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Abstract. In this paper, we consider the Floquet Hamiltonian K associated with a
three-body Schrödinger operator with time-periodic pair potentials H(t). By introducing a
conjugate operator A for K in the standard Mourre theory, we prove the Mourre estimate
for K. As by-products of the Mourre estimate for K, the minimal velocity estimates
for the physical propagator U(t, 0) generated by H(t) as well as the propagator e−iσK

generated by K can be obtained.

1. Introduction

In this paper, we consider a three-body quantum system with time-periodic pair interactions.
Since we would like to introduce some notation in many body scattering theory, we denote the
number of particles in the system by N for a while. Of course, we mainly consider the case where
N = 3. The system under consideration is governed by the following Schrödinger operator with
time-periodic potentials

H̃(t) =

N∑
j=1

(
− 1

2mj
∆j

)
+ V (t), V (t) =

∑
1≤j<k≤N

Vjk(t, rj − rk) (1.1)

acting on L2(Rd×N ), where mj and rj ∈ Rd are the mass and position vector of the j-th
particle, respectively, ∆j =

∑d
l=1 ∂

2
rj,l

is the Laplacian with respect to rj , and Vjk(t, rj − rk)’s
are pair potentials. We suppose that Vjk(t, y)’s are real-valued functions on R ×Rd which are
periodic in t with a period T > 0:

Vjk(t+ T, y) = Vjk(t, y), (t, y) ∈ R×Rd. (1.2)

We would like to watch the motion of the system in the center-of-mass frame. To this end,
we will introduce the following configuration spaces: We equip Rd×N with the metric r · r̃ =∑N

j=1 mj〈rj , r̃j〉; r = (r1, . . . , rN ), r̃ = (r̃1, . . . , r̃N ) ∈ Rd×N , where 〈·, ·〉 is the standard
inner product on Rd. We will denote this Rd×N by X̄ . We usually write r · r as r2. We put
|r| =

√
r2. H̃(t) can be written as

H̃(t) = −1

2
∆X̄ + V (t) =

1

2
(pX̄)2 + V (t)
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acting on L2(X̄), where ∆X̄ is the Laplace-Beltrami operator on X̄ and pX̄ is the velocity
operator pX̄ = (p1/m1, . . . , pN/mN ) = (−i∇r1/m1, . . . ,−i∇rN /mN ) on X̄ . From now on,
the kinetic energies will be represented by the velocity operators, for simplicity. We define two
subspaces X and Xcm of X̄ as

X =

r ∈ X̄

∣∣∣∣∣∣
N∑
j=1

mjrj = 0

 , Xcm =
{
r ∈ X̄

∣∣ r1 = · · · = rN = 0
}
.

Then X and Xcm are perpendicular to each other, and satisfy X̄ = X ⊕ Xcm. π : X̄ → X

and πcm : X̄ → Xcm denote the orthogonal projections onto X and Xcm, respectively. We put
x = πr and xcm = πcmr for r ∈ X̄ . Now we introduce the time-dependent Hamiltonian

H(t) =
1

2
p2 + V (t) (1.3)

acting on H = L2(X). Then H̃(t) is represented as

H̃(t) = H(t)⊗ Id + Id⊗
(
1

2
(pcm)

2

)
on L2(X̄) = H ⊗ L2(Xcm). Here p and pcm are the velocity operators on X and Xcm, re-
spectively. We would like to study some scattering problems for this Hamiltonian H(t) with
N = 3.

A non-empty subset of the set {1, . . . , N} is called a cluster. Let Cj , 1 ≤ j ≤ m, be
clusters. If ∪1≤j≤mCj = {1, . . . , N} and Cj ∩Ck = ∅ for 1 ≤ j < k ≤ m, a = {C1, . . . , Cm}
is called a cluster decomposition. #(a) denotes the number of clusters in a. Let A be the set of
all cluster decompositions. Suppose a, b ∈ A . If b is obtained as a refinement of a, that is, if
each cluster in b is a subset of a cluster in a, we say b ⊂ a, and its negation is denoted by b 6⊂ a.
Any a is regarded as a refinement of itself. The one and N -cluster decompositions are denoted
by amax and amin, respectively. For the sake of brevity, we write

A0 = A \ {amax}, A 0 = A \ {amin}, A 0
0 = A \ {amax, amin} = A0 ∩ A 0.

The pair (j, k) is identified with the (N − 1)-cluster decomposition {(j, k), (1), . . . ,
(ĵ), . . . , (k̂), . . . , (N)}. If N = 3, then {(1, 2), (1, 3), (2, 3)} is the set of all two-cluster de-
compositions, and is equal to A 0

0 .
Let a ∈ A . We introduce two subspaces Xa and Xa of X:

Xa =

r ∈ X

∣∣∣∣∣∣
∑
j∈C

mjrj = 0 for each cluster C in a

 ,

Xa = {r ∈ X | rj = rk for each pair (j, k) ⊂ a} .

πa : X → Xa and πa : X → Xa denote the orthogonal projections onto Xa and Xa, re-
spectively. We put xa = πa x and xa = πa x for x ∈ X . Since X(j,k) is identified with the
configuration space for the relative position of j-th and k-th particles, one can put
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V (j,k)(t, x(j,k)) = Vjk(t, rj − rk).

As for {Xa}a∈A , Xa ⊂ Xb is equivalent to a ⊂ b. On the other hand, as for {Xa}a∈A ,
Xa ⊂ Xb is equivalent to a ⊃ b. For a, b ∈ A , a∪b stands for the smallest cluster decomposition
c ∈ A with a ⊂ c and b ⊂ c. Then we see that Xa +Xb = Xa∪b and Xa ∩Xb = Xa∪b hold.
We now define the cluster Hamiltonian

Ha(t) =
1

2
p2 + V a(t), V a(t) =

∑
(j,k)⊂a

V (j,k)(t, x(j,k)),

which governs the motion of the system broken into non-interacting clusters of particles. Then
Ha(t) is represented as

Ha(t) = Ha(t)⊗ Id + Id⊗
(
1

2
(pa)

2

)
; Ha(t) =

1

2
(pa)2 + V a(t)

on H = H a ⊗ Ha = L2(Xa) ⊗ L2(Xa), where pa and pa are the velocity operators on Xa

and Xa, respectively. The intercluster potential Ia(t) is given by

Ia(t, x) = V (t, x)− V a(t, x) =
∑

(j,k) ̸⊂a

V (j,k)(t, x(j,k)).

Under some suitable conditions on Vjk(t), the existence and uniqueness of the unitary prop-
agator U(t, s) generated by H(t) can be guaranteed, even if N ≥ 3 (see e.g. Yajima [38, 39]).
In the study of the asymptotic behavior of U(t, s)ϕ, ϕ ∈ H , as t → ±∞, we will frequently
utilize the so-called Floquet Hamiltonian K associated with H(t) (see e.g. Howland [19, 20],
Yajima [37]): Let T = R/(TZ) be the torus. Set K = L2(T ;H ) ∼= L2(T ) ⊗ H , and
introduce a strongly continuous one-parameter unitary group {Û(σ)}σ∈R on K given by

(Û(σ)Φ)(t) = U(t, t− σ)Φ(t− σ) (1.4)

for Φ ∈ K . By virtue of Stone’s theorem, Û(σ) is written as

Û(σ) = e−iσK (1.5)

with a unique self-adjoint operator K on K . K is called the Floquet Hamiltonian associated
with H(t), and is equal to the natural self-adjoint realization of −i∂t+H(t). Here we denote by
Dt the operator −i∂t with domain AC(T ), which is the space of absolutely continuous functions
on T with their derivatives being square integrable (following the notation in Reed-Simon [30]).
As is well-known, Dt is self-adjoint on L2(T ), and its spectrum σ(Dt) is equal to ωZ with
ω = 2π/T . For a ∈ A , we also introduce the cluster Floquet Hamiltonian Ka associated with
the cluster Hamiltonian Ha(t) by Ka = Dt +Ha(t) on K . In particular, we have Kamax

= K.
We also write Kamin

as K0 = Dt + H0, which is the free Floquet Hamiltonian associated
with the free Hamiltonian H0 = p2/2 acting on H , for the sake of simplicity. Moreover, we
introduce the subsystem Floquet Hamiltonian Ka associated with the subsystem Hamiltonian
Ha(t) by Ka = Dt +Ha(t) on K a = L2(T ;H a) ∼= L2(T )⊗H a. In particular, we see that
Kamax = K, Kamin = Dt, and for a ∈ A , Ka is represented as
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Ka = Ka ⊗ Id + Id⊗
(
1

2
(pa)

2

)
on K = K a ⊗ Ha = L2(T ;H a)⊗ Ha.

If H(t) is strictly time-dependent, the lack of energy conservation becomes a barrier in the
study of the asymptotic behavior of U(t, s)ϕ. Howland [19] proposed the stationary scattering
theory for time-dependent Hamiltonians, by introducing a new Hamiltonian −i∂t +H(t) acting
on L2(R;H ). As mentioned above, its formulation was the quantum analogue to the procedure
in the classical mechanics in order to recover the conservation of energy. Yajima [37] applied
this Howland method to the two-body quantum system with a time-periodic short-range potential,
and studied the problem of the asymptotic completeness of the wave operators

W±(s) = s-lim
t→±∞

U(t, s)∗e−i(t−s)H0

(see also Howland [20]). In fact, he proved the asymptotic completeness of

W ± = s-lim
σ→±∞

eiσKe−iσK0

firstly, and deduced that of W±(s) from this result. Such a method is called the Howland-
Yajima method. This method, together with the Faddeev method, was applied to the three-
body case under some very short-range conditions by Korotyaev [23] and Nakamura [28] later.
However, even in the case where N = 3, the problem of the asymptotic completeness under a
general short-range condition on pair potentials V (j,k)(t, x(j,k)) has not been solved yet, unlike
in the case of time-independent many body Schrödinger operators (see e.g. Sigal-Soffer [31],
Graf [15], Yafaev [36], Dereziński [11], Dereziński-Gérard [12], and so on), as far as we know.
Thus it is worth continuing the study of the spectral and scattering theory for N -body Floquet
Hamiltonians, even in the case where N = 3.

In this paper, we would like to propose the definition of a conjugate operator for K with
N = 3 in the standard Mourre theory. We will impose the following well-regulated condition
(VWR)ρ on V with ρ > 0:

(VWR)ρ Vjk(t, y), (j, k) ∈ A , belongs to C2(R ×Rd;R), is T -periodic in t, and satisfies the
decaying conditions

sup
t∈R

|(∂m
t ∂α

y Vjk)(t, y)| ≤ Cm,α〈y〉−ρ−(m+|α|), 0 ≤ m+ |α| ≤ 2. (1.6)

Here 〈y〉 = (1 + y2)1/2. In Adachi-Kiyose [5], the condition (1.6) was imposed on the regular
parts of pair potentials. First we recall known results in the case where N = 2 for reference.
Yokoyama [41] introduced the self-adjoint operator

Ā0,1 =
1

2
{x · p〈p〉−2 + 〈p〉−2p · x}; 〈p〉−2 = (1 + p2)−1 (1.7)

on K as a conjugate operator for K. For the sake of brevity, we will use the notation ReT for an
operator on K in this paper, which is defined by ReT = (T +T ∗)/2. Then Ā0,1 can be written
as Re (x · p〈p〉−2). Roughly speaking, Ā0,1 is defined by multiplying the generator of dilations
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Â0 = Re (x · p) (1.8)

and the resolvent 〈p〉−2 of p2. He established the following Mourre estimate under some suitable
conditions on V , by using the commutation relation i[K0, Ā0,1] = p2〈p〉−2 = p2(1 + p2)−1 by
simple calculation. Put

d0(λ) = dist(λ, ωZ), d1(λ) = dist(λ, ωZ ∩ (−∞, λ])

for λ ∈ R. Here we note that ωZ = σ(Dt) is equal to Θ = σ(Kamin), which is the threshold
set for K with N = 2. Suppose λ0 ∈ R \ ωZ, that is, λ0 is a non-threshold energy, and
0 < δ < dist(λ0, ωZ) = d0(λ0). Then, for any fλ0,δ ∈ C∞

0 (R;R) supported in [λ0−δ, λ0+δ],
the Mourre estimate

fλ0,δ(K)i[K, Ā0,1]fλ0,δ(K) ≥ 2(d1(λ0)− δ)

1 + 2(d1(λ0)− δ)
fλ0,δ(K)2 + C1 (1.9)

holds with some compact operator C1 on K . This estimate (1.9) is slightly better than the one
obtained in [41]

fλ0,δ(K)i[K, Ā0,1]fλ0,δ(K) ≥ 2(d0(λ0)− δ)

1 + 2(d0(λ0)− δ)
fλ0,δ(K)2 + C ′

1

with some compact operator C ′
1 on K , since d0(λ0) ≤ d1(λ0). Here we note that the positive

constant of the Mourre estimate (1.9) depends on λ0 strictly but the conjugate operator Ā0,1

is independent of λ0. However, its extension to the case where N ≥ 3 has not been obtained
yet, as far as we know (see also Møller-Skibsted [27]). Recently, Adachi-Kiyose [5] proposed an
alternative conjugate operator for K with N = 2 at a non-threshold energy λ0: Let λ0 ∈ R\ωZ.
Then there exists a unique nλ0

∈ Z such that λ0 ∈ Inλ0
. Take δ as 0 < δ < dist(λ0, ωZ) =

d0(λ0). Since λ0 − δ ∈ Inλ0
, it is obvious that λ0 − δ ∈ R \ ωZ = ρ(Dt). Then we introduce

the self-adjoint operator

Aλ0,δ = R−Dt,λ0−δ ⊗ Â0; R−Dt,λ0−δ = (λ0 − δ −Dt)
−1 (1.10)

on K ∼= L2(T )⊗H , by multiplying Â0 and the resolvent R−Dt,λ0−δ of Dt. Here we note that
R−Dt,λ0−δ is bounded and self-adjoint, and Aλ0,δ satisfies the commutation relation

i[K0, Aλ0,δ] = p2R−Dt,λ0−δ = 2(K0 −Dt)(λ0 − δ −Dt)
−1.

Then the Mourre estimate

fλ0,δ(K)i[K,Aλ0,δ]fλ0,δ(K) ≥ 2fλ0,δ(K)2 + Cfλ0,δ
(1.11)

holds with some compact operator Cfλ0,δ
on K . Here we note that the positive constant of the

Mourre estimate (1.11) is independent of λ0 but the conjugate operator Aλ0,δ depends on λ0

strictly. Its extension to the case where N ≥ 3 has not been obtained generally yet, except in the
case where all the pair potentials are independent of t.

The aim of this paper is that we will introduce a conjugate operator for K with N = 3.
As is pointed out by Møller-Skibsted [27], it is important in obtaining the Mourre estimates for
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time-independent many body Schrödinger operators that the generator of dilations Â0 in (1.8)
can be decomposed into the sum

(Â0)
a ⊗ Id + Id⊗ (Â0)a

acting on H ∼= H a ⊗ Ha, for a ∈ A , where

(Â0)
a =

1

2
(xa · pa + pa · xa) = Re (xa · pa),

(Â0)a =
1

2
(xa · pa + pa · xa) = Re (xa · pa).

(1.12)

Unfortunately, the conjugate operator Ā0,1 in (1.7) does not have such a property. This seems
one of the reasons why its extension to the case where N ≥ 3 has not been given yet. On the
other hand, the conjugate operator Aλ0,δ in (1.10) can be decomposed into the sum

R−Dt,λ0−δ ⊗ {(Â0)
a ⊗ Id + Id⊗ (Â0)a}

acting on K ∼= L2(T ) ⊗ H a ⊗ Ha, for a ∈ A . If N = 3 and a ∈ A is a pair, that
is, a ∈ A 0

0 = A \ {amax, amin}, then one can recognize the operator R−Dt,λ0−δ ⊗ (Â0)
a

as a conjugate operator for Ka = Dt + Ha(t) acting on K a = L2(T ;H a) ∼= L2(T ) ⊗
H a, by virtue of a result of Adachi-Kiyose [5]. However, we cannot interpret the operator
R−Dt,λ0−δ ⊗ (Â0)a as a conjugate operator for the intercluster Hamiltonian (pa)

2/2 acting on
Ha, unfortunately. The operator R−Dt,λ0−δ⊗ (Â0)a can be a conjugate operator for the Floquet
Hamiltonian Dt + (pa)

2/2 acting on L2(T ;Ha) ∼= L2(T ) ⊗ Ha associated with (pa)
2/2.

But, since Ka = Ka ⊗ Id + Id ⊗ (pa)
2/2, what we need here is not a conjugate operator for

Dt+(pa)
2/2 but that just for (pa)2/2. We think that this is one of the reasons why any extension

of Aλ0,δ to the case where N ≥ 3 has not been given yet.
In order to overcome the difficulty mentioned above, roughly speaking, we will recognize

the operator

Āa,1 = Re (xa · pa〈pa〉−2); 〈pa〉−2 = (1 + (pa)
2)−1

acting on Ha as a conjugate operator for (pa)2/2, and the sum

R−Dt,λ0−δ ⊗ (Â0)
a ⊗ Id + Id⊗ Id⊗ Āa,1

as a conjugate operator Aa for Ka = Dt +Ha(t) acting on K ∼= L2(T ) ⊗ H a ⊗ Ha. After
introducing Aa’s, we will glue these together by using a partition of unity of X . This is our
strategy of introducing a conjugate operator A for K with N = 3. Obtaining a conjugate operator
for K with N = 3 is the first step for the definition of conjugate operators for K with N ≥ 4. In
our strategy, for example, to define a conjugate operator for K with N = 4, we need conjugate
operators for not only two-body subsystem Floquet Hamiltonians but also three-body subsystem
Floquet Hamiltonians. The latter has not been obtained until now.

