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Abstract. The aim of the present paper is to develop the theory of D-modules in positive
characteristic. In Sections 2, 3, and 4, we study higher-level generalizations of differential mod-
ules in positive characteristic. These objects may be regarded as ring-theoretic counterparts
of vector bundles on an algebraic curve equipped with an action of the ring of (logarithmic)
differential operators of finite level introduced by P. Berthelot and C. Montagnon. The well-
known existence assertion for a cyclic vector of a differential module is generalized to higher
level. In Sections 5, 6, and 7, we introduce and discuss (dormant) opers of level N > 0 on
a pointed smooth curve whose structure group is either GLn or PGLn. Some of the results
in Sections 3 and 4 are applied to prove a duality theorem between dormant PGLn-opers of
level N and dormant PGLpN−n-opers of level N . Finally, in the case where the underlying
curve is a 3-pointed projective line, we establish a bijective correspondence between dormant
PGL2-opers of level N and certain tamely ramified coverings. These assertions are building
blocks to establish the enumerative geometry of higher-level dormant opers.
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1. Introduction

1.1. Differential modules in positive characteristic. Let R be a differential ring, i.e.,
a commutative ring equipped with a derivation ∂ : R → R. A differential module over R
is an R-module E equipped with an additive map ∇ : E → E satisfying the Leibniz rule:
∇(a · v) = ∂(a) · v + a · ∇(v) (a ∈ R, v ∈ E). If R is of characteristic 0, a differential
module may be regarded as a ring-theoretic counterpart of a D-module (or equivalently, a
sheaf equipped with a flat connection) on an algebraic curve.
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On the other hand, differential modules and D-modules in characteristic p > 0 have many
different features from those in characteristic 0 (see, e.g., [And], [Hon], [Kat2], [Kat3]). For
example, unlike the case of characteristic 0, Picard-Vessiot theory fails for differential modules
in characteristic p. Despite this problem, such objects have attracted a lot of attention for
various reasons, including in relation to the Grothendieck-Katz p-curvature conjecture.
We should note that there are variations of the sheaf “D” defined on an algebraic vari-

ety X in characteristic p. One is the ring of crystalline differential operators (following the

wording in [BMR]), which we denote by D(0)
X . Giving a D(0)

X -module is equivalent to giving

an OX-module together with a flat connection. This means that the notion of a D(0)
X -module

corresponds exactly to a differential module in the usual sense.

Another variant is the ring of differential operators D(∞)
X in the sense of Grothendieck

(cf. [Gro, Section 16.8.1]). A D(∞)
X -module is often called a stratified sheaf and interpreted as

an OX-module admitting infinite Frobenius descent. The ring-theoretic counterpart is known
as an iterative differential module (cf. [Oku, Section 1.2], [vdPS, Section 13.3]). The notion of
a stratified sheaf was introduced in D. Gieseker’s paper (cf. [Gie, Definition 1.1]) and discussed
in, e.g., [dSa], [Esn], [EsMe], [Kin1], and [Kin2]. We also can find descriptions of iterative
differential modules in, e.g., [Ern], [MavdP], and [Rös].

Next, let us recall the ring of differential operators D(m)
X of level m ∈ Z≥0, as introduced

by P. Berthelot (cf. [PBer1], [PBer2]); this kind of sheaf is an essential ingredient in defining

arithmetic D-modules, and it may be positioned between D(0)
X and D(∞)

X . In fact, the ring of

crystalline differential operators coincides with Berthelot’s D(0)
X (i.e., D(m)

X for m = 0), and
there exists an inductive system

D(0)
X → D

(1)
X → D

(2)
X → · · · → D

(m)
X → · · ·

satisfying lim−→m
D(m)

X = D(∞)
X . Moreover, C. Montagnon generalized D(m)

X to the case where

the underlying scheme is equipped with a log structure (cf. [Mon, Définition 2.3.1]). This

generalization allows us to deal with D(m)
X -modules (in the logarithmic sense) for (possibly

singular) pointed curves X.

1.2. Cyclic vectors of higher-level differential modules. In Sections 2, 3, and 4 of the
present paper, we consider ring-theoretic counterparts of (both non-logarithmic and logarith-

mic versions of) D(m)
X -modules, in other words, higher-level generalizations of differential mod-

ules. (Note that some of our discussions are merely paraphrases of previous studies.)
The central character is an m-differential ring (resp., an m-log differential ring), which is

defined as a ring R in characteristic p equipped with a collection of certain additive endomor-
phisms ∂〈•〉 := {∂〈j〉}j∈Z≥0

(cf. Definition 2.2.1, (ii)). Each such data R := (R, ∂〈•〉) yields a

possibly noncommutative ring D
(m)
R generated by the elements of R and the set of abstract

symbols {∂〈j〉}j∈Z≥0
. (The definition of a related ring can be found in [Kin1, Definition 1.1.1].)

In particular, we obtain the notion of a D
(m)
R -module, which corresponds to the sheaf theoretic

notion of a D(m)
X -module.

An important ingredient in the theory of differential modules is the concept of a cyclic vector.
A cyclic vector of a differential module (E,∇) is an element v ∈ E such that the elements
∇0(v) (= v) ,∇1(v), · · · ,∇l(v) (for some l ≥ 0) form a basis for E. The choice of such an
element enables (E,∇) to be interpreted as a higher-order linear differential operator on R;
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accordingly, each element in E that is horizontal with respect to ∇ can be described as a root
function of that operator, i.e., a function annihilated by that operator. A fundamental result is
the existence of a cyclic vector in a general situation (cf. [ChKo], [Kat4]). We refer the reader
to, e.g., [Adj], [DBer], [Del], and [Kov], for various discussions concerning cyclic vectors.

Given an m-differential ring R and D
(m)
R -module (E,∇), we can describe the notion of an

m-cyclic vector of (E,∇) (cf. Definition 2.5.1) as a higher-level generalization of a cyclic vector
in the classical sense. An m-cyclic vector of (E,∇) is, by definition, an element of E such that
∇〈0〉(v) (= v) ,∇〈1〉(v), · · · ,∇〈l〉(v) (for some l ≥ 0) forms a basis of E.

Also, by a pinned D
(m)
R -module, we mean a D

(m)
R -module together with an m-cyclic vector.

Our study of m-cyclic vectors stems from the fact that a pinned D
(0)
R -module is regarded as a

locally defined GLn-oper on a curve; as such, various properties of m-cyclic vectors can be used
to examine higher-level generalizations of opers. The first main result of the present paper
generalizes the classical assertion of the existence of a cyclic vector to higher level.

Theorem A (cf. Theorem 2.5.6). Let m be a nonnegative integer, n a positive integer,

and (R, ∂〈•〉) an m-differential field over Fp := Z/pZ. Assume that the morphism D
(m)
R,<n →

EndFp(R) naturally induced by ∂〈•〉 is injective. (This assumption is fulfilled when n ≤ pm+1

and R is either k(t) or k((t)) for a perfect field k over Fp equipped with the m-derivation

∂〈•〉 := {∂〈j〉}j given by (2.1).) Then, each D
(m)
R -module (E,∇) with rk(E) = n admits an

m-cyclic vector.

After proving the above theorem, we discuss the pm+1-curvature of each D
(m)
R -module in

the situation (cf. Section 3.1) that R := (R, ∂〈•〉) (resp., R := (R, ∂̆〈•〉))) is a certain type of

m-differential ring (resp., m-log differential ring); we use the notation D
(m)
R (resp., D̆

(m)
R ) to

denote the ring D
(m)
R for convenience. The pm+1-curvature of a D

(m)
R -module (resp., a D̆

(m)
R -

module) (E,∇) is defined as an invariant measuring the extent to which the element ∂〈pm+1〉

(resp., ∂̆〈pm+1〉) via ∇ vanishes. We say that (E,∇) is dormant (cf. Definition 3.1.3) if it has
vanishing pm+1-curvature.
Here, suppose that (E,∇) is dormant and the R-module E is free and of rank n > 0. In

the non-logarithmic case, the structure of (E,∇) is not difficult because a classical result by
Cartier implies that (E,∇) is isomorphic to the direct sum of finitely many copies of the trivial

D
(m)
R -module (cf. Corollary 3.1.7).
On the other hand, in the logarithmic case, the formal completion of (E,∇) is isomorphic

to that of the direct sum
⊕n

j=1(R,∇dj) for various elements dj (j = 1, · · · , n) of Z/pm+1Z,
where each ∇dj denotes a D̆

(m)
R -action on R defined in (4.3). The resulting multiset [d1, · · · , dn]

is called the exponent of (E,∇) (cf. Definition 4.3.1). We examine its relationship with the
residue described in Section 4.1 (cf. Propositions 4.2.1, (i), 4.3.4, and Remark 4.3.3), as well
as with the existence of an m-cyclic vector (cf. Proposition 4.4.1). In addition, we establish a

duality between dormant pinned D̆
(m)
R -modules of rank n (with 0 < n < pm+1) and dormant

pinned D̆
(m)
R -modules of rank pN − n (cf. Corollary 3.3.3, Proposition 4.4.3).

