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Abstract. In this article, we will investigate a generalization of the Dirichlet form

associated with a one-dimensional diffusion process. In this generalization, the scale
function, which determines the expression of the Dirichlet form, is only required to

be non-decreasing. While this generalized form is almost a Dirichlet form, it does

not satisfy regularity in general. Consequently, it cannot be directly associated with
a process in probability theory. To tackle this issue, we adopt Fukushima’s regular

representation method, which enables to find a family of strong Markov processes

that are homeomorphic to each other and related to the generalized form in a cer-
tain sense. Additionally, this correspondence reveals the connection between this

generalized form and a quasidiffusion. Moreover, we interpret the probabilistic im-

plications behind the regular representation through two intuitive transformations.
These transformations offer us the opportunity to obtain another symmetric non-

strong Markov process with continuous sample paths. The Dirichlet form of this
non-strong Markov process is precisely the non-regular generalized form we previ-

ously analysed. Furthermore, the strong Markov process obtained from the regular

representation is its Ray-Knight compactification.
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1. Introduction

This paper focuses on establishing a relationship between a non-decreasing, not nec-
essarily continuous function on an interval and some one-dimensional Markov process,
which closely resembles a diffusion process, except that the continuity of sample paths
is replaced by the so-called skip-free property . Schütze [32] was the first to investigate
this problem by generalizing the second-order differential operator introduced by Feller
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to describe the infinitesimal generator of the corresponding process. The resulting pro-
cess is closely related to a class of extensively studied Markov processes, referred to as
quasidiffusions in, e.g., [2,18], generalized diffusions in, e.g., [17,26,34] and gap diffusion
in, e.g., [16]. In this paper, we will examine this problem from both analytical and proba-
bilistic perspectives, taking into consideration the widest possible class of scale functions,
and utilizing the framework of Dirichlet form theory.

As one of the most important stochastic models, a one-dimensional diffusion process
refers to a strong Markov process X = (Xt)t≥0 with continuous sample paths defined on
the interval I = 〈l, r〉, where l or r may or may not be contained in I. It is well known
that, under the assumption of regularity , the process X can be fully characterized by
a set of parameters, (s,m, κ), possessing specific probabilistic interpretations. Here, the

regularity (for the process X) means that for any x ∈ I̊ := (l, r) and y ∈ I, Px(Ty <
∞) > 0, where Ty := inf{t > 0 : Xt = y}. The function s is called the canonical scale
function, which is a strictly increasing and continuous real-valued function on I. The
parameters m and κ denote the canonical speed measure and killing measure, respectively,
both of which are Radon measures on I, and particularly, m has full support. For more
details about this insightful characterization, see, e.g., [30, V§7] and [29, VII§3]. In this
paper, we will not consider killing inside, so the diffusion processes examined will always
satisfy κ = 0.

There exists an important analytical method for studying Markov processes, which was
introduced by Feller and relies on the theory of strongly continuous operator semigroups
on Banach spaces consisting of continuous functions. The Markov processes analysed
through this framework are called Feller processes, and the corresponding transition
semigroups are called Feller semigroups. The one-dimensional diffusion process men-
tioned above is a special class of Feller processes, and its corresponding Feller semigroup
is characterized by the infinitesimal generator given below:

L :=
1

2

d2

dmds
(1.1)

with an appropriate domain. This operator is also known as the generalized second-order
differential operator . For the definition of infinitesimal generator and further details
about this operator (1.1), readers are referred to, e.g., [27].

Feller’s framework provides a way to generalize the one-dimensional diffusion process
to one that associated with a general pair (s,m). This generalization was first proposed by
Kac and Krein, who introduced a spectral theory in [13] known as Krein’s correspondence.
Krein’s correspondence extends the study to a broader class of operators of the form
(1.1), where s(x) = x, but m is not required to have full support. This theory has
been applied to the study of Markov processes, introducing a class of processes known
as quasidiffusions; see, e.g., [14, 16, 17]. A quasidiffusion can be viewed as the trace
of Brownian motion on the topological support of m. Later, Schütz [32] examined the
case where s is strictly increasing but discontinuous, still within the same framework.
Interestingly, in this case, the operator (1.1) generally ceases to be the infinitesimal
generator of a certain Feller semigroup. However, it is still possible to find a Markov
process, which may not have the strong Markov property, associated with (1.1).

Another analytical approach for studying Markov processes is through the use of
Dirichlet form theory, which corresponds to the theory of strongly continuous operator
semigroups in the L2 framework. Essentially, a Dirichlet form is a closed symmetric form
on an L2-space that exhibits the Markovian property. Thanks to the significant contri-
butions by Fukushima et al. in the 1970s, the regularity of the Dirichlet form ensures
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its association with a symmetric Hunt process. For a comprehensive understanding of
terms and concepts related to Dirichlet forms, we recommend referring to [3, 11].

Surprisingly, it was not until 2005 that Fang et al. [5] provided a complete character-
ization of Dirichlet forms for one-dimensional regular diffusion processes, based on the
canonical scale function and canonical speed measure:

F (s,m) = {f ∈ L2(I,m) : f � s, df/ds ∈ L2(I, ds), and additionally

f(%) = 0 if an endpoint % of I satisfies % /∈ I and |s(%)| <∞},

E (s,m)(f, g) =
1

2

∫
I

df

ds

dg

ds
ds, f, g ∈ F (s,m),

(1.2)

where f � s means that f is absolutely continuous with respect to s, i.e., there exists
an absolutely continuous function h defined on s(I) = {s(x) : x ∈ I} such that f = h ◦ s,

and in this case, dfds = h′ ◦ s, where h′ is the derivative of h in the classical sense; see also
[9]. The application of Dirichlet form theory has then led to significant advancements
in related research. Fukushima [10], for instance, explored the relationship between
the Dirichlet form framework and Feller’s framework, offering a clear explanation of
the boundary behaviour of diffusion processes under the symmetric assumption. In a
separate line of investigation [21, 25], the author (with Ying in [25]) fully characterized
the Dirichlet forms of symmetric diffusion processes, even without requiring the regularity
of the processes.

Thus far, a relevant theory of Dirichlet forms based on discontinuous scale functions
has not been developed that can provide a characterization similar to (1.2). However,
this does not imply that (1.2) is incapable of defining a Dirichlet form for discontinuous
scale functions. Indeed, as we will demonstrate in Section 2, even by imposing the
least non-decreasing requirement on the scale function, we can still define a generalized
form of (1.2) from an analytical perspective (see Theorem 2.9). The issue is that this
generalized form usually fails to satisfy the regularity, which renders it meaningless from
a probabilistic standpoint.

The main objective of this article is to address this problem by hand. Let (E ,F )
represent the generalized form of (1.2) for a non-decreasing scale function, as detailed in
Theorem 2.9. To handle the fact that (E ,F ) is not necessarily regular, we will employ
the regular representation method proposed by Fukushima in his seminal article [8]. This
method enables the regularization of non-regular Dirichlet forms and the preservation of
three important metrics in (3.1). Consequently, it produces a family of regular Dirichlet
forms that are quasi-homeomorphic [3, Definition 1.4.1] to each other. It is important
to note that the regular representation established in [8] is implemented on an abstract
space consisting of characters, which are elements in the related Gelfand representation
theory. However, obtaining a more comprehensible regular representation for practical
purposes requires further work. Similar efforts have been made in the related research
on Fukushima subspaces, documented in [24]. In relation to (E ,F ), which is the subject
of our investigation, the results are equally promising. The main findings of Section 3, as
presented in Theorems 3.1 and 3.6, offer a characterization of all regular representations.
Each of these regular representations is homeomorphic, rather than quasi-homoemorphic,
to a canonical one that corresponds to a specific quasidiffusion. This result unveils a
meaningful connection between (E ,F ) and quasidiffusion from an analytical perspective.

At the same time, the regularization strategy for (E ,F ) mentioned above can be
elucidated by using two intuitive transformations from a probabilistic perspective. We
will elaborate on this in Section 4. These two transformations are devised to tackle
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two challenges posed by a general scale function: discontinuity and constancy in certain
intervals. They are also the reasons why (E ,F ) cannot be directly associated with a
diffusion process or a quasidiffusion. Schütz [32] previously discussed one of these trans-
formations, which splits each discontinuity point of s into multiple points according to
the type of discontinuity and results in a continuous extension of s. The second trans-
formation is even simpler: considering the quotient space enables the transformation of
s into a strictly increasing function, which corresponds to the so-called darning transfor-
mation for Dirichlet forms or Markov processes (see [3, page 347]). By applying these
two transformations, we can employ the transformed pair of (s,m) as probability param-
eters to construct the corresponding strong Markov process. This construction process is
analogous to the diffusion case (see [30, V§7]), and for more detailed information, please
refer to [22].

What is more intriguing is that by applying only the darning transformation without
the first transformation, a non-strong Markov process with continuous sample paths can
still be derived. This process exhibits m-symmetry and its Dirichlet form is precisely the
non-regular one (E ,F ). Moreover, the profound relationship between this non-strong
Markov process and the strong Markov process derived from the regular representation is
unveiled through the following observation: the latter is the Ray-Knight compactification
of the former. These results constitute the main content of Sections 4.2 and 4.3. For
further details on Ray-Knight compactification, please refer to Appendix A.

In Section 5, we will present a variety of illustrative examples of strong or non-strong
Markov processes that correspond to given (E ,F ). The state space of these processes
are intervals, discrete spaces comprising countable points, and further spaces with fractal
structures such as Cantor set.

2. Dirichlet forms associated with discontinuous scales

2.1. Discontinuous scale on an interval. Let I := 〈l, r〉 be an interval with endpoints
l and r, where −∞ ≤ l < 0 < r ≤ ∞. Note that l or r may or may not be contained in I.
We consider a pair (s,m) consisting of a real-valued non-decreasing function s, referred
to as a scale function, defined on the open interval (l, r), and a positive Radon measure
m, referred to as a speed measure, on I. Without loss of generality, we assume that s is
continuous at 0 with s(0) = 0 and m({0}) = 0.

To establish the basic hypotheses on the triple (I, s,m), we need to introduce some no-
tations primarily related to the scale function. It should be noted that s is not necessarily
continuous nor strictly increasing. Let us define the sets

D± := {x ∈ (l, r) : s(x) 6= s(x±)}, D0 := D+ ∩D−, D := D+ ∪D−.

Furthermore, let {Jn := (cn, dn) : 1 ≤ n ≤ N} denote the collection of at most countably
many open intervals on which s is constant, where N ∈ N ∪ {∞}. More precisely, the
open set

U := {x ∈ (l, r) : s is constant on (x− ε, x+ ε) ∩ I for some ε > 0} (2.1)

can be expressed as the union of the open intervals in this collection. For each 1 ≤ n ≤ N ,
Jn is called isolated (with respect to s) if s(x0) is isolated in s(I) := {s(x) : x ∈ I} for
some (or equivalently, all) x0 ∈ Jn. Additionally, define

J̃n := {x ∈ I : s(x) = s(x0)}.

Evidently, Jn ⊂ J̃n ⊂ J̄n := [cn, dn].
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Now, we are in a position to state the basic assumptions regarding the triple (I, s,m)
that will be adopted throughout this paper.

Hypothesis 2.1. Denote the topological support of m on I by supp[m]. The following
conditions are assumed for the triple (I, s,m):

(DR) |s(%)| := limx→% |s(x)| <∞ whenever % is an endpoint of I such that % ∈ I.
(DK) Let % be an endpoint of I. If % is also an endpoint of some Jn, then Jn is isolated

and % ∈ I.
(DM) I \U ⊂ supp[m], m({x}) > 0 for all x ∈ D0, and for 1 ≤ n ≤ N , m(J̃n) > 0 if Jn

is isolated.

Remark 2.2. (1) Let % be an endpoint of I. When % ∈ I under the condition (DR),
% is a reflecting boundary, as classified in Definition 4.6.

(2) Without assuming condition (DK), it is possible that there exists an n such that
I 63 l = cn < dn ∈ D and m(Jn) = ∞. In such a situation, it is necessary
to consider the “darning” of Jn, as discussed in Section 4.1, as a cemetery.
Then, the left endpoint of the state space for the Markov processes obtained in
Section 4 constitutes an elastic boundary. This means the processes permit (and
only permit) killing at this endpoint. (The right endpoint r can be analysed
analogously.) Particularly, the condition (DK) precludes the possibility of killing
inside.

(3) When s is strictly increasing, the condition (DK) is inherently satisfied, and
(DM) simplifies to requiring that supp[m] = I and m({x}) > 0 for all x ∈ D0.
This condition is identical to the assumption made in [32].

2.2. Range of scale function. Let R = [−∞,∞] be the extended real number system.
A set F ⊂ R is called a nearly closed subset of R if F := F ∪ {a, b} forms a closed subset
of R, where a = inf{x : x ∈ F} and b = sup{x : x ∈ F}. The point a or b is termed the

left or right endpoint of F , respectively. Denote by K the collection of all nearly closed
subsets of R. Set

K := {F ∈ K : F ⊂ R},
and any F ∈ K is termed a nearly closed subset of R.