Now we will give the precise definition of A. Without loss of generality, we may assume that
an energy λ0 belongs to the interval [0, ω), because the spectrum σ(K) of K is ω-periodic (see
Proposition 3.4), as is well-known. As for a conjugate operator for the free Floquet Hamiltonian
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K0 = Dt + p2/2, we introduce

Ã0 = 〈Dt〉−1/2
2ω Â0〈Dt〉−1/2

2ω = Re (x · p〈Dt〉−1
2ω ) (1.13)

acting on K , where 〈Dt〉2ω = ((2ω)2 + (Dt)
2)1/2. In this work, we have found that one can

utilize the positive weight 〈Dt〉−1
2ω in place of the signed weight R−Dt,λ0−δ in the definition of a

conjugate operator Ã0 for K0. We think that 〈Dt〉−1
2ω is more suitable for Ã0 than R−Dt,λ0−δ . For

instance, i[K0, Ã0] = 〈Dt〉−1
2ω p

2 = 〈Dt〉−1/2
2ω p2〈Dt〉−1/2

2ω holds (see Lemma 4.1 in §4), which
makes its non-negativ- ity available. This is a big advantage of 〈Dt〉−1

2ω . As for the detailed
arguments, see §4 and §5. The term (2ω)2 in the definition of 〈Dt〉2ω may be replaced by 1, that
is, in (1.13), 〈Dt〉−1

2ω can be replaced by 〈Dt〉−1 = (1 + (Dt)
2)−1/2. However, for the sake of

simplifying the proof of the Mourre estimate in the case where N = 3, we will adopt not 〈Dt〉−1

but 〈Dt〉−1
2ω as the positive weight for Ã0 in this paper. For a ∈ A 0

0 , we also introduce

(Ã0)
a = 〈Dt〉−1/2

2ω (Â0)
a〈Dt〉−1/2

2ω = Re (xa · pa〈Dt〉−1
2ω ),

(Ã0)a = 〈Dt〉−1/2
2ω (Â0)a〈Dt〉−1/2

2ω = Re (xa · pa〈Dt〉−1
2ω ),

Āa = Re (xa · pa〈pa〉−2); 〈pa〉−2 = (1 + (pa)
2)−1.

(1.14)

As will be seen in §4, (Ã0)
a can be recognized as a conjugate operator for the two-body subsys-

tem Floquet Hamiltonian Ka on K a. Ã0, (Ã0)
a’s and Āa’s are all self-adjoint. For the sake of

glueing these together, we have mainly three choices of partitions of unity of X; the reducing par-
tition of unity (see e.g. Cycon-Froese-Kirsch-Simon [10]), which was used in Froese-Herbst [13]
for the sake of showing the Mourre estimate for time-independent N -body Schrödinger opera-
tors, the Graf partition of unity (see e.g. Graf [15], Dereziński [11], Dereziński-Gérard [12]
and Gérard-Łaba [14]), and the Yafaev partition of unity (see e.g. Yafaev [36], Hunziker-
Sigal [21] and Gérard-Łaba [14]). In this paper, we utilize the Yafaev partition of unity
{J̃a}a∈A ⊂ C∞(X;R) of X such that

∑
a∈A J̃a(x)

2 ≡ 1. In §2, we will give its definition
and state its useful properties. By using {J̃a}a∈A , we will introduce

A =
∑

a∈A \A 0
0

J̃a(x)Ã0J̃a(x) +
∑

a∈A 0
0

J̃a(x)(Ã0)
aJ̃a(x) + L0

∑
a∈A 0

0

J̃a(xa)ĀaJ̃a(xa)

= Ã0 +
∑

a∈A 0
0

J̃a(x){−(Ã0)a}J̃a(x) + L0

∑
a∈A 0

0

J̃a(xa)ĀaJ̃a(xa),
(1.15)

with sufficiently large L0 > 0. As will be seen in §2, the second representation of A can be
derived directly from the first one, by

∑
a∈A J̃a(x)

2 ≡ 1. In our dealing with the errors like
i[K0, J̃a(x)](Ã0)aJ̃a(x) and i[K0, J̃a(xa)]ĀaJ̃a(xa), which come from the overlap width of
glueing Ã0, (Ã0)

a’s and Āa’s by some partition of unity of X , the Yafaev partition of unity is
much handier than the other two ones: In our analysis, we give importance to that J̃a(x) with
a ∈ A0 is homogeneous of degree 0 outside some compact neighborhood of the origin 0 of X .
Unfortunately, the Graf one does not satisfy the property, unlike the reducing one and the Yafaev
one. Moreover, as for the Yafaev partition of unity, by introducing the so-called intercluster
distance |x|a = minb∈A0,b ̸⊂a |xb| for a ∈ A0 (see (2.3) in §2), the estimate |x|a ≥ ca|x| holds
for x ∈ supp J̃a with some ca > 0 (see Lemma 2.3 in §2). This property is important in our
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analysis. For instance, one can utilize the decay estimates with respect to 〈x〉, which are stated in
Corollary 2.4 in §2. By taking account of these, we adopt the Yafaev one for the sake of glueing
Ã0, (Ã0)

a’s and Āa’s. The factor J̃a(xa) of the last term in (1.15) cannot be replaced by J̃a(x),
because we need the K0-boundedness of i[K0, A]. We also need the large parameter L0 for the
sake of dealing with the errors mentioned above. As for the detailed arguments, see §5.

Now we state the main results of this paper.

THEOREM 1.1. Suppose N = 3. Assume V satisfies (VWR)ρ with some ρ > 0. Put

Θ =
⋃

a∈A0

σpp(K
a), Θ̂ =

⋃
a∈A

σpp(K
a) = Θ ∪ σpp(K).

Let λ0 ∈ [0, ω) \ Θ and ϵ > 0. Then there exist the Yafaev partitions of unity {J̃a}a∈A ’s and
sufficiently large L0 > 0 in the definition (1.15) of A such that for A defined by using these, the
following hold:
(1) Put

d0(λ) = dist(λ,Θ), d1(λ) = dist(λ,Θ ∩ (−∞, λ])

for λ ∈ R. Note d0(λ) ≤ d1(λ). Then there exists a small δϵ,0 > 0 such that δϵ,0 ≤ d0(λ0)/2

and the following holds: Let 0 < δ ≤ δϵ,0. Then, for any fλ0,δ ∈ C∞
0 (R;R) supported in

[λ0 − δ, λ0 + δ],

fλ0,δ(K)i[K,A]fλ0,δ(K) ≥ d1(λ0)− δ − ϵ

ω
fλ0,δ(K)2 + C0 (1.16)

holds with some compact operator C0 on K .
Hence, for any δ̂ such that 0 < δ̂ < δ, σpp(K)∩(λ0−δ̂, λ0+δ̂) is finite, and the eigenvalues

of K in (λ0 − δ̂, λ0 + δ̂) are of finite multiplicity.
(2) Suppose λ0 ∈ [0, ω) \ Θ̂. Take ϵ as 0 < 2ϵ < d1(λ0) − d0(λ0)/2. Then there exists a
small δϵ,1 > 0 such that δϵ,1 ≤ δϵ,0 ≤ d0(λ0)/2, and for any fλ0,δ ∈ C∞

0 (R;R) supported in
[λ0 − δ, λ0 + δ] with 0 < δ ≤ δϵ,1,

fλ0,δ(K)i[K,A]fλ0,δ(K) ≥ d1(λ0)− δ − 2ϵ

ω
fλ0,δ(K)2 (1.17)

holds. Suppose s > 1/2 and 0 < δ̂ < δϵ,1. Then

sup
Re z∈[λ0−δ̂,λ0+δ̂]

Im z ̸=0

‖〈A〉−s(K − z)−1〈A〉−s‖B(K ) < ∞ (1.18)

holds. Moreover, 〈A〉−s(K − z)−1〈A〉−s is a B(K )-valued θ(s)-Hölder continuous function
on z ∈ Sλ0,δ̂,± with some 0 < θ(s) < 1, where Sλ0,δ̂,± =

{
ζ ∈ C

∣∣ Re ζ ∈ [λ0−δ̂, λ0+δ̂], 0 <

±Im ζ ≤ 1
}

. And, there exist the norm limits

〈A〉−s(K − (λ± i0))−1〈A〉−s = lim
ε→+0

〈A〉−s(K − (λ± iε))−1〈A〉−s

8



in B(K ) for any λ ∈ [λ0 − δ̂, λ0 + δ̂]. 〈A〉−s(K − (λ ± i0))−1〈A〉−s are also θ(s)-Hölder
continuous in λ.

If λ0 ∈ [0, ω) ∩Θ, then a weaker estimate like

fλ0,δ(K)i[K,A]fλ0,δ(K) ≥ −ϵ

ω
fλ0,δ(K)2 + C0

holds with some compact operator C0 on K . When we will introduce a conjugate operator for
the Floquet Hamiltonian K with N = 4, not only (1.16) but also this estimate will be needed.

COROLLARY 1.2. Assume V satisfies (VWR)ρ with some ρ > 0. Then the following hold:
(1) The eigenvalues of K in R\Θ can accumulate only at Θ. Moreover, Θ̂ is a countable closed
set.
(2) Let I be a compact interval in R \ Θ̂. Suppose 1/2 < s ≤ 1. Then

sup
Re z∈I
Im z ̸=0

‖〈x〉−s(K − z)−1〈x〉−s‖B(K ) < ∞ (1.19)

holds. Moreover, 〈x〉−s(K−z)−1〈x〉−s is a B(K )-valued θ(s)-Hölder continuous function on
z ∈ SI,±, where SI,± =

{
ζ ∈ C

∣∣ Re ζ ∈ I, 0 < ±Im ζ ≤ 1
}

. And, there exist the norm limits

〈x〉−s(K − (λ± i0))−1〈x〉−s = lim
ε→+0

〈x〉−s(K − (λ± iε))−1〈x〉−s

in B(K ) for λ ∈ I . 〈x〉−s(K − (λ± i0))−1〈x〉−s are also θ(s)-Hölder continuous in λ.

In order to obtain Corollary 1.2, we use the argument of Perry-Sigal-Simon [29], and the
boundedness of A(K−λ0− i)−1〈x〉−1, which can be given by that 〈Dt〉−1(K−λ0− i)−1〈p〉2
is bounded (see Proposition 3.5 in §3). By virtue of this, one can show that A(K − λ0 −
i)−1〈p〉〈x〉−1 and A(K−λ0−i)−1〈Dt〉1/2〈x〉−1 are also bounded. Then the limiting absorption
principle like

sup
Re z∈I
Im z ̸=0

‖〈x〉−sDs′(K − z)−1Ds′〈x〉−s‖B(K ) < ∞

with s > 1/2 and some s′ > 0 may be expected, where D = 〈p〉 + 〈Dt〉1/2 is equivalent to
D1/2 = (〈p〉4 + 〈Dt〉2)1/4 as weights, which was introduced in Kuwabara-Yajima [24] for the
sake of obtaining a refined limiting absorption principle for K with N = 2 in the Besov space
setting. In fact, the result of [24] yields the estimate

sup
Re z∈I
Im z ̸=0

‖〈x〉−sD1/2(K − z)−1〈x〉−s‖B(K ) < ∞

with s > 1/2. By virtue of complex interpolation, one can also obtain a refined limiting absorp-
tion principle

sup
Re z∈I
Im z ̸=0

‖〈x〉−sD1/4(K − z)−1D1/4〈x〉−s‖B(K ) < ∞

9



with s > 1/2. But this has not been given by our analysis yet. It is caused by the unboundedness
of (K − λ0 − i)−1〈p〉〈x〉−1 and (K − λ0 − i)−1〈Dt〉1/2〈x〉−1. As for general N -body Floquet
Hamiltonians, a refined limiting absorption principle for K

sup
Re z∈I
Im z ̸=0

‖〈x〉−s〈p〉r(K − z)−1〈p〉r〈x〉−s‖B(K ) < ∞

with 0 ≤ r < 1/2 < s ≤ 1 was obtained by Møller-Skibsted [27]. They used an extended
Mourre theory due to Skibsted [34], and took a conjugate operator for K in the extended Mourre
theory as Â0. However, we would like to stick to find an option of a conjugate operator for K
not in an extended but in the standard Mourre theory.

As is well-known, the limiting absorption principle (1.19) yields the local K-smoothness of
〈x〉−s with s > 1/2 ∫ ∞

−∞
‖〈x〉−se−iσKfλ0,δ(K)Φ‖2K dσ ≤ C‖Φ‖2K (1.20)

for λ0 ∈ [0, ω) \ Θ̂. (1.20) was already obtained by [27], even if N > 3. However, (1.20) is
not enough for the proof of the asymptotic completeness in the case where N ≥ 3, unlike in
the case where N = 2. For instance, when K is a time-independent many body Schrödinger
operator p2/2 + V with short-range pair interactions, instead of the propagation estimate (1.20)
with K = L2(X), the so-called minimal velocity estimate∫ ∞

1

∥∥∥∥F ( |x|
σ

≤ c̃λ0

)
e−iσKfλ0,δ(K)Φ

∥∥∥∥2
K

dσ

σ
≤ C‖Φ‖2K

with c̃λ0
> 0 and K = L2(X) has been used as a key propagation estimate in the proof of the

asymptotic completeness (see e.g. Graf [15]). Here we used the following convention for smooth
cut-off functions F with 0 ≤ F ≤ 1: For sufficiently small δ > 0, we define

F (s ≤ d) = 1 for s ≤ d− δ, = 0 for s ≥ d,

F (s ≥ d) = 1 for s ≥ d+ δ, = 0 for s ≤ d,

and F (d1 ≤ s ≤ d2) = F (s ≥ d1)F (s ≤ d2). The above minimal velocity estimate can be
obtained by the Mourre estimate for K = p2/2 + V . At the present stage, we have gotten the
Mourre estimate (1.17) for the Floquet Hamiltonian K = Dt + p2/2 + V (t). Hence, it can
be expected that the Mourre estimate (1.17) will yield the minimal velocity estimate for e−iσK .
In fact, there is an abstract theory for getting the minimal velocity estimate from the Mourre
estimate, which was initiated by Sigal-Soffer (see e.g. [31, 32]). For the detail, see e.g. Sect.
4.4 “Minimal velocity estimates” of Gérard-Łaba [14]. By virtue of the abstract theory, one can
obtain the following minimal velocity estimate for e−iσK :

THEOREM 1.3. Suppose N = 3. Assume V satisfies (VWR)ρ with some ρ > 0. Let
λ0 ∈ [0, ω) \ Θ̂. Put

10



B = (1 + B̃0 + B̃1)
1/2; B̃0 = 〈Dt〉−1/2Q0(x)〈Dt〉−1/2,

B̃1 =
∑

a∈A 0
0

B̃1,a, B̃1,a = 〈pa〉−1Q1,a(xa)〈pa〉−1, (1.21)

where

Q0(x) =
∑

a∈A \A 0
0

x2J̃a(x)
2 +

∑
a∈A 0

0

(xa)2J̃a(x)
2 = x2 −

∑
a∈A 0

0

(xa)
2J̃a(x)

2,

Q1,a(xa) = (xa)
2J̃a(xa)

2,

with a ∈ A 0
0 . Then there exists an ε0(λ0) = ε0(λ0; ϵ, δ) > 0, which is determined by the

positive constant (d1(λ0)− δ − 2ϵ)/ω in the Mourre estimate (1.17) such that∫ ∞

1

∥∥∥∥F (B

σ
≤ ε0(λ0)

)
e−iσKfλ0,δ(K)Φ

∥∥∥∥2
K

dσ

σ
≤ C‖Φ‖2K , (1.22)

s-lim
σ→∞

F

(
B

σ
≤ ε0(λ0)

)
e−iσKfλ0,δ(K) = 0 (1.23)

hold. In particular, these yield∫ ∞

1

∥∥∥∥F (Q(x)1/2

σ
≤ ε0(λ0)

2

)
e−iσKfλ0,δϵ,1(K)Φ

∥∥∥∥2
K

dσ

σ
≤ C‖Φ‖2K , (1.24)

s-lim
σ→∞

F

(
Q(x)1/2

σ
≤ ε0(λ0)

2

)
e−iσKfλ0,δϵ,1(K) = 0. (1.25)

Here

Q(x) = Q0(x) +
∑

a∈A 0
0

Q1,a(xa) = x2 +
∑

a∈A 0
0

(xa)
2{J̃a(xa)

2 − J̃a(x)
2}.

Here we note that

B2 = 1 + B̃0 + B̃1 ≤ 1 +Q0(x) +
∑

a∈A 0
0

Q1,a(xa) = 1 +Q(x)

holds, in deriving (1.24) from (1.22).
By using the arguments of Yajima-Kitada [40] and Møller-Skibsted [27], one can translate

(1.24) into the minimal velocity estimate for the physical propagator U(t, s) generated by H(t):

COROLLARY 1.4. Suppose that the hypotheses of Theorem 1.3 are satisfied. Let gλ0,δ be
the function on

{
z ∈ C

∣∣ |z| = 1
}

such that gλ0,δ(e
−i2πλ/ω) = fλ0,δ(λ) for λ ∈ [0, ω). Then∫ ∞

1

∥∥∥∥F (Q(x)1/2

t
≤ ε0(λ0)

2

)
U(t, 0)gλ0,δ(U(T, 0))ϕ

∥∥∥∥2
H

dt

t
≤ C‖ϕ‖2H , (1.26)

s-lim
t→∞

F

(
Q(x)1/2

t
≤ ε0(λ0)

2

)
U(t, 0)gλ0,δ(U(T, 0)) = 0 (1.27)

11



hold, where U(T, 0) is the Floquet operator associated with H(t).

