%al

The cases (b) and (c) can be also treated similarly. These yield the lemma. U

We note that for any C' > 0, there exist smoothing functions s, ’s satisfying max;c g
{ts4,...(t)} = C. In fact,

1
lim Ct~tdt = 400
e—+0 €
implies the existence of a smoothing function 3, satisfying maxs;eg{tS., ., (t)} = C with
some 0 <o, | <ol | <1 thatis, 3, € C5(R;R) such that

max Gmax

o
amax,1

SUPP Sa,,. C [O';ma,ﬁlv U;max,l}v Samax = 0, Saamax (1) dt = 1.

Tamax,1

Now, for L1 > 0, put o= = ok 1L and s, (1) = Li'5,,,. (L7't). Then we see that

Gmax

Samax 18 also a smoothing function satisfying max;e g{tsq,.., ()} = C witho, < of . In

this paper, we will take max¢c r{tsq,.,. (t)} > 0 as sufficiently small, and L; > 0 as sufficiently
large. Then the following corollary can be obtained from the proof of Lemma 2.7.

COROLLARY 2.8. Fora € &0, maxy,cx, |(Vada)(z4)| = O(L7") holds.

By virtue of these, one can regard i[ K, A]™ as the main part of i[K(, A]. As for the detailed
argument, see the proof of Lemma 5.1 in §5.
The following lemma will be also used in §5.

LEMMA 2.9.  Fora € &, Ju(x4) > Ju(x) > 0 holds.



PROOF. We have only to show the lemma in which J, is replaced by J,. By the definition
of C7.if z € C9, then z, € CY holds trivially, that is, .J7 (z) = 1 implies J¢ (z,) = 1. And,
it is easy to see that there exists an z € X such that J7(z) = 0 and J¢ (z,) = 1. These and the
definition of J, yield the lemma. (]

3. Collection of frequently used propositions

In this section, we collect frequently used propositions which are useful for the proof of the
Mourre estimate for K.

First of all, we state the Nelson’s commutator theorem, which guarantees the self-
adjointness of A in (1.15) (as for the proof, see e.g. Reed-Simon [30] and Gérard-Laba [14]).

THEOREM 3.1.  Let K be a Hilbert space. Suppose that No > ¢ > 0 is a self-adjoint
operator on K and A is a symmetric operator on K such that D(Ny) C D(A) and there exists a
constant C > 0 such that

[Aull < C|[Noul| for u € D(No),
|(Au, Nou) — (Nou, Au)| < C||[No'/?u||®  for u € D(Ny)
hold. Then A is essentially self-adjoint on D(Ny). Denoting by A the unique self-adjoint exten-

sion of A, if u € D(A), then (1 + ieNy)~Lu converges to u in the graph topology of D(A) as
e — 0.

Applying Theorem 3.1 with K = # and Ny = (D) +p?/2+2%/2, we see that A in (1.15)
has its unique self-adjoint extension, which is also denoted by A.

In the usual proof of the Mourre estimate for K, one of the points to be checked is that the
condition

|81‘1<p | Ke™ (K + i) | ) < oo (3.1)
r|<1

is satisfied by a conjugate operator A (see e.g. Mourre [25]). However, it seems not easy to
verify directly that A satisfies (3.1). In order to overcome this difficulty, we need the following
proposition (see e.g. Lemma 3.2.2 and Proposition 3.2.3 of [14]; see also Amrein-Boutet de
Monvel-Georgescu [8]):

PROPOSITION 3.2.  Let K be a Hilbert space. Suppose that K, Ky and Ny are self-
adjoint operators on K such that Ny > ¢ > 0, D(K) = D(Ky) as Banach spaces, and for
z€ C\o(K), (K —z)"! preserves D(Ny). Let A be a symmetric operator on K. Suppose that

Kg and A satisfy D(Ng) C D(Ky), D(No) C D(A),
| Kou|| < C||Noul|| for uw € D(Ny),
|(Kou, Nou) — (Nou, Kou)| < C||No*?u||®>  for u € D(Ny),
|[Aul| < C||Nou||  for w € D(Ny),
|(Au, Nou) — (Nou, Au)| < C||No?u||?>  for u € D(Ny).
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Denote the unique self-adjoint extension of A also by A. Assume moreover that
|(Au, Ku) — (Ku, Au)| < C(| Kul> + [ull?) for u € D(No)

holds. Then the following hold:

(1) D(Ny) is dense in D(K) N D(A) with the norm || Ku| + || Aul|| + [|u]l.

(2) The commutator i[K, A, defined as a quadratic form on D(K) N D(A), is the unique exten-
sion of the quadratic form i[K, A] on D(Np).

(3) K € CL(A), that is, for some z € C \ o(K), the map

R> ks e"A(K — 2)te™ ™4 ¢ B(K)

is C'* in the strong topology of B(K), which is the algebra of bounded linear operators in K.
(4) D(K) N D(A) is a core for K, and the quadratic form i[K, A] on D(K) N D(A) extends
uniquely to a bounded operator from D(K) to its dual space D(K)*, which is denoted also by
i[K, A].

(5) The virial relation holds: For any A € R,

Ex({AD)ilK, Al[Ex({A}) =0
holds. Here Ek (S) stands for the spectral projection for K onto S C R.
(6) Forz € C\ o(K), i[(K — 2)"1,A] = —(K — 2)7Li[K, A](K — 2)~! holds.
(7) For 2 € C \ 0(K), (K — 2)~! preserves D(A).

As for the characterization of the operators in C'!(A), we refer to the following proposition
(see e.g. Proposition 3.2.1 of [14]; see also [8]):

PROPOSITION 3.3.  Let K be a Hilbert space. Suppose that K and A are self-adjoint
operators on K. Then the following are equivalent:
(1) K € C1(A).
(2) For some z € C \ 0(K),
[(Au, (K — 2)" ) = (K — 2) "', Au)| < Cllul]® for u € D(A).
(3) Forany z € C\ o(K),
|(Au, (K — 2)"tu) — (K — 2)"tu, Au)| < Clul|*  for u € D(A).

(4) The following two conditions hold:
(i) There exists some C' > 0 such that

|(Au, Ku) — (Ku, Au)| < C||(K +d)u||* for u € D(K)N D(A);
(9) There exists some z € C \ o(K) such that
{ueD(A) | (K -2)"'ue D), (K-z'uecDA)}
is a core for A.
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From now on, we will give several propositions about the Floquet Hamiltonians under con-
sideration, which are frequently used in this paper:

PROPOSITION 3.4.  Assume V satisfies (Viwr), with some p > 0. Then the spectrum
o(K) of the Flogquet Hamiltonian K is w-periodic, that is, 0(K) = 0(K) + wZ.

As is well-known, the periodic structure of o (K) stated in Proposition 3.4 has been used
frequently in the previous works. One has only to take account of the formula e~ ! K¢t =
K+ w.

PROPOSITION 3.5. (1) (p)2(Dy) " (Ko)~' and (p)(D;)~'/?(Ky)~/? are bounded.

Here (p) = (1+p*)'/2, (Dy) = (1 + (D;)*)"/? and (Ko) = (1 + (Ko)*)"/>.

(2) Suppose that g € 02( ) satisfies supp g C (0, 00), and g, k = 0, 1, 2, are all bounded.
1

Then (p)g(D;)(Ko) =" and (D;)*/?g(D;)(Ko)~" are bounded.

Proposition 3.5 can be proved by the same argument as in the case of the free Stark Hamil-
tonian p2/2 — E -z with E # 0 (see e.g. [9], [17] and Simon [33]). So we omit the proof.
The following proposition says the so-called local compactness property of K.

PROPOSITION 3.6. Let R > 0and z € C \ R. Then F(|z| < R)(Ko — z)~! is compact
on X. Here F(|z| < R) stands for a smoothed one of the characteristic function of {x € X |
|z| < R}, whose definition is given in §1.

In the same way as in the proof of Lemma 3.1 of Yajima [37] and Lemma 4.6 of Mgller [26],
the compactness of

(F(lz| < R)(Ko — 2)")(F (o] < R)(Ko —2)71)"

= F(fal < R0 — 2) ™ = (Ko = 2)}F(Jal < R)

can be shown, which yields Proposition 3.6 immediately. So we omit the proof.

COROLLARY 3.7.  Assume V satisfies (Viyr), with some p > 0. Then the following hold:
(1) Let R > 0and z € C \ R. Then F(|z| < R)(K — 2)~ ! is also compact on ¥ .
(2) Let p > 0 and z € C \ R. Then (z) *(K — z)~! as well as (z) ™" (Ko — 2) 7! is compact
on X .

