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DIFFERENTIAL MODULES AND
DORMANT OPERS OF HIGHER LEVEL

YASUHIRO WAKABAYASHI

ABSTRACT. The aim of the present paper is to develop the theory of D-modules in positive
characteristic. In Sections 2, 3, and 4, we study higher-level generalizations of differential mod-
ules in positive characteristic. These objects may be regarded as ring-theoretic counterparts
of vector bundles on an algebraic curve equipped with an action of the ring of (logarithmic)
differential operators of finite level introduced by P. Berthelot and C. Montagnon. The well-
known existence assertion for a cyclic vector of a differential module is generalized to higher
level. In Sections 5, 6, and 7, we introduce and discuss (dormant) opers of level N > 0 on
a pointed smooth curve whose structure group is either GL,, or PGL,,. Some of the results
in Sections 3 and 4 are applied to prove a duality theorem between dormant PGL,-opers of
level N and dormant PGL,~_,-opers of level N. Finally, in the case where the underlying
curve is a 3-pointed projective line, we establish a bijective correspondence between dormant
PGLs-opers of level N and certain tamely ramified coverings. These assertions are building
blocks to establish the enumerative geometry of higher-level dormant opers.
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1.1. Differential modules in positive characteristic. Let R be a differential ring, i.e.,

a commutative ring equipped with a derivation 0 : R — R. A differential module over R
is an R-module F equipped with an additive map V : E — FE satisfying the Leibniz rule:

V(a-v) =0(a)-v+a-V(v) (a¢ € R, v e€FE) IfRisofcharacteristic 0, a differential

sheaf equipped with a flat connection) on an algebraic curve.

module may be regarded as a ring-theoretic counterpart of a D-module (or equivalently, a
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On the other hand, differential modules and D-modules in characteristic p > 0 have many
different features from those in characteristic 0 (see, e.g., [And], [Hon|, [Kat2], [Kat3]). For
example, unlike the case of characteristic 0, Picard-Vessiot theory fails for differential modules
in characteristic p. Despite this problem, such objects have attracted a lot of attention for
various reasons, including in relation to the Grothendieck-Katz p-curvature conjecture.

We should note that there are variations of the sheaf “D” defined on an algebraic vari-
ety X in characteristic p. One is the ring of crystalline differential operators (following the
wording in [BMR]), which we denote by Dg?). Giving a Dg?)—module is equivalent to giving
an Ox-module together with a flat connection. This means that the notion of a Dg?)—module
corresponds exactly to a differential module in the usual sense.

Another variant is the ring of differential operators Dg(oo) in the sense of Grothendieck

(cf. [Gro, Section 16.8.1]). A D§§°) -module is often called a stratified sheaf and interpreted as
an Ox-module admitting infinite Frobenius descent. The ring-theoretic counterpart is known
as an iterative differential module (cf. [Oku, Section 1.2], [vdPS, Section 13.3]). The notion of
a stratified sheaf was introduced in D. Gieseker’s paper (cf. [Gie, Definition 1.1]) and discussed
in, e.g., [dSa], [Esn], [EsMe], [Kinl], and [Kin2]. We also can find descriptions of iterative
differential modules in, e.g., [Ern], [MavdP], and [Rés].

Next, let us recall the ring of differential operators D ) of level m € Z>y, as introduced
by P. Berthelot (cf. [PBerl], [PBer2]); this kind of sheaf is an essential ingredient in defining

arithmetic D-modules, and it may be positioned between Dg?) and D§§°). In fact, the ring of

(m
X

crystalline differential operators coincides with Berthelot’s Dg?) (i.e., Dﬁ?‘) for m = 0), and
there exists an inductive system

DY DY DY ... 5D ..

)

satisfying hgrlm Dgzn) = Dg(oo). Moreover, C. Montagnon generalized Dg(m to the case where

the underlying scheme is equipped with a log structure (cf. [Mon, Définition 2.3.1]). This
generalization allows us to deal with D&m)-modules (in the logarithmic sense) for (possibly

singular) pointed curves X.

1.2. Cyclic vectors of higher-level differential modules. In Sections 2, 3, and 4 of the
present paper, we consider ring-theoretic counterparts of (both non-logarithmic and logarith-

mic versions of) Dg(m)—modules, in other words, higher-level generalizations of differential mod-
ules. (Note that some of our discussions are merely paraphrases of previous studies.)

The central character is an m-differential ring (resp., an m-log differential ring), which is
defined as a ring R in characteristic p equipped with a collection of certain additive endomor-
phisms O := {0()}jez., (cf. Definition 2.2.1, (ii)). Each such data % := (R,0)) yields a

possibly noncommutative ring Dg) generated by the elements of R and the set of abstract

symbols {0y} jez.,. (The definition of a related ring can be found in [Kinl, Definition 1.1.1].)
In particular, we obtain the notion of a Dg)—module, which corresponds to the sheaf theoretic
notion of a 'Dg(m)—module.

An important ingredient in the theory of differential modules is the concept of a cyclic vector.
A cyclic vector of a differential module (E,V) is an element v € E such that the elements
Vo) (=v),Vi(v), -+, Vi(v) (for some [ > 0) form a basis for E. The choice of such an

element enables (F,V) to be interpreted as a higher-order linear differential operator on R;
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accordingly, each element in E that is horizontal with respect to V can be described as a root
function of that operator, i.e., a function annihilated by that operator. A fundamental result is
the existence of a cyclic vector in a general situation (cf. [ChKol, [Kat4]). We refer the reader
to, e.g., [Adj], [DBer], [Del], and [Kov], for various discussions concerning cyclic vectors.

Given an m-differential ring # and D%m)—module (E,V), we can describe the notion of an
m-cyclic vector of (E, V) (cf. Definition 2.5.1) as a higher-level generalization of a cyclic vector
in the classical sense. An m-cyclic vector of (E, V) is, by definition, an element of E such that
V() (=v),Vay(v), -,V (v) (for some [ > 0) forms a basis of £.

Also, by a pinned D;,m)—module, we mean a D%m)—module together with an m-cyclic vector.

Our study of m-cyclic vectors stems from the fact that a pinned ng(?)—module is regarded as a
locally defined GL,,-oper on a curve; as such, various properties of m-cyclic vectors can be used
to examine higher-level generalizations of opers. The first main result of the present paper
generalizes the classical assertion of the existence of a cyclic vector to higher level.

Theorem A (cf. Theorem 2.5.6). Let m be a nonnegative integer, n a positive integer,

and (R, 0wy) an m-differential field over I, := Z/pZ. Assume that the morphism D;Qn —
Endr (R) naturally induced by O is injective. (This assumption is fulfilled when n < p™*+!
and R is either k(t) or k((t)) for a perfect field k over F, equipped with the m-derivation
Oy = {0 }; given by (2.1).) Then, each Dé}?)—module (E,V) with tk(E) = n admits an
m-cyclic vector.

After proving the above theorem, we discuss the p™*-curvature of each Dgl)—module in
the situation (cf. Section 3.1) that #Z := (R, 0)) (vesp., Z = (R, 5<.>))) is a certain type of

m-differential ring (resp., m-log differential ring); we use the notation DE;”) (resp., Dgn)) to
denote the ring Dgl) for convenience. The p™*!-curvature of a D%m)—module (resp., a Dgn)—

module) (E, V) is defined as an invariant measuring the extent to which the element Ogym-1)

(resp., 5<pm+1>) via V vanishes. We say that (E,V) is dormant (cf. Definition 3.1.3) if it has
vanishing p™*!-curvature.

Here, suppose that (E,V) is dormant and the R-module E is free and of rank n > 0. In
the non-logarithmic case, the structure of (£, V) is not difficult because a classical result by
Cartier implies that (F, V) is isomorphic to the direct sum of finitely many copies of the trivial

D'™-module (cf. Corollary 3.1.7).
On the other hand, in the logarithmic case, the formal completion of (£, V) is isomorphic
to that of the direct sum @}_, (R, V) for various elements d; (j = 1,---,n) of Z/p™*'Z,

where each V4, denotes a lv?g”)—action on R defined in (4.3). The resulting multiset [dy, - - - , d,,]
is called the ezponent of (E,V) (cf. Definition 4.3.1). We examine its relationship with the
residue described in Section 4.1 (cf. Propositions 4.2.1, (i), 4.3.4, and Remark 4.3.3), as well

as with the existence of an m-cyclic vector (cf. Proposition 4.4.1). In addition, we establish a

)

duality between dormant pinned Dgﬂ -modules of rank n (with 0 < n < p™*!) and dormant

pinned DY™-modules of rank p" — n (cf. Corollary 3.3.3, Proposition 4.4.3).

1.3. Duality for dormant opers of higher level. In Sections 5, 6, and 7 of the present
paper, we study (dormant) GL,-opers and (dormant) PGL,-opers of level N > 0. Here, let
2 = (X, {o:}_;) (cf. Section 5.2), where r > 0, be an r-pointed smooth curve over an
algebraically closed field k of characteristic p. A GL,&N )-oper (or a GLy,-oper of level N) on 2
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)

is, roughly speaking, a rank n vector bundle on X equipped with both a D&N_l -action and

complete flag structure satisfying a strict form of Griffiths transversality. GLS)—opers have
been investigated from various points of view (cf. [BeDrl], [BeDr2], [BeBi|, [Fre], [Wak5]).

In addition, dormant PGLgN)—opers (i.e., PGLy-opers of level N with vanishing p"V-curvature)
on an unpointed smooth curve were discussed in [Hos2|, [Wak3|, and [Wak4]| under the iden-
tification with FN-projective structures. In the case where the set of marked points {o;};
of 42 is nonempty, we introduce the radius of a PGLSLN )_oper at each marked point o; (cf.
Definition 5.3.2); this is an element of &,\(Z/pNZ)"/A (where A denotes the image of the
diagonal embedding Z/pNZ — (Z/pN7Z)" and &,, denotes the symmetric group of n letters
acting on (Z/pN7Z)" by permutation) induced from the exponent of the Ekﬂt]—module obtained
by restricting that oper to the formal neighborhood of o;.

Given an clement 5 € (p,)]_, € (S,\(Z/pVZ)"A)", we set

Opffz'” (resp., Opfizp;”)

to be the set of dormant PGL;N )_opers (resp., dormant PGL;N )_opers of radii p)on 2. Then,
we verify that Opznzz'" = 0 if n > p" (cf. Corollary 5.2.4) and that Opibzz'" consists of exactly
one element if n = 1. Also, by the duality of differential modules established in Sections 3
and 4, we obtain the following assertions, generalizing [Wakl, Theorem A, (i) and (ii)], [Wakl1,
Corollary 4.3.3], and [Hos1, Theorem A].

Theorem B (cf. Theorem 6.3.1, Corollary 6.3.2). Suppose that 0 < n < p™. Then, the
following assertions hold:

(i) There exists a canonical bijection of sets
a,:Op,” 3 Opn’,
satisfying Ayn_, o d,, = id. In particular, there exists exactly one isomorphism class of
dormant PGL;%ll—oper on X ; i.e., the following equality holds:
HOp,v ) =1
(ii) Suppose further that r > 0, and let us take p:= (p;)i_; € (6,\(Z/p"Z)"/A)". Then,
(I, restricts to a bijection

Zzz...

Z2z... ~
Gn,ﬁ . Opn,ﬁ — Opprn,ﬁ'"
where pY¥ := (p] )i is the set defined in (4.8), satisfying A,n_, v o Uy, 7 = id (under the

—n,p
—

equality p¥Y = p).

1.4. Comparison with tamely ramified coverings. The next topic concerns the clas-
sification of tamely ramified coverings of the projective line in characteristic p with speci-
fied ramification data and fixed branch points. For related work on this problem, we re-
fer the reader to [BoOs|, [BoZa|, [Ebe], [Fab], [Ossl], [Oss2], [Oss3], and [Oss4]. We know
(cf. [Moc], [Oss2], [Oss4]) that certain tamely ramified coverings with ramification indices < p
can be described in terms of dormant PGLs-opers (i.e., dormant torally indigenous bundles, in
the sense of [Moc]). In particular, that description allows us to translate dormant PGLs-opers
on a 3-pointed projective line into simple combinatorial data; this result is the starting point
of the enumerative geometry of dormant opers studied in [Wak5]. In the present paper, the
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situation is generalized to the higher level case in order to deal with tamely ramified coverings
having large ramification indices.

Let us consider the 3-pointed projective line &2 := (P, {[0], [1], [oc]}) over k, where [z] (for
each z € {0,1,00}) denotes the point of the projective line P determined by the value z. (We
use the notation “P” as opposed to the usual notation “P'” because later on we will need to

consider P! equipped with log structures and P8 is notationally and typographically simpler
than (P')°8.) We shall write

Cov

for the set of equivalence classes of finite, separable, and tamely ramified coverings ¢ : P — P
satisfying the following conditions:

e The set of ramification points of ¢ coincides with {[0], [1], [cc]};
o If \, (x = 0,1,00) denotes the ramification index of ¢ at [z], then Ay, A1, A\oo are all
odd and satisfy the inequality Ao + A1 + Ao < 2p™.

Here, for two such coverings ¢1, @2 : P — P, we say that ¢; and ¢, are equivalent if ¢ = ho ¢y
for some h € PGLy(k) = Auty(P).
The final result of the present paper establishes, as described below, a bijective correspon-

dence between Cov and Opz;z'” for 27 = Z; this generalizes [Moc, Introduction, Theorem
1.3].

Theorem C (cf. Theorem 7.4.3 for the full statement). Let us consider the set Opy~ in the
case where the underlying curve “Z 7 is taken to be &2. Then, we can construct a canonical
bijection of sets

T : Cov > Opz;z'"

satisfying the following condition: if ¢ is a tamely ramified covering classified by Cov whose
ramification index at [x] (x = 0,1,00) is A;, then the radii of the dormant PGLy-oper on &
determined by Y (¢) coincides with the image of (% . /\0,% - A, % - Ao) Via the natural quotient

(Z)pN7Z)3 — (S\(Z/pN7Z)?JA)3. In particular, the set Opz;zm in this case is finite.

1.5. Future work. The results of the present paper are building blocks to establish the enu-
merative geometry of dormant opers of higher level. (This involves the treatment of dormant
opers, as well as linear ODE’s, in prime-power characteristic by applying what we call diago-
nal reduction/lifting; see [Wak6, Theorem D].) One central theme of the theory is to explicitly
figure out how many higher-level dormant opers (and related mathematical objects) exist.

In addressing this problem, the duality assertion in Theorem B allows the study of PGL%N )
opers with n large to be translated into the study of them with n small. This approach seems
to be valid because it is presumed that higher-level generalizations of the formula obtained
in [Wak5, Theorem H] are given only when n is sufficiently small (relative to p).

On the other hand, we proved a certain factorization property of Opznzz”' using the clutching
morphisms between moduli stacks of pointed stable curves (cf. [Wak6, Theorem C]). This
factorization property induces a 2d TQFT (= 2-dimensional topological quantum field theory),
and thus enables us to reduce the various problems we wish to solve to the simplest case where
the underlying curve is the 3-pointed projective line. Therefore, by applying Theorem C
together with an argument similar to the proof of [Moc, Introduction, Theorem 3.1], we can
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classify dormant PGLgN)-opers (on the 3-pointed projective line, or more generally, a totally
degenerate stable curve) in terms of purely combinatorial data given by their radii (cf. [Wake6,
Theorem E).

2. DIFFERENTIAL MODULES AND CYCLIC VECTORS OF HIGHER LEVEL

First, we study differential modules of level m > 0 and generalize the notion of a cyclic
vector to such modules, i.e., m-cyclic vectors. (For convenience, we will occasionally include
the case of m = —1.) At the end of this section, we prove the existence of an m-cyclic vector
under mild conditions (cf. Theorem 2.5.6).