The closure of s(I) in R can be expressed as follows:

s([l, r]) = s([l, r]) ∪ {s(x−) : x ∈ D−} ∪ {s(x+) : x ∈ D+}. (2.2)

Let l̂ := s(l) and r̂ := s(r). Let Î denote the subset of s([l, r]) such that s([l, r])\{l̂, r̂} ⊂ Î,

and l̂ ∈ Î (resp. r̂ ∈ Î) if and only if l ∈ I (resp. r ∈ I). It is evident that (l̂, r̂) \ Î is
open and can be expressed as a disjoint union of at most countably many open intervals:

(l̂, r̂) \ Î =
⋃

1≤k≤K

Ĵk, (2.3)

where Ĵk := (âk, b̂k) for 1 ≤ k ≤ K with K ∈ N ∪ {∞}.

Lemma 2.3. Assume that (DK) holds. Then, Î is a nearly closed subset of R ended by

l̂ and r̂, and s(I) ⊂ Î.

Proof. It suffices to demonstrate that l̂ ∈ Î (resp. r̂ ∈ Î) whenever l̂ (resp. r̂) is isolated

in s([l, r]). We only treat the case of l̂. In fact, if l̂ is isolated in s([l, r]), then (DK)

implies that l ∈ I. Hence, by the definition of Î, we have l̂ ∈ Î. The inclusion s(I) ⊂ Î
can be established through analogous reasoning. �
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Denote by Ĵ := 〈l̂, r̂〉 the interval ended by l̂ and r̂ such that l̂ ∈ Ĵ (resp. r̂ ∈ Ĵ) if and

only if l̂ ∈ Î (resp. r̂ ∈ Î). Let m̂ := m ◦ s−1 be the image measure of m under the map

s : I → Î. The measure m̂ is extended to Ĵ by defining m̂(Ĵ \ Î) = 0, and this extension
is still denoted by m̂.

Lemma 2.4. Assume that (DK) and (DM) hold. Then, m̂ is a Radon measure on Î with
full support.

Proof. We first show that m̂ is a Radon measure on Î. It suffices to demonstrate that

m̂([â, b̂]) <∞ for any closed subinterval [â, b̂] ⊆ Ĵ . To do so, define:

a := inf{x ∈ I : s(x) ≥ â}, b := sup{x ∈ I : s(x) ≤ b̂}.

Then {x ∈ I : s(x) ∈ [â, b̂]} ⊂ [a, b]. Note that if a = l, then l̂ ≤ â ≤ s(l) = l̂,

implying l̂ = â ∈ Î and consequently l ∈ I. Analogously, if b = r then r ∈ I. Therefore,

m̂([â, b̂]) = m ◦ s−1([â, b̂]) ≤ m([a, b]) <∞.
We now demonstrate that m̂ is fully supported. Assume for the sake of contradiction

that m̂((â, b̂)∩ Î) = 0 for some â < b̂ with (â, b̂)∩ Î 6= ∅. Note that every isolated point in

Î must be of the form s(x) for some x ∈ D0 or s(Jn) for some isolated Jn. Therefore, the

condition (DM) implies that (â, b̂)∩Î contains no isolated points. Let x̂ ∈ (â, b̂)∩Î. There
exists a sequence x̂p = s(xp) with xp ∈ I such that x̂p → x̂. We can assume without loss

of generality that x̂p, x̂p+1, x̂p+2, x̂p+3 ∈ (â, b̂) and x̂p < x̂p+1 < x̂p+2 < x̂p+3 for some

p. It follows that xp < xp+1 < xp+2 < xp+3 and {s(y) : y ∈ (xp, xp+3)} ⊂ (â, b̂) ∩ Î.

Therefore, m((xp, xp+3)) ≤ m̂((â, b̂)∩Î) = 0. Due to the fact that I\U ⊂ supp[m], we have
(xp, xp+3) ⊂ Jn for some 1 ≤ n ≤ N . In particular, x̂p+1 = s(xp+1) = s(xp+2) = x̂p+2.
This leads to a contradiction with x̂p+1 < x̂p+2. �

2.3. Absolute continuity with respect to s. The goal of this subsection is to in-
troduce the concept of absolute continuity with respect to s and to examine several
related function spaces. For every function f on (l, r), f(%) is understood as the limit
limx→% f(x) for an endpoint ρ of (l, r). Let us first introduce a family of functions that are
“continuous” with respect to s, with slight generalization of the definition given in [32].

Definition 2.5. A function f on (l, r) is called s-continuous if f has finite limits from
the left and the right on (l, r), the right or left continuity of s at a point implies the same
property of f , and f is constant on intervals Jn where s is constant. The family of all
s-continuous functions on I is denoted by Cs.

Let Ĉs denote the family of all continuous functions on (l̂, r̂) that are linear on each

open interval Ĵk in (2.3). Both Cs and Ĉs are linear spaces. Since every function in Cs is

a constant on Jn, and the values of each function in Ĉs at the endpoints of Ĵk determine
their values throughout Ĵk, the lemma below follows straightforwardly.

Lemma 2.6. There exists a linear isomorphism T : Cs → Ĉs such that for any f ∈ Cs,

the function f̂ := Tf is determined by f̂(s(x)) = f(x) and f̂(s(x±)) = f(x±) for all
l < x < r.

A function f ∈ Cs is said to be absolutely continuous with respect to s if f̂ = Tf is

absolutely continuous on (l̂, r̂). Let H1
e,0(Ĵ) denote the family of all absolutely continuous

functions ĥ on (l̂, r̂) such that the derivative ĥ′ is in L2((l̂, r̂)) and ĥ(%̂) = 0 if an endpoint

%̂ of (l̂, r̂) is finite and not in Ĵ . Here, L2((l̂, r̂)) denotes L2((l̂, r̂), dx), the L2-space with
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respect to the Lebesgue measure. Define a family consisting of absolutely continuous
functions with respect to s as follows:

S :=
{
f ∈ Cs : Tf ∈ H1

e,0(Ĵ)
}
. (2.4)

It is clearly a linear space. We further make the following notation for f, g ∈ S :∫
I

df

ds

dg

ds
ds :=

∫ r̂

l̂

(Tf)′(x)(Tg)′(x)dx, (2.5)

where (Tf)′ and (Tg)′ are the derivatives of Tf and Tg, respectively, in the classical
sense, and define a quadratic form as

F := S ∩ L2(I,m),

E (f, g) :=
1

2

∫
I

df

ds

dg

ds
ds, f, g ∈ F .

(2.6)

In order to ensure that F = S ∩ L2(I,m) is well-defined, we need to demonstrate that
f and g in S satisfy f = g everywhere on (l, r) if f = g m-a.e. on I. To achieve this, we

note that m̂ = m ◦ s−1 indicates that Tf = Tg, m̂-a.e. on Î. As m̂ has full support on
Î, according to Lemma 2.4, and Tf and Tg both belong to Ĉs, it follows that Tf = Tg

everywhere on (l̂, r̂). Hence, by Lemma 2.6, we have f = g everywhere on (l, r).

Remark 2.7. Consider the case where s is strictly increasing and right continuous. Let
µ be the Lebesgue-Stieltjes measure of s on I with µ((0, x]) = s(x) for x > 0 and
µ((x, 0]) = −s(x) for x < 0. Then, for every f ∈ S , there exists a unique h ∈ L2(I, µ)
such that f(x) =

∫
(0,x]

hdµ, where
∫

(0,x]
stands for −

∫
(x,0]

if x < 0. Additionally, (2.5)

with g = f is identical to
∫
I
h2dµ. In particular, if s is further continuous, then this

absolute continuity with respect to s is the same as that in (1.2), and (2.5) reduces to
the integration in (1.2).

Define another family as

Ŝ :=
{
f̂ |Î : f̂ ∈ H1

e,0(Ĵ)
}
, (2.7)

where f̂ |Î is the restriction of f̂ to Î. It is evident that Ŝ forms a linear space.

Lemma 2.8. It holds that Ŝ = {Tf |Î : f ∈ S }. Furthermore,

T1 : S → Ŝ , f 7→ Tf |Î (2.8)

is a linear isomorphism.

Proof. From Lemma 2.6, it follows that

{Tf |Î : f ∈ S } = {f̂ |Î : f̂ ∈ Ĉs ∩H1
e,0(Ĵ)}.

Hence, {Tf |Î : f ∈ S } ⊂ Ŝ . Conversely, for every f̂ ∈ H1
e,0(Ĵ), the restriction f̂ |Î can

be uniquely extended to a function ĥ ∈ Ĉs by linear interpolation. Note that both âk and

b̂k are finite for any 1 ≤ k ≤ K. By applying the Cauchy-Schwarz inequality, it follows
that ∫ b̂k

âk

(
ĥ′(t)

)2

dt =

(
ĥ(âk)− ĥ(b̂k)

)2

b̂k − âk
=

(
f̂(âk)− f̂(b̂k)

)2

b̂k − âk
≤
∫ b̂k

âk

(
f̂ ′(t)

)2

dt.
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Therefore, ĥ′ ∈ L2((l̂, r̂)). Since Î ∈ K and f̂ |Î = ĥ|Î , it can be further concluded that

ĥ ∈ H1
e,0(Ĵ). This implies Ŝ ⊂ {Tf |Î : f ∈ S }. The second assertion follows directly

from Lemma 2.6. Thus, the proof is complete. �

2.4. Dirichlet form associated with (I, s,m). The main objective of this article is to
find an appropriate way to associate the quadratic form (2.6) with a suitable Markov
process. This task will be completed in the following two sections. For now, we first
demonstrate that it is almost a Dirichlet form.

If s is strictly increasing and continuous, then (2.6) coincides with the regular Dirichlet
form (1.2) by Remark 2.7. However, in general, (2.6) is not a Dirichlet form, because
f ∈ F is constant on each Jn, so F may not be dense in L2(I,m). In the following, we
will prove that (2.6) is a Dirichlet form on L2(I,m) in the wide sense. Specifically, the
quadratic form (E ,F ) is a non-negative symmetric closed form satisfying the Markovian
property, without requiring that m is fully supported on I. For clarity, we will refer to
(2.6) as the Dirichlet form associated with the triple (I, s,m).

Theorem 2.9. The quadratic form (E ,F ) defined as (2.6) is a Dirichlet form on
L2(I,m) in the wide sense. Furthermore, if s is strictly increasing, then (E ,F ) is a
Dirichlet form on L2(I,m).

Proof. In this proof, the symbol L2(Î) denotes the L2-space L2(Î , dx) with respect to
the Lebesgue measure. The prime symbol is used to indicate differentiation, with f ′ and

f̂ ′ denoting the derivatives of f and f̂ , respectively.
Firstly, we note that (E ,F ) is a non-negative symmetric quadratic form on L2(I,m).

To prove that it is closed, consider an E1-Cauchy sequence {fn : n ≥ 1} ⊂ F . Let

f̂n := Tfn ∈ Ŝ . Then, {f̂n} is Cauchy in L2(Î , m̂) and {f̂ ′n} is Cauchy in L2(Î). Hence,

there exist ĥ ∈ L2(Î , m̂) and ĝ ∈ L2(Î) such that f̂n → ĥ in L2(Î , m̂) and f̂ ′n → ĝ in

L2(Î). Without loss of generality, we can assume that f̂n converges to ĥ, m̂-a.e., and

that f̂n(0)→ ĥ(0). Define

f̂(x) := ĥ(0) +

∫ x

0

ĝ(y)dy, x ∈ Î .

Note that f̂ ′n is constant on each Ĵk. Thus, ĝ is also constant on Ĵk, which allows us to

conclude that f̂ ∈ Ĉs. On the other hand, it follows from f̂ ′n → ĝ in L2(Î) and f̂n(0) →
ĥ(0) that f̂n → f̂ pointwise. In particular, f̂ = ĥ, m̂-a.e., and f̂n → f̂ in L2(Î , m̂).

When r̂ is finite with r̂ /∈ Î, we also have f̂n(r̂) → f̂(r̂). Since f̂n(r̂) = fn(r) = 0, it

follows that f̂(r̂) = 0. Similar assertion holds for l̂ and l. Therefore, we can obtain that

f := T−1f̂ ∈ F and E1(fn − f, fn − f)→ 0. The closedness of (2.6) is verified.
Let us turn to show the Markovian property of (E ,F ). Take f ∈ F and let g be a

normal contraction of f , i.e.,

|g(x)− g(y)| ≤ |f(x)− f(y)|, x, y ∈ I, |g(x)| ≤ |f(x)|, x ∈ I. (2.9)

It is evident that g ∈ Cs since f ∈ Cs. Let f̂ := Tf and ĝ := Tg. It follows from (2.9)
that

|ĝ(x̂)− ĝ(ŷ)| ≤ |f̂(x̂)− f̂(ŷ)|, x̂, ŷ ∈ Î , |ĝ(x̂)| ≤ |f̂(x̂)|, x̂ ∈ Î . (2.10)

Note that Î is a closed subset of Ĵ and, in view of [11, Theorem 6.2.1 (2)], the family

Ŝ is the extended Dirichlet space of a time-changed Brownian motion on Î (see also

Theorem 3.2). Particularly, every normal contraction operates on Ŝ . It follows from

f̂ |Î ∈ Ŝ and (2.10) that ĝ|Î ∈ Ŝ . Thus, g = T−1ĝ ∈ S . By means of (2.9), one can also
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see that g ∈ L2(I,m). Consequently, g ∈ F . In addition, (2.10) yields that |ĝ′| ≤ |f̂ ′|,
a.e. on Î. Hence E (g, g) ≤ E (f, f) follows. This completes the proof of the Markovian
property.

