BETWEEN RAMSEY AND MEASURABLE CARDINALS
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ABSTRACT. We study several intertwined hierarchies between k-Ramsey cardinals and
measurable cardinals to illuminate the structure of the large cardinal hierarchy in this
region. In particular, we study baby versions of measurability introduced by Bovykin and
McKenzie and some variants by locating these notions in the large cardinal hierarchy and
providing characterisations via filter games. As an application, we determine the theory
of the universe up to a measurable cardinal.
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1. INTRODUCTION

Measurable cardinals and most stronger large cardinals are defined by the existence of ele-
mentary embeddings j : V — M from the universe V into an inner model M with that cardinal
as the critical point. Stronger large cardinal axioms impose additional assumptions on the
target model M that allow it to capture more and more sets from V. Weakly compact and
many other smaller large cardinals are defined via combinatorial properties, often involving
existence of large homogeneous sets for colorings. But almost all of them also have elementary
embedding characterizations that, like the larger large cardinals, follow prescribed patterns as
consistency strength grows. These smaller large cardinals k are characterized by elementary
embeddings of models (M, €) = ZFC™ of size x, most often transitive, with critical point &,
and usually, but not always, with well-founded targets. ZFC™ is the theory ZFC with the
powerset axiom removed, the collection scheme in place of the replacement scheme, and the
version of the axiom of choice which states that every set can be well-ordered.’ In many cases,
the existence of these embeddings can be equivalently expressed in terms of the existence of
certain filters on the subsets of x contained in M.
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Suppose (M, €) = ZFC™ is a transitive model of size k with kK € M (we will give precise
definitions and drop the transitivity requirement in the next section). We call such structures
weak k-models. We will call a filter U on the subsets of x of a weak k-model M an M -ultrafilter
if the structure (M, €, U), together with a predicate for U, satisfies that U is a uniform, normal
ultrafilter on k. What this says is that U is an ultrafilter on the subsets of s that live in M and
if a k-length sequence of elements of U is an element of M, then its diagonal intersection is in
U. Lo$’ theorem holds for ultrapowers by an M-ultrafilter, but the ultrapower need not be well-
founded. Note that the filter U may not be countably complete for sequences outside of M. The
M-ultrafilter U is, in most interesting cases, external to M and even though (M, €) = ZFC™,
separation and replacement can fail completely in the structure (M, €,U) once we let M know
about U. In the same way that making the inner model M closer to V in the characterizations
of larger large cardinals increases strength, for the smaller large cardinals, we increase strength
by making M be more compatible with U, which amounts to M being more correct about the
properties of U or to having more of the ZFC™ axioms in the structure (M, €, U).

Let’s look at some examples. A cardinal x is weakly compact if and only if it is inaccessible
and every A C k is an element of a weak k-model M for which there is an M-ultrafilter
with a well-founded ultrapower. It turns out that this is equivalent to the a priori stronger
assertion that every A C & is an element of a weak k-model for which there is a (externally)
countably complete M-ultrafilter U (in particular, the ultrapower is well-founded). A cardinal
K is l-iterable if every A C k is an element of a weak k-model M for which there is an M-
ultrafilter U such that (M, €,U) satisfies Yo-separation and the ultrapower is well-founded
[GW11, Definition 2.11]. The 1-iterable cardinals are stronger than ineffable cardinals, and
therefore much stronger than weakly compact cardinals. They are however still compatible with
L. Thus, the additional requirement that the structure (M, €,U) satisfies Xo-separation pushes
up the consistency strength. A cardinal x is Ramsey if and only if every A C & is an element
of a weak k-model M for which there is an M-ultrafilter U such that (M, €,U) satisfies 3o-
separation and which is (externally) countably complete [Mit79, Theorem 3]. Ramsey cardinals
sit much higher in the hierarchy than 1-iterable cardinals, they cannot exist in L. Thus,
in particular, if U is an M-ultrafilter and the structure (M, €,U) is required to satisfy Xo-
separation, then the requirement that U is countably complete is much stronger than the
requirement that it produces a well-founded ultrapower.

In this article, motivated by the work of Bovykin and McKenzie [BM], we consider a hierarchy
of large cardinal notions characterized by the existence, for weak k-models M, of M-ultrafilters
U such that the structure (M, €,U) satisfies fragments up to full ZFC™. Following Bovykin
and McKenzie, we call such cardinals n-baby measurable where the fragment is ZFC,; (the
separation and collection schemes are restricted to ¥,-formulas). Baby measurable cardinals
and some variants were introduced by Bovykin and McKenzie in [BM, Definition 4.2] and used
to obtain the following application to the theory NF'UM. This theory is a natural strengthening
of NFU due to Holmes (see [BM, Section 2.2]) that aims to facilitate mathematics in NFU, the
latter being a variant of Quine’s New Foundations with Urelements introduced by Jensen.

Theorem 1.1 (Bovykin, McKenzie [BM, Section 4]). The following theories are equiconsis-
tent.?

(1) ZFC together with the scheme consisting of the assertions for every n € w:

“There exists an n-baby measurable cardinal k such that Vi, <x,, V.”
(2) NFUM

We collect facts about ultrafilters and large cardinals in Section 2 and study structures
consisting of models with ultrafilters satisfying fragments of ZFC™ in Section 3. The new large
cardinals notions are introduced in Section 4. We show in Section 5 that increasing levels
of collection and separation for the structures (M, €,U) increase the large cardinal strength.
For example, adding even Yp-replacement to the characterization of 1-iterable cardinals pushes
consistency strength well beyond a Ramsey cardinal, and hence beyond L. We then provide a
fine analysis of the resulting hierarchies. Surprisingly, the closure of the models does not play
a role when working solely with fragments of collection. However, closure conditions do induce

2Note that their notion of n-baby measurable cardinal in [BM, Definition 4.2] is slightly different from
ours in Definition 4.1 (3), but the theorem holds for our notion as well by Theorem 9.1.
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a strict hierarchy for the setting of ZFC,, with both the collection and separation schemes
restricted to X,-formulas. This is shown in Section 6 with the help of filter games resembling
those introduced by Holy and the second-listed author [HS18, Section 5]. We thus arrive at
similar patterns of large cardinal notions as the one around strongly Ramsey and a-Ramsey

cardinals.
(k,n)-baby measurable Kk-baby measurable
n-baby measurable baby measurable
(v, n)-baby measurable a-baby measurable

GVcakly n-baby mcasurab19 GVcakly baby mcasurab19

strongly Ramsey

FIGURE 1. Patterns in analogy with a-Ramsey cardinals. Solid arrows denote
direct implications, dotted arrows implications in consistency strength.

We show that some of these new large cardinal notions are robust under forcing in Section
8. Finally, we will see that these notions are naturally connected to models of Kelley-Morse set
theory in which Ord is measurable and help us to understand the structure of these second-
order models in Section 9. In particular, we apply the above methods to show that the theory
of structures of the form VM, where M is a model of ZFC~ or ZFC where & is measurable, is
axiomatizable by the existence of large cardinals similar to the ones above. These results shed
light on the large cardinal hierarchy below measurable cardinals and provide a blueprint how
to approximate a large cardinal notion from below by a natural hierarchy.

2. PRELIMINARIES

Given a set X, when we say that X is a model of set theory, we will tacitly assume that the
membership relation is the actual membership € restricted to X, so that X is really the model
(X, e).

Definition 2.1. Suppose that k is an inaccessible cardinal.
e A weak k-model is a transitive set M = ZFC™ of size k with V,; € M.
o A k-model is a weak k-model such that M <% C M.
e A basic weak k-model is a (not necessarily transitive) set M |= ZFC™ of size k such
that M <s, V and V,, U{V,.} C M.
o A basic k-model is a basic weak x-model such that M <" C M.

In each case, we will say that M is simple if  is the largest cardinal in M.?
Note that if x is a basic weak x-model, then k € M. To see this, let « € M be such that
M E “a=V,.NO0rd”,

and then observe that by Yo-elementarity, « = V, N Ord holds true in V', which means that
o =K.

Our canonical examples of basic models will be elementary substructures of size x of some
large Hy for a regular #.* For simple models, the notions of basic weak s-models and weak
k-models coincide.

Lemma 2.2. If M is a simple basic weak k-model, then M is a weak r-model.

Proof. We just need to show that M is transitive. Fix a € M. Since M is simple, it thinks
that there is a surjection f : Kk — a. By ¥¢-elementarity, f is really a surjection between x and
a. Thus, since k C M, a C M. O

3Note that these definitions differ slightly from those appearing in earlier literature. For instance, in the
definition of weak k-model, it is not usually assumed that k is inaccessible and V,, € M.

4H, for a cardinal 6 is the collection of all sets whose transitive closure has size less than 6 and given that
0 is regular, we have Hy |= ZFC™.
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Note that even a simple weak k-model might not be a k-model. For instance, its height may
have countable cofinality.

Given a basic weak s-model M, we will let P* (k) denote the collection of all the subsets
of % that are elements of M. Note that in most cases, P (x) will be a class of M, but not an
element of M.

Lemma 2.3. Suppose that M is a (basic) weak r-model. If M € M and M thinks that M is
a (basic) k-model, then M is a (basic) k-model.

Proof. The model M is a basic weak x-model by the Yo-elementarity of M in V, so it remains
to check closure. Let f : M — Vi be a bijection in M, which really must be a bijection by
Yo-elementarity. Fix a sequence @ = (a¢ | £ < B) such that 8 < x and ag € M for every
€ < fB. Let be = f(ag) and let b = (be | &€ < B). The sequence b € Vi, and hence b € M.
Thus, f[l;] = d € M by Yo-elementarity, and hence @ € M since M thinks it is a basic k-model.
Finally, note that if M is transitive and M believes that M is transitive, then it is correct about
it. O
Definition 2.4. Suppose that M is a basic weak k-model.
e We will say that U C P (x) is an M-ultrafilter if the structure

(M, €,U) = “U is a uniform® normal ultrafilter on &.”

e An M-ultrafilter U is good if the ultrapower of M by U is well-founded.
e An M-ultrafilter U is countably complete if for every sequence (A, | n < w) with
A, € U (but the sequence itself not necessarily in M), An # 0.

If M is a basic weak x-model and j : M — N is an elementary embedding with crit(j) = &,
then

n<w

U={ACk|AeM and k€ j(A)}

is the M-ultrafilter derived from j, and if N is well-founded, then U is good. If j happens to
be the ultrapower by an M-ultrafilter U, then the M-ultrafilter derived from j is precisely U.
Standard arguments using Los’ theorem show that if M is a basic weak k-model and U is a
countably complete M-ultrafilter, then U is good. In particular, if a basic weak x-model M is
closed under w-sequences (M* C M), e.g. if M is a basic k-model, then every M-ultrafilter
must be countably complete, and hence good. Even when the ultrapower N of M by U is
ill-founded, by our assumptions on U, V,, U{V,,} C N and VM =V, 6

Definition 2.5. Suppose that M is a basic weak k-model. An M-ultrafilter U is weakly
amenable if for all A € M with |[A|M =k, ANU € M.

Note that for simple models M, a weakly amenable M-ultrafilter U is fully amenable in the
sense that for every A € M, we have ANU € M. A weakly amenable M-ultrafilter can be
iterated to carry out the iterated ultrapower construction for any ordinal length. Recall that
in the case of say a measure U € V on k (namely if k is a measurable cardinal), we can define
an Ord-length system of iterated ultrapowers of U = Uy. We let jo1 : V = Mo — Mi be the
ultrapower by Up and use jo1 to obtain the ultrafilter for the next stage of the iteration by
defining U1 = jo1(Up). This gives us a general procedure for obtaining the next stage ultrafilter
at the successor stages of the iteration and at limits we take a direct limit of the system of
embeddings obtained thus far. By a theorem of Gaifman, all the iterated ultrapowers M, are
well-founded [Gai74, Section II, Theorem 5]. We cannot apply the same procedure to obtain
successor stage ultrafilters with an M-ultrafilter U because U is (in most interesting cases) not
an element of M. However, given weak amenability, we can define, for example, U;, given that
j: M — N is the ultrapower embedding, by

U= {A=[flv Ci(w) | {a < x| f(a) € U} € U}.
Weak amenability has an equivalent characterization in terms of the preservation of subsets
of k between the model and its ultrapower. An M-ultrafilter U for a basic weak k-model M

is weakly amenable if and only if M and its ultrapower N have the same subsets of x. Note
that this holds true regardless of whether N is well-founded or not. It is also the case that if

5Recall that a filter on a cardinal s is uniform if it contains all tail sets (a, ) for a < k.
SWe are assuming here that we have collapsed the well-founded part of N.
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j: M — N is an elementary embedding with crit(j) = x such that M and N have the same
subsets of x, then the M-ultrafilter derived from j is weakly amenable.

Lemma 2.6. If M is a simple basic weak k-model, U is a weakly amenable M -ultrafilter, and
(N, E) is the ultrapower of M by U, then M = HY, .

Proof. Let’s assume that we have collapsed the well-founded part of (N, €) so that for well-
founded sets, €e=€. Clearly M C Hi\ﬁ‘ So suppose that a € H,]j# and assume without loss that
a is transitive in €. Let f : a — & be a bijection in N, and let

A=A{(f(a),f(b)) | (a,b) € €} S K X K.
Then A € M by weak amenability. First, suppose that A is ill-founded. Then M would know
this, and hence it would have a descending w-sequence witnessing the ill-foundedness. But then
N would have the sequence as well, which is impossible. Thus, A is well-founded. We can now

argue by recursion on rank that the Mostowski collapse of A in M is the Mostowski collapse of
A in N, and hence (a, €) = (a, €). O

The simplest characterization of a large cardinal in terms of embeddings on weak x-models
belongs to weakly compact cardinals.

Theorem 2.7 (folklore). Suppose that k is inaccessible. Then the following are equivalent.
(1) K is weakly compact.
(2) Every A C k is an element of a weak rk-model M for which there is a good M -ultrafilter.
(3) Every A C k is an element of a weak k-model M for which there is a countably complete
M -ultrafilter.
(4) Every weak r-model has a countably complete M -ultrafilter.

Sketch of Proof.

(1) = (4): Given a weak k-model M, we use the tree property to build a countably complete
M-ultrafilter. We enumerate P (k) = {As | @ < &} and let the nodes of the tree on level 8
be sequences s € 2° such that Nsay=1 Aa NMN(a)=0 £ \ Aa has size k.

(2) — (1): Given a s-tree T, we use the ultrapower j : M — N for a weak x-model M with
T € M and N well-founded to get a branch for T from a node at level x in j(7T'). O

It is then natural to ask what happens if we additionally require that the M-ultrafilter is
weakly amenable. The answer is that we get a much stronger large cardinal notion. Let’s start
by introducing the following large cardinal notion.

Definition 2.8. A cardinal k is 0-iterable if every A C k is an element of a weak x-model M
for which there is a weakly amenable (but not necessarily good) M-ultrafilter.

Recall that a cardinal  is weakly ineffable if for every sequence (An | o < k) with Aa C a,
there is a threading set A C k such that for unboundedly many o < k, ANa = A,. A cardinal
K is ineffable if we can find such a set A that is stationary in k.

Proposition 2.9. A 0-iterable cardinal is a weakly ineffable limit of ineffable cardinals.

Proof. Fix a sequence A = (A, | a < k) with Ay C a, and find a weak x-model M with A € M
for which there is weakly amenable M-ultrafilter U. Let j : M — N be the possibly ill-founded
ultrapower by U. It is easy to check using Lo§’ theorem that A = j(A)(k) has the required
property. This argument also shows that « is ineffable in the ultrapower N. Thus, & is a limit

of ineffable cardinals. O

In particular, requiring that the M-ultrafilter be weakly amenable, but not even requiring
that it is good, gives a large cardinal notion much stronger than weakly compact cardinals.

Definition 2.10 ([GW11, Definition 2.11]). A cardinal  is I-iterable if every A C k is an
element of a weak k-model M for which there is a good weakly amenable M-ultrafilter.