Throughout the present paper, we will fix a prime p. Unless stated otherwise, all the rings
appearing in the present paper are assumed to be unital, associative, and commutative.

2.1. Modified binomial coefficients. For nonnegative integers m and [, let (ql(m),rl(m)) be
m) | (m)

the pair of nonnegative integers uniquely determined by the condition that [ = p™-¢q," + 1,

and 0 < rl(m) < p™. For each pair of nonnegative integers (j, ;') with j > j/, we set

. (m) . . .y -1
e e RS ORH
g = —, g =" )
Ty g™t g™ Py N U )y
(cf. [PBerl, Section 1.1.2]). Moreover, if j” is an integer with max{j’, 7 — j'} < j” < j, then
we set

II]

<‘j>u - - !
Py~ GG =G =D o

-\ L] .

In particular, we have <j,> = < j,> . Note that all these values lie in Z,) and hence
(m) (m)

induce elements of F,, := Z/pZ via the natural quotient Zy), — (Z(p) /PZ ) :) F, even when

the integer j” is divisible by p. When there is no fear of confusion, we will omit the notation

“(m)”; i.e., we will write ¢ := ql(m)’ ry = rl(m)’ and

, . . , -\ 15"] -\ "]
U, G, G =
AT A C A T C AT CANS E AN
J I ) (m) J I/ (m) J I/ m)

2.2. Differential rings of higher level. Let us fix an integer m > 0 and a ring R, over F,,.
In the following discussion, the non-resp’d portion deals with the non-logarithmic case and the
resp’d portion deals with the logarithmic case.

Definition 2.2.1. (i) Let R be a ring over Ry. An m-derivation (resp., m-log deriva-
tion) on R relative to Ry is a collection

Ore) = {04) Yiczzo
consisting of Ry-linear endomorphisms 0y of R, regarded as an Ry-module, satisfying
the following conditions:
(a) If 7 =0, then Oy = idpg;
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(b) If 5 > 0, then the following equalities hold:
* Oyy(a-b) = Z {j,} - Ojry(a) - Ogjmy(b) for any elements a,b € R;

=]

' J -\ "]
* Ojry 0 Oyj—jry = <jj/> Oy | resp, By 0 0ygy = Y <jjf> Oy
J"=max{j’,j—j'}
for any integer j" with 0 < j’ < j.
(ii) By an m-differential ring (resp., m-log differential ring) over Ry, we mean the
pair
X = (R,0))

consisting of a ring R over Ry and an m-derivation (resp., m-log derivation) 0y on R.
For convenience, we refer to each ring R over Ry as a (—1)-differential ring over R,.
Finally, by an m-differential field, we mean an m-differential ring (R, d4)) such that
R is a field.

Example 2.2.2. Consider the case where R is taken to be the ring k[t] of formal power series
with coefficients in a perfect field k of characteristic p. Denote by K the fraction field of R,
i.e., K := k((t)). Also, for each integer [ > 0, we shall denote by R (resp., K)) the subring
of R (resp., the subfield of K) consisting of elements a?' for a € R (resp., a € K). Then, K
has basis 1,¢,- -, " =L over K™ and it admits an m-derivation Oy = {0y hiezs, (resp.,
m-log derivation 5<.> = {5<j>}j62>0) relative to K™Y given by

o) = at (1) - (vesp a0 = - (1) ) 2.1)

for every j,n € Zo. The collection Oy = {0()}; (resp., 5<.> = {5<j>}j) restricts to an
m-~derivation (resp., m-log derivation) on R relative to R (m+1) " which we express in the same
notation. For each [ € Zs, R" coincides with R’ < ﬂé BKer( (pi)) = ﬂl . Ker( )), and

the collection (R, {0,,1};ez.,) forms an (m — )-differential ring over R(™ ).

Remark 2.2.3. (i) If we are given a O-derivation {0 }jez., on R, then 0y defines a
derivation on R (over Ry) in the usual sense. Under the correspondence (R, {0 };) <
(R, 0ny), the notion of a 0-differential ring coincides with the usual notion a differential
ring.
(ii) Let R be a ring over Ry. The second equality in condition (b) above implies that an
m-derivation (resp., an m-log derivation) {9} ez., on R is uniquely determined by
its subset {04) fo<j<m- :

Let us fix an m-differential ring (resp., m-log differential ring) #Z := (R, O)) over Ry, where
ey = {0y }jez-,- Then, we obtain the possibly noncommutative ring

Dy

over Ry generated by the collection of symbols {9y} jez., subject to the following relations:
[ ] a<0> = 1,



8 YASUHIRO WAKABAYASHI

] a(j) -a = Z {j,} -3(j/>(a) . 8<j//> for any j € L and a € R;
=]
j : i\""
* Jyy Oy = < j/> Oy | respe, Ay Oy = Y < -/> ~ Oy | for any in-
§"'=max{j’,j—j'}
tegers 7,7 with 0 < j' < j.

We shall set Dgl) := R. The ring D%@ admits two R-module structures given by left and right
multiplications. For each | € Z>(, we shall denote by Dgfil the two-sided R-submodule of Dﬁ}n)
generated by the products 82% . -8?;S> (s >1) with j; <p™ (i=1,---,s) and Y ;_, a;ij; < l.

The collection {Dg'zl}l forms an increasing filtration on D;n ) with U D(;Zl = Dg). Also, one
m)

may Verify that the Ry-algebra D( is generated by the elements of R and the set {0,) fo<j<m:

and D ™ forms a left and right noetherian ring if R is noetherian (cf. [PBerl, Proposition 1.2.4,
(1)], [Mon Proposition 2.3.2, (b)]).

2.3. Differential modules of higher level. Let us take an R-module E. By a (left) D;zm)-

)

module structure on E, we mean a left D;}f -action (i.e., an Ry-algebra homomorphism)

V: DEJ@ — Endpg,(F) on E extending its R-module structure. An R-module equipped with
a D{g}f)—module structure is called a (left) Dg)-module, or a differential module over
Z%. Moreover, we can deﬁne in a natural manner, the notion of an isomorphism between
D> -modules. Given a D( -module structure V on F and an integer j € Zs(, we shall

write V;y := V(9y). If Z is non-logarithmic (resp., logarithmic), then the assignment V

{Vi }JGZZO determines a bijective correspondence between the set of D(;)—module structures

on E and the set of collections of Ry-linear endomorphisms {Vj }jez., of E satisfying the
following conditions:

[ V<0> = ldE,
o Via-v) = Z {j,} -0y (a) - Vim(v) for any integer j > 0 and any elements
=]
a€ R, veFE,
' J -\ "]
* Vi o Vi-y) = <j/> Vi | tesp, Vi o Vin = ) <j/> "V | for

§"'=max{j’,j—j'}
any integers j, 7’ with 0 < 7' < 7.

Because of this correspondence, we will not distinguish these two additional structures on F.

Remark 2.3.1. (i) Let us consider the case of m = 0. Suppose that (E,V) is a D,(%?)-
module. Then, the R-module E together with the endomorphism V (:: V(0<1>))

specifies a differential module, in the classical sense, over the differential ring corre-
sponding to Z (cf. Remark 2.2.3, (i)).

(ii) The notion of a D{g;)—module is slightly different from the notion of an iterative differ-
ential module of level m, discussed in [Kinl]. In fact, the latter one essentially requires
the condition of vanishing p™*!-curvature, in the sense of Section 3.1 (cf. [Kin1, Remark
2.3.5]); compare Corollary 3.1.7 and [Kinl, Proposition 1.1.6].
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Remark 2.3.2. Let {9 }jez., be an m-derivation (resp., m-log derivation) on R. To make
the integer m explicit, we here write 887;) := 0y (J € Z>p). For an integer m’ with 0 < m’ <m,

’ (_ml) ’
the endomorphism (9((;'; )= ! ~6’<(;;) of R is well-defined, and the collection {88’; )} jezs, forms

g™

an m/-derivation (resp., m-log derivation) on R. Let us set D%m/) =D E:/{)a(m/)} ) Then, the
Oy T
’ (_m/)_ m m!
assignment 88,7;) — qj(—m)" . 0<(j>) (j € Z>p) determines an Ry-algebra homomorphism D;, )
qJ' : - )

Dé}n). This homomorphism allows us to construct a D;n/)—module by means of each DE}”)-

module.
We shall denote by
Mod (D)

the category of D%m)-nlodules. (In particular, SJYOD(D;?D) coincides with the category of

R-modules.) This category has the structure of a tensor product: given two Dz(g )

(E', V') and (E",V"), we set
(E,, V!) ® (E//, V//) = (E/ ®R E//, v/ ® v//)’

-modules

where V' ® V” denotes the D(@m)—module structure on the tensor product £/ ® g E” determined
by

(VoV)yWwed)= Y { j} Vi (1) ® Vi (")
J+"=i

for any j € Zso, v € E', and v" € E”. Similarly, we can construct a D%m)—nlodule structure
on Hompg(E', E") arising from V' and V”. In particular, for a Dlg}/fl)—module (E,V), we can

define the dual (EY, V") of (£, V). In this way, EJJIOD(D(;)) is equipped with a structure of
closed monoidal category.

2.4. Varying levels. Fix an integer m > 0 and an integer [ with 0 <[ < m+1. Furthermore,
we set

plfl 1—1
R = ﬂ Ker(0dy;y) (: ﬂ Ker(8<pj>)) ,
j=1 j=0

which is an Ry-subalgebra of R. Here, we obtain a sequence of inclusions between Ry-algebras
R™ CR"C...CR'CR =R
Note that, if Z is an m-differential field, then R’ (for every [) forms a subfield of R. For a

nonnegative integer j with j 4+ < m + 1 and an R/*"-module E, we shall set Fj(l)*(E) to be
the R/-module defined as
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Also, for each j € Z>o, the endomorphism ;. restricts to an Rp-linear endomorphism of
R'; we will abuse the notation by writing Oyjpy for this restriction. Then, the collection

R = (R, {0py tiezss)

forms an (m — [)-differential ring over Ry. In particular, we obtain the Rj-algebra D
a sequence of inclusions

(m=1)

o and

(R =) DY s DO DYy oo s D7D 5 DY

Next, given a Dz(; )_module (E, V), we shall write

Pl -1
E'.= ﬂ Ker(V ;) (z ﬂ Ker(V<pj>)> ;
j=1 J=0

where E° := E. In particular, we obtain a sequence of inclusions between modules
E"'CE"C...CE'CE'=E.

Note that E' forms an R'-module via the natural inclusion R' < R, and V;,y (for each j)
restricts to an R'-linear endomorphism of E'; we will abuse the notation by writing V jpty for
this restriction. One may verify that the collection

V= {Vim}

forms a D(%”Z_l) -module structure on E.. Also, if f : (B, V) — (E', V') is a morphism of D{"-
modules, then it restricts to a morphism of Dg_l)—modules Lo (BN VY — (B VY. The
resulting assignments (E, V) — (E', V') and f + f! define a functor

=0 9mod(DYY) — Moo(DY). (2.2)

-

Conversely, given a Dg} -module (£, V), we can construct a Dg)—module structure F(O*(V)

on FO*(E) given by

FO(V)pla®@v) = Y {j/} -0y (@) @ Vg iy (v)

ii"=i

for any a € R and v € E, where V1= 0if s ¢ Z>( (cf. [PBer2, Proposition 2.2.4, (ii)], [Mon,
Proposition 3.4.1, (ii)]). In particular, for an R™*'-module E’, we obtain

ven, = FmtDy(v) . DI s Endg, (F™ (). (2.3)

Each morphism of Dg,’f—l)—modules f (B, V)= (E', V') induces a morphism of D%m)—nlodules
FO(f) « (FO(E), FO*(V)) — (FO(E"), FO*(V')). The resulting assignments (E,V)
(FOX(E), FU*(V)) and f + FO*(f) define a functor

=10 omoa(D0 ) — Mod(DYY). (2.4)

This functor is compatible with the formation of the tensor product and is left adjoint to =41,
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Here, let us describe the unit and counit morphisms for the adjunction “ET() — =07 If

(E,V) is a DE -module, then the natural inclusion E' < F, which is D(j -linear, extends

to a morphism of D 7 )_modules
7o) (B0 o240 (B, V) =) (FO*(BY), FO*(V') - (B, V). (2.5)

On the other hand, if (E,V) is a D;l -module, then the morphism E — FO*(E) given by
-0

v — 1 ® v restricts to a morphism of D%l

1 ;(E7V)%(F(’)*(E)Z,F(l)*(V)l)( (E0=0)((E, V).

The formation of 7 E V) (resp., T(Té(v))) is functorial with respect to (E, V).

-modules

2.5. m~cyclic vectors. Let m be a nonnegative integer. In this subsection, we introduce the
notion of an m-cyclic vector, as a higher-level generalization of a cyclic vector.

Definition 2.5.1. Let (E,V) be a ngm)—module. An element v of E is called an m-cyclic
vector of (£, V) if there exists a positive integer n such that the collection

Vi) (=), Vi), -, Vino1y(v)

forms a basis of the R-module E.

The following assertion follows immediately from the definition of an m-cyclic vector.

Lemma 2.5.2. Let (E, V) be a D;n)—module, and suppose that there exists an m-cyclic vector
of (E,V). Then, E is finite and free as an R-module.

Remark 2.5.3. Suppose that m = 0 and & is non-logarithmic. Then, each D(g?)—module
structure V on an R-module satisfies V ;) = VZU for every j. It follows that a O-cyclic vector
is the same as a cyclic vector in the classical sense.

Definition 2.5.4. (i) A pinned DU"-module is a triple
(E,V,v)

consisting of a Dlg}f)—module (E, V) and an m-cyclic vector v of it. For a pinned Dﬁ;ﬂ )

module (£, V,v), the rank of (E,V,v) is defined as the rank of the free R-module
E.

(ii) Let (E,V,v) and (E’, V',v") be pinned D m)—modules. An isomorphism of pinned
DE,T" -modules from (E V,v) to (E', V',v') is a morphism of Dlg}f)—modules f:(E,V)—
(E', V') with f(v) =

m)

Let us describe several basic properties of pinned D& -modules:
Proposition 2.5.5. (i) Any morphism of pinned Dg‘)—modules 1S surjective.

(ii) Suppose that we are given a pinned D(;)—module (E,V,v) and a D(g,@—module (E', V).
Denote by Hom((E, V), (E', V")) the set of morphisms of Dgn)—modules from (E,V) to
(E',V'). Then, the map of sets

Hom((E, V), (E',\ V")) — E'
given by f — f(v) is injective.
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(iii) Let (E,V) be a D{S}Zl)-module, v an element of E, and m' an integer with 0 < m' < m.
Denote by V™) the D;"/)-module structure on E induced from V wvia the Ry-algebra

homomorphism D;n/) — D%m) (cf. Remark 2.3.2). Then, v forms an m-cyclic vector

of (E,V) if v forms an m’-cyclic vector of the D;@/)—module (B, V).

Proof. To prove assertion (i), let us take a morphism of pinned D(%m)—modules f:(E,V,v) =
(£, V',v"). Then, since f(V;(v)) = Vi, (f(v) = Vi, () (5 = 0,1,2,--+), the assertion
follows from the fact that the set of elements {V/{, (v')};ez., generates E.

The remaining assertions, i.e., (ii) and (iii), can be verified from the definition of an m-cyclic
vector (we will omit the details). O

Now, let us prove the following theorem, asserting the existence of an m-cyclic vector in a
general situation. Our proof is based on the proof of [ChKo, Theorem 3.11].