Finally, we consider the case where s is strictly increasing. We note that (DM) implies

that m has full support on I. From the definition (2.7) of Ŝ , we can deduce that

Ŝ ∩ L2(Î , m̂) is dense in L2(Î , m̂). By using (2.4) and m̂ = m ◦ s−1, it follows that
F = S ∩ L2(I,m) is also dense in L2(I,m). Therefore, we conclude that (E ,F ) is a
Dirichlet form on L2(I,m) in the strict sense. �

Remark 2.10. In the books [3,11], the term “Dirichlet form in the wide sense” is defined
as a symmetric form that may not necessarily be densely defined. However, it is still
assumed that the underlying measure has full support (refer to [11, §1.4]). The distinction
between whether the underlying measure is fully supported or not is not essential in this
context since our objective is to examine the regular representation of the D-space in the
subsequent section.

3. Regular representations and regularized Markov processes

In this section, we will adopt an analytical approach known as the regular repre-
sentation, proposed by Fukushima, to transform (E ,F ) defined in (2.6) into a family
of regular Dirichlet forms. This mapping allows us to thereby obtain a corresponding
family of Markov processes.

Let us first introduce the fundamental concept of the regular representation. In
Fukushima’s seminal paper [8], the collection (E1,m1,E 1,F 1) is called a D-space pro-
vided that (E 1,F 1) is a Dirichlet form on L2(E1,m1) in the wide sense. The space
F 1
b := F 1 ∩ L∞(E1,m1) is an algebra over the field R, meaning it is closed under addi-

tion, multiplication and scalar multiplication. Let (E2,m2,E 2,F 2) be another D-space.
Then (E1,m1,E 1,F 1) and (E2,m2,E 2,F 2) are said to be equivalent if there exists an
algebraic isomorphism Φ from F 1

b to F 2
b such that Φ preserves three kinds of metrics:

For f ∈ F 1
b ,

‖f‖∞ = ‖Φ(f)‖∞, (f, f)m1 = (Φ(f),Φ(f))m2 , E 1(f, f) = E 2(Φ(f),Φ(f)), (3.1)

where ‖ · ‖∞ := ‖ · ‖L∞(Ei,mi) and (·, ·)mi
= (·, ·)L2(Ei,mi) for i = 1, 2. In addition,

(E2,m2,E 2,F 2) is called a regular representation of (E1,m1,E 1,F 1) if they are equiva-
lent and (E 2,F 2) is regular on L2(E2,m2). The fundamental results of [7, 8] show that
every D-space admits regular representations, and any two regular representations are
quasi-homeomorphic to each other. Related investigations also appeared in [11, Appen-
dix A4].

By Theorem 2.9, (I,m,E ,F ) is a D-space. This section aims to determine a specific
canonical regular representation for it. Moreover, we will demonstrate that any two
regular representations of (I,m,E ,F ) are essentially related by a homeomorphism.

3.1. Canonical regular representation. In order to introduce the canonical regular
representation, we need to prepare some ingredients. To begin, let us define ŝ(x̂) = x̂ for

x̂ ∈ Î. We refer to the triple (Î , ŝ, m̂) as the canonical regularization of (I, s,m).

With (Î , ŝ, m̂) in our possession, we can now introduce another quadratic form as
follows:

F̂ := {f̂ := Tf |Î = T1f : f ∈ F},

Ê (f̂ , ĝ) := E (f, g), f̂ , ĝ ∈ F̂ ,
(3.2)
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where f̂ = T1f and ĝ = T1g, respectively. Note that T1 is a linear isomorphism between

S and Ŝ by Lemma 2.8.

The following result demonstrates that (Î , m̂, Ê , F̂ ) serves as a regular representation
of (I,m,E ,F ). We refer to this representation as the canonical regular representation of
(I,m,E ,F ).

Theorem 3.1. Let (Î , ŝ, m̂) be the canonical regularization of (I, s,m) and (Ê , F̂ ) be

defined as (3.2). Then, (Ê , F̂ ) is a regular Dirichlet form on L2(Î , m̂), which can be
represented as

F̂ = Ŝ ∩ L2(Î , m̂),

Ê (f̂ , f̂) =
1

2

∫
Î

f̂ ′(x̂)2dx̂+
1

2

∑
1≤k≤K

(
f̂(âk)− f̂(b̂k)

)2

|b̂k − âk|
, f̂ ∈ F̂ ,

(3.3)

where Ŝ is defined as (2.7) and âk, b̂k, 1 ≤ k ≤ K, appear in (2.3), and f̂ ′ denotes the

derivative of f̂ . Furthermore, (Î , m̂, Ê , F̂ ) is a regular representation of (I,m,E ,F ).

Proof. The expression (3.3) for (Ê , F̂ ) can be straightforwardly established. By repeat-

ing the argument in the proof of Theorem 2.9, it can be easily verified that (Ê , F̂ ) is a

Dirichlet form on L2(Î , m̂) in the wide sense. In the following, we will provide a direct
proof of its regularity by considering several cases separately. Another simpler proof
involving a time change transformation will be presented in Theorem 3.2.

The interval Ĵ = 〈l̂, r̂〉 is defined in §2.2. In this proof, we use the notations C(Ĵ) and

C(Î) to denote the sets of all real-valued continuous functions over Ĵ and Î respectively.

Further, C∞(Ĵ) and C∞(Î) represent the continuous functions vanishing at endpoints not

included in Ĵ and Î respectively. We also use Cc(Ĵ) and Cc(Î) to denote the subspaces

of C(Ĵ) and C(Î) that contain all continuous functions over Ĵ and Î respectively, with

compact support. Finally, we define C∞c (Ĵ) as the set of all smooth functions with

compact support over Ĵ .

Consider the first case where both l̂ and r̂ are finite. It is clear that F̂ ⊂ C∞(Î).

Hence, trivially, F̂ ∩ C∞(Î) is dense in (F̂ , Ê1). To prove the regularity of (Ê , F̂ ) on

L2(Î , m̂), according to [3, Lemma 1.3.12], it suffices to show that F̂ separates the points

in Î. Let x, y ∈ Î with x 6= y. Choose f̂ ∈ C∞c (Ĵ) such that f̂(t) = t for t ∈ [x, y]. Then

f̂ |Î ∈ F̂ separates x and y.

When neither l̂ nor r̂ is finite, we have l̂ = −∞, r̂ = ∞, and Ĵ = R. By following

a similar argument as in the previous case, we can conclude that F̂ ∩ Cc(Î) is dense

in Cc(Î) with respect to the uniform norm. To show the Ê1-denseness of F̂ ∩ Cc(Î) in

F̂ , let us consider a bounded function f̂ ∈ F̂ with M := supx∈Î |f̂(x)| < ∞. Take a
sequence of functions ϕn ∈ C∞c (R) such that

ϕn(x) = 1 for |x| < n; ϕn(x) = 0 for |x| > 2n+ 1;

|ϕ′n(x)| ≤ 1/n, n ≤ |x| ≤ 2n+ 1; 0 ≤ ϕn(x) ≤ 1, x ∈ R.
(3.4)

Define f̂n := f̂ · ϕn|Î . Since ϕn|Î ∈ F̂ , we have f̂n ∈ F̂ ∩ Cc(Î). It is clear that f̂n
converges to f̂ in L2(Î , m̂). Now, we need to prove that Ê (f̂n − f̂ , f̂n − f̂) → 0. Let
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BR := {x : |x| < R} for R > 0. Write

A1
n :=

∫
Î∩Bc

2n+1

f̂ ′(x)2dx, A2
n :=

∫
Î∩(B2n+1\Bn)

(
f̂ ′(x)(ϕn(x)− 1) + f̂(x)ϕ′n(x)

)2

dx.

The intervals in (2.3) are indexed by 1 ≤ k ≤ K. We define three index sets to categorize

the values of âk and b̂k: Λn1 , consisting of indices k where |âk| > 2n+1 and |b̂k| > 2n+1;

Λn2 , including indices k where n ≤ |âk| ≤ 2n + 1 or n ≤ |b̂k| ≤ 2n + 1; and Λn3 , the
remaining indices. For i = 1, 2, 3, let

Bin :=
∑
k∈Λn

i

((
f̂ · (ϕn − 1)

)
(âk)−

(
f̂ · (ϕn − 1)

)
(b̂k)

)2

|b̂k − âk|
.

According to (3.3), we have

2Ê (f̂n − f̂ , f̂n − f̂) ≤ A1
n +A2

n +B1
n +B2

n +B3
n.

Clearly, A1
n, B

1
n → 0, and we can use (3.4) to obtain

A2
n ≤ 2

∫
Î∩(B2n+1\Bn)

(
f̂ ′(x)2 +

f̂(x)2

n2

)
dx→ 0.

Since(
f̂ · (ϕn − 1)

)
(âk)−

(
f̂ · (ϕn − 1)

)
(b̂k)

=
(
f̂(âk)ϕn(âk)− f̂(b̂k)ϕn(âk)

)
+
(
f̂(b̂k)ϕn(âk)− f̂(b̂k)ϕn(b̂k)

)
−
(
f̂(âk)− f̂(b̂k)

)
,

it follows from the Cauchy-Schwarz inequality that

B2
n ≤ 3B21

n + 3B22
n + 3B23

n ,

where

B21
n :=

∑
k∈Λn

2

(
f̂(âk)− f̂(b̂k)

)2

|b̂k − âk|
, B22

n :=
∑
k∈Λn

2

(
f̂(âk)ϕn(âk)− f̂(b̂k)ϕn(âk)

)2

|b̂k − âk|
,

and

B23
n :=

∑
k∈Λn

2

(
f̂(b̂k)ϕn(âk)− f̂(b̂k)ϕn(b̂k)

)2

|b̂k − âk|
.

It is evident that B21
n → 0. Since |ϕn(x)| ≤ 1 for all x ∈ R, we have B22

n ≤ B21
n → 0.

Note that

B23
n ≤M2

∑
k∈Λn

2

(
ϕn(âk)− ϕn(b̂k)

)2

|b̂k − âk|
.

Consider k ∈ Λn2 such that n ≤ |âk| ≤ 2n+ 1. If b̂k ≤ 2n+ 1, utilizing (3.4) yields(
ϕn(âk)− ϕn(b̂k)

)2

|b̂k − âk|
≤ |b̂k − âk|

n2
.
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When b̂k > 2n+ 1, according to (3.4), we have(
ϕn(âk)− ϕn(b̂k)

)2

|b̂k − âk|
≤ (ϕn(âk)− ϕn(2n+ 1))

2

|(2n+ 1)− âk|
≤ |(2n+ 1)− âk|

n2
.

The above term can be estimated in a similar fashion for k ∈ Λn2 with n ≤ |b̂k| ≤ 2n+ 1.
Based on these estimations, we can deduce that

B23
n ≤M2 · 2(2n+ 1)

n2
→ 0.

It remains to show that B3
n → 0. For k ∈ Λ3

n, three possible cases may arise:

(a) |âk|, |b̂k| < n,

(b) |âk| < n, b̂k > 2n+ 1,

(c) âk < −(2n+ 1), |b̂k| < n.

It is clear that there can only be one index for either the second or the third case. Thus,
by utilizing (3.4), we obtain:

B3
n ≤

2M2

n+ 1
→ 0.

Eventually, we can conclude that Ê (f̂n − f̂ , f̂n − f̂)→ 0.
The remaining cases can be treated similarly, and we can ultimately conclude that

(Ê , F̂ ) is a regular Dirichlet form on L2(Î , m̂).

Finally, it remains to show that (Î , m̂, Ê , F̂ ) is a regular representation of (I,m,E ,F ).

Note that both Fb and F̂b are algebras. Let Φ be the restriction of T1 to Fb. Using

Lemmas 2.6, 2.8, and (3.3), we can establish that Φ is a bijection between Fb and F̂b.
Moreover, we can also verify that Φ(fg) = Φ(f)Φ(g) for all f, g ∈ Fb, implying that Φ

is an algebraic isomorphism between Fb and F̂b. The equalities in equation (3.1) can be
deduced from Lemma 2.6, m̂ = m ◦ s−1, and (3.2). This completes the proof. �

3.2. Canonical regularized Markov process. It is well known that every regular
Dirichlet form corresponds to a (unique) symmetric Hunt process; see, e.g., [11]. Let

X̂ = (X̂t)t≥0 be the m̂-symmetric Hunt process on Î associated with (Ê , F̂ ). We refer to

X̂ as the canonical regularized Markov process associated with (I, s,m). The main goal

of this subsection is to demonstrate that X̂ is a time-changed Brownian motion with
speed measure m̂.

Let Ĵ := 〈l̂, r̂〉 be the interval defined before Lemma 2.4 and L2(Ĵ) be the L2-space

L2(Ĵ , dx) with respect to the Lebesgue measure. We denote by B̂ = (B̂t)t≥0 the Brownian

motion on Ĵ with lifetime ζ̂B̂ that is absorbed at each finite open endpoint and reflected
at each finite closed endpoint. The associated Dirichlet form of B̂ on L2(Ĵ) is

H1
0 (Ĵ) := H1

e,0(Ĵ) ∩ L2(Ĵ),

1

2
D(f̂ , ĝ) :=

1

2

∫
Ĵ

f̂ ′(x̂)ĝ′(x̂)dx̂, f̂ , ĝ ∈ H1
0 (Ĵ).

Since the zero extension of m̂ to Ĵ is Radon, m̂ can be considered as a smooth measure
with respect to ( 1

2D, H1
0 (Ĵ)). Clearly, the quasi support of m̂ is identical to its topological

support Î. Let Â = (Ât)t≥0 be the positive continuous additive functional of B̂ with
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Revuz measure m̂. Define

τ̂t :=

{
inf{s > 0 : Âs > t}, t < Âζ̂B̂−,

∞, t ≥ Âζ̂B̂−,
X̌t := B̂τ̂t , ζ̌ := Âζ̂B̂−.