Iterating a measure on  gives rise to Ord-many well-founded iterated ultrapowers. By a
theorem of Kunen, the same holds true for iterating a weakly amenable countably complete
M-ultrafilter for a weak x-model M [Kun70]. However, a weakly amenable M-ultrafilter that
is not countably complete can give rise to 0 < a < wi or Ord-many well-founded ultrapowers
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(the later follows just as in the case of a measure from having wi-many). In fact, we can define
the hierarchy of a-iterable cardinals (for 1 < a < w1), where a cardinal x is a-iterable if every
A C k is an element of a weak xk-model M for which there is a weakly amenable M-ultrafilter
with a-many well-founded iterated ultrapowers [GW11]. The O-iterable cardinals fit naturally
at the head of this hierarchy, which is consistent with L for o < wi [GW11], while it is not
difficult to see that wi-iterable cardinals imply 07.

Theorem 2.11 (Mitchell [Mit79, Theorem 3]). A cardinal x is Ramsey if and only if every
A C k is an element of a weak k-model M for which there is a weakly amenable countably
complete M -ultrafilter on k.

The wi-iterable cardinals are slightly weaker than Ramsey cardinals, which are wi-iterable
limits of w;-iterable cardinals [SW11, Lemma 5.2].

Note that unlike the situation with weakly compact cardinals, asking that the weakly
amenable M-ultrafilter be countably complete, and not just good, pushes up the large car-
dinal strength from 1-iterable cardinals, which are consistent with L, to Ramsey cardinals. For
weakly compact cardinals x, every weak k-model, and so, in particular, every k-model, has
an M-ultrafilter. If we ask that every A C k is an element of a k-model for which there is
a weakly amenable M-ultrafilter (which is automatically good), then we get a large cardinal
notion stronger than a Ramsey cardinal. Indeed, assuming that we have a weakly amenable
M-ultrafilter for every weak x-model is inconsistent [Git11, Theorem 1.7].

Definition 2.12. Suppose that x is a cardinal.

e [Gitl1, Definition 1.4] x is strongly Ramsey if every A C k is an element of a k-model
M for which there is a weakly amenable M-ultrafilter.

e [Gitll, Definition 1.5] k is super Ramsey if every A C k is an element of a k-model
M < H, + for which there is a weakly amenable M-ultrafilter.

Strongly Ramsey cardinals are limits of Ramsey cardinals, super Ramsey cardinals are limits
of strongly Ramsey cardinals, and measurable cardinals are limits of super Ramsey cardinals
[Git11, Theorem 1.7]. It is natural to ask given these various notions what will happen (1) if we
stratify by closure on the weak k-model M, weakening, for instance, the x-model assumption
to just countable closure on M, and (2) if we ask for elementarity in a large Hy. The second
question does not make sense as stated because a weak x-model cannot be elementary in Hy for
any 6 > kT, but this is precisely where the weakening to basic weak s-models comes into play.
Combining both of these ideas, Holy and the second-listed author introduced the a-Ramsey
hierarchy below a measurable cardinal [HS18].

Definition 2.13. Suppose that k is a cardinal.

e [HS18, Definition 5.1] « is a-Ramsey for a regular w < a < x if for every A C k and
arbitrarily large cardinals 6, there is a <a-closed basic weak x-model M < Hy with
A € M for which there is a good weakly amenable M-ultrafilter.

e [HS18, Definition 5.7] & is faintly w-Ramsey” if in the definition of an w-Ramsey car-
dinal, the M-ultrafilter U is not required to be good.

Note that in the definition of a-Ramsey cardinals, only the w-Ramsey cardinals need the
extra assumption that the M-ultrafilter is good; for the others, the closure on the basic k-model
already implies it. The a-Ramsey cardinals have a natural game theoretic characterization
[HS18, Theorem 5.6] arising out of the question of whether given a weak x-model M, an M-
ultrafilter U, and another weak x-model N extending M, we can always find an N-ultrafilter
extending U. The first-listed author showed that this extension property is inconsistent [HS18,
Proposition 2.13], but the above characterization can be understood as a game theoretic variant
of this property.

Consider the following game Ramseng(/i), for regular cardinals w < a < k and 0 > k, of
perfect information played by two players the challenger and the judge. The challenger starts
the game and plays a basic k-model My < Hp. The judge responds by playing an Moy-ultrafilter
Up. In the next step, the challenger plays a basic k-model M7 < Hp such that (Mo, Us) € M,
and the judge responds with an M;-ultrafilter U; extending Uy. More generally, at stage 7, the

"This property is called the w-filter property in [HS18].
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challenger plays a basic k-model M, < Hy such that {(M¢,Ue) | £ <~} € M, and the judge
responds with an M,-ultrafilter U, extending UE < Uy. The judge wins the game if she can
continue playing for a-many steps (and U = J,_, Ue is a good M = |J,_,, Me-ultrafilter).
Otherwise, the challenger wins. Since M = U£<a Me¢ is a union of k-models, it is <a-closed,
and thus, the additional assumption that U = U§<a U is good is only necessary for o = w. Let
faintRamseyG’ (k) be an analogous game to RamseyG’ (1), but where we don’t require the judge
to ensure that the union U of her plays is good. It is shown in [HS18, Lemma 3.3] that if either
of the players has a winning strategy in the game RamseyGfx(n), for an uncountable «, then the
same player has a winning strategy in the game RamseyG’, (k) for any other regular cardinal
p > k. The argument relies on the fact that the union filter is automatically good by the closure
of the union model. An analogous result therefore holds for the game faintRamseyG’ (), where
we don’t require that the union ultrafilter is good. It is not known whether the result holds for
the game RamseyGY (), but we suspect that it fails.

Theorem 2.14. Suppose that k is a cardinal.

e [HS18, Theorem 5.6] For w1 < «a < K, k is a-Ramsey if and only if the challenger does
not have a winning strategy in the game RamseyGi(/i) for some/all regular cardinals
0> kK.

e [HS18, Corollary 5.8] « is w-Ramsey if and only if the challenger does not have a
winning strategy in the game RamseyGf)(/ﬁ) for all reqular cardinals 0 > k.

e x is faintly w-Ramsey if and only if the challenger does not have a winning strategy in
the game faintRamseyGf, for some/all reqular cardinals 0 > k.

The difference between the first and the second part of the Theorem is a consequence of
the fact that for the game Ramseyij (k), we don’t have the equivalence between the challenger
having a winning strategy for some 6 and for all §. The third part of the Theorem, although
not explicitly proved in [HS18], is proved analogously to proof of the first part given there.

Nielsen and Welch showed that faintly w-Ramsey cardinals are precisely the well-known
completely ineffable cardinals . The first author showed that the w-Ramsey cardinals lie between
1-iterable and 2-iterable cardinals in consistency strength. The result was mentioned in [HS18,
Section 8] without proof.

Theorem 2.15. Ifk is a 2-iterable cardinal, then V. is a model with a proper class of w-Ramsey
cardinals.

Proof. Suppose that k is 2-iterable. It follows from the diagram in [Gitll, Lemma 4.4] that
there is a weak k-model M | ZFC and a good M-ultrafilter U such that for the ultrapower
map j : M — N, we have M = j](\;), We will argue that x is w-Ramsey in Vj]z/ﬁ)(: M),
from which it will follow by elementarity that V, is a model with a proper class of w-Ramsey
cardinals. Fix 6§ € M, which M believes is a regular cardinal, and A C k in M. We need to
produce a basic weak x-model m < H}M in M with A € m for which there is a good weakly
amenable m-ultrafilter on x in M. Let A € My < H}' be any basic weak sx-model in M.
Since My has size &, the restriction j : Mo — j(Mo) is in N. Next, let M; < Hj" be a basic
weak x-model in M such that Mo, U N Mo € M;. Again, we have j : My — j(My) is in N.
In this way, we construct an elementary sequence {M, | n < w} such that for each n < w,
M,,UN M, € Mp41, and the restriction j : M, — j(M,) is in N.
Now working in N, we define a tree T" whose elements are finite sequences

<ho Mmoo — k‘o, ey hn_1 tMp—1 — kn_1>,

ordered by end-extension, such that for all 7, < n:

(1) ms < Hy',

(2) mi,u; € mit1, where u; is the m;-ultrafilter derived from h;.

(3) mi < mj, ki < k‘j, and h; C hj.
Note crucially that the tree T' is an element of N by the assumption that j(k) is a set in N.
The sequence {jn : My, — j(My) | n < w}, constructed above, witnesses that the tree T" has a
branch, and is thus ill-founded in V. By the absoluteness of well-foundedness, T is ill-founded
in N as well. Let h = Ui<w hi : m — n, where m = U'L<w m; and n = Ui<w n;. Finally, observe
that v = (J; ., wi is the m-ultrafilter derived from h, and must be weakly amenable and good
by construction. O
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It is shown in [HS18, Proposition 5.2] that a k-Ramsey cardinal « is a limit of super Ramsey
cardinals. Let us say that a cardinal k is <a-Ramsey if it is f-Ramsey for all regular w < 8 < a.

Proposition 2.16. A strongly Ramsey cardinal is a limit of cardinals o that are <a-Ramsey.

Proof. Suppose that k is strongly Ramsey. Let M be a simple x-model for which there is a
weakly amenable M-ultrafilter U. Let j : M — N be the ultrapower by U. We will argue that
K is <k-Ramsey in \/;1(\7,{>. Fix a < k. By Theorem 2.14, it suffices to show that the challenger

does not have a winning strategy in the game RamseyGZ+ (k). Suppose towards a contradiction

that, in V]-](VK), the challenger has a winning strategy o in Ramseyfo (k). Note that by the
weak amenability of U, the moves of the challenger are in M. Consider the following run of
the game Ramseng+ (k). The challenger plays some My according to o. The judge responds
with U N Mo, which is an element of M by weak amenability. The challenger then plays M;
according to o, and the judge again responds with U N M;. Suppose that the challenger and
the judge continue to play in this manner up to some limit step 8. Since M is a k-model,
the run of the game up to 8 is an element of M, and hence, the challenger can respond to it
with some M, according to . Thus, the judge and the challenger can continue playing in this
manner for a-many steps. The entire run of the game is also an element of M by closure. But
clearly the judge wins this play, contradicting our assumption that ¢ was a winning strategy
for the challenger. Now we can conclude by elementarity that, in V, & is a limit of cardinals «
that are <a-Ramsey. Moreover, Vj is correct about this since to verify that « is S-Ramsey (for
some 8 < k) we only need to consider games with elementary substructures of H,+ C V.. O

For future sections, let us consider a variant game Ramseyci(/s), where we ask the judge to
play, instead of an M, -ultrafilter U, extending her moves from the previous stages, a structure
(N, €,U,) such that N, is a simple x-model with P*7(x) C N, and U, is an N,-ultrafilter,
keeping the requirement that the U,’s must extend. We additionally require the challenger
to ensure that the sequence of the judge’s previous plays {(Ne, €,Ue) | € < 7} is an element
of M,. In this variant game, we are giving the judge the extra ability to ensure that certain
subsets of k make it into the final model. Essentially the same argument as for the game
RamseyGi(n) shows that the existence of a winning strategy for either player is independent
of 6 in the game Ramseyéi(r{) for uncountable a, and moreover x is a-Ramsey if and only if
the challenger doesn’t have a winning strategy in the game RamseyCi(m). It follows that the
challenger has a winning strategy in the game RamseyGi(n) if and only if he has a winning
strategy in Ramseyéi(&). But, in fact, this is true for the judge as well.

Lemma 2.17. FEither player has a winning strategy in the game RamseyGZ (k) if and only if
the same player has a winning strategy in the game Ramseyéi(/{).

Proof. We argued above that this is true for the challenger. So suppose that the judge has a
winning strategy o in the game RamseyG’ (k). The winning strategy & for the judge in the
game RamseyGZ(n) is going to be to play (Ng, €,Ue) at stage € of the game, where Ue is the
response of the judge according to o to the moves of the challenger so far (because these could
very well be the moves of the challenger in the game RamseyG/ (k)) and N¢ = Me N H, .
Next, suppose that the judge has a winning strategy & in the game Ramsey@i(n). The winning
strategy o for the judge in the game RamseyGi (k) is going to be to play U N M, at stage &
of the game, where (N¢, €, Ue) is the response of the of judge according to & to the moves of
the challenger so far (because again these could be the moves of the challenger in the game
RamseyCi(/{)). Note that if {Ue¢ | £ < v} € M, then the sequence {(Ne, €,Us) | £ < v} is also
in M, because each N¢ is definable from U¢ since every element of N¢ is coded by a subset of
k (by simplicity) and Ug has either the subset or its complement. O

Above the a-Ramsey hierarchy, but still below a measurable cardinal sits a large cardinal
notion introduced by Holy and Liicke [HL21].

Definition 2.18 ([HL21, Definition 1.1]). A cardinal & is locally measurable if every A C k is
an element of a weak x-model M which thinks that it has normal uniform ultrafilter on x.
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Standard arguments show that a measurable cardinal is a limit of locally measurable cardi-
nals. It follows immediately from [HL21, Theorem 15.3] that a locally measurable cardinal is a
limit of cardinals & that are k-Ramsey. To see this, note that the set of AY-Ramsey cardinals
is unbounded in k by this theorem. Moreover, by the list of large cardinal properties after
[HL21, Definition 9.4], a cardinal » is k-Ramsey if and only if it is T-Ramsey, where the latter
follows from AY-Ramsey by [HL21, Definition 9.4]. As happens often with these smaller large
cardinals, replacing weak x-models by k-models in the definition of locally measurable increases
consistency strength (the argument is similar to that given in Proposition 5.7). In the situation
of Definition 2.18, P™ (k) must be an element of any such weak x-model M, and so it obviously
cannot be simple. While the normal uniform ultrafilter from M is not required to be good,
Proposition 2.19 shows that this would not add extra strength.

Proposition 2.19. If k is locally measurable, then every A C Kk is an element of a weak k-
model M such that M contains what it thinks is a normal uniform ultrafilter U on k with a
well-founded ultrapower N C M.

Proof. Fix A C k. Choose any weak k-model M such that A € M and M has what it thinks is
a normal uniform ultrafilter U on x. Let § = (2°)*. We can assume without loss of generality
that § is the largest cardinal of M by replacing M with H g’, if necessary. Let (N, €) be the
ultrapower of M by U. The model M believes that the relation € is well-founded in the sense
that it doesn’t have a sequence of functions {f, : Kk = M | n < w} such that for all n < w,
{€ < K| fat1(8) € fn(§)} € U. Since models of ZFC™ can perform Mostowski collapses, it
suffices to argue that the relation € is set-like from the perspective of M, namely for every
function f : kK — M, there is a set Xy in M such that for every g : kK — M with [g]uv€[f]v,
there is some ¢’ : k — M with [¢']lu = [g]v and ¢’ € Xs. By elementarity, [cs]u, where cs is
the constant function with value §, is the largest cardinal of N, and thus, every element of N
surjects onto [cs]uy. So it actually suffices to argue that M has a set X.; as above. For this,
observe that [g]u € [cs]u if and only if [g]lu = [¢']u for some ¢’ : kK — &, and the collection of
functions ¢’ : kK — J is a set in M because § = 2" is a set in M. O

Thus, as long as 2" is the largest cardinal of a weak k-model M with a normal uniform
ultrafilter U on k, the ultrapower of M by U is contained in M just as in the case of an
ultrapower by an actual measure. In fact, it follows from the proof that this will be case
whenever M has a largest cardinal v and v" is a set in M. Note that it is definitely possible
for an ultrapower of a weak x-model M by a normal uniform ultrafilter U in M to have more
ordinals than M. Suppose that k is measurable, U is a normal measure on K, j : V — M
is the ultrapower embedding, and A > 2" is a cardinal with cof(A\) = k. By elementarity,
cof(j(A\)) = j(x) in M, which means, since M"™ C M, that j(A) > A", and hence also then
GOHM > AT, Thus, H(]\J/I-(/\)+)]M, which is the ultrapower of Hy+ by U, has more ordinals
than H,+. Let N be the Mostowski collapse of an elementary substructure of H,+ of size
k. Let U be the preimage of U under the collapse and let X be the preimage of . Then, by
elementarity, N satisfies that the image of A under the ultrapower map cannot be a set in M.