1.3. Duality for dormant opers of higher level. In Sections 5, 6, and 7 of the present
paper, we study (dormant) GLn-opers and (dormant) PGLn-opers of level N > 0. Here, let
X := (X, {σi}ri=1) (cf. Section 5.2), where r ≥ 0, be an r-pointed smooth curve over an

algebraically closed field k of characteristic p. A GL(N)
n -oper (or a GLn-oper of level N) on X
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is, roughly speaking, a rank n vector bundle on X equipped with both a D(N−1)
X -action and

complete flag structure satisfying a strict form of Griffiths transversality. GL(1)
n -opers have

been investigated from various points of view (cf. [BeDr1], [BeDr2], [BeBi], [Fre], [Wak5]).

In addition, dormant PGL
(N)
2 -opers (i.e., PGL2-opers of levelN with vanishing pN -curvature)

on an unpointed smooth curve were discussed in [Hos2], [Wak3], and [Wak4] under the iden-
tification with FN -projective structures. In the case where the set of marked points {σi}i
of X is nonempty, we introduce the radius of a PGL(N)

n -oper at each marked point σi (cf.
Definition 5.3.2); this is an element of Sn\(Z/pNZ)n/∆ (where ∆ denotes the image of the
diagonal embedding Z/pNZ ↪→ (Z/pNZ)n and Sn denotes the symmetric group of n letters

acting on (Z/pNZ)n by permutation) induced from the exponent of the D̆k[[t]]-module obtained
by restricting that oper to the formal neighborhood of σi.

Given an element ~ρ ∈ (ρi)
r
i=1 ∈ (Sn\(Z/pNZ)n/∆)r, we set

Op
Zzz...

n

(
resp., Op

Zzz...

n,ρ⃗

)
to be the set of dormant PGL(N)

n -opers (resp., dormant PGL(N)
n -opers of radii ~ρ) on X . Then,

we verify that Op
Zzz...

n = ∅ if n > pN (cf. Corollary 5.2.4) and that Op
Zzz...

n consists of exactly
one element if n = 1. Also, by the duality of differential modules established in Sections 3
and 4, we obtain the following assertions, generalizing [Wak1, Theorem A, (i) and (ii)], [Wak1,
Corollary 4.3.3], and [Hos1, Theorem A].

Theorem B (cf. Theorem 6.3.1, Corollary 6.3.2). Suppose that 0 < n < pN . Then, the
following assertions hold:

(i) There exists a canonical bijection of sets

D

n : Op
Zzz...

n
∼→ Op

Zzz...

pN−n

satisfying

D

pN−n ◦

D

n = id. In particular, there exists exactly one isomorphism class of

dormant PGL
(N)

pN−1
-oper on X ; i.e., the following equality holds:

](Op
Zzz...

pN−1) = 1.

(ii) Suppose further that r > 0, and let us take ~ρ := (ρi)
r
i=1 ∈ (Sn\(Z/pNZ)n/∆)r. Then,D

n restricts to a bijection

D

n,ρ⃗ : Op
Zzz...

n,ρ⃗
∼→ Op

Zzz...

pN−n,ρ⃗▼ ,

where ~ρ▼ := (ρ▼i )i is the set defined in (4.8), satisfying

D

pN−n,ρ⃗▼ ◦

D

n,ρ⃗ = id (under the
equality ~ρ▼▼ = ~ρ).

1.4. Comparison with tamely ramified coverings. The next topic concerns the clas-
sification of tamely ramified coverings of the projective line in characteristic p with speci-
fied ramification data and fixed branch points. For related work on this problem, we re-
fer the reader to [BoOs], [BoZa], [Ebe], [Fab], [Oss1], [Oss2], [Oss3], and [Oss4]. We know
(cf. [Moc], [Oss2], [Oss4]) that certain tamely ramified coverings with ramification indices < p
can be described in terms of dormant PGL2-opers (i.e., dormant torally indigenous bundles, in
the sense of [Moc]). In particular, that description allows us to translate dormant PGL2-opers
on a 3-pointed projective line into simple combinatorial data; this result is the starting point
of the enumerative geometry of dormant opers studied in [Wak5]. In the present paper, the



DIFFERENTIAL MODULES AND DORMANT OPERS OF HIGHER LEVEL 5

situation is generalized to the higher level case in order to deal with tamely ramified coverings
having large ramification indices.

Let us consider the 3-pointed projective line P := (P, {[0], [1], [∞]}) over k, where [x] (for
each x ∈ {0, 1,∞}) denotes the point of the projective line P determined by the value x. (We
use the notation “P” as opposed to the usual notation “P1” because later on we will need to
consider P1 equipped with log structures and Plog is notationally and typographically simpler
than (P1)log.) We shall write

Cov

for the set of equivalence classes of finite, separable, and tamely ramified coverings φ : P→ P
satisfying the following conditions:

• The set of ramification points of φ coincides with {[0], [1], [∞]};
• If λx (x = 0, 1,∞) denotes the ramification index of φ at [x], then λ0, λ1, λ∞ are all
odd and satisfy the inequality λ0 + λ1 + λ∞ < 2pN .

Here, for two such coverings φ1, φ2 : P→ P, we say that φ1 and φ2 are equivalent if φ2 = h◦φ1

for some h ∈ PGL2(k) = Autk(P).
The final result of the present paper establishes, as described below, a bijective correspon-

dence between Cov and Op
Zzz...

2 for X = P; this generalizes [Moc, Introduction, Theorem
1.3].

Theorem C (cf. Theorem 7.4.3 for the full statement). Let us consider the set Op
Zzz...

2 in the
case where the underlying curve “X ” is taken to be P. Then, we can construct a canonical
bijection of sets

Υ : Cov
∼→ Op

Zzz...

2

satisfying the following condition: if φ is a tamely ramified covering classified by Cov whose
ramification index at [x] (x = 0, 1,∞) is λx, then the radii of the dormant PGL2-oper on P
determined by Υ(φ) coincides with the image of (1

2
· λ0, 12 · λ1,

1
2
· λ∞) via the natural quotient

(Z/pNZ)3 ↠ (S2\(Z/pNZ)2/∆)3. In particular, the set Op
Zzz...

2 in this case is finite.

1.5. Future work. The results of the present paper are building blocks to establish the enu-
merative geometry of dormant opers of higher level. (This involves the treatment of dormant
opers, as well as linear ODE’s, in prime-power characteristic by applying what we call diago-
nal reduction/lifting; see [Wak6, Theorem D].) One central theme of the theory is to explicitly
figure out how many higher-level dormant opers (and related mathematical objects) exist.

In addressing this problem, the duality assertion in Theorem B allows the study of PGL(N)
n -

opers with n large to be translated into the study of them with n small. This approach seems
to be valid because it is presumed that higher-level generalizations of the formula obtained
in [Wak5, Theorem H] are given only when n is sufficiently small (relative to p).

On the other hand, we proved a certain factorization property of Op
Zzz...

n using the clutching
morphisms between moduli stacks of pointed stable curves (cf. [Wak6, Theorem C]). This
factorization property induces a 2d TQFT (= 2-dimensional topological quantum field theory),
and thus enables us to reduce the various problems we wish to solve to the simplest case where
the underlying curve is the 3-pointed projective line. Therefore, by applying Theorem C
together with an argument similar to the proof of [Moc, Introduction, Theorem 3.1], we can
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classify dormant PGL
(N)
2 -opers (on the 3-pointed projective line, or more generally, a totally

degenerate stable curve) in terms of purely combinatorial data given by their radii (cf. [Wak6,
Theorem E]).

2. Differential modules and cyclic vectors of higher level

First, we study differential modules of level m ≥ 0 and generalize the notion of a cyclic
vector to such modules, i.e., m-cyclic vectors. (For convenience, we will occasionally include
the case of m = −1.) At the end of this section, we prove the existence of an m-cyclic vector
under mild conditions (cf. Theorem 2.5.6).