Then, X̌ = (X̌t)t≥0 is a right process on Î with lifetime ζ̌, known as the time-changed
Brownian motion with speed measure m̂; see, e.g., [3, Theorem A.3.11].

The following result, together with [3, Corollary 5.2.10], demonstrates that the canon-

ical regularized Markov process X̂ is equivalent to X̌. This argument also provides an

alternative proof for the regularity of (Ê , F̂ ). Terminologies regarding trace Dirichlet
forms are discussed in, e.g., [3, §5.2].

Theorem 3.2. (Ê , F̂ ) is the trace Dirichlet form of ( 1
2D, H1

0 (Ĵ)) on L2(Î , m̂).

Proof. The proof can be finalized by adopting the methodology used in [24, Theorem 2.1]
to articulate the expression of the trace Dirichlet form (its definition is explicitly stated
in [3, (3.5.10)]). Specifically, it is sufficient to compute the Feller measure U(dxdy) on

Î × Î and the supplementary Feller measure V (dx) on Î (see [3, (5.5.7)]). Note that

P̂B̂
x̂ (τ̂0 ≥ ζ̂B̂) = 0 for any x̂ ∈ Ĵ , where τ̂0 := inf{t ∈ [0, ζ̂B̂ ] : B̂t /∈ Ĵ \ Î}. Hence, V = 0

by [3, (5.5.7)]. The Feller measure U can be derived analogously to [24, Theorem 2.1]. �

Let us turn to describe the global properties of (Ê , F̂ ) or X̂. The crucial fact is that

(Ê , F̂ ) is always irreducible.

Proposition 3.3. The Dirichlet form (Ê , F̂ ) is irreducible.

Proof. When Î is an interval, the irreducibility of (Ê , F̂ ) was established in [3, §2.2.3].

Considerations are restricted to cases in which Î and Ĵ are distinct.
Suppose by contradiction that Â ⊂ Î is a non-trivial {T̂t}-invariant set, i.e., m̂(Â) 6= 0

and m̂(Î \ Â) 6= 0, where {T̂t} is the L2-semigroup of (Ê , F̂ ). We aim to demonstrate

the existence of an interval (âk, b̂k) in (2.3), such that for some 0 < ε < (b̂k − âk)/2, the
condition stated below holds true:

(âk − ε, âk + ε) ∩ Î ⊂ Â, (b̂k − ε, b̂k + ε) ∩ Î ⊂ Î \ Â, m̂-a.e.,

or
(âk − ε, âk + ε) ∩ Î ⊂ Î \ Â, (b̂k − ε, b̂k + ε) ∩ Î ⊂ Â, m̂-a.e. (3.5)

Without loss of generality, we assume âk−ε > l̂ (resp., b̂k+ε < r̂) whenever âk > l̂ (resp.,

b̂k < r̂). After establishing the existence of such (âk, b̂k), we take a function g ∈ C∞c (R)
such that

supp[g] ⊂ (âk − ε, âk + ε) ∪ (b̂k − ε, b̂k + ε)

and
g(âk) = g(b̂k) = 1.

Clearly, g|Î ∈ F̂ . Using [3, Proposition 2.1.6], we can obtain that ĝ1 := g|Î · 1Â ∈
F̂ , ĝ2 := g|Î − ĝ1 ∈ F̂ and Ê (ĝ1, ĝ2) = 0. However, by computing (3.3), we see that

Ê (ĝ1, ĝ2) = − 1

2|b̂k − âk|
6= 0,

which leads to a contradiction.
To show the existence of (âk, b̂k), we select l̂1, l̂0, r̂0, and r̂1 from Î such that they

satisfy the following conditions:
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(i) l̂1 ≤ l̂0 < r̂0 ≤ r̂1.

(ii) If l̂ ∈ Î, then l̂1 = l̂0 = l̂. Otherwise l̂1 < l̂0.

(iii) If r̂ ∈ Î, then r̂1 = r̂0 = r̂. Otherwise r̂0 < r̂1.
(iv) It holds that

m̂([l̂0, r̂0] ∩ Â) > 0, m̂
(

[l̂0, r̂0] ∩
(
Î \ Â

))
> 0. (3.6)

The existence of these l̂1, l̂0, r̂0, and r̂1 within Î is evident. Furthermore, consider a

function f̂ = ĥ|Î ∈ F̂ with ĥ ∈ C∞c (Ĵ) and ĥ ≡ 1 on [l̂1, r̂1]. By [3, Proposition 2.1.6],

we can obtain f̂ · 1Â ∈ F̂ . Since F̂ ⊂ Ŝ , f̂ · 1Â ∈ F̂ has a continuous m-a.e. version

denoted by f̃1. It is clear that f̃1 is pointwise 0 or 1 on [l̂1, r̂1] ∩ Î; however, because of

(3.6), f̃1 is not constant on [l̂0, r̂0] ∩ Î. Consider the family of intervals

I := {(âk, b̂k) ⊂ [l̂0, r̂0] : k ≥ 1}.

Clearly, I is non-empty, and there exists (âk, b̂k) ∈ I such that f̃1(âk) 6= f̃1(b̂k);

otherwise, f̃1 would have to be constant over [l̂0, r̂0]. Without loss of generality, assume

f̃1(âk) = 0 and f̃1(b̂k) = 1. Since f̃1 takes values 0 or 1 on [l̂1, r̂1] ∩ Î, and is continuous,

there exists a small ε > 0 such that f̃1 = 0 on (âk − ε, âk + ε) ∩ Î and f̃1 = 1 on

(b̂k − ε, b̂k + ε) ∩ Î. In particular, (3.5) holds for this (âk, b̂k). �

Based on this fact, we can provide a criterion for other global properties of (Ê , F̂ ) or

X̂.

Corollary 3.4. (1) (Ê , F̂ ) is transient if and only if either l̂ ∈ R \ Î or r̂ ∈ R \ Î.

Otherwise, (Ê , F̂ ) is recurrent.

(2) Every singleton set contained in Î has a positive capacity with respect to Ê .

Particularly, X̂ is pointwise irreducible, which means that for any x̂, ŷ ∈ Î,

P̂x̂(σ̂ŷ <∞) > 0,

where P̂x̂ is the probability measure on the sample space of X̂ such that P̂x̂(X̂0 =

x̂) = 1, and σ̂ŷ := inf{t > 0 : X̂t = ŷ}.

Proof. In light of [3, Theorem 5.2.5], (Ê , F̂ ) is transient if and only if so is ( 1
2D, H1

0 (Ĵ)).
Together with [3, Theorem 2.2.11], this yields the desired condition equivalent to the

transience of (Ê , F̂ ). Another assertion follows as a consequence of [3, Theorems 3.5.6
(1) and 5.2.8 (2)]. This completes the proof. �

3.3. Homeomorphisms between regular representations. We now show that ev-
ery regular representation of (I,m,E ,F ) is essentially homomorphic to the canonical
regular representation. This means that a Markov process associated with a given reg-
ular representation must be a homeomorphic image of X̂. To obtain this result, the
following lemma will be helpful.

Lemma 3.5. Let {F̂n : n ≥ 1} be an Ê -nest and K̂ be a compact subset of Î. Then

K̂ ⊂ F̂n for some n ≥ 1. In other words, every Ê -nest exhausts Î.

Proof. It suffices to show that for any x̂ ∈ K̂, there exists ε > 0 such that

(x̂− ε, x̂+ ε) ∩ (Î \ F̂n) = ∅, for some n ≥ 1. (3.7)

Assume, for contradiction, that there exists x̂ ∈ K̂ such that (x̂−ε, x̂+ε)∩(Î\F̂n) 6= ∅ for

any ε > 0 and any n ≥ 1. Take a sequence x̂n ∈ Î \ F̂n such that x̂n → x̂ and a function
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f̂ ∈ F̂F̂k
:= {f ∈ F̂ : f = 0 on Î \ F̂k} for some k. Clearly, f̂ |Î\F̂n

≡ 0 for n ≥ k. Since

every function in F̂ is continuous on Î, it follows that f̂(x̂) = limn→∞ f̂
∣∣
Î\F̂n

(x̂n) = 0.

Particularly, ⋃
k≥1

F̂F̂k
⊂ {f̂ ∈ F̂ : f̂(x̂) = 0}.

The family on the left hand side is Ê1-dense in F̂ , while the family on the right hand
side is not. This leads to a contradiction. �

Before stating the result, we introduce some necessary notations and terminologies.
Let (E 1,F 1) be a Dirichlet form on L2(E1,m1). Consider another measurable space
(E2,B(E2)) and a measurable map j : (E1,B(E1)) → (E2,B(E2)). We define m2 :=
m1 ◦ j−1, which is the image measure of m1 under j. Then the map

j∗ : L2(E2,m2)→ L2(E1,m1), f 7→ j∗f := f ◦ j
is an isometry. Let F 2 := {f ∈ L2(E2,m2) : j∗f ∈ F 1} and

E 2(f, g) := E 1(j∗f, j∗g), f, g ∈ F 1.

If j∗ maps L2(E2,m2) onto L2(E1,m1), then (E 2,F 2) is a Dirichlet form on L2(E2,m2),
which is referred to as the image Dirichlet form of (E 1,F 1) under j. Particularly, if both
E1 and E2 are locally compact separable metric spaces and j is an a.e. homeomorphism,
which means that there exist an m1-negligible set N1 and an m2-negligible set N2 such
that j : E1 \N1 → E2 \N2 is a homeomorphism, then j∗ is surjective.

Theorem 3.6. Let (E′,m′,E ′,F ′) be a regular representation of (I,m,E ,F ). Then

there exist a unqiue E ′-polar set N ′ ⊂ E′ and a homeomorphism j′ : Î → E′ \ N ′ such

that (E ′,F ′) is the image Dirichlet form of (Ê , F̂ ) under j′.

Proof. In view of [11, Lemma A.4.9], there exists a regular representation (Ẽ, m̃, Ẽ , F̃ )

such that both (E′,m′,E ′,F ′) and (Î , m̂, Ê , F̂ ) are equivalent to it by isomorphisms Φ′

and Φ̂, respectively, and

Φ′ (F ′ ∩ C∞(E′)) ⊂ F̃ ∩ C∞(Ẽ), Φ̂(F̂ ∩ C∞(Î)) ⊂ F̃ ∩ C∞(Ẽ).

Applying [11, Lemma A.4.8] to Φ̂ and repeating its proof, we can obtain a continuous

map γ̂ : Ẽ → Î, an Ẽ -nest {F̃ 1
n : n ≥ 1}, and an Ê -nest {F̂n} such that f ◦ γ̂ ∈ C∞(Ẽ)

for any f ∈ C∞(Î) and that

γ̂n := γ̂|F̃ 1
n

: F̃ 1
n → F̂n, n ≥ 1, (3.8)

are homeomorphisms. In addition, (Ê , F̂ ) is the image Dirichlet form of (Ẽ , F̃ ) under

γ̂. In a similar manner, there is a continuous map γ′ : Ẽ → E′, an Ẽ -nest {F̃ 2
n : n ≥ 1}

and an E ′-nest {F ′n : n ≥ 1} such that f ◦ γ′ ∈ C∞(Ẽ) for any f ∈ C∞(E′) and that

γ′n := γ′|F̃ 2
n

: F̃ 2
n → F ′n, n ≥ 1, (3.9)

are homeomorphisms. Moreover, (E ′,F ′) is the image Dirichlet form of (Ẽ , F̃ ) under γ′.

Without loss of generality, we assume that F̃ 1
n = F̃ 2

n =: F̃n. Otherwise, we can replace

F̃ 1
n and F̂n by F̃ 1

n ∩ F̃ 2
n and F̂n ∩ γ̂(F̃ 2

n), respectively, in (3.8), and the maps in (3.9) can
be modified similarly. According to Corollary 3.4 (2), we have

Î =
⋃
n≥1

F̂n.



16 LIPING LI

Let E′0 :=
⋃
n≥1 F

′
n and Ẽ0 :=

⋃
n≥1 F̃n. Denote by q̂ the inverses of γ̂|Ẽ0

. Set N ′ :=

E′ \ E′0, which is clearly an E ′-polar set, and

j′ : Î → E′0, x̂ 7→ γ′(q̂(x̂)). (3.10)

We will prove step by step that (N ′, j′) satisfies all the conditions in the conclusion of
the theorem.

Step 1: we assert that for any compact subset K ′ of E′, it holds that K ′ ∩ E′0 ⊂ F ′n
for some n ≥ 1. To prove this, take a function f ∈ C∞(E′) such that f = 1 on K ′. Let

K̃ := γ′−1(K ′). Since γ′ is continuous, K̃ is closed in Ẽ. Moreover, we have

K̃ ⊂ {x̃ ∈ Ẽ : f ◦ γ′(x̃) = 1},

and the right hand side is a subset of some compact set in Ẽ since f ◦ γ′ ∈ C∞(Ẽ). In

particular, K̃ is compact in Ẽ. It follows from the continuity of γ̂ that K̂ := γ̂(K̃) is

compact in Î. Applying Lemma 3.5 to K̂ and using the homeomorphisms (3.8) and (3.9),

we obtain that K̂ ⊂ F̂n for some n. Thus,

K ′ ∩ E′0 = γ′(K̃ ∩ Ẽ0) ⊂ γ′(γ̂−1(K̂) ∩ Ẽ0) ⊂ γ′n(γ̂−1
n (F̂n)) = F ′n.