One can utilize the above results in the study of quantum systems of N particles under the
so-called AC Stark effect with N = 3: We suppose that E (t) ∈ C0(R;Rd), E (t) has a period
T > 0, that is, E (t+ T ) = E (t) for any t ∈ R, and

Em =
1

T

∫ T

0

E (s) ds = 0, (1.28)

which is the condition for the AC Stark effect. Let mj > 0, qj ∈ R and rj ∈ Rd, 1 ≤ j ≤ N ,
denote the mass, charge and position vector of the j-th particle, respectively. We suppose that
the particles under consideration interact with one another through the time-independent pair
potentials V̄jk(rj − rk), 1 ≤ j < k ≤ N . The system under consideration is governed by the
total Hamiltonian in the laboratory frame

H̄LF(t) =

N∑
j=1

(
− 1

2mj
∆j − qj〈E (t), rj〉

)
+ V̄ (r); V̄ (r) =

∑
1≤j<k≤N

V̄jk(rj − rk). (1.29)

In the same way as in Møller [26] and Adachi [1, 2] (as for the detail, see §7), we have only to
consider the Hamiltonian in the moving frame

ĤMF(t) =
1

2
p2 + V̄ (x+ c(t)) (1.30)

acting on H = L2(X), where c(t) is defined as follows:

Eos(t) = E (t)− Em, Ē (t) =

∫ t

0

Eos(s) ds, Ēm =
1

T

∫ T

0

Ē (s) ds,

Ēos(t) = Ē (t)− Ēm,
¯̄E (t) =

∫ t

0

Ēos(s) ds, c(t) = π((q1/m1)
¯̄E (t), . . . , (qN/mN ) ¯̄E (t)).

Now we impose the following condition (VST)ρ̄ on V̄jk’s with ρ̄ > 0:

(VST)ρ̄ V̄jk(y), (j, k) ∈ A , belongs to C2(Rd;R), is independent of t, and satisfies the decaying
conditions

|(∂α
y V̄jk)(y)| ≤ Cα〈y〉−ρ̄−|α|, 0 ≤ |α| ≤ 2. (1.31)

As is shown in §7, if ρ̄ > 1, then one can regard Vjk(t, y) = V̄jk(y + ẽjk
¯̄E (t)) with ẽjk =

qj/mj − qk/mk as a time-periodic potential satisfying the condition (VWR)ρ̄−1. Therefore, in
the case where N = 3, the following theorem is a direct consequence of Theorem 1.1, Corollary
1.2, Theorem 1.3, and Corollary 1.4.

THEOREM 1.5. Suppose Em = 0 and N = 3. Introduce K = Dt + ĤMF(t) acting on
K . Assume V̄jk’s satisfy (VST)ρ̄ with some ρ̄ > 1. Put

Θ =
⋃

a∈A \{amax}

σpp(K
a), Θ̂ =

⋃
a∈A

σpp(K
a) = Θ ∪ σpp(K).

12



Then, the statements of Theorem 1.1, Corollary 1.2, Theorem 1.3, and Corollary 1.4 hold.

As for the asymptotic completeness for ĤMF(t) with N = 2, Yajima [37] proved it in the
short-range case via the Howland-Yajima method, and Kitada-Yajima [22] proved it in the long-
range case via the Enss method. On the other hand, for ĤMF(t) with N = 3, Korotyaev [23]
and Nakamura [28] gave some partial results on it in the very short-range case via the Howland-
Yajima and the Faddeev methods. The study of the problem of the asymptotic completeness for
ĤMF(t) with N = 3 should be done by using some useful propagation estimates like (1.22) and
(1.24) in future research.

The plan of this paper is as follows: In §2, we will give the definition of the Yafaev partition
of unity and its properties which are useful for our analysis. In §3, we collect frequently used
propositions which are useful for our analysis. In §4, we will revisit the case where N = 2. The
construction of A in (1.15) is based on the arguments and results in §4. In §5, we will give the
proof of Theorem 1.1, in particular, (1.16). In §6, we will obtain the minimal velocity estimates
for e−iσK and U(t, s). In §7, we will deal with the AC Stark effect case.

Acknowledgement
The author is partially supported by the Grant-in-Aid for Scientific Research (C)

#25K07031 from JSPS. The author is grateful to the referee for many valuable comments and
suggestions.

2. Yafaev partition of unity

In this section, we give the definition of the Yafaev partition of unity {J̃a}a∈A of X ,
and its properties which are useful especially for the sake of dealing with the errors like
i[K0, J̃a(x)](Ã0)aJ̃a(x) and i[K0, J̃a(xa)]ĀaJ̃a(xa), which come from our construction of A
by (1.15).

First of all, for references, we will give an outline of the construction due to Yafaev [36]
by following the arguments in [36], Hunziker-Sigal [21] and Gérard-Łaba [14] (also refer to
Graf [15], Dereziński [11], Dereziński-Gérard [12] and Gérard-Łaba [14] on the construction
of the Graf partition of unity, for comparison): Let σ = {σa}a∈A be a sequence of numbers
greater than 1 indexed with the elements of A such that 1 < σa < σb holds if a ⊊ b with
a, b ∈ A0 = A \ {amax}. The argument below is based on the fact that there exists an M > 0

such that

M |xa∪b| ≤ |xa|+ |xb|

holds for any a, b ∈ A , because Xa∪b = Xa + Xb. Now we suppose that for sufficiently
small ϵ > 0, σa = 1 + O(ϵda) holds for a ∈ A0, where da = dimXa. For each x ∈ X \
{0}, we consider the family {σc|xc|}c∈A0 , and watch its maximum maxc∈A0{σc|xc|}. Since
xamax = 0, when watching maxc∈A0{σc|xc|}, σamax is insignificant. This σamax will be used
when guaranteeing the smoothness of the functions defined later on a neighborhood of the origin
0 of X . Moreover, in order to control the size of errors, σamax > 0 will be taken as sufficiently
large. We put

Uσ
a =

{
x ∈ X

∣∣ σa|xa| > σamin
|xamin

| = σamin
|x|
}

(a ∈ A ). (2.1)
13



We see that Uσ
amax

= ∅ since xamax
= 0, Uσ

amin
= ∅ trivially, and that for a ∈ A 0

0 = A \
{amax, amin},

Uσ
a =

{
x ∈ X

∣∣ |xa| < (1− σ2
amin

/σ2
a)

1/2|x|
}

is a conical neighborhood of Xa \{0}. Since (1−σ2
amin

/σ2
a)

1/2 = O(ϵda/2), Uσ
a is considerably

sharp. Let a ∈ A 0
0 be given, x ∈ Uσ

a , and b ∈ A be such that b 6⊃ a, that is, Xb 6⊂ Xa. By
virtue of Lemma 3.1 of [36], we see that there exist sequences σ = {σa}a∈A ’s such that

σb|xb| < max
f∈A0
f⊃a

{σf |xf |}

holds, because a∪ b ⊋ a by assumption, and da − da∪b ≥ d = dimRd. Such sequences σ’s are
called admissible. The above inequality implies that for x ∈ Uσ

a ,

max
c∈A0

{σc|xc|} = max
f∈A0
f⊃a

{σf |xf |}

holds. Taking account of these, we put

Cσ
a = Uσ

a \

⋃
f⊋a

Uσ
f

 (a ∈ A 0
0 ), Cσ

amin
= (X \ {0}) \

 ⋃
a∈A 0

0

Cσ
a

 . (2.2)

This definition yields that {Cσ
a }a∈A0

is a disjoint covering of X \ {0}, and that for x ∈ Cσ
a with

a ∈ A0,

max
c∈A0

{σc|xc|} = σa|xa|

holds. In particular, for a ∈ A 0
0 , if the pair (j, k) satisfies (j, k) ⊊ a, then Cσ

a ∩ Cσ
(j,k) = ∅. By

following the argument of [21], we introduce the intercluster distance

|x|a = min
b∈A0
b ̸⊂a

|xb| (2.3)

for a ∈ A0. By virtue of Lemma 3.1 of [21], it is known that if a ∈ A0, then

|x|a ≥

min
b∈A0
b ̸⊂a

(1− σ2
amin

/σ2
b )

1/2

 |x| (2.4)

holds for x ∈ Cσ
a . Now we will take a family of sets {Cσ

a }a∈A0
with an admissible sequence

σ = {σa}a∈A , and put

C̃σ
a =

{
x ∈ Cσ

a

∣∣ σa|xa| > σamax

}
(a ∈ A0), C̃σ

amax
= X \

⋃
a∈A0

C̃σ
a . (2.5)

This definition yields that {C̃σ
a }a∈A is a disjoint covering of X , and that for x ∈ C̃σ

amax
,
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max

{
σamax

,max
c∈A0

{σc|xc|}
}

= σamax

holds, and that for x ∈ C̃σ
a with a ∈ A0,

max

{
σamax

,max
c∈A0

{σc|xc|}
}

= σa|xa|

holds. Then we will introduce

Jσ
a (x) = χC̃σ

a
(x) (a ∈ A ), (2.6)

where χC̃σ
a

is the characteristic function of C̃σ
a . It is known that∑

a∈A

Jσ
a (x) ≡ 1

holds. By the arguments of [36] and [21], those are known that there exist admissible sequences
σ− = {σ−

a }a∈A and σ+ = {σ+
a }a∈A such that σ−

a < σ+
a holds for any a ∈ A , and that if

σ = {σa}a∈A satisfies σ−
a ≤ σa ≤ σ+

a for any a ∈ A , then σ is also admissible. We fix such
two admissible sequences σ− and σ+. For b ∈ A , we introduce a smoothing function sb, that is,
a function sb ∈ C∞

0 (R;R) such that

supp sb ⊂ [σ−
b , σ

+
b ], sb ≥ 0,

∫
R

sb(σb) dσb = 1.

Putting s̃0(σ0) =
∏

b∈A0
sb(σb), it satisfies

supp s̃0 ⊂ S0 =
∏
b∈A0

[σ−
b , σ

+
b ], s̃0 ≥ 0,

∫
S0

s̃0(σ0) dσ0 = 1,

where dσ0 = ⊗b∈A0
dσb. Now we define

Ja(x) =

∫ σ+
amax

σ−
amax

∫
S0

s̃0(σ0)samax
(σamax

)Jσ
a (x) dσ0dσamax

(a ∈ A ). (2.7)

{Ja}a∈A is called a Yafaev partition of unity. Then we have the following:

PROPOSITION 2.1. The family of functions {Ja}a∈A on X satisfies the following: Each
Ja(x) is a smooth function on X . If a ∈ A0, then Ja(x) is homogeneous of degree 0 outside
some compact neighborhood of the origin 0 of X; while, Jamax

(x) is supported in some compact
neighborhood of the origin 0 of X . Moreover,∑

a∈A

Ja(x) ≡ 1 (2.8)

holds.

PROOF. The proof was already given in [36] and [21]. As for the detail, see these papers.
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Here we will give an outline of the proof of the smoothness of Ja(x) with a ∈ A 0
0 = A \

{amax, amin} only, since we need to know the properties of (∇Ja)(x): For the sake of simplicity,
we consider the case where x ∈ X satisfies σ−

a |xa| > σ+
amax

only. If x ∈ X satisfies σ−
a |xa| >

σ+
amin

|xamin | = σ+
amin

|x|, then x ∈ Uσ
a for any σ ∈ S, because σa ≥ σ−

a and σ+
amin

≥ σamin .
Then Ja(y) = 1 holds in a neighborhood of x. If x ∈ X satisfies σ+

a |xa| < σ−
amin

|x|, then
x 6∈ Uσ

a for any σ ∈ S, because σa ≤ σ+
a and σ−

amin
≤ σamin . Then Ja(y) = 0 holds in

a neighborhood of x. Thus we have only to watch the case where x ∈ X satisfies σ−
a |xa| ≤

σ+
amin

|x| and σ+
a |xa| ≥ σ−

amin
|x|. Consider the rectangle [σ−

a , σ
+
a ]×[σ−

amin
, σ+

amin
] in the σaσamin

-
plane. Since σ±

a − 1 = O(ϵda) and σ±
amin

− 1 = O(ϵdamin ) < O(ϵda) for sufficiently small
ϵ > 0, without loss of generality, we may consider the following three cases: (a) x satisfies
σ−
a |xa| < σ−

amin
|x| and σ−

amin
|x| ≤ σ+

a |xa| ≤ σ+
amin

|x|; (b) x satisfies σ−
a |xa| < σ−

amin
|x| and

σ+
a |xa| > σ+

amin
|x|; (c) x satisfies σ−

amin
|x| ≤ σ−

a |xa| ≤ σ+
amin

|x| and σ+
a |xa| > σ+

amin
|x|. In the

case (a), we have

Ja(x) =

∫ σ−
amin

|x|/|xa|

σ−
a

∫ σ+
amin

σ−
amin

sa(σa)samin
(σamin

) dσamin
dσa

+

∫ σ+
a

σ−
amin

|x|/|xa|

∫ σ+
amin

σa|xa|/|x|
sa(σa)samin(σamin) dσamindσa

=

∫ σ−
amin

|x|/|xa|

σ−
a

sa(σa) dσa

+

∫ σ+
a

σ−
amin

|x|/|xa|

∫ σ+
amin

σa|xa|/|x|
sa(σa)samin

(σamin
) dσamin

dσa.

In particular, we obtain

(∇Ja)(x) = ∇
(
σ−
amin

|x|
|xa|

)
sa

(
σ−
amin

|x|
|xa|

)
−∇

(
σ−
amin

|x|
|xa|

)
sa

(
σ−
amin

|x|
|xa|

)∫ σ+
amin

σ−
amin

samin
(σamin

) dσamin

−
∫ σ+

a

σ−
amin

|x|/|xa|
∇
(
σa|xa|
|x|

)
sa(σa)samin

(
σa|xa|
|x|

)
dσa

= −∇
(
|xa|
|x|

)∫ σ+
a

σ−
amin

|x|/|xa|
σasa(σa)samin

(
σa|xa|
|x|

)
dσa.

The cases (b) and (c) can be also treated similarly. These yield the smoothness of Ja(x). □

We put

J̃a(x) = Ja(x)

{∑
b∈A

Jb(x)
2

}−1/2

(a ∈ A ). (2.9)

We also call {J̃a}a∈A a Yafaev partition of unity:
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COROLLARY 2.2. The family of functions {J̃a}a∈A on X satisfies the following: Each
J̃a(x) is a smooth function on X . If a ∈ A0, then J̃a(x) is homogeneous of degree 0 outside
some compact neighborhood of the origin 0 of X; while, J̃amax

(x) is supported in some compact
neighborhood of the origin 0 of X . Moreover,∑

a∈A

J̃a(x)
2 ≡ 1 (2.10)

holds.

By virtue of (2.4), the following lemma can be obtained immediately:

LEMMA 2.3. Let a ∈ A0. Then

|x|a ≥ ca|x|; ca =

min
b∈A0
b ̸⊂a

(1− (σ+
amin

)2/(σ−
b )

2)1/2

 > 0, (2.11)

holds for x ∈ supp J̃a. In particular, if (j, k) ∈ A satisfies (j, k) 6⊂ a, then

|x(j,k)| ≥ ca|x|

holds for x ∈ supp J̃a.

COROLLARY 2.4. Assume V satisfies (VWR)ρ with some ρ > 0. Let a ∈ A0, and
m, ℓ ∈ N ∪ {0} such that 0 ≤ m+ ℓ ≤ 2. Then, for any (j, k) ∈ A such that (j, k) 6⊂ a,

(∂m
t (∇(j,k))ℓV (j,k))(t, x(j,k))J̃a(x) = O(〈x〉−ρ−(m+ℓ))

holds as |x| → ∞.

Now, for the sake of simplicity, we restrict to the case where N = 3. Then the following
lemma holds. Roughly speaking, it implies that ∇J̃a with a ∈ A 0

0 is supported in supp J̃amin .

LEMMA 2.5. Suppose N = 3. Let a ∈ A 0
0 , that is, a be some pair (j, k). Then

|x(j,k)| ≥ c′(j,k)|x|; c′(j,k) = (1− (σ+
amin

)2/(σ−
(j,k))

2)1/2 > 0, (2.12)

holds for x ∈ supp (∇J̃(j,k)) with |x| ≥ σ+
amax

/σ−
amin

.

PROOF. It follows from the proof of Proposition 2.1 that (∇J(j′,k′))(x) is supported in
the complement of{

x ∈ X
∣∣ σ−

(j′,k′)|x(j′,k′)| > σ+
amin

|x|
}
=
{
x ∈ X

∣∣ |x(j′,k′)| < c′(j′,k′)|x|
}

for any pair (j′, k′), in which J(j′,k′)(x) is equal to 1, if |x| ≥ σ+
amax

/σ−
amin

. This completes the
proof. □

By using the Yafaev partition of unity {J̃a}a∈A , we will introduce a conjugate operator A
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for K by the first representation of (1.15)

A =
∑

a∈A \A 0
0

J̃a(x)Ã0J̃a(x) +
∑

a∈A 0
0

J̃a(x)(Ã0)
aJ̃a(x) + L0

∑
a∈A 0

0

J̃a(xa)ĀaJ̃a(xa).

By using (2.10), we have∑
a∈A

J̃a(x)Ã0J̃a(x) =
∑
a∈A

J̃a(x)[Ã0, J̃a(x)] +
∑
a∈A

J̃a(x)
2Ã0

= − i〈Dt〉−1
2ω

∑
a∈A

J̃a(x){x · (∇J̃a)(x)}+ Ã0

= − i〈Dt〉−1
2ω

{
x · ∇

(
1

2

∑
a∈A

J̃a(x)
2

)}
+ Ã0 = Ã0.

Since (Ã0)
a − Ã0 = −(Ã0)a, we obtain the second representation of (1.15)

A = Ã0 +
∑

a∈A 0
0

J̃a(x){−(Ã0)a}J̃a(x) + L0

∑
a∈A 0

0

J̃a(xa)ĀaJ̃a(xa).

By this representation of A, we have

i[K0, A] = i[K0, Ã0] +
∑

a∈A 0
0

S1,a + L0

∑
a∈A 0

0

S2,a (2.13)

with S1,a = i[K0, J̃a(x){−(Ã0)a}J̃a(x)] and S2,a = i[K0, J̃a(xa)ĀaJ̃a(xa)]. In our analysis,
we will regard

i[K0, A]m = i[K0, Ã0] +
∑

a∈A 0
0

Sm
1,a + L0

∑
a∈A 0

0

Sm
2,a

as the main part of i[K0, A], where Sm
1,a = J̃a(x)i[K0, {−(Ã0)a}]J̃a(x) and Sm

2,a = J̃a(xa)

i[K0, Āa]J̃a(xa). Then, S̄1,a = S1,a − Sm
1,a is represented by using the factor (∇J̃a)(x), and

S̄2,a = S2,a − Sm
2,a is represented by using the factor (∇aJ̃a)(xa). Hence, we have to pay

attention to the properties of (∇J̃a)(x) and (∇aJ̃a)(xa). As for (∇J̃a)(x), we refer to the
following corollary, which can be obtained immediately from the proof of Proposition 2.1:

COROLLARY 2.6. Let a ∈ A 0
0 . Then maxx∈X{〈x〉|(∇J̃a)(x)|} can be controlled by

maxt∈R samin(t).