By using the second resolvent identity
(K—2)"' = (Ko —2)"' = —(Ko— 2) 'V(K — 2)7, (3.2)
Corollary 3.7 follows from Proposition 3.6 immediately.

As is well-known, in the proof due to Froese-Herbst [13] of the Mourre estimate for time-
independent N-body Schrodinger operators, the compactness of f(H)J,(x) — J,(x)f(Hy) is
one of the keys in the induction process with respect to N, where H is the full Hamiltonian, H,
is the cluster Hamiltonian with a € % = & \ {amax}, and f is compactly supported.
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In the case of the Floquet Hamiltonians, f(K).J, () — J,(z) f(K,) is not compact, in gen-
eral. However, by modifying f(K).J, (x)—Ju(z) f (K,) by some appropriate cut-off with respect
to Dy, one can acquire the compactness of the modified one. The following proposition is one of
the keys in the proof of the Mourre estimate for K stated in §5: Before stating the proposition,
we introduce two functions 7, 71 € C°°(R; R) such that 7, is supported in (—2,00), 71 is
supported in (—oo,—1),0 < 71(s) < 1,0 < 7f1(s) < 1, m(s) = 1on [-1,00), Ti(s) = 1
on (—oo0, —2], and 11 (s)% + 71(s)? = 1. Moreover, for S > 0, we put ns(s) = 7:1(s/S) and
7s(s) = 1 (s/9).

PROPOSITION 3.8.  Assume N > 3, and V satisfies (Viyr), with some p > 0. By us-
ing ns and fjs with S > 0, let us introduce the partition of unity ns(D;) and 7js(D;) such
that ns(D;)? 4 7s(Dy)? = 1. Leta € o and f € CP(R;R). Then {f(K)J,(z) —
Jo(x) f(K,)}ns(Dy) is compact on A .

PrROOF. We will prove the proposition by the almost analytic extension method: Take an
almost analytic extension f € C§°(C) of f € C§°(R; R). Then we see that

- 2% SO = K) (@) = Ju(@)(¢ — Ka) ™} dC AL
- [aoc-K

X {—Z(Vja)(l') ‘D= (Aja)(x)/2 + ja(x)la(t)}(c - Ka)_l d< A dg

holds. Since (AJ,)(x) = O((z)~2) and J,(z)I4(t) = O({(z)~*), by Proposition 2.1 and
Corollary 2.4, the last two operators of the right-hand side are compact, by virtue of Corollary
3.7 (2). In order to watch the first operator of the right-hand side, we introduce 79 € C*°(R; R)
such that 79 is supported in (0, 00), 0 < 7g(s) < 1, and 79(s) = 1 on [1, 00), and use the cut-off
no(D;) with respect to D;. By virtue of Proposition 3.5 (2), we see that p(¢ — K,) " *no(Dy) is
bounded, which is the key in this proof. Then it follows from Corollary 3.7 (2) that

( [ 90 - K (T @) P& - K dc) 1o(D2)

is also compact, since (V.J,)(x) = O((x)~!) by Proposition 2.1. Since 75(s) — 70(s) is com-
pactly supported, we see that p(¢ — K,) ' (ns(D;) — no(Dy)) is also bounded. In fact, by
Proposition 3.5 (1), p(¢ — K,)~'(D;)~'/? is bounded, and (D;)'/?(ns(D;) — no(Dy)) is also
bounded, by the compactness of the support of 75 (s) — 70(s). Thus one can show that

( /C BFOC — ) (VI (@) - p}(C — Ka) ™ dC A dc) (ns(Dy) — mno(Dy))

is also compact in the same way as above. These show the proposition. O

REMARK 3.1. We do not know whether f(K).J,(x) — J,(z)f(K,) is compact or not, as
mentioned also in [27]. As will be seen in §5, the cut-off ng(D;) does work effectively in the
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proof of the Mourre estimate for K. Thus this cut-off seems have no disadvantage.

On the other hand, in the case where N = 2, by virtue of (3.2), the compactness of
(Ko){f(K)— f(Kp)} (cf. Lemma 2.2 of [13]), which has no cut-off like 75 (D;), can be proved
in the same way as above. So we omit the proof.

PROPOSITION 3.9. Assume N = 2, and V satisfies (Viyr), with some p > 0. Let f €
C°(R; R). Then (Ko){f(K) — f(Ko)} is compact on ¥ .

4. Two-body case revisited

In this section, we revisit the proof of the Mourre estimate for K with N = 2 throughout
this section. So we suppose N = 2. For the sake of simplicity, we will consider a regular
potential V(1:2). So we impose (Viyr), on V(1) with p > 0.

First we state some properties of A = flo given by (1.13). Unlike in Adachi-Kiyose [5],
the weight in (1.13) is not the signed one (Ao — & — D;)~! but the positive one (D;)5) =
((2w)? + (Dy)*) =12,

LEMMA 4.1.  As fori[Ky, A] and i[i[ Ky, A], A],

i[Ko, Al = (Dy) 50 p* = 2(D4) 5, (Ko — D),

4.1)
i[i[Ko, A}, Al = 2(Dy)3.Sp* = 4Dy)3; (Ko — Dy)

hold. Hence, i[Kq, A](Ko) ™t and i[i[Kq, A], A](Ko) ! are bounded.

LEMMA 4.2.  Assume N =2, and V = V(12 satisfies (Viyr), with some p > 0. As for
i1V, A] and ili[V, A], A),
i1V, A] = i1V, (D)3 A + (D)321V. Ad],
ili[V, A], A] = ili[V, (Ds)3.], (D1) 3 ]AG + (D)2 ili[V, (Dr) 3], Ao) Ao (4.2)
+ (Da) 5 i[iV; Ao), (D)2 ] Ao + (Di)5ililV, Ao), Ao

hold. Hence, i[V, A](Ky)~! and i[i[V, A], A|(Ko)~! are bounded. Moreover, (Kq)~1i[V, A]
(Ko)~! is compact.

By simple computation, (4.1) and (4.2) can be obtained. Therefore Lemma 4.1 follows
trivially. Lemma 4.2 can be shown in the same way as in [5]: For instance, as for [V, A],
by (8;V)(t,z) = O({(z)=P71) and (VV)(t,z) = O({z)~P~1), we see that i[V, A](K) ! is
bounded, by virtue of Proposition 3.5 (1). Here we used

VAR = 5 [ BcaO(C = DIV D¢ = D) dC n G

with i[V, D;] = —9,V, where § € C°°(C) is an almost analytic extension of g(v) = (v);.,
which satisfies [0,3(z)| < Cp(z)"1 7!~ L|{Im z|F with L € N U {0}. Moreover, by virtue of

Corollary 3.7 (2), we also see that (Ko)~1i[V, A](K()~! is compact.
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One can show the following theorem and corollary:

THEOREM 4.3.  Suppose N = 2. Assume V satisfies (Vivr), with some p > 0. Put

O = opp(K*™) = opp(Dy) = wZ, 6= U opp(K*) = O Uopp(K).
acol
Let \y € [0,w). Then the following hold.:
(1) Pur
do(N) =dist(A,0), di(\) = dist(A,© N (—o0, A])
for X € R. Note do(N\) < di(X). Suppose \g € [0,w) \ O, that is, \g € (0,w). Take ¢ as
0 < 0 <do(Xo)/2. Then, for any fr, s € C3°(R; R) supported in [Ng — &, Ao + 0],

Frad K, Al oK) = B0, iy 4 3)

V

holds with some compact operator Cy on ¥ . For \g € [0,w), d1(Xg) = Ag holds.
Suppose \g € [0,w) N O, that is, \g = 0. Take § as 0 < & < w/2. Then, for any
Fro.s € C3°(R; R) supported in [Ag — 6, Ao + 0],

Fro.s (K)I[K Al fag 5 (K) > Co (4.4)

holds with some compact operator Cy on X .

Hence, for any & such that 0 < § < 0, opp(K) N (Ao — 5, Ao + 0) is finite, and that the
eigenvalues of K in (Ao — 5, \o + 5) are of finite multiplicity.
(2) Suppose Ao € [0,w) \ 6. Take € as 0 < € < dy(Mo) — do(Mo)/2. Then there exists a small
de.1 > 0such that 0.1 < do(Xo)/2 and for any fr,s € C§°(R; R) supported in [Ag — 6, Ao + 9]
with) < § < (5571,

. di(Xg) — 0 — ¢
Pron K, Alf, 5() > W) =07 €0 (gey2 4.5)
holds. Suppose s > 1/2 and 0 < 6 < d¢,1. Then
sup  [(A)THE — 2)THA) e < o0 (4.6)
Re ZE[Ao—;z(,)Ao—‘r(S]
Im z

holds. Moreover, (A)™%(K — 2z)"Y(A)™% is a B(* )-valued 0(s)-Holder continuous function
onz €S, ;s withsome0 < 0(s) < 1. And, there exist the norm limits

(A) 75 = (\=£10))7HA) ™ = Tim ()75 (K — (A 2)) 71 (A)

in B(X) for any X € [\ — 8, Mo + 6], (A)~5(K — (A =£i0)) " (A)~* are also 0(s)-Holder
continuous in \.