3. FROM AMENABILITY TO COLLECTION

Suppose that M is a simple weak k-model and U is an M-ultrafilter. By assumption, M is a
model of ZFC™, but separation and replacement can fail very badly in the structure (M, €,U)
once the model learns about the ultrafilter. Weak amenability of U is equivalent to having a
minimal amount of separation for (M, €,U). Note that for the results in this section, we mostly
do not need to assume that the ultrapower of M by U is well-founded, that is, U need not be
good.

Lemma 3.1. Suppose that M is a simple weak k-model and U is an M -ultrafilter. Then U is
weakly amenable if and only if the structure (M, €,U) satisfies Ao-separation.

Proof. Suppose that Ag-separation holds in the language with U. Fix A € M and observe that
UnA={zecA|zeU}.

So to argue that U N A € M requires separation only for atomic formulas. Now suppose that
U is weakly amenable to M. Fix A € M and a Ag-formula ¢(x,b) in the language with U. We
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need to argue that

{re A| M E o(z,b)} € M.
Now observe that since ¢(z,b) is a Ap-formula, all quantifiers are bounded and therefore, U
restricted to TCI(A U b), the transitive closure of A U b, suffices to interpret ¢(x,b) correctly.
But this piece of U is an element of M by weak amenability. O

It follows from Theorem 5.2 below that a structure (M, €,U) with a weakly amenable M-
ultrafilter U need not need to satisfy even Ag-replacement.

Next, let’s observe that our typical structures (M, €,U) have a A;i-definable total order that
is a strong well-order from the point of view of the structure. Let us say that a total order <
on a weak xk-model M is a strong well-order of M if for every formula ¢(z,a) over (M, €), the
structure (M, €, <) satisfies that there is a <-least b such that ¢(b,a). Usually, a well-order is
defined to have the property that every set has a least element. This property is equivalent to
our stronger requirement for a set-like order, but the orders we encounter won’t necessarily be
set-like. These structures (M, €,U) will also have a A;-definable truth predicate for (M, €).

Lemma 3.2. Suppose that M is a simple weak rk-model and U is a weakly amenable M -
ultrafilter. Then the structure (M, €,U) has a A1-definable strong well-order <y of M.

Proof. Let (N,€) be the possibly ill-founded ultrapower of M by U. Since U is weakly
amenable, we have M = Hi\; and (/s*)N = Ord™ by Lemma 2.6. Note that every set a € M
can be coded in M by a subset A of k. The code A codes a subset of k X k, which in turn,
codes the membership relation on TCl(a). While a set a can have many different codes, N has
a set C consisting of a unique code for every set in M by elementarity, since this holds true in
M of every H,. In fact, N has a membership relation £ for elements of this set as well, making
(C, &) isomorphic to (M, €). Let [C]u be the equivalence class representing the set C of N.

Let’s consider the complexity of a series of statements in the structure (M, €,U). First
observe that any A C s from M is represented in the ultrapower N by the equivalence class of
the function fa defined by fa(£) = ANE. To verify this, it suffices to check that [fa]JuNE = ANE
for every £ < k. Since £ and AN ¢ are in V,, they are represented by the constant functions
[ce]u and [cane]u. So we need to check that

[falu Neelu = [canelu
holds in the ultrapower N. By Lo$’ theorem, this holds if and only if
{a< k]| fale)NE=ANEL e,

but this is certainly true since it holds on a tail. Let “A is a code” be the assertion that A
is an element of C in the ultrapower N. The complexity of the statement “A is a code” in
the structure (M, €,U) is A;. The Xi-version says that there exists a function f such that
f(€) = ANE and there exists a set {& < k| f(§) € C(§)} and this set is in U, and the
IT;-version says that for every function f such that f(§) = AN & and for every set equal to
{a< k| f(§) € C(&)}, the set is in U.

Next, let “A is the code for a” be the conjunction of assertions that “A is a code” and that A
codes a as explained above. The assertion that A codes a is actually A1 in the structure (M, €)
without the ultrafilter. The X;-assertion is that there are sets @ and 7 such that a = TCl(a)
and 7 is an isomorphism between @ and A. Note that @ = TCl(a) is A;. The II;-assertion is
that for every set a, B, and =, if @ = TCl(a) and 7 is an isomorphism between @ and B, then
A=B.

Finally, let [W]u represent the equivalence class of a well-order W of C in the ultrapower
N. Given a and b in M, we define that a < b whenever there are codes A and B of a and b
respectively such that A is below B according to WW. The assertion that A is below B according
to W translates to saying that [fa]u is below [fg]u according to [W]y. With our preliminary
analysis this is clearly a Aj-assertion in the language with U, using Lo$’ theorem. O

If the GCH holds below «, or just {a < k | M = 2* = o} € U, then the ultrapower N
has a well-order of M of order-type %, which must then be an actual well-order as x™ is
well-founded. If the M-ultrafilter U is good, and hence N is well-founded, then its well-order
of M is an actual well-order. Otherwise, it is possible that N’s well-order of M is ill-founded
externally.
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Recall that a choice function for a binary relation R on a set X is a partial function
F: X — X with (z,F(z)) € R for all (z,y) € R. The next lemma shows that our typical
structures (M, €,U) have a A;-definable choice function for every relation R on M that exists
in the ultrapower of M by U.

Lemma 3.3. Suppose that M is a simple weak k-model and U is an M -ultrafilter such that
(M, €,U) is weakly amenable. Then any binary relation R on M that exists in the ultrapower
of M by U admits a choice function that is Aq-definable in (M, €,U).

Proof. Let N be the, possibly ill-founded, ultrapower of M by U. Let R € N be a binary
relation on M, and observe that N must have choice functions for R. Let F € M be a function
on the class of codes C corresponding to a choice function on R. Then we can define a choice
function F on R by (z,y) € F whenever A, is a code for x, A, is a code for y and F(A4,) = A,.
Letting [f]u represent the equivalence class of F', we use similar arguments as above to show
that F is Ay definable over (M, €,U). O

A similar argument shows that the ultrafilter provides a definable truth predicate.

Lemma 3.4. Suppose that M is a simple weak k-model and U is a weakly amenable M-
ultrafilter. Then (M, €,U) has a A1-definable truth predicate Trar(p, x) for (M, €).

Proof. Let N be the possibly ill-founded ultrapower of M by U. In the notation of the proof
of Proposition 3.2, the model N has a truth predicate 7 for the structure (C,&). Thus, we
have M = ¢(a) whenever A is the code for a and (p, A) € T. Let [T]u represent 7 in the
ultrapower N. Then (p, A) € T if and only if {a < & | (¢, fa(a)) € T(a)} € U. O

Lemma 3.5. Suppose that M = ZFC~, U is an amenable predicate on M. Then for every
n <w, (M,€,U) has a $,-definable truth predicate TrY (p, ) for X, -formulas in the language
with U.

Proof. Given a Ap-formula ¢(b,a) in the language with U, observe that we only need
Uap := U NTCl(a Ub) to evaluate it. By the amenability of U, we have that U,up € M
for every a,b € M. Thus, a truth predicate for a Aog-formula ¢(z,a) can be defined, in the
usual A; fashion, by using a sequence witnessing the formula construction and U,,,. This
means we should require that the set U, is a part of the witnessing sequence for truth and the
extra step in the definition needs to check that Uy » = UNTCl(aUz), but that is a Ap-assertion.
Once we have truth for Ap-formulas, the rest follows by induction on complexity of formulas
because we have only finitely many quantifiers. O

We will mainly be interested in properties of models (M, €, U) of the following fragments of
ZFC™:
e ZFC,, denotes the theory where the collection and separation schemes are restricted
to X, -formulas.
e KP,, denotes the theory where the collection scheme is restricted to X,-formulas and
the separation scheme is restricted to Ag-formulas.

Note that ZFC; = KPo = KP1 = KP. The theory KP, further implies fragments of
separation and recursion. Parts of the next folklore result are stated without proof in [Kra82,
Theorem 1.5]. In the complexity calculations that follow, we will repeatedly use the observation
that X,,-collection implies a normal form theorem for 3, -assertions, namely that every assertion
with a X, -alternation of unbounded quantifiers is equivalent to a >,-assertion.

Lemma 3.6. The theory KP,, implies the schemes of X, -replacement, A, -separation and ¥, -
recursion along the ordinals.

Proof. The claims for n = 0 and n = 1 are identical since KPg = KP;. Their proofs are easy
variants of the following argument.

For n > 1, suppose that M is a model of KP,,. We work in M. We have ¥, _s-separation
by the induction hypothesis. We first show that 3, _i-separation holds. Suppose that A is a
set and p(z,y) is a II,_o-formula. We need to show that the set

B:={zc Al|3ye(r,y)}
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is in M. Consider the II,_i-formula ¢(z,y) := ¢(z,y) V Vz ~p(z, z) and observe that
M EVz e Ay g(z,y).
Thus, by ¥,-collection, there is a set C such that
MEVYze Ady € Cp(x,y).
Thus, also, M |=Va € A3y € C p(x,y). It follows that
B={zcA|TyecCop(z,y)}

The formula Jy € C (z,y) is a equivalent to a II,_s-formula by X, _2-collection, and so we
can use Y, _z-separation to conclude that B exists.

For X,-replacement, suppose that A is a set and ¢ is a II,—i-formula such that 3z p(z,y, 2)
defines a function F': A — M. By X,-collection, there exists a set B such that for all x € A,
there is some y € B with 3z ¢(z,y,z). Again by ¥,-collection, there exists a set C' € M such
that for all © € A, there is some z € C' with 3y ¢(z,y, z). Since y is uniquely determined by =z,

ran(F) ={y € B| 3z € C ¢(z,y,2)}.
By X,—1-collection, the formula 3z € C ¢(z,y, 2) is equivalent to a II,—i-formula, and so

ran(F) is a set by >,_1-separation.
For A,-separation, suppose that A is a set and p(z), ¥ (x) are I,-formulas such that

p(z) < —p(z)
holds for all z € A. We need to show that B := {x € A | p(z)} is a set. Assume there exists
some y € A with p(y). Since the function F': A — A defined by letting F(z) = z if ¢(z) holds
and F(x) =y if ¢(z) holds is X,-definable, B = ran(F) is a set by X,-replacement.
Y.n-recursion along ordinals now follows just like ¥;-recursion follows from KP, using 3,,-
replacement for the existence of the recursion at limit stages. In fact, the proof works for
recursion along A, -definable strongly well-founded relations. O

Thus, in particular, KP,+1 implies ZFC,,, which in turn implies KP,,.

The fragments ZFC,, and KP,, have their own advantages for different situations. The
theory ZFC,, implies a fragment of Lo$’ theorem for ¥,-formulas. To state this, we first fix
some notation. Suppose that M is a weak k-model and U is a weakly amenable M-ultrafilter.
Let N be the ultrapower of M by U and let

W =A{lflv Cleslv [ {a <k | fla) €U} €U}

be the N-ultrafilter on [cx]y derived from U. We know that Lo§’ theorem holds for the ultra-
power in the language €. We will say that Lo§’ theorem holds for an assertion ¢(x1,...,%n)
in the language with a predicate for the ultrafilter if for every sequence f = {f1,..., fn) with
fi: k= M, the set

Ar, ={a<k|(M,eU)Ee(fila),.... fa(a))} €M
and (N, €, W) = o([fi]u, ..., [fa]v) if and only if A € U.

Lemma 3.7. Suppose M is a weak k-model and U is an M -ultrafilter. If (M, €,U) = ZFC,,
then Los’ theorem holds for X, and Il,-assertions in the language with a predicate for the
ultrafilter.

Proof. Let’s first argue that the extended Los’ theorem is true for all Ap-assertions. It is true
for atomic formulas by the definition of W and the case of conjunctions is clear. So let’s suppose
that the assertion is true for some Ag-formula ¢(z) and argue that it is true for —p(x). By our
assumption, for every function f : x — M from M, the set

Ay ={a <k | (M,€,U) F o(f(a))} € M.
Thus, its complement
Alpy o = {a < r [ (M, €,U) F —p(f())}

is in M as well. Now we have that Ay —, € U if and only if Ay, ¢ U if and only if (N, €, W)
does not satisfy ¢([f]v) if and only if (N, €, W) = —¢([f]u). So suppose now that the assertion
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holds for a Ap-formula ¢(x,y). First, observe that for functions f : x — M and g : Kk = M
from M, the set

Aifgye ={a <k | (M,€,U) | 3z € g(a) o(z, f(a))}
is in M by Ao-separation because G = |, ., 9() is a set in M. Suppose next that

(N, €, W) = 3z € [glv ¢(=, [flv)-
Then there is [h]y such that

(N, €, W) I= ¢([b]u, [flv) A hlu € [glu

and so by our assumption, the set

Aifgmye ={a <kl o(h(a), f() Ah(a) € gla)} €U,
and hence A(s )., € U. In the other direction, suppose that A 4y, € U. Let wg € M be any
well-order of G. Using wg, we can choose for every a € Ay 4., the wg-least b € g(a) such
that (M, €,U) = ¢(b, f(«)) and define h(a) = b. The definition of h uses Ag-separation in the
structure (M, €,U).

Next, observe that the negation case holds for any formula provided that we have the
inductive assumption for that formula, and so it remains to argue the case of the unbounded
existential quantifier. So suppose that the inductive assumption holds for a formula ¢(x,y) of
complexity at most II,,—1. The set

Aty ={a <k | (M, €,U) | Iz p(z, f(a))}
is in M since (M, €,U) satisfies Xn-separation. If (N,€, W) | Jzo(z,[f]v), then as be-
fore there is some [h]y such that (N, €, W) E o([h]u,[f]v), so by the inductive assumption
A#,ny,o € U, which in turn implies that A(fy 35, € U. In the other direction, supposing that
Ay, € U, we use X,-collection to obtain a set C' such that for every a € Ay, there is
z € C for which (M, €,U) = ¢(z, f(a)). Let we € M be a well-order of C, and use w¢ to chose
for every o € A(yy o, the we-least b such that (M, €,U) |= (b, f(a)) and define h(a) = b. The
definition of h uses ¥,-separation in the structure (M, €,U). O

The next lemma shows that the fragment KP,, is more natural than ZFC,,; with respect to
forming ¥, -elementary substructures. Namely, we have that any element of a model of KP,,
that is transitive and X,,-elementary in the model is itself a model of KP,,. This can fail to
hold for models of ZFC,,. For instance, it is easy to see that the 3;-Skolem hull is 3;-definable
in any model Lo = ZFC7 , and therefore must be a set in L, by collection. Thus, every model
L. = ZFC7T has a proper Xi-elementary substructure, but then the least X;-substructure of
L. cannot be a model of ZFC7 .

Lemma 3.8. Suppose that M | ZFC™ and U is a predicate such that (M,€,U) = KP,
for some n > 1. If M € M is transitive in M and (M,€,U N M) <s, (M,€,U), then
(M,e,UNM) = KP,.

Proof. Ag-separation in (M, €,U N M) can be easily verified as follows. Suppose that A € M
and ¢(z) is a Ag-formula. Then, by Ag-separation,
(M,e,U) =3z(Vx € zz € ANVz € A(p(z) > T € 2)).

Since this is ¥1-assertion, we have that it holds in (M, €,U N M) by ¥-elementarity.
Next, we verify 3,,-collection. Suppose that

(M, e, UNM) [EVz € adyp(z,y,a),

for a ¥,-formula ¢(z,y,a). Indeed, we can assume without loss of generality that (z,y,a) is
II,,—1. Since M is transitive in M, ¥, -elementarity yields

(M,€,U) EVz € adyp(z,y,a).
By X,-collection, (M, €,U) = ¢(a), where
Y(a) :==32Vr € aTy € zp(z,y,a).

For n = 1, the formula +(a) is X1, and so (M, €,U N M) = v(a) by $1-elementarity, verifying
¥i-collection. For n > 1, we can assume inductively that we have already verified ¥n_1-
collection in (M,€,U N M). Under X, _1-collection, the formula Vz € a3y € zp(z,y,a) is
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equivalent to a X,-formula P(2). Since (M, €,U) satisfies the X,-formula 32¢(z), by X,-
elementarity, (M,€,U N M) = 3zv¢(z). Thus, by X,_i-collection, (M,€,U N M) = v¢(a),
verifying ¥,,-collection. O

Since ¥g-elementarity is equivalent to just being a submodel for transitive structures, it is
not difficult to find a counterexample to Lemma 3.8 for n = 0.