Since maxt∈R samin
(t) = O(ϵ−damin ), 〈K0〉−1S̄1,a〈K0〉−1 is bounded, but is not small.

Roughly speaking, in our strategy, we will show that this is dominated by L0〈K0〉−1Sm
2,a

〈K0〉−1/4, and that S̄2,a is also dominated by Sm
2,a/4. To this end, we refer to the following

lemma and corollary:

LEMMA 2.7. For a ∈ A 0
0 , maxxa∈Xa

{〈xa〉|(∇aJ̃a)(xa)|} can be controlled by
maxt∈R{tsamax

(t)}.
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PROOF. We have only to show the lemma in which J̃a is replaced by Ja. The proof is
quite similar to the above one of Proposition 2.1: If xa ∈ Xa satisfies σ−

a |xa| > σ+
amax

, then
xa ∈ Uσ

a for any σ ∈ S, because σa ≥ σ−
a and σ+

amax
≥ σamax

. Then Ja(ya) = 1 holds in
a neighborhood of xa. If xa ∈ Xa satisfies σ+

a |xa| < σ−
amax

, then xa 6∈ Uσ
a for any σ ∈ S,

because σa ≤ σ+
a and σ−

amax
≤ σamax . Then Ja(ya) = 0 holds in a neighborhood of xa. Thus

we have only to watch the case where xa ∈ Xa satisfies σ−
a |xa| ≤ σ+

amax
and σ+

a |xa| ≥ σ−
amax

.
Consider the rectangle [σ−

a , σ
+
a ]× [σ−

amax
, σ+

amax
] in the σaσamax

-plane. Since σ±
a − 1 = O(ϵda)

and σ±
amax

− 1 = O(1) > O(ϵda) for sufficiently small ϵ > 0, without loss of generality, we
may consider the following three cases: (a) xa satisfies σ−

a |xa| < σ−
amax

and σ−
amax

≤ σ+
a |xa| ≤

σ+
amax

; (b) xa satisfies σ−
amax

≤ σ−
a |xa| ≤ σ+

amax
and σ−

amax
≤ σ+

a |xa| ≤ σ+
amax

; (c) xa satisfies
σ−
amax

≤ σ−
a |xa| ≤ σ+

amax
and σ+

a |xa| > σ+
amax

. In the case (a), we have

Ja(xa) =

∫ σ−
amax

/|xa|

σ−
a

sa(σa) dσa +

∫ σ+
a

σ−
amax/|xa|

∫ σ+
amax

σa|xa|
sa(σa)samax(σamax) dσamaxdσa.

In particular, we obtain

(∇aJa)(xa) = −∇a(|xa|)
∫ σ+

a

σ−
amax/|xa|

σasa(σa)samax
(σa|xa|) dσa.

The cases (b) and (c) can be also treated similarly. These yield the lemma. □

We note that for any C > 0, there exist smoothing functions samax ’s satisfying maxt∈R

{tsamax
(t)} = C. In fact,

lim
ϵ→+0

∫ 1

ϵ

Ct−1 dt = +∞

implies the existence of a smoothing function s̃amax satisfying maxt∈R{ts̃amax(t)} = C with
some 0 < σ−

amax,1
< σ+

amax,1
≤ 1, that is, s̃amax ∈ C∞

0 (R;R) such that

supp s̃amax ⊂ [σ−
amax,1

, σ+
amax,1

], s̃amax ≥ 0,

∫ σ+
amax,1

σ−
amax,1

s̃amax(t) dt = 1.

Now, for L1 > 0, put σ±
amax

= σ±
amax,1

L1 and samax
(t) = L−1

1 s̃amax
(L−1

1 t). Then we see that
samax

is also a smoothing function satisfying maxt∈R{tsamax
(t)} = C with σ−

amax
< σ+

amax
. In

this paper, we will take maxt∈R{tsamax
(t)} > 0 as sufficiently small, and L1 > 0 as sufficiently

large. Then the following corollary can be obtained from the proof of Lemma 2.7.

COROLLARY 2.8. For a ∈ A 0
0 , maxxa∈Xa |(∇aJ̃a)(xa)| = O(L−1

1 ) holds.

By virtue of these, one can regard i[K0, A]m as the main part of i[K0, A]. As for the detailed
argument, see the proof of Lemma 5.1 in §5.

The following lemma will be also used in §5.

LEMMA 2.9. For a ∈ A 0
0 , J̃a(xa) ≥ J̃a(x) ≥ 0 holds.
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PROOF. We have only to show the lemma in which J̃a is replaced by Ja. By the definition
of C̃σ

a , if x ∈ C̃σ
a , then xa ∈ C̃σ

a holds trivially, that is, Jσ
a (x) = 1 implies Jσ

a (xa) = 1. And,
it is easy to see that there exists an x ∈ X such that Jσ

a (x) = 0 and Jσ
a (xa) = 1. These and the

definition of Ja yield the lemma. □

3. Collection of frequently used propositions

In this section, we collect frequently used propositions which are useful for the proof of the
Mourre estimate for K.

First of all, we state the Nelson’s commutator theorem, which guarantees the self-
adjointness of A in (1.15) (as for the proof, see e.g. Reed-Simon [30] and Gérard-Łaba [14]).

THEOREM 3.1. Let K be a Hilbert space. Suppose that N0 ≥ c > 0 is a self-adjoint
operator on K and A is a symmetric operator on K such that D(N0) ⊂ D(A) and there exists a
constant C > 0 such that

‖Au‖ ≤ C‖N0u‖ for u ∈ D(N0),

|(Au,N0u)− (N0u,Au)| ≤ C‖N0
1/2u‖2 for u ∈ D(N0)

hold. Then A is essentially self-adjoint on D(N0). Denoting by Ā the unique self-adjoint exten-
sion of A, if u ∈ D(Ā), then (1 + iϵN0)

−1u converges to u in the graph topology of D(Ā) as
ϵ → 0.

Applying Theorem 3.1 with K = K and N0 = 〈Dt〉+p2/2+x2/2, we see that A in (1.15)
has its unique self-adjoint extension, which is also denoted by A.

In the usual proof of the Mourre estimate for K, one of the points to be checked is that the
condition

sup
|κ|≤1

‖KeiκA(K + i)−1‖B(K ) < ∞ (3.1)

is satisfied by a conjugate operator A (see e.g. Mourre [25]). However, it seems not easy to
verify directly that A satisfies (3.1). In order to overcome this difficulty, we need the following
proposition (see e.g. Lemma 3.2.2 and Proposition 3.2.3 of [14]; see also Amrein-Boutet de
Monvel-Georgescu [8]):

PROPOSITION 3.2. Let K be a Hilbert space. Suppose that K, K0 and N0 are self-
adjoint operators on K such that N0 ≥ c > 0, D(K) = D(K0) as Banach spaces, and for
z ∈ C \σ(K), (K− z)−1 preserves D(N0). Let A be a symmetric operator on K. Suppose that
K0 and A satisfy D(N0) ⊂ D(K0), D(N0) ⊂ D(A),

‖K0u‖ ≤ C‖N0u‖ for u ∈ D(N0),

|(K0u,N0u)− (N0u,K0u)| ≤ C‖N0
1/2u‖2 for u ∈ D(N0),

‖Au‖ ≤ C‖N0u‖ for u ∈ D(N0),

|(Au,N0u)− (N0u,Au)| ≤ C‖N0
1/2u‖2 for u ∈ D(N0).
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Denote the unique self-adjoint extension of A also by A. Assume moreover that

|(Au,Ku)− (Ku,Au)| ≤ C(‖Ku‖2 + ‖u‖2) for u ∈ D(N0)

holds. Then the following hold:
(1) D(N0) is dense in D(K) ∩D(A) with the norm ‖Ku‖+ ‖Au‖+ ‖u‖.
(2) The commutator i[K,A], defined as a quadratic form on D(K)∩D(A), is the unique exten-
sion of the quadratic form i[K,A] on D(N0).
(3) K ∈ C1(A), that is, for some z ∈ C \ σ(K), the map

R 3 κ 7→ eiκA(K − z)−1e−iκA ∈ B(K)

is C1 in the strong topology of B(K), which is the algebra of bounded linear operators in K.
(4) D(K) ∩ D(A) is a core for K, and the quadratic form i[K,A] on D(K) ∩ D(A) extends
uniquely to a bounded operator from D(K) to its dual space D(K)∗, which is denoted also by
i[K,A].
(5) The virial relation holds: For any λ ∈ R,

EK({λ})i[K,A]EK({λ}) = 0

holds. Here EK(S) stands for the spectral projection for K onto S ⊂ R.
(6) For z ∈ C \ σ(K), i[(K − z)−1, A] = −(K − z)−1i[K,A](K − z)−1 holds.
(7) For z ∈ C \ σ(K), (K − z)−1 preserves D(A).

As for the characterization of the operators in C1(A), we refer to the following proposition
(see e.g. Proposition 3.2.1 of [14]; see also [8]):

PROPOSITION 3.3. Let K be a Hilbert space. Suppose that K and A are self-adjoint
operators on K. Then the following are equivalent:
(1) K ∈ C1(A).
(2) For some z ∈ C \ σ(K),

|(Au, (K − z̄)−1u)− ((K − z)−1u,Au)| ≤ C‖u‖2 for u ∈ D(A).

(3) For any z ∈ C \ σ(K),

|(Au, (K − z̄)−1u)− ((K − z)−1u,Au)| ≤ C‖u‖2 for u ∈ D(A).

(4) The following two conditions hold:
(i) There exists some C > 0 such that

|(Au,Ku)− (Ku,Au)| ≤ C‖(K + i)u‖2 for u ∈ D(K) ∩D(A);

(ii) There exists some z ∈ C \ σ(K) such that{
u ∈ D(A)

∣∣ (K − z)−1u ∈ D(A), (K − z̄)−1u ∈ D(A)
}

is a core for A.
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From now on, we will give several propositions about the Floquet Hamiltonians under con-
sideration, which are frequently used in this paper:

PROPOSITION 3.4. Assume V satisfies (VWR)ρ with some ρ > 0. Then the spectrum
σ(K) of the Floquet Hamiltonian K is ω-periodic, that is, σ(K) = σ(K) + ωZ.

As is well-known, the periodic structure of σ(K) stated in Proposition 3.4 has been used
frequently in the previous works. One has only to take account of the formula e−iωtKeiωt =

K + ω.

PROPOSITION 3.5. (1) 〈p〉2〈Dt〉−1〈K0〉−1 and 〈p〉〈Dt〉−1/2〈K0〉−1/2 are bounded.
Here 〈p〉 = (1 + p2)1/2, 〈Dt〉 = (1 + (Dt)

2)1/2 and 〈K0〉 = (1 + (K0)
2)1/2.

(2) Suppose that g ∈ C2(R) satisfies supp g ⊂ (0,∞), and g(k), k = 0, 1, 2, are all bounded.
Then 〈p〉g(Dt)〈K0〉−1 and 〈Dt〉1/2g(Dt)〈K0〉−1 are bounded.

Proposition 3.5 can be proved by the same argument as in the case of the free Stark Hamil-
tonian p2/2 − E · x with E 6= 0 (see e.g. [9], [17] and Simon [33]). So we omit the proof.

The following proposition says the so-called local compactness property of K0.

PROPOSITION 3.6. Let R > 0 and z ∈ C \R. Then F (|x| ≤ R)(K0 − z)−1 is compact
on K . Here F (|x| ≤ R) stands for a smoothed one of the characteristic function of

{
x ∈ X

∣∣
|x| ≤ R

}
, whose definition is given in §1.

In the same way as in the proof of Lemma 3.1 of Yajima [37] and Lemma 4.6 of Møller [26],
the compactness of

(F (|x| ≤ R)(K0 − z)−1)(F (|x| ≤ R)(K0 − z)−1)∗

=
1

z − z̄
F (|x| ≤ R){(K0 − z)−1 − (K0 − z̄)−1}F (|x| ≤ R)

can be shown, which yields Proposition 3.6 immediately. So we omit the proof.

COROLLARY 3.7. Assume V satisfies (VWR)ρ with some ρ > 0. Then the following hold:
(1) Let R > 0 and z ∈ C \R. Then F (|x| ≤ R)(K − z)−1 is also compact on K .
(2) Let µ > 0 and z ∈ C \R. Then 〈x〉−µ(K − z)−1 as well as 〈x〉−µ(K0 − z)−1 is compact
on K .

By using the second resolvent identity

(K − z)−1 − (K0 − z)−1 = −(K0 − z)−1V (K − z)−1, (3.2)

Corollary 3.7 follows from Proposition 3.6 immediately.

As is well-known, in the proof due to Froese-Herbst [13] of the Mourre estimate for time-
independent N -body Schrödinger operators, the compactness of f(H)J̃a(x) − J̃a(x)f(Ha) is
one of the keys in the induction process with respect to N , where H is the full Hamiltonian, Ha

is the cluster Hamiltonian with a ∈ A0 = A \ {amax}, and f is compactly supported.
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In the case of the Floquet Hamiltonians, f(K)J̃a(x)− J̃a(x)f(Ka) is not compact, in gen-
eral. However, by modifying f(K)J̃a(x)−J̃a(x)f(Ka) by some appropriate cut-off with respect
to Dt, one can acquire the compactness of the modified one. The following proposition is one of
the keys in the proof of the Mourre estimate for K stated in §5: Before stating the proposition,
we introduce two functions η1, η̄1 ∈ C∞(R;R) such that η1 is supported in (−2,∞), η̄1 is
supported in (−∞,−1), 0 ≤ η1(s) ≤ 1, 0 ≤ η̄1(s) ≤ 1, η1(s) = 1 on [−1,∞), η̄1(s) = 1

on (−∞,−2], and η1(s)
2 + η̄1(s)

2 ≡ 1. Moreover, for S > 0, we put ηS(s) = η1(s/S) and
η̄S(s) = η̄1(s/S).

PROPOSITION 3.8. Assume N ≥ 3, and V satisfies (VWR)ρ with some ρ > 0. By us-
ing ηS and η̄S with S > 0, let us introduce the partition of unity ηS(Dt) and η̄S(Dt) such
that ηS(Dt)

2 + η̄S(Dt)
2 = 1. Let a ∈ A0 and f ∈ C∞

0 (R;R). Then {f(K)J̃a(x) −
J̃a(x)f(Ka)}ηS(Dt) is compact on K .

PROOF. We will prove the proposition by the almost analytic extension method: Take an
almost analytic extension f̃ ∈ C∞

0 (C) of f ∈ C∞
0 (R;R). Then we see that

f(K)J̃a(x)− J̃a(x)f(Ka)

=
1

2πi

∫
C

∂ζ f̃(ζ){(ζ −K)−1J̃a(x)− J̃a(x)(ζ −Ka)
−1} dζ ∧ dζ

=
1

2πi

∫
C

∂ζ f̃(ζ)(ζ −K)−1

× {−i(∇J̃a)(x) · p− (∆J̃a)(x)/2 + J̃a(x)Ia(t)}(ζ −Ka)
−1 dζ ∧ dζ

holds. Since (∆J̃a)(x) = O(〈x〉−2) and J̃a(x)Ia(t) = O(〈x〉−ρ), by Proposition 2.1 and
Corollary 2.4, the last two operators of the right-hand side are compact, by virtue of Corollary
3.7 (2). In order to watch the first operator of the right-hand side, we introduce η0 ∈ C∞(R;R)

such that η0 is supported in (0,∞), 0 ≤ η0(s) ≤ 1, and η0(s) = 1 on [1,∞), and use the cut-off
η0(Dt) with respect to Dt. By virtue of Proposition 3.5 (2), we see that p(ζ −Ka)

−1η0(Dt) is
bounded, which is the key in this proof. Then it follows from Corollary 3.7 (2) that(∫

C

∂ζ f̃(ζ)(ζ −K)−1{(∇J̃a)(x) · p}(ζ −Ka)
−1 dζ ∧ dζ

)
η0(Dt)

is also compact, since (∇J̃a)(x) = O(〈x〉−1) by Proposition 2.1. Since ηS(s) − η0(s) is com-
pactly supported, we see that p(ζ − Ka)

−1(ηS(Dt) − η0(Dt)) is also bounded. In fact, by
Proposition 3.5 (1), p(ζ −Ka)

−1〈Dt〉−1/2 is bounded, and 〈Dt〉1/2(ηS(Dt) − η0(Dt)) is also
bounded, by the compactness of the support of ηS(s)− η0(s). Thus one can show that(∫

C

∂ζ f̃(ζ)(ζ −K)−1{(∇J̃a)(x) · p}(ζ −Ka)
−1 dζ ∧ dζ

)
(ηS(Dt)− η0(Dt))

is also compact in the same way as above. These show the proposition. □

REMARK 3.1. We do not know whether f(K)J̃a(x)− J̃a(x)f(Ka) is compact or not, as
mentioned also in [27]. As will be seen in §5, the cut-off ηS(Dt) does work effectively in the
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proof of the Mourre estimate for K. Thus this cut-off seems have no disadvantage.

On the other hand, in the case where N = 2, by virtue of (3.2), the compactness of
〈K0〉{f(K)−f(K0)} (cf. Lemma 2.2 of [13]), which has no cut-off like ηS(Dt), can be proved
in the same way as above. So we omit the proof.

PROPOSITION 3.9. Assume N = 2, and V satisfies (VWR)ρ with some ρ > 0. Let f ∈
C∞

0 (R;R). Then 〈K0〉{f(K)− f(K0)} is compact on K .