Throughout the present paper, we will fix a prime p. Unless stated otherwise, all the rings
appearing in the present paper are assumed to be unital, associative, and commutative.

2.1. Modified binomial coefficients. For nonnegative integers m and l, let (q
(m)
l , r

(m)
l ) be

the pair of nonnegative integers uniquely determined by the condition that l = pm · q(m)
l + r

(m)
l

and 0 ≤ r
(m)
l < pm. For each pair of nonnegative integers (j, j ′) with j ≥ j′, we set{

j
j′

}
(m)

:=
q
(m)
j !

q
(m)
j′ ! · q(m)

j−j′ !
,

〈
j
j′

〉
(m)

:=

(
j
j′

)
·
{
j
j′

}−1

(m)

(cf. [PBer1, Section 1.1.2]). Moreover, if j′′ is an integer with max{j′, j − j′} ≤ j′′ ≤ j, then
we set 〈

j
j′

〉[j′′]

(m)

:=
j′′!

(j − j′′)! · (j′′ − j′)! · (j′′ + j′ − j)!
·
q
(m)
j′ ! · q(m)

j−j′ !

q
(m)
j′′ !

.

In particular, we have

〈
j
j′

〉[j]

(m)

=

〈
j
j′

〉
(m)

. Note that all these values lie in Z(p) and hence

induce elements of Fp := Z/pZ via the natural quotient Z(p) ↠
(
Z(p)/pZ(p) =

)
Fp even when

the integer j′′ is divisible by p. When there is no fear of confusion, we will omit the notation

“(m)”; i.e., we will write ql := q
(m)
l , rl := r

(m)
l , and{

j
j′

}
:=

{
j
j′

}
(m)

,

〈
j
j′

〉
:=

〈
j
j′

〉
(m)

,

〈
j
j′

〉[j′′]

:=

〈
j
j′

〉[j′′]

(m)

.

2.2. Differential rings of higher level. Let us fix an integer m ≥ 0 and a ring R0 over Fp.
In the following discussion, the non-resp’d portion deals with the non-logarithmic case and the
resp’d portion deals with the logarithmic case.

Definition 2.2.1. (i) Let R be a ring over R0. An m-derivation (resp., m-log deriva-
tion) on R relative to R0 is a collection

∂〈•〉 := {∂〈j〉}j∈Z≥0

consisting of R0-linear endomorphisms ∂〈j〉 of R, regarded as an R0-module, satisfying
the following conditions:
(a) If j = 0, then ∂〈j〉 = idR;
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(b) If j > 0, then the following equalities hold:

∗ ∂〈j〉(a · b) =
∑

j′+j′′=j

{
j
j′

}
· ∂〈j′〉(a) · ∂〈j′′〉(b) for any elements a, b ∈ R;

∗ ∂〈j′〉 ◦ ∂〈j−j′〉 =

〈
j
j′

〉
· ∂〈j〉

resp., ∂〈j′〉 ◦ ∂〈j−j′〉 =

j∑
j′′=max{j′,j−j′}

〈
j
j′

〉[j′′]

· ∂〈j′′〉


for any integer j′ with 0 ≤ j′ ≤ j.

(ii) By an m-differential ring (resp., m-log differential ring) over R0, we mean the
pair

R := (R, ∂〈•〉)

consisting of a ring R over R0 and an m-derivation (resp., m-log derivation) ∂〈•〉 on R.
For convenience, we refer to each ring R over R0 as a (−1)-differential ring over R0.
Finally, by an m-differential field, we mean an m-differential ring (R, ∂〈•〉) such that
R is a field.

Example 2.2.2. Consider the case where R is taken to be the ring k[[t]] of formal power series
with coefficients in a perfect field k of characteristic p. Denote by K the fraction field of R,
i.e., K := k((t)). Also, for each integer l ≥ 0, we shall denote by R(l) (resp., K(l)) the subring

of R (resp., the subfield of K) consisting of elements ap
l
for a ∈ R (resp., a ∈ K). Then, K

has basis 1, t, · · · , tpm+1−1 over K(m+1), and it admits an m-derivation ∂〈•〉 := {∂〈j〉}l∈Z≥0
(resp.,

m-log derivation ∂̆〈•〉 := {∂̆〈j〉}j∈Z≥0
) relative to K(m+1) given by

∂〈j〉(t
n) := qj! ·

(
n

j

)
· tn−j

(
resp., ∂̆〈j〉(t

n) := qj! ·
(
n

j

)
· tn
)

(2.1)

for every j, n ∈ Z≥0. The collection ∂〈•〉 := {∂〈j〉}j (resp., ∂̆〈•〉 := {∂̆〈j〉}j) restricts to an

m-derivation (resp., m-log derivation) on R relative to R(m+1), which we express in the same

notation. For each l ∈ Z≥0, R
(l) coincides with Rl

(
=
⋂l−1

j=0 Ker(∂〈pj〉) =
⋂l−1

j=0 Ker(∂̆〈pj〉)
)
, and

the collection (R(l), {∂jpl}j∈Z≥0
) forms an (m− l)-differential ring over R(m+1).

Remark 2.2.3. (i) If we are given a 0-derivation {∂〈j〉}j∈Z≥0
on R, then ∂〈1〉 defines a

derivation on R (over R0) in the usual sense. Under the correspondence (R, {∂〈j〉}j)↔
(R, ∂〈1〉), the notion of a 0-differential ring coincides with the usual notion a differential
ring.

(ii) Let R be a ring over R0. The second equality in condition (b) above implies that an
m-derivation (resp., an m-log derivation) {∂〈j〉}j∈Z≥0

on R is uniquely determined by
its subset {∂〈pj〉}0≤j≤m.

Let us fix an m-differential ring (resp., m-log differential ring) R := (R, ∂〈•〉) over R0, where
∂〈•〉 := {∂〈j〉}j∈Z≥0

. Then, we obtain the possibly noncommutative ring

D
(m)
R

over R0 generated by the collection of symbols {∂〈j〉}j∈Z≥0
subject to the following relations:

• ∂〈0〉 = 1;
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• ∂〈j〉 · a =
∑

j′+j′′=j

{
j
j′

}
· ∂〈j′〉(a) · ∂〈j′′〉 for any j ∈ Z≥0 and a ∈ R;

• ∂〈j′〉 · ∂〈j−j′〉 =

〈
j
j′

〉
· ∂〈j〉

resp., ∂〈j′〉 · ∂〈j−j′〉 =

j∑
j′′=max{j′,j−j′}

〈
j
j′

〉[j′′]

· ∂〈j′′〉

 for any in-

tegers j, j ′ with 0 ≤ j′ ≤ j.

We shall set D
(−1)
R := R. The ring D

(m)
R admits two R-module structures given by left and right

multiplications. For each l ∈ Z≥0, we shall denote by D
(m)
R,<l the two-sided R-submodule of D

(m)
R

generated by the products ∂a1〈j1〉 · · · ∂
as
〈js〉 (s ≥ 1) with ji ≤ pm (i = 1, · · · , s) and

∑s
i=1 aiji < l.

The collection {D(m)
R,<l}l forms an increasing filtration on D

(m)
R with

⋃
lD

(m)
R,<l = D

(m)
R . Also, one

may verify that the R0-algebra D
(m)
R is generated by the elements of R and the set {∂〈pj〉}0≤j≤m;

and D
(m)
R forms a left and right noetherian ring if R is noetherian (cf. [PBer1, Proposition 1.2.4,

(i)], [Mon, Proposition 2.3.2, (b)]).

2.3. Differential modules of higher level. Let us take an R-module E. By a (left) D
(m)
R -

module structure on E, we mean a left D
(m)
R -action (i.e., an R0-algebra homomorphism)

∇ : D
(m)
R → EndR0(E) on E extending its R-module structure. An R-module equipped with

a D
(m)
R -module structure is called a (left) D

(m)
R -module, or a differential module over

R. Moreover, we can define, in a natural manner, the notion of an isomorphism between

D
(m)
R -modules. Given a D

(m)
R -module structure ∇ on E and an integer j ∈ Z≥0, we shall

write ∇〈j〉 := ∇(∂〈j〉). If R is non-logarithmic (resp., logarithmic), then the assignment ∇ 7→
{∇〈j〉}j∈Z≥0

determines a bijective correspondence between the set of D
(m)
R -module structures

on E and the set of collections of R0-linear endomorphisms {∇〈j〉}j∈Z≥0
of E satisfying the

following conditions:

• ∇〈0〉 = idE;

• ∇〈j〉(a · v) =
∑

j′+j′′=j

{
j
j′

}
· ∂〈j′〉(a) · ∇〈j′′〉(v) for any integer j > 0 and any elements

a ∈ R, v ∈ E;

• ∇〈j′〉 ◦ ∇〈j−j′〉 =

〈
j
j′

〉
· ∇〈j′〉

resp., ∇〈j′〉 ◦ ∇〈j−j′〉 =

j∑
j′′=max{j′,j−j′}

〈
j
j′

〉[j′′]

· ∇〈j′′〉

 for

any integers j, j ′ with 0 ≤ j′ ≤ j.