The X, -reflection scheme states that for every true X, -assertion ¢(z,a) with parameter a,
there is a transitive set m containing a such that for every x € m, m = ¢(z,a) if and only if
p(z,a). If M is a simple weak x-model and U is a good M-ultrafilter such that (M, €,U) =
KP, 11, then the structure (M, €,U) satisfies a strong form of ¥, -reflection.

Lemma 3.9. Suppose that M is a simple weak r-model and U is a good M-ultrafilter. If
(M, e,U) E KPny1, for some n > 1, then for every A € M there is a k-model M € M such
that Ae M, M < M,

<M7 67 U m M) -<En <M7 67 U>7

and (M,€,UN M) | ZFC;,.

Proof. Let < be the Aj-definable well-order in the structure (M, €,U) constructed in the
proof of Lemma 3.2. As noted, after the proof of Lemma 3.2, since U is good, it follows that
<y is externally a well-order. First, let’s argue that for every set X € M, there exists a unique
set X* € M of <y-least witnesses for X,-assertions 6(z, a) in the language with the ultrafilter
and with a € X. Let C be a collecting set for the assertion

Va € XVG S way‘P(‘% eay)7

where ¢(a, 0,y) is the assertion
(y =DAVz —\Tryl{(e, (z, a))) \Y (Tr,?(@, (y,a)) AVz(z <v y — —|Tr7[{(9, (z, a)))) .

The complexity of the assertion ¢(a,8,y) is clearly at most 3,41 (it is a disjunction of a II,
and a X,-formula), and so we can apply X, 11-collection. Now using A, 1-separation for C' by
Lemma 3.6, we can obtain the desired unique set X*.

Next, let’s argue that every set X € M can be put into a k-model N € M such that
N < M. For every cardinal o < k, we have that every set in H,+ is contained in an elementary
submodel of size « that is closed under sequences of length <«. Thus, the ultrapower of M by
U satisfies that every set in H,+ = M is contained in such an elementary submodel, and all
these submodels are in M.

Observe that the assertion that N is a k-model is A1 for the following reasons. The assertion
that IV is a weak x-model is A; because you just have to say that it is transitive, has k, V,; as
elements, and satisfies ZFC™ (this last gives the unbounded quantifier). The assertion that the
model is closed under <k-sequences is clearly I, but in fact it is also 1. The X;-assertion is
“there is a bijection f : Vi, — N such that for every g : £ — V.. in Vi, with £ < k, there exists
x € N such that x = f o g.” Next, observe that the assertion that N is the <ly-least k-model
extending a set X is II;. Finally, observe that the assertion that (N, €) < (M, €) is A; using
the Aj-definable truth predicate Tras (¢, z) for (M, €).

Now consider the assertion ¥(s, ), which states that s is a sequence of length A such that:

(1) so={A}
(2) ss = s s¢ for limit ordinals 6,
(3) if €41 is an even successor ordinal, then s¢ 1 = s¢, the unique closure under existential
witnesses for ¥,-assertions,
(4) if € + 1 is an odd successor ordinal, then s¢i1 is the <y-least xk-model such that
s¢ Cseqr1 < M.
The recursion defining the s¢ is An 41, so we can use the ¥, 41-recursion scheme to conclude that
there exists a function f : k — M such that f(¢) = s¢. Let M = U£<K f(&). By construction,
(M,e,UNM) <sx, (M,e,U) with M < M. Since M is a k-length union of k-models in M, it
is itself a xk-model in M. The model M really is a k-model by Lemma 2.3. Note that the model
(M,€,U N M) satisfies 3,,-reflection by construction because it is a union of ¥,-elementary
substructures. It will follow by the next Lemma 3.10 that X, -reflection implies ZFC,, . O
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Again, the result can fail for n = 0 because being >g-elementary and transitive is equivalent
to being a submodel.

Lemma 3.10. Suppose that M |= ZFC™ and U is a predicate. If (M,€,U) satisfies ¥y,-
reflection for some n > 1, then it is a model of ZFC,, .

Proof. Concerning ¥,,-collection, suppose that
(M,e,U) =Vz € adyp(z,y,a)
for a 3,,-formula ¢(x,y,a). Let a € M € M such that
(M,e,UNM) <s, (M,€,U).

Fix b € a. By assumption, (M, €,U) &= 3y p(b, y, a). By elementarity, we have (M, €, UNM) =
Jy (b, y,a). Thus,
(VT,€,U N M) =Yz € a Ty o(z, y, a),

and so M is the required collecting set for ¢. ~

For 3,-separation, fix a € M and a X,,-formula ¢ (z, b) in the language with U. Let a,b € N
such that

(N,e,UNN) <x, (M,€,U).
The structure (N, €,U N N) reflects (M, €, U) for the formula 1 (z,b). Therefore
{z€al(M,€U)EY(@b)}={zcal(N,€UNN) (b}

and the right-hand side set exists by separation in M. O

The hypothesis in Lemma 3.9 cannot be reduced to ZFC,,, since the claim fails for an €-
minimal model (M, €,U) of ZFC;. For the same reason, the result can fail if n = 0. The
argument above does not work if the ultrapower by U is ill-founded. In this case, the strong
well-order <1y might be ill-founded for formulas in the language with U. Thus, it is not clear
whether the above lemma holds in the case where U is not good. If U is not good, we can
however take, for any set A € M, a substructure of (M, €,U) with a A;-definable true well-
order, namely, Lo[A, U], where a is the height of the model. Indeed, replacing a model (M, €,U)
by (La[A, U], €,U N La[A, U]) will prove useful in other ways as well. First though we have to
verify that this move preserves the theory.

Suppose that M is a weak k-model and U is an M-ultrafilter such that

(M, e,U) = KP,(ZFC,,),

forn > 1, and a = Ord™. Let A € M be a subset of x. Consider the model (Lo[A,U),€,0),
where U = U N Ly [A,U].

Lemma 3.11. (L.[A,U],€,U) = KP,(ZFC,,).

Proof. Observe that the L[A, U] construction (up to «) can be carried out in the structure
(M, €,U) by Xi-recursion.

First, suppose that (M, €,U) = KP,,. Yo-separation clearly holds in (L.[A, U], €,U), so it
suffices to verify ¥,-collection. Suppose that for some II,,_1-formula ¢(z, a),

<L(¥[A7 [_]}767[7> ': V‘T € aay(ﬁ(%% CL).

For every z € a, let a;, be the least ordinal such that = € La, [A, U] and let 3, be least ordinal
such that Lg, [A, U] has some y witnessing ¢(z,y,a). Let a € Ly[A,U]. Let ¢*(z,y,a) be the
formula o(z,y, a) relativized to Lo[A, U], that is, for every unbounded quantifier we add the
assertion that the variable is in L[A, U]. Since the assertion z € L[A, U] is £1 over (M, €,U),
the formula ¢*(z,y,a) is II,—1. Next, observe that in (M, €,U), the function f : A = «
defined by f(§) = 0 if £ # a, for any = € a and otherwise f(az) = Bz is Xn-definable. Thus,
by Xn-collection in (M, €,U), there is some 8 < « such that the range of f is contained in 3.
It follows that Lg[A, U] is a collecting set.

Next, suppose that (M,€,U) = ZFC,,. We already showed that (L.[A,U],€,U) satis-
fies Xp-collection. Thus, it suffices to verify X,-separation. Fix a X,-formula ¢(z,b) =
Jy Y (y, =, b), where ¥(x,y,b) is 1,1, and a set C € Lo[A,U]. The set

C= {C eC | <L0¢[Av U]v €7ﬁ> ': 90(67 b)}
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exists in M by ¥,-separation in (M, €,U). For every c € C, there is y € La[A, U] such that
(LalA, U], €, UNLL[A,U]) E ¥(y, ¢,b). Thus, by 3,-collection in (M, €, U), there is an ordinal
3 such that Lg[A, U] already has all the witnesses y for ¢ € C. It follows that we can replace the
formula @ (z, b) by the formula 3y € Lg[A, U]¥(y, z,b), in verifying separation for the set C' and
the formula ¢(x,b) in (Lo[A,U],€,U N La[A,U]). Since Jy € Lg[A, U] 9(y,z,b) is equivalent
to a II,—1-formula by 3,-collection in (La[A, U], €,U N La[A,U]), we have separation for it by
KP,,, which implies ¥, _i-separation by Lemma 3.6. 0

We can ensure that Lo[A,U] is a weak x-model by taking A, instead of A, that codes A
and V... However, if M is simple, it is not necessarily the case that La[A, U] is simple. In this

case, letting 8 = (H+)LQ[A’U], we will be able to replace Lo[A, U] by the simple weak s-model
Ls[A,U).

Proposition 3.12. (Lg[A,U],€,U N Lg[A,U]) = KP,(ZFCy,).

Proof. First, let’s argue that Lg[A,U] = HHLf AUl Fix a set B € Lq [A,U] whose transitive
closure TCI(B) has size at most #. Fix some limit ordinal  such that TCI(B) € L,[A,U]. In
Lo[A, U], let
(X,6,UNX) <(Ly[A,U),€,UnN Ly[A,U]),

with | X| =k, k+1C X, and A, TCI(B) € X. A ¥;-recursion suffices to construct X because
truth in (L,[A, U], €, UNL,[A, U]) is Ai-definable. Note that U* = UNX is a set because X has
size # in Lo[A,U]. Let 7 : X — N be the Mostowski collapse. Note that 7(TCl(B)) = TCI(B).
Since 7 fixes subsets of k, we have that 7 is an isomorphism between (X, €, U*) and (N, €,U™).
It follows that N = Lz[A, U] for some j of size k in La[A,U]. Thus, B € Lg[A, U].

If B = a, then we are done. So we can assume that 3 < «, and in particular, that Lg[A, U] is
aset in Lo[A, U]. Since Lg[A, U] = H'I;f (.01 (Lg[A, U], €,UNLg[A,U]) has the same amount
of comprehension as (L.[A4,U],€,U). Next, we will argue that (Lg[A,U],€,U N Lg[A,U])
satisfies full collection. Suppose that collection fails in (Lg[A, U], €,U N Lg[A,U]). We can
assume without loss of generality that it fails for a formula Vy € x Jy ¢ (vy,y). We can use the
failure to obtain a cofinal function f € Lo[A, U] from x into 8 mapping & to the least 7¢ such
that

Jy € Ly, [A, U] Lg[A, U] E¥(& )
(since Lg[A,U] is a set in La[A, U] by assumption and full separation holds in the structure
(La]A, U], €)). Since each n¢ < 3, La[A, U] has a bijection between ne and x. Thus, La[A, U]
satisfies that for every £ < k, there is a bijection f¢ : K = n¢, and by applying X-collection, we
can obtain a set in Lq[A, U] collecting the bijections f¢ for ¢ < x. But this is impossible since
the 7¢ are cofinal in 8 = (k)XY Thus, we have reached a contradiction showing that full
collection holds in Lg[A, U] in the case 3 < a. O

The following lemmas will prove useful in later arguments.

Lemma 3.13. If (La[A], €, A) E KPn_1 for some set A and n > 1, then it has X, -definable
Skolem functions for X, -formulas.

Proof. Suppose that ¢(z,y) is the formula 3z ¢(z,vy, z), where (z,y, z) is a II,_i-formula.
Let v be least such that L-[A] contains witnesses y and z for ¢(x,y,z). Then let y be the
<r[aj-least in L,[A] such that there is a witness z € L,[A] for which 9 (z,y, 2) holds. Since
(LalA], €,4) = KP, we can define the L[A]-hierarchy. Since (Ly[A],€,A) = KPn_1, the
statement that ¢ (x,y, z) fails for all <L[A]—smaller z is a X, _1-statement. Od

As a consequence of having 3, -definable Skolem functions for 3, -formulas, we have that the
3 ,-Skolem hull (over any collection of parameters) taken using these functions is ¥,-elementary
in (La[A], €, A).

The following proof is based on an argument of Philip Welch which shows that the least
admissible ordinal a > w; has uncountable cofinality.

Lemma 3.14. Suppose that M is a simple weak k-model and U is an M -ultrafilter such that
M = Lo[A,U] for some ACk and_(M,e,U) E KP,. Then (M, €,U) has a transitive 3, -
elementary substructure (M, €,U N M) = KP,, such that M is a k-model.
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Proof. We can assume without loss of generality that A codes V. Let (M,€,A,U N M) be
the X,-Skolem hull of k + 1, using the X, -definable Skolem functions (from Lemma 3.13) in
(La[A,U],€,A,U). By Lemma 3.13, we have

(M,e,A,UNM) <s, (La[A,U],€,A4,U).
Since every set in Lo[A, U] has size &, it follows that M is transitive. Thus, by Lemma 3.8,
(M,€,A,UN M) | KP,.
By Zn-elementarity, we have M = Ls[A, U] for some & < « and the structure
(La[A,U],€,U N Lg[A,U])

has the additional property that every element is ¥,,-definable using parameters from x + 1.

We claim that M <" C M. To see this, suppose that & = {z; | i < £} is a sequence of
elements of M for some & < . Let each z; be definable in (Ls[A, U], €, A, UNLs[A, U]) by the
¥,-formula ¢; using parameters v; < k and k. Since V,, € 1\7[, the sequences {v; | ¢ < £} and
{@i | i < €} are both in M. Thus, using the ¥,-definable ¥,-truth predicate TrY (z) (which ex-
ists by Lemma 3.5), the sequence {z; | ¢ < £} is ¥y,-definable over (Lg[A, U], €, A,U N Ls[A, U]).
By X,-collection, there must be some < @& such that all z; are in Lg[A,U]. At this point,
we would be done if we had 3,-separation, but we have only A, -separation available. Thus,
we need to do some more work to reduce the complexity of the formula defining the sequence
{ai i <€}

For each i < &, let p;(x, vi, k) := Jyvi(x, vi, k,y), where ¢ is a I1,_1-formula. Next, we use
Y .-collection on the formula

Vi < €3y Try (Byvi(z, 2,w,y), 24, vi, K)

to obtain a set Y containing, for each ¢ < &, a witness y; such that ¢;(z;, vi, k, yi) holds. Using
the set Y, we can now reduce the complexity of the definition of the sequence to a II,,_;-formula.
O

Thus, in particular, we will be able to replace a model (M, €,U) E KP,, with a xk-model
with the same properties without an increase in consistency strength.

The next result will allow us to separate large cardinal notions defined using ZFC,, and KP,,
in Section 5.

Lemma 3.15. Suppose that M is a simple weak rk-model and U is an M -ultrafilter such that
(M, e,U) E ZFC,,. Then for every set A € M, there is a weak k-model N € M with A € N
such that (N, €,UNN) = KP,.

Proof. By shrinking the model, if necessary, we can assume without loss of generality that
M = L.[A,U]. By Lemma 3.14, (M,€,U) has a transitive X,-elementary substructure
(M,€,UN M) = KP, such that M is a k-model. If M € M, then we are done. Otherwise,
M = M. Observe that for any set B € M, the set

Ts = {(#,b) | b € B and Tr; (¢,b)}

is in M by X,-separation. Also, using 3,-collection and the set Ts, M has a set B* such
that for every X,-formula Jy+(z,y) and b € B such that (M,€,U) = Jyy(y,b), there is
y» € B* such that (M, €,U) = ¥(b,ys). Let My € M be any weak x-model with A € My. Let

My = TCI(Mg), and more generally, given M, let Mpy1 = TCI(My). Let N = U, ., Mn,
and observe that NV € M by closure. By construction N is transitive and

(N,e,UNN) <5, (M,€,U),
and so (N, €,U N N) = KP,, by Lemma 3.8. O

4. BABY VERSIONS

We now define n-baby measurable cardinals by slightly simplifying the notions of Bovykin
and McKenzie [BM] and we further introduce some related large cardinal notions.
Definition 4.1. A cardinal « is:

(1) faintly n-baby measurable if every A C k is an element of a weak xk-model M for which
there is an M-ultrafilter such that (M, €,U) = ZFC,, .
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(2) weakly n-baby measurable if (1) holds and, in addition, U is good.
(3) n-baby measurable if (2) holds and in, addition, M is a xk-model.
(4) [n]-baby measurable if (3) holds, but with KP,, instead of ZFC,, .