4. Two-body case revisited

In this section, we revisit the proof of the Mourre estimate for K with N = 2 throughout
this section. So we suppose N = 2. For the sake of simplicity, we will consider a regular
potential V (1,2). So we impose (VWR)ρ on V (1,2) with ρ > 0.

First we state some properties of A = Ã0 given by (1.13). Unlike in Adachi-Kiyose [5],
the weight in (1.13) is not the signed one (λ0 − δ − Dt)

−1 but the positive one 〈Dt〉−1
2ω =

((2ω)2 + (Dt)
2)−1/2.

LEMMA 4.1. As for i[K0, A] and i[i[K0, A], A],

i[K0, A] = 〈Dt〉−1
2ω p

2 = 2〈Dt〉−1
2ω (K0 −Dt),

i[i[K0, A], A] = 2〈Dt〉−2
2ω p

2 = 4〈Dt〉−2
2ω (K0 −Dt)

(4.1)

hold. Hence, i[K0, A]〈K0〉−1 and i[i[K0, A], A]〈K0〉−1 are bounded.

LEMMA 4.2. Assume N = 2, and V = V (1,2) satisfies (VWR)ρ with some ρ > 0. As for
i[V,A] and i[i[V,A], A],

i[V,A] = i[V, 〈Dt〉−1
2ω ]Â0 + 〈Dt〉−1

2ω i[V, Â0],

i[i[V,A], A] = i[i[V, 〈Dt〉−1
2ω ], 〈Dt〉−1

2ω ]Â
2
0 + 〈Dt〉−1

2ω i[i[V, 〈Dt〉−1
2ω ], Â0]Â0

+ 〈Dt〉−1
2ω i[i[V, Â0], 〈Dt〉−1

2ω ]Â0 + 〈Dt〉−2
2ω i[i[V, Â0], Â0]

(4.2)

hold. Hence, i[V,A]〈K0〉−1 and i[i[V,A], A]〈K0〉−1 are bounded. Moreover, 〈K0〉−1i[V,A]

〈K0〉−1 is compact.

By simple computation, (4.1) and (4.2) can be obtained. Therefore Lemma 4.1 follows
trivially. Lemma 4.2 can be shown in the same way as in [5]: For instance, as for i[V,A],
by (∂tV )(t, x) = O(〈x〉−ρ−1) and (∇V )(t, x) = O(〈x〉−ρ−1), we see that i[V,A]〈K0〉−1 is
bounded, by virtue of Proposition 3.5 (1). Here we used

i[V, 〈Dt〉−1
2ω ] =

1

2πi

∫
C

∂ζ g̃(ζ)(ζ −Dt)
−1i[V,Dt](ζ −Dt)

−1 dζ ∧ dζ

with i[V,Dt] = −∂tV , where g̃ ∈ C∞(C) is an almost analytic extension of g(ν) = 〈ν〉−1
2ω ,

which satisfies |∂z g̃(z)| ≤ CL〈z〉−1−1−L|Im z|L with L ∈ N ∪ {0}. Moreover, by virtue of
Corollary 3.7 (2), we also see that 〈K0〉−1i[V,A]〈K0〉−1 is compact.
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One can show the following theorem and corollary:

THEOREM 4.3. Suppose N = 2. Assume V satisfies (VWR)ρ with some ρ > 0. Put

Θ = σpp(K
amin) = σpp(Dt) = ωZ, Θ̂ =

⋃
a∈A

σpp(K
a) = Θ ∪ σpp(K).

Let λ0 ∈ [0, ω). Then the following hold:
(1) Put

d0(λ) = dist(λ,Θ), d1(λ) = dist(λ,Θ ∩ (−∞, λ])

for λ ∈ R. Note d0(λ) ≤ d1(λ). Suppose λ0 ∈ [0, ω) \ Θ, that is, λ0 ∈ (0, ω). Take δ as
0 < δ ≤ d0(λ0)/2. Then, for any fλ0,δ ∈ C∞

0 (R;R) supported in [λ0 − δ, λ0 + δ],

fλ0,δ(K)i[K,A]fλ0,δ(K) ≥ d1(λ0)− δ

ω
fλ0,δ(K)2 + C0 (4.3)

holds with some compact operator C0 on K . For λ0 ∈ [0, ω), d1(λ0) = λ0 holds.
Suppose λ0 ∈ [0, ω) ∩ Θ, that is, λ0 = 0. Take δ as 0 < δ ≤ ω/2. Then, for any

fλ0,δ ∈ C∞
0 (R;R) supported in [λ0 − δ, λ0 + δ],

fλ0,δ(K)i[K,A]fλ0,δ(K) ≥ C0 (4.4)

holds with some compact operator C0 on K .
Hence, for any δ̂ such that 0 < δ̂ < δ, σpp(K) ∩ (λ0 − δ̂, λ0 + δ̂) is finite, and that the

eigenvalues of K in (λ0 − δ̂, λ0 + δ̂) are of finite multiplicity.
(2) Suppose λ0 ∈ [0, ω) \ Θ̂. Take ϵ as 0 < ϵ < d1(λ0) − d0(λ0)/2. Then there exists a small
δϵ,1 > 0 such that δϵ,1 ≤ d0(λ0)/2 and for any fλ0,δ ∈ C∞

0 (R;R) supported in [λ0− δ, λ0+ δ]

with 0 < δ ≤ δϵ,1,

fλ0,δ(K)i[K,A]fλ0,δ(K) ≥ d1(λ0)− δ − ϵ

ω
fλ0,δϵ,1(K)2 (4.5)

holds. Suppose s > 1/2 and 0 < δ̂ < δϵ,1. Then

sup
Re z∈[λ0−δ̂,λ0+δ̂]

Im z ̸=0

‖〈A〉−s(K − z)−1〈A〉−s‖B(K ) < ∞ (4.6)

holds. Moreover, 〈A〉−s(K − z)−1〈A〉−s is a B(K )-valued θ(s)-Hölder continuous function
on z ∈ Sλ0,δ̂,± with some 0 < θ(s) < 1. And, there exist the norm limits

〈A〉−s(K − (λ± i0))−1〈A〉−s = lim
ε→+0

〈A〉−s(K − (λ± iε))−1〈A〉−s

in B(K ) for any λ ∈ [λ0 − δ̂, λ0 + δ̂]. 〈A〉−s(K − (λ ± i0))−1〈A〉−s are also θ(s)-Hölder
continuous in λ.

COROLLARY 4.4. Assume V satisfies (VWR)ρ with some ρ > 0. Then the following hold:
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(1) The eigenvalues of K in R\Θ can accumulate only at Θ. Moreover, Θ̂ is a countable closed
set.
(2) Let I be a compact interval in R \ Θ̂. Suppose 1/2 < s ≤ 1. Then

sup
Re z∈I
Im z ̸=0

‖〈x〉−s(K − z)−1〈x〉−s‖B(K ) < ∞ (4.7)

holds. Moreover, 〈x〉−s(K−z)−1〈x〉−s is a B(K )-valued θ(s)-Hölder continuous function on
z ∈ SI,±. And, there exist the norm limits

〈x〉−s(K − (λ± i0))−1〈x〉−s = lim
ε→+0

〈x〉−s(K − (λ± iε))−1〈x〉−s

in B(K ) for λ ∈ I . 〈x〉−s(K − (λ± i0))−1〈x〉−s are also θ(s)-Hölder continuous in λ.

We will sketch the proof of the estimates (4.3) and (4.4) only. Thus Theorem 4.3 and
Corollary 4.4 can be shown by the standard argument in the Mourre theory. In particular, for the
proof of Corollary 4.4, we use the argument due to Perry-Sigal-Simon [29], and the boundedness
of A(K − λ0 − i)−1〈x〉−1, which follows from Proposition 3.5 (1).

PROOF OF (4.3) AND (4.4). Let λ0 ∈ [0, ω). For a while, take δ as 0 < δ ≤ ω/2.
Denote by fλ0,δ a function in C∞

0 (R;R) such that supp fλ0,δ ⊂ [λ0 − δ, λ0 + δ]. Since
〈K0〉−1i[V,A]〈K0〉−1 is compact by Lemma 4.2, we see that

fλ0,δ(K)i[K,A]fλ0,δ(K) = fλ0,δ(K)i[K0, A]fλ0,δ(K) + C1 (4.8)

holds with some compact operator C1 on K . Since i[K0, A]〈K0〉−1 is bounded by Lemma 4.1,
and 〈K0〉{fλ0,δ(K)− fλ0,δ(K0)} is compact by Proposition 3.9, we obtain

fλ0,δ(K)i[K,A]fλ0,δ(K) = fλ0,δ(K0)i[K0, A]fλ0,δ(K0) + C2 (4.9)

with some compact operator C2 on K . Let F̂ : L2(T ) → ℓ2(Z) be the Fourier transform
which is defined by

F̂ [g](n) = T−1/2

∫ T

0

g(t)e−inωt dt, n ∈ Z; g ∈ L2(T ).

Then Dt becomes the multiplication by nω on ℓ2(Z) for n ∈ Z, that is, Dt can be decomposed
into the direct sum

⊕
n∈Z nω, via the Fourier transform F̂ . By using F̂ , fλ0,δ(K0)i[K0, A]

fλ0,δ(K0) can be decomposed into the direct sum

⊕
n∈Z

p2fλ0,δ(nω + p2/2)2

((2ω)2 + (nω)2)1/2
=
⊕
n∈Z

p2fλ0−nω,δ(p
2/2)2

((2ω)2 + (nω)2)1/2
=
⊕
n∈Z

I0(nω).

We first consider the case where λ0 ∈ [0, ω) \ Θ. Take δ as 0 < δ ≤ d0(λ0)/2. If n ≤ 0,
then the fibered operator I0(nω) can be estimated as

I0(nω) ≥
2{(λ0 − nω)− δ}
((2ω)2 + (nω)2)1/2

fλ0−nω,δ(p
2/2)2
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≥ 2{(λ0 + |n|ω)− δ}
2ω + |n|ω

fλ0−nω,δ(p
2/2)2 ≥ λ0 − δ

ω
fλ0−nω,δ(p

2/2)2;

while, if n ≥ 1, then I0(nω) = 0. Here we used that that if n ≥ 1, then λ0 − nω + δ ≤
λ0 − ω + δ ≤ λ0 − ω + d0(λ0)/2 < 0 holds. Then we obtain

fλ0,δ(K0)i[K0, A]fλ0,δ(K0) ≥
λ0 − δ

ω
fλ0,δ(K0)

2.

It follows from this, (4.9) and the compactness of 〈K0〉{fλ0,δ(K)− fλ0,δ(K0)} that (4.3) holds.
Here we used d1(λ0) = λ0.

We next consider the case where λ0 ∈ [0, ω) ∩Θ. Take δ as 0 < δ ≤ ω/2. Then

fλ0,δ(K0)i[K0, A]fλ0,δ(K0) ≥ 0

holds. In the same way as above, it can be shown easily that (4.4) holds. □

5. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. As in §2, we will show the estimate (1.16) only.
(1.16) yields the Mourre estimate (1.17). Thus Theorem 1.1 and Corollary 1.2 can be shown
by the standard argument in the Mourre theory. Throughout this section, we assume V satisfies
(VWR)ρ with some ρ > 0.

Take the Yafaev partition of unity {J̃a}a∈A , and introduce the operator A by (1.15). By the
second representation of (1.15), we have (2.13):

i[K0, A] = i[K0, Ã0] +
∑

a∈A 0
0

S1,a + L0

∑
a∈A 0

0

S2,a

with S1,a = i[K0, J̃a(x){−(Ã0)a}J̃a(x)] and S2,a = i[K0, J̃a(xa)ĀaJ̃a(xa)]. Then we obtain
the following estimate for fλ0,δ(K)i[K0, A]fλ0,δ(K):

LEMMA 5.1. Let λ0 ∈ [0, ω) and δ > 0. Then

fλ0,δ(K)i[K0, A]fλ0,δ(K)

≥ fλ0,δ(K)(〈Dt〉−1
2ω p

2)fλ0,δ(K)

+
∑

a∈A 0
0

fλ0,δ(K)J̃a(x)(−〈Dt〉−1
2ω (pa)

2)J̃a(x)fλ0,δ(K)

+
L0

2

∑
a∈A 0

0

fλ0,δ(K)J̃a(xa)(〈Dt〉−1
2ω (pa)

2)J̃a(xa)fλ0,δ(K)

+ fλ0,δ(K){O(L−1
0 ) + L0O(L−1

1 )}fλ0,δ(K) + C

(5.1)

holds with some compact operator C on K , where L1 > 0 is the parameter which comes from
Corollary 2.8.

PROOF. Lemma 4.1 yields i[K0, Ã0] = 〈Dt〉−1
2ω p

2 and i[K0,−(Ã0)a] = −〈Dt〉−1
2ω (pa)

2.
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We first watch S2,a = i[K0, J̃a(xa)ĀaJ̃a(xa)] with a ∈ A 0
0 . One can show easily that

S2,a = 2Re [{Re (pa · (∇aJ̃a)(xa))}ĀaJ̃a(xa)] + J̃a(xa)(〈pa〉−2(pa)
2)J̃a(xa)

= 2Re [{Re (pa · (∇aJ̃a)(xa))}ĀaJ̃a(xa)]

+ (J̃a(xa) + L−2
0 )(〈pa〉−2(pa)

2)(J̃a(xa) + L−2
0 ) +O(L−2

0 )

is bounded. By simple calculation, Āa can be recognized as xa · pa〈pa〉−2 up to the bounded
error. Then the main part of S2,a can be recognized as

(pa〈pa〉−1)(J̃a(xa) + L−2
0 )2(pa〈pa〉−1)∗

+ 2Re [(pa〈pa〉−1)(∇aJ̃a)(xa)
∗(xaJ̃a(xa))(pa〈pa〉−1)∗]

(5.2)

by neglecting errors of the orders O(L−2
0 ) and O(L−1

1 ), where we used the notation (pa)
2 =

pa · pa = pa(pa)
∗ and xa · pa = xa(pa)

∗. We also used Corollary 2.8. Introducing a bounded
operator Ba,0 = (pa〈pa〉−1)(J̃a(xa) + L−2

0 ), the first term of (5.2) is written as Ba,0B
∗
a,0. By

virtue of Lemma 2.7 and the remark directly below it, (5.2) can be estimated from below by
(3/4)Ba,0B

∗
a,0.

We next watch S1,a = i[K0, J̃a(x){−(Ã0)a}J̃a(x)] with a ∈ A 0
0 . By virtue of Proposition

3.5 (1), one can show easily that

S1,a = 2Re [{Re (p · (∇J̃a)(x))}{−(Ã0)a}J̃a(x)] + J̃a(x)(−〈Dt〉−1
2ω (pa)

2)J̃a(x)

is K0-bounded. By simple calculation, (Ã0)a can be recognized as xa · pa〈Dt〉−1
2ω up to the

bounded error. Then the main part of S1,a can be recognized as

J̃a(x)(−〈Dt〉−1
2ω (pa)

2)J̃a(x)− 2Re [p〈Dt〉−1
2ω (∇J̃a)(x)

∗(xaJ̃a(x))(pa)
∗] (5.3)

by neglecting K0-compact errors. Introducing a K0-bounded operator Ba,1 = p〈Dt〉−1
2ω

(∇J̃a)(x)
∗(xaJ̃a(x))〈pa〉(J̃a(xa) + L−2

0 )−1, we see that

− 2Re [p〈Dt〉−1
2ω (∇J̃a)(x)

∗(xaJ̃a(x))(pa)
∗] +

L0

4
Ba,0B

∗
a,0

=

(√
L0

2
Ba,0 −

2√
L0

Ba,1

)(√
L0

2
Ba,0 −

2√
L0

Ba,1

)∗

− 4

L0
Ba,1B

∗
a,1

≥ − 4

L0
Ba,1B

∗
a,1.

Here we note that 〈K0〉−1Ba,1 is bounded in L0, because 0 ≤ J̃a(x)(J̃a(xa) + L−2
0 )−1 ≤ 1

by Lemma 2.9. Since (3/4)Ba,0B
∗
a,0 − (1/4)Ba,0B

∗
a,0 = (1/2)Ba,0B

∗
a,0 and Ba,0B

∗
a,0 =

J̃a(xa)(〈pa〉−2(pa)
2)J̃a(xa) +O(L−2

0 ) +O(L−1
1 ) by Corollary 2.8, we obtain (5.1). □

This estimate (5.1) is important for the sake of obtaining the Mourre estimate for K. Since
〈Dt〉−1

2ω 〈pa〉2 is K0-bounded by Proposition 3.5 (1), for relatively large L0 > 0,
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fλ0,δ(K)J̃a(x)(−〈Dt〉−1
2ω (pa)

2)J̃a(x)fλ0,δ(K)

+
L0

4
fλ0,δ(K)J̃a(xa)(〈pa〉−2(pa)

2)J̃a(xa)fλ0,δ(K) ≥ C ′
a

(5.4)

holds with some compact operator C ′
a on K , for each a ∈ A 0

0 . Here we used J̃a(xa) ≥ J̃a(x) ≥
0 by Lemma 2.9, and (∇aJ̃a)(x) = O(〈x〉−1) by Proposition 2.1, which is K0-compact by
Corollary 3.7 (2). This estimate (5.4) will be used later.

On the other hand, by the first representation of (1.15), i[V,A] can be written as

i[V,A] =
∑

a∈A \A 0
0

J̃a(x)i[V, Ã0]J̃a(x)

+
∑

a∈A 0
0

J̃a(x)i[V, (Ã0)
a]J̃a(x) + L0

∑
a∈A 0

0

J̃a(xa)i[Ia, Āa]J̃a(xa)

by i[V a, Āa] = 0 for a ∈ A 0
0 . Then we obtain the following estimate for fλ0,δ(K)i[V,A]

fλ0,δ(K):

LEMMA 5.2. Let λ0 ∈ [0, ω) and δ > 0. Then

fλ0,δ(K)i[V,A]fλ0,δ(K) =
∑

a∈A 0
0

fλ0,δ(K)J̃a(x)i[V
a, (Ã0)

a]J̃a(x)fλ0,δ(K)

+ fλ0,δ(K){L0O(L−ρ
1 )}fλ0,δ(K) + C ′

(5.5)

holds with some compact operator C ′ on K , where L1 > 0 is the parameter which comes from
Corollary 2.8.