Because of this correspondence, we will not distinguish these two additional structures on E.

Remark 2.3.1. (i) Let us consider the case of m = 0. Suppose that (E,∇) is a D
(0)
R -

module. Then, the R-module E together with the endomorphism ∇〈1〉
(
:= ∇(∂〈1〉)

)
specifies a differential module, in the classical sense, over the differential ring corre-
sponding to R (cf. Remark 2.2.3, (i)).

(ii) The notion of a D
(m)
R -module is slightly different from the notion of an iterative differ-

ential module of level m, discussed in [Kin1]. In fact, the latter one essentially requires
the condition of vanishing pm+1-curvature, in the sense of Section 3.1 (cf. [Kin1, Remark
2.3.5]); compare Corollary 3.1.7 and [Kin1, Proposition 1.1.6].
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Remark 2.3.2. Let {∂〈j〉}j∈Z≥0
be an m-derivation (resp., m-log derivation) on R. To make

the integerm explicit, we here write ∂
(m)
〈j〉 := ∂〈j〉 (j ∈ Z≥0). For an integerm′ with 0 ≤ m′ ≤ m,

the endomorphism ∂
(m′)
〈j〉 :=

q
(m′)
j !

q
(m)
j !
·∂(m)

〈j〉 of R is well-defined, and the collection {∂(m
′)

〈j〉 }j∈Z≥0
forms

an m′-derivation (resp., m-log derivation) on R. Let us set D
(m′)
R := D

(m′)

(R,{∂(m′)
⟨j⟩ }j)

. Then, the

assignment ∂
(m′)
〈j〉 7→

q
(m′)
j !

q
(m)
j !
· ∂(m)

〈j〉 (j ∈ Z≥0) determines an R0-algebra homomorphism D
(m′)
R →

D
(m)
R . This homomorphism allows us to construct a D

(m′)
R -module by means of each D

(m)
R -

module.

We shall denote by

Mod(D
(m)
R )

the category of D
(m)
R -modules. (In particular, Mod(D

(−1)
R ) coincides with the category of

R-modules.) This category has the structure of a tensor product: given two D
(m)
R -modules

(E ′,∇′) and (E ′′,∇′′), we set

(E ′,∇′)⊗ (E ′′,∇′′) := (E ′ ⊗R E
′′,∇′ ⊗∇′′),

where ∇′⊗∇′′ denotes the D
(m)
R -module structure on the tensor product E ′⊗RE

′′ determined
by

(∇′ ⊗∇′′)〈j〉(v
′ ⊗ v′′) :=

∑
j′+j′′=j

{
j
j′

}
· ∇′

〈j′〉(v
′)⊗∇′′

〈j′′〉(v
′′)

for any j ∈ Z≥0, v
′ ∈ E ′, and v′′ ∈ E ′′. Similarly, we can construct a D

(m)
R -module structure

on HomR(E
′, E ′′) arising from ∇′ and ∇′′. In particular, for a D

(m)
R -module (E,∇), we can

define the dual (E∨,∇∨) of (E,∇). In this way, Mod(D
(m)
R ) is equipped with a structure of

closed monoidal category.

2.4. Varying levels. Fix an integer m ≥ 0 and an integer l with 0 ≤ l ≤ m+1. Furthermore,
we set

Rl :=

pl−1⋂
j=1

Ker(∂〈j〉)

(
=

l−1⋂
j=0

Ker(∂〈pj〉)

)
,

which is an R0-subalgebra of R. Here, we obtain a sequence of inclusions between R0-algebras

Rm+1 ⊆ Rm ⊆ · · · ⊆ R1 ⊆ R0 = R.

Note that, if R is an m-differential field, then Rl (for every l) forms a subfield of R. For a

nonnegative integer j with j + l ≤ m + 1 and an Rj+l-module E, we shall set F
(l)∗
j (E) to be

the Rj-module defined as

F
(l)∗
j (E) := Rj ⊗Rj+l E.

For simplicity, we write F (l)∗(E) := F
(l)∗
0 (E).
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Also, for each j ∈ Z≥0, the endomorphism ∂〈jpl〉 restricts to an R0-linear endomorphism of

Rl; we will abuse the notation by writing ∂〈jpl〉 for this restriction. Then, the collection

Rl := (Rl, {∂〈jpl〉}j∈Z≥0
)

forms an (m− l)-differential ring over R0. In particular, we obtain the R0-algebra D
(m−l)

Rl and
a sequence of inclusions(

Rm+1 =
)
D

(−1)

Rm+1 ↪→ D
(0)
Rm ↪→ D

(1)

Rm−1 ↪→ · · · ↪→ D
(m−1)

R1 ↪→ D
(m)
R .

Next, given a D
(m)
R -module (E,∇), we shall write

El :=

pl−1⋂
j=1

Ker(∇〈j〉)

(
=

l−1⋂
j=0

Ker(∇〈pj〉)

)
,

where E0 := E. In particular, we obtain a sequence of inclusions between modules

Em+1 ⊆ Em ⊆ · · · ⊆ E1 ⊆ E0 = E.

Note that El forms an Rl-module via the natural inclusion Rl ↪→ R, and ∇〈jpl〉 (for each j)

restricts to an Rl-linear endomorphism of El; we will abuse the notation by writing ∇〈jpl〉 for
this restriction. One may verify that the collection

∇l := {∇〈jpl〉}j

forms a D
(m−l)

Rl -module structure on El. Also, if f : (E,∇)→ (E ′,∇′) is a morphism of D
(m)
R -

modules, then it restricts to a morphism of D
(m−l)

Rl -modules f l : (El,∇l) → (E ′l,∇′l). The

resulting assignments (E,∇) 7→ (El,∇l) and f 7→ f l define a functor

Ξ↓(l) : Mod(D
(m)
R )→Mod(D

(m−l)

Rl ). (2.2)

Conversely, given aD
(m−l)

Rl -module (E,∇), we can construct aD
(m)
R -module structure F (l)∗(∇)

on F (l)∗(E) given by

F (l)∗(∇)〈j〉(a⊗ v) :=
∑

j′+j′′=j

{
j
j′

}
· ∂〈j′〉(a)⊗∇〈j′′/pj〉(v)

for any a ∈ R and v ∈ E, where ∇〈s〉 := 0 if s /∈ Z≥0 (cf. [PBer2, Proposition 2.2.4, (ii)], [Mon,
Proposition 3.4.1, (ii)]). In particular, for an Rm+1-module E ′, we obtain

∇can
R,E′ := F (m+1)∗(∇) : D(m)

R → EndR0(F
(m+1)∗(E ′)). (2.3)

Each morphism of D
(m−l)

Rl -modules f : (E,∇)→ (E ′,∇′) induces a morphism of D
(m)
R -modules

F (l)∗(f) : (F (l)∗(E), F (l)∗(∇)) → (F (l)∗(E ′), F (l)∗(∇′)). The resulting assignments (E,∇) 7→
(F (l)∗(E), F (l)∗(∇)) and f 7→ F (l)∗(f) define a functor

Ξ↑(l) : Mod(D
(m−l)

Rl )→Mod(D
(m)
R ). (2.4)

This functor is compatible with the formation of the tensor product and is left adjoint to Ξ↓(l).
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Here, let us describe the unit and counit morphisms for the adjunction “Ξ↑(l) a Ξ↓(l)”. If

(E,∇) is a D(m)
R -module, then the natural inclusion El ↪→ E, which is D

(m−l)

Rl -linear, extends

to a morphism of D
(m)
R -modules

τ
↓↑(l)
(E,∇) :

(
(Ξ↑(l) ◦ Ξ↓(l))((E,∇)) =

)
(F (l)∗(El), F (l)∗(∇l))→ (E,∇). (2.5)

On the other hand, if (E,∇) is a D(m−l)

Rl -module, then the morphism E → F (l)∗(E) given by

v 7→ 1⊗ v restricts to a morphism of D
(m−l)

Rl -modules

τ
↑↓(l)
(E,∇) : (E,∇)→ (F (l)∗(E)l, F (l)∗(∇)l)

(
= (Ξ↓(l) ◦ Ξ↑(l))((E,∇))

)
.