Notions (1)-(3) have variants where ZFC,, is replaced by ZFC~. We then omit n from the
notation. We will see from Lemma 5.1 below that the concepts of faintly and weakly [n]-baby
measurable cardinals are equivalent to (4).

We can further assume that all weak x-models involved in the definitions above are simple.
While the M-ultrafilter in the definition of faintly (n-)baby measurable cardinals need not be
good, the notion will still turn out to be quite strong.

The faintly (n-)baby measurable cardinals are analogues of completely ineffable cardinals,
but with stronger M-ultrafilters. The weakly (n-)baby measurable cardinals are analogues of
1-iterable cardinals, but with stronger M-ultrafilters. The (n-)baby measurable cardinals are
analogues of strongly Ramsey cardinals, but with stronger M-ultrafilters.

We will vary the closure condition to study the gap between weakly n-baby measurable and
n-baby measurable cardinals. For this purpose, it is useful to discard the requirement that M
be transitive and require that M is elementary in some Hy as in [HS18].

Definition 4.2. Suppose that & is a cardinal and w < a < k is a regular cardinal.® A cardinal

K is (o, n)-baby measurable if for every A C k and arbitrarily large 6 there is a <a-closed basic

weak x-model M < Hy with A € M and a good M-ultrafilter U such that (H,QVL e, U) E ZFC,,.
A cardinal & is faintly (w,n)-baby measurable if the M-ultrafilter is not required to be good.
A cardinal k is a-baby measurable if we replace ZFC,, by ZFC™ in the above definition.

Note that we only need to explicitly state that the M-ultrafilter U is good in the case that
o = w. Further variants such as (<a,n)-baby measurable are used below with the obvious
meaning.

The (a,n)-baby measurable (a-baby measurable) cardinals are analogues of the a-Ramsey
cardinals, but with stronger M-ultrafilters.

The reflective (o, n)-baby measurable (a-baby measurable) cardinals, defined below, strengthen
this notion by requiring strong ¥,,-reflection (elementary reflection) in the structure (H,.+, €,U).

Definition 4.3. Suppose that « is a cardinal and w < a < k is a regular cardinal. A cardinal
is reflective (o, n)-baby measurable if for every A C k and arbitrarily large 0 there is a <a-closed
basic weak xk-model model M < Hy with A € M and a good M-ultrafilter U such that for every
B C k in M, there is a s-model M € M with B € M such that (M,€,UNM) <x, (HM  €,U)
and (M,€,UN M) = ZFC,, .

A cardinal & is faintly reflective (w,n)-baby measurable if the M-ultrafilter is not required
to be good.

A cardinal k is reflective a-baby measurable if we replace ¥, -elementarity by full elementarity
in the above definition.

Note that we only need to explicitly state that the M-ultrafilter U is good in the case that
a = w. Also, note that we get (H%H €,U) = ZFC,, for free by Lemma 3.10. These notions
will have analogous game theoretic definitions similar to that of a-Ramsey cardinals. We define
these games in Section 6.

5. THE HIERARCHIES

In this section, we will show where the various (non-game related) notions defined above fit
into the large cardinal hierarchy.

First, we show that there are no faint or weak versions of the [n]-baby measurable cardinals
because this is one of those rare instances where the closure on the model (and hence the
well-foundedness of the ultrapower) comes for free.

Lemma 5.1. Suppose that M is a weak r-model and U is an M-ultrafilter such that
(M, e,U) = KP,, for somen > 0. Then for every A C k in M, there is a k-model M C M

with A € M such that (M,€ UN M) & KP,.

8We use the notation a for cardinals following [HS18] with the motivation that these notions can be
characterissed by games of length a and they could thus, in principle, be generalized to ordinals.
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Proof. By a sequence of lemmas at the end of Section 2, we can assume without loss of generality
that M = La[A,U] with a = (ﬁ*)L_‘*[A‘U]. Thus, by Lemma 3.14, there is a k-model M C M
with A € M such that (M,e,UNM) = KP,. O

Since the theories ZFC; and KPg, and KP; are all the same, the following large cardinals
are all equivalent:

(

1) [0]-baby measurable cardinals

(2) [1]-baby measurable cardinals

(3) faintly 0-baby measurable cardinals
(4) weakly 0-baby measurable cardinals
(5) 0-baby measurable cardinals

2

Next, we show that the faintly 0-baby measurable cardinals, which are like O-iterable cardi-
nals with just the additional assumption of Ag-collection, are stronger than Ramsey cardinals,
and hence cannot exist in L.

Theorem 5.2. If k is faintly 0-baby measurable, then K is a strongly Ramsey limit of strongly
Ramsey cardinals.

Proof. Suppose that M is a simple weak x-model and U is an M-ultrafilter with (M, €,U) E
KP. Let N be the, not necessarily well-founded, ultrapower of M with U.

We first show that x is strongly Ramsey in M. Fix any A C k in M. We construct a
continuous increasing sequence (Mo | o < k) with A € My by a Xi-recursion in (M, €,U).
Note that the Xi-recursion scheme holds in (M, €, U) by Lemma 3.6. Let My € M be arbitrary
with A € My. For even a < K, let Mat1 := Mo U{{UNMay}}. For odd o < &, let Mat1 < M
be a k-model from the perspective of M, with M, € Mu41, given by a Aj-definable choice
function for the relation R that consists of all pairs (z,y) € M, where z € y and (y, €) is an
elementary substructure of (M, €) that is closed under sequences of length less than x. Such
a choice function exists by Lemma 3.3 since the relation R exists in N. For all limits a < &,
let Mo == Uzco Ma. In M, we have that M, is a x-model with A € M, and U N M, is
a weakly amenable M,-ultrafilter. Since A was arbitrary, x is strongly Ramsey in M. By
Proposition 2.3, M, is really a x-model, and so, since M was arbitrary, ~ is strongly Ramsey.
Moreover, k is strongly Ramsey in N, and hence it is a limit of strongly Ramsey cardinals by
elementarity. O

Thus, in particular, the existence of faintly 0-baby measurable cardinals already implies that
0% exists. In fact, faintly O-baby measurable cardinals have higher consistency strength.

Theorem 5.3. If there is a faintly 0-baby measurable cardinal, then there is a model of ZFC
with a k-Ramsey cardinal k.

Proof. Suppose that (M,€,U) = KP where M is a simple weak x-model and U is an M-
ultrafilter, and let N be the (not necessarily well-founded) ultrapower of M by U. It suffices
to show that x is k-Ramsey in ij(v,{). Otherwise the challenger has a winning strategy o in

the game RamseyG',Z+ (k) in ij(vﬁ) (equivalently in N). The element o of N is represented by
some equivalence class [S]y. Since the ultrapower is k-powerset preserving, o is a map from
sequences of elements of M to elements of M and all proper initial segments of runs are in M.
By coding, we can assume that elements of o are coding subsets of k (elements of C as defined
in the proof of Lemma 3.2), which code pairs (s,y), where s is a sequence of plays by the judge
and y is the response to the last move. In M, we will use U to play against ¢ and build a run
of the game RamseyG:+ (k) won by the judge, contradicting that o was a winning strategy. In
detail, the judge responds to the model M, played by the challenger in round « by playing
U N M,. The challenger plays according to o. The assertion that the challenger’s response to x
is y according to o translates to asking whether the set {a < k| fa(£) € S(€)} is an element of
U, where A is the coding subset for pair (s,y) with s being the sequence of the judge’s moves
so far ending in z, and f4(£) = AN¢E for every £ < k. The above recursion is thus A1, so has
a solution M. O
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Note that the least 0-baby measurable cardinal x cannot be super Ramsey because being
0-baby measurable is a property of H,+ and would therefore be reflected down if x was super
Ramsey.

Next, we show that surprisingly the hierarchies of the variants of n-baby measurable cardinals
are intertwined both in the case of ZFC;, and that of KP,.

Theorem 5.4. For any n > 1, a faintly n-baby measurable k is a limit of [n]-baby measurable
cardinals.

Proof. Fix A C k and choose a weak k-model M, with A € M, for which there is an M-
ultrafilter U such that (M, €,U) | ZFC, . By the sequence of lemmas at the end of Sec-
tion 2, we can assume without loss of generality that M = L,[A,U] and o = (k+)Fe[4U] By
Lemma 3.15, there is a weak x-model N € M with A € N such that (N,€,U N N) = KP,.
Since U is an M-ultrafilter and N is a set in M, U N N is countably complete, and hence good.
It follows that « is [n]-baby measurable.

An analogous argument also shows that x is [n]-baby measurable in the, not necessarily
well-founded, ultrapower of M by U. Thus, « is a limit of [n]-baby measurable cardinals. O

Theorem 5.5. For any n > 1, a faintly [n + 1]-baby measurable k is an n-baby measurable
limit of n-baby measurable cardinals.

Proof. Fix A C k and choose a weak x-model M, with A € M, for which there is an M-
ultrafilter U such that (M, €,U) = KP,41. We can assume without loss of generality that
M = L.[A,U] and thus has a Aj-definable true well-order. Thus, the proof of Lemma 3.9
shows that there is a k-model M € M such that (M,c,U N M) = ZFC; . Since the subset A
was arbitrary, we have verified that x is n-baby measurable. Since x is n-baby measurable in
the ultrapower N, we also have that x is a limit of n-baby measurable cardinals. O

Theorem 5.6. For any n > 1, a weakly n-baby measurable cardinal k is a limit of faintly
n-baby measurable cardinals.

Proof. Suppose that n > 1, M is a weak xk-model, and U is a good M-ultrafilter such that
(M, e,U) E ZFC,,. We claim that « is faintly n-baby measurable in N, and hence a limit of
faintly n-baby measurable cardinals.

Recall that the structure (M, €,U) has a X,-definable truth predicate Trj (z) for ¥,-
formulas (by Lemma 3.5). For the future, we fix a canonical ¥,-formula 3y 6(z,y) defining
Trl (). Observe that for any set B € M, the set

T = {{p,b) | b€ B and Tr¥ ({¢p,b))}

is in M by X,-separation. Also, using 3,-collection and the set Tp, M has a set B* such that
for every X,-formula 3y (z,y) and b € B, there is y, € B* such that (M, €,U) = (b, ys).

We say that a formula is in 3, - or II,,-normal form if it has a block of at most n alternating
quantifiers preceding a Yo-formula. We can assume that the X,-formula 3y 0(z,y) defining
Y (z) is in normal form. We denote the standard way of converting a negation —p of a 3p-
formula ¢ in normal form to a logically equivalent II,-formula in normal form by —*¢. We
denote the standard way of converting a conjunction ¢ A ¢ of two %,- or II,-formulas ¢ and ¥
into a logically equivalent 3,,- or IT,,-formula in normal form by ¢ A* 1.

Given a structure M, let us call a set T C M a X, -pseudo truth predicate if it consists of
pairs (¢, a), where ¢ is a ¥,,- or II,-formula in normal form and @ € M is a finite tuple, and T
satisfies the following conditions. We will simplify the notation by writing ¢(a) € T instead of
(p,a) eT.

(1) For every 3o-formula ¢(Z) and finite tuple a € Z\Zf, p(a) € T if and only if M = ¢(a).
(2) For every ¥,-formula ¢() and finite tuple a € M, either p(a) € T or ="p € T.
(3) If Vxp(z,a) € T for some finite tuple a € M, then ¥ (b,a) € T for every b € M.

Note that what separates 1" from an actual truth predicate is the omission of the existential
quantifier condition that witnesses for existential statements are provided.

Take any A C k in M. We construct a tree 7 of height w in N whose branches union up
to produce structures (M, €,U) |= ZFC,,, where M a weak s-model with A € M and U is an
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M-ultrafilter on k. We will then proceed to show that 7 has a branch in V' and hence also in
N by the absoluteness of well-foundedness.
A node on level m of T is going to be a sequence {(M;, €,U;,T;) | i < m} satisfying the
following conditions:
(1) Ae M.
(2) Each M; is a weak k-model, U; is an M;-ultrafilter, and T; is a X,-pseudo truth
predicate for the structure (M;, €,U;).
(3) For i < j<m, M; C M;, U; CUj, and T; C Tj.
(4) For each i <m, U; N M; € Miy1.
(5) For each j < m — 1, ¥,-formula Jy¢(z,y) € T}, and a € M, there is some b € M1
such that 1(a,b) € Tj+1.
(6) For each j < m — 1, M;11 contains elements X; C M; and Y; C M;y; with the
following properties:
(a) For each z € X, Fy[0(z,y) A* (y € Y;)] is in Tj41.
(b) For each z € M; \ X;, Vy—="6(z,y) is in Tjy1.
Suppose that {(M;,€,U;) | i < w} is a branch of 7. Let M = {J,_, M, U = U, Ui and
T = Ui<o Ti- Let’s argue that T is an actual X,-truth predicate for (M,€,U). We argue
by induction on complexity of formulas. Suppose that ¢(z) is a Yo-formula. We have that
(M,€,U) E ¢(a) if and only if (M;,€,U;) | ¢(a), where a € M;, by absoluteness if and
only if p(a) € T; € T. Next, consider a formula 3y (z,y) such that the hypothesis holds
for ¢(x,y) by the inductive assumption. Suppose first that (M, €,U) = Fy(a,y). Then
(M, €,U) = 9¥(a,b) for some b. By the inductive assumption 1 (a,b) is in T and hence in T}
for some j. Thus, Yy —*t(a,y) cannot be in Tj. It follows that Iy (a,y) € T; C T. Finally,
suppose that 3y (a, y) is in T and hence in some T;. Then there is b € M;+1 such that 1(a, b)
is in 7; C T. Thus, by our inductive assumption, (M, €,U) = ¥(a,b).

We now show that (M, €,U) = ZFC, . Since U is amenable to M by (4), 3y0({p,a),y)
is equivalent to 3z p(x,a) for any II,_;-formula op(x,y) and any a € M. We start with %,,-
separation. Fix a Y,-formula 3z¢(z,w, z) and sets a,b € M. We need to show that the set
X ={rcal|Iz(x,b,2)}isin M. Let a,b € M;. The set X; € M1 consists of all z € M;
for which 3y 6(z,y) € Tj+1. Since T is a truth predicate for M, the set X; consists of all
x € M; for which Jy0(z,y) holds in M. We can use separation in (M,i1,€) to obtain the
set {z € a | (3z¢(z,b,2),a) € X;}, which is precisely the required set X. Next, let’s argue
that 3,-collection holds in (M, €,U). Fix a S,-formula Jy p(x,y) and a set a € M such that
(M, e,U) = Vx € adyp(z,y). We need to find a set b € M such that for every x € a, there
is y, € b such that (M,€,U) = p(z,y.). Let a € M;. The set Y; € My consists of all
witnesses y for z € M; for the formula 0(z,y). Since Jy 6(z, y) was the canonical ¥,-definition
of 3, -truth, we have that 6(b, ¢) holds if and only if b = (d, 3z ¢(z, z)) and 9 (d, ¢) holds. Thus,
in particular, the set Y; already contains all witnesses for ¥, -formulas with parameters in M;
true in M.

It remains to argue that the tree 7 has a branch in V. Let My be any weak x-model in M
with A € My, let Uy = Mo NU, and let To = Th,, where Ty, denotes the restriction of the
3n-truth predicate for (M, €,U) to formulas with parameters in My constructed earlier using
Y,-separation. Let M € M contain witnesses for every ¥,-formula with parameters in Mp.
The set Xy exists by X,-separation applied to the formula 3y 0(z,y) and My. The set Yp is
then the collecting set of witnesses for the set Xo and the formula 3y 6(z,y). So let My be any
weak x-model in M such that M5 C M; and Xo,Yy € M;. Moreover, let Uy = U N M; and
T1 = T, . We define the structures (My, €,U,, T,) for n > 1 analogously. O

Next, we show that weakly n-baby measurable cardinals are weaker than n-baby measurable
cardinals.

Theorem 5.7. An n-baby measurable cardinal is a limit of weakly n-baby measurable cardinals.