COROLLARY 4.4.  Assume V satisfies (Viyr), with some p > 0. Then the following hold:
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(1) The eigenvalues of K in R\ © can accumulate only at ©. Moreover, O is a countable closed
set.
(2) Let I be a compact interval in R\ ©. Suppose 1/2 < s < 1. Then

sup [|(z) (K — 2)""(z) ") < o0 4.7
Rezel
Im 2#£0
holds. Moreover, (x)~*(K — 2z) = x) ™% is a B(X)-valued (s )-Holder continuous function on
z € S1,+. And, there exist the norm limits

()" 5(K — (A £40)) " Hz) ™ = lim (2) (K — (A £ ie)) Yx)~*

e—+0
in B(X ) for X € I. (x)~*(K — (A £i0)) " (z)~* are also 0(s)-Holder continuous in .

We will sketch the proof of the estimates (4.3) and (4.4) only. Thus Theorem 4.3 and
Corollary 4.4 can be shown by the standard argument in the Mourre theory. In particular, for the
proof of Corollary 4.4, we use the argument due to Perry-Sigal-Simon [29], and the boundedness
of A(K — \g — i)~ *{x)~1, which follows from Proposition 3.5 (1).

PROOF OF (4.3) AND (4.4). Let \g € [0,w). For a while, take § as 0 < ¢ < w/2.
Denote by fy,,s a function in C§°(R; R) such that supp fi,6 C [Ao — 0, Ao + J]. Since
(Ko)~ Y[V, A]{Ko)~* is compact by Lemma 4.2, we see that

Iro,s (EK)i[K, Al fag s (K) = fag,s(K)i[Ko, A] fre,6(K) + C1 (4.8)

holds with some compact operator C; on % . Since i[Kg, A](Ko) ! is bounded by Lemma 4.1,
and (Ko){fx,.6(K) — fx,,6(K0)} is compact by Proposition 3.9, we obtain

Fros (K)i[K Al fag 6 (K) = fag.6(Ko)i[Ko, Al fx,,6(Ko) + C2 (4.9)

with some compact operator Cy on .#. Let .% : L2(T) — (*(Z) be the Fourier transform
which is defined by

T
Flgl(n) = Tfl/z/ g(t)e "t dt, neZ;, gelLl*T).
0

Then D; becomes the multiplication by nw on £2(Z) for n € Z, that is, Dt can be decomposed
into the direct sum @, ., nw, via the Fourier transform .%. By using .7, f,.s(K0)i[Ko, A]
Fro,6(Ko) can be decomposed into the direct sum

pf)\o nw+p /2) pf)\o nwép/z
D i+ apm = B (o oy ~ G0

We first consider the case where A\ € [0,w) \ ©. Take § as 0 < § < do(Ng)/2. If n < 0,
then the fibered operator Io(nw) can be estimated as

2{(A\o — nw) — &}
((20)? + (nw)?)*/?

Io(’l’LUJ) Z f)\gfnwﬁ(p2/2)2
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2{(h0 + [nlw) — 6} 2o do-

6
— 2 2 _ 2 2 2,
20.)—1—|n|w f)\O nw,é(p/ ) f,\o m‘_,75(p/ ) :

while, if n > 1, then Iy(nw) = 0. Here we used that that if n > 1, then \g — nw + 6 <
Ao —w+90 <N —w+do(Ng)/2 < 0holds. Then we obtain

Fros(Ko)ilKos Alfas(Ko) = 20=0 (ko).

It follows from this, (4.9) and the compactness of (Ko){ f,,s(5) — fr,,6(Ko)} that (4.3) holds.
Here we used d1 (M) = Ao.
We next consider the case where Ay € [0,w) N O. Take d as 0 < § < w/2. Then

Fro,s (Ko)i[Ko, A] fr,,5(Eo) >0

holds. In the same way as above, it can be shown easily that (4.4) holds. (|

5. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. As in §2, we will show the estimate (1.16) only.
(1.16) yields the Mourre estimate (1.17). Thus Theorem 1.1 and Corollary 1.2 can be shown
by the standard argument in the Mourre theory. Throughout this section, we assume V satisfies
(Vavr), with some p > 0.

Take the Yafaev partition of unity {ja}ae o> and introduce the operator A by (1.15). By the
second representation of (1.15), we have (2.13):

i[Ko, Al = i[Ko, Agl + > S1a+Lo Y Soa

acd acdY

with S o = i[Ko, Ju(2){—(Ap)a}Ju(z)] and Sa., = i[Ko, Ju(24)AaJa(a)]. Then we obtain
the following estimate for fi, s(K)i[Ko, A]fr,.6(K):

LEMMA 5.1.  Let Ao € [0,w) and § > 0. Then

f)\o,ts(K).[KOv ]f)\() ( )
> fro,6(K) (D) 2,0%) fxo 6 (K)

+ ) ros () Ja(@)(=(De) gy (pa)*) Ja (@) fre.6 (K)
acey G.D

50 S s () T30 (D)5 (00)?)Ta(e) fre.5 (K)

+ Fros(K){O(Lg ") + LoO(Ly )} fae s(K) + C

holds with some compact operator C on ', where L1 > 0 is the parameter which comes from
Corollary 2.8.

PROOF. Lemma 4.1 yields i[ Ko, Ag] = (D;)5.}p? and i[Ko, —(Ao)a] = —(Ds)gt (pa)?.
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We first watch S , = i[Ky, ja(ma)/_laja(xa)} with @ € 7). One can show easily that

S9.q = 2Re [{Re (p, - (Vaja)(xa)
= 2Re [{Re (pa : (vaja)(xa)

}Aa a(m(l)] + jll(xa)(<pa>_2(p(l)2)ja(xa)

is bounded. By simple calculation, A, can be recognized as , - pa(pa) 2 up to the bounded
error. Then the main part of S; , can be recognized as

(Pa{pa) ™) (Ja(za) + Lg*)* (palpa) )"

~ - (5.2)

by neglecting errors of the orders O(Ly?) and O(L; "), where we used the notation (p,)? =
Da * Pa = Pa(Pa)* and z, - o = x4(pa)*. We also used Corollary 2.8. Introducing a bounded
operator B, o = (pa(Pa) ") (Ja(a) + Lg?), the first term of (5.2) is written as BaoB; o By
virtue of Lemma 2.7 and the remark directly below it, (5.2) can be estimated from below by
(3/4)BooBLy.

We next watch S; o = i[Ko, Jo(2){—(Ao)a}Jo ()] with a € 270. By virtue of Proposition
3.5 (1), one can show easily that

Sta = 2Re[{Re (p- (Vo) (@) H=(Ao)a} o ()] + Jo(2)(—(De) s (Pa)?) Ju()

-1

is Ko-bounded. By simple calculation, (Ag), can be recognized as x, - Da(Dt)y, Up to the
bounded error. Then the main part of S; , can be recognized as

Ja(@)(—~(De) 2 (Pa)*) Ja () = 2Re [p(Dy) 5 (Vo) (@) (2 Ja()) (pa) ] (5.3)
by neglecting Ko-compact errors. Introducing a Kop-bounded operator B, 1 = p(Dt>2*w1

(Vja)(x)*(xaja(x))<pa>(ja(xa) + L62)71, we see that

— 7 * 7 * L *
— 2Re [p(Dy) 5, (Vo) (2)* (2ada(2)) (pa)*] + fBa,oBa,o
VL 2 VL 2 oy
= <°BaoBa1>< °Bao — Bal) — —B..1B!,
2 7 VL 2 7 Ly Ly &%
4
> — —DB.,1B!,.
= LO ,1Pa,1

Here we note that (K¢) ' B, 1 is bounded in Lg, because 0 < ja(a:)(ja(xa) + Laz)_1 <1
by Lemma 2.9. Since (3/4)B,oBo — (1/4)BaoBiy = (1/2)BaoBt, and B, oBl, =
Ja(2a)((pa) "2 (pa)?) Jala) + O(Lg?) + O(L7") by Corollary 2.8, we obtain (5.1). O