The formation of τ
↓↑(l)
(E,∇) (resp., τ

↑↓(l)
(E,∇)) is functorial with respect to (E,∇).

2.5. m-cyclic vectors. Let m be a nonnegative integer. In this subsection, we introduce the
notion of an m-cyclic vector, as a higher-level generalization of a cyclic vector.

Definition 2.5.1. Let (E,∇) be a D
(m)
R -module. An element v of E is called an m-cyclic

vector of (E,∇) if there exists a positive integer n such that the collection

∇〈0〉(v) (= v) ,∇〈1〉(v), · · · ,∇〈n−1〉(v)

forms a basis of the R-module E.

The following assertion follows immediately from the definition of an m-cyclic vector.

Lemma 2.5.2. Let (E,∇) be a D
(m)
R -module, and suppose that there exists an m-cyclic vector

of (E,∇). Then, E is finite and free as an R-module.

Remark 2.5.3. Suppose that m = 0 and R is non-logarithmic. Then, each D
(0)
R -module

structure ∇ on an R-module satisfies ∇〈j〉 = ∇j
〈1〉 for every j. It follows that a 0-cyclic vector

is the same as a cyclic vector in the classical sense.

Definition 2.5.4. (i) A pinned D
(m)
R -module is a triple

(E,∇, v)

consisting of a D
(m)
R -module (E,∇) and an m-cyclic vector v of it. For a pinned D

(m)
R -

module (E,∇, v), the rank of (E,∇, v) is defined as the rank of the free R-module
E.

(ii) Let (E,∇, v) and (E ′,∇′, v′) be pinned D
(m)
R -modules. An isomorphism of pinned

D
(m)
R -modules from (E,∇, v) to (E ′,∇′, v′) is a morphism ofD

(m)
R -modules f : (E,∇)→

(E ′,∇′) with f(v) = v′.

Let us describe several basic properties of pinned D
(m)
R -modules:

Proposition 2.5.5. (i) Any morphism of pinned D
(m)
R -modules is surjective.

(ii) Suppose that we are given a pinned D
(m)
R -module (E,∇, v) and a D

(m)
R -module (E ′,∇′).

Denote by Hom((E,∇), (E ′,∇′)) the set of morphisms of D
(m)
R -modules from (E,∇) to

(E ′,∇′). Then, the map of sets

Hom((E,∇), (E ′,∇′))→ E ′

given by f 7→ f(v) is injective.
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(iii) Let (E,∇) be a D
(m)
R -module, v an element of E, and m′ an integer with 0 ≤ m′ ≤ m.

Denote by ∇(m′) the D
(m′)
R -module structure on E induced from ∇ via the R0-algebra

homomorphism D
(m′)
R → D

(m)
R (cf. Remark 2.3.2). Then, v forms an m-cyclic vector

of (E,∇) if v forms an m′-cyclic vector of the D
(m′)
R -module (E,∇(m′)).

Proof. To prove assertion (i), let us take a morphism of pinned D
(m)
R -modules f : (E,∇, v)→

(E ′,∇′, v′). Then, since f(∇〈j〉(v)) = ∇′
〈j〉(f(v)) = ∇′

〈j〉(v
′) (j = 0, 1, 2, · · · ), the assertion

follows from the fact that the set of elements {∇′
〈j〉(v

′)}j∈Z≥0
generates E ′.

The remaining assertions, i.e., (ii) and (iii), can be verified from the definition of an m-cyclic
vector (we will omit the details). □
Now, let us prove the following theorem, asserting the existence of an m-cyclic vector in a

general situation. Our proof is based on the proof of [ChKo, Theorem 3.11].

Theorem 2.5.6 (cf. Theorem A). Let n be a positive integer and R := (R, ∂〈•〉) be an m-

differential field over Fp. Assume that the morphism D
(m)
R,<n → EndFp(R) naturally induced

by ∂〈•〉 is injective. (This means that, for each nonzero element D ∈ D(m)
R,<n, there exists an

element a of R with D(a) 6= 0.) Then, each D
(m)
R -module (E,∇) with rk(E) = n admits an

m-cyclic vector.

Proof. It suffices to consider the case of n > 1. Suppose that a nonzero element v of E is not
an m-cyclic vector. Then, there exists an integer l with 1 ≤ l < n such that

v ∧∇〈1〉(v) ∧ · · · ∧ ∇〈l−1〉(v) 6= 0 and ∇〈l〉(v) =
l−1∑
j=0

aj · ∇〈j〉(v) (2.6)

for some a0, · · · , al−1 ∈ R. For simplicity, we set vj := ∇〈j〉(v) (j = 0, 1, · · · , l − 1). Choose
an element u of E not in the span of {v0, v1, · · · , vl−1}. We extend the R-lineary independent
set {v0, v1, · · · , vl−1} to a basis of E by first adjoining u, and then, if necessary, some elements
e1, · · · , en−l−1 of E. For each integer j with 0 ≤ j ≤ l, we shall write

∇〈j〉(u) =
l−1∑
i=0

αji · vi + βj · u+
n−l−1∑
i=1

γji · ei,

where αji, βj, γji ∈ R. In particular, α0i = γ0i = 0 and β0 = 1.
For each integer r with 0 ≤ r ≤ l, write Lr for the Fp-linear endomorphism of R given by

Lr :=
r∑

i=0

{
r
i

}
· βi · ∂〈r−i〉

(hence L0 = idR). Next, let us define L to be the Fp-linear endomorphism of R given by

L := Ll −
l−1∑
r=0

ar · Lr = ∂〈l〉 + cl−1 · ∂〈l−1〉 + · · ·+ c1 · ∂〈1〉 + c0,

where

ci :=

{
l

l − i

}
· βl−i −

l−1∑
r=i

{
r

r − i

}
· ar · βr−i



DIFFERENTIAL MODULES AND DORMANT OPERS OF HIGHER LEVEL 13

(i = 0, · · · , l−1). Since the operator L defines an element of D
(m)
R,<n, the injectivity assumption

of the morphism D
(m)
R,<n → EndFp(R) implies that there exists an element z of R with L(z) 6= 0.

Let us choose an indeterminate λ over R. Extend the m-derivation ∂〈•〉 on R to the rational
function field R(λ) by defining ∂〈j〉(λ) = 0 (j = 1, 2, · · · ). To be precise, this m-derivation can
be obtained by first defining ∂〈•〉 on R[λ] = R ⊗Rm+1 Rm+1[λ] by ∂〈l〉(a ⊗ b) = ∂〈l〉(a) ⊗ b and
then extending via the quotient rule. The tensor product Eλ := R(λ) ⊗R E has the natural

D
(m)
(R(λ),∂⟨•⟩)

-module structure obtained by defining

∇〈j〉(a⊗ w) =
∑

j′+j′′=j

{
j
j′

}
· ∂〈j′〉(a)⊗∇〈j′′〉(w)

(j = 0, 1, 2, · · · ) for any a ∈ R(λ) and w ∈ E. Here, we set

v̂ := v + λ · z · u (= 1⊗ v + z · λ⊗ u) ∈ Eλ.

For each integer r with 0 ≤ r ≤ l, we have

∇〈r〉(v̂) (2.7)

= ∇〈r〉(v) + λ ·
r∑

j=0

{
r
j

}
· ∂〈r−j〉(z) · ∇〈j〉(u)

= vr + λ ·
r∑

j=0

{
r
j

}
· ∂〈r−j〉(z) ·

(
l−1∑
i=0

αji · vi + βj · u+
n−l−1∑
i=1

γji · ei

)

= vr + λ ·
l−1∑
i=0

r∑
j=0

{
r
j

}
· ∂〈r−j〉(z) · αji · vi

+ λ · Lr(z) · u+ λ ·
n−l−1∑
i=1

r∑
j=0

{
r
j

}
· ∂〈r−j〉(z) · γji · ei

= vr + λ ·
l−1∑
i=0

θri · vi + λ · Lr(z) · u+ λ ·
n−l−1∑
i=1

θ′ri · ei

for some θri, θ
′
ri ∈ R. Similarly, it follows from (2.6) that

∇〈l〉(v̂) (2.8)

= ∇〈l〉(v) + λ ·
l∑

j=0

{
l
j

}
· ∂〈l−j〉(z) · ∇〈j〉(u)

=
l−1∑
i=0

ai · vi + λ ·
l∑

j=0

{
l
j

}
· ∂〈l−j〉(z) ·

(
l−1∑
i=0

αji · vi + βj · u+
n−l−1∑
i=1

γji · ei

)
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=
l−1∑
i=0

ai · vi + λ ·
l−1∑
i=0

l∑
j=0

{
l
j

}
· ∂〈l−j〉(z) · αji · vi

+ λ · Ll(z) · u+ λ ·
n−l−1∑
i=1

l∑
j=0

{
l
j

}
· ∂〈l−j〉(z) · γji · ei

=
l−1∑
i=0

ai · vi + λ ·
l−1∑
i=0

θli · vi + λ · Ll(z) · u+ λ ·
n−l−1∑
i=1

θ′li · ei

for some θli, θ
′
li ∈ R.