Step 2: we show that q̂ is continuous on Î, so that q̂ : Î → Ẽ0 is a homeomorphism,

and (Ẽ , F̃ ) is the image Dirichlet form of (Ê , F̂ ) under q̂. To do this, let us consider

an arbitrary precompact open subset Û of Î. Since Û ⊂ F̂n for some n, it follows that
q̂|Û = γ̂−1

n |Û is continuous. Consequently, q̂ is continuous on Î.
Step 3: we prove that j′ is a local homeomorphism, thereby establishing that it is

indeed a homeomorphism due to its bijectivity. Since q̂ has been proven to be continuous
in the second step, we can conclude that j′ is a continuous bijection. Let x̂ ∈ Î and
x′ := j′(x̂). Since E′ is locally compact, we can choose a precompact open set V in E′

such that x′ ∈ V . Let V ′ := V ∩ E′0. Then V ′ is an open neighbourhood of x′ in E′0.
The assertion in the first step implies that

V ′ ⊂ V ∩ E′0 ⊂ F ′n
for some n, where V is the closure of V in E′. Considering the continuity of j′ and the
fact that j′|F̂n

is a homeomorphism, we can deduce that Û := j′−1(V ′) ⊂ F̂n is an open

neighbourhood of x̂ in Î and that j′|Û : Û → V ′ is a homeomorphism. Consequently,
(3.10) is a local homeomorphism.

Step 4: using the fact that both j′ and q̂ are homeomorphisms, we can conclude that
γ′|Ẽ0

: Ẽ0 → E′0 is also a homeomorphism. Therefore, it is easy to verify that (E ′,F ′)

is the image Dirichlet form of (Ê , F̂ ) under j′.
Step 5: it remains to argue the uniqueness of N ′. Take another pair (N ′1, j

′
1) with

the same properties. We need to show N ′ = N ′1. According to Corollary 3.4 (2), every

singleton set contained in Î is not Ê -polar. Since j′1 is a homeomorphism, it follows that
every singleton set contained in E′ \N ′1 is not E ′-polar. Consequently, we have E′ \N ′1 ⊂
E′ \ N ′ because N ′ is E ′-polar. Similarly, we can also argue that E′ \ N ′ ⊂ E′ \ N ′1.
Thus, N ′ = N ′1. �

Remark 3.7. The homeomorphism between Î and E′ \N ′ is not unique in the usual sense
in this theorem. For instance, the D-space associated with Brownian motion on R is its
own regular representation. Therefore, for any fixed a ∈ R, all congruent transforms
j′ : R→ R, x 7→ ±x+ a satisfy the given conditions.



MARKOV PROCESSES WITH DISCONTINUOUS SCALES 17

However, the uniqueness holds in the following sense: If both j′ and j′1 meet the given

conditions and are homeomorphic between Î and E′ \ N ′, then the laws of j′(X̂) and

j′1(X̂) are identical. This coincidence arises because these processes are associated with

the same Dirichlet form (E ′,F ′). In other words, j′−1◦j′1 maps X̂ to an identical Markov
process.

The following corollary can be readily deduced from this theorem.

Corollary 3.8. Let (Ii,mi,E i,F i) be the regular representations of (I,m,E ,F ) for
i = 1, 2. Then there exist E i-polar sets Ni ⊂ Ii for i = 1, 2, as well as a homeomorphism
j : I1 \N1 → I2 \N2, such that (E 2,F 2) is the image Dirichlet form of (E 1,F 1) under
j.

Given a regular representation (E′,m′,E ′,F ′) of (I,m,E ,F ) as in Theorem 3.6, let
X ′ denote the m′-symmetric Hunt process associated with (E ′,F ′). This process is
referred to as a regularized Markov process associated with (I, s,m) if no ambiguities
arise. Additionally, we call N ′ obtained in Theorem 3.6 the essentially exceptional set
of X ′ or (E′,m′,E ′,F ′). Particularly, the essentially exceptional set of X̂ is empty.
However, it should be emphasized that, in general, the essentially exceptional set may
not be empty.

Example 3.9. Consider I = [0, 1), where m is the Lebesgue measure on [0, 1). Let s
be a continuous and strictly increasing function on I such that s(0) = 0 and s(1) = ∞.
Then, (I,m,E ,F ) corresponds to the regular diffusion on I with scale function s, speed
measure m, and no killing inside.

By utilizing [25, Theorem 2.1], it can be shown that (E ,F ) is regular not only on
L2(I,m) but also on L2([0, 1],m). In particular, ([0, 1],m,E ,F ) serves as a regular
representation of (I,m,E ,F ), with its essentially exceptional set being {1}.

4. Unregularized Markov process and Ray-Knight compactification

In this section, we will employ two probabilistically intuitive approaches to determine
two Markov processes that correspond to the Dirichlet form (E ,F ) (in the wide sense)
obtained in Theorem 2.9. The first approach entails a transformation of the state space
I in order to render (E ,F ) a regular Dirichlet form on the new space. This regular
Dirichlet form is a more specific variant of the regular representations discussed in the
previous section. This transformation also enables us to establish a connection between
(E ,F ) and a certain Hunt process. The second approach involves the projection of
the Hunt process from the first approach back onto the original space I, resulting in a
symmetric continuous Markov process. However, this newly obtained Markov process
does not possess the strong Markov property. The reason for the interest in these two
processes lies in the fact that the Dirichlet form associated with the latter process in a
strict sense is precisely (E ,F ), while the former process constitutes what is known as
the Ray-Knight compactification of the latter.

4.1. Regularized Markov process. To achieve the first approach, we will begin with
the canonical regular representation and aim to apply a homeomorphism (see Theo-
rem 3.6) in order to transform it into another regular representation on a newly con-

structed state space based on I. The key is to find an “inverse” of the map s : I → Î
that serves as this homeomorphism. However, there are two clear challenges: Firstly,
a subset of points in Î (specifically, the set formed by the second and third terms on
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the right-hand side of (2.2)) does not have corresponding points in I; secondly, s is not
injective, as the entire interval Jn is mapped to the same point by s.

To address these issues, we employ the following two transformations successively to
modify the state space I. Recall that U,D,D0, Jn are given in the second paragraph of
Section 2.1. The first transformation, introduced by [32], utilizes the metric ρ defined as
follows to make the completion of the state space I:

ρ(x, y) := | arctanx− arctan y|+ | arctan s(x)− arctan s(y)|.
The purpose of this completion, denoted by Īρ, is to split x ∈ D0 into three points
x, x+, x− and x ∈ D \D0 into two points x+, x−. The additional points can then serve

as corresponding points for the extra points in Î. The second transformation, called darn-
ing , collapses each Jn into a single abstract point, thereby resolving the non-injectivity
issue of s. To be more specific, let J

ρ

n be the closure of Jn in Īρ. Under the darning

transformation, we regard J
ρ

n as a point denoted by p∗n, and the neighbourhoods of this

point are determined by the neighbourhoods of J
ρ

n in Īρ. The resulting modified space is
denoted by Īρ,∗. For a more comprehensive understanding of the darning transformation,
readers can refer to [3, page 347]. An example illustrating these two transformations is
provided below.

Example 4.1. Consider I = [0, 3] and

s(x) =


x, 0 ≤ x < 1,

1, 1 ≤ x < 2,

x, 2 ≤ x ≤ 3.

Then U = J1 = (1, 2), and s has only one discontinuous point 2. The first transforma-
tion splits 2 into {2−, 2+}, resulting in the completion Īρ = [0, 2−] ∪ [2+, 3]. In this
completion, [0, 2−] (resp., [2+, 3]) is identical to the usual interval [0, 2] (resp., [2, 3]).

However, 2− and 2+ are distinct points in Īρ. The closure J
ρ

1 of J1 is [1, 2−] and the
darning transformation collapses it into an abstract point p∗1, which can be seen as the
usual point 1. In other words, Īρ,∗ can be treated as [0, 1] ∪ [2+, 3].

We should note that the abstract point p∗n may not always represent a conventional
point. For example, consider the interval I = [0, 1] and the standard Cantor function
s on [0, 1], i.e., s(x) =

∫ x
0

1Kc(y)dy where K ⊂ [0, 1] is the standard Cantor set. Then

the completion of I under ρ is Īρ = [0, 1], and the darning transformation collapses each
open interval in the decomposition of [0, 1] \K into an abstract point p∗n. In this case,
the resulting Īρ,∗ cannot be regarded as a usual interval.

It can be easily demonstrated that the topological space Īρ,∗ resulting from the above
two transformations is homeomorphic to s([l, r]). This is true instead of Î because Īρ,∗

might still contain additional endpoints. The homeomorphism between Īρ,∗ and s([l, r])
can be established using the following map:

s∗(x∗) :=


s(x), x∗ = x ∈

(
I \ (D \D0)

)
∩ Īρ,∗,

s(x±), x∗ = x± ∈ Īρ,∗ with x ∈ D,
s(cn+), x∗ = p∗n for each 1 ≤ n ≤ N.

(4.1)

Let r∗ denote the inverse of s∗. Define I∗ := r∗(Î),m∗ := m̂ ◦ s∗ and

F ∗ := {f∗ = f̂ ◦ s∗ : f̂ ∈ F̂},

E ∗(f∗, g∗) := Ê (f̂ , ĝ), f∗, g∗ ∈ F ∗,
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where f∗ = f̂ ◦ s∗ and g∗ = ĝ ◦ s∗. Obviously, the restriction of s∗, still denoted by
s∗, to I∗ forms a homeomorphism between I∗ and Î. The following result provides an
alternative regular representation of (I,m,E ,F ), and its proof is straightforward.

Theorem 4.2. The quadratic form (E ∗,F ∗) is a regular and irreducible Dirichlet form
on L2(I∗,m∗). Particularly, (I∗,m∗,E ∗,F ∗) is a regular representation of (I,m,E ,F ).

Denote by X∗ the Hunt process associated with (E ∗,F ∗). It is a regularized Markov
process associated with (I, s,m) as defined in Section 3.3. Additionally, the essentially
exceptional set of X∗ is empty.

4.2. Unregularized Markov process. We now proceed to implement the second ap-
proach discussed earlier in this section, considering only the case where s is strictly
increasing for simplification. Under this default setting, Î can be expressed as follows:

Î = s(I) ∪ {s(x−) : x ∈ D−} ∪ {s(x+) : x ∈ D+}. (4.2)

Thus, I∗ can be treated as the union of I and another set {x− : x ∈ D−}∪{x+ : x ∈ D+}
of at most countably many additional points. Moreover, m∗|I = m and m∗(I∗ \ I) = 0.

We have already shown in Theorem 2.9 that (E ,F ) is a Dirichlet form on L2(I,m).
The following lemma is helpful in characterizing its regularity.

Lemma 4.3. Assume that s is strictly increasing. For α, β ∈ I \ D with α < β, there
exists a constant Cα,β, depending on α and β such that

sup
x∈[α,β]

|f(x)|2 ≤ Cα,βE1(f, f), f ∈ F . (4.3)

Proof. We start by utilizing the expression (2.6), which yields the inequality

|f(x)− f(y)|2 ≤ 2|s(y)− s(x)|E (f, f)

for any x, y ∈ I. Consequently, for any x, y ∈ [α, β], we have

f(x)2 ≤ 2f(y)2 + 2|f(x)− f(y)|2 ≤ 2f(y)2 + 4|s(β)− s(α)|E (f, f).

Hence, for any y ∈ [α, β],

sup
x∈[α,β]

f(x)2 ≤ 2f(y)2 + 4|s(β)− s(α)|E (f, f).

Integrating both sides of this inequality with respect to m over [α, β], we obtain (4.3). �

The result below demonstrates that the regularity of (E ,F ) is equivalent to the con-
tinuity of s.

Proposition 4.4. Assume that s is strictly increasing. Then (E ,F ) is regular on
L2(I,m) if and only if s is continuous.

Proof. If s is continuous, then (E ,F ) = (E ∗,F ∗), I = I∗ and m = m∗. According to
Theorems 3.1 and 4.2, (E ,F ) is regular on L2(I,m). To establish the converse, we argue
by contradiction. Assume that s is not continuous at x ∈ (l, r) while (E ,F ) is regular.
Then we can select a function f ∈ F that is not continuous at x, as well as a sequence
fn ∈ F ∩ Cc(I) such that E1(fn − f, fn − f) → 0. Consider α, β ∈ I \ D such that
α < x < β. By utilizing (4.3) for fn − f , we deduce that fn converges uniformly to f on
[α, β]. Consequently, f is continuous on [α, β], which contradicts the discontinuity of f
at x. The proof is now complete. �
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We are now ready to present another Markov process, which does not satisfy the strong
Markov property, associated with (E ,F ). The scheme considered below is adapted from
Schütze’s work [32].

The canonical regularized Markov process associated with (I, s,m) can be written as

X̂ =
{

Ω̂, Ĝ, Ĝt, X̂t, (P̂x̂)x̂∈Î

}
with the lifetime ζ̂, where (Ω̂, Ĝ) is the sample space, Ĝt is the filtration on the sample

space, P̂x̂ is the probability measure on (Ω̂, Ĝ) such that P̂x̂(X̂0 = x̂) = 1. Consider the

“inverse” map r : Î → I of s defined as

r(s(x)) := x for x ∈ I, r(s(x±)) := x for x ∈ D±.
From (4.2), it is clear that r is a well defined continuous map.