Theorem 2.5.6 (cf. Theorem A). Let n be a positive integer and Z = (R,0w)) be an m-

(m

differential field over F,. Assume that the morphism D%’)n — Endg, (R) naturally induced

(m)
R,<n’

element a of R with D(a) # 0.) Then, each ng@—module (E,V) with tk(E) = n admits an
m-cyclic vector.

by Oy is injective. (This means that, for each nonzero element D € D there exists an

Proof. Tt suffices to consider the case of n > 1. Suppose that a nonzero element v of E is not
an m-cyclic vector. Then, there exists an integer | with 1 <[ < n such that

-1
VAV ) A AV_y(v) #0 and Vi (v) = Z aj - Vi (v) (2.6)
§=0
for some ag, -+ ,a;-1 € R. For simplicity, we set v; := V;(v) (j = 0,1,---,1 —1). Choose
an element u of F not in the span of {vg, vy, ,v;_1}. We extend the R-lineary independent
set {vg, vy, -+ ,v_1} to a basis of E by first adjoining u, and then, if necessary, some elements
e, ,en_—1 of . For each integer j with 0 < j <[, we shall write

n—I{—1

-1
Vi) = aj-vi+B-ut Y e
=0 =1

where i, 35,75 € R. In particular, o = 70, = 0 and Sy = 1.
For each integer r with 0 < r <[, write L, for the F,-linear endomorphism of R given by

Lr = Z {:} ’ ﬂz : a(r—i)

i=0
(hence Ly = idg). Next, let us define L to be the F,-linear endomorphism of R given by
-1
L:=1L— Zar'Lr =0y +c—1-O0g—1y + - +c1-Ony + ¢,
r=0

[ - r
Ci ‘= {l_i}'Bl—z‘—Z{T_Z}'Gr'ﬁr—i

=1

where



DIFFERENTIAL MODULES AND DORMANT OPERS OF HIGHER LEVEL 13

i = — ince the operator L defines an element of D, | the injectivity assumption
1 =0,---,1 . Since the operator L defi 1 thZ<nth jectivity pti

of the morphlsm DO] in — Endg, (R) implies that there exists an element z of R with L(z) # 0.

Let us choose an indeterminate A over R. Extend the m-derivation Oiey on R to the rational
function field R(A) by defining d;;y(A) =0 (j = 1,2,---). To be precise, this m-derivation can
be obtained by first defining die) on R[A] = R @pgm+1 R™[A] by dyy(a ® b) = dyy(a) ® b and
then extending via the quotient rule. The tensor product E* := R(\) ®x E has the natural

(m)

(ROV) 8<.))—module structure obtained by defining

Volsu = ¥ {1} -0n@s Ve w

J'45"=j
(j=0,1,2,---) for any a € R(\) and w € E. Here, we set
b=v+ A zu(=10v+z-A@u) € BN
For each integer r with 0 < r <[, we have

Vi (0) (2.7)

r n—{—1
:vr—l—)\-Z{;}-@ (Zaﬂ v + B - u+Z’yﬂ el>
—Ur‘i‘)\ ZZ{ }8 )aji'vi

=0 7=0
n—l—-1 r
i=1 j5=0
-1 n—{—1
=0+ A Y Orivi+ A L(2) u+t A Z 0,
=0

for some 6,;,0.. € R. Similarly, it follows from (2.6) that

Vi (0) (2.8)

v)+ A Z{ } )(2) - Vi (u)

!
J=0

+ A i{ } (Zaﬂ v + B; - u+ni1fyﬂ el)

J

J;MH
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—Za, Vi A Zi{ } Oy (2) - s - v;

=0 7=0
n—I{—1 1
A L(2) - ut A ZZ{} () e
=1 j=0

n—I[l—1

—Zal vi+ A Zel, vit A Li(z) ut X Z 0); - e

for some 6;,0]. € R.
Now, let us consider the vector

+1

D:=0A V<1)(@) VANRRRIVAY V(l>(@) € /\R(A)E)\'
Under the natural identification /\l+1 E* = ( B ) ®r R(X), we can write

W=wy+wy - AFwy - A2 Fwgg - AT

for some wq, -+ w11 € /\i;r1 E. Since w|y—o = 0, we have wy = 0. By (2.7) and (2.8), the
coefficient of vg A vy A --- Awv;_1 Au for wy is given by

-1 -1
<ZU0/\'--/\UT_1/\ (Lp(2) - u) Avpgr A= Aupq /\Zaj-vj>

=0 =0
+vo/\--~/\vl_1/\(Ll(2)-u)

(Zar- r “ Vg N - /\le/\u/\er/\---/\vll/\vr>

+Ll( )'Uo/\"'/\Ul_l/\u

-1

= (Ll(z)—Zar-Lr(z)) g A A1 A
r=0

=L(z) - vgAN---Av_1 Au(#£0).

It follows that the coefficient of vgAvy A+ - - Av;_1 Au for W is a nonzero polynomial in R[\] whose
degree is at most [+1 and whose constant term is 0. Since the injectivity of DO] in — Endg, (R)
implies d1y # 0, we see that R is not a finite field, and that R™! has at least n (> [) nonzero
elements. Hence, there exists an element \y € R™"! which is not a zero of that polynomial.
Then, the element ¥ := v+ Xg-z-u € E satisfies VAV 1y (V) A- - - AV 5y (D) # 0. By repeating the
procedure for constructing v using v, we obtain an m-cyclic vector of (E, V). This completes
the proof of this assertion. O
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3. DORMANT DIFFERENTIAL MODULES

This section deals with the p™*!l-curvature of a differential module of level m > 0. In
particular, we focus on differential modules with vanishing p™*!-curvature, which will be called
dormant differential modules. At the end of this section, we provide a functorial construction
of duality between dormant pinned differential modules of rank n (with 0 < n < p™*!) and
those of rank p™*! — n (cf. Theorem 3.3.2, Corollary 3.3.3).

3.1. p"™tl-curvature and dormant differential modules. Let us fix an integer m > 0 and
a field K of characteristic p. Since a perfect field of characteristic p has only the zero derivation,
we should impose the condition that K # K1) := {a?|a € K}. In particular, suppose here
that [K : K] = p and there exists a discrete valuation ring R whose fraction field coincides
with K. Examples of fields K satisfying this condition are k(t) and k((t)) with & a perfect field
of characteristic p (cf. Example 2.2.2).

For simplicity, we write

(m) . py(m) H(m) . y(m)
Dy = D(S,a<,>) and Dy’ := D(sé< ) (3.1)

where S € {R,K}. Let “(—)” denote cither the absence or presence of ¢ ( )”. Each Dgn)—

module structure V on an R-module £ naturally extends to a D% -module structure Vgg on
K ®p E. The assignment (F,V) — (K ®r F, Vgk) defines a functor

i - Mod (D) — Mod(DIM).

Next, let S € {R,K}. For a Dém -module (E,V), the collection {#/ - V(;y}; determines a
(m)

structure of f)s -module on E. Conversely, suppose that we are given a ng)—bundle (E, ?)
such that, for every j € Zsg, V(; may be expressed as V;, = t/ - V(; for some V; €
Endgem+y (E). Then, the collection {V; }; determines a structure of ng)—module on E. The

assignment (E,V) — (E,{t/ - V(;y};) defines a functor
st Mod(DY™) — Moo(DI™), (3.2)

and it becomes an equivalence of categories for S = K. Moreover, the following square diagram
of categories is 1-commutative:

Mod (D7) Mod (DY)
MR U nK
Moo (D) Moo (D).

R

Remark 3.1.1. Let a be an integer and (E,V) a D%m)—module such that the R-module E is

free. Then, V naturally induces a D%m)—module structure on the R-module t*- F C K Qg F,
which will be denoted by V|..g.

Remark 3.1.2. Let E be a S™*Y-module. Then, since ="V (cf. (2.4)) is compatible

with ng (cf. (3.2)), Vfgna ), Comes from the D erl)—module structure Vg, | p via 7s. This
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means that the following equality holds:
Visdw), = {t/(V{&s.).6) 0 }i-

Let (E,V) be a DS”-module (resp., a ng)—module), where S € {R,K}. The p™*!
curvature of (E,V) is defined as

p?ﬂ(E,v) = V<pm+1> S Ends(m+1)(E>.
It can immediately be seen that (g v) belongs to Endz(E).

Definition 3.1.3. With the above notation, we shall say that (E,V) is dormant if the
equality

") =0
holds. Also, a pinned ng) -module (E,V,v) is called dormant if (E, V) is dormant.

Remark 3.1.4. Let us consider the case of m = 0. Then, the p'-curvature ?¢g vy of a ngo)—
module (£, V) coincides with the p-curvature of a differential module over the differential ring
(S,0my) (cf. Remark 2.3.1 and [VdPS Section 13.1]). It is well-known from [Katl, Theorem

(5.1)] that the functors Z+1 and =) define an equivalence of categories

( the category of ) N ( the category of ) ‘ (3.3)

dormant D(SO)—modules S _modules

This equivalence for S = K can also be found in [vdPS, Lemma 13.2].

The following assertion is essentially not a new result because it may be regarded as a version
of [PBer2, Théorem 2.3.6] for differential modules.

Proposition 3.1.5. Let | be an integer with 0 < | < m and let S € {R,K}. Then, the
following assertions hold:

(i) The functors Z*V (cf. (2.2)) and ' (cf. (2.4)) define an equivalence of categories

Mod (DY) = Mod(DYY). (3.4)

(i) Let (E,V) be a DS(D -module. Then, the p™ "' -curvature Py vy of (E,V) and the
P -curvature Py par gy porwy of (FOH(E), FO*(V)) (=& l)((E V))) satisfy the
equality

pw(F(l)*(E)7F(l)*(V)) = ldR X pw(E,V) € EndR(F(l)*<E))
In particular, (E,V) is dormant if and only if (FO*(E), FO*(V)) is dormant.

Proof. First, we shall prove assertion (i) by induction on [. The base step, i.e., [ = 0, is trivial.

For the induction step, let us take a D(m)—module (E,V). This D(m>—m0dule mduces a Dg(l)

module of the form (E', V') (= Z*V((E,V))). Since (E)'"! = El, the induction hypothesis
implies that the morphism T(gﬁlv?) ; Fl(l D (EY) — E' (cf. (2.5)) is an isomorphism. On the
other hand, the p-curvature of the differential module (E, V1) vanishes, so it follows from the

equivalence of categories (3.3) that the morphism 7, : FM*(E') & E extending the inclusion
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E' < E is an isomorphism. Hence, T(ig(@) turns out to be an isomorphism because it coincides

with the composite isomorphism

— . -1
=W Y)

FO(E) (= PO (R (BY) FOY(EY) 2 B,

Since T(ig(v) is functorial with respect to (£, V), we see that the composite functor =) o Z+!)

is isomorphic to the identity functor of SJTOD(D(S )).

Next, let (E,V) be a D(Srln_l)—module. By applying Z'=Y to (E, V), we obtain a Dsm b
module of the form (F{'"V*(E), F'"™V*(V)) (=E1-D((E,V))). It follows from (3.3) again
that the natural morphism 7 : Fl(lfl)*(E) — F(l)”‘(Fl(lfl)*(E))1 is an isomorphism. Also, the
induction hypothesis implies that the morphism T(Té(g;) . E — FUU*(E)1 s an isomor-

phism. Hence, (T ha )) turns out to be an isomorphism because it coincides with the composite

isomorphism

SH=D)

) HESAREN "(B,v) F(l 1)* (E)l 1

wal)(Tz)

(O (F (B =) PO,

Since T(%(V is functorial with respect to (£, V), the composite functor =+ 0= is isomorphic

to the identity functor of SJTOD(D(STZ) l)) This completes the proof of assertion (i).
Assertion (ii) can be verified immediately from the definitions of p(~)-curvature and the

functor =10, O
Remark 3.1.6. By the equivalence (3.4) resulting from the above proposition, Dg%m)

(0)
R(m

will see in the next section, this is not true for the logarithmic case, i.e., DR—modules.)

-modules

are equivalent to D -modules, i.e., differential modules in the classical sense. (But, as we

Moreover, the above theorem for [ = m and the equivalence of categories (3.3) (in the case
where S is replaced by S(™)) together imply the following assertion, which is already obtained
in [LeQu, Corollary 3.2.4] and [Kinl, Proposition 1.1.6].

Corollary 3.1.7. Let S € {R,K}. Then, the functors ZHm+1) and ZX+D (e, the assign-
ments (E,V) — E™! and E' s (FFD*(E), VS, ).5r)) induce an equivalence of categories

( the category of ) ~ ( the category of) (3.5)

dormant D(Sm) -modules S+ modules

3.2. Dormant pinned D{"”-module of rank p™'!. Let S € {R, K}, and let “(—)” denote

either the absence or presence of “(:)”. Here, let us construct an example of a dormant pinned

DY-module of rank p™ . The S-module P := DY /D™ . A m+1> has the a D7-module
structure Vp  induced from the left ng)—module structure of Ds ™ itself. One can verify
that (Ps, Vp,) is dormant. If oy (1= 10,---,p™1 — 1) is the image of Jyy via the quotient

D(Sm) —» Pg, then we have Pg = pm+ “1g. (5 . Hence, the triple
(PS,VPS,UPS), (36)
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) m+1

where vp, = 5<0>, forms a dormant pinned ng -module of rank p

Next, let (F, V,v) be a dormant pinned b(sm)—nlodule. The S-linear injection S < E given
by a — a-v (for any a € S) extends to a ng)—linear morphism (g v ) : <ng) ®s S :) ng) —

(m)

E. This morphism preserves the Ds -action. Since (E,V) has vanishing p™*!

-curvature,
V(g v, factors through the quotient ng) —» Pg. Thus, U(g v ) induces a morphism

Vpvw : Ps— B, (3.7)

which forms a morphism of pinned D(Sm)—modules (Ps,V per Vps) = (E,V,v). Tt follows from
Proposition 2.5.5, (i), that (¢ v, is surjective. By combining Theorem 2.5.6 with the following

proposition (in the case where S = K and “(—)” denotes the absence of (:)), we see that the
existence of an m-cyclic vector for a dormant D;;n)—module depends only on the rank of the
underlying K-vector space.

(m

Proposition 3.2.1. Let n be a positive integer and (E,V) a dormant Ds ) module such that
the S-module E is free and of rank n. Then, the following assertions hold:

(i) If the inequality n > p™*! holds, then there are no m-cyclic vectors of (E,V).
(ii) If the equality n = p™* holds and there exists an m-cyclic vector of (E,V), then

V(E V) 18 an 1somorphism. In particular, the isomorphism class of a dormant ng)—
module whose underlying S-module is free and of rank p™ s uniquely determined,
i.e., the class represented by (Ps, VPS,UPS).

Proof. The assertions follow immediately from the surjectivity of the morphism v v, for
each m-cyclic vector v of (E, V). O

m+1_1

Example 3.2.2. Let us consider the dual of Pg (: o S - 5(1))- Denote the dual basis
of 5<0>, e ,5<pm+1_1> by 52{», e ,5<me+171>. From the definition of Vj_, the element Vpy =
52;,,1“_” defines an m-cyclic vector of the dual ng)—module (PY, V}/-DS) of (Ps,V p)- Hence,

we obtain the dormant pinned D(Sm)—module
(PY.VY L vp). (3.8)

Since the free S-module Pg/ is of rank p™™! it follows from Proposition 3.2.1, (ii), that the
induced morphism

)

defines an isomorphism of pinned ngm -modules.