Now, let us consider the vector

ŵ := v̂ ∧∇〈1〉(v̂) ∧ · · · ∧ ∇〈l〉(v̂) ∈
l+1∧

R(λ)
Eλ.

Under the natural identification
∧l+1

R(λ)E
λ =

(∧l+1
R E

)
⊗R R(λ), we can write

ŵ = w0 + w1 · λ+ w2 · λ2 + · · ·+ wl+1 · λl+1

for some w0, · · · , wl+1 ∈
∧l+1

R E. Since ŵ|λ=0 = 0, we have w0 = 0. By (2.7) and (2.8), the
coefficient of v0 ∧ v1 ∧ · · · ∧ vl−1 ∧ u for w1 is given by(

l−1∑
r=0

v0 ∧ · · · ∧ vr−1 ∧ (Lr(z) · u) ∧ vr+1 ∧ · · · ∧ vl−1 ∧
l−1∑
j=0

aj · vj

)
+ v0 ∧ · · · ∧ vl−1 ∧ (Ll(z) · u)

=

(
l−1∑
r=0

ar · Lr(z) · v0 ∧ · · · ∧ vr−1 ∧ u ∧ vr+1 ∧ · · · ∧ vl−1 ∧ vr

)
+ Ll(z) · v0 ∧ · · · ∧ vl−1 ∧ u

=

(
Ll(z)−

l−1∑
r=0

ar · Lr(z)

)
· v0 ∧ · · · ∧ vl−1 ∧ u

= L(z) · v0 ∧ · · · ∧ vl−1 ∧ u ( 6= 0) .

It follows that the coefficient of v0∧v1∧· · ·∧vl−1∧u for ŵ is a nonzero polynomial in R[λ] whose

degree is at most l+1 and whose constant term is 0. Since the injectivity of D
(m)
R,<n → EndFp(R)

implies ∂〈1〉 6= 0, we see that R is not a finite field, and that Rm+1 has at least n (> l) nonzero
elements. Hence, there exists an element λ0 ∈ Rm+1 which is not a zero of that polynomial.
Then, the element v := v+λ0 ·z ·u ∈ E satisfies v∧∇〈1〉(v)∧· · ·∧∇〈l〉(v) 6= 0. By repeating the
procedure for constructing v using v, we obtain an m-cyclic vector of (E,∇). This completes
the proof of this assertion. □
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3. Dormant differential modules

This section deals with the pm+1-curvature of a differential module of level m ≥ 0. In
particular, we focus on differential modules with vanishing pm+1-curvature, which will be called
dormant differential modules. At the end of this section, we provide a functorial construction
of duality between dormant pinned differential modules of rank n (with 0 < n < pm+1) and
those of rank pm+1 − n (cf. Theorem 3.3.2, Corollary 3.3.3).

3.1. pm+1-curvature and dormant differential modules. Let us fix an integer m ≥ 0 and
a fieldK of characteristic p. Since a perfect field of characteristic p has only the zero derivation,
we should impose the condition that K 6= K(1) := {ap | a ∈ K}. In particular, suppose here
that [K : K(1)] = p and there exists a discrete valuation ring R whose fraction field coincides
with K. Examples of fields K satisfying this condition are k(t) and k((t)) with k a perfect field
of characteristic p (cf. Example 2.2.2).

For simplicity, we write

D
(m)
S := D

(m)
(S,∂⟨•⟩)

and D̆
(m)
S := D

(m)

(S,∂̆⟨•⟩)
, (3.1)

where S ∈ {R,K}. Let “ ˙(−)” denote either the absence or presence of “ ˘(−)”. Each Ḋ
(m)
R -

module structure ∇ on an R-module E naturally extends to a Ḋ
(m)
K -module structure ∇⊗K on

K ⊗R E. The assignment (E,∇) 7→ (K ⊗R E,∇⊗K) defines a functor

κ̇ : Mod(Ḋ
(m)
R )→Mod(Ḋ

(m)
K ).

Next, let S ∈ {R,K}. For a D
(m)
S -module (E,∇), the collection {tj · ∇〈j〉}j determines a

structure of D̆
(m)
S -module on E. Conversely, suppose that we are given a D̆

(m)
S -bundle (E, ∇̆)

such that, for every j ∈ Z≥0, ∇̆〈j〉 may be expressed as ∇̆〈j〉 = tj · ∇〈j〉 for some ∇〈j〉 ∈
EndS(m+1)(E). Then, the collection {∇〈j〉}j determines a structure of D

(m)
S -module on E. The

assignment (E,∇) 7→ (E, {tj · ∇〈j〉}j) defines a functor

ηS : Mod(D
(m)
S )→Mod(D̆

(m)
S ), (3.2)

and it becomes an equivalence of categories for S = K. Moreover, the following square diagram
of categories is 1-commutative:

Mod(D
(m)
R )

κ //

ηR

��

Mod(D
(m)
K )

o ηK

��

Mod(D̆
(m)
R )

κ̆
// Mod(D̆

(m)
K ).

Remark 3.1.1. Let a be an integer and (E,∇) a D̆(m)
R -module such that the R-module E is

free. Then, ∇ naturally induces a D̆
(m)
R -module structure on the R-module ta · E ⊆ K ⊗R E,

which will be denoted by ∇|ta·E.

Remark 3.1.2. Let E be a S(m+1)-module. Then, since Ξ↑(m+1) (cf. (2.4)) is compatible

with ηS (cf. (3.2)), ∇can
(S,∂̆⟨•⟩),E

comes from the D
(m+1)
S -module structure ∇can

(S,∂⟨•⟩),E
via ηS. This
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means that the following equality holds:

∇can
(S,∂̆⟨•⟩),E

= {tj(∇can
(S,∂⟨•⟩),E

)〈j〉}j.

Let (E,∇) be a D
(m)
S -module (resp., a D̆

(m)
S -module), where S ∈ {R,K}. The pm+1-

curvature of (E,∇) is defined as

pψ(E,∇) := ∇〈pm+1〉 ∈ EndS(m+1)(E).

It can immediately be seen that pψ(E,∇) belongs to EndR(E).

Definition 3.1.3. With the above notation, we shall say that (E,∇) is dormant if the
equality

pψ(E,∇) = 0

holds. Also, a pinned Ḋ
(m)
S -module (E,∇, v) is called dormant if (E,∇) is dormant.

Remark 3.1.4. Let us consider the case of m = 0. Then, the p1-curvature pψ(E,∇) of a D
(0)
S -

module (E,∇) coincides with the p-curvature of a differential module over the differential ring
(S, ∂〈1〉) (cf. Remark 2.3.1 and [vdPS, Section 13.1]). It is well-known from [Kat1, Theorem

(5.1)] that the functors Ξ↓(1) and Ξ↑(1) define an equivalence of categories(
the category of

dormant D
(0)
S -modules

)
∼→
(

the category of
S(1)-modules

)
. (3.3)

This equivalence for S = K can also be found in [vdPS, Lemma 13.2].

The following assertion is essentially not a new result because it may be regarded as a version
of [PBer2, Théorèm 2.3.6] for differential modules.

Proposition 3.1.5. Let l be an integer with 0 ≤ l ≤ m and let S ∈ {R,K}. Then, the
following assertions hold:

(i) The functors Ξ↓(l) (cf. (2.2)) and Ξ↑(l) (cf. (2.4)) define an equivalence of categories

Mod(D
(m)
S )

∼→Mod(D
(m−l)

S(l) ). (3.4)

(ii) Let (E,∇) be a D
(m−l)

S(l) -module. Then, the pm−l+1-curvature pψ(E,∇) of (E,∇) and the

pm+1-curvature pψ(F (l)∗(E),F (l)∗(∇)) of (F (l)∗(E), F (l)∗(∇))
(
= Ξ↑(l)((E,∇))

)
satisfy the

equality

pψ(F (l)∗(E),F (l)∗(∇)) = idR ⊗ pψ(E,∇) ∈ EndR(F
(l)∗(E)).