Proof. Suppose that M is a k-model such that (M, €,U) = ZFC,,. We show that x is weakly
n-baby measurable in the ultrapower N of M by U, and hence a limit of weakly m-baby
measurable cardinals. As we already argued in the proof of Theorem 5.6, ZFC,, implies that
for every set B, there is a set B* containing for every X,,-formula ¢(x) := Jyyp(z,y) and b € B,
a witness y, such that (b, ys) holds in (M, €,U).
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Fix A C kin M. Let My € M be any weak x-model with Ag € My. Let Mg, as above,
contain witnesses for all ¥,-formulas with parameters from My that are true over (M, €,U).
Let M1 € M be any weak x-model with Mg C M;. Given M, we define M, +1 analogously.
Let Mo = U,,., Mn. Then clearly (Mo,€,U N M) <s, (M,€,U). By closure, the sequence
{M, | n < w} is in M, and hence so is My. Next, we repeat the process, starting with Mo
instead of A, to build a model M € M such that

(Mo,E,UﬂMQ) <=, <M1,E,U0M1> <, (M,G,U>.

Continuing in this manner, we define a 3n-elementary chain of models (M,,,€,UnN M,), and
observe that the sequence must be in M by closure. Let M = J,, ., Mn. Then, by construction,
(M, €,U N M) satisfies ,,-reflection, and so satisfies ZFC;, by Lemma 3.10. O

Note that the above proof only required the model M to be closed under countable sequences.

6. GAMES

The distinction between weakly n-baby measurable and n-baby measurable cardinals (see
Proposition 5.7) suggests that one can obtain different large cardinal notions by varying the
closure of the models. We will show that in fact closure properties induce a hierarchy between
these two notions using games analogous to the ones for a-Ramsey cardinals from [HS18]. We
now describe games with perfect information associated to the («, n)-baby measurable cardinals
and their variants. All games have two players, the challenger and the judge. Suppose that &,
« and 6 are regular cardinals with w < a < k < 6.

Definition 6.1. The game G%" (k) proceeds for a-many steps. The challenger starts the game
and plays a basic k-model My < Hy. The judge responds by playing a structure (No, €, Up),
where PMo (k) € No is a k-model and Uy is an Nop-ultrafilter. At stage -, the challenger plays
a basic k-model M, < Hy such that

{<N€7€7U§> | 5 < ’7} € M’Yv

and the judge responds with a structure (N,, €,U,) such that P (k) C N, is a x-model
and U, is an N,-ultrafilter extending U£<,Y U,. After c-many steps, let M = U5<a M and
U= U§<a U¢. The judge wins the game if she was able to play for a-many steps such that at
the end U is a good M-ultrafilter and (Hi\{r, €,U) = ZFC,,. Otherwise, the challenger wins.

Let fainth;"(f-c) be the analogous game where we do not require the M-ultrafilter U to be
good.

Note that this game is played as the game RamseyGY (k), but, while in that game in order
to win, the judge needed to ensure that U is a good M-ultrafilter, here the judge also needs to
ensure that (H,i‘/i7 €,U) |= ZFC,,. Note also that the M-ultrafilter U is automatically good by
closure for uncountable a.

Let’s argue that H,ivfr = U£<a N¢ is the union of the judge’s moves. If A € Hﬁ/fr, then A can
be coded by a subset of x in some M, and hence A € N¢. If A € N¢, then A € H, 4+, and M
knows this because M < Hy.

We will characterize (o, n)-baby measurable cardinals by the statement that the challenger
does not have a winning strategy in the game G%" (k) for any regular 6 and faintly (w,n)-baby
measurable cardinals by the statement that the challenger does not have a winning strategy in
the game faintG%™ (k) for any regular 6.

The next game strengthens the winning requirement that (H %., €,U) |E ZFC,, to the re-
quirement that X, -reflection holds.

Definition 6.2. The game RG%"(k) is defined just like the game G%™(k), except that the
judge has to ensure that (1) (N, €,Uy) = ZFC,, and (2) (N¢, €,Ue) <x, (N,,€,U,) for all
€ < v in move . The game faintRG%" (k) is defined analogously.

As before, observe that H %_ = U5 <a Ne. Moreover, requiring elementarity between the
moves ensures that (Ng, €,Ue) <z, (HM,€,U) for all £ < . Note that this already implies
(H%,E, U) is a model of ZFC,, by Lemma 3.10.

We will characterise reflective (o, n)-baby measurable cardinals by the statement that the
challenger does not have a winning strategy in the game RG%" (k) for any regular 6 and faintly
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reflective (w, n)-baby measurable cardinals by the statement that the challenger does not have
a winning strategy in the game faintRG%™ (k) for any regular 6.

Suppose that w < o < k is a regular cardinal. Let’s argue that in the definition of the
(reflective) (o, n)-baby measurable cardinals, we can strengthen the assumption that every
subset of k can be put into the required basic k-model to show that, in fact, we can put every
set into such a model.

Proposition 6.3. If k is (a, n)-baby measurable, then for every set A and all sufficiently large
regular cardinals 0, there exists a basic weak rk-model M < Hy with A € M for which there
is a good M -ultrafilter U such that (H;‘i,e,U) E ZFC,,. The same strengthening applies to
faintly (w,n)-baby measurable cardinals, reflective (a, n)-baby measurable cardinals, and faintly
reflective (w,n)-baby measurable cardinals.

Proof. Suppose that x is (a, n)-baby measurable and fix a set A. Suppose towards a contra-
diction that there is a regular cardinal § with A € Hy for which there exists no basic weak
r-model as required containing A and elementary in Hy. Choose any large enough H, (1)
which sees that there is such a counterexample (6, A) and (2) for which there is some basic
rk-model M < H, satisfying the requirements of (a,n)-baby measurability for v, namely that
there is a good M-ultrafilter U such that (H,%, €,U) = ZFC,,. By elementarity, M has some
counterexample (0, A). Let M = M N Hz. Then we have M < Hz, A € M, and Hé\/[ = H%_
Thus, U is a good M-ultrafilter such that (H , €,U) = ZFC,, , but this contradicts that (6, A)
was a counterexample. The proof obviously generalizes to the other large cardinal notions. [

Indeed, the above proof shows that in the definition of the (reflective) (o, n)-baby measurable
cardinals it suffices to assume that for sufficiently large 6, there is a single basic k-model M
satisfying the requirements.

Lemma 6.4. The existence of a winning strategy for either player in the game Gi’”(f@) for
uncountable o is independent of @ > k. An analogous result holds for the games faintG%™ (k),
RGY™ (k) for uncountable o, and faintG%™ (k).

Proof. We will prove the result for the games G%™ (k). The proof for the games RG%" (k) is
nearly identical. The proof relies on the fact that the union ultrafilter is automatically good
by the closure of the union model. For this reason the same proofs work for the faint games,
where the union ultrafilter is not required to be good.

Fix regular cardinals 0, p > k. Let’s argue that if either player has a winning strategy in the
game G%"(k), then the same player has winning strategy in the game G2 (k).

Suppose that the challenger has a winning strategy o in the game G£" (k). Let 7 be the
following strategy for the challenger in the game Gf;”(f-c). Let Mo < H, be the first move
of the challenger in . The first move of the challenger in 7 is going to be a basic k-model
My < Hyp such that PMo(k) C M. At stage v in the game, 7 needs to respond to the moves
{{N¢, €,U¢) | € < v} of the judge. Note that as long as we continue to choose M for £ < v such
that PM¢ (k) C Mg, where M; is the move given by o, then any move (Ng, €, U) of the judge in
the game G%" (k) will also be a valid move in the game G%" (k). So if M, is the response of o to
the moves {(N¢, €,Ue¢) | € < v} of the judge in the game G5 " (k), then 7 will tell the challenger
to respond with M., < Hy such that M~ (k) C M.,. Suppose the judge can win a run of the
game G%"(x). The run of the game gives models (Mg, €, Ue) for € < a. Let M = Ue<r Mg
and U = L,|§<N Ue. Since the judge wins, we have (Hi‘ﬁ, €,U) E ZFC,,. By construction of 7,
the models M, were chosen based on the moves M, dictated by o. But now it follows that the
judge would win against the moves M, by playing (Ng, €, Ue) because H,ivfr = H% = U§<K Ne.
Note that U is automatically good because a was assumed to be uncountable.

Next, suppose that the judge has a winning strategy o in the game G5 " (k). Let 7 be the
following strategy for the judge in the game G%™ (k). Let My < Hp be the first move of the
challenger. Let Mo < H, be such that P*° (k) C My. Now let 7 respond with the structure
(No, €, Up) that is the response of o to My. Given a play {M¢ | £ < v} by the challenger, 7 will
tell the judge to respond with the response of o to the play (M | £ < v} such that Me < H,
and PM¢ (k) C Me. Now observe that if the challenger wins a play against 7 with the moves
{M¢ | ¢ < a}, then the challenger would also win with the moves {M; | £ < a} against o
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because HM = H:—i = Ue<, Ne for M =J,_, M¢ and M= Ue<a Mg. Note here again that
U is good regardless because « is uncountable. O

We don’t know whether Lemma 6.4 holds for the games GZ;”(H), but we suspect that it fails.

Theorem 6.5. A cardinal k is (a, n)-baby measurable, for an uncountable c, if and only if the
challenger doesn’t have a winning strategy in the game GZ’”(H) for some/all regular cardinals
0 > k. A cardinal k is reflective (o, n)-baby measurable, for an uncountable o, if and only if the
challenger doesn’t have a winning strategy in the game RG%™ (k) for some/all reqular cardinals
0 > k. An analogous result holds for the faint notions and games.

Proof. Again, we will only prove the result about the («, n)-baby measurable cardinals because
the other proofs are nearly identical.

Suppose that the challenger doesn’t have a winning strategy in the game G%"(x) for some
fixed regular cardinal § > k. Fix A C k. In particular, starting with a basic k-model My < Hp
with A € My is not a winning strategy for the challenger, and so the judge wins some run of the
game, where the challenger starts with such an My < Hp. Let M the union of the challenger’s
moves in this run of the game and U be the union of the ultrafilters played by the judge. Since
the game was played for a-many steps, the model in each step was closed under <x-sequences
and « is a regular cardinal, the union model M is closed under <a-sequences. Finally, since
the judge wins, we have (H,i\{_, €,U) E ZFC,,. Note that this direction does not use that « is
uncountable.

In the other direction, suppose that k is (@, n)-baby measurable. By Lemma 6.4, it suffices

to show that the challenger does not have a winning strategy in the game GZJr’”(/g). Suppose

towards a contradiction that the challenger has a winning strategy o in the game G} '™ (k). It
is not hard to see that o € Hy for # = (2")*. So fix some basic k-model M < Hp closed under
<a-sequences with o € M for which there is an M-ultrafilter U such that (H!., €,U) = ZFC;,.
We will use M and U to play against ¢ and win, thereby showing that it couldn’t have been
a winning strategy. Let My be the first move of the challenger according to o, and observe
that, by elementarity, we have My € M. Let No € M be a simple k-model with My € Ny such
that every X,-statement that holds in H ,ivi for an element of My has a witness in Ny. Such
a model exists since ZFC;, holds in (HM ,€,U). Let the judge play (No, €,U N No). Since
(No, €,U N Ng) € M, the response of the challenger according to o must be in M as well. We
continue letting the judge play (N¢, €, Ne NU) € M for each £ < « in this fashion. Since M is
closed under <a-sequences, M will always have the sequence of the judge’s moves at each step
v < « of the game. Thus, the judge can continue to play for a-many steps. Let N = U§<a Ne.
We have

(No, €,UNNL) <s, -+ <5, (Nx, &, UNN,) <s, -+ <x, (N,€,UNN) <s, (H¥ €,U)
for limit ordinals A\. Thus, (N, €,U N N) satisfies ¥, -reflection, and therefore
(N,€,UNN) = ZFC;

by Lemma 3.10. As we already observed, N is precisely the H,+ of M = U§<a Me, the
union of the moves of the challenger. Thus, we have shown that the judge can win against o,
contradicting that o was a winning strategy. O

It follows from the proof that # = (2*)* suffices in the definition of (a, n)-baby measurable
cardinals for uncountable . Thus, for uncountable «,  is (a, n)-baby measurable if and only
if every A € Hx)+ is an element of a <a-closed imperfect weak k-model M < Hox)t for
which there is an M-ultrafilter such that (H , €,U) = ZFC,,. An analogous result holds for
reflective (o, n)-baby measurable cardinals and the faint notions.

We are also able to characterize (reflective) (w,n)-baby measurable cardinal using games,
with the only difference being that we cannot restrict to a single 6.

Theorem 6.6. A cardinal k is (w,n)-baby measurable if and only if the challenger doesn’t have
a winning strategy in the game GZ’”(K) for any regular cardinal 6 > k. A cardinal k is reflective
(a0, n)-baby measurable if and only if the challenger doesn’t have a winning strategy in the game
RGY™ (k) for any reqular cardinal 6 > k.
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Proof. Fix a regular 8 > k. The proof of Theorem 6.5 showed that if the challenger doesn’t
have a winning strategy in the game GZ™ (), then for every A € Hy, there is a basic weak
k-model M < Hy, with A € M for which there is a good M-ultrafilter U on k such that
(H%,G,U) = ZFC, . As pointed out in the proof, the argument also holds for the game
RGY™ (k).

So suppose now that & is (w, n)-baby measurable. Fix a regular § > k. Suppose towards a
contradiction that the challenger has a winning strategy o in the game Gf,’”(f-c), Let v > 60 be a
large enough regular cardinal such that o € H, and let M < H, be a basic weak x-model with
o € M for which there is a good M-ultrafilter U such that (H, €,U) | ZFC,,. We will use
U to help the judge win a run of the game GZ’”(H) where the challenger plays according to o,
contradicting that ¢ was a winning strategy for the challenger. Let My < Hy be the first move
of the challenger according to o, and note that My € M since ¢ € M. Let Mo = My N H, .+
and let Up = U N M. We have the judge play (Mo, €,Us). Next, suppose that the challenger
plays the model M; < Hp according to o, and again note that M; € M since o, My, and
(Mo, €,Up) are all in M. Let My € M be a weak x-model containing P*1 () and constructed
as in the proof of Theorem 5.6 to witness the existence of the branch to the tree of models
with partial truth predicates. Namely, we ensure that the model M; has the sets Xo and Yo
from that proof that are going to witness collection and separation in the union model. Let
Ui = UnN M; and have the judge play (Mi,&,U;). Suppose the judge and the challenger
continue to play in this manner for w-many steps. Let M’ =J,_, Mn, U' = U, ., Un C U,
and M =J,_, Mn = Hévf_l. By the proof of Theorem 5.6, (M, €,U’) = ZFC;, and U’ C U is
good because the ultrapower of M’ by U’ embeds into the ultrapower of M by U. Thus, the
judge wins against o, contradicting that ¢ was a winning strategy for the challenger.

Next, suppose that r is reflective (w,n)-baby measurable. Fix a regular § > k. Suppose
towards a contradiction that the challenger has a winning strategy ¢ in the game RGY%™ (k).
Let v > 6 be a large enough regular cardinal such that ¢ € H, and let M < H, be a basic
weak k-model with o € M for which there is a good M-ultrafilter U such that for every B C &
in M, there is a xk-model M € M with B € M such that (M,e,UN M) <s, (HY, €,U)
and (M,e,U N M) | ZFC,. In this case to defeat o, the judge simply plays the models
(M,e,Un M). O

Next, we show that the (reflective) (o, n)-baby measurable cardinals form a hierarchy.

Proposition 6.7. Suppose that « < B < k are regular cardinals. Then every (8,n)-baby
measurable cardinal is a limit of cardinals v > « that are (o, n)-baby measurable. An analogous
result holds for reflective (8, n)-baby measurable cardinals.

Proof. As above, we will only prove the result about the (3,n)-baby measurable cardinals
because the other proof is nearly identical.

First, we handle the easier case where o is uncountable. Suppose that x is (3, n)-baby
measurable and fix a <f-closed basic weak k-model M for which there is an M-ultrafilter U
with (H,i\i, €,U) = ZFC,,. Let N be the ultrapower of M by U. Note that we will not need
M to be elementary in Hp for the argument. We will argue that « is (a, n)-baby measurable
in Vj]&). Otherwise in \/'J-I(VK), the challenger has a winning strategy in the game GZJr’"(/{) by
Lemma 6.4. We will use U to play against o and argue that the resulting run of the game is in
N. Using the same argument as in the proof of Theorem 6.5, it suffices to observe that M has
all the required sequences by <f-closure. Finally, Lemma 6.4 shows that V,, must be correct
about a cardinal being («, n)-game baby measurable.