3.3. Duality of dormant pinned D%m)-modules. Let us keep the above notation. Also, let
us denote by Vg, the D(Sm)—module structure on Ker(v(g,v 1)) obtained by restricting V pe- The

D(Sm)—module (Ker(v(g,v.))), Vker) has vanishing p™*!-curvature, so do its dual (EY, V") :=
(Ker(v(g,v1)))", Vicer)- We shall write v¥ for the element of EV defined to be the image of 1
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via the dual of the composite

m+1 1

where the second arrow denotes the projection to the last factor.
Lemma 3.3.1. The element v¥ forms an m-cyclic vector of (EY,V").

Proof. For each j € Z>(, we write

Py i=Tm (DG, < DG —»PS>( @S S )
Let us set h to be the composite
B PSVn inclusion\ PS
By the definition of v(g v ), we have
h(0)) = h((Vp,) ) (00))) = Vi) (A(S0))) = Vi (v)

for every j = 0,--- ,n— 1. On the other hand, since {0, "5 and {V;(v)}7—) form bases for
Ps,n and F, respectively, h is an isomorphism. This implies that the composite

A Ker(V(Ey,v))

is an isomorphism. Since the element Upy of Pg’ (cf. Example 3.2.2) forms an m-cyclic

Y(B,V,v)

> F.

inclusion

Ps — Ps/Ps,,

vector, the elements (vpsv :> 32;m+1_1>, e ,3<Vn> generate an S-submodule (PS/PSJZ)V C PSV
In particular, the elements Av(3<pm+1,1>),~~ ,)\V(5?<n>) generate EY, where AV denotes the
dual (Ps/Ps,)" = EY (= Ker(vgv.)¥) of A. On the other hand, it follows from the var-
ious definitions involved that the equality V7, (v") = AV((?(VPMH_I_ jy) holds for every j =
0,--+,p™" —n — 1. Thus, v" turns out to form an m-cyclic vector of (EY,VY). This com-
pletes the proof of the assertion. O

By the above lemma, we obtain a dormant pinned ng)—module
(E,V",0") (3.10)
of rank p™ — n, which we call the dual of (£, V,v).
Next, let us take a morphism f : (E,V,v) — (E',V',v') between dormant pinned Dém)—

modules. The construction of v(_y yields the equality fov(gv.) = vz v ). Hence, f restricts
to the inclusion fke : Ker(v(pv,v)) — Ker(v(g v wy). Taking its dual gives a morphism of

pinned D(Sm)—modules
fv : (Elv7 v/v7 UIV) N (EV7 V',v').
Here, we shall write

Mod(DI™)®

for the category of dormant pinned Dém -modules.
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Theorem 3.3.2. (i) The assignments (E,V,v) — (EY, VY, 0Y) and f — fY constructed
above define a self-equivalence

a : Moo(DY™)® 5 Mmoo(DI™)®

of the category z)ﬁoa(ng))@ with dod = id. In particular, for each pinned ngm)—module
(E,V,v), there exists an isomorphism of pinned D(Sm)-modules

(E,V,v) = (EY, V"7, 0"").
(ii) The following diagram of functors is 1-commutative:

(g oR)®

©
i)ﬁoD(Dg%m))@) i i)ﬁob(D%m))® MUD(D%”))@B
tla L a v a
Mod(Dy")* ———— Mod(D}y")* ——— Mod(D”)*,
r (WK oK)

where g and (N o&)® denote the functors induced, via restriction, from ng and Ny ok,
respectively.

Proof. Let us prove assertion (i). Let (E,V,v) be a dormant pinned ng)—module. Then, it
induces the following short exact sequence:

AEYO B0,

where we write ¢ for the natural inclusion. The dual of this sequence fits into the following
diagram:

0— Kel"(V(Ey,U)) L) Pg

YEY, VY ,0Y)

0 Ker(V(Ev’vv’UV)) PS EY 0
V(Psyvps»vps) U] id
0 EY . ry ——E" 0,
v 2
(E,V,v)

where the right-hand square is commutative because of Proposition 2.5.5, (ii), together with

the equality (+" o V(Psvvpsﬂps))(vps) = (id o y(gv yv 7)) (vp, ). Hence, this diagram induces an

isomorphism Ker(v(gv yv,v)) — EY. By taking the dual of this isomorphism, we obtain an

)

isomorphism ¢ : E = EYY. Note that VsV preserves the ng -action and it is com-
» Pg

Vpg)
patible with the respective projections onto S, i.e., Upy and v}Vﬁs. This implies that & defines
an isomorphism of pinned ng)-modules (E,V,v) = (EY,VY",0"7). Moreover, the forma-
tion of this isomorphism is functorial with respect to (£, V,v), so it induces an isomorphism

idgn o Py 5 o d of functors. This completes the proof of assertion (i).

Assertion (i) follows immediately from the construction of (. O
For each integer n with 1 < n < p™ — 1, we shall write

Mod(DS™)®

n
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for the set of isomorphism classes of dormant pinned ng)-modules of rank n. In the case of n =
1, the set 1\/Iod(l.7k(;n))<1’B forms a group with a binary operation given by ((E, V,v), (E',V',v")) —
(E® E,V V. vev) (cf Example 3.3.4 below).

The following assertion is a direct consequence of the above theorem.

Corollary 3.3.3. The assignment (E,V,v) — (EY, VY, 0") defines a bijection of sets
1], : Mod(DY™)2 5 Mod(DJ™)® (3.11)

p'm+1_n
satisfying [d]pm+1_n o [(Y]n = id.

Example 3.3.4. Let us examine the group Mod(D7™)?. For cach element a € S*, denote by

1te the automorphism of the trivial S-module S given by multiplication by a. There exists a

unique ng)—module structure fiq.(0)) on S such that p, becomes an isomorphism of ng) -

modules (S, Oie)) = (S, fax(Oey)). Then, the triple
(S’ Ma*(8(0>)v 1)

forms a dormant pinned ng)-nlodule of rank 1. Since ZMmH(SM+D) = (5 9,,)), the equiva-

lence of categories (3.5) shows that any dormant pinned D(Sm)—module of rank 1 is isomorphic
to (S, tax(Orey), 1) for some a € S*. Also, for a,b € S*, (S, fax(0re)); 1) = (S, 1y« (0tay), 1)
(a,b € S¥) if and only if there exists ¢ € (S(*D)* satisfying b = a - c. Hence, the assignment
a— (S, pax(Orey), 1) gives a well-defined bijection of sets

§% /(S HD)* 5 Mod(DY™)% (3.12)

Since fiq © fty, = fia.p, We have (S, f1as(Oe)); 1) @ (S, o (Oray ), 1) = (S, ftabn (Oray), 1). This implies
that (3.12) becomes an isomorphism of groups.
Moreover, by composing with [(];, we obtain a bijection

SX/(S(erl))X :> MOd(DA(gm))f?mle,l-

4. RESIDUES AND EXPONENTS OF LOG DIFFERENTIAL MODULES

Let m, K, R, t, and O be as in the previous section. This section discusses the residue
and the exponent of a dormant Dg%m)—module. (For the previous work dealing with related

concepts, we refer to [Kinl].) In particular, we examine the exponent of a dormant Zu)g%m)-

module admitting an m-cyclic vector (cf. Proposition 4.4.1).

41. Residue of a D\7"-module. Let (E, V) be a dormant D¢”-bundle such that the R-
module F is free and of rank n > 0. For each [ =0, --- ,m, the pair

(EL, ¥, (4.1)

where V' = V piy| pt, determines a dormant lv)g)()l)—module (cf. Remark 2.3.1).
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From the equivalence of categories (3.5), the injective morphism T(igfgb)ﬂ) POt (pmtl)

E (cf (2.5)) becomes bijective after tensoring with K. Hence, the cokernel
Res(V) := Coker (7))

(E,V)

of T(igf;n)Jrl) is of finite length. We will refer to Res(V) as the residue of V.
Note that there exists a natural sequence of inclusions
F(m+1)*(Em+1) C F(m)*(Em) C...C F(l)*(El) C F(O)*<EO) — F.
For each integer [ with 0 <[ < m + 1, we shall write

)

Res(V)! := Im (F@*(El) HCANG

quotient

> Res(V)) (C Res(V)).

The natural surjection F¥*(E') — Res(V)! induces an isomorphism of R-modules
FO=(EY/FmD*(E™H) 5 Res(V). (4.2)

Proposition 4.1.1. The collection {Res(V) }o<i<ms1 forms a decreasing filtration of Res(V)
satisfying that Res(V)? = Res(V), Res(V)™ ™ =0, and

Res(V)! /Res(V) T = F(l)*(Res(vl))
for every l =0,--- ,m. In particular, the following equality holds:

lengthz(Res(V)) = Zpl : 1engthR(Res(vl)).

=0

Proof. Let us prove the former assertion. It is clear that Res(V)? = Res(V) and Res(V)™ ! =
0. Next, let us take [ € {0,--- ,m}. The short exact sequence of R®-modules

0 — _F‘l(l)*(El-i-l) N El . Res<vl> — 0
induces, via application of the functor F()*(—), a short exact sequence
00— F(l+1)*(El+1) (: F(l)*(};vl(l)*(El—i-l))) N F(l)*(El) . F(l)*(ReS(vl)) — 0

Hence, the assertion follows from this sequence together with (4.2).
The latter assertion follows from the former one because

length,(Res(V)) = ZlengthR(Res(V)l/ReS(V)l+1)
1=0

= i length ,(FV* (Res(vl)))

= Zpl : lengthR(Res(Vl)).
1=0

This completes the proof of this proposition. O
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Example 4.1.2. Let E be a free R™*t)-module of finite rank. Then, the natural morphism

E — (FmT)%(E))™+1 with respect to the DY"V-module structure chazn@ B (cf. (2.3)) is an
isomorphism. This implies that the residue Res(VCj‘%“a(. B ) of Vcla%“a DL vanishes.

4.2. Dormant lu)gn)-modules of rank 1. Let us take an element a of Z/p™*1Z. Denote by a
the integer defined as the unique lifting of a via the natural surjection Z —» Z/p™ "1 Z satisfying

0 <@ < p™*!. Then, there exists a unique lv?g%m)—module structure
Va = A{Va i }iezs (4.3)

on R satisfying V, ¢ (t") = ¢;!- (”;a) -t" (where (";a) = ("76)'"(?!757j+1)) for every j,n € Z>y.
In particular, we have Vy = 5<.>. The f)gn)—module (R,V,) is isomorphic to the unique
extension of the trivial Dg%m)—module (R, 5<.>) to t™% - R(C K) (cf. Remark 3.1.1). It follows

immediately that V, has vanishing p™*!-curvature.

Proposition 4.2.1. (i) Let us express the integer a asa =Y - p' - @, where 0 <@ < p
(1=0,--- ,m). Then, the following equalities hold:

lengthp(Res(V,)) =@, lengthp(Res(V,)'/Res(V,) ™) =p' - @
(1=0,---,m).

(ii) Let a,b € Z/p™ ' Z, and write ¢ := b — a. Then, we have
Hom((R, Va), (R, V4)) = {pee | s € (R™V)*},

where g (for each s' € R ) denotes the endomorphism of R given by multiplication
by s'.
(iii) For each a,b € Z/p™ 7, we have

(R, Vo) ® (R, Vy) = (R, Vayp), (R, Vy) = (R, V_y).

(iv) Let (E,V) be a dormant D )-module with E = R. Then, it is isomorphic to (R, V,)
for a unique element a of Z/pm+1Z.

Proof. Assertion (i) follows from (4.2) together with the equality ﬂp Ker(Vo, ;) = $55=0P" T
R (C R), which can be verified by induction on I. Assertions (ii) and (iii) follow immediately
from the definition of V,.

Here, we shall prove assertion (iv). Let us write @ := lengthz(Res(V)) and write a for the
image of @ via the quotient Z — Z/p™™Z. From Proposition 4.1.1 and [Oss4, Proposition
2.8], we have

a= Zpl : lengthR(Res(vl)) < Zpl “(p—1) <p™t. (4.4)
1=0

1=0
Since T(\L;(g)-‘rl)  Fm+Dx(pmHl) B is injective and E is a free R-module of rank 1, the
R™D_module E™*! may be identified with R(™+Y. This identification gives an identification
Finthx(pmtly = (FmtD+(Rm+D) =) R, by which the lv?g%mﬂ)—module structure Ve,

(R,D(ay), Bt
(m+1) . D(m+

(cf. (2.3)) corresponds to the trivial one 5<.>. Hence, since 773 g -linear, V may



24 YASUHIRO WAKABAYASHI

be identified, via T(g(gl)ﬂ), with a unique lu)l(qmﬂ)—module structure on =% - R (C K) extending
5<.>. This implies V = V, by (4.4), which completes the proof. O

4.3. Exponent of a dormant lv)gzm)-module. Denote by k the residue field of the discrete

valuation ring R. Since k is perfect, R/(t) = k, and R D k, the t-adic completion Rof Ris
naturally isomorphic to k[t], i.e., the ring of formal power series with coefficients in k (cf. [Ser,

Chapter I, Section 4, Theorem 2]). Now, let (E, V) be a dormant f)g{m)—module such that the

R-module E is free. The t-adic completion of (£, V) defines a b,&ﬁ—module (E , %) According

to [Kinl, Proposition 1.1.12], there exists an isomorphism of lu),iﬁ—modules

g : (Eu v) - @(k[[t]]vvdi>’ (45)
i=1

where dy, -+ ,d, € Z/p™'7Z and each Vy, (i = 1,--- ,n) denotes the D,iﬁ—module structure
on k[t] defined as the t-adic completion of V. It follows from Proposition 4.2.1, (ii), that the
multiset [dy, -+ ,d,] depends only on the isomorphism class of (£, V). (For the definition and
various descriptions concerning a multiset, we refer the reader to [SIYS].)
Definition 4.3.1. In the above situation, the multiset [dy,--- ,d,] is called the exponent of
(E,V).

Example 4.3.2. Let (E, V) be as above and (L, V) be a dormant Dg{m)-module with L & R.
According to Proposition 4.2.1, (iv), (L, V) is isomorphic to (R, V,) for some a € Z/p™ ' Z.
m)

Then, the tensor product (L ® F,V, ® V) forms a dormant Dg% -module whose exponent is
[dl +a,d2—|—a,--- ,dn—l—a].

Remark 4.3.3. For each lu?gg)—module (E',V'), the monodromy (operator) of (E',V’) is
the element p(g,v7) of Endy(k @ E') naturally induced by Vi;, via reduction modulo (¢)
(cf. [Wakb, Definition 1.46]). If £’ = R, we have

e vy = —lengthy(Res(V')) mod p. (4.6)
Now, suppose that the exponent of a dormant D%m)—module (E,V) as above is [dy, - ,d,)].

For each i = 1,--- ,n, we express the integer d; (cf. Section 4.2) as d; = > % p' - dy, where
0 < dy < p. Then, it follows from (4.6) together with Propositions 4.1.1 and 4.2.1, (i), that,

for each [ = 0,---,m, the monodromy Hg o of the f)g()l)—module (El,vl) (cf. (4.1)) is

diagonalized and conjugate to the diagonal matrix with diagonal entries —6711, <o+, —dpy mod
P.
Proposition 4.3.4. Let (E,V) be a dormant Dg{m)-module such that the R-module E is free.
Then, the following three conditions (a)-(c) are equivalent to each other:

(a) The residue Res(V) of V vanishes;

(b) The exponent of (E,V) coincides with [0,0,--- ,0];

(c) (E,V) comes from a D%N_l)—module via nr (cf. (3.2)), meaning that there exists a

D%N_l)—module structure V' (: {V’<j>}j) with V = {t7 - Vinti-
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Proof. The equivalence (a) <= (b) follows from Proposition 4.2.1, (i), and the existence of the
decomposition (4.5). The equivalence (a) <= (c) follows from the equivalence of categories

asserted in Corollary 3.1.7 and the comments in Remark 3.1.2 and Example 4.1.2 (together
with the fact that T(J';(gl;rl) is compatible with the respective Dl(qmll)—module structures, i.e,

V(R,5<.>) and V). d

4.4. Relationship with the existence of an m-cyclic vector. The following assertion
helps us to understand the exponents of dormant pinned D(m)—modules.