In particular, (E,∇) is dormant if and only if (F (l)∗(E), F (l)∗(∇)) is dormant.

Proof. First, we shall prove assertion (i) by induction on l. The base step, i.e., l = 0, is trivial.

For the induction step, let us take a D
(m)
S -module (E,∇). This D(m)

S -module induces a D
(m−1)

S(1) -

module of the form (E1,∇1)
(
= Ξ↓(1)((E,∇))

)
. Since (E1)l−1 = El, the induction hypothesis

implies that the morphism τ
↓↑(l−1)

(E1,∇1) : F
(l−1)∗
1 (El) → E1 (cf. (2.5)) is an isomorphism. On the

other hand, the p-curvature of the differential module (E,∇〈1〉) vanishes, so it follows from the

equivalence of categories (3.3) that the morphism τ1 : F
(1)∗(E1)

∼→ E extending the inclusion
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E1 ↪→ E is an isomorphism. Hence, τ
↓↑(l)
(E,∇) turns out to be an isomorphism because it coincides

with the composite isomorphism

F (l)∗(El)
(
= F (1)∗(F

(l−1)∗
1 (El))

) Ξ↑(1)∗(τ
↓↑(l−1)

(E1,∇1)
)

−−−−−−−−−→ F (1)∗(E1)
τ1−→ E.

Since τ
↓↑(l)
(E,∇) is functorial with respect to (E,∇), we see that the composite functor Ξ↑(l) ◦Ξ↓(l)

is isomorphic to the identity functor of Mod(D
(m)
S ).

Next, let (E,∇) be a D
(m−l)

Sl -module. By applying Ξ↑(l−1) to (E,∇), we obtain a D
(m−1)

S(1) -

module of the form (F
(l−1)∗
1 (E), F

(l−1)∗
1 (∇))

(
= Ξ↑(l−1)((E,∇))

)
. It follows from (3.3) again

that the natural morphism τ2 : F
(l−1)∗
1 (E) → F (1)∗(F

(l−1)∗
1 (E))1 is an isomorphism. Also, the

induction hypothesis implies that the morphism τ
↑↓(l−1)
(E,∇) : E → F

(l−1)∗
1 (E)l−1 is an isomor-

phism. Hence, τ
↑↓(l)
(E,∇) turns out to be an isomorphism because it coincides with the composite

isomorphism

E
τ
↑↓(l−1)
(E,∇)−−−−→ F

(l−1)∗
1 (E)l−1 Ξ↓(l−1)(τ2)−−−−−−→

(
(F (1)∗(F

(l−1)∗
1 (E))1)l−1 =

)
F (l)∗(E)l.

Since τ
↑↓(l)
(E,∇) is functorial with respect to (E,∇), the composite functor Ξ↓(l)◦Ξ↑(l) is isomorphic

to the identity functor of Mod(D
(m−l)

S(l) ). This completes the proof of assertion (i).

Assertion (ii) can be verified immediately from the definitions of p(−)-curvature and the
functor Ξ↑(l). □
Remark 3.1.6. By the equivalence (3.4) resulting from the above proposition, D

(m)
R -modules

are equivalent to D
(0)

R(m)-modules, i.e., differential modules in the classical sense. (But, as we

will see in the next section, this is not true for the logarithmic case, i.e., D̆R-modules.)

Moreover, the above theorem for l = m and the equivalence of categories (3.3) (in the case
where S is replaced by S(m)) together imply the following assertion, which is already obtained
in [LeQu, Corollary 3.2.4] and [Kin1, Proposition 1.1.6].

Corollary 3.1.7. Let S ∈ {R,K}. Then, the functors Ξ↓(m+1) and Ξ↑(m+1) (i.e., the assign-
ments (E,∇) 7→ Em+1 and E ′ 7→ (F (m+1)∗(E ′),∇can

(S,∂⟨•⟩),E′)) induce an equivalence of categories(
the category of

dormant D
(m)
S -modules

)
∼→
(

the category of
S(m+1)-modules

)
. (3.5)

3.2. Dormant pinned D
(m)
R -module of rank pm+1. Let S ∈ {R,K}, and let “ ˙(−)” denote

either the absence or presence of “ ˘(−)”. Here, let us construct an example of a dormant pinned

D
(m)
S -module of rank pm+1. The S-module ṖS := Ḋ

(m)
S /Ḋ

(m)
S · ∂̇〈pm+1〉 has the a Ḋ

(m)
S -module

structure ∇ṖS
induced from the left Ḋ

(m)
S -module structure of Ḋ

(m)
S itself. One can verify

that (ṖS,∇ṖS
) is dormant. If δ̇〈l〉 (l = 0, · · · , pm+1 − 1) is the image of ∂̇〈l〉 via the quotient

Ḋ
(m)
S ↠ ṖS, then we have ṖS =

⊕pm+1−1
l=0 S · δ̇〈l〉. Hence, the triple

(ṖS,∇ṖS
, vṖS

), (3.6)
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where vṖS
:= δ̇〈0〉, forms a dormant pinned Ḋ

(m)
S -module of rank pm+1.

Next, let (E,∇, v) be a dormant pinned D̆
(m)
S -module. The S-linear injection S ↪→ E given

by a 7→ a·v (for any a ∈ S) extends to a Ḋ(m)
S -linear morphism ν̃(E,∇,v) :

(
Ḋ

(m)
S ⊗S S =

)
Ḋ

(m)
S →

E. This morphism preserves the Ḋ
(m)
S -action. Since (E,∇) has vanishing pm+1-curvature,

ν̃(E,∇,v) factors through the quotient Ḋ
(m)
S ↠ ṖS. Thus, ν̃(E,∇,v) induces a morphism

ν(E,∇,v) : ṖS ↠ E, (3.7)

which forms a morphism of pinned Ḋ
(m)
S -modules (ṖS,∇ṖS

, vṖS
) → (E,∇, v). It follows from

Proposition 2.5.5, (i), that ν(E,∇,v) is surjective. By combining Theorem 2.5.6 with the following

proposition (in the case where S = K and “ ˙(−)” denotes the absence of ˘(−)), we see that the
existence of an m-cyclic vector for a dormant D

(m)
K -module depends only on the rank of the

underlying K-vector space.

Proposition 3.2.1. Let n be a positive integer and (E,∇) a dormant Ḋ
(m)
S -module such that

the S-module E is free and of rank n. Then, the following assertions hold:

(i) If the inequality n > pm+1 holds, then there are no m-cyclic vectors of (E,∇).
(ii) If the equality n = pm+1 holds and there exists an m-cyclic vector of (E,∇), then

ν(E,∇,v) is an isomorphism. In particular, the isomorphism class of a dormant Ḋ
(m)
S -

module whose underlying S-module is free and of rank pm+1 is uniquely determined,
i.e., the class represented by (ṖS,∇ṖS

, vṖS
).

Proof. The assertions follow immediately from the surjectivity of the morphism ν(E,∇,v) for
each m-cyclic vector v of (E,∇). □

Example 3.2.2. Let us consider the dual of ṖS

(
=
⊕pm+1−1

l=0 S · δ̇〈l〉
)
. Denote the dual basis

of δ̇〈0〉, · · · , δ̇〈pm+1−1〉 by δ̇∨〈0〉, · · · , δ̇∨〈pm+1−1〉. From the definition of ∇ṖS
, the element vṖ∨

S
:=

δ̇∨〈pm+1−1〉 defines an m-cyclic vector of the dual Ḋ
(m)
S -module (Ṗ∨

S ,∇∨
ṖS
) of (ṖS,∇ṖS

). Hence,

we obtain the dormant pinned Ḋ
(m)
S -module

(Ṗ∨
S ,∇∨

ṖS
, vṖ∨

S
). (3.8)

Since the free S-module Ṗ∨
S is of rank pm+1, it follows from Proposition 3.2.1, (ii), that the

induced morphism

ν(Ṗ∨
S ,∇∨

ṖS
,vṖ∨

S
) : (ṖS,∇ṖS

, vṖS
)→ (Ṗ∨

S ,∇∨
ṖS
, vṖ∨

S
) (3.9)

defines an isomorphism of pinned Ḋ
(m)
S -modules.