Next, we handle the case @ = w. Suppose that & is (w1, n)-baby measurable. Fix a regular
cardinal § > k and a countably closed basic weak k-model M < Hpy for which there is an
M-ultrafilter U with (H,Q/i, €,U) = ZFC, . Let N be the ultrapower of M by U. By the
closure of M, U is countably complete, and hence the ultrapower of N by U is well-founded.
Since N is the ultrapower of M and M is countably closed, it follows that N is also countably
closed. We will argue that & is (w,n)-baby measurable in N. Otherwise, working in N, there
is a regular cardinal v such that the challenger has a winning strategy in the game G." (k).
Note that for every basic k-model M’ < HY with M’ € N, M' NU € N because it is in M
by weak amenability. So we can let the judge play against o using U as before, and observe
that the winning run must be in N by closure. Thus, by elementarity, there is & < k in M
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such that M believes that & is (w,n)-baby measurable. Since M < Hy, Hp also believes that
R is (w,n)-baby measurable. It follows that the challenger does not have a winning strategy in
the game G%" (k) for any 6 with (2°)* < §. Thus, for every regular cardinal 6 > &, there is
ke < k such that the challenger does not have a winning strategy in the game Gi’"(/@) for any
f with (2§)+ < 0. But since there is a proper class of regular § and at most k-many kg, there
must be a single £ which is equal to K¢ for a proper class of §. This & is clearly (w,n)-baby
measurable. (]

Theorem 6.8. For n > 1, an n-baby measurable cardinal is a limit of cardinals v that are
(<v,n)-baby measurable. Moreover, an (k,n)-baby measurable cardinal k is a limit of n-baby
measurable cardinals.

Proof. The first part follow from the proof of Proposition 6.7.

For the second part, observe that x is at m-least baby measurable. Now, fix a k-model
M < H, + for which there is an M-ultrafilter such that U such that (M, €,U) = ZFC;,, and let
N be the ultrapower of M by U. We will argue that « is n-baby measurable in N. Since n-baby
measurability is verifiable in H, +, M satisfies that x is n-baby measurable by elementarity, and
thus, so does N. O

Since being weakly n-baby measurable is a property of H, +, it is easy to see that an (w,n)-
baby measurable cardinal is a weakly n-baby measurable limit of weakly n-baby measurable
cardinals.

Theorem 6.9. A weakly n-baby measurable cardinal is a limit of faintly (w, n)-baby measurable
cardinals.

Proof. Suppose that x is weakly n-baby measurable and fix a simple weak k-model M for which
there is a good M-ultrafilter U such that (M, €,U) |= ZFC,,. Let j : M — N be the ultrapower
of M by U. We will argue that « is faintly (w,n)-baby measurable in \/}](\r,i). It will follow that
V.. thinks that there is a proper class of faintly (w,n)-baby measurable cardinals, but V,, must
be correct about a cardinal being faintly (w,n)-baby measurable by Theorem 6.5. Again, by
Theorem 6.5, it suffices to verify that the challenger doesn’t have a winning strategy in the
game fainthf’" (k). So suppose that o is a winning strategy in N for the challenger in the
game fainthf’"(m). We use U to play against o precisely as in the proof of Theorem 6.6 by
having the judge play models closed under witnesses to 3, -assertions with parameters from the
previous models and sets needed to witness collection and separation in the union model. [

Theorem 6.10. Forn > 1 and o < k, a [n + 1]-baby measurable cardinal k is a limit of
reflective (a, m)-baby measurable cardinals.

Proof. Choose a weak xk-model M for which there is an M-ultrafilter U such that (M, €,U) =
KPp+1. As usual, we can assume without loss of generality that M has the form L[A, U],
and therefore has a Aj-definable bijection F' : Ord™ — M. Let N be the, not necessarily
well-founded, ultrapower of M by U. Fix a < k and assume without loss of generality that
it is uncountable. We will argue that k is reflective (a,n)-baby measurable in ij(\;). By
Theorem 6.5, we only need to show that the challenger doesn’t have a winning strategy in the
game RGZ+’". So suppose that o € ijxﬁ) is a winning strategy for the challenger in RG2+‘".
Note that via coding we can view o as a map from C to C, the collection of codes for elements
of M, defined in the proof of Lemma 3.2.

As in the proof of Theorem 6.5, we will use U to play against o. Since (M, €,U) = KPpy1,
by Lemma 3.9, every set B € M is contained in a x-model Mg € M such that

(MB,E,UﬂMB) <5, (M,e,U)

and (Mg, €,U N Mg) = ZFC,,. Observe that, for a set B, the assertion that M is the F-least
rk-model of this form is 3, 41.

Now using a Xpyi-recursion of length « in the structure (M, €,U), we can construct a
sequence of models {N¢ | £ < a} € M as follows. Let My be the first move of the challenger
according to . Let Ng be the F-least k-model of the form M)y,. Given that we have constructed
the sequence {(Ng, €,U N Ng) | € < B} for some 8 < « as the judge’s moves, let Mg be the
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response of o to this sequence for the challenger and let Ng be the F-least xk-model of the form
M. To ask whether Mg is a response of the challenger to the sequence

{(Ne,€,UNNe) | € < B},

we just need to find a code in C as a subset of x for the sequence, and then decode the subset of
% which is the response of o. We use functions representing C and ¢ in the ultrapower together
with U to determine membership in these sets. Clearly, the sequence

{{Ne,e,UNNg) | E<ale MCN

is winning for the judge, which contradicts that o was a winning strategy for the challenger in
Vi O
i(k)

Next, we show that the hierarchy of reflective (a,n)-baby measurable cardinals for n > 1
sits on top of the (a,n)-baby measurable cardinals. Note that for n = 0, the (a,n)-baby
measurable and the reflective (o, n)-baby measurable are the same large cardinal notion because
Y.o-elementarity is equivalent to being a submodel for transitive structures.

Theorem 6.11. For n > 1, a faintly reflective (w,n)-baby measurable cardinal is a limit of
cardinals « that are (o, n)-baby measurable.

Proof. Suppose that « is faintly reflective (w, n)-baby measurable. Fix a simple weak k-model
M for which there is an M-ultrafilter U such that for every B € M there is a k-model M € M,
with B € M, such that (M,€,U N M) <sx, (M,€,U) and (M,€,UN M) = ZFC,,. Suppose
that k is not (k,n)-baby measurable in the ultrapower N of M by U. This means that in N,
the challenger has a winning strategy ¢ in the game GQJr’"(ri). As in Lemma 3.2, the structure
(M, €,U) can check membership in o using some function s representing it in the ultrapower
and the checking procedure is ;. Therefore the models (M, €,U N M), where s € M, are
going to be correct about membership in o as well.

So fix some such (M, €, M NU), which we will use to play against o. The first move My of
the challenger must in M by ;-elementarity. Let (No, € U N No) be the response of the judge,
where Ny is a k-model in M that has witnesses for all 3,,-assertions true in <M, e, Un M) with
parameters in Mo (this exists since (M, €,U N M) = ZFC;,). Since (No, €,U N No) € M, the
next move of the challenger according to ¢ will also be in M by %-elementarity, and so we can
choose N; € M analogously. At limits A, the sequence

{{(Ne, €, UNNg) | £ < A}

will be in M by closure, allowing us to analogously choose the next move Ny. The x-length
sequence {(Ng, €,U N Ne) | € < k} may not be an element of M, but since (M, €,U N M) is an
element of M, M sees the entire construction and therefore has the x-length sequence, which
is clearly winning for the judge. Thus, we have reached the desired contradiction showing that
k is (k,n)-baby measurable in N. O

Finally, it is not difficult to see that for n > 1, a reflective (w, n)-baby measurable cardinal
is a limit of faintly reflective (w, n)-baby measurable cardinals by constructing a tree of partial
plays of the judge against the strategy and arguing that the tree has a branch.

7. FROM BABY TO LOCALLY MEASURABLE

The pattern of large cardinal notions around baby measurables is similar to the one around
n-baby measurables, often with analogous and in some cases simpler proofs. We analogously
define the games G2 (x), faintGY (), RGY (x), and faintRGY, (k) by replacing ZFC;, with ZFC~
and X, -elementarity with full elementarity, respectively.

Weakly baby measurable cardinals are above faintly baby measurable cardinals for a similar
reason as in Proposition 5.6.

Proposition 7.1. A weakly baby measurable cardinal k is a limit of faintly baby measurable
cardinals.
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Proof. Let M be a simple weak x-model for which there is a good M-ultrafilter U such that
(M,e,U) E ZFC~. Let N be the ultrapower of M by U. Working in N, we argue that « is
faintly baby measurable. Fix a subset A of k and consider the tree T' whose elements on level
n are sequences ((Mo, €,Uo),...,{Mn_1,€,Un—1)) such that

e A€ Moy,

o (M;,€,U;) = ZFC; for all i < n,

o (M;, e, Us) <s, (Mj,e,U;) for all i < j <n.
The tree is ill-founded in V' as witnessed by a chain of elementary substructures

<M¢, e,UnN Mz> <5; <M, [SH U>

built using Lemma 3.9. Thus, N has a branch through T as well. The union of models on
the branch gives a structure (M, €, W) = ZFC™ such that M is a weak x-model and W is a
M-ultrafilter. Thus,  is faintly baby measurable in N, and hence « is a limit of these cardinals
by elementarity. O

Above these notions, it is easy to see that an wi-baby measurable cardinal  is a limit of
weakly baby measurable cardinals. The interval between weakly baby measurable and baby
measurable cardinals can be studied using the games G2 (k) and RGY%™ (k). Just like in Lemma
6.4, one can now show that, for uncountable «, the existence of a winning strategy in these
games for either player is independent of # > k™. As in Theorem 6.5, one can then show
that, for uncountable «, a cardinal k is a-baby measurable if and only if the challenger does
not have a winning strategy in G% (), and the analogous characterisation holds for reflective
a-baby measurable cardinals and RGi(/{). The proofs are virtually the same except that in the
construction of a winning run for the judge, in step A + n for limits A one adds witnesses for
Y.n-truths only. As in Theorem 6.6, one can show that a cardinal k is w-baby measurable if and
only if the challenger does not have a winning strategy in GZ(/{) for any regular 6 (the proof is
even easier because we have X,-elementary substructures), and the analogous characterization
holds for reflective w-baby measurable cardinals. The a-baby measurables and the reflective a-
baby measurables form strict hierarchies as in Proposition 6.7. Moreover, the former hierarchy
sits strictly below the latter, since a faintly reflective w-baby measurable cardinal is a limit of
cardinals a that are a-baby measurable as in Proposition 6.11. At the top of these hierarchies, a
baby measurable cardinal is a limit of cardinals v that are <v-baby measurable as in Proposition
6.8, similarly to how a strongly Ramsey cardinal x is a limit of cardinals v that are <v-Ramsey,
and a k-baby measurable cardinal x is a limit of baby measurable cardinals, similarly to how
a k-Ramsey cardinal « is a limit of strongly Ramsey cardinals.

Locally measurable cardinals (see Definition 2.18) are above all these notions.

Proposition 7.2. A locally measurable cardinal k is baby measurable and a limit of cardinals
v that are reflective v-baby measurable.

Proof. Let M be a weak k-model which thinks it has a normal ultrafilter U on k. Let N be
the ultrapower of M by U. If N had a strategy o for the challenger in the game RGQ+ (k), then
M would see the strategy via the function representing it in the ultrapower and would be able
to use U to play against it.

It remains to show that  is baby measurable. Fix A C x and a weak x-model M, with
A € M, having what it thinks is a normal ultrafilter U on k. Clearly, M can build what it
thinks is a k-model M such that (M,€,UNM) < (HM  €,U), with A € M, because H'} is a
set in M. But then M is actually a x-model by Lemma, 2.3. (]

8. INDESTRUCTIBILITY

In this section, we provide a few basic indestructibility results for faintly baby measurable,
weakly baby measurable, and baby measurable cardinals. More specifically, we show that these
large cardinals k are indestructible by small forcing and can be made indestructible by the
forcing Add(k,1) adding a Cohen subset to k.

The indestructibility arguments will use properties of class forcing over models of second-
order set theory. A model of second-order set theory is a triple M = (M, €,C), where M consists
of the sets of the model and C consists of the classes. The second-order theory GBc™ consists
of the axioms ZFC™ for sets, the extensionality axiom for classes, the class replacement axiom
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asserting that every class function restricted to a set is a set, and the first-order comprehension
scheme asserting that every first-order formula defines a class. The theory GBC™ is the theory
GBc™ together with the assertion that there is a class well-order of sets of order-type Ord.
Given a class partial order P € C, we say that a filter G C P is M-generic for P if it meets every
dense subclass of P from C. Given an M-generic filter G, the forcing extension of M by G is
the structure (M[G], €,C[G]), where M[G] consists of the interpretation of P-names by G and
C[G] consists of the interpretation of class P-names by G, where a class P-name is any class
whose elements are pairs of the form (o, p) with p € P and o a P-name. If M is ill-founded, we
can still form the generic extension by taking instead of interpretations of names, the structure
whose elements are equivalence classes of (class) P-names moded out by the filter G. Although
class forcing may not always preserve replacement to the forcing extension, pretame partial
orders preserve the theories GBc™ and GBC™. See [HKS18] for the definition and results on
pretameness, and see [AGng] for details on models of second-order set theory and class forcing.

Proposition 8.1. Faintly baby measurable, weakly baby measurable, and baby measurable car-
dinals are indestructible by small forcing.

Proof. Suppose that x is weakly baby measurable, P € V, is a forcing notion, and g C P is
V-generic. Fix A C & in V[g] and let A be a nice P-name such that A, = A. Since P € V,,, A is
a subset of Vi as well and hence we can put it into a simple weak k-model M for which there
is a good M-ultrafilter U such that (M, €,U) = ZFC™. Let C be the classes of M generated
by U, so that the second-order structure (M, €,C) = GBc™. Since P is a set forcing in M, it
is, in particular, trivially pretame. Since pretame forcing preserves GBc™, we have that the
second-order structure (M|g], €,Clg]) = GBc™ as well. Let W the M [g|-ultrafilter generated
by U in M[g]. Clearly W € Clg], and so it follows that (M[g], €, W) | ZFC™. Also, clearly
W is good because we can lift the ultrapower embedding j : M — N to j : M[g] — Ng]
and the M|g]-ultrafilter generated from the lift is precisely W. Since A € M|g], the structure
(M[g], €, W) witnesses weak baby measurability for A.

The case of faintly baby measurable cardinals is even easier because it suffices to note that
W is definable in (M|g], €,C][g]).

For the case of baby measurable cardinals it suffices to observe that a forcing extension Mg|
of a k-model M by P is again a x-model in V]g]. O

Theorem 8.2. Faintly baby measurable cardinals, weakly baby measurable cardinals, and baby
measurable cardinals k can be made indestructible by the forcing Add(k, 1).

Proof. Suppose that « is weakly baby measurable. Let P, be the s-length Easton support
iteration forcing with Add(«, 1) at regular cardinal stages, and let G % g be V-generic for
P, x Add(k,1). With some slight renamings, we can assume that the poset P, x Add(x, 1) is a
subset of V. Every subset A C s in V[G  g] has a nice P, * Add(k,1)-name A in V, which
can therefore be put into a weak k-model M for which there is a good M-ultrafilter U such
that M := (M, €,U) = ZFC™. By moving to L[A, U] of M, we can assume without loss of
generality that M has a definable class bijection F' : Ord™ — M. Let C be the classes of
M generated by U, so that the second-order structure (M, €,C) = GBC™. Since the forcing
P, * Add(k, 1) is a set and hence pretame, we have that the second-order structure

(M[G = g],€,C|G * g]) E GBC™.