Proposition 4.4.1. Let (E,V) be a dormant D )-module such that the R-module E is free
and of rank n > 0. Let [dy,--- ,d,] be the ea:ponent of (E,V). Then, the following two
conditions (a), (b) are equivalent to each other:

(a) (E,V) admits an m-cyclic vector;

(b) The inequality n < p™* and the equality

> v (@ -d) = zzH (47)

1<i<i’<n s€Z>o0 j=0

hold, where for each integer a we denote by v,(a) (€ Zso U {c0}) the p-adic order of a.

In particular, under the assumption that n < p, (E,V) admits an m-cyclic vector if and only
if the mod p reductions of dy,--- ,d, are mutually distinct.

Pmof Denote by (E, ﬁ) the t-adic completion of (E,V), and choose an isomorphism ¢ :
(B, V) 3> D, (k[t], @d) as in (4.5). Let us take an element v of E, which determines an
element ¥ of E via the natural morphism E — E. Write (u;)", := £(0) € k[t]®". Also, for
each i =1,--- ,n, weset u; = oo u;s-t° (where u; , € k). Then, Vdi,m(ui) is expressed as

o] S—CZ .
(ul)—qu!-( j )-uw-t.
s=0

The isomorphism & preserves the Dk[tﬂ action, so the equality E(%m (V) = (%di7<j>(ui))?:1

holds for every j =0,--- ,n — 1. Hence, {@ (V) }o<j<n—1 forms a basis of E if and only if the

collection {(g;! - (7) - wi0)izi Yosj<n—1 (= {(Var 1y (wi)li=0)i1 Yo<jen—1) forms a basis of k=",

i.e., the following three conditions (1)-(3) are fulﬁlled.
(1) For every i = 1,--- ,n, the element u; o belongs to k™ (or equivalently, u; € k[t]*);
(2) For every j =0,--- ,n — 1, the integer ¢;! is invertible in k;

(3) The n x n matrix ((_Ji

; ))1§z‘§n,0§j§n—1 is invertible.

m—+1

Condition (2) is equivalent to the inequality n < p™*!. Regarding Condition (3), it follows

from Vandermonde’s determinant that

det <((_JCL))U> = (ﬁ (_jPJ) - det ((CA@)U) = (—1)@ . HlSKi’i?i(l@' B JZ)

J=0 Hj:o J!
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The p-adic order of this value (which is nonnegative because it is well-defined as an element
of F, C k) can be computed as follows:

» CZI B C,i; B _ n—1
v, <H1§z<z %:i(l - )> =1 ( H (dz/ — dz)) —Vp <HJ'>
Hj:[) J: 1<i<i’<n =0

n—1
= Y o (d-d) -3 %G
1<i<i’<n 7=0
n—1 .
=Y w(d-d)- zzhﬂ.
1<i<i’<n s€7Z~0 j=0

Hence, Condition (3) is fulfilled if and only if the equality (4.7) holds. It follows that we obtain
the implication (a) = (b).

Conversely, suppose that Condition (b) is satisfied. Then, since k @ E =k ® E = kS we
can take an element v of E such that the induced element ¥ of E satisfies £(7) € (k[t]*)®".
According to the above discussion, v defines an m-cyclic vector of (E, @) By the faithful
flatness of the natural homomorphism R — (ﬁ :> E[t], we see that v forms an m-cyclic

vector of (F, V). This implies (b) = (a), which completes the proof of this proposition. [

Corollary 4.4.2. The exponent of the dormant Dg%m)-module (P, V) (cf (3.6)) coincides
with [0,1,--- ,p™t —1].

Proof. Recall that (Pg, V ,,) has an m-cyclic vector (by the discussion in Section 3.2) and the

free R-module Py is of rank p™*!. Hence, the assertion follows from the above proposition. [

Let § := {dy, - ,d,} (where d; # dy if i # i') be a subset of Z/p™"'Z whose cardinality
equals n. We shall set

5= ] ) (143)

to be the subset of Z/p™ ' Z with  U{—dY,--- , ~d}1_,} = Z/p™'Z. Tt can immediately
be seen that 'Y = 0.

If a dormant Dg%m) -module admits an m-cyclic vector, then it follows from Proposition 4.4.1
that the elements in its exponent are mutually distinct, and hence form a subset of Z/p™*1Z.
In particular, for each subset § of Z/p™*'7Z, it makes sense to speak of a dormant pinned
D%m)—module of exponent §. For each subset § := {dy, -+ ,d,} of Z/p™™Z whose cardinality
equals n, we shall denote by

MOd(Dgam))f,a

the subset of Mod(b%m))f consisting of dormant pinned Zv)g%m)—modules of rank n and exponent

J.

Proposition 4.4.3. The bijection [d], : Mod(D7")® 5 Mod(lu)gn))fmﬂ_n (cf. (3.11)) re-
stricts to a bijection of sets

9

[d]5: Mod(bﬁzm))f,s - MOd(bgzm))me—n,a"
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Proof. Let us take a dormant pinned Dg%m)-module (E, V,v) classified by Mod(lv)l(qm))g s- Denote
by (E, %) the t-adic completion of (E, V). Note that the t-adic completion of (Pg, V. ) may
be identified with (P, V]skm). Hence, the t-adic completion Vg v, of Vv (cf. (3.7))
specifies a morphism (f’k[[t]], \Y4 Jskm) — (F,V). We shall fix an isomorphism of D,(Cﬁ—modules
¢ (E,V) S @?:1(14:[@]],@@) as in (4.5). On the other hand, according to Corollary 4.4.2,
there exists an isomorphism &p : (pkﬂt]],Vpk[[tﬂ) = Bz iz (K[t], Va). In particular, we
obtain a surjective morphism

Eolpvmo&s s P (K[t Va) — (K. Va,).
=1

deZ/pmt1Z

From Proposition 4.2.1, (ii), we see that the kernel of this morphism is isomorphic to € ;45 (k[t], @d).

Hence, the dual of this dormant ﬁ,&ﬁ—module, i.e., the t-adic completion of (EY,VY), is iso-

morphic to @4 (k[t], Va) (cf. Proposition 4.2.1, (iii)). This means that the exponent of
(EY,VY) coincides with 07, which completes the proof. O

5. DORMANT PGL,-OPERS OF HIGHER LEVEL

In this and the remaining sections, we apply the results on higher-level differential modules
proved so far to discuss the corresponding objects defined on an algebraic curve in characteristic
p > 0. The notion of a PGLMN)-oper (i.e., a PGLy-oper of level N) for N > 0 will be defined
in terms of the ring of differential operators of level N — 1 (cf. Definition 5.2.5). Also, we
introduce the radius of a PGL;N )_oper by using the local description at each marked point of
the underlying pointed curve (cf. Definition 5.3.2).

5.1. Logarithmic differential operators. In the rest of the present paper, let us fix a
positive integer /N, a nonnegative integer r, and an algebraically closed field k of characteristic
p. Also, let us fix an r-pointed (possibly nonproper) smooth curve

2 = (f: X — Spec(k), {oih1<i<r) (5.1)

over k, i.e., a smooth curve X over k together with r marked points {o;}1<;<, (C X (k)). The
divisor on X defined as the union of the marked points o; determines a log structure on X;
we shall denote the resulting log scheme by X'°&. Since X'°8 is log smooth over k, the sheaf of
logarithmic 1-forms Qs of X'°8/k, as well as its dual Txios := Q%1 18 a line bundle. When
there is no fear of confusion, we write €2 and 7 instead of Qyie and Txuws, respectively.

Next, write Fj (resp., Fx) for the absolute Frobenius endomorphism of Spec(k) (resp.,
X). We shall denote by X the base-change k xpnp X of X by the N-th iterate F}' of
Fy; we will refer to it as the N-th Frobenius twist of X over k. Also, the morphism

F)(g,z (:=(f, FY)) : X = XW is called the N-th relative Frobenius morphism of X over
k

Denote by Dg(l\lfogl) (cf. [Mon, Définition 2.3.1]) the ring of logarithmic differential operators

on X8/ (equipped with the trivial (N — 1)-PD structure) of level N — 1. For each integer j,
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Xlog < for the Ox-submodule of DXlog b consisting of logarithmic differential

operators of order < j. When there is no fear of confusion, we will write D=1 (resp., D (V=1) )

instead of DXlog 2 (resp., Dg(log <]) If N " is a positive integer with N/ > N, then there ex1sts

a canonical morphism DW=1 — DW= (cf, [Mon, Section 2.5.1]).

A (left) DW~Y-module structure on an Ox-module £ is a left DV ~Y-action V : DNV —
Endy(€) on & extending its Ox-module structure. An Ox-module equipped with a DWW ~1-
module structure is called a (left) D™W~Y-module. Given a DV ~Y-module (£, V), we shall
write £V for the subsheaf of £ on which DSFN_ acts as zero, where D( Y denotes the kernel
of the canonical projection DW= — O X The sheaf £Y may be regarded as an Oy )-module
via the underlying homeomorphlsm of Iy /,z

Recall that giving a DP©-module structure on an Ox-module £ is equivalent to giving a
logarithmic connection on &, i.e., a k-linear morphism £ — Q ® & satisfying the Leibniz rule.
For each DV~Y-module structure V on an Ox-module £, we shall write

VESORE

we shall write pW

for the logarithmic connection on £ corresponding to the D®-module structure induced from
V via the canonical morphism D) — DWN=1),

Denote by Pi)yios the pY-curvature map 7" — DWV-1 defined in [Ohk, Definition 3.10].
Given a DN ~Y_module (£, V), we shall set

Piew) i=V o PPy Tert Endy(€),

which will be called the pV¥-curvature of (£,V). The p'-curvature of a D®-module is es-
sentially the same as the p-curvature of the corresponding logarithmic connection (cf. [Ogu,
Section 1.2]).

Definition 5.1.1. Let (£, V) be a D™V ~Y-module. Then, we shall say that (£, V) is dormant
if Pye vy = 0.

Remark 5.1.2. Let us review a result in the case where » = 0, or equivalently, the log structure
of X'°8 is trivial. Then, our definition of p"-curvature coincides with the p-(N — 1)-curvature
in the sense of [LeQu, Definition 3.1.1]. For each Oy )-module &, there exists a canonical

(non-logarithmic) D&N_l)—module structure V@& on F )((]ylz*(é') with vanishing pN -curvature.

According to [LeQu, Corollary 3.2.4], the assignments (&, V) — £V and & — (F\ X/k (€, VEM))
determine an equivalence of categories

the category of ~ the category of (5.2)
dormant D;Nﬁl) -modules Oxm-modules | ° '

The ring-theoretic counterpart of this equivalence was already mentioned in Corollary 3.1.7.

Here, we shall consider the local description of D™ ~Y-modules. Let = be a k-rational
point of X and fix a local function ¢ on X defining z. Suppose that z lies in X \ J,_,{o:}
(resp., U;_;{o:}). Then, it follows from [PBerl, Proposition 2.2.4] (resp., [Mon, Lemme 2.3.3])
that (the sections of) the restriction of D™~ to D, := Spec(Ox,,) may be identified with

Dg\;:l) (resp., lu)g\;;l)) defined in (3.1) for R = Ox,. Each DN ~Y-module (£, V) induces,
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via restriction to D,, a Dg\)f;l)—module (resp., lv)g\;_zl)-module) (€,V)|p,. According to [Ohk,
Proposition 3.11], the p™-curvature of (€, V)|p, may be regarded as the restriction to D, of
the pY-curvature of (€£,V). In particular, if (£, V) is dormant, then the restriction (€, V)|p,

is dormant.

Definition 5.1.3. Let (£, V) be a dormant DY ~Y-module such that & is a vector bundle on
X of rank n > 0. Suppose that r > 0. Then, for each i € {1,--- ,r}, the (local) exponent of
(£,V) (or, of V) at the marked point o; is defined as the exponent of (£, V)|p,. (cf. Definition
43.1).

The following assertion will be applied in the proof of Proposition 7.3.1.

Proposition 5.1.4. Let | be a positive integer with p 1 1, N a line bundle on X, and V ye
a DNV _module structure on the l-th tensor product N® of N with vanishing p" -curvature.
Then, there exists a unique DN~=Y-module structure YV on N with vanishing p" -curvature
whose l-th tensor product Vf\bfl coincides with V yrer.

Proof. For each ¢ = 1,--- ,r, denote by e; the exponent of Ve at o;. Write €, for the unique
integer with 0 < ¢! < pV and ¢, = ¢;/l mod p". According to the discussion in Remark 3.1.1,
the trivial DO ~Y-module structure on Ox extends uniquely to a D ~Y-module structure V.,
on Ox(Y.I_, € - 0;) (2 Ox) with vanishing p"-curvature. The exponent of V' ® Ve at o;
is1-¢ —e; =1-(e;/l) —e; = 0. Hence, by Proposition 4.3.4 together with the equivalence of
categories (5.2), there exists a line bundle M on X with (F*(M), Vi) = (N V! @
Vyer), where N7 := Ox (31, € - 0;) @ N. If M’ denotes the line bundle on X corresponding

to M via base-change XV) 5 X by FN, then we have MEPY o2 AEL Here, let us take a
pair of integers (a,b) with a - p™ +b-1= 1. Then,

N/ _ N/@(a-pN+b-l) ~ N/@apN ® M/®pr _ (N/@a ® MI@b)@pN. (53)

Let us define £ to be the line bundle on X™) corresponding to N'®* ® M'®" via base-change
by FY. By (5.3), we see that F™N)*(L) = A", i.e., there exists an isomorphism F)*(£) ®
Ox(—=Y,€ - 0;) = N. The line bundle A is equipped with the DY ~Y-module structure V
corresponding to V@* ® VY via this isomorphism. The [-th tensor product V%}l of V has
vanishing p™¥-curvature and coincides with V e by its construction. This completes the proof
of this proposition. O

5.2. GL,-opers and PGL,-opers of level N. Let us fix a positive integer n. We shall define
the notion of a GL;N)-oper, as follows. (Note that a GLS)-Oper is the same as a GL,-oper in
the classical sense.)

Definition 5.2.1. (i) Let us consider a collection of data
F = (F, V, {}—j}oﬁjén)v

where
— F is a vector bundle on X of rank n;
— V is a DN =D_module structure on F;
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— {F7}o<j<n is an n-step decreasing filtration
O=F"CF'C...CF=F

on F consisting of subbundles such that the subquotients F7 /F7/*! are line bundles.
Then, we say that .Z is a GL™)-oper (or a GL,-oper of level N) on 2 if, for every
j=0,---,n — 1, the Ox-linear morphism DV~Y @ F — F induced by V restrict to
an isomorphism

PNV @ Frt X Fi (5.4)

<n—j

The notion of an isomorphism between two GL™-opers can be defined in a natural
manner (so we omit the details).
(ii) Let .Z% := (F,V,{F7},) be a GL™M-oper. Then, we shall say that F* is dormant if

Py Fw) —0

Remark 5.2.2. (i) A (dormant) GL{"™-oper is the same as a (dormant) D™~D-module
(F,V) such that F is a line bundle.
(ii) In the case of n =2, a GLéN)—oper on 2 is given as a triple (F, V, L) consisting of
— a DN ~Y_module (F, V) such that F is a rank 2 vector bundle, and
— a line subbundle £ of F such that the Ox-linear composite

£ inclusion ]_- _) Q Q ]__ quotient Q ® (f/ﬁ) (55)
defines an isomorphism between line bundles.