With X̂ and r in hand, let us now define

Ω̇ :=
{
ω ∈ Ω̂ : X̂0(ω) ∈ s(I)

}
∈ Ĝ0, Ġ := Ĝ ∩ Ω̇

and
Ġt := Ĝt ∩ Ω̇, Ẋt(ω) := r(X̂t(ω)), ω ∈ Ω̇,

Ṗx := P̂s(x)|Ω̇, x ∈ I, ζ̇(ω) := ζ̂(ω), ω ∈ Ω̇.

It is evident that (Ġt)t≥0 is a right continuous filtration on (Ω̇, Ġ), and (Ẋt)t≥0 is a family

of random variables on (Ω̇, Ġ) adapted to (Ġt)t≥0.

Theorem 4.5. Assume that s is strictly increasing but not continuous. Then the fol-
lowing hold:

(1) The collection

Ẋ = {Ω̇, Ġ, Ġt, Ẋt, (Ṗx)x∈I}
with the lifetime ζ̇ is an m-symmetric continuous Markov process on I.

(2) Ẋ does not have strong Markov property.

(3) The Dirichlet form of Ẋ on L2(I,m) is (E ,F ).

Proof. (1) Firstly, we note that for any A ∈ Ġ ⊂ Ĝ, Ṗx(A) = P̂s(x)(A) is Borel
measurable in x.

Secondly, let us prove that all the sample paths of Ẋ are continuous. The
right continuity follows from the right continuity of X̂ and the continuity of r.
If X̂t− = X̂t, then it is obvious that Ẋt− = Ẋt. If X̂t− 6= X̂t, then the skip-free

property of X̂ (see, e.g., [18,22]) implies that (X̂t−∧ X̂t, X̂t−∨ X̂t) = Ĵk for some

interval Ĵk in (2.3). It should be noted that r(âk) = r(b̂k). Therefore, we have

Ẋt− = Ẋt. Particularly, Ẋ is a continuous stochastic process.

Next, we turn to verify the Markov property of Ẋ. Let P̂t denote the transition
functions of X̂, i.e., P̂t(x̂, Γ̂) = P̂x̂(X̂t ∈ Γ̂) for x̂ ∈ Î and Γ̂ ∈ B(Î). According

to [22, Theorem 4.1], X̂ is actually a quasidiffusion. Hence, P̂t has a transition
density with respect to m̂, as mentioned in, e.g., [14]. Particularly,

P̂t(x̂, Î \ s(I)) = P̂x̂(X̂t ∈ Î \ s(I)) = 0. (4.4)

Define Ṗt(x,Γ) := Ṗx(Ẋt ∈ Γ) for t ≥ 0, x ∈ I and Γ ∈ B(I). By the definition

of Ẋ, we have Ṗt(x,Γ) = P̂s(x)(r(X̂t) ∈ Γ) = P̂s(x)(X̂t ∈ r−1Γ). Using (4.4), we
can obtain

Ṗt(x,Γ) = P̂s(x)

(
X̂t ∈ s(Γ)

)
= P̂t (s(x), s(Γ)) . (4.5)



MARKOV PROCESSES WITH DISCONTINUOUS SCALES 21

To prove the Markov property of Ẋ, it suffices to show that for Γ ∈ B(I) and

A ∈ Ġt ⊂ Ĝt,

Ṗx

(
Ẋt+s ∈ Γ;A

)
=

∫
A

Ṗs(Ẋt,Γ)dṖx. (4.6)

Indeed, by virtue of the Markov property of X̂, the left hand side of (4.6) can
be expressed as

P̂s(x)

(
X̂t+s ∈ r−1Γ;A

)
=

∫
A

P̂s(X̂t, r
−1Γ)dP̂s(x).

Using (4.4) and (4.5), we can deduce that Ṗx(Ẋt+s ∈ Γ;A) is equal to∫
A∩{X̂t∈s(I)}

P̂s(X̂t, s(Γ))dP̂s(x) =

∫
A

Ṗs(Ẋt,Γ)dṖx.

Therefore, (4.6) is established.

Fourthly, we derive the symmetry of Ẋ with respect to m. Note that (4.5)

provides the transition functions of Ẋ. Therefore, the symmetry of Ẋ can be
easily obtained by using the symmetry of X̂ with respect to m̂, (4.2) and m̂ =
m ◦ s−1.

(2) If this were not the case, then Ẋ would be a diffusion process on I that is
symmetric with respect to m. However, by [21, Theorem 3], the corresponding
Dirichlet form (E ,F ) on L2(I,m) must be regular. This contradicts the second
assertion of Proposition 4.4, since s is not continuous. Therefore, the strong
Markov property cannot hold for Ẋ.

(3) Since Ẋ is m-symmetric, it is associated with a Dirichlet form (Ė , Ḟ ) on L2(I,m).

It is worth noting that every f ∈ Ḟ is an m-equivalence class. Let f be a bounded
function in Ḟ , where we denote the Borel m-version of f by the same symbol.

Then, we define f̂ := f ◦ r ∈ B(Î) ∩ L2(Î , m̂). From (4.5), we observe that

Ṗtf(x) = P̂tf̂(s(x)), x ∈ I.

Note that m̂ = m ◦ s−1 implies that m̂(Î \ s(I)) = 0. Hence we can obtain that∫
Î

(f̂(x)− P̂tf̂(x))f̂(x)m̂(dx) =

∫
s(I)

(f̂(x)− P̂tf̂(x))f̂(x)m̂(dx)

=

∫
I

(f(x)− Ṗtf(x))f(x)m(dx).

(4.7)

By using [11, (1.3.17)], we obtain f̂ ∈ F̂ . Then, there exists an m̂-version

f̂1 ∈ Ŝ of f̂ , and Lemmas 2.6 and 2.8 imply that f1 := f̂1 ◦ s ∈ S . Since
m̂(Î \ s(I)) = 0, we conclude that f1 is an m-version of f . Hence, f ∈ F , which
means that f has an m-version f1 ∈ S ∩ L2(I,m) = F . Additionally, we can
use (4.7), [11, (1.3.17)], and (3.2) to obtain

Ė (f, f) = Ê (f̂ , f̂) = Ê (f̂1, f̂1) = E (f1, f1) = E (f, f).

Therefore, we have verified

Ḟb ⊂ Fb, Ė (f, f) = E (f, f), f ∈ Ḟb.

Similarly, one can prove the inverse inclusion Fb ⊂ Ḟb. Consequently, we can
conclude that (Ė , Ḟ ) = (E ,F ).

This completes the proof. �
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4.3. Ray-Knight compactification. Finally, we will demonstrate that the regularized
Markov process X∗ obtained in Theorem 4.2 corresponds to the canonical Ray-Knight
compactification of the unregularized process Ẋ. Appendix A provides a review of the
fundamental information pertaining to the Ray-Knight method. In particular, the term
“canonical Ray-Knight compactification” refers to the collection (F, Uα) that possesses
the properties outlined in Theorem A.11 for a given Markov resolvent on a compact
metric space.

We always assume that s is strictly increasing and l ∈ I. Making the latter assump-
tion allows us to focus on the right endpoint r, and the general cases can be treated
analogously. We denote the Markov resolvent of Ẋ on I∂ := I ∪ {∂} by (Ṙα)α>0. Here,
the cemetery ∂ is an isolated point that is attached to I if r ∈ I, and identified with r
if r /∈ I. It is evident that (I∂ , Ṙα) satisfies Hypothesis A.6 because Ẋ is a continuous

Markov process. Hence the Ray-Knight method applied to Ẋ.

4.3.1. Feller’s boundary classification. Now, let us classify the endpoints r for X∗ using
Feller’s terminology. Owing to connection ofX∗ to X̂, it suffices to define related concepts

in terms of X̂. For x ∈ (l̂, r̂), we define:

σ̂(x) :=

∫ x

0

m̂ ((0, y]) dy, λ̂(x) :=

∫
(0,x]

ym̂(dy).

Let σ̂(r̂) := limx→r̂ σ̂(x) and λ̂(r̂) := limx→r̂ λ̂(x). The following classification in Feller’s
sense is very well known.

Definition 4.6. The endpoint r̂ for X̂ is said to be

(1) regular , if σ̂(r̂) <∞, λ̂(r̂) <∞;

(2) an exit , if σ̂(r̂) <∞, λ̂(r̂) =∞;

(3) an entrance, if σ̂(r̂) =∞, λ̂(r̂) <∞;

(4) natural , if σ̂(r̂) = λ̂(r̂) =∞.

The regular endpoint r̂ is called reflecting or absorbing if r̂ ∈ Î or r̂ /∈ Î. Accordingly,
the endpoint r is called regular, reflecting, absorbing, an exit, an entrance or natural for
X∗ if so is r̂ for X̂.

Remark 4.7. The classification of the left endpoint l is analogous. The assumption l ∈ I
directly implies that l is reflecting for X∗.

The following lemma, originally derived by [10, Proposition 6.1], is crucial to our
investigation. While [10] mainly focuses on the case of regular diffusions, the same result
applies to quasidiffusions using the arguments presented in [10].

Lemma 4.8. Let (P̂t)t≥0 be the Markov semigroup of X̂. The following hold:

(1) If r is reflecting or an entrance, then (P̂t)t≥0 acts on C(s([l, r])) as a Feller
semigroup.

(2) If r is absorbing, an exit or natural, then (P̂t)t≥0 acts on C∞(Î) as a Feller
semigroup.

Note that s([l, r]) is compact, and s([l, r]) = Î∪{r̂}. The cemetery for X̂ is an isolated

point attached to s([l, r]) in the first assertion, while it is identified with r̂ in the second
assertion.

Remark 4.9. In [32, Theorem 3.2], Schütze identified the infinitesimal generator Ã of

an analogous quasidiffusion X̃ on s([l, r]). However, the quasidiffusion he considered is
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slightly different from the one that appeared in Lemma 4.8. The state space of X̃ always
includes the right endpoint r̂. In the cases where r̂ is an exit or a pure sojourn point (i.e.,

r̂ is regular and all functions f in the domain of Ã satisfy the lateral condition Ãf = 0),

the right endpoint r̂ functions as a trap point , which means that X̃ will forever remain
at r̂ after reaching it. However, in Lemma 4.8, if r̂ is an exit, it should be treated as
the cemetery for X̂ and is not part of the state space. Furthermore, the pure sojourn
case will not occur, and instead, r̂ may be absorbing if it is regular. In other words,
in both the exit and pure sojourn (correspondingly, absorbing) cases, X̂ is obtained by

terminating X̃ at its first time of hitting r̂ and then removing r̂ from the state space.

4.3.2. Canonical Ray-Knight compactification. If r is reflecting or an entrance, define

F := I∗ ∪ {r} ∪ {∂},

where the cemetery ∂ is an isolated point attached to the compact space Ī∗ := I∗ ∪ {r}.
In the case where r is absorbing, an exit or natural, alternatively define:

F := I∗ ∪ {∂},

where now the cemetery ∂ is identified with r (in Ī∗).
Let (R∗α)α>0 denote the Markov resolvent of X∗ on F. According to Lemma 4.8,

R∗α : C(F) → C(F) is the resolvent of a Feller semigroup, which corresponds to a Feller
process on F. When r is an entrance, this Feller process, when restricted to I∗∪{∂}, can
be identified as X∗, while X∗ does not provide any information on r. Although it is an
abuse of notation, we will still denote the Feller process on F associated with (R∗α)α>0

by X∗.

Theorem 4.10. The Feller process X∗ on F is the canonical Ray-Knight compactifi-
cation of Ẋ in the sense that (F, R∗α) is the canonical Ray-Knight compactification of

(I∂ , Ṙα).

Proof. We need to verify the conditions in Theorem A.12 for (F, Uα) := (F, R∗α) and

(E,Rα) := (I∂ , Ṙα).
It is evident that the first condition in Theorem A.12 holds. Moreover, using (4.5),

we can easily derive the fourth condition in Theorem A.12.
We will now demonstrate the second condition in Theorem A.12. Let

G := {Ṙαf : α > 0, f ∈ C(I∂)}.

It should be observed that each f ∈ C(I∂) can be extended to a unique function f∗ ∈
C(F). Moreover, (4.5) implies

Rαf(x) = R∗αf
∗(x), ∀x ∈ I∂ .

Since R∗αf
∗ ∈ C(F), every element of G admits an extension in C(F). This verifies the

second condition of Theorem A.12.
To establish the third condition of Theorem A.12, it suffices to show that the family

of functions

G∗ := {R∗αf∗ : α > 0, f ∈ C(I∂)}
separates points of F, where f∗ ∈ C(F) is the extension of f . For x, y ∈ I∂ with x 6= y,
let x∗, y∗ ∈ F with x∗ ∈ {x−, x, x+} and y∗ ∈ {y−, y, y+}. Choose f ∈ C(I∂) such that
f(x) 6= f(y). Since R∗α corresponds to a Feller semigroup on C(F), we have

lim
α↑∞

αR∗αf
∗(x∗) = f(x) 6= f(y) = lim

α↑∞
αR∗αf

∗(y∗).
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Particularly, G∗ separates x∗ and y∗. For x∗1, x
∗
2 ∈ F with x∗1 6= x∗2 and x∗1, x

∗
2 ∈

{x−, x, x+} for some x ∈ I. Consider a positive function f ∈ C(I∂) with supp[f ] ⊂ (x, r).