This estimate (5.1) is important for the sake of obtaining the Mourre estimate for K. Since
(Dt) 5.1 (pa)? is Ko-bounded by Proposition 3.5 (1), for relatively large Lo > 0,
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Fro6(B) Ja(@)(—(De) 25 (Pa)?) Ja () fro.5(K)

Lo N g , (5.4)
+ Zf/\o,é(K)Ja(xa)(<pa> (Pa)”)Ja(a) fro,6(K) = C
holds with some compact operator C*, on ¢, for each a € 7. Here we used .J,(z,) > Jo(z) >
0 by Lemma 2.9, and (V,.J,)(z) = O({(z)~') by Proposition 2.1, which is Ky-compact by
Corollary 3.7 (2). This estimate (5.4) will be used later.
On the other hand, by the first representation of (1.15), i[V, A] can be written as

iV A= Y Ja(@)ilV, Aol Ja(2)

acd\ Y
+ Z ja(x)z[‘/a (AO)a]ja(m) + LO Z ja(-ra)i[Ia7Aa]ja(xa)
acoty acHY

by i[V¢, A, = 0 for a € <. Then we obtain the following estimate for fy, s(K)i[V, A]
f)\oﬁ(K):

LEMMA 5.2.  Let \g € [0,w) and § > 0. Then

Fros (KNilV, Alfag s (K) = > fags(K)Ja(@)i[V®, (Ag)"Ja(@) fro.5(K)
aECJO (55)

+ Fro.s (K){LoO(Ly ")} fro 5 (K) + C”

holds with some compact operator C' on # ', where Ly > 0 is the parameter which comes from
Corollary 2.8.

PROOF. By virtue of Proposition 3.6 and Corollary 3.7, one can show easily that
(Ko) ™' | Y. Ja@)ilV AglJa(z) + > Ja( Ag)Ja(z) | (Ko)™h  (5.6)
acd\ Y acd?

is compact. Here we used the compactness of supp Ja
that for a € 270,

and Corollary 2.4. Moreover, we see

max

Ju(24)i[la, Ag)Ja(z4) = O(LT?) (5.7)
holds, by virtue of Lemma 2.3. Here we used that ja(xa) is supported in {xa € X, f |za| >
(04....1/2)L1}. Therefore we obtain (5.5). O

By the above argument, the following lemma can be obtained as Lemmas 4.1 and 4.2:

LEMMA 5.3. Assume V satisfies (Vwr), with some p > 0. Then i[Ko, A]{Kq)™*
and i[V, A]{Ko)~! are bounded. This yields that i[K, A|{(Ky)~! is bounded. Moreover,
(Ko)~Yi[i[ K, A], A]{Ko) ™! is also bounded.

Based on these, one can show (1.16) as follows:
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PROOF OF (1.16). Suppose A¢ € [0,w) \ © and € > 0. Put

0= J ow(E®), do(N) =dist(\,0), di()) = dist(),0 N (—o0,\])

a€ Ay

for A € R. For a while, take 6 as 0 < § < dy(Ag)/2. Then both A\g — § > Ay — dp(Ag)/2 > 0
and Ao + 6 < Ap + dp(Ap)/2 < w hold. By Lemmas 5.1 and 5.2, we have

f>\075(K)i[K7 A]f)\oﬁ(K)

-1 max{—1,—p} (5.8)
> 0.6 (B)Tofrg.6(K) + fao.6 (K){O(Lg ") + LoO(L; )} fro.s (K) + Cy

with some compact operator C; on ', where

_ Lo :
Ty =T, + aezﬂé) (TQ,a + 5 T3, + T4,a) ;
Ti = (D)5yp?s Tra = Ja(2)(—(Di) 3 (a)?) Ju(@),

T3,a - ja(xa)(<pa>72(pa)2)ja(xa)a T4,a - ja(x)i[vav (AO)a]ja(x)

By using the partition of unity 7ng(D;) and 7js(D;) with sufficiently large S > 0 such
that ns(D¢)? + 7js(D¢)? = 1 introduced in Proposition 3.8, we will decompose the term
f)\075(K)T0f,\075 (K) into the sum

Fro.6(B)ns(De)Tons (Di) frg,s(K) + fao.s(K)Ns (D) Tons (D) fag,s(K)

up to the errors of order O(S~1), which come from [Ty o, 7s(D¢)], [T4.a,715(Dy)]’s.
We first watch fy, s(K)7is(D¢)Tofis(Dy) fa,.s(K). Taking account of Ty = 2(D;)5}

(Ko—D;) by Lemma 4.1, we will focus on (D, ).} (—D;). Via the Fourier transform .% : L2(T)
— (%(Z) introduced in §4, (D;)5.} (—D;) can be decomposed into the direct sum

D @t pae

nez
Suppose n € Z such that n < —S < 0. Then we note

—nw [n|w 2w

> S R
((2w)2 + (nw)?)1/2 = 2w+ |n|w 2w + |njw

By using this and that K is K-bounded, one can obtain easily
Fro8 ()15 (Do) Taiis (D) fag 6 (K) 2 (24 O(S7™1)) fag 6 ()15 (D1)? frg,s (K).

By using (5.4), {(Lo/2) — (Lo/4)}T3,c = (Lo/4)T3,. > 0 and 7js(Dy) Ty o7s(Dy) = O(S™1)
for a € 47, one can obtain
Fr0.6(K)11s (D) Tons (De) .5 (K)

> (24 O(S™) fy 5 (E)15(D0)? fro 5(K) + C 69
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with some compact operator C on 7.
We next watch fi, s(K)ns(D:)Tons(De) fr,,s(K). By the IMS localization formula for

{ja}aegf

Iro,s (F)ns(Dy)Tins(Dy) frg,s (K)
= Z Fros(E)ns(Dy) Jo ()T Ja(2)0s(Dy) fa,6 (K) + Cs

acof
= f)\(h(s(K)T’S(Dt)janﬁn (‘T)Tl jamin (m)US(Dt)f/\o,é(K)

+ Y Fros(Ems(De) Jo(2) Ty Ja(@)ns (D) f.6(K) + C4
a€a

with some compact operators C5 and C4 on .#. Here we also used the compactness of
supp J,,, .. and Corollary 3.7. Then we obtain

max

Fro,8 (B)ns(De)Tons(De) fre,6(K)
= 0,6 (FK)Ns (D) T, a0 M5 (Dt) frg,s (K)

(5.10)
L
2 FraalBms(D0) (Tt 5T+ Tan ) (D0 s ) + €5
acdY
where T4 o, = Jap (2)((Dt) 20 0?) Jape (), and Tf , = Ja(z)((D4)5) (p*)?) Ja(x) with
a € o). Here we used p? + {—(pa)?} = (p*)%
As for the term f,,5(K)ns(Dt)T1,a0:.715 (Dt) fro,6 (K), the estimate
Fro.8 (B8 (De) T 00015 (Dt) frg,6 (K)

(5.11)

A1 g (Mo) = 0 . .
> Dats Q020 p, 1) (1D o (0) 5 () + s,

holds with some compact operator Cy ;. on ¢, where

dy a0, (A) = dist(A, O, N (=00, A);  Oa,.. = opp(Dy) = WZ,

Gmin Gmin

for A € R; as for the term f/\o,é(K)nS(Dt)(Tll,a + (LQ/2)T37@ + T47a)’l75'(Dt)f)\075(K) with
a € oy, the estimate

L
Fro.s(K)ns(Dy) <T1/,a + 70T3,a + T4,a) N5 (Dt) fro,6(K)

- (5.12)
> B1.a(Ao) =0 —€/2

» Fros () Ja(@)n5(De)* Ja () frg,6 (K) +O(S™1) + Cua

holds with some compact operator C'y , on %", where
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dyo(N) = dist(X, O N (=00, A]); Oy = wZ U oy, (KY),

for A\ € R. Here we used that a € &) is a pair, since N = 3. The estimates (5.11) and (5.12)
will be shown later as Lemmas 5.4 and 5.5. Let us continue the proof of (1.16), on the assumption
that (5.11) and (5.12) has been obtained. By using (5.10), (5.11) and (5.12), one can obtain

Iro.6(K)ns(Di)Tons (D) frg,s(K)

1 g (Mo) — 8 . .
> Wtwia Q) =0 16) o (@D e () ()

by DRI ZOZE ) uans (D) () frg () + O(S ™) + O
ace

> Y MO g T (D) s (K) +O(5™) + G
a€E

with some compact operator C5 on 7. Here we used dy(A\g) = min{c/l\lﬂ(/\o) | a € }.
Moreover, by using (2.10), the compactness of supp Ja

Iro.6(K)ns(Di)Tons (D) fag,s(K)

— 6 — € ~ ~
Z Z dl(AO)u)—/QfAO#;(K)Ja(x)ns(Dt)z‘]a(x)f)\076(K) + O(Sil) + Cé (513)
acd

_ dl(/\O) —5—6/2

w

and Corollary 3.7, we have

max ?