3.3. Duality of dormant pinned D
(m)
R -modules. Let us keep the above notation. Also, let

us denote by∇Ker the Ḋ
(m)
S -module structure on Ker(ν(E,∇,v)) obtained by restricting ∇ṖS

. The

Ḋ
(m)
S -module (Ker(ν(E,∇,v))),∇Ker) has vanishing pm+1-curvature, so do its dual (E▼,∇▼) :=

(Ker(ν(E,∇,v)))
∨,∇∨

Ker). We shall write v▼ for the element of E▼ defined to be the image of 1
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via the dual of the composite

Ker(ν(E,∇,v))
inclusion−−−−−→ ṖS

=

pm+1−1⊕
l=0

S · δ̇〈l〉

→ (
S · δ̇〈pm+1−1〉 =

)
S,

where the second arrow denotes the projection to the last factor.

Lemma 3.3.1. The element v▼ forms an m-cyclic vector of (E▼,∇▼).

Proof. For each j ∈ Z≥0, we write

ṖS,j := Im
(
Ḋ

(m)
S,<j ↪→ Ḋ

(m)
S ↠ ṖS

)(
=

j−1⊕
l=0

S · δ̇〈l〉

)
.

Let us set h to be the composite

h : ṖS,n
inclusion−−−−−→ ṖS

ν(E,∇,v)−−−−→ E.

By the definition of ν(E,∇,v), we have

h(δ̇〈j〉) = h((∇ṖS
)〈j〉(δ̇〈0〉)) = ∇〈j〉(h(δ̇〈0〉)) = ∇〈j〉(v)

for every j = 0, · · · , n− 1. On the other hand, since {δ̇〈j〉}n−1
j=0 and {∇〈j〉(v)}n−1

j=0 form bases for

ṖS,n and E, respectively, h is an isomorphism. This implies that the composite

λ : Ker(ν(E,∇,v))
inclusion−−−−−→ ṖS ↠ ṖS/ṖS,n

is an isomorphism. Since the element vṖ∨
S

of Ṗ∨
S (cf. Example 3.2.2) forms an m-cyclic

vector, the elements
(
vṖ∨

S
=
)
∂̇∨〈pm+1−1〉, · · · , ∂̇∨〈n〉 generate an S-submodule (ṖS/ṖS,n)

∨ ⊆ Ṗ∨
S .

In particular, the elements λ∨(∂̇〈pm+1−1〉), · · · , λ∨(∂̇〈n〉) generate E▼, where λ∨ denotes the

dual (ṖS/ṖS,n)
∨ ∼→ E▼ (= Ker(ν(E,∇,v))

∨) of λ. On the other hand, it follows from the var-

ious definitions involved that the equality ∇▼
〈j〉(v

▼) = λ∨(∂̇∨〈pm+1−1−j〉) holds for every j =

0, · · · , pm+1 − n − 1. Thus, v▼ turns out to form an m-cyclic vector of (E▼,∇▼). This com-
pletes the proof of the assertion. □

By the above lemma, we obtain a dormant pinned Ḋ
(m)
S -module

(E▼,∇▼, v▼) (3.10)

of rank pm − n, which we call the dual of (E,∇, v).
Next, let us take a morphism f : (E,∇, v) → (E ′,∇′, v′) between dormant pinned Ḋ

(m)
S -

modules. The construction of ν(−) yields the equality f ◦ν(E,∇,v) = ν(E′,∇′,v′). Hence, f restricts
to the inclusion fKer : Ker(ν(E,∇,v)) ↪→ Ker(ν(E′,∇′,v′)). Taking its dual gives a morphism of

pinned Ḋ
(m)
S -modules

f▼ : (E ′▼,∇′▼, v′▼)→ (E▼,∇▼, v▼).

Here, we shall write

Mod(Ḋ
(m)
S )⊛

for the category of dormant pinned Ḋ
(m)
S -modules.
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Theorem 3.3.2. (i) The assignments (E,∇, v) 7→ (E▼,∇▼, v▼) and f 7→ f▼ constructed
above define a self-equivalence

˙ D: Mod(Ḋ
(m)
S )⊛

∼→Mod(Ḋ
(m)
S )⊛

of the category Mod(Ḋ
(m)
S )⊛ with ˙ D◦ ˙

D

= id. In particular, for each pinned Ḋ
(m)
S -module

(E,∇, v), there exists an isomorphism of pinned Ḋ
(m)
S -modules

(E,∇, v) ∼→ (E▼▼,∇▼▼, v▼▼).

(ii) The following diagram of functors is 1-commutative:

Mod(D
(m)
R )⊛

o D

��

η⊚R // Mod(D̆
(m)
R )⊛

o ˘ D

��

(η−1
K ◦κ̆)⊚

// Mod(D
(m)
K )⊛

o D

��

Mod(D
(m)
R )⊛

η⊚R

// Mod(D̆
(m)
R )⊛

(η−1
K ◦κ̆)⊚

// Mod(D
(m)
K )⊛,

where η⊚R and (η−1
K ◦κ̆)⊚ denote the functors induced, via restriction, from ηR and η−1

K ◦κ̆,
respectively.

Proof. Let us prove assertion (i). Let (E,∇, v) be a dormant pinned D
(m)
S -module. Then, it

induces the following short exact sequence:

0 −→ Ker(ν(E,∇,v))
ι−→ ṖS

ν(E,∇,v)−−−−→ E −→ 0,

where we write ι for the natural inclusion. The dual of this sequence fits into the following
diagram:

0 // Ker(ν(E▼,∇▼,v▼)) // ṖS

ν(ṖS,∇
ṖS

,v
ṖS

)

��

ν(E▼,∇▼,v▼) // E▼

o id

��

// 0

0 // E∨
ν∨
(E,∇,v)

// Ṗ∨
S ι∨

// E▼ // 0,

where the right-hand square is commutative because of Proposition 2.5.5, (ii), together with
the equality (ι∨ ◦ ν(ṖS ,∇ṖS

,vṖS
))(vṖS

) = (id ◦ ν(E▼,∇▼,v▼))(vṖS
). Hence, this diagram induces an

isomorphism Ker(ν(E▼,∇▼,v▼))
∼→ E∨. By taking the dual of this isomorphism, we obtain an

isomorphism ξ : E
∼→ E▼▼. Note that ν(ṖS ,∇ṖS

,vṖS
) preserves the Ḋ

(m)
S -action and it is com-

patible with the respective projections onto S, i.e., vṖ∨
S
and v∨

ṖS
. This implies that ξ defines

an isomorphism of pinned Ḋ
(m)
S -modules (E,∇, v) ∼→ (E▼,∇▼▼, v▼▼). Moreover, the forma-

tion of this isomorphism is functorial with respect to (E,∇, v), so it induces an isomorphism

id
Mod(Ḋ

(m)
S )⊛

∼→ ˙ D◦ ˙ Dof functors. This completes the proof of assertion (i).

Assertion (ii) follows immediately from the construction of ˙ D. □
For each integer n with 1 ≤ n ≤ pm − 1, we shall write

Mod(Ḋ
(m)
S )⊛n
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for the set of isomorphism classes of dormant pinned Ḋ
(m)
S -modules of rank n. In the case of n =

1, the set Mod(Ḋ
(m)
S )⊛1 forms a group with a binary operation given by ((E,∇, v), (E ′,∇′, v′)) 7→

(E ⊗ E,∇⊗∇′, v ⊗ v′) (cf. Example 3.3.4 below).
The following assertion is a direct consequence of the above theorem.

Corollary 3.3.3. The assignment (E,∇, v) 7→ (E▼,∇▼, v▼) defines a bijection of sets

[ ˙

D

]n : Mod(Ḋ
(m)
S )⊛n

∼→ Mod(Ḋ
(m)
S )⊛pm+1−n (3.11)

satisfying [ ˙

D

]pm+1−n ◦ [ ˙

D

]n = id.

Example 3.3.4. Let us examine the group Mod(D
(m)
S )⊛1 . For each element a ∈ S×, denote by

µa the automorphism of the trivial S-module S given by multiplication by a. There exists a

unique D
(m)
S -module structure µa∗(∂〈•〉) on S such that µa becomes an isomorphism of D

(m)
S -

modules (S, ∂〈•〉)
∼→ (S, µa∗(∂〈•〉)). Then, the triple

(S, µa∗(∂〈•〉), 1)

forms a dormant pinned D
(m)
S -module of rank 1. Since Ξ↑(m+1)(S(m+1)) = (S, ∂〈•