PROOF. By virtue of Proposition 3.6 and Corollary 3.7, one can show easily that

〈K0〉−1

 ∑
a∈A \A 0

0

J̃a(x)i[V, Ã0]J̃a(x) +
∑

a∈A 0
0

J̃a(x)i[Ia, (Ã0)
a]J̃a(x)

 〈K0〉−1 (5.6)

is compact. Here we used the compactness of supp J̃amax
, and Corollary 2.4. Moreover, we see

that for a ∈ A 0
0 ,

J̃a(xa)i[Ia, Āa]J̃a(xa) = O(L−ρ
1 ) (5.7)

holds, by virtue of Lemma 2.3. Here we used that J̃a(xa) is supported in
{
xa ∈ Xa

∣∣ |xa| ≥
(σ−

amax,1
/2)L1

}
. Therefore we obtain (5.5). □

By the above argument, the following lemma can be obtained as Lemmas 4.1 and 4.2:

LEMMA 5.3. Assume V satisfies (VWR)ρ with some ρ > 0. Then i[K0, A]〈K0〉−1

and i[V,A]〈K0〉−1 are bounded. This yields that i[K,A]〈K0〉−1 is bounded. Moreover,
〈K0〉−1i[i[K,A], A]〈K0〉−1 is also bounded.

Based on these, one can show (1.16) as follows:
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PROOF OF (1.16). Suppose λ0 ∈ [0, ω) \Θ and ϵ > 0. Put

Θ =
⋃

a∈A0

σpp(K
a), d0(λ) = dist(λ,Θ), d1(λ) = dist(λ,Θ ∩ (−∞, λ])

for λ ∈ R. For a while, take δ as 0 < δ ≤ d0(λ0)/2. Then both λ0 − δ ≥ λ0 − d0(λ0)/2 > 0

and λ0 + δ ≤ λ0 + d0(λ0)/2 < ω hold. By Lemmas 5.1 and 5.2, we have

fλ0,δ(K)i[K,A]fλ0,δ(K)

≥ fλ0,δ(K)T0fλ0,δ(K) + fλ0,δ(K){O(L−1
0 ) + L0O(L

max{−1,−ρ}
1 )}fλ0,δ(K) + C1

(5.8)

with some compact operator C1 on K , where

T0 = T1 +
∑

a∈A 0
0

(
T2,a +

L0

2
T3,a + T4,a

)
;

T1 = 〈Dt〉−1
2ω p

2, T2,a = J̃a(x)(−〈Dt〉−1
2ω (pa)

2)J̃a(x),

T3,a = J̃a(xa)(〈pa〉−2(pa)
2)J̃a(xa), T4,a = J̃a(x)i[V

a, (Ã0)
a]J̃a(x).

By using the partition of unity ηS(Dt) and η̄S(Dt) with sufficiently large S > 0 such
that ηS(Dt)

2 + η̄S(Dt)
2 = 1 introduced in Proposition 3.8, we will decompose the term

fλ0,δ(K)T0fλ0,δ(K) into the sum

fλ0,δ(K)ηS(Dt)T0ηS(Dt)fλ0,δ(K) + fλ0,δ(K)η̄S(Dt)T0η̄S(Dt)fλ0,δ(K)

up to the errors of order O(S−1), which come from [T4,a, ηS(Dt)], [T4,a, η̄S(Dt)]’s.
We first watch fλ0,δ(K)η̄S(Dt)T0η̄S(Dt)fλ0,δ(K). Taking account of T1 = 2〈Dt〉−1

2ω

(K0−Dt) by Lemma 4.1, we will focus on 〈Dt〉−1
2ω (−Dt). Via the Fourier transform F̂ : L2(T )

→ ℓ2(Z) introduced in §4, 〈Dt〉−1
2ω (−Dt) can be decomposed into the direct sum⊕

n∈Z

−nω

((2ω)2 + (nω)2)1/2
.

Suppose n ∈ Z such that n < −S < 0. Then we note

−nω

((2ω)2 + (nω)2)1/2
≥ |n|ω

2ω + |n|ω
= 1− 2ω

2ω + |n|ω
.

By using this and that K0 is K-bounded, one can obtain easily

fλ0,δ(K)η̄S(Dt)T1η̄S(Dt)fλ0,δ(K) ≥ (2 +O(S−1))fλ0,δ(K)η̄S(Dt)
2fλ0,δ(K).

By using (5.4), {(L0/2) − (L0/4)}T3,a = (L0/4)T3,a ≥ 0 and η̄S(Dt)T4,aη̄S(Dt) = O(S−1)

for a ∈ A 0
0 , one can obtain

fλ0,δ(K)η̄S(Dt)T0η̄S(Dt)fλ0,δ(K)

≥ (2 +O(S−1))fλ0,δ(K)η̄S(Dt)
2fλ0,δ(K) + C2

(5.9)
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with some compact operator C2 on K .
We next watch fλ0,δ(K)ηS(Dt)T0ηS(Dt)fλ0,δ(K). By the IMS localization formula for

{J̃a}a∈A

p2 =
∑
a∈A

J̃a(x)p
2J̃a(x) +

∑
a∈A

|(∇J̃a)(x)|2

and
∑

a∈A |(∇J̃a)(x)|2 = O(〈x〉−2) obtained by Proposition 2.1, we have

fλ0,δ(K)ηS(Dt)T1ηS(Dt)fλ0,δ(K)

=
∑
a∈A

fλ0,δ(K)ηS(Dt)J̃a(x)T1J̃a(x)ηS(Dt)fλ0,δ(K) + C3

= fλ0,δ(K)ηS(Dt)J̃amin
(x)T1J̃amin

(x)ηS(Dt)fλ0,δ(K)

+
∑

a∈A 0
0

fλ0,δ(K)ηS(Dt)J̃a(x)T1J̃a(x)ηS(Dt)fλ0,δ(K) + C ′
3

with some compact operators C3 and C ′
3 on K . Here we also used the compactness of

supp J̃amax
and Corollary 3.7. Then we obtain

fλ0,δ(K)ηS(Dt)T0ηS(Dt)fλ0,δ(K)

= fλ0,δ(K)ηS(Dt)T1,aminηS(Dt)fλ0,δ(K)

+
∑

a∈A 0
0

fλ0,δ(K)ηS(Dt)

(
T ′
1,a +

L0

2
T3,a + T4,a

)
ηS(Dt)fλ0,δ(K) + C ′

3,

(5.10)

where T1,amin
= J̃amin

(x)(〈Dt〉−1
2ω p

2)J̃amin
(x), and T ′

1,a = J̃a(x)(〈Dt〉−1
2ω (p

a)2)J̃a(x) with
a ∈ A 0

0 . Here we used p2 + {−(pa)
2} = (pa)2.

As for the term fλ0,δ(K)ηS(Dt)T1,aminηS(Dt)fλ0,δ(K), the estimate

fλ0,δ(K)ηS(Dt)T1,amin
ηS(Dt)fλ0,δ(K)

≥ d̂1,amin
(λ0)− δ

ω
fλ0,δ(K)J̃amin

(x)ηS(Dt)
2J̃amin

(x)fλ0,δ(K) + C4,amin

(5.11)

holds with some compact operator C4,amin on K , where

d̂1,amin
(λ) = dist(λ, Θ̂amin

∩ (−∞, λ]); Θ̂amin
= σpp(Dt) = ωZ,

for λ ∈ R; as for the term fλ0,δ(K)ηS(Dt)(T
′
1,a + (L0/2)T3,a + T4,a)ηS(Dt)fλ0,δ(K) with

a ∈ A 0
0 , the estimate

fλ0,δ(K)ηS(Dt)

(
T ′
1,a +

L0

2
T3,a + T4,a

)
ηS(Dt)fλ0,δ(K)

≥ d̂1,a(λ0)− δ − ϵ/2

ω
fλ0,δ(K)J̃a(x)ηS(Dt)

2J̃a(x)fλ0,δ(K) +O(S−1) + C4,a

(5.12)

holds with some compact operator C4,a on K , where
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d̂1,a(λ) = dist(λ, Θ̂a ∩ (−∞, λ]); Θ̂a = ωZ ∪ σpp(K
a),

for λ ∈ R. Here we used that a ∈ A 0
0 is a pair, since N = 3. The estimates (5.11) and (5.12)

will be shown later as Lemmas 5.4 and 5.5. Let us continue the proof of (1.16), on the assumption
that (5.11) and (5.12) has been obtained. By using (5.10), (5.11) and (5.12), one can obtain

fλ0,δ(K)ηS(Dt)T0ηS(Dt)fλ0,δ(K)

≥ d̂1,amin
(λ0)− δ

ω
fλ0,δ(K)J̃amin

(x)ηS(Dt)
2J̃amin

(x)fλ0,δ(K)

+
∑

a∈A 0
0

d̂1,a(λ0)− δ − ϵ/2

ω
fλ0,δ(K)J̃a(x)ηS(Dt)

2J̃a(x)fλ0,δ(K) +O(S−1) + C5

≥
∑
a∈A0

d1(λ0)− δ − ϵ/2

ω
fλ0,δ(K)J̃a(x)ηS(Dt)

2J̃a(x)fλ0,δ(K) +O(S−1) + C5

with some compact operator C5 on A . Here we used d1(λ0) = min
{
d̂1,a(λ0)

∣∣ a ∈ A0

}
.

Moreover, by using (2.10), the compactness of supp J̃amax
, and Corollary 3.7, we have

fλ0,δ(K)ηS(Dt)T0ηS(Dt)fλ0,δ(K)

≥
∑
a∈A

d1(λ0)− δ − ϵ/2

ω
fλ0,δ(K)J̃a(x)ηS(Dt)

2J̃a(x)fλ0,δ(K) +O(S−1) + C ′
5

=
d1(λ0)− δ − ϵ/2

ω
fλ0,δ(K)ηS(Dt)

2fλ0,δ(K) +O(S−1) + C ′
5

(5.13)

with some compact operator C ′
5 on A .

By virtue of (5.8), (5.9) and (5.13), we obtain the estimate

fλ0,δ(K)i[K,A]fλ0,δ(K)

≥ (2 +O(S−1))fλ0,δ(K)η̄S(Dt)
2fλ0,δ(K)

+
d1(λ0)− δ − ϵ/2

ω
fλ0,δ(K)ηS(Dt)

2fλ0,δ(K)

+ fλ0,δ(K){O(L−1
0 ) + L0O(L

max{−1,−ρ}
1 ) +O(S−1)}fλ0,δ(K) + C6

with some compact operator C6 on A , by sandwiching this estimate by two fλ0,δ(K)’s with
smaller δ > 0 if necessary. This estimate yields

fλ0,δ(K)i[K,A]fλ0,δ(K)

≥ d1(λ0)− δ − ϵ/2

ω
fλ0,δ(K)fλ0,δ(K)

+ fλ0,δ(K){O(L−1
0 ) + L0O(L

max{−1,−ρ}
1 ) +O(S−1)}fλ0,δ(K) + C6.

(5.14)

Here we used that (d1(λ0) − δ − ϵ/2)/ω < 1 < 2 + O(S−1) holds for relatively large S > 0.
After taking L0 > 0 and S > 0 as sufficiently large, we have only to take L1 > 0 as sufficiently
large for the sake of obtaining the estimate
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fλ0,δ(K){O(L−1
0 ) + L0O(L

max{−1,−ρ}
1 ) +O(S−1)}fλ0,δ(K) ≥ −ϵ/2

ω
fλ0,δ(K)2.

This and (5.14) yield (1.16). □

Now we will show the estimates (5.11) and (5.12).

LEMMA 5.4. The estimate (5.11) holds with some compact operator C4,amin on K .

PROOF. The term fλ0,δ(K)ηS(Dt)T1,amin
ηS(Dt)fλ0,δ(K) can be written as

fλ0,δ(K)ηS(Dt)T1,aminηS(Dt)fλ0,δ(K)

= J̃amin
(x)fλ0,δ(K0)ηS(Dt)(〈Dt〉−1

2ω p
2)ηS(Dt)fλ0,δ(K0)J̃amin

(x) + C ′
4,amin

with some compact operator C ′
4,amin

on K . Here we used Proposition 3.8 and Kamin
= K0. As

for the factor

fλ0,δ(K0)ηS(Dt)(〈Dt〉−1
2ω p

2)ηS(Dt)fλ0,δ(K0)

= ηS(Dt)fλ0,δ(K0)(〈Dt〉−1
2ω p

2)fλ0,δ(K0)ηS(Dt),

it follows from the estimate

fλ0,δ(K0)(〈Dt〉−1
2ω p

2)fλ0,δ(K0) ≥
λ0 − δ

ω
fλ0,δ(K0)

2 (5.15)

which can be obtained in the same way as in §4 that

fλ0,δ(K0)ηS(Dt)(〈Dt〉−1
2ω p

2)ηS(Dt)fλ0,δ(K0)

≥ d̂1,amin(λ0)− δ

ω
fλ0,δ(K0)ηS(Dt)

2fλ0,δ(K0)

holds, since d̂1,amin
(λ0) = λ0. By sandwiching this estimate by two J̃amin

(x)’s, and using
Proposition 3.8, we obtain (5.11). □

LEMMA 5.5. Let a ∈ A 0
0 . The estimate (5.12) holds with some compact operator C4,a

on K .

PROOF. The term fλ0,δ(K)ηS(Dt)(T
′
1,a + (L0/2)T3,a + T4,a)ηS(Dt)fλ0,δ(K) can be

estimated as

fλ0,δ(K)ηS(Dt)

(
T ′
1,a +

L0

2
T3,a + T4,a

)
ηS(Dt)fλ0,δ(K)

≥ fλ0,δ(K)ηS(Dt)

(
T ′
1,a +

L0

2
T ′
3,a + T4,a

)
ηS(Dt)fλ0,δ(K),

(5.16)

where

T ′
3,a = J̃a(x)(〈pa〉−2(pa)

2)J̃a(x).
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Here we used J̃a(xa) ≥ J̃a(x) ≥ 0 by Lemma 2.9.
As for the term fλ0,δ(K)ηS(Dt)(T

′
1,a + (L0/2)T

′
3,a + T4,a)ηS(Dt)fλ0,δ(K), we have

fλ0,δ(K)ηS(Dt)

(
T ′
1,a +

L0

2
T ′
3,a + T4,a

)
ηS(Dt)fλ0,δ(K)

= J̃a(x)fλ0,δ(Ka)ηS(Dt)i[K
a, (Ã0)

a]ηS(Dt)fλ0,δ(Ka)J̃a(x)

+
L0

2
J̃a(x)fλ0,δ(Ka)ηS(Dt)(〈pa〉−2(pa)

2)ηS(Dt)fλ0,δ(Ka)J̃a(x) + C ′
4,a

= J̃a(x)ηS(Dt)fλ0,δ(Ka)i[K
a, (Ã0)

a]fλ0,δ(Ka)ηS(Dt)J̃a(x)

+
L0

2
J̃a(x)ηS(Dt)fλ0,δ(Ka)(〈pa〉−2(pa)

2)fλ0,δ(Ka)ηS(Dt)J̃a(x)

+O(S−1) + C ′
4,a

(5.17)

with some compact operator C ′
4,a on K . Here we used

T ′
1,a + T4,a = J̃a(x)i[K

a, (Ã0)
a]J̃a(x),

and Proposition 3.8.
As for the factor (L0/2)fλ0,δ(Ka)(〈pa〉−2(pa)

2)fλ0,δ(Ka), via the Fourier transform Fa :

Ha → Ha, this can be decomposed into the direct integral∫ ⊕

[0,∞)

Fa,1(λa) dλa; Fa,1(λa) =
L0

2
F̃a,1(λa)fλ0−λa,δ(K

a)2, F̃a,1(λa) =
2λa

1 + 2λa
.

On the other hand, as for the factor fλ0,δ(Ka)i[K
a, (Ã0)

a]fλ0,δ(Ka), via the Fourier transform
Fa : Ha → Ha, this can be decomposed into the direct integral∫ ⊕

[0,∞)

Fa,0(λa) dλa; Fa,0(λa) = fλ0−λa,δ(K
a)i[Ka, (Ã0)

a]fλ0−λa,δ(K
a).

Then we study the sum of the fibered operators Fa(λa) = Fa,0(λa) + Fa,1(λa). Here we note
that there exists a unique κa ∈ Θ̂a ∩ [0, λ0] such that d̂1,a(λ0) = λ0 − κa > 0, since λ0 6∈ Θ.
We first consider the case where λa > ω. Since i[Ka

0 , (Ã0)
a] = (〈Dt〉−1/2

2ω pa)(〈Dt〉−1/2
2ω pa)∗

with Ka
0 = Dt + (pa)

2/2, and

i[V a, (Ã0)
a] = Re {(〈Dt〉−1/2

2ω pa)(Ba,1)∗ −Ba,2}

with Ba,1 = 〈Dt〉−1
2ω i[〈Dt〉2ω, V a]〈Dt〉−1/2

2ω xa and Ba,2 = (xa · (∇aV a))〈Dt〉−1
2ω by (4.1) and

(4.2), we have

i[Ka, (Ã0)
a] ≥ −1

4
(Ba,1)(Ba,1)∗ − ReBa,2.