Fro.s (K)ns(De)? fag,s(K) +O0(S™1) + Cf

with some compact operator Cf on &7.
By virtue of (5.8), (5.9) and (5.13), we obtain the estimate

Iro.s (K)i[K, A] fxy,5(K)

> (24 O(S™Y) fro.s (B )i (D) frg 5 (K)
DO =T (KOs (D0) s ()

+ Pros (F){O(LGY) + LoO(LY 171 4 0(S7 )} fag 6(K) + Co

with some compact operator Cs on </, by sandwiching this estimate by two fy, s(K)’s with
smaller 0 > 0 if necessary. This estimate yields

Fros (VLK Al fry 5(K)
> BR0) Z0Z €2, gy (KD (5.14)

w
+ Pros E){O(LGY) + LoO(LT 7P 4 O(S™H)} fag 6 (K) + Ce.

Here we used that (d1(\g) — 6§ — €/2)/w < 1 < 2+ O(S™1) holds for relatively large S > 0.
After taking Lo > 0 and S > 0 as sufficiently large, we have only to take L; > 0 as sufficiently
large for the sake of obtaining the estimate
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—€/2
w

ProsBO(Lg ") + LoO(LT™ 1) £ O(S ™)} fag s (K) = —= g o (K.
This and (5.14) yield (1.16). O
Now we will show the estimates (5.11) and (5.12).

LEMMA 5.4.  The estimate (5.11) holds with some compact operator Cy g, .. on Jt .

PROOF. The term f, s(K)ns(D)T1, 0,715 (D) fre,6 (K) can be written as

Fro,s (K15 (D) T 005 (Dt) fro,5 ()
= jamin (x)f)\o,!s(KO)nS(Dt)(<Dt>go}p2)n5(Dt)on,is(KO)jamin (‘T) + Czll,am;n

with some compact operator Cj , . on % . Here we used Proposition 3.8 and K,,,,, = Ko. As
for the factor
Fr0.6(Ko)ns (D) (D) 300% )05 (D) o 6 (Ko)
= 05(Dt) fr0,6(5K0) (D) 200%) Fro.6 (Ko)ns (Dy),
it follows from the estimate
_ Ao — 9
Fro5(Ko)((D1)300%) Fg.s(Ko) = =——= fr, 5 (Ko)? (5.15)

w

which can be obtained in the same way as in §4 that

Fro.5(K0)ns (De) (D) 5,0* )0 (De) fr 5 (Ko)
> DO 20 p (Ko s (DY P ()

holds, since Elﬂmm()\g) = X\o. By sandwiching this estimate by two .J,_. (x)’s, and using
Proposition 3.8, we obtain (5.11). U

LEMMA 5.5. Leta € ). The estimate (5.12) holds with some compact operator Cy
on X .

PROOF. The term f,\075(K)775(Dt)(T{7a + (Lo/2)T3,a + T4)a)’l7§(Dt)f,\075(K) can be
estimated as

L
Pros(K)s(D2) (T 50T+ Ta ) 1s(D1) oK)

(5.16)
L
> f)\m(s(K)’r]S(Dt) <T1/,a + TOTZg,a + T4,a) nS(Dt)fkmé(K)’

where

Té a = ja(x)(<pa>72(pa)2)ja(x)~

)
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Here we used J, () > J, () > 0 by Lemma 2.9.
As for the term f, 5(K)ns(Dy)(T1 , + (Lo/2)T3 o + Ta,a)ns(D¢) fro,6(K), we have

ro.s (FK)ns(Dy) (T1 ot L20T3 o+ T4 a) ns(D¢) fre,s (K)

= Ja (@) fro.6(Ka)ns(Da)il K, (Ao)*1ns (D) fxo.5(Ka) Ju ()

(

S Tal@) frs s (Kans (D) (pa) (2?05 (D) fro s (K Ta@) + Chs (512,

~ (A0)} g (Ka)s(Di) )
(

h

= Ja(w)ns(Dt)on,é( a)i[KY,

20T @05 (D0) Fro (Ka) () (pa)) oo s (Kns (D) ()
+0(5 )+ 0,

with some compact operator C:L o on . Here we used
Tll,a + Ty, = ja(x)i[Ka, (AO)a}ja(m)v

and Proposition 3.8.
As for the factor (Lo /2) fry.6(Ka)((Pa) "2(Pa)?) fre.6 (K4 ), via the Fourier transform .7, :
H, — F,, this can be decomposed into the direct integral

/® Far(ha) i Far(a) = 20 Foy () frooa s (K92, Fat(Ag) = —220
0,00) a,1{Aa a; 'a,1\Aa) = 9 a,1\Na)Jxo—Aa,0 » Ha,l\Ma _1+2>\a.

On the other hand, as for the factor f, 5(K.)i[K®, (A0)%]fx,.s(Ka), via the Fourier transform
Fy » Hy — I, this can be decomposed into the direct integral

@
/[ Fao(ha) @ Faoha) = froonss (KD, (A0)")frgons.s (K°).

0,00)

Then we study the sum of the fibered operators Fy,(A\,) = Fy0(Aa) + Fu,1(A,). Here we note
that there exists a unique x, € @a N [0, Ag] such that 671@()\0) = Ao — Kq > 0, since \g € O.
We first consider the case where \, > w. Since i[K¢, (Ag)?] = ((Dy)s, 1/Qp“)((D,5>2_w1/2p‘1)*
with K¢ = D; + (pa)?/2, and

iV, (A9)%] = Re {({Dy)a)*p®)(B>1)* — B2}

with B! = (D)5 i[(Dy) 9w, VD)5 22 and B2 = (2% - (VAV2))(D,)3.} by (4.1) and
(4.2), we have

P 1
i[Ka, (AO)LL] > _Z(Ba,l)(Ba,l)* _ ReBa,Q.

Here we used ((D;)5/*p® + B4 /2)((Dy)5.*p® + B®1/2)* > 0. Since both B®! and B2
are bounded by assumptlon, there exists some Ma € R such that
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Fa,O()\a) > Maf/\o*Aa,ts(Ka)Q

holds. On the other hand, by the monotone increasing of FaJ (M) in Ag, Fa,l (Aa) > Foi(w) =
2w/(1 + 2w) holds, which implies

Lo ~
Fa,l(Aa) Z %Fa,l(w)fkg—)\aﬁ(Ka)Q

holds. By taking Ly > 0 so large that M, + (Lo/2){2w/(1 4+ 2w)} > 1, thatis, Ly > (1 —
My)(1 4 2w)/w,

Fa()\a) = Fa,O(/\a) + Fa,l(Aa) > on—Aa,é(Ka)z

holds. We next consider the case where 0 < A\, < w. By virtue of the arguments of [13] and
the results of §4, we see that there exists a small d. , > 0 such that §. , < dp(A9)/2, and if
0 < § < 6c,q, then

Z C/l\l,a()\o — )\a) -0 — 6/2

w

Fa,O()\a) f>\0*>\a75(Ka)2

holds for A\g — A\, & @a; while,
—€/2
Faoa) 2 — L2 sk

holds for A\g — A\, € éa. Here we used that \g — A, belongs to the compact interval [Ag —w, Ao],
which makes the key argument of [13] available. If \y — A\, > kg, thatis, 0 < Ay < A\g — kg <
Ao < w, then

Mo —Na) — ke —0—€/

2 a
" Fro—ra.0 (K%)?