The following assertion implies that higher-level differential modules with a cyclic vector
may be regarded as ring-theoretic counterparts of GL,-opers of higher level.

Proposition 5.2.3. Let (F,V) be a DN~Y-module such that F is a vector bundle of rank
n. Also, let x be a (possibly generic) point x of X \ U._{o:} (resp., U._{o:}). Write
(Fz, Vi) = (F,V)|p, forthe D( _1)—m0dule (resp., D( )—module) obtained as the restriction
of (F,V) to D, (:= Spec(Ox)).
(i) Suppose that there exists an n-step decreasing filtration {F?}o<j<n on F for which the
collection (F,V,{F’}o<j<n) forms a GL™) -oper. Then, each generator of the restric-
tion of F"~' to D, defines an (N — 1)-cyclic vector of (Fy, V).
(ii) Suppose that there exists an (N — 1)-cyclic vector of (F,,V,). For each j =0, -
we shall write FI for the Ox ,-submodule of F, generated by the elements V ( ) for
I <n—j—1. Then, there ezists an open neighborhood U of x satisfying the followmg
condition: the filtration {FI}; extends to a decreasing filtration {(F|v)? Yo<j<n of Flu
(i.e., (Flv)|p, = F2 for every j) for which the collection (Flu, Vv, {(Flv) to<j<n)
forms a GL&N)—oper on the pointed curve Z restricted to U.

Proof. The assertions follow immediately from the definitions of a GL{")-oper and an (N —1)-
cyclic vector. 0

By applying results on differential modules proved in Sections 2 and 3, we can obtain the
following assertion.
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Corollary 5.2.4. (i) Let (F,V) be a DWV~Y-module such that F is a vector bundle of
rank n < pN. Also, let x be a k-rational point of X. Then, there exists an open
neighborhood U of x in X and an n-step decreasing filtration {(F|v)’ bo<j<n on Flu
such that the collection (Flu, V]u, {(Flv) Yo<j<n) forms a GLN)-oper on the pointed
curve & restricted to U.

(i) If n > p", then there are no dormant GLSZN)—opers on X .

Proof. Assertion (i) follows from Theorem 2.5.6 and Proposition 5.2.3, (ii). Assertion (ii)
follows from Propositions 3.2.1, (i), and 5.2.3, (i). O

Next, we shall define an equivalence relation in the set of dormant GL{™-opers. Let .Z#© =
(F,V,{F7};) be a GLM-oper on 2" and (N, V) a line bundle on X equipped with a DV-1-
module structure. According to [Mon, Corollaire 2.6.1], there exists a canonical DV ~Y-module
structure V ® Vr on the tensor product F ® N naturally arising from V and V. One may
verify that the collection

Fown = NOF, V@V AN ® Flogj<n)

forms a GL™-oper. If both .Z% and (N, V) are dormant, then ﬁg/y is dormant. Now,

let us consider the binary relation “~” in the set of dormant GL™-opers on 2~ defined by

F9 ~ F'¥ if and only if fgw V) = 'Y for some (N, V) as above; this relation in fact

defines an equivalence relation. For each .#" as above, we shall write
y@éﬁ

for the equivalence class represented by Z#°.

Definition 5.2.5. A PGL{™-oper (or a PGL,-oper of level N) on 2 is the equivalence
class F* (: ffvz”) of a GL%N)-oper FY%on 2. A PGLSIN)—oper is called dormant if it may

be represented by a dormant GL;N )_oper.

We shall denote by

Zzz...

Oby o ot simply Op,”"
the set of dormant PGL™-opers on 2.

Remark 5.2.6. It can immediately be seen that (Op,” ) = 1 (cf. Remark 5.2.2, (i)). Also,
according to [Moc, Chapter II, Theorem 2.8], Opz;zm is nonempty if N = 1. For a general n,
we know that the set Opzn for N = 1 is nonempty when n is sufficiently small relative to p
(cf. [Wajlé5, Theorem 3.38]). On the other hand, it follows from Corollary 5.2.4 that Opffzm =1
if n > p™.

5.3. Radius of a dormant PGLgLN )-oper. Denote by A the image of the diagonal embedding
ZJpNZ — (Z/pN7Z)". In particular, by regarding it as a group homomorphism, we obtain
the quotient (Z/pNZ)"/A. Note that the set (Z/pNZ)" is equipped with the action of the
symmetric group &,, of n letters by permutation; this action induces a well-defined &,,-action
on (Z/pNZ)"/A. Hence, we obtain the sets &,\(Z/p"Z)", &,\(Z/pVZ)"/A, and moreover,
obtain the natural projection

7 : G \(Z/pNZ)" - S,\(Z/pN )" A. (5.6)
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Each element of &,\(Z/pNZ)" may be regarded as a multiset of Z/pNZ whose cardinality
equals n.

Remark 5.3.1. Let us consider the case of n = 2. Denote by (Z/p™7Z)/{%1} the set of
equivalence classes of elements a € Z/p"Z, in which a and —a are identified. Then, the
assignment a — [a, —a| determines a well-defined bijection

(Z/p"Z)/{£1} = &\(Z/p"Z)*/A. (5.7)

By using this bijection, we will identify &,\(Z/pNZ)*/A with (Z/pNZ)/{+1} (cf. the discus-
sion in Section 7).

Let .Z* be a dormant PGL%N)—oper on %, and choose a dormant GL;N)—oper FY =
(F,V,{F’},) representing .#*. Suppose that r > 0. For each i = 1,--- ,r, denote by 4; the
exponent of (F,V) at 0;. Let us write pza; := 7(8;) € S, \(Z/pNZ)"/A. 1t follows from the
fact mentioned in Example 4.3.2 that the element pza ; does not depend on the choice of the
representative .Z° of .Z*.

Definition 5.3.2. (i) We shall refer to pza; as the radius of .Z* at o;.
(ii) Let g := (p;)7_; be an element of (&,\(Z/pNZ)"/A)". We shall say that .Z* is of
radii p'if p; = pga, forevery i =1,--- 7.

For each p € (&,\(Z/pNZ)"/A)", we shall denote by

Zzz...

OpN,n,%,ﬁy or S]mply Opizja
thesubset of OpZ"ZZM consisting of dormant PGL)-opers of radii j.

Remark 5.3.3. Let us recall the previous study for N = 1. A PGL(zl)—oper is essentially
the same as a torally indigenous bundle in the sense of [Moc, Chapter I, Definition 4.1].
Also, the radii of a dormant torally indigenous bundle on 2" (which belong to the set F,,
as proved in [Moc, Chapter II, Proposition 1.5]) is consistent with the radii of the correspond-
ing PGLs-oper via the quotient F, — F,/{£1} (= (Z/pZ)/{£1}). According to [Moc, Chapter
I, Proposition 1.4], the set Opz;j'l;)::l in the case of N = 1 is empty unless p; € F)//{£1} for
every ¢ =1,--- 7.

Moreover, for a general n, the radii of a dormant PGLS)—Oper introduced above coincides
with the one in the sense of [Wak5, Definition 2.32] under the identification of each element in
&, \F, /A with an [F)-rational point in the adjoint quotient of the Lie algebra pgl,,.

6. DUALITY OF DORMANT PGL,,-OPERS

In this section, we establish a duality between dormant PGL%N )_opers and dormant PGL;]]X)_H—
opers (cf. Theorem 6.3.1). As a corollary, we will see that there is exactly one isomorphism
class of dormant PGLSI\V])_ -oper (cf. Corollary 6.3.2, (ii)).

We keep the notation in the previous section.
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6.1. Dormant GL;JIX)-Opers. Let £ be a line bundle on X. We equip DV~Y ® £ with the
DW-Y_module structure given by left multiplication. We shall write P, for the quotient
of the left DW-Y-module DV-1 @ £ by the DN~D-submodule generated by the image of
Pihyioe @idg : T @ L — DWN-D @ £. Denote by Vp, the resulting DV ~Y-module structure
of Pr; by construction, (P, Vp,) has vanishing p"-curvature. Also, for each j = 0,--- ,p",
we shall set 7727: to be the subbundle of P, defines as

DI~ Im (Dg;?j @ L inclusion, 75(N—1) 9L quotient Pﬁ>‘
The collection of data
DL = (P, Vo, {PLYo<j<pv)

forms a dormant GL;]]\V[)—oper on 2 . Indeed, as discussed in Section 3.2, the restriction of this
data to D, (= Spec(OXx)) for each k-rational point x of X \|J;_,{o;} (resp., U;_,{0}) defines

-1

a dormant pinned D —module (resp., a dormant pinned D( )—module) In particular, we

obtain a dormant PGL )_oper P on X

Next, let (N, V) be a dormant D ~Y-module such that A is a line bundle. Since the
tensor product V ® V has vanishing p”V-curvature, the composite

DPWN-1) & (N ® L) (: DN N ® PZNA)) Inclusion, (N 1) ® (N @ Pr)

VeV N ® 7)5
factors through the quotient DV~Y @ (N ® L) — Pyer. By considering the local description,
we can see that the resulting morphism Pyer — N @ P, defines an isomorphism between
dormant GLM-opers

Ptae  (PL)awva: (6.1)

6.2. Duality for dormant GL!™ opers. Next, let ﬁv = (F,V,{F’},) be a dormant
GLWY )—oper on 2 with F*~! = L. The inclusion £ < Ve £> — F extends uniquely

to a DWW~V linear morphism DN~V ® £ — F. Since (F, V) has vanishing p’¥-curvature, this
morphlsm factors through the quotient DW~Y ® £ — P,. Thus, we obtain a morphism of
DW-Y_modules

o ('PL,VPE) — (.7:, V).

By Proposition 5.2.3, (i), the restriction of this morphism to D, for each point z of X \|J;_,{o;}

)

(resp., J;_,{0i}) may be regarded as a morphism of pinned D -modules (resp., pinned

Dgﬁ(_l)—modules) Hence, it follows from Proposition 2.5.5, (i), that vgzo is verified to be

surjective.

Example 6.2.1. Let us consider the dual (P}, Vy.) of (Pg, Vp,). For each j =0,--- . pV,
we shall write 77[:] for the Ox-submodule of P} deﬁned as the image of the natural injection
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(P:/ PZN ~7)V < PY. In particular, the line subbundle P/ "1 can be identified with Q®¢" Vg
LY, and we obtain a collection of data

P = (PL Ve AP Yogjzpn).
For each k-rational point = of X, the restriction of (P}, V) to D, together with a generator
of PP N_1| p, may be regarded as the data (3.8). Tt follows that 2" forms a dormant GLSJX)-

oper. Also, the morphism

. \Y% \Y%
V@gv : (PQ®<PN*1)®£V7 V,PQ@(Z?N*I)@LV) — (Pﬁ’ V’Pﬁ)

is compatible, via restriction to D,, with the morphism (3.9). It follows that Vgov defines an

. . v} ~ Q N
isomorphism ‘@Qea(pN—l)@gv 5 2L of GL;N)—opers.
Let us write FY := Ker(vzo)Y. Since vzo preserves the DV ~V-action, Vp, restricts to

(N—1

a DV =D-module structure Ve ) on the kernel Ker(vzo); it induces a D™V~Y-module

structure on FY, which we denote by V". For each j = 0,---,p" — n, let us define v; to be
the composite

inclusion pN —n—j

v; : Ker(vgo) ——— P — Pr/P?
By letting F'/ := Im(v;') (C F"), we obtain a collection of data
TV = (F VY AF Y o<j<pv—n)-
Proposition 6.2.2. Let us keep the above notation.
(i) Z°V forms a dormant GL;JJX)_n—oper on Z . Moreover, there exists a canonical isomor-
phism F¥ = FOVY of GL%N)-opers.
(ii) Let (N, V) be a dormant DWN=Y-module such that N is a line bundle. Then, there
exists a canonical isomorphism of GL;%ln—opers

(F" e vy = (ﬁgw,w))"

Proof. First, let us consider assertion (i). The formation of .Z"7 is compatible with that of
(EY, V7, 0") (cf. (3.10)) via restriction to D, for every point z of X. This implies that .# %Y
forms a dormant GL;J,Xln—oper (cf. Proposition 5.2.3). Also, let us consider the following
diagram:

inclusion Vzov v
0 Ker(l/yvv) PQ®(PN*1)®£V f 0
V@?V U] id
v quotient

l/g@

The right-hand square is commutative because its restriction to D, for every point x of X is
commutative, as observed in the proof of Theorem 3.3.2, (i). Hence, it induces a morphism
Ker(vgzov) — FY. By considering the local description again, one verifies that the dual of this
isomorphism specifies an isomorphism .#¥ = Z VY of GL;N )-opers. This completes the proof
of assertion (i).
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Next, we shall prove assertion (ii). Consider the following diagram:

idyvevY uotien
0 /\/’V®]-"VM>NV®PZ duotient NY @ Ker(vgo)) ———0
2 2
v N Ve
0 (N ® F) . Prec quotient Ker(y”@gw,vm) 0,

where the middle vertical arrow denotes the dual of (6.1) and the left-hand vertical arrow
denotes the canonical isomorphism. Since the left-hand square diagram is commutative, this

diagram induces an isomorphism NV ® Ker(ygo)v = Ker(z/yow ))V. This isomorphism
V

specifies an isomorphism (. Ov)®(j\/v’vv (33®( N VN)) of GLprn—opers. This completes

the proof of assertion (ii). O

Remark 6.2.3. In this remark, we shall examine the determinant of a GL,,-oper. Let .#% :=
(F,V,{F’};) be as above. Since D<j+1 /D ~ 7% (j = 0,1,2,---), we obtain the

composite of canonical isomorphisms

p—l

det(P;) = ® PL/PLH (6.2)

N
5@ T e
j=0

iad 7'®pN(pN—l)/2 ® L£er’

where N, denotes the line bundle on X corresponding to TEEY-D/2 ¢ £ via base-change
XM 5 X by F N Similarly, there exists an isomorphism

det(F) = TE=D/2 g £on (6.3)

The DWW ~Y-module structure on the determinant bundle det(P;) induced by Vp, corresponds
to V& via (6.2). Hence, the determinant of VY corresponds to (V§E)" ® det(V) via the
following composite of natural isomorphisms:

det(F7) 5 det(Ker(vz))" = det(Pg)¥ @ det(F) 5 F{)) (M) @ det(F).

6.3. Duality for dormant PGLY"Y) opers. By applying Proposition 6.2.2, (i), we obtain a
bijective correspondence

the set of isomorphism classes\ ~ [ the set of isomorphism classes (6.4)
of dormant GL;N )_opers on 2~ of dormant GL](DZI\V[ln—opers on )" '

Moreover, this correspondence and Proposition 6.2.2, (ii), together imply the following asser-
tion, which is a part of Theorem B.
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Theorem 6.3.1. (i) The assignment F=* s FVV=® defines a well-defined bijection of
sets

a, : Opzn = Opj:; .
satisfying A~ _,, o A, = id.
(i) Suppose further that r > 0. Let = (p;)i_, be an element of (&, \(Z/pNZ)"/A)".
Then, , restricts to a bijectz'on

Zzz..
Uy s Opnp _>Opp N—n,pv>

where pY = (p] )izy (cf- (4.8)).
Proof. Assertions follow from Propositions 4.4.3 and 6.2.2. O

Moreover, the duality theorem established above implies the following assertion, which is
the remaining portion of Theorem B; note that this assertion generalizes results proved by Y.

Hoshi (cf. [Hosl, Theorem A]) and the author (cf. [Wakl, Corollary 4.3.3]).