Here we used (〈Dt〉−1/2
2ω pa +Ba,1/2)(〈Dt〉−1/2

2ω pa +Ba,1/2)∗ ≥ 0. Since both Ba,1 and Ba,2

are bounded by assumption, there exists some Ma ∈ R such that
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Fa,0(λa) ≥ Mafλ0−λa,δ(K
a)2

holds. On the other hand, by the monotone increasing of F̃a,1(λa) in λa, F̃a,1(λa) > F̃a,1(ω) =

2ω/(1 + 2ω) holds, which implies

Fa,1(λa) ≥
L0

2
F̃a,1(ω)fλ0−λa,δ(K

a)2

holds. By taking L0 > 0 so large that Ma + (L0/2){2ω/(1 + 2ω)} ≥ 1, that is, L0 ≥ (1 −
Ma)(1 + 2ω)/ω,

Fa(λa) = Fa,0(λa) + Fa,1(λa) ≥ fλ0−λa,δ(K
a)2

holds. We next consider the case where 0 ≤ λa ≤ ω. By virtue of the arguments of [13] and
the results of §4, we see that there exists a small δϵ,a > 0 such that δϵ,a ≤ d0(λ0)/2, and if
0 < δ ≤ δϵ,a, then

Fa,0(λa) ≥
d̂1,a(λ0 − λa)− δ − ϵ/2

ω
fλ0−λa,δ(K

a)2

holds for λ0 − λa 6∈ Θ̂a; while,

Fa,0(λa) ≥
−ϵ/2

ω
fλ0−λa,δ(K

a)2

holds for λ0−λa ∈ Θ̂a. Here we used that λ0−λa belongs to the compact interval [λ0−ω, λ0],
which makes the key argument of [13] available. If λ0 − λa > κa, that is, 0 ≤ λa < λ0 − κa ≤
λ0 < ω, then

Fa,0(λa) ≥
(λ0 − λa)− κa − δ − ϵ/2

ω
fλ0−λa,δ(K

a)2

holds because λ0 − λa 6∈ Θ̂a. Since F̃a,0(λa) = 2λa/(1 + 2λa) ≥ 2λa/(1 + 2ω), by taking L0

so large that (L0/2){2λa/(1 + 2ω)} − λa/ω ≥ 0, that is, L0 ≥ (1 + 2ω)/ω,

Fa(λa) ≥
λ0 − κa − δ − ϵ/2

ω
fλ0−λa,δ(K

a)2

holds. Now we focus on the case where λ0 − λa ≤ κa, that is, ω ≥ λa ≥ λ0 − κa. As for
Fa,0(λa), even if λ0 − λa 6∈ Θ̂a, we will utilize the estimate

Fa,0(λa) ≥
−δ − ϵ/2

ω
fλ0−λa,δ(K

a)2

consistently. By the monotone increasing of F̃a,1(λa) in λa, F̃a,1(λa) ≥ F̃a,1(λ0 − κa) =

2(λ0 − κa)/{1 + 2(λ0 − κa)} ≥ 2(λ0 − κa)/(1 + 2ω) holds, which implies

Fa,1(λa) ≥
L0

2

2(λ0 − κa)

1 + 2ω
fλ0−λa,δ(K

a)2

35



holds. By taking L0 so large that L0/(1 + 2ω) ≥ 1/ω, that is, L0 ≥ (1 + 2ω)/ω,

Fa(λa) ≥
λ0 − κa − δ − ϵ/2

ω
fλ0−λa,δ(K

a)2

holds. By combining these estimates, we obtain

fλ0,δ(Ka)

(
i[Ka, (Ã0)

a] +
L0

2
(〈pa〉−2(pa)

2)

)
fλ0,δ(Ka)

≥ d̂1,a(λ0)− δ − ϵ/2

ω
fλ0,δ(Ka)

2

(5.18)

since d̂1,a(λ0) = λ0 − κa < ω. By sandwiching (5.18) by two ηS(Dt)’s and J̃a(x)’s, and using
[ηS(Dt), fλ0,δ(Ka)] = O(S−1) and Proposition 3.8, it follows from (5.17) that

fλ0,δ(K)ηS(Dt)

(
T ′
1,a +

L0

2
T ′
3,a + T4,a

)
ηS(Dt)fλ0,δ(K)

≥ d̂1,a(λ0)− δ − ϵ/2

ω
J̃a(x)ηS(Dt)fλ0,δ(Ka)

2ηS(Dt)J̃a(x) +O(S−1) + C ′
4,a

=
d̂1,a(λ0)− δ − ϵ/2

ω
J̃a(x)fλ0,δ(Ka)ηS(Dt)

2fλ0,δ(Ka)J̃a(x) +O(S−1) + C ′
4,a

=
d̂1,a(λ0)− δ − ϵ/2

ω
fλ0,δ(K)J̃a(x)ηS(Dt)

2J̃a(x)fλ0,δ(K) +O(S−1) + C ′′
4,a

holds with some compact operators C ′
4,a and C ′′

4,a on K . This estimate and (5.16) yield (5.12).
□

6. Minimal velocity estimates

As was shown by some works of Sigal-Soffer (see e.g. [31, 32]), by virtue of the Mourre
estimate, one can obtain the so-called minimal velocity estimate, which is one of the useful
propagation estimates for the time evolution of scattering states. As for the Floquet Hamiltonian
K under consideration, we have obtained the Mourre estimate (1.17). The aim of this section
is to show Theorem 1.3, by utilization of (1.17). As mentioned in §1, Corollary 1.4 is a direct
consequence of Theorem 1.3, by virtue of the arguments of Yajima-Kitada [40] and Møller-
Skibsted [27].

We first state the abstract theory for getting the minimal velocity estimate of the integral
type, by following Gérard-Łaba [14]. The theory was initiated by Sigal-Soffer. The following
proposition is Proposition 4.4.1 of [14] with P = 1 and I(σ) ≡ 0:

PROPOSITION 6.1. Let K be a Hilbert space. Let K and A be self-adjoint operators on
K. Assume that K ∈ Cµ(A) for some µ > 1. Let ∆ ⊂ R be an open interval such that

EK(∆)i[K,A]EK(∆) ≥ c0EK(∆)

holds for some c0 > 0. Then for any f ∈ C∞
0 (R;R) supported in ∆
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∫ ∞

1

∥∥∥∥F (A

σ
≤ c0 − ε

)
e−iσKf(K)u

∥∥∥∥2
K

dσ

σ
≤ C‖u‖2K,

s-lim
σ→∞

F

(
A

σ
≤ c0 − ε

)
e−iσKf(K) = 0

hold for any ε > 0.

By virtue of Proposition 6.1 and the Mourre estimate (1.17), one can obtain the following:

PROPOSITION 6.2. Suppose that the hypotheses of Theorem 1.3 are satisfied. Then∫ ∞

1

∥∥∥∥F (A

σ
≤ c′0(λ0)

)
fλ0,δ(K)e−iσKΦ

∥∥∥∥2
K

dσ

σ
≤ C‖Φ‖2K , (6.1)

s-lim
σ→∞

F

(
A

σ
≤ c′0(λ0)

)
fλ0,δ(K)e−iσK = 0 (6.2)

hold, where

c0(λ0) = c0(λ0; ϵ, δ) =
d1(λ0)− δ − 2ϵ

ω
,

0 < c′0(λ0) = c′0(λ0; ϵ, δ) =
d1(λ0)− δ − 3ϵ

ω
< c0(λ0)

for sufficiently small ϵ > 0.

However, in the study of the problem of the asymptotic completeness, we have to translate
(6.1) into a certain minimal velocity estimate with the localization of the propagation with respect
to x ∈ X . To this end, we need the following lemma and proposition (see Lemma 4.4.8 and
Proposition 4.4.9 of [14]). Lemma 6.3 is used for proving Proposition 6.4:

LEMMA 6.3. Let K be a Hilbert space. Let K, A and B be self-adjoint operators on K.
Let ∆ ⊂ R be an open interval. Assume that
(1) K ∈ C1(A) ∩ C1(B) and B ∈ C1(A);
(2) [B,A](B + i)−1 and (B + i)−1A(K + i)−1 are bounded;
(3) B ≥ 1/2;
(4) −cB ≤ f1(K)Af1(K) ≤ cB holds for some c > 0, and f1 ∈ C∞

0 (R;R) such that f1 = 1

on ∆.
Then, for any c0 > 0, there is an ε0 > 0 such that for any f ∈ C∞

0 (R;R) supported in ∆

F

(
B

σ
≤ ε0

)
f(K)F

(
|A|
σ

≥ c0

)
= O(σ−1)

holds.

PROPOSITION 6.4. Let K be a Hilbert space. Let K, A and B be self-adjoint operators on
K. Let ∆ ⊂ R be an open interval. Suppose that the hypotheses of Proposition 6.1 and Lemma
6.3 are satisfied. Then, there exists an ε0 > 0 such that for any f ∈ C∞

0 (R;R) supported in ∆
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∫ ∞

1

∥∥∥∥F (B

σ
≤ ε0

)
e−iσKf(K)u

∥∥∥∥2
K

dσ

σ
≤ C‖u‖2K,

s-lim
σ→∞

F

(
B

σ
≤ ε0

)
e−iσKf(K) = 0

hold.

In the case where K is a time-independent Schrödinger operator p2/2 + V , one can take B

as 〈x〉. In fact, K is in C1(〈x〉), because i[K, 〈x〉] = Re {(x/〈x〉) · p} is K-bounded. However,
in the case where K is a Floquet Hamiltonian Dt + p2/2 + V (t), K is not in C1(〈x〉), even if
V (t) is independent of t. In fact, i[K, 〈x〉] = Re {(x/〈x〉) ·p} is not K-bounded. In our analysis,
by modifying (1 + 〈Dt〉−1/2x2〈Dt〉−1/2)1/2, we will take B as (1.21)

B = (1 + B̃0 + B̃1)
1/2; B̃0 = 〈Dt〉−1/2Q0(x)〈Dt〉−1/2,

B̃1 =
∑

a∈A 0
0

B̃1,a, B̃1,a = 〈pa〉−1Q1,a(xa)〈pa〉−1,

where

Q0(x) =
∑

a∈A \A 0
0

x2J̃a(x)
2 +

∑
a∈A 0

0

(xa)2J̃a(x)
2 = x2 −

∑
a∈A 0

0

(xa)
2J̃a(x)

2,

Q1,a(xa) = (xa)
2J̃a(xa)

2,

with a ∈ A 0
0 . Then we will show Theorem 1.3 as follows:

PROOF OF THEOREM 1.3. We first show that K is in C1(B), that is, (K − i)−1i[K,B]

(K+i)−1 is bounded, by virtue of Proposition 3.3: Let g1/2 ∈ C∞(R;R) be such that g1/2 ≥ 0,
g1/2(ν) = 0 for ν ≤ 0, and g1/2(ν) = ν1/2 for ν ≥ 1. Take an almost analytic extension
g̃1/2 ∈ C∞(C) of g1/2, which satisfies |∂z g̃1/2(z)| ≤ CL〈z〉1/2−1−L|Im z|L with L ∈ N∪{0}.
Then, by virtue of the commutator expansion formula (see e.g. [12]), [K,B] = [K, g1/2(B

2)] is
represented as

[K,B] = g
(1)
1/2(B

2)[K,B2] +R′
2 =

1

2
B−1[K, B̃0 + B̃1] +R′

2;

R′
2 =

1

2πi

∫
C

∂ζ g̃1/2(ζ)(ζ −B2)−2[[K,B2], B2](ζ −B2)−1 dζ ∧ dζ.

We will show that B−1i[K, B̃0](K + i)−1, B−1i[K, B̃1,a] and R′
2 are bounded.

We first consider i[K, B̃0] = S0,0 + S0,1 + S0,2 with S0,0 = 〈Dt〉−1(∇Q0)(x) · p, S0,1 =

−i〈Dt〉−1(∆Q0)(x)/2 and S0,2 = i[V, 〈Dt〉−1]Q0(x). Trivially, (1+ B̃0)
−1/2〈Dt〉−1/2O(〈x〉)

is bounded. By Proposition 3.5 (1), 〈Dt〉−1/2p(K + i)−1 is bounded. Thus (1 + B̃0)
−1/2S0,0

(K + i)−1 is bounded. Since (∆Q0)(x) is bounded, S0,1 is bounded trivially. By (VWR)ρ with
ρ > 0, for any b ∈ A 0

0 ,

(∂tV
b)(t, xb)Q0(x) =

∑
a∈A \A 0

0

(∂tV
b)(t, xb)x2J̃a(x)

2 +
∑

a∈A 0
0

a ̸=b

(∂tV
b)(t, xb)(xa)2J̃a(x)

2
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+ (∂tV
b)(t, xb)(xb)2J̃b(x)

2

= O(1)J̃amax
(x)2 +

∑
a∈A0
a ̸=b

O(〈x〉1−ρ)J̃a(x)
2 +O(〈xb〉1−ρ)J̃b(x)

2

holds, which implies (∂tV
b)(t, xb)Q0(x) = O(〈x〉max{1−ρ,0}). Here we used the

compactness of supp J̃amax , and Corollary 2.4. We note that (1 + B̃0)
−1/2〈Dt〉−1/2

O(〈x〉max{1−ρ,0}) is bounded; more precisely, by complex interpolation, (1+B̃0)
−max{1−ρ,0}/2

〈Dt〉−max{1−ρ,0}/2O(〈x〉max{1−ρ,0}) is bounded. In particular, B−max{1−ρ,0}S0,2 is bounded.
These can show easily that B−1i[K, B̃0](K + i)−1 is bounded.

In the same way as above, we consider i[K, B̃1,a] = S1,a,0 + S1,a,1 + S1,a,2 with
S1,a,0 = 〈pa〉−1(∇aQ1,a)(xa) · pa〈pa〉−1, S1,a,1 = −i〈pa〉−1(∆aQ1,a)(xa)〈pa〉−1/2 and
S1,a,2 = i[Ia, B̃1,a]. Here we used i[V a, B̃1,a] = 0. Since (1 + B̃1,a)

−1/2〈pa〉−1O(〈xa〉) is
bounded, (1+B̃1,a)

−1/2S1,a,0 is bounded. Since (∆aQ1,a)(xa) = O(1), S1,a,1 is also bounded.
Now we watch S1,a,2. As for the commutator [h(x), 〈pa〉−1], where h(x) is the multiplication by
h(x), we use the following commutator expansion formula: Let g−1/2 ∈ C∞(R;R) be such that
g−1/2 ≥ 0, g−1/2(ν) = 0 for ν ≤ 0, and g−1/2(ν) = ν−1/2 for ν ≥ 1. Take an almost analytic
extension g̃−1/2 ∈ C∞(C) of g−1/2, which satisfies |∂z g̃−1/2(z)| ≤ CL〈z〉−1/2−1−L|Im z|L
with L ∈ N ∪ {0}. Then [h(x), 〈pa〉−1] = [h(x), g−1/2(〈pa〉2)] is represented as

[h(x), 〈pa〉−1] = −1

2
〈pa〉−3[h(x), 〈pa〉2] +R′′

2 ;

R′′
2 =

1

2πi

∫
C

∂ζ g̃−1/2(ζ)(ζ − 〈pa〉2)−2

× [[h(x), 〈pa〉2], 〈pa〉2](ζ − 〈pa〉2)−1 dζ ∧ dζ.

By virtue of this formula, we have B̃1,a = B̃1,a,0 + B̃1,a,1 + B̃1,a,2 with B̃1,a,0 = 〈pa〉−2

Q1,a(xa), B̃1,a,1 = i〈pa〉−4pa · (∇aQ1,a)(xa) and B̃1,a,2 = 〈pa〉−4R′′, where R′′ is bounded.
Trivially, i[Ia, B̃1,a,2] = i(IaB̃1,a,2 − B̃1,a,2Ia) is bounded. By using 〈pa〉−2 = (1 + (pa)

2)−1,
we consider

i[Ia, B̃1,a,0] = 〈pa〉−2{2pa · (∇aIa) + i(∆aIa)}〈pa〉−2Q1,a(xa).

Since [〈pa〉−2, Q1,a(xa)]〈pa〉〈xa〉−1 = 〈pa〉−2{pa ·O(〈xa〉)+O(1)}〈pa〉−1〈xa〉−1 is bounded,
(∇aIa)Q1,a(xa) = O(〈xa〉1−ρ) and (∆aIa)Q1,a(xa) = O(〈xa〉−ρ) by Lemma 2.3, it follows
from the boundedness of 〈xa〉〈pa〉−1(1+ B̃1,a)

−1/2 that i[Ia, B̃1,a,0](1+ B̃1,a)
−1/2 is bounded.

One can show similarly that i[Ia, B̃1,a,1] is bounded, because (∇aQ1,a)(xa) = O(〈xa〉). These
imply that B−1i[K, B̃1,a] is bounded.

Now we show that B−2i[i[K,B2], B2] is bounded, which yields the boundedness of R′
2,

by 1/2 − 1 − 2 + 1 = −3/2 < −1. We first consider i[i[K, B̃0], B̃0] = i[S0,0 + S0,1 +

S0,2, B̃0]. Since i[S0,0, B̃0] = 〈Dt〉−2|(∇Q0)(x)|2, we see that (1 + B̃0)
−1i[S0,0, B̃0] is

bounded, by |(∇Q0)(x)|2 = O(〈x〉2). We note i[S0,1, B̃0] = 0. Since i[S0,2, B̃0] =

i[i[V, 〈Dt〉−1], 〈Dt〉−1](Q0(x))
2, one can show that (1 + B̃0)

−max{2−ρ,0}/2i[S0,2, B̃0] is
bounded, by (∂2

t V )(Q0(x))
2 = O(〈x〉max{2−ρ,0}). Hence, B−2i[i[K, B̃0], B̃0] is bounded.

One can show similarly the boundedness of B−2i[i[K, B̃1,a], B̃0], B−2i[i[K, B̃0], B̃1,a] and
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B−2i[i[K, B̃1,a], B̃1,a].
Summing up these, we see that i[K,B](K + i)−1 is bounded. In particular, K is in C1(B).

On the other hand, one can prove easily that B is in C1(A), and that [B,A](B + i)−1 and
(B + i)−1A(K + i)−1 are bounded. Now we will take fλ0,δϵ,1,1 ∈ C∞

0 (R;R) supported in
[λ0 − 2δϵ,1, λ0 + 2δϵ,1] such that fλ0,δϵ,1,1 = 1 on [λ0 − δϵ,1, λ0 + δϵ,1], and put

c = ‖B−1/2fλ0,δϵ,1,1(K)Afλ0,δϵ,1,1(K)B−1/2‖B(K )

Then

−cB ≤ fλ0,δϵ,1,1(K)Afλ0,δϵ,1,1(K) ≤ cB

holds. Then, Theorem 1.3 follows from Proposition 6.2 immediately, by virtue of Lemma 6.3
and Proposition 6.4. □

For the sake of comparison, also in the case where N = 2, we will give the results corre-
sponding to Theorem 1.3 and Corollary 1.4, without proof.