Fa,O()\a) Z

holds because A\g — A\, & éa. Since Fa,o()\a) =2X./(1 +2X,) > 2X,/(1 + 2w), by taking L
so large that (Lo/2){2Xa/(1 + 2w)} — A /w > 0, that is, Ly > (1 + 2w)/w,
> )\0 — Rq — 0 — 6/

2
Fo(Aa) > - Fro—ra,s(K)?

holds. Now we focus on the case where \g — A\, < kg, thatis, w > A, > Ag — k4. As for
Fo0(Aa), evenif Ao — A, & O,, we will utilize the estimate

—0—¢€/2
Fa,O(Aa) > T/f)\o—Amé(Ka)Q

consistently. By the monotone increasing of Fa,l()\a) in A, F‘QJ()\Q) > le()\o — Rq) =
2(Xo — Ka)/{1+2(No — Ka)} = 2(Ao — Ka)/(1 + 2w) holds, which implies

@ 2()\0 — Iia)
2

Fo1(Ma) >
1(da) 1+ 2w

Fro—an.s(K%)?
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holds. By taking Ly so large that Lo /(1 + 2w) > 1/w, thatis, Ly > (1 + 2w) /w,

Ao —Kg— 0 —€/2 o
Fy(ha) > 2 5 / Pro-r..s(K“)?

holds. By combining these estimates, we obtain

ro.s(Ka) (i[Ka7 (Ao)*] + L0(<pa>2(pa)2)> Iro.s(Kq)

2
N dia(No) — 6 —¢/2
w

(5.18)
Fro.s(Fa)?

since @7Q(A0) = Ao — Kq < w. By sandwiching (5.18) by two ns(D;)’s and ja(a:)’s, and using
[Ns(D+), fre.6(Ka)] = O(S™1) and Proposition 3.8, it follows from (5.17) that

L
Fro.s(K)ns(Dy) <T1,,a + %Té,a + T4,a) Ns(D¢) fro,5 (K)

> d1,a(>\0)o: §—¢/2 Ja(2)15(D¢) fro.5(Ka)*ns(Dy) Ja(z) + O(S™) + Ch

dia(N) — 0 —€/2 -
o w

Ja (@) Fre,s(Ka)ns(De)? fro.s(Ka) Ja(x) + O(S™") + Ch,

_ diaMo) =3 —¢/2
o w

Fros (B) Ja ()15 (De)* Ja(2) fre,5(K) +O(S™H) + €Y,

holds with some compact operators C} , and C{ , on .#". This estimate and (5.16) yield (5.12).
]

6. Minimal velocity estimates

As was shown by some works of Sigal-Soffer (see e.g. [31, 32]), by virtue of the Mourre
estimate, one can obtain the so-called minimal velocity estimate, which is one of the useful
propagation estimates for the time evolution of scattering states. As for the Floquet Hamiltonian
K under consideration, we have obtained the Mourre estimate (1.17). The aim of this section
is to show Theorem 1.3, by utilization of (1.17). As mentioned in §1, Corollary 1.4 is a direct
consequence of Theorem 1.3, by virtue of the arguments of Yajima-Kitada [40] and Mgller-
Skibsted [27].

We first state the abstract theory for getting the minimal velocity estimate of the integral
type, by following Gérard-Laba [14]. The theory was initiated by Sigal-Soffer. The following
proposition is Proposition 4.4.1 of [14] with P = 1 and I(0) = 0:

PROPOSITION 6.1.  Let K be a Hilbert space. Let K and A be self-adjoint operators on
K. Assume that K € C*(A) for some > 1. Let A C R be an open interval such that

Ex(A)i[K, A]EK(A) = coEk (A)

holds for some ¢y > 0. Then for any f € C§°(R; R) supported in A
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2
do
" < Cllullk,

/Oo HF (A <c¢p —5) e K f(K)u
1 o

K

hold for any € > 0.
By virtue of Proposition 6.1 and the Mourre estimate (1.17), one can obtain the following:

PROPOSITION 6.2.  Suppose that the hypotheses of Theorem 1.3 are satisfied. Then

o A , > do
[ (5 <dtw) psweesa] L <cp, 6

1 ag w g
s-lim F° (f < cg(AO)) Pros(K)e K =0 (6.2)

hold, where
di(XNg) — § — 2¢
co(Ao) = co(Aos€,0) = %7
dy(Xg) — 0 —
0 < ch(Xo) = ch(Noj€,0) = w < ¢o(Mo)

for sufficiently small € > 0.

However, in the study of the problem of the asymptotic completeness, we have to translate
(6.1) into a certain minimal velocity estimate with the localization of the propagation with respect
to z € X. To this end, we need the following lemma and proposition (see Lemma 4.4.8 and
Proposition 4.4.9 of [14]). Lemma 6.3 is used for proving Proposition 6.4:

LEMMA 6.3. Let K be a Hilbert space. Let K, A and B be self-adjoint operators on K.
Let A C R be an open interval. Assume that
(1) K € CH(A)NCY(B) and B € C*(A);
(2) [B,Al(B +i)" ' and (B + i)t A(K + i)~ are bounded;
(3)B>1/2;
(4) —eB < f1(K)Af1(K) < ¢B holds for some ¢ > 0, and f1 € C§°(R; R) such that f1 =1
on A.

Then, for any co > 0, there is an €9 > 0 such that for any f € C3°(R; R) supported in A

F <f < 60> F(K)F ('O_A| > Co) =0(c™)

holds.

PROPOSITION 6.4.  Let K be a Hilbert space. Let K, A and B be self-adjoint operators on
K. Let A C R be an open interval. Suppose that the hypotheses of Proposition 6.1 and Lemma
6.3 are satisfied. Then, there exists an g > 0 such that for any f € C5°(R; R) supported in A

37



2
do
" < Cllullf,

[ (G =],

s-lim F' (B < 50> e K F(K)=0
o

T —r 00

hold.

In the case where K is a time-independent Schrédinger operator p? /2 + V, one can take B
as (). In fact, K is in C*((z)), because i[K, (z)] = Re {(x/(z)) - p} is K-bounded. However,
in the case where K is a Floquet Hamiltonian D; + p?/2 + V (¢), K is not in C*((z)), even if
V (¢) is independent of ¢. In fact, i[K, (x)] = Re {(x/(x))-p} is not K-bounded. In our analysis,
by modifying (1 + (D;)~'/222(D,;)~1/2)1/2, we will take B as (1.21)

B=(1+ Bo+ 31)1/2; By = <Dt>_1/2Q0(w)<Dt>_l/27

Bi= Y Bia Bia={pa) ' Qualza)(pa)
aegf[?

where

Q@)= Y @)+ Y @ h@)?=2" = Y (@) ul@)?,

ac A\ acdy acd)
Ql,a (xa) - (xa)Qja (xa)2a

with a € 7). Then we will show Theorem 1.3 as follows:

PROOF OF THEOREM 1.3. We first show that K is in C*(B), that is, (K — i)~ %i[K, B]
(K +i)~" is bounded, by virtue of Proposition 3.3: Let g1 /2 € C*°(R; R) be such that gy ;2 > 0,
g1/2(v) = 0for v < 0, and gy /2(v) = v'/2 for v > 1. Take an almost analytic extension
G172 € C°(C) of gy /2, which satisfies [0, 71 /2 (z)| < Cp(2)Y/?~1=F|Im 2| with L € NU{0}.
Then, by virtue of the commutator expansion formula (see e.g. [12]), [K, B] = [K, g1/2(B?)] is
represented as

1 -
(K. B] = g{},(BY)[K, B?) + Ry = S B™'[K, Bo + Bi] + R};
1 — o _ _
By =50 | 92O = BY)HK, B, B)(C = B) ™ d Al
We will show that B—1i[K, Bo)(K 4 i)~', B~Yi[K, B; 4] and R}, are bounded.

We first consider i[K, By] = So,0 + So,1 + So,2 with Sp o = (D) "1 (VQo)(z) - p, So.1 =
—i{Dy) " (AQo) () /2 and Sp o = i[V, (Ds) Qo (). Trivially, (14 Bo)~/2(D;)~/20((x))
is bounded. By Proposition 3.5 (1), (D;)~/2p(K +i)~! is bounded. Thus (1 + By)~'/2Sp
(K + i)~ is bounded. Since (AQo)(z) is bounded, Sy 1 is bounded trivially. By (Viygr), with
p>0,forany b € A,

@V (t,a")Qo(x) = Y (9VO)(t, 2”2 Tu(2)® + D (9,VO)(t,2") (@) Ju(w)?
ac A\ acat)
a#b
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(&eVb)(t wb)(:vb)ij(w)Q

= O(1) e (@)* + D O(( a(2)? + O((&")1 =) Jy(x)”
a€
a#b
holds, which implies ~(8tVb)(t,xb)Qo(ac) = O((x)ymax{1=,.0})  Here we used the

and Corollary 2.4. We note that (1 + By)~'/2(D,)~'/?
—max{1—p,0}/2

compactness of suppJg,,...
O((z)™a{1=,.0}) is bounded; more precisely, by complex interpolation, (14 By)
(Dy)~ max{l=p.0}/2Q ((z)max{1-r.0}) is bounded. In particular, B~ ™2x{1=,.0} 5 , is bounded.
These can show easily that B~i[K, By|(K + i)~ is bounded.