Note that the resolvent R̂α of the quasidiffusion X̂ has a resolvent density ĝα(x̂, ŷ) =
ûα(x̂)v̂α(ŷ) for x̂ ≤ ŷ with respect to m̂, where ûα (resp., v̂α) is a certain positive,
continuous and strictly increasing (resp., decreasing) solution of the equation

1

2

d2F̂

dm̂dx̂
= αF̂ ;

see, e.g., [10]. Since supp[f ] ⊂ (x, r), it follows that for x∗i , i = 1, 2,

R∗αf
∗(x∗i ) = ûα(s∗(x∗i ))

∫
I∗
v̂α(s∗(y∗))f∗(y∗)m∗(dy∗).

Note that the integration on the right hand side is positive. Since ûα is strictly in-
creasing, x∗1 6= x∗2 implies ûα(s∗(x∗1)) 6= ûα(s∗(x∗2)). Therefore, R∗αf

∗(x∗1) 6= R∗αf
∗(x∗2).

In particular, G∗ also separates x∗1 and x∗2. The third condition of Theorem A.12 is
satisfied. �

5. Examples

In this section, we present several examples of classical Markov processes that can be
regarded as either regularized or unregularized Markov processes associated with a certain
triple (I, s,m). All these triples satisfy Hypothesis 2.1. To simplify the presentation, we
will no longer restate this point for each individual example. In some cases, the origin 0
does not fulfill all the necessary conditions as stated in Section 2.1. However, it is always
possible to substitute it with another point.

5.1. Snapping out Brownian motion. Consider I = R, m as the Lebesgue measure,
and

s(x) =

{
x, x < 0,

x+ 2/κ, x ≥ 0,

where κ > 0 is a constant. Then, it is easy to verify that I∗ = (−∞, 0−] ∪ [0+,∞) and

F ∗ =
{
f ∈ L2(R) : f |(0,∞) ∈ H1((0,∞)), f |(−∞,0) ∈ H1((−∞, 0))

}
,

E ∗(f, f) =
1

2

∫
R\{0}

f ′(x)2dx+
κ

4
(f(0+)− f(0−))2, f ∈ F ∗.

Note that (E ∗,F ∗) is a regular Dirichlet form on L2(I∗), and its associated Hunt process
X∗ is known as the snapping out Brownian motion with parameter κ, which has been
investigated in, e.g., [20]. This process moves like a Brownian motion until it reaches 0±,
but when it reaches 0±, it is reborn with equal probability of choosing either 0+ or 0−.
In a stricter sense, this “rebirth” actually occurs as a jump between 0− and 0+.

However, (E ∗,F ∗) is not regular on L2(R). According to Theorem 4.5, there exists

a continuous Markov process Ẋ on R whose Dirichlet form on L2(R) is (E ∗,F ∗). It
can be obtained by merging the jumps of the trajectories of X∗. Let us provide a brief
description of this process. Prior to hitting 0, Ẋ behaves as a Brownian motion. The
excursions of Ẋ at 0 can be characterized as follows: Let {τn : n ≥ 1} denote the

successive jump times of X∗. These times can also be considered as random times of Ẋ.
Let τ0 := inf{t > 0 : Ẋt = 0}. Then, for k ∈ N,

(1) When Ẋ0 > 0, Ẋt is on the right (resp., left) axis for t within the excursion
intervals contained in (τ2k, τ2k+1) (resp., (τ2k+1, τ2k+2)).
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(2) When Ẋ0 < 0, Ẋt is on the left (resp., right) axis for t within the excursion
intervals contained in (τ2k, τ2k+1) (resp., (τ2k+1, τ2k+2)).

(3) When Ẋ0 = 0, both cases occur with equal probability.

In particular, the strong Markov property fails for Ẋ at τ0, because the behaviour of Ẋ
after τ0 depends on its position at time t = 0.

5.2. Random walk in one dimension. Let p, q ∈ N ∪ {∞} and consider a sequence
of constants indexed by Z−p,q := {−p, 1− p, · · · ,−1, 0, 1, · · · , q} ∩ Z:

c−p < · · · < c−1 < c0 < c1 < · · · < cq.

Let I = 〈−p, q + 1〉, where each endpoint of I belongs to I if and only if it is finite.
Additionally, define s as the step function s(x) = cn for x ∈ [n, n + 1) and n ∈ Z−p,q.
Finally, let m be an arbitrary fully supported Radon measure on I.

In the present case, the triple (I∗, s∗,m∗) defined in Section 4.1 is as follows: I∗ is
identified with the discrete space Z−p,q; s∗(n) = cn for n ∈ I∗; m∗({n}) = m([n, n+ 1))
for n ∈ Z with −p ≤ n ≤ q − 1, and m∗({q}) = m([q, q + 1]) whenever q ∈ N. Define the
parameters

µn,n+1 :=
1

2(cn+1 − cn)
, n ∈ Z ∩ [−p, q − 1], µ−p−1,−p = µq,q+1 = 0

and

µn := µn−1,n + µn,n+1, n ∈ Z−p,q.
Then the Dirichlet form (E ∗,F ∗) on L2(I∗,m∗) in Theorem 4.2 is

F ∗ = {f∗ ∈ L2(I∗,m∗) : E ∗(f∗, f∗) <∞, and additionally

f∗(%∗) = 0 if an endpoint %∗ of I∗ satisfies |%∗| =∞ and lim
n→%∗

|cn| <∞},

E ∗(f∗, f∗) =
∑

−p≤n≤q−1

µn,n+1(f∗(n+ 1)− f∗(n))2, f∗ ∈ F ∗.

(5.1)
The regularized Markov process X∗ is a continuous time random walk on I∗. For each
n ∈ I∗, the walker X∗ waits at n for an exponential time with mean m∗({n})/µn and then
jumps to n−1 or n+1 with probabilities µn−1,n/µn or µn,n+1/µn. When m∗({n}) = µn,
X∗ is said to be in constant speed . This means that the holding times at each point
n ∈ I∗ are independent and identically distributed; see, e.g., [19, §2.1].

Particularly, when p = q = ∞, cn = n for n ∈ Z, and m|R is the Lebesgue measure,
X∗ corresponds to the well-studied continuous time simple random walk. Also, minimal
birth and death processes provide examples of Dirichlet forms described by (5.1); see,
e.g., [23].

5.3. Fukushima subspaces of Brownian motion. Let K ⊂ [0, 1] be a generalized
Cantor set (see, e.g., [6, page 39]) with a positive Lebesgue measure. Write [0, 1] \K as
a disjoint union of open intervals:

[0, 1] \K =
⋃
n≥1

(cn, dn). (5.2)

Consider I = [0, 1], m(dx) = 1K(x)dx and s(x) = x for x ∈ K and s(x) := cn for
x ∈ (cn, dn) and n ≥ 1.

The first transformation in Section 4.1, the completion with respect to the metric
ρ, divides each dn into dn− and dn+, and then the darning transformation collapses
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[cn, dn−] into an abstract point p∗n. By regarding the points p∗n and dn+ as cn and dn
respectively, one can identify (I∗, s∗,m∗) with (Î , ŝ, m̂):

I∗ = Î = K, s∗(x) = ŝ(x) = x, (x ∈ K) m∗ = m̂ = m.

The Dirichlet form (E ∗,F ∗) in Theorem 4.2 is expressed as

F ∗ = L2(K,m) ∩H1
e,0([0, 1])|K ,

E ∗(f∗, f∗) =
1

2

∫
K

(
df∗

dx

)2

dx+
1

2

∑
n≥1

(f∗(cn)− f∗(dn))
2

|dn − cn|
, f∗ ∈ F ∗.

Its associated Hunt process X∗ is a time-changed Brownian motion on K with speed
measure m∗. This process has been utilized in [24] to study the Fukushima subspaces of
one-dimensional Brownian motion.

5.4. Brownian motion on Cantor set. Let K ⊂ [0, 1] be a generalized Cantor set as
in Section 5.3, without the assumption that it has positive Lebesgue measure. Define
Km := m+K = {m+ x : x ∈ K} for m ∈ Z, and let

K :=
⋃
m∈Z

Km.

Write [0, 1] \K as in (5.2), and define cmn := m+ cn, d
m
n := m+ dn for m ∈ Z. Consider

I = R and the following:

(a) s(x) := x for x ∈ K and s(x) := cmn for x ∈ (cmn , d
m
n ) and n ≥ 1,m ∈ Z;

(b) m(dx) = 1K(x)dx+
∑
n≥1,m∈Z |dmn − cmn | ·

(
δcmn + δdmn

)
/2, where δcmn and δdmn are

Dirac measures at cmn and dmn , respectively.

Following the discussion of Section 5.3, we can make the following identification:

I∗ = K, s∗(x) = x, x ∈ K, m∗ = m.

The Dirichlet form (E ∗,F ∗) on L2(I∗,m∗) is given by

F ∗ = L2(K,m) ∩H1
e,0(R)|K,

E ∗(f∗, f∗) =
1

2

∫
K

(
df∗

dx

)2

dx+
1

2

∑
n≥1,m∈Z

(f∗(cmn )− f∗(dmn ))
2

|dmn − cmn |
, f∗ ∈ F ∗.

In particular, when K has zero Lebesgue measure, such as the standard Cantor set, the
strongly local part of E ∗(f∗, f∗) vanishes.

The regularized Markov process X∗ is known as a Brownian motion on Cantor set ,
as mentioned in, e.g., [1]. It is claimed in [1] that X∗ is identified with the unique (in
distribution) skip-free càdlàg process ξ = (ξt)t≥0 (not necessarily a Markov process) on
K such that both ξ and (ξ2

t − t)t≥0 are martingales.

Appendix A. Ray processes and Ray-Knight compactification

A.1. Ray resolvent and Ray semigroup. Let F be a compact metric space with the
Borel measurable σ-algebra B(F). Additionally, let (Uα)α>0 be a Markov resolvent on
F, meaning that for each x ∈ F and α > 0, αUα(x, ·) is a probability measure on F and
(Uα)α>0 satisfies the resolvent equation

Uα − Uβ = (β − α)UαUβ , ∀α, β > 0.

Define for α > 0,

Sα := {f ∈ C(F) : f ≥ 0, βUα+βf ≤ f, ∀β ≥ 0},
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which is known as the class of continuous α-supermedian functions.

Definition A.1. A Markov resolvent (Uα)α>0 on F is called a Ray resolvent if

(i) For each α > 0 and f ∈ C(F), Uαf ∈ C(F);
(ii) S∞ :=

⋃
α>0 Sα separates points of F, i.e., for any x, y ∈ F with x 6= y, there

exists f ∈ S∞ such that f(x) 6= f(y).

Remark A.2. In some literature, the second condition in this definition is replaced by a
stronger requirement: S1 separates points of F; see [4, §8.1].

The analytic part of Ray’s theorem (see [28] and also [31]) yields a Markov semigroup
(Pt)t≥0 on F, which is a family of kernels on (F,B(F)) such that for x ∈ F and t ≥ 0,
Pt(x, ·) is a probability measure on F and Pt+s = PtPs for any t, s ≥ 0. It should be
noted that in this definition of Markov semigroup, the normal property P0(x, ·) = δx for
all x ∈ F is not assumed. When (Pt)t≥0 is additionally normal, it is called a normal
Markov semigroup.

Theorem A.3 (Ray). Let (Uα)α>0 be a Ray resolvent on F. Then, there exists a unique
Markov semigroup (Pt)t≥0 such that

(i) For each f ∈ C(F) and x ∈ F, the function t 7→ Ptf(x) is right continuous on
[0,∞);

(ii) For each α > 0 and f ∈ C(F), Uαf =
∫∞

0
e−αtPtfdt.

Furthermore, the set

D := {x ∈ F : αUαf(x)→ f(x) (α ↑ ∞),∀f ∈ C(F)} = {x ∈ F : P0(x, ·) = δx} (A.1)

is Borel measurable.

The Markov semigroup in this theorem is referred to as the Ray semigroup of (Uα)α>0,
and the set D defined as (A.1) is known as the set of non-branching points. Accordingly,
B := F \D is called the set of branching points.

A Markov semigroup (Pt)t≥0 on F is referred to as a Feller semigroup if it is normal
and acts as a strongly continuous contraction semigroup on C(F). It is widely known that
a Feller semigroup is always a Ray semigroup. However, the converse is not necessarily
true. Nevertheless, the following result holds (see [31, III. (37.1)]).

Proposition A.4. The Ray semigroup (Pt)t≥0 is a Feller semigroup if and only if the
set B of branching points is empty.

A.2. Ray process. The probabilistic part of Ray’s theorem introduces a Ray process
associated with (Uα)α>0. We outline a standard method described in [12]. Specifically,
define the family of sample paths as

Ω := {ω : [0,∞)→ F is càdlàg and ω(t) ∈ D for any t ≥ 0}

and Xt(ω) := ω(t) for t ≥ 0 and ω ∈ Ω. Let F0 := σ{Xt : t ≥ 0} be the σ-algebra on Ω
generated by X := (Xt)t≥0. In order to rigorously define a (strong) Markov process, it
is necessary to introduce a natural filtration as well as its augmentation. For the sake of
brevity, we omit these details, as they are referred to in, e.g., [33].