Corollary 6.3.2. (i) Let £ be a line bundle on X and Ve a dormant D™= -module
structure on TE""=V/2 @ £2  Then, there exists exactly one isomorphism class of

dormant GL;]]X)_l—oper FV = (F,V,{F};) on Z such that F"~* = L and det(V) =

Ve under the identification det(F) = T®"=1/2. @ L& given by (6.3).

)_1—0per, 1.€., the follow-

(ii) There ezists exactly one isomorphism class of dormant PGLY N
. . p
ing equality holds:

Zzz.

ﬂ(Opprl) L

Moreover, if r > 0, then the radius of the unique dormant PGLSI\V[)_I-Oper at any marked
point coincides with w([1,2,--+ ,pY —1]) (cf. (5.6)).

Proof. Assertion (i) follows from the observation that the desired GL}()JI\V[)_I—Oper is the unique

one corresponding, via (6.4), to the dormant GL(N)—oper
N)x* n(n— n can
(VN @ T D2 @ £9m (Vi)Y @ V)
(cf. Remarks 5.2.2, (i), and 6.2.3). Assertion (ii) follows from the bijection (I; asserted in

Zzz..

Theorem 6.3.1, (i), and the equalities tj(Op1 ) = 80Py (x (o)), (o)) = - O

7. TAMELY RAMIFIED COVERINGS AND DORMANT PGLy-OPERS

Recall (cf. [Moc|, [Oss2], [Oss4]) that certain tamely ramified coverings with ramification
indices < p between two copies of the projective line can be described in terms of dormant
PGLél)—opers. That description is the starting point of the enumerative geometry of dormant
opers because it allows us to translate dormant PGLsy-opers on a 3-pointed projective line into
simple combinatorial data. In this section, the situation is generalized to the case of higher
level in order to deal with tamely ramified covering having large ramification indices. Theorem
C will be proved at the end of this section.
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7.1. Dormant PGlL,-opers arising from tamely ramified coverings. Denote by P the
projective line over k, i.e., P := Proj(k[z1,z5]). Let 2" := (X, {ai};':l) be as before, and take

an r-tuple of integers X := ()\1,~ JA) with 0 < Ny <pV (i =1,--- 7). We shall write g :=
(p1,-++ ,pr), where p; = : € (Z/pN7Z)/{£1}. Under the 1dent1ﬁcat10n (Z/pNZ)/{jzl} =
S\ (Z/pN7Z)? /A defined in ( 7), f may be regarded as an element of (S,\(Z/p"NZ)?/A).

shall denote by
COVX

the set of equivalence classes of finite, separable, and tamely ramified coverings ¢ : X — P
that are ramified at o; with index \; and étale elsewhere. Here, the equivalence relation is
defined in such a way that two coverings ¢, ¢, : X — P! are equivalent if there exists an
element h € PGLy(k) (= Autg(P)) with ¢ = h o ¢;. For each ¢ as above, we shall denote by
[¢] the element of Covy (i.e., the equivalence class) represented by ¢.

In what follows, let us construct a map of sets Covy — Op2 . Let us take an element [¢]
of Covy, and choose a tamely ramified covering ¢ representing [qﬁ] Let o1, 0L (0 <1’ <)
be the mutually distinct points of P such that (J;_{#(c:)} = {0}}i_, " .. In particular, &2’ :=
(P, {o} } 1) defines an 7’-pointed genus-0 curve; we denote the 1nduced log curve by Ps’.
Since ¢ is tamely ramified, the morphism ¢ extends to a log étale morphism ¢'°¢ : Xog — Plog’,
Write £ := Op(—1) ® Op(>"_, o), and write 7y for the Op-linear injection Op(—1) < OF?

J=1"J
given by w — (wxy, wzs) for each local section w € Op(—1). Also, let F be a rank 2 vector

bundle on P which makes the following square diagram cocartesian:

Op(—1) OF?

inclusion

L F.

The trivial D];]]Z ,Y-module structure on OF? extends uniquely to a Démog Y_module structure

V£ on F. It follows from the various definitions involved that the composite
r inclusion F Vr, Q]PllOg//k RF —» Qplog’/k (029 (.F/E)

is Op-linear and injective. Moreover, since deg(L) = det(Qpuoy jp @ (F/L)) (=1" — 1), this

morphism is an isomorphism. This means that the triple (F, Vz, £) forms a dormant GL(zN)-

oper on &' (cf. Remark 5.2.2; (ii)). Hence, the pull-back of this data via the log étale
morphism ¢'°¢ defines a dormant GL%N)—oper

Fy =¥ (F,Vr, L)

on Z .

Proposition 7.1.1. The dormant PGLg -oper J‘f:” on X represented by g"f is of radii

o

Proof. The problem is the computation of the radii of 33(; . Let us take i € {1,---,r}, and

choose j € {1,---,r'} such that o} = ¢(0;). Also, choose a local function ¢ on IP defining
/

;. This local function allows us to identify the formal neighborhood lA)U; of o’ in P with
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Spec(k[t]). Since the ramification index of ¢ at o; is \;, the formal neighborhood lA)ai of o;in X
may be identified with Spec(k[t*/*i]) and the restriction of ¢ to D,, may be identified with the
morphism Spec(k[[t'/*]) — Spec(k[t]) induced by the natural inclusion k[t] < k[t/*]. The

lv),(i[\i]]_ Y_module corresponding to the restriction of (F, V) to lA?(,} is isomorphic to (k[t], Vo) ®

(t1 - k[t], Vo). It follows that the pull-back of (F, V) to ¢'°¢ restricted to ﬁai is isomorphic
to (k[tY/2], Vo) @ ((¢1/2) X . k[t1/2], Vo) (which is also isomorphic to (k[s], Vo) & (k[s], %Xl)
by putting s := t'/*). Hence, the exponent of .Z, at o; coincides with [0, );], which implies
Py, = Pi- This completes the proof of this proposition. O

Since 19 is invariant under pull-back by automorphisms of P, the isomorphism class of L%;?
does not depend on the choice of the representative ¢ of [¢]. Hence, the above proposition
implies that the assignment [¢] — 7, (; gives a well-defined map of sets

T : Covy — Opz2p~ (7.1)

7.2. Tamely ramified endomorphisms of a 3-pointed projective line. Denote by [0],
[1], and [oo] the k-rational points of P determined by the values 0, 1, and oo respectively.
After ordering the three points [0], [1], [cc], we obtain a unique (up to isomorphism) 3-pointed
proper smooth curve

Z = (P/k,{[0], [1], [o0]})
of genus 0 over k. In particular, we obtain a log curve P8 over k.
Next, let us take a triple (po, p1, poo) Of elements of (Z/pNZ)* /{41}. There exists the triple
of integers (g, A\1, Aoo) satisfying the following conditions:
(a) 2+ p, = A, as elements of (Z/pNZ)/{£1} and 0 < A\, < p" for every z = 0, 1, oc;
(b) The sum Ao+ A1 + Ay is odd < 2-p™.

Let us write Of := Op(Xg - [0] + A1 - [1] 4+ Ao - [00]). Note that there is a unique DI _module

Plog
structure V' on O whose restriction to U := P\ {[0], [1], [oc]} coincides with the trivial

D((JN_l)—module structure on O |y = Oy (cf. Remark 3.1.1).
The following assertion is a special case of [Ossl, Theorem 3.3, (ii)]; we shall prove it by a
relatively elementary argument.

Proposition 7.2.1. Let ¢ : P — P be a tamely ramified covering classified by Covix, a ae)
in the case where “Z° 7 is taken to be &2. Then, the points ¢(]0]), #([1]), #([oc]) are mutually
distinct.

Proof. First, we shall suppose that the set ¢({[0], [1],[oc]}) consists of one point. By consid-
ering the fiber of ¢ over this point, we see that deg(¢) > Ao + A1 + Awo. It follows from the
Riemann-Hurwitz formula that

—2 (=2 (genus of P) —2) = —2 - deg(¢) + Z A —1) < =N+ M+ As) — 3.
z=0,1,00

Thus, we obtain a contradiction. Next, suppose that ¢({[0], [1],[oc]}) consists of two points.
After possibly applying a linear transformation, we may assume that these two elements co-
incide with {[0], [oc]}, and that {[0]} C ¢~'([0]) and {[1],[c0]} C ¢~ !([oc]). Hence, ¢ defines
a tamely ramified covering of G,, (= P\ {[0], [c0]}). Recall that the tame fundamental group
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tame

rtame(G, ) of Gy, is isomorphic to ZP' | the maximal prime-to-p quotient of Z := @nez>o Z/nZ.

A topological generator o of 7t*™¢(G,,) acts on the fiber over the point near [0] as a cyclic per-

mutation. On the other hand, o' acts on the fiber over the point near [oo] as a product of two
disjoint cyclic permutations. This is a contradiction. Hence, the the image ¢({[0], [1], [c0]})
consists of three points. This completes the proof of this assertion. O

Remark 7.2.2. Because of Proposition 7.2.1, each element of Cov(y,, 1.) has a unique rep-
resentative ¢ : P — P satisfying ¢([z]) = [z] for every z = 0,1, 00. Following [ABEGKM]
(or [BEK]), we call such a covering a dynamical Belyi map.

Now, let us take a dynamical Belyi map ¢ : P — IP classified by Cov(y,a, x.); this covering
corresponds to a representation of the tame fundamental group 7{*™¢(P\{[0], [1], [oc]}) (which is
obtained as a quotient of the profinite completion ﬁ0’3 of the group Iy 3 := (70,71, Yoo | Y071Ve0 =
1)). Hence, by the above proposition, ¢ determines three cyclic permutations og, o1, and o4
(in the symmetric group &, of d letters for some d > 1) of orders Ag, A1, and A, respectively,
satisfying oy 0 01 = 04. A trivial elementary argument shows that this condition implies the
following inequalities:

|)\0—)\1| <Aoo < Ag + Ap. (72)

These inequalities also can be obtained by the inequality deg(¢) (: W) > o5 ALy Aso-

Conversely, suppose that a subgroup of &, generated by three cyclic permutations og, o1,
0o With 0y 0 07 = 0, has order prime to p. Then, the assignment v, — o, (x = 0,1, 00)
induces a representation 7{*™¢(P\ {[0], [1], [cc]}) — &4 because the surjection ﬁo,g —» qriame (P
{10], [1], [oc]}) becomes bijective after taking their maximal prime-to-p quotients. In particular,
the corresponding tamely ramified covering is classified by Covy,a,a.). See [BEK] for the
study concerning the relationship between such cyclic permutations and dynamical Belyi maps
in characteristic p.

7.3. Dormant PGL,-opers on a 3-pointed projective line. In what follows, we shall prove
that the map Ty defined in (7.1) becomes a bijection when 2" = Z2. To do this, we construct
its inverse map. We first prove the following proposition.

Proposition 7.3.1. Let Z* be a dormant PGLgN)—Oper on &. Then, there exists a dormant
GLéN)—oper FY = (F,V,L) on P satisfying F°=* = F* and det(F,V) = (Of, V1),
Moreover, such a GLgN)—oper 15 uniquely determined up isomorphism.

Proof. First, we prove the existence portion. Let us take a dormant GLgN)—oper FY =
(F,V,L) on & with FV=% = Z#® Since L = Qpoe ® (F/L) (cf. (5.5)), the following
equalities hold:
deg(Op @ det(F)Y) = Ao + A1 + Moo — deg(L) — deg(F/L)
:)\0+)\1+)\00+1—2d€g(£)

In particular, the degree of Op ® det(F)Y is even. Hence, it follows from Lemma 5.1.4 that
there exists a dormant DUy V-bundle (A, V) such that A is a line bundle with N®? =

Plog

(O, VT) @ det(F,Vz)". By putting (F', V', L) := ffg(

det(F, V') = (N, V) @ det(F,V) = (OF, V).

NV We have
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Thus, (F',V’, £') specifies the required GL{"-oper.

Next, we shall prove the uniqueness portion. Let %, := (F;, Vi, £;) (i = 1,2) be dormant
GLéN)—opers on & satisfying the required conditions. Since .Z°=* = .%,’7*, there exists a
dormant DY Y-module (N, V) such that A is a line bundle and #y = (F )gwvp)- I

Plog
VY denotes the trivial DU !

Plog
(Op, V™Y) = det(F, Vo) ® (OF, V)Y

>~ det((N, V) @ (F1, V1)) ® (Of, V)Y
> (N, V)2 @det(F, V1) ® (Og, V)Y
=~ (N, Vu)®2.

Since Pic(P) = [Op(1)] - Z, the line bundle A" may be identified with Op. Moreover, by the
uniqueness portion of Proposition 5.1.4, V, coincides with V'V via a fixed identification
N = Op. Thus, we have (F7 )gw.vy) = F1 , which implies that .%, is isomorphic to %’
This completes the proof of the uniqueness portion. O

)_module structure on Op, then we have

Now, let us take a dormant PGLgN)—oper F* on P of radii (po, p1, pec). Also, let F© =
(F,V,L) be the dormant GLéN)—oper resulting from Proposition 7.3.1 applied to .#*. In
particular, we have deg(L) = 20tMPA=tl and deg(F/L) = 2otutA==l" Denote by 7 the
Op-linear morphism FEE%)*(FV) — F extending the (Opw)-linear) inclusion FV < F; the
morphism 7 is compatible with V2 (cf. Remark 5.1.2) and V. We shall write £% := £NIm(7).

Since the restriction of 7 to U := P\ {[0], [1], [oo]} is an isomorphism, the quotient sheaf £/L"
is a torsion sheaf supported on {[0], [1], [oo]}.

Lemma 7.3.2. The length of L/L" at the marked point x € {[0],[1], [o0]} is A,. Moreover,
the natural inclusion £/L* < Coker(7) is an isomorphism.

Proof. Let us fix x € {[0], [1], [0c]}, and choose a local function ¢ defining x. The restriction of

A~

(F, V) to the formal neighborhood D, of z may be expressed as (k[t], V)& (k[¢], V;) for some
integers a, b with 0 < b < a < p" —1. The radius of V at z coincides with p, by assumption, so
the equality 2 p, = a — b of elements in (Z/pN7Z)/{£1} holds. Since det(F,V) = (Of,V*), a
computation using Proposition 4.2.1, (i), of the lengths at z of det(F, V) and (Og , V") implies
a+b= )\, (mod p"). Hence, since a +b < 2-p", it follows that a + b is either A, or A\, + p™.
We shall prove the claim that a+b = \,. Suppose, on the contrary, that a+b = p~ + \,. The
condition that 0 < a—b<p" —1land 2-p, = a—bin (Z/p"7Z)/{£1} implies that a — b is
either )\, or p¥ — \,. Since a + b and a — b have the same parity, the equality a — b = p& — \,
holds. Hence, we have

2-a=(a+0b)+(a—b) =" +X\)+ (" =) =2-p".

This implies the equality a = p”, which is a contradiction. This proves the claim.

By the claim just established, we have a +b = A\, and a —b = \,. In particular, a = A\, and
b = 0, which means that the restriction of (F, V) to D, is isomorphic to (k[{], @Xx)@(k[[t]], Vo).
It follows that the restriction of Im(r) to D, coincides with t* - k[t] & k[t] (C k[¢]®2). On
the other hand, according to the proof in Proposition 4.4.1, the inclusion £ < F corresponds,
after choosing a suitable trivialization I'(D,, £]| 5.) — k[t], to the k[t]-linear morphism k[t] —
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k[t]®* given by 1 +— (uy,us) for some uy,us € k[t]*. By taking account of this observation,
we see that the length of £/L% at = coincides with )\,. Moreover, since the length of Coker(7)
at o is a + b = )\, the inclusion £/L" < Coker(7) turns out to be an isomorphism. O

Lemma 7.3.3. There exists an Opw)-linear isomorphism vy : (’)H?& = FV.