THEOREM 6.5. Suppose N = 2. Assume V satisfies (VWR)ρ with some ρ > 0. Let
λ0 ∈ [0, ω) \ Θ̂. Put

B =
(
1 + 〈Dt〉−1/2x2〈Dt〉−1/2

)1/2
. (6.3)

Then there exists an ε0(λ0) = ε0(λ0; ϵ, δ) > 0, which is determined by the positive constant
(d1(λ0)− δ − ϵ)/ω in (4.5),∫ ∞

1

∥∥∥∥F (B

σ
≤ ε0(λ0)

)
e−iσKfλ0,δ(K)Φ

∥∥∥∥2
K

dσ

σ
≤ C‖Φ‖2K , (6.4)

s-lim
σ→∞

F

(
B

σ
≤ ε0(λ0)

)
e−iσKfλ0,δ(K) = 0 (6.5)

hold. In particular, these yield∫ ∞

1

∥∥∥∥F ( |x|
σ

≤ ε0(λ0)

2

)
e−iσKfλ0,δ(K)Φ

∥∥∥∥2
K

dσ

σ
≤ C‖Φ‖2K , (6.6)

s-lim
σ→∞

F

(
|x|
σ

≤ ε0(λ0)

2

)
e−iσKfλ0,δ(K) = 0. (6.7)

COROLLARY 6.6. Suppose that the hypotheses of Theorem 6.5 are satisfied. Let gλ0,δ be
the function on

{
z ∈ C

∣∣ |z| = 1
}

such that gλ0,δ(e
−i2πλ/ω) = fλ0,δ(λ) for λ ∈ [0, ω). Then∫ ∞

1

∥∥∥∥F ( |x|
t

≤ ε0(λ0)

2

)
U(t, 0)gλ0,δ(U(T, 0))ϕ

∥∥∥∥2
H

dt

t
≤ C‖ϕ‖2H , (6.8)

s-lim
t→∞

F

(
|x|
t

≤ ε0(λ0)

2

)
U(t, 0)gλ0,δ(U(T, 0)) = 0 (6.9)

hold.
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REMARK 6.1. In the case where N = 2, as for the minimal velocity estimate of the
time-wise type, by virtue of the abstract theory of Skibsted [34], which was also initiated by
Sigal-Soffer, Yokoyama [41] gave the result that for 0 < s′ < s,∥∥∥∥F ( |x|

t
≤ c1(λ0; ϵ, δ)

)
e−iσKfλ0,δ(K)〈x〉−s

∥∥∥∥
B(K )

= O(σ−s′) (6.10)

holds with

c1(λ0; ϵ, δ) =

(
2(d1(λ0)− δ − ϵ)

1 + 2(d1(λ0)− δ)

)1/2

,

under the assumption that V12(t, y) ∈ C0(R;C∞(Rd;R)) is T -periodic in t, and satisfies the
decaying conditions

sup
t∈R

|(∂α
y V12)(t, y)| ≤ Cα〈y〉−ρ−|α|, (6.11)

by using the minimal velocity estimate like∥∥∥∥F ( Ā0,1

t
≤ c1(λ0; ϵ, δ)

)
e−iσKfλ0,δ(K)〈Ā0,1〉−s

∥∥∥∥
B(K )

= O(σ−s) (6.12)

in terms of the conjugate operator Ā0,1 in (1.7). The advantage of (6.10) is that c1(λ0; ϵ, δ) can
be taken as the one nearly equal to the square root of the positive constant of the Mourre estimate
(1.9).

Getting the minimal velocity estimate like (6.10) also in the case where N = 3 is one of the
future tasks. We think that to this end, we need a rather strong assumption on Vjk’s like that each
Vjk ∈ C∞(R;C∞(Rd;R)) is T -periodic in t, and satisfies the decaying conditions

sup
t∈R

|(∂m
t ∂α

y Vjk)(t, y)| ≤ Cm,α〈y〉−ρ−(m+|α|). (6.13)

7. AC Stark effect case

In this section, we consider a quantum system of N particles moving in a given time-
periodic electric field E (t) ∈ Rd. We suppose that E (t) ∈ C0(R;Rd), and that E (t) has a
period T > 0, that is, E (t+ T ) = E (t) for any t ∈ R.

Let mj > 0, qj ∈ R and rj ∈ Rd, 1 ≤ j ≤ N , denote the mass, charge and position vector
of the j-th particle, respectively. We suppose that the particles under consideration interact with
one another through the time-independent pair potentials V̄jk(rj − rk), 1 ≤ j < k ≤ N . The
system under consideration is governed by the total Hamiltonian in the laboratory frame

H̄LF(t) =

N∑
j=1

(
− 1

2mj
∆j − qj〈E (t), rj〉

)
+ V̄ (r);

V̄ (r) =
∑

1≤j<k≤N

V̄jk(rj − rk)

(7.1)
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acting on L2(Rd×N ). H̄LF(t) can be written as

H̄LF(t) = H̄LF,0(t) + V̄ (r); H̄LF,0(t) =
1

2
(pX̄)2 − EX̄(t) · r (7.2)

acting on L2(X̄), where

EX̄(t) = ((q1/m1)E (t), . . . , (qN/mN )E (t))

is a X̄-valued T -periodic function. qj/mj is called the specific charge of the j-th particle.
Now we would like to state the so-called Avron-Herbst formula for the propagator ŪLF(t, s)

generated by H̄LF(t): In the same way as in Møller [26] and Adachi [2, 3], introduce X̄-valued
T -periodic functions EX̄,os(t), bX̄(t), bX̄,os(t) and cX̄(t) as

EX̄,m =
1

T

∫ T

0

EX̄(s) ds, EX̄,os(t) = EX̄(t)− EX̄,m,

bX̄(t) =

∫ t

0

EX̄,os(s) ds, bX̄,m =
1

T

∫ T

0

bX̄(s) ds,

bX̄,os(t) = bX̄(t)− bX̄,m, cX̄(t) =

∫ t

0

bX̄,os(s) ds.

By introducing Rd-valued T -periodic functions Eos(t), Ē (t), Ēos(t) and ¯̄E (t) as

Em =
1

T

∫ T

0

E (s) ds, Eos(t) = E (t)− Em,

Ē (t) =

∫ t

0

Eos(s) ds, Ēm =
1

T

∫ T

0

Ē (s) ds,

Ēos(t) = Ē (t)− Ēm,
¯̄E (t) =

∫ t

0

Ēos(s) ds,

we have

EX̄,m = ((q1/m1)Em, . . . , (qN/mN )Em),

EX̄,os(t) = ((q1/m1)Eos(t), . . . , (qN/mN )Eos(t)),

bX̄(t) = ((q1/m1)Ē (t), . . . , (qN/mN )Ē (t)),

bX̄,os(t) = ((q1/m1)Ēos(t), . . . , (qN/mN )Ēos(t)),

cX̄(t) = ((q1/m1)
¯̄E (t), . . . , (qN/mN ) ¯̄E (t)).

Em is the time-mean of E (t). Also introduce the time-dependent Hamiltonian

H̄MF(t) = H̄MF,0 + V̄ (r + cX̄(t)); H̄MF,0 =
1

2
(pX̄)2 − EX̄,m · r,

V̄ (r + cX̄(t)) =
∑

1≤j<k≤N

V̄jk((rj + cX̄,j(t))− (rk + cX̄,k(t)))
(7.3)

acting on L2(X̄), which governs the system in the moving frame accelerated by EX̄,os(t) =
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EX̄(t) − EX̄,m. cX̄,j(t) = (qj/mj)
¯̄E (t) stands for the j-th component of cX̄(t). Here we

will emphasize that the free Hamiltonian H̄MF,0 is time-independent even if H̄LF,0(t) is time-
dependent. The time-independence of H̄MF,0 makes the dynamics of the system governed by
H̄MF(t) easy to handle.

If EX̄,m = 0, then H̄MF,0 is called the free Schrödinger operator; while, if EX̄,m 6= 0, then
H̄MF,0 is called the free DC Stark Hamiltonian. Also, if qj/mj = qk/mk, then

V̄jk((rj + cX̄,j(t))− (rk + cX̄,k(t)))

= V̄jk(rj − rk + ((qj/mj)− (qk/mk))
¯̄E (t)) ≡ V̄jk(rj − rk)

holds, that is, V̄jk((rj+cX̄,j(t))−(rk+cX̄,k(t))) is time-independent; while, if qj/mj 6= qk/mk,
then the periodicity of ¯̄E (t) in t yields that of V̄jk((rj+cX̄,j(t))−(rk+cX̄,k(t))). Hence, if there
is no pair (j, k) such that qj/mj 6= qk/mk, then H̄MF(t) ≡ H̄MF,0+V̄ (r) holds, that is, H̄MF(t)

is also time-independent. So, from now on, we suppose there exists at least one pair (j, k) such
that qj/mj 6= qk/mk. But, even under this assumption, H̄MF(t) is still time-independent if
E (t) ≡ Em, that is, E (t) is constant in t, because ¯̄E (t) ≡ 0.

As for the case where H̄MF(t) is time-independent, the problem of the asymptotic com-
pleteness of the systems governed by such Hamiltonians was studied intently in the 1980’s and
1990’s; as for the case where E (t) ≡ Em = 0, see e.g. Sigal-Soffer [31], Graf [15], Yafaev [36],
Dereziński [11], and so on; while, as for the case where E (t) ≡ Em 6= 0, see e.g. Adachi-
Tamura [6, 7] and Herbst-Møller-Skibsted [17, 18]. So, from now on, we assume that E (t) is not
constant but periodic in t. Let ŪMF(t, s) denote the propagator generated by H̄MF(t). Then the
Avron-Herbst formula for ŪLF(t, s)

ŪLF(t, s) = TX̄(t)ŪMF(t, s)TX̄(s)∗;

TX̄(t) = e−iaX̄(t)eibX̄,os(t)·re−icX̄(t)·pX̄
(7.4)

holds, where

aX̄(t) =

∫ t

0

(
1

2
bX̄,os(s)

2 − EX̄,m · cX̄(s)

)
ds.

By virtue of the Avron-Herbst formula (7.4), the understanding of ŪMF(t, s) yields that of
ŪLF(t, s) immediately.

Next we would like to watch the motion of the systems in the center-of-mass frame. Here we
note that V̄ (r) is independent of xcm, and that V̄ (r+cX̄(t)) is independent of πcm(r+cX̄(t)) =

xcm+ccm(t). Hence we will write V̄ (r) and V̄ (r+cX̄(t)) as V̄ (x) and V̄ (x+c(t)), respectively.
Here we put c(t) = πcX̄(t) and ccm(t) = πcmcX̄(t). Now we introduce the Hamiltonians

ĤLF(t) = ĤLF,0(t) + V̄ (x); ĤLF,0(t) =
1

2
p2 − E(t) · x,

ĤMF(t) = ĤMF,0 + V̄ (x+ c(t)); ĤMF,0 =
1

2
p2 − Em · x

(7.5)

acting on H = L2(X), and
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T̄LF,cm(t) =
1

2
(pcm)

2 − Ecm(t) · xcm, T̄MF,cm =
1

2
(pcm)

2 − Ecm,m · xcm (7.6)

acting on L2(Xcm), where

E(t) = πEX̄(t), Em = πEX̄,m, Ecm(t) = πcmEX̄(t), Ecm,m = πcmEX̄,m.

Then H̄LF(t) and H̄MF(t) are represented as

H̄LF(t) = ĤLF(t)⊗ Id + Id⊗ T̄LF,cm(t),

H̄MF(t) = ĤMF(t)⊗ Id + Id⊗ T̄MF,cm

(7.7)

on L2(X̄) = H ⊗ L2(Xcm). Since T̄LF,cm(t) (resp. T̄MF,cm) does not depend on pair inter-
actions, the understanding of the dynamics of the system governed by ĤLF(t) (resp. ĤMF(t))
yields that of the system governed by H̄LF(t) (resp. H̄MF(t)) immediately.

Now we will focus on ĤLF(t) and ĤMF(t). Let ÛLF(t, s) and ÛMF(t, s) denote the prop-
agators generated by ĤLF(t) and ĤMF(t), respectively. Then, in the same way as in (7.4), the
Avron-Herbst formula for ÛLF(t, s)

ÛLF(t, s) = T̂ (t)ÛMF(t, s)T̂ (s)∗; T̂ (t) = e−ia(t)eib(t)·xe−ic(t)·p (7.8)

holds, where

b(t) = πbX̄,os(t), a(t) =

∫ t

0

(
1

2
b(s)2 − Em · c(s)

)
ds.

By virtue of the Avron-Herbst formula (7.8), the understanding of ÛMF(t, s) yields that of
ÛLF(t, s) immediately. Hence, we would like to focus on the dynamics of the system governed
by ĤMF(t) in the center-of-mass frame.

The case where Em = 0 is that of the so-called AC Stark effect. In the case where Em 6= 0,
there are some desirable results on the asymptotic completeness of many body systems governed
by such Hamiltonians. In fact, in [1, 2], the author obtained the result of the asymptotic com-
pleteness for the system under consideration, both in the short-range and the long-range cases,
by introducing the Floquet Hamiltonian

K = Dt + ĤMF(t) = Dt +
1

2
p2 − Em · x+ V̄ (x+ c(t)) (7.9)

associated with ĤMF(t). Because of Em 6= 0,

A =
Em

|Em|
· p (7.10)

can be taken as a conjugate operator for K in the standard Mourre theory. Here we emphasize
that in the two-body case, Møller [26] first proposed this operator as a conjugate operator for K.

Now we will focus on the case where Em = 0. Because of Em = 0, we will deal with an
N -body Schrödinger operator with time-periodic potentials
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ĤMF(t) =
1

2
p2 + V (t); V (t) = V̄ (x+ c(t)) =

∑
1≤j<k≤N

Vjk(t, rj − rk), (7.11)

where

Vjk(t, y) = V̄jk(y + ẽjk
¯̄E (t)); ẽjk = (qj/mj)− (qk/mk).

Here we note that Vjk(t, y)’s are T -periodic in t. Now we impose the following condition (VST)ρ̄
on V̄jk’s with ρ̄ > 0:

(VST)ρ̄ V̄jk(y), (j, k) ∈ A , belongs to C2(Rd;R), is independent of t, and satisfies the decaying
conditions

|(∂α
y V̄jk)(y)| ≤ Cα〈y〉−ρ̄−|α|, 0 ≤ |α| ≤ 2. (7.12)

Since

(∂tVjk)(t, y) =

d∑
ℓ=1

ẽjkĒos,ℓ(t)(∂yℓ
V̄jk)(y + ẽjk

¯̄E (t)),

(∂2
t Vjk)(t, y) =

d∑
ℓ=1

ẽjkEos,ℓ(t)(∂yℓ
V̄jk)(y + ẽjk

¯̄E (t))

+

d∑
ℓ2=1

d∑
ℓ1=1

ẽjkĒos,ℓ1(t)ẽjkĒos,ℓ2(t)(∂yℓ1
∂yℓ2

V̄jk)(y + ẽjk
¯̄E (t)),

we see that Vjk(t, y)’s satisfy

|(∂α
y Vjk)(t, y)| ≤ C0,α〈y〉−ρ̄−|α|, 0 ≤ |α| ≤ 2,

|(∂t∂α
y Vjk)(t, y)| ≤ C1,α〈y〉−ρ̄−1−|α|, 0 ≤ |α| ≤ 1,

|(∂2
t Vjk)(t, y)| ≤ C2,α〈y〉−ρ̄−1.

What we emphasize here is that the decaying rate O(〈y〉−ρ̄−1) of (∂2
t Vjk)(t, y) is more mod-

erate than O(〈y〉−ρ̄−2). If Vjk(t, y) satisfies (VWR)ρ with ρ > 0, then the decaying rate of
(∂2

t Vjk)(t, y) is O(〈y〉−ρ−2). But, if ρ̄ > 1, then one can regard Vjk(t, y) = V̄jk(y + ẽjk
¯̄E (t))

as a time-periodic potential satisfying the condition (VWR)ρ̄−1. Therefore, in the case where
N = 3, Theorem 1.5 is a direct consequence of Theorem 1.1, Corollary 1.2, Theorem 1.3, and
Corollary 1.4.

References

[ 1 ] T. Adachi, Scattering theory for N -body quantum systems in a time-periodic electric field, Funkcial. Ekvac. 44
(2001), 335–376.

[ 2 ] T. Adachi, Asymptotic completeness for N -body quantum systems with long-range interactions in a time-periodic
electric field, Comm. Math. Phys. 275 (2007), 443–477.

[ 3 ] T. Adachi, Asymptotic completeness for N -body quantum systems with long-range interactions in a time-periodic
electric field, Comm. Math. Phys. 275 (2007), 443–477.

45



[ 4 ] T. Adachi, T. Kimura and Y. Shimizu, Scattering theory for two-body quantum systems with singular potentials
in a time-periodic electric field, J. Math. Phys. 51 (2010), 032103, 23 pp.

[ 5 ] T. Adachi and A. Kiyose, On the Mourre estimates for Floquet Hamiltonians, Lett. Math. Phys. 109 (2019),
2513–2529.

[ 6 ] T. Adachi and H. Tamura, Asymptotic completeness for long-range many-particle systems with Stark effect, J.
Math. Sci. Univ. Tokyo 2 (1995), 76–116.

[ 7 ] T. Adachi and H. Tamura, Asymptotic completeness for long-range many-particle systems with Stark effect, II,
Comm. Math. Phys. 174 (1996), 537–559.

[ 8 ] W. O. Amrein, A. Boutet de Monvel and V. Georgescu, C0-groups, commutator methods and spectral theory of
N -body Hamiltonians, Progress in Mathematics 135, Birkhäuser Verlag, Basel, 1996.
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