Let Ult be the (not collapsed) ultrapower of M by U that is definable in (M, €,U) and let
U : M — Ult be the ultrapower map, which is also definable there. Note that (M, €,U) can
pick out a unique element of each equivalence class using the global well-order function F'. The
model M[G x g] = (M[G x g], €,C[G * g]) has the classes M and Ult. Using G * g, we can define
the model Ult[G = g] inside (M[G * g], €,C|G * g]). We can think of elements of Ult[G * g] as
equivalence classes [7] of P * Add(k, 1)-names from Ult, where we have that 7 is equivalent
to o0 whenever there is p € G % g such that p IF 7 = 0. The entire construction is definable in
MJG * g]. We will lift the ultrapower embedding ¥ of M by U to an ultrapower embedding of
MG * g] inside the structure (M[G * g], €,C[G * g]).

First, we lift ¥ to M[G]. Using the standard lifting criterion for lifting elementary em-
beddings to a forcing extension, we need to build an Ult-generic filter H for the poset ¥(P)
with U[G] C H. The poset ¥(P.) factors as P, * Add(k, 1) * Pann (we will associate the initial
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segment of the ultrapower that is isomorphic to M with M itself to simplify notation). We
use G * g for the initial segment of the forcing, thereby trivially satisfying the requirement
that U[G] = G will be contained in the filter we end up building. So it remains to find an
Ult[G * g]-generic filter Gyai for the tail forcing Pyau, which is <kT-closed there. The model
(MG * g],€,C[G * g]) has a class bijection F’ : Ord™ — M[G * g] constructed from F. Using
F’,in (M[G *g], €,C|G % g]), we can enumerate all the dense subsets of ¥(P,) in Ult|G * g] in a
class sequence of length Ord™. The length of every initial segment of this enumeration is some
ordinal € M. Note next that every sequence of elements of Ult of order type a must be an
element of Ult because it is an ultrapower. The closure also transfers to the pairs M[G] and
Ult[G], as well as M[G # g] and Ult[G * g] (for details of closure arguments, see [GJ22, Section
3]). Thus, as we diagonalize against the sequence of dense sets inside (M|[G * g], €,C[G * g]),
every initial segment of our choices of elements from the dense sets is going to be a sequence
in Ult[G * g] and therefore since U(P,) is <xT-closed in Ult[G * g], we can find an element
below the diagonalization sequence. Thus, we can continue using replacement in our structure
to define the generic filter. Note that the generic filter Giaii we construct in this manner is a
class in M[G * g].

Once we have the generic filter Gyail, we can repeat the process to define an Ult[G * ¢][Grail]-
generic filter for the image ¥(Add(x,1)) = Add(¥(k),1) of Add(k,1) under the lifted ultra-
power map . Thus, we can lift the ultrapower embedding ¥ to M |[G*g] and use the ultrapower
map ¥ to define the M[G x g]-ultrafilter W extending U. Since W was defined inside the struc-
ture (M[G *g], €,C|G % g]), we have that (M[G *g],€, W) |E ZFC™. The lifted ultrapower map
verifies that W is good.

The case of faintly baby measurable cardinals proceeds identically to above because we never
used the well-foundedness of the ultrapower in our construction.

For the case of baby measurable cardinals it suffices to observe that a forcing extension
MG x g] of a k-model M by P, *x Add(k,1) is again a k-model in V[G * g] (for details, see
[GJ22, Section 3]). O

Corollary 8.3. A faintly baby measurable, weakly baby measurable or baby measurable cardinal
K can be made indestructible by the forcing Add(k,0) for any cardinal 6.

Proof. Suppose that G C Add(k,0) is V-generic. Observe that any A C x € V[G] has an
Add(k,0)-name A in V that uses at most x-many coordinates in 6. Thus, we can view A as an

Add(k, 1)-name. Hence, it suffices to show that these cardinals can be made indestructible by
Add(k, 1). O

It follows that we can make the GCH fail at these cardinals. Also, a simple version of the
above lifting argument can be used to show that the GCH forcing that adds Cohen subsets at
all successor cardinals preserves these cardinals.

We believe that the indestructibility results should work for the level by level n-versions of
the baby measurable cardinals as well (at least for some reasonably large n). This would rely
on set forcing preserving an appropriate version of the class theory GBC,, extending ZFC,, (or
KP;,) and checking that the complexity of the constructions (ultrapower and generic filters)
never beyond 3.

9. A DETOUR INTO SECOND-ORDER SET THEORY

Models of ZFC™ with a largest cardinal s that is inaccessible are bi-interpretable with
models of the second-order set theory Kelley-Morse strengthened by a choice principle for
classes. Let ZFC; be the theory asserting that ZFC™ holds, that there is a largest cardinal
k, and that s is inaccessible (P(«a) exists and 2% < k for all & < k). The assumption that x
is inaccessible implies, in particular, that V.. exists, and that Vi = ZFC. Recall that Kelley-
Morse (KM) is a second-order set theory whose axioms consist of GBC together with the full
comprehension scheme asserting for every second-order formula that it defines a class. We
can further strengthen KM by adding various very useful choice principles for classes. Let the
choice scheme (CC) be the scheme which asserts, for every second-order formula ¢(z, X, A),
that if for every set x, there is a class X witnessing ¢, then there is a single class Y collecting
witnesses for every set x on its slices Y, = {y | (z,y) € Y}.
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Marek showed that the theory Kelley-Morse together with the choice scheme (KM + CC)
is bi-interpretable with ZFC; [Mar73, Section 2]. Given a model V = (V, €,C) = KM + CC,
we obtain the corresponding model Mv |= ZFC; by taking all the well-founded extensional
relations in C, modulo isomorphism, with the natural membership relation that results from
viewing these relations as transitive sets. We get that VNMV >~V and P(VH)MV >~ C. In the
other direction, given any model M |= ZFC}, we obtain the corresponding model

V = (VM e, P(V.))M) = KM + CC.

Moreover, what gives us bi-interpretability is that the ZFC; -model M~ corresponding to V is
precisely M.

Let ZFC, be the theory in the language with an additional unary predicate U consisting
of ZFC; in the extended language together with the assertion that U is a uniform normal
ultrafilter on the largest cardinal x.

On the second-order side, let KMy be the theory in the language of second-order set theory
with an additional unary predicate U on classes consisting of KM in the extended language
together with the assertion that U is a uniform normal ultrafilter on Ord. Let

V = (V,€,C,U) = KMy.

Consider the ultrapower structure (Ult, E) consisting of the equivalence classes of class func-
tions F' : Ord — V from C modulo U. It is not difficult to see that Lo§’ Theorem holds for
the structures (V, €) and (Ult, E): (Ult,E) = o([F]) if and only if {a | (V,€) = ¢(F(a)} € U.
It follows that the universe V' is isomorphic to a rank-initial segment Ult, of Ult consisting
of equivalence classes of constant functions C, : Ord — V such that Cy(a) = a for all «,
and that Ult,4+1 consists precisely of the classes C via this isomorphism. Since by Lo$§’ The-
orem, (Ult,E) = ZFC, it has a well-ordering of Ult.41. Now, essentially by the argument of
Lemma 3.2, we can conclude that V has a definable well-ordering of its classes. The existence
of a definable well-ordering of classes is much stronger than the choice scheme, which clearly
follows from it.

Similar arguments as above show that KMy and ZFC,; are bi-interpretable. Therefore we
should view ZFCy; as essentially being a strong second-order set theory asserting that Ord is
measurable.

From the bi-interpretability of these theories, we also know the first-order consequences in
models V = (V,€,C,U) of KMy. Using the proof of Theorem 5.3 and X,-class reflection
mentioned below, it follows that there is a proper class of cardinals x that are k-Ramsey. Our
results further shed light on the global structure of V. We say that Ord is ineffably Ramsey
if every class function F : [Ord]<* — 2 has a stationary homogeneous class. By X,-class
reflection, we mean the assertions for each n € w that for every class A € C, there is a collection
C C C coded by a single class such that A € C and (V,€,C,UNC) <x, (V,€,C,U). Note
that the results cited in the following claims can be applied in this situation since the proofs of
Lemma 2.6 and Lemmas 3.2, 3.4 and 3.9 only use internal properties of the structures (M, €,U)
and therefore, these results hold for all models (M, €,U) of the respective theory such that U
is an M-ultrafilter from the viewpoint of (M, €,U).

e V has a definable global well-order of C by Lemma 3.2.

e V has a truth predicate for (V, €,C) by Lemma 3.4.

e Ord is ineffably Ramsey in V. (This can be seen by carrying out the argument from
[Git1l, Lemma 3.6] internally to V.)

e V satisfies X,,-class reflection for each n € w by Lemma 3.9.

We next provide a version of Bovykin’s and McKenzie’s Theorem 1.1 that uses our variants
of their n-baby measurable cardinals and the above results about them.
Theorem 9.1. The following theories are equiconsistent:
(1) ZFCy.
(2) ZFC together with the scheme consisting of the assertions for all n € w:
“There exists an n-baby measurable cardinal k with V, <x, V.”
(3) ZFC together with the scheme consisting of the assertions for all n € w:

“There exists an n-baby measurable cardinal.”
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Moreover, (2) captures precisely the theory of models M of (1) restricted to V;, where & is
the largest cardinal of M.

Proof. To show that the consistency of (1) implies that of (2), suppose that (M, €,U) = ZFCy,
with a largest cardinal x (although we use € for the membership relation here, we don’t assume
that it is the actual membership relation). We show that (2) holds in V;*. Fix n € w. The
proof of Lemma 3.9 shows that every A C s in M is an element of M, which M thinks is a
k-model, such that (M, M NU) <x, (M,€,U). Thus, the ultrapower N of M by U satisfies
that x is n-baby measurable. Let’s argue that V. < Vj(,) in IV, where j is the ultrapower map.
Note that M and N have the same natural numbers (possibly nonstandard), so they agree
about formulas. Given a (possibly nonstandard) formula ¢(z), we also have that M and N
agree on whether V.. = ¢(a). Moreover, if M |= “V.; = p(a)”, then N = “Vj(.) = ¢(j(a))” by
elementarity. It follows, by Los’ Theorem, that there is some o < k such that M satisfies that
Va < Vi and « is n-baby measurable. Thus, in particular, we actually have that V, <x, Vi
because M will be correct about satisfaction for standard formulas. Also, Vi clearly agrees
with M that « is n-baby measurable.

(2) clearly implies (3).

To show that the consistency of (3) implies that of (1), suppose that N is a model (3).
Suppose towards a contradiction that there is no model of (1), meaning that for some n < w,
the fragment of ZFC;, mentioning only instances of collection and separation for formulas of
complexity at most X, is inconsistent. Fix such an n < w. The model N has a model (M, €,U)
satisfying what it thinks is all instances of collection and separation for formulas of complexity
at most X,, and it must be correct about this for standard formulas. Thus, we have reached a
contradiction by producing such a model.

It remains to show the “moreover” part. So suppose that N is a model of (2). We need to
argue that the theory ZFCy; together with the assertions that Vi |= ¢ for every ¢ € Th(N) is
consistent. If this were not the case, then there would be some finite fragment T' of ZFC; and
some ¢ such that N = ¢, but there is no model (M, €,U) = T such that V; }= . Choose
n < w bounding the complexity of ¢ and all assertions in 7. Let x be an n-baby measurable
cardinal in N such that V¥ <5, N. Then N has a model (M, €,U) witnessing that x is n-
baby measurable. It follows that (M, €,U) = T and also VM = V¥ = ¢ by Z,-elementarity,
contradicting our assumption that this theory is inconsistent. O

The above argument works as well for measurable cardinals. Let ZFC,, denote ZFC with the
replacement (equivalently, collection) and separation schemes restricted to ¥,-formulas. We
call a cardinal kK n-junior measurable if every A C k is an element of a k-model M of ZFC,,
with a normal ultrafilter U € M.

Remark 9.2. Let T denote ZFC together with the existence of a measurable cardinal. Let S
denote ZFC with the scheme consisting of the following sentences for alln € w:

“There exists an n-junior measurable cardinal k with V,, <s, V7.

Asin Theorem 9.1, S captures precisely the consequences in Vi, of measurable cardinals k. Since
the argument only uses IIs-indescribability, a similar claim holds for all other large cardinal
notions that imply I13-indescribability, for instance for the notions of strong and supercompact
cardinals.

In particular, there is a hierarchy of natural large cardinal notions, the n-junior measurable
cardinals, that reaches up all the way to measurable cardinals. This answers a question of
Daniel Isaacson asked at the first-listed author’s talk in the Oxford Set Theory Seminar in May
2020.

10. OUTLOOK

We provided a fine analysis of large cardinal notions in the interval between Ramsey and
measurable cardinals defined by expanding the amount of collection and separation available
in the relevant models. The diagram in Figure 2 below provides an overview of relationships
between the large cardinal notions. The patterns around a-Ramsey, (o, n)-baby measurable
and a-baby measurable cardinals are enclosed by solid boxes. Repeating steps in a hierarchy
that depends on w < o < Kk or 1 < n < w are enclosed by dashed boxes. For example, the large
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dashed box encloses a pattern that repeats for each 1 < n < w. An [n + 1]-baby measurable
cardinal is a limit of reflective (a,n)-baby measurable cardinals by Theorem 6.10 and such
cardinals are [n]-baby measurable. Note that the notions in this box collapse for n = 0 by
Section 5. The range of a for a-Ramsey cardinals is meant to be w1 < a < k.

The differences between the properties of KP,, and ZFC;, studied in Section 3 entail that
closure properties are not relevant for the large cardinal notions defined via KP,, by Lemma 5.1,
while they induce to a strict hierarchy for the ones defined via ZFC,, by Theorem 5.7 that is
studied via the games G%" (k) in Section 5.

We expect a similar pattern as the one around x-baby measurable cardinals to recur at
reflective k-baby measurable cardinals. It is natural to ask whether reflective (o, n)-baby mea-
surable cardinals are precisely the cardinals s such that the challenger does not have a winning
strategy for the game of length x - a. Some issues are left open for the strong variant of the
game RG%™ (k) in Definition 6.2 where we ask that M, € N, for all ¥ < a. We have a similar
characterisation as in Theorem 6.5 for winning strategies for the challenger by modifying the
reflection in Definition 4.3 to all sets B € M instead of just subsets of x, but it is open whether
the existence of a winning strategy for the challenger in this game is independent of 6 as in
Lemma 6.4.

Theorem 9.1 provides a bridge between large cardinals in set theory and class theory. In
particular, the theory S in (2) is interpretable in T' := ZFC;; and T is conservative over S.
Since in familiar examples of conservative extensions such as Godel-Bernays class theory GBC
and ZFC, any model of ZFC can be extending to one of GBC by adding a second-order part,
we ask if the same holds here.

Problem 10.1. Is every model of S the restriction to Vi of a model of T, where & is the largest
cardinal? In other words, is the function from Mod(7") to Mod(.S) induced by the interpretation
surjective?

The results in Section 9 show how to approximate some large cardinal notions from below.
For instance, we studied the precise consequences in VM for a measurable cardinal x in a
model M of ZFC™ in Theorem 9.1. We further ask whether n-baby measurable cardinals can
be replaced by (k,n)-baby measurable cardinals in this theorem. Regarding a finer version
of the theorem, let ZFCy;  denote the variant of ZFCy; where the collection and separation
schemes are restricted to X,-formulas for some n > 1 and s denotes the largest cardinal. Are
the consequences ZFCyp,,, in V. axiomatizable by large cardinal properties?

The same problem is of interest for smaller large cardinals.

Problem 10.2. Is the theory of models of the form VM axiomatizable by large cardinal
properties, where M is a model of ZFC and k is a weakly compact cardinal in M?

The approximation of measurable cardinals from below in Remark 9.2 suggests to ask
whether there is a connection with Bagaria’s characterization of the existence of measurable
cardinals [Bag23, Section 5.2].

The following variant of the above notions for countable models may be connected with
properties of sets of reals and the determinacy of infinite games.

Problem 10.3. Consider the statement that every real is contained in a countable transitive
model M of ZFC™ with the largest cardinal x and an M-ultrafilter U on P(x)™ such that
(M, €,U) is an wi-iterable model of KP,,, where n > 1. Is this equivalent to the determinacy
of a natural class of projective sets?
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FIGURE 2. Implications between large cardinal notions. Solid arrows denote
direct implications, dotted arrows implications in consistency strength.
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