Proof. Since FV is a rank 2 vector bundle on the genus-0 curve PXV)| it is isomorphic to the
direct sum of two line bundles. Let us fix an isomorphism 7 : Opw) (a )@Opm (b) = FV, where

a and b are some integers with a > b. The pull-back of v via FIPE Ik defines an 1somorphlsm
Y Op(p™ - a) ® Op(pY - b) = FP/k “(FV). Tt follows from Lemma 7.3.2 that

Ao + A1 + Moo = length(L/L%)
= length(Coker(7))
= deg(F) — deg(F"*(FY))
=X+ A + Ao + 2V (a+ D).
This implies b = —a. Next, let us consider the composite

—(v,0)
)v

Os(p™ - a) "% Op (™ - @) ® Op (" - 0) T R (FY) B F > F/L. (1)

We shall suppose that @ > 0. The assumption \g + A\; + Moo < 2 - p¥ implies

/\0+>\1+)\oo
2

Hence, the composite (7.3) must be the zero map. It follows that the image Z of the inclusion
into the first factor Op(p" - a) — Op(p" - a) ® Op(—p" - a) is contained in L (C F) via 7 oyF.

deg(Op(p" - a)) > p~ > L = deg(F/L).

But, since 7 is closed under VE,;HEN) (@) P Vg“‘(m (b) the line subbundle £ must be closed under
P
V. This contradicts the fact that the morphism (5.4) for j = 1 is an isomorphism. Thus, we

conclude that a = 0, i.e., 7 defines an isomorphism (’)]?,?2 = FVY. U

Let v be as asserted in the above lemma. For convenience, we occasionally use the notation

~

X to denote the underlying projective line P. The pull-back 7 : O%* & Fijlz*(fv) of v by

F)(gg induces a trivialization P(y") : P x;, X = P( )(32* (FV)) of the P-bundle P( X/k*(]:v))
(FV). The sheaf L?, regarded as a line bundle of FX/k (FV) via 7, defines

(FV)). Thus, we obtain the composite

associated to FX/k

a global section o : X — IP’(FX/,C

bra: X SPEN)(FY) L P, x B P,

Lemma 7.3.4. The morphism ¢za : X — P! defines a tamely ramified covering classified by
the set Covixga ) (for ' = 2).

Proof. Let z be a k-rational point of X. To complete the proof, we shall describe the morphism
¢ za restricted to the formal neighborhood D, of x.
First, suppose that x € {[0], [1], [oc]}. As observed in the proof of Lemma 7.3.2, the D,E:J[\[;ﬁl)—

module corresponding to the restriction of (F,V) to D, is isomorphic to (t=2= - k[t], 60) @
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(k:ﬂt]],%o) (2 (k[[t]L%Xx) @ (k[t], @0)) According to the proof of Proposition 4.4.1, the in-

clusion £ < F restricted to lA)x may be identified, after choosing a suitable trivialization
['(Dy, L|p,) = E[t], with the k[t]-linear morphism k[t] — ¢~ - k[t] @ k[t] determined by

1+ (t7=-1,u) for some u € k[t]*. Under this identification, the inclusion £% < F )((]7,2* (FV) re-

stricted to D, corresponds to the inclusion - k[t] — k[]®? determined by ¥ -1 — (1, % ).
This implies that the restriction of ¢ za to D, arises from the k-algebra endomorphism of k[t]
given by t — t+ - . Hence, the ramification index of ¢za at x coincides with \,.

Next, suppose that z € X \ {[0],[1],[cc]}. The inclusion £ < F restricted to D, may be
described, after choosing suitable trivializations of £|5 and F|5 , as the k[t]-linear morphism
k[t] — k[t]®* determined by 1 — (1,¢-v) for some v € k[t]*. Hence, by the same reason as
above, the ramification index of ¢ za at x turns out to be 1, which means that ¢ za is étale at
x. This completes the proof of this lemma. Il

Note that the resulting element [¢za] € Cov(x,a,,1..) does not depend on the choice of the
trivialization y : OZ%, = FV because v is uniquely determined up to forward composition with
an element of Auto_,, (OF%)) (= PGLy(k)). Thus, the assignment .Z* — [¢ 74| determines a

well-defined map of sets OpZQ(p0 p1pse) — COVOg A A)- One may verify that this map specifies,
by construction, the inverse to the map Ty, a.). Thus, we have obtained the following
assertion.

Proposition 7.3.5. (Recall that the underlying curve “Z"” has been taken to be &?.) The
assignments [¢] — 9}? (i.e, Toann)) and F* — (¢ za] constructed above give a bijective
correspondence

Zzz...

Opl(po,pl,poo) = COV(/\O)\L)\OO)

7.4. Correspondence between tamely ramified coverings and dormant PGL%N)-opers.
The following proposition (together with Proposition 7.3.5) may be regarded as a variant of
the rigidity assertion for dynamical Belyi maps proved in [LiOs2, Lemma 2.1].

Proposition 7.4.1. Let (po, p1, poo) be an element of ((Z/pN7Z)/{+1})®. Then, a dormant

PGL&N)—oper on & of radii (po, p1, Poc) 18, if it exists, uniquely determined. That is to say,
the following inequality holds:

Zzz...

1j(Opl(po,m,poo)) <L

Proof. Suppose that OpZ;’Z(‘[;O’phpoo) # (). By the canonical morphism Dgfgg — DI(P,]IXg_ 1), each

element of OpZQZ’Z('/;@prO) induces a dormant PGLgl)—oper of radii (py, Py, Pu), Where p, (for
r = 0,1,00) denotes the image of p, via the natural surjection (Z/p~Z)/{£1} — F,/{£1}.

Hence, Opzlgy (o.71.7.) must be nonempty. This fact together with a comment in Remark 5.3.3

implies that (7, 7y, 7s,) € (F)/{=£1})?, or equivalently, (po, p1, poc) € ((Z/pNZ)* /{£1})?. In
particular, there exists a triple of integers (A, A1, As) associated to (po, p1, poo) satisfying the
conditions (a), (b) described in Section 7.2.

Now, suppose that there exist two dormant PGLgN)—opers F® F¥on P of radii (P05 P15 Poo)-
For each 7 = 1,2, denote by ?jo = (F;,V;,L;) the dormant GL;N)—oper resulting from
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Proposition 7.3.1 applied to #} # The inclusion F; Y < F; extends to an Op-linear morphism

(N)*
F]P’/k

Ej/ﬁg 5 Coker(7;) (cf. Lemma 7.3.2). Also, denote by V; the DY -module structure on F;

Plog

(FY) = F;. Let us wrlte [,h = L£; NIm(7;) and write ¢; for the natural isomorphism

induced from V;. The triple ?? = (F;,V;, L;) defines a dormant GLgl)—oper, in particular,
induces a dormant PGLél)—oper ?:?:m on & of radii (py, Py, P ). Recall from [Moc, Chapter I,
Theorem 4.4] (cf. Remark 5.3.3) that dormant PGL{"-opers on & are completely determined
by their radii. It follows that % 7, * =7, 7, *
7.3.1, there exists an isomorphism of GLs-opers « : ?? = ?f . This isomorphism restricts
to an isomorphism «|z, : £; = Lo, which induces, via taking the respective quotients, an
isomorphism O“cl/ﬁﬁ : El/ﬁhl = £2/£g. The composite o|coker(r) := t2 © O“Cl/ﬁﬁ 017! specifies

. By the uniqueness assertion in Proposition

an isomorphism Coker(7;) = Coker(7y).
In what follows, we shall prove the commutativity of the following square diagram:

Fi . Fa
i 2 (7.4)
Coker(7y) Coker(7y),
O"Coker(-rl)

where 7; (j = 1,2) denotes the natural projection F; — Coker(r;). Let us take j € {1,2},
z € {[0],[1],[00]}. Also, choose a local function ¢ on P defining #. Denote by D, the formal
neighborhood of = in P, which may be identified with Speo(k[[ ). Fix an identification of the
restriction of (F;, V;) to D, with (k[t], VA )@ (k[t], Vo) (cf. the proof of Lemma 7.3.2). The
isomorphism « restricted to D, defines an automorphism |7 5, of (k[t], sz) (k[t], Vo). Here,
we shall use the notation p_) to denote the endomorphism of k[t] given by multiplication by
(—). Since p, # 0 in F,/ {:I:l} (or equivalently, A, # 0), the automorphism af p, may be
expressed as i, @ p, for some v,w € k[t]* after possibly replacing the fixed identification
(F5, Vji)lp, = (k[], %Xx) @ (k[t], Vo) with another (cf. Proposition 4.2.1, (ii)). As observed
in the proof of Proposition 4.4.1, the inclusion £; < F; corresponds, after choosing a suitable
trivialization (D, £;| 5.) — k[t], to the k[t]-linear morphism k[t] — k[t]** given by 1
(uj,1) for some u; € k[t]*. Then, the restriction of a|, to D, may be expressed as fi,,, and
the equality vu; = wus holds. Hence, for each (g, h) € k[t]** (= ]-"1]596), we have

(m2 0 @)((g, 1)) = m2((vg, wh))

= <% < Ug, v 1) mod Im(73)

U2 U2

= 9 (% mod Eg)
Uz
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v
= (190 a|£1/£ul) (_g mod L’hl)

wu9

= (a|Coker(71) © Ll) (i mod ,Cti)

Uy

g g
= oker (T : ) -1 d1
| Coker(m) ((m Uy w ) mo m(71)>

= (| coker(r) © T1)((g, h)).
This shows the desired commutativity of (7.4).
Moreover, the commutativity of (7. 4) just proved implies that « restricts, via ¢; and ¢y, to
an isomorphism o' : FP%)*(}"V) = F]P,/k “(FY). Since FY = Fy = OF3, (cf. Lemma 7.3.3),
the morphism

HOH]O (F 7‘Fv) — Endop( P/k (‘Fl )7 IF"/k (‘FQ ))

arising from pull-back by F k) is bijective. In particular, o’ comes from an isomorphism

( ) o can can
plog -actions va, & (cf.

Remark 5.1.2). Since V; is the unique Dplog Y_module structure on F; extending V“"% via 7j,
-1)

FY = FyY, and hence o is compatible with the respective D

the isomorphism «, being an extensmn of o preserves the DY action. It follows that «

Plog
defines an isomorphism of GL2 -opers #; Y :> , which induces the equality F#* = 75 . ¢
This completes the proof of this proposition. O

Zzz..

Remark 7.4.2. The proof of the above proposition shows that Op2 (p0,p1,p00) = () unless

(Pos P15 Poo) € ((Z)pNZ)* /{£1})3. As mentioned in Remark 5.3.3, this fact for N = 1 was
already verified in [Moc, Chapter II, Proposition 1.4].

We shall write
Covy (resp., Cov)
for the set of equivalence classes of finite, separable, and tamely ramified coverings ¢ : P — P

satisfying the following conditions:

e The set of ramification points of ¢ coincides with {[0], [1], [oo]};

e If A\, (x =0, 1,00) denotes the ramification index of ¢ at [z], then g, A1, Ay satisfy the
inequality Ao+ A1+ Ao < 2-pY (resp., Ao, A1, As are all odd and satisfy the inequality
/\0+)\1+)\oo < 2pN)

Here, the equivalence relation is defined in such a way that two coverings ¢1,¢o : P — P
are equivalent if there exists an element h € PGLy(k) (= Auty(P)) with ¢o = h o ¢1. Since
the identity morphism idp of P defines a tamely ramified covering with ramification indices
(1,1,1), the set Covy (resp., Cov) is nonempty. By applying some of the results proved so far,
we obtain the following assertion.

Theorem 7.4.3 (cf. Theorem C). The assignment ¢ — ﬁ;‘ gives a 4-to-1 (resp., a 1-to-1,
e., bijective) correspondence

T, : Cov, —» OpZJ\Z[ZQﬂ (resp., T : Cov = OpZ]\Z,Z2gJ> .
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In particular, the set OpZNQ@ s finite and admaits an inclusion into the following set:
BY = {(A0, A, Asc) € B? [ Ao + A1+ A < 29N and | Ao — M1 < Ao < Ao+ A1},
where B denotes the set of positive odd integers a with p{a, a < p~.

Proof. First, we shall consider the former assertion. Let us take a dormant PGL%N)—oper T
classified by Opzjéz’é;{@, and denote by (po, p1, poo) the radii of .#*. The result of Proposition
7.4.1 shows that .#* is the unique dormant PGLgN)—oper on & of radii (pg, p1, Poo). Now, let

us choose a triple of integers X = (Mo, A1, Aso) associated to (pg, p1, Poo) as defined in Section
7.2. As observed in Remark 7.2.2, this triple satisfies the inequalities in (7.2). It follows that
the triples

X (A p Al) - AOo)a
X (pN AO? Al? - AOO)J
Xoo 1= (0N = X0, 2™ = Ay Ano)s

respectively, satisfy conditions (a) and (b) in Sectlon 7.2, and conversely, each triple of integers
satisfying (a) and (b) is one of the four tripes A, Ag, A1, Aoo. Thus, by Proposition 7.3.5, the
preimage of the element defined by .Z* via T coincides with {[¢5], [95,]: (@5, ], 951}, where,

for a triple N := (A0s A1, AL)s @3] denotes a unique (up to equivalence) covering classified by
Cov, whose ramification index at [z] (x = 0,1, 00) is A’.. This proves the non-resp’d assertion.
Also, the resp’d assertion follows from the fact that only one of the four triples X, Xo, Xl, Moo
satisfies the condition that all factors are odd.

Finally, the latter assertion follows from the resp’d portion of the former assertion (and its
proof). This completes the proof of this theorem. O

Remark 7.4.4. In the case of N = 1, we know that the embedding OleQL@ — B} resulting
from Theorem 7.4.3 is bijective (cf. [Moc, Introduction, Theorem 1.3, (2)]). The resulting
correspondence Opzlzgy =~ B} allows us to translate dormant PGLy-opers into edge-colorings on
trivalent graphs, as well as lattice points of a rational polytope (cf. [LiOs1], [Wak2]). However,
at the time of writing the present paper, the author does not know much about the image of
this map for a general N.

Remark 7.4.5. In [Moc, Chapter II, Definition 2.2], S. Mochizuki introduced the notion of
a(n) (dormant) m-connection (for each nonnegative integer m) on a flat P'-bundle. Here,
we recall its definition briefly. Let 2" := (X, {0;};) be as in (5.1). Also, let (P, V) be a
flat P-bundle on X8, i.e., a P-bundle P on X equipped with a logarithmic connection V
(with respect to the log structure of X'°¢). Denote by W,,,1 the ring of Witt vectors with
coefficients in k of length m + 1. Then, a dormant m-connection on (P, V) (of prescribed
radii) is defined as a crystal in P-bundles on the log crystalline site Crys(X'°8 /W,, 1) inducing
(P, V) via reduction module p and satisfying some other conditions. The condition of being a
dormant m-connection is described in terms of p™*!-curvature in the sense of [Moc, Chapter
IT, the discussion in Section 2.1], which is different from (but closely related to) our definition
of p™ Tl curvature because it relies, at least a priori, upon the crystalline structure over W, 1.
According to [Moc, Chapter IV, Theorem 2.3], there exists a bijective correspondence between
the elements in Cov and the set of dormant (N — 1)-connections on a torally indigenous
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bundle (i.e., a PGLél)-oper) on &. By combining this fact with Theorem 7.4.3, we see that

each dormant PGLY-oper on 2 of radii 5 € ((Z/p~Z)* /{#1})® may be uniquely extended
to a dormant (/N — 1)-connection of the same radii.
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