Theorem A.5 (Ray). Let (Uα)α>0 be a Ray resolvent on F and (Pt)t≥0 be its Ray
semigroup. For any probability measure µ on (F,B(F)), there exists a unique probabil-
ity measure Pµ on (Ω,F0) under which X is a càdlàg strong Markov process with the
transition semigroup (Pt)t≥0 and the initial distribution µP0.
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The Markov process X described in this theorem is called a Ray process. Its initial
distribution, which may not equal µ, is a probability measure supported on D, i.e.,
µP0(B) = 0. Moreover, Xt takes values in D (while Xt− may take values in B), and the
restriction of X to D constitutes a Borel right process; see [33, Chapter 1, Theorem 9.13].
For further properties of Ray processes, we refer readers to [4, 12,31,33].

A.3. Ray-Knight compactification. To simplify the discussion, we begin with a com-
pact metric space E equipped with the metric d. (In general, for a locally compact space
E having a countable basis, we adjoin an extra point ∂ to obtain E∂ = E ∪ {∂}, which
subsequently becomes the Alexandroff compactification of E. Then E∂ serves as such a
compact metric space.) Denote by Bb(E) (resp., B+

b (E)) the family of all bounded (resp.,
positive bounded) Borel measurable functions on E. The notation B(E) also stands for
the Borel σ-algebra on E. For any f ∈ Bb(E), we define ‖f‖∞ := supx∈E |f(x)|.

Consider a Markov resolvent (Rα)α>0 on (E,B(E)), which satisfies the following hy-
pothesis:

Hypothesis A.6. B(E) ⊂ σ{Rαf : α > 0, f ∈ C(E)}, the σ-algebra on E generated by
the family {Rαf : α > 0, f ∈ C(E)}.

Remark A.7. The importance of this hypothesis lies in the fact that it implies that
{Rαf : α > 0, f ∈ C(E)} separates the points of E. The hypothesis is automatically
satisfied when the following condition holds:

αRαf(x)→ f(x) as α→∞, ∀f ∈ C(E), x ∈ E. (A.2)

Specifically, (A.2) is true if, for example, (Rα) is the resolvent of a normal Markov
semigroup (Pt) on (E,B(E)) such that for any f ∈ C(E) and x ∈ E, the function
t 7→ Ptf(x) is right continuous on [0,∞).

Apart from a Markov resolvent (Rα)α>0 on E, another crucial ingredient for the Ray-
Knight compactification is the following family of functions.

Definition A.8. A family C ⊂ C(E)∩B+(E) is called a pre-Ray class, if it is countable,
1E ∈ C, and the linear span of C is uniformly dense in C(E).

Remark A.9. Since C(E) is separable, there always exists such a family C. For example,
consider {fn : n ≥ 1} ⊂ C(E), a countable set of functions that is dense in C(E). Then,
we can define C := {f+

n , f
−
n : n ≥ 1} ∪ {1E} as a pre-Ray class, where f+

n (respectively,
f−n ) represents fn ∨ 0 (respectively, −(fn ∧ 0)).

Denote by Q (resp., Q+, Q++) the set of rational (resp., positive rational, strictly
positive rational) numbers. A Q+-cone Y ⊂ B+

b (E) is defined as a set that satisfies

af + bg ∈ Y for any a, b ∈ Q+ and f, g ∈ Y. Given a Q+-cone Y ⊂ B+
b (E), set∧

(Y) := {k1 ∧ · · · ∧ kn : n ≥ 1, k1, · · · , kn ∈ Y},

U(Y) := {Rα1
k1 + · · ·+Rαn

kn : n ≥ 1, αi ∈ Q++, ki ∈ Y}.

Both operations of
∧

and U preserve the property of being a Q+-cone.
Consider a pre-Ray class C. Denote by H the Q+-cone generated by C, i.e., the set

of all Q+-linear combinations of functions in C. Let R0 := U(H), and for n ≥ 1, let
Rn :=

∧
(Rn−1 + U(Rn−1). Finally, we define

R :=
⋃
n≥0

Rn,
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which is called the rational Ray cone generated by (Rα) and C. The following lemma,
originally due to Knight [15], is crucial to the Ray-Knight method; see also [12, Propo-
sition (10.1)] and [33, Proposition (17.6)].

Lemma A.10. The rational Ray cone R ⊂ B+
b (E) is countable, inf-stable (namely, if

f, g ∈ R, then f∧g ∈ R), contains the positive rational constant functions, and separates
the points of E.

Write R = {gn : n ≥ 1}. Define a metric ρ on E as

ρ(x, y) :=
∑
n≥1

2−n‖gn‖−1
∞ |gn(x)− gn(y)|, x, y ∈ E.

The map

Ψ : E → K :=

∞∏
n=1

[0, ‖gn‖∞], x 7→ (gn(x))n≥1 (A.3)

is a Borel measurable injection; we refer readers to [12, Proposition (11.3)] for its Borel
measurability. Since the product topology of K is generated by the metric ρ′(a, b) :=∑
n≥1 2−n‖gn‖−1

∞ |an − bn| for a = (an)n≥1 and b = (bn)n≥1, Ψ is an isometry of (E, ρ)

to (K, ρ′). It follows that the completion (Ē, ρ̄) of (E, ρ) is compact.
Let Cρ(E) denote the space of ρ-uniformly continuous functions on E. In other words,

Cρ(E) = {f |E : f ∈ C(Ē)}. Note that the topology generated by ρ is not necessarily
compatible with the original topology of E. Following the lines of the proof in [33,
Proposition (17.8)], it can be shown that Cρ(E) is the uniform closure of R−R, and for
all α > 0,

Rα(Cρ(E)) ⊂ Cρ(E), Rα(C(E)) ⊂ Cρ(E).

Hence, for every α > 0 and f̄ ∈ C(Ē), f := f̄ |E ∈ Cρ(E) and Rαf ∈ Cρ(E) admits a

unique extension Rαf ∈ C(Ē). Therefore, the maps R̄α : C(Ē)→ C(Ē) defined by

R̄αf̄ := Rαf, f̄ ∈ C(Ē)

determine a Markov resolvent on (Ē,B(Ē)), also denoted by (R̄α)α>0. According to [33,
Proposition (17.14)], for x ∈ E, R̄α(x, ·) is carried by E ∈ B(Ē) and its restriction to E
is equal to Rα(x, ·). Additionally, R̄α is a Ray resolvent on Ē. The collection (Ē, ρ̄, R̄α)
is called a Ray-Knight compactification (or Ray-Knight completion) of (E, d,Rα). It
depends not only on E, d (to be more exact, the topology of E) and Rα, but also on the
choice of pre-Ray class C.

The following theorem summarizes the Ray-Knight method for a Markov resolvent.
For a detailed proof and additional information, please refer to [33, §17] and [12, §10-11].

Theorem A.11 (Ray-Knight compactification). Assuming that Hypothesis A.6 holds,
let C be a pre-Ray class and (Ē, ρ̄, R̄α) be the Ray-Knight compactification of (E, d,Rα)
relative to C. Then the following statements hold:

(i) E ∈ B(Ē) is dense in Ē with respect to the metric ρ̄, and B(E) = {A ∩ E : A ∈
B(Ē)};

(ii) Each f ∈ R can be extended to a function f̄ ∈ C(Ē);
(iii) R−R := {f̄ − ḡ : f, g ∈ R} is dense in C(Ē);
(iv) R̄α is a Ray resolvent on Ē, and R̄α(x,A) = Rα(x,A) for any α > 0, x ∈ E and

A ∈ B(E).
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A.4. Uniqueness of Ray-Knight compactifications. In general, Ray-Knight com-
pactifications lack uniqueness as they depend on the choice of pre-Ray class C. However,
in what follows, we consider a specific case in which the Ray-Knight compactifications
are unique up to homeomorphism.

Theorem A.12. Let (E, d,Rα) be as described in Theorem A.11. Assume that F is a
compact metric space equipped with the metric d, and let (Uα)α>0 be a Ray resolvent on
F such that

(1) E ∈ B(F) is dense in F with respect to d, and B(E) = {A ∩ E : A ∈ B(F)};
(2) For f ∈ C(E) and α > 0, Rαf has a unique extension Rαf

d ∈ C(F);

(3) {Rαf
d

: α > 0, f ∈ C(E)} separates the points of F;
(4) Uα(x,A) = Rα(x,A) for α > 0, x ∈ E and A ∈ B(E).

Then, the Ray-Knight compactifications of (E, d,Rα) are unique in the following sense:
For every Ray-Knight compactification (Ē, ρ̄, R̄α) corresponding to a certain pre-Ray class
C, there exists a homoemorphism ϕ : Ē → F such that

(i) ϕ(x) = x for x ∈ E;
(ii) R̄α(x,A) = Uα(ϕ(x), ϕ(A)) for any α > 0, x ∈ Ē and A ∈ B(Ē).

Proof. Let R = {gn : n ≥ 1} be the rational Ray cone generated by Rα and C, and let
Ψ be the injection defined as (A.3). Then its extension Ψ̄ to Ē

Ψ̄ : Ē → Ψ(E) ⊂ K, x 7→ (ḡn(x))n≥1

is a homoemorphism, where Ψ(E) is the closure of Ψ(E) in K and ḡn is the continuous
extension of gn to Ē.

Denote by Cd(E) the family of all d-uniformly continuous function on E, i.e., Cd(E) =
{g|E : g ∈ C(F)}. The second condition on (F,d, Uα) implies Rα(C(E)) ⊂ Cd(E), and
the fourth implies Rα(Cd(E)) ⊂ Cd(E). Then, by recursion, we obtain thatRn ⊂ Cd(E)
for any n ≥ 0, and hence R ⊂ Cd(E). Let g̃n be the continuous extension of gn to F. We
argue by contradiction that {g̃n : n ≥ 1} separates the points of F. Suppose x, y ∈ F with
x 6= y such that g̃n(x) = g̃n(y) for all n ≥ 1. Using the third condition on (F,d, Uα), we
take a function g = Rαf with f ∈ C(E) such that g̃(x) 6= g̃(y), where g̃ is the continuous
extension of g to F. Since Rαf ∈ Cρ(E), g also extends continuously to Ē as ḡ. Applying
(iii) of Theorem A.11 with ε := |g̃(x)− g̃(y)|, we have

sup
z∈Ē
|(ḡn(z)− ḡm(z))− ḡ(z)| < ε/2

for some n and m. Put h := gn − gm, whose continuous extensions to Ē and F are
denoted by h̄ and h̃, respectively. Then h̃(x) = h̃(y). Note that E is dense in both Ē
and F. In particular,

sup
z∈F
|h̃(z)− g̃(z)| = sup

z∈E
|h(z)− g(z)| = sup

z∈Ē
|h̄(z)− ḡ(z)| < ε/2.

As a result, ε = |g̃(x) − g̃(y)| ≤ |g̃(x) − h̃(x)| + |h̃(x) − h̃(y)| + |h̃(y) − g̃(y)| < ε, which
leads to a contradiction.

Note that supx∈F |g̃n(x)| = ‖gn‖∞. Define a map

Ψ̃ : F→ K, x 7→ (g̃n(x))n≥1.

Since {g̃n : n ≥ 1} separates the points of F, it follows that Ψ̃ is injective. Because a
continuous bijection from a compact space into a Hausdorff space is homeomorphic (see,

e.g., [6, Proposition 4.28]), Ψ̃ is a homeomorphism between F and Ψ̃(F) (as a subspace
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of K). Considering Ψ̃|E = Ψ̄|E = Ψ and that E is dense in both Ē and F, we have

Ψ(E) = Ψ̃(F). Particularly, ϕ := Ψ̃−1 ◦ Ψ̄ : Ē → F is a homeomorphism such that
ϕ(x) = x for x ∈ E.

Finally, we prove the second condition for ϕ. Note that R̃ − R̃ := {g̃n − g̃m : n,m ≥
1} ⊂ C(F) is inf-stable, contains the positive rational constant functions, and separates
the points of F. Hence, by the Stone-Weierstrass theorem, it is dense in C(F). Recall

that R−R is dense in C(Ē). For the extension g̃ ∈ R̃ of g ∈ R, we have ḡ = g̃ ◦ ϕ ∈ R̄
and

Uαg̃ = Rαg
d

= (Rαg) ◦ ϕ−1 = (R̄αḡ) ◦ ϕ−1.

Therefore, we can eventually arrive at R̄α(·, ·) = Uα(ϕ(·), ϕ(·)). This completes the
proof. �

The collection (F,d, Uα) in Theorem A.11 deserves a name, and we call it the canonical
Ray-Knight compactification of (E, d,Rα). If there is no ambiguity, we will omit the
metric in these triplets. Then the pair (F, Uα) will be referred to as the canonical Ray-
Knight compactification of (E,Rα).

Acknowledgment. The author would like to thank Professor Jiangang Ying for sug-
gesting the study of the regular representations of (E ,F ). He would also like to thank
Professor Patrick Fitzsimmons from the University of California, San Diego, whose in-
sightful remarks led to a deep study of Ray-Knight compactification.

The author would like to express appreciation for the thorough review conducted by an
anonymous reviewer. His/her meticulous examination of the manuscript led to significant
improvements through the identification and clarification of various issues. Particularly,
the reviewer drew attention to an error in Theorem 3.6 of the previous manuscript con-
cerning the uniqueness of the mapping j′ and provided a simple counterexample. This
counterexample is presented in Remark 3.7.

References

[1] S. Bhamidi, S. N. Evans, R. Peled, and P. Ralph, Brownian motion on disconnected sets, basic

hypergeometric functions, and some continued fractions of Ramanujan, in Probability and statistics:

essays in honor of David A. Freedman, Inst. Math. Statist., Beachwood, OH, 2008, pp. 42–75.
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