In the same way as above, we consider i[K, Bl’a] = S140 + S1,41 + S142 With
St,a0 = <pa>71(an1.,a)(xa) 'pa<pa>71’ Sta1 = _7;<pa>71(Aan,a)(xa)<pa>7l/2 and
Si.a.2 = i[la, B1,a]. Here we used i[V* By ] = 0. Since (14 By,a) "/ (pa) 1 O((x,)) is
bounded, (14 By ,)~ /25 4.0 is bounded. Since (A, Q1.4)(x4) = O(1), S1.4.1 is also bounded.
Now we watch S 4 2. As for the commutator [h(z), (p,) '], where h(x) is the multiplication by
h(z), we use the following commutator expansion formula: Let g_; /» € C°°(R; R) be such that
g-1/2 > 0,9_1/2(v) = 0forv <0,and g_yo(v) = v~'/2 for v > 1. Take an almost analytic
extension §_y,o € C*(C) of g_ /2, which satisfies |8zg,1/2(z)| < Cp(z)~ V¥ 1= LIm 2| L
with L € N U{0}. Then [h(z), (pa) '] = [h(x), g—1/2((pa)?)] is represented as

[h(z), (p 1<pa> 3[h(e), (pa)?] + RY:

Ry = / Be1/2(O(C — (pa)?)
< 1), {pa)?), pa)?)(€ — (pu)?) ™ dC A .

By virtue of this formula, we have Bl,a = B1,a,o + BLQJ + Bl’a’Q with B1,a,0 = (pa)~2

Q1,0(xa), BLQJ = i(pa) "*pa - (VaQ1.4)(z,) and Bl,mg = (p,)~*R", where R" is bounded.
Trivially, i[l,, B1 2] = i(IoB1,a,2 — B1,a,21,) is bounded. By using (p,) 2 = (1 + (pa)?) 1,
we consider

Z.[Iaa Bl,a,O] = <pa>72{2pa : (vaIa) + i(AaIa)}<pa>72Q1,a(ma)-

Since [(p) %, Q1.0 ()} pa) (a) " = (pa) P O((a)) +O(1)}(pa) ™~ {ra) " is bounded,
(Vala)Q1,0(za) = O((z)' 7)) and (Auly) Q1 a(we) = O({z4) ") by Lemma 2.3, it follows

from the boundedness of (2,)(pa) ' (1+ By q)~ /2 that i[I,, By 4.0](1+ By o)~ '/? is bounded.
One can show similarly that i[I,, B 1] is bounded, because (V,Q1.4)(z4) = O({x,)). These
imply that B—'i[K, B 4] is bounded.

Now we show that B~2i[i[K, B?], B?] is bounded, which yields the boundedness of Ry,
by 1/2-1—-2+1 = —3/2 < —1. We first consider i[i[K, By|, Bo] = i[So.0 + So.1 +
So.2, By. Since i[So0, Bo] = (D¢)~2|(VQo)(z)|?, we see that (1 + Bo)~'i[Sp, O,BO} is
bounded, by [(VQo)(z)|*> = O({z)?). We note 2[5071,30] = 0. Since i[Sp, Q,Bo] =
i[i[V, (D), (D) ~1)(Qo(x))?, one can show that (1 + Bo)~ ™a{2=r.0}/24[S, , Byl is
bounded, by (9?V)(Qo(z))? = O((x)™>*x{2=,.0}) " Hence, B~2%i[i[K, BO] Bo] is bounded.
One can show similarly the boundedness of B~2i[i[K, By 4], Bo|, B~2i[i[K, Bo|, B1 4] and
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B_Qi[i[K, BLQ], BLQ].

Summing up these, we see that i[K, B](K +i)~! is bounded. In particular, K is in C*(B).
On the other hand, one can prove easily that B is in C'(A), and that [B, A](B + 4)~! and
(B + 1) tA(K + i)~! are bounded. Now we will take fx,s. ,1 € C5°(R; R) supported in
[Ao — 20¢,1, Ao + 20, 1] such that fy, 5.1 =10n[Ag — 01, o + Je,1], and put

€, 15

¢ =B g6, 11 (K) Afrg 6.2, (K) B2 500y
Then
—cB < f>\0;65,171(K)Af)\Oyfss,lyl(K) <cB

holds. Then, Theorem 1.3 follows from Proposition 6.2 immediately, by virtue of Lemma 6.3
and Proposition 6.4. U

For the sake of comparison, also in the case where N = 2, we will give the results corre-
sponding to Theorem 1.3 and Corollary 1.4, without proof.

THEOREM 6.5. Suppose N = 2. Assume V satisfies (Viyr), with some p > 0. Let
Ao € [0,w) \ ©. Put
1/2
B= (1 + (Dt>’1/2x2<Dt>’1/2> . 6.3)
Then there exists an €9(Ao) = €o(Xo;€,0) > 0, which is determined by the positive constant
(1 (No) — 6 — €) o in (4.5),

2

& B . do
/ HF ( < 50(A0)> e K £ S(K)B| — < C|P|%, (6.4)
1 g w (o
: B —ic K
s—LunF = <eo(Ao) | e Fros(K)=0 (6.5)
hold. In particular, these yield
o T go(A , > do
[ (< oGy e sima| 2 < cpa 66
1 o 2 w ©
s-lim F ('x < W) e K £ 5(K) =0. (6.7)
o—00 o 2 ’

COROLLARY 6.6.  Suppose that the hypotheses of Theorem 6.5 are satisfied. Let gy, s be
the function on {z € C' | |z| = 1} such that gx, s(e=*™«) = fy, s(A) for A € [0,w). Then

2 dt

> A

[l (5 <=8 veomswimone| §<clor 6
1 I

clim F ('f' < 50(;0)) U(t,0)g3,5(U (T, 0)) = 0 ©9)

hold.
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REMARK 6.1. In the case where N = 2, as for the minimal velocity estimate of the
time-wise type, by virtue of the abstract theory of Skibsted [34], which was also initiated by
Sigal-Soffer, Yokoyama [41] gave the result that for 0 < s’ < s,

HF (ﬂ = "1“0;675)) e~ ro s (K) @)

; =0 (6.10)

B(K)

holds with

2(d1 (o) — 6 — e))1/2

c1(Aoj€,0) = (1 +2(d1(Ao) — 9)

under the assumption that Vi5(t,y) € C°(R; C*®(R% R)) is T-periodic in t, and satisfies the
decaying conditions

sup [(95Vi2)(t,y)| < Caly) "1, (6.11)
tER

by using the minimal velocity estimate like

=0(c™) 6.12)

A ; A
HF (gl < c1(Aos €, 5)) e fro, 6 (K) (Ao 1)~
B(H)

in terms of the conjugate operator [10,1 in (1.7). The advantage of (6.10) is that ¢1(\o; €,0) can
be taken as the one nearly equal to the square root of the positive constant of the Mourre estimate
(1.9).

Getting the minimal velocity estimate like (6.10) also in the case where N = 3 is one of the
future tasks. We think that to this end, we need a rather strong assumption on V. ’s like that each
Vir € C=(R; C*(R"; R)) is T-periodic in t, and satisfies the decaying conditions

sup (979 Vi) (t,y)| < Cuna(y) P~ 4, (6.13)
teR

7. AC Stark effect case

In this section, we consider a quantum system of N particles moving in a given time-
periodic electric field £(t) € R®. We suppose that &(t) € C°(R; R"), and that &(t) has a
period T' > 0, that is, &(t +T') = &(t) forany t € R.

Letm; >0,q; € Randr; € Rd, 1 < j < N, denote the mass, charge and position vector
of the j-th particle, respectively. We suppose that the particles under consideration interact with
one another through the time-independent pair potentials ‘7jk(Tj —7rk), 1 <j <k < N. The
system under consideration is governed by the total Hamiltonian in the laboratory frame

Hyp(t) =) <3Aj - qj<éa(t),7”j>) +V(r);
j=1 (7.1
Vi)=Y Vilr; =)

1<j<k<N
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acting on L>(R**N). Hyp(t) can be written as

_ _ _ _ 1
HLF(t) = HLF"()(t) + V(T); HLF}Q(t) = 5(]))})2 - E)‘((t) -r (7.2)
acting on L?(X), where

Ex(t) = ((qn/m1)&), -, (gn /mn)E(1))

is a X-valued T-periodic function. q;/m; is called the specific charge of the j-th particle.

Now we would like to state the so-called Avron-Herbst formula for the propagator Upr (¢, s)
generated by g Lr(t): In the same way as in Mgller [26] and Adachi [2, 3], introduce X -valued
T-periodic functions Ex (1), bx (), bx os(t) and cx (t) as

1 T
X,m T 0 EX(S) ds, EX',O@( ) = EX'(t) - EX,mv
t 1 T
bX(t) - / EX OS(S) dS, bX m — T bX(S) d57
0 ’ T Jo
t
bX,os(t) = b)?( ) bX,mﬂ cx (t) = 0 b)?,os(s) ds

/ &(s Ens(t) = E(t) — &,
&(t) :/0 Eou(s)ds, En = f/
bos(t) =E(t) — &, E(t) = i gos(s) ds,

we have

Exm = ((q1/m1)&m, .- -, (an/mN)Ew),
Ex os(t) = ((q1/m1)Eus(t), - .. (an /mn) Eos(1)),
b (1) = ((q1/m1)E(), ... <qN/mN> 2(t)),

b os(t) = ((q1/m1)us(t). - .. (an /mn ) s (1)),
cx(t) = ((q1/m1)E (). (an /mn)E (1))

&, 1s the time-mean of &(t). Also introduce the time-dependent Hamiltonian
Hyr(t) = Huro + V(r+cx(t)); Huro =

Virtex®) = D Vil(rj+ex, (1) -
1<j<k<N

(P%)’ = Exm -7,

rk + cx k(1))

N

(7.3)

—~

acting on L2(X), which governs the system in the moving frame accelerated by Ex os(t) =
42



Ex(t) = Ex . cx;(t) = (g;/m;)&(t) stands for the j-th component of cx (). Here we
will emphasize that the free Hamiltonian Hyp o is time-independent even if Hyp o(t) is time-
dependent. The time-independence of HMF,O makes the dynamics of the system governed by
Hyir (t) easy to handle.

If B ,, =0, then Hyir o is called the free Schrodinger operator; while, if Ex m # 0, then

H MF,o is called the free DC Stark Hamiltonian. Also, if g; / m; = qy /my, then

Vie((rj + cx () = (re + cx (1)) )
= Viu(rj — i+ ((g5/my) — (qe/m))E (1)) = Vir(rj — 1)

holds, thatis, Vjx ((1;+cx ;(t))—(rx+cx x(t))) is time-independent; while, if ¢; /m; # qi /my,
then the periodicity of &(t) in ¢ yields that of Vj ((r;+cx ;(t)) — (rk+cx x(t))). Hence, if there
is no pair (j, k) such that ¢; /m; # qi/mu, then Hyr (t) = Hur, 0+ V () holds, that is, Hyr (¢)
is also time-independent. So, from now on, we suppose there exists at least one pair (34, k) such
that ¢;/m; # qi/my. But, even under this assumption, Hy(t) is still time-independent if
&(t) = &y, that is, &(t) is constant in ¢, because &' (t) = 0.

As for the case where Hyp(t) is time-independent, the problem of the asymptotic com-
pleteness of the systems governed by such Hamiltonians was studied intently in the 1980’s and
1990’s; as for the case where &(t) = &, = 0, see e.g. Sigal-Soffer [31], Graf [15], Yafaev [36],
Derezinski [11], and so on; while, as for the case where &(t) = &, # 0, see e.g. Adachi-
Tamura [6, 7] and Herbst-Mgller-Skibsted [17, 18]. So, from now on, we assume that & (¢) is not
constant but periodic in ¢. Let Uy (¢, s) denote the propagator generated by Hyr(t). Then the
Avron-Herbst formula for Up (¢, s)

Ur(t,s) = Tx(t)Umr(t, s) T (s)*;

T (t) = =195 (b5 a0 g—icx (9% 74

holds, where

5= [ (30506~ Bxpuex(s)) ds

By virtue of the Avron-Herbst formula (7.4), the understanding of Unr (t,s) yields that of
ULr(t, s) immediately.

Next we would like to watch the motion of the systems in the center-of-mass frame. Here we
note that V (r) is independent of z,,, and that V (r +cx (t)) is independent of 7y (r +cx (t)) =
Tem +Cem (t). Hence we will write V (r) and V (r+cx (t)) as V(x) and V (z+c(t)), respectively.
Here we put ¢(t) = mex(t) and cem () = TemCx (t). Now we introduce the Hamiltonians

A N _ A 1

Hyp(t) = Huro(t) +V(x); Hipo(t) = 5172 — E(t) -,
R K B R 1 (7.5)
HMF(t) :HMF70+V(1‘+C(7§)); HMF,O = 5]72 —Fy-z

acting on 5% = L*(X), and
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1
7(pcm)2 - Ecm,m * Tem (76)

_ 1 _
TLF,cm(t) = 7(pcm)2 - Ecm(t) * Lems TMF,cm - 9

2

acting on L?( Xy, ), where
E(t) =nEx(t), Em= WE)_{,ma Eem(t) = TemEx (1), Eewmm = 7TcmEX,m~
Then Hyr(t) and Hyr(t) are represented as

HLF (t) = I:ILF (t) ®Id+1d® TLF,cm (t)a

_ R _ (7.7)
Hyr(t) = Hyr(t) @ 1d + 1d @ Tyr em

on L?(X) = ' @ L?(Xcwm). Since TLr em(t) (resp. Thr,em) does not depend on pair inter-
actions, the understanding of the dynamics of the system governed by Hyp(t) (resp. Hyir(t))
yields that of the system governed by Hyp(t) (resp. Hyr(t)) immediately.

Now we will focus on Hyp(t) and Hyp(t). Let Upp(t, s) and Unp (¢, s) denote the prop-
agators generated by Hyp(t) and Hyp(t), respectively. Then, in the same way as in (7.4), the

Avron-Herbst formula for Upr(t, s)
ULe(t,s) = T () Up(t,8) T (s)5 T (t) = e teittwemict)p (7.8)
holds, where

b(t) = by os(t), alt) = /Ot <;b(s)2 — By - c(5)> ds.

By virtue of the Avron-Herbst formula (7.8), the understanding of UMF (t,s) yields that of
ULF(t, s) immediately. Hence, we would like to focus on the dynamics of the system governed
by Hyr(t) in the center-of-mass frame.

The case where &, = 0 is that of the so-called AC Stark effect. In the case where &}, # 0,
there are some desirable results on the asymptotic completeness of many body systems governed
by such Hamiltonians. In fact, in [1, 2], the author obtained the result of the asymptotic com-
pleteness for the system under consideration, both in the short-range and the long-range cases,
by introducing the Floquet Hamiltonian

~ 1 _
K = D; + Hyp(t) = Dy + 5p? — By -z +V(z+ct)) (7.9)

associated with Hyrp (t). Because of Ey, # 0,

E,
A: m p
| B

(7.10)

can be taken as a conjugate operator for K in the standard Mourre theory. Here we emphasize
that in the two-body case, Mgller [26] first proposed this operator as a conjugate operator for K.

Now we will focus on the case where &,, = 0. Because of E,, = 0, we will deal with an
N-body Schrodinger operator with time-periodic potentials
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Hur(t) = sp*+ V() VO =V(e+c®t) = > Vilt,rj =), (7.11)
1<j<k<N

where
Vin(t,y) = Vik(y + ené(t); &1, = (a5/m;) — (qr/mi).

Here we note that V; (¢, y)’s are T-periodic in ¢. Now we impose the following condition (Vsr);
on Vjj’s with p > 0:

(Var)5 Vik(y), (j, k) € <7, belongs to C? (R%; R), is independent of ¢, and satisfies the decaying
conditions

[(05Vi) )| < Caly) P71l 0 <ol < 2. (7.12)

Since

~
Il
—

~
Il
—

d d
+ Z Z éjké—dos,ll (t)éjké_oosxz (t)(ayel 33//52 ij)(y + éjkg)(t))v
22:1 21:1

we see that Vj (¢, y)’s satisfy

[(02Vi) (8, y)] < Coly) 771l 0< ol <2,
1(2:05 Vi) (t,y)| < Craly) P71l 0< ol <1,
(07 Vi) (t, y)] < Caaly) 7"

What we emphasize here is that the decaying rate O((y)"~!) of (9?V}x)(t,y) is more mod-
erate than O((y)~P~2). If Vji(t,y) satisfies (Viyr), with p > 0, then the decaying rate of
(0FVi)(t,y) is O({y)~P~2). But, if p > 1, then one can regard Vji(t,y) = Vir(y + €18 (1))
as a time-periodic potential satisfying the condition (Viyr)s—1. Therefore, in the case where
N = 3, Theorem 1.5 is a direct consequence of Theorem 1.1, Corollary 1.2, Theorem 1.3, and
Corollary 1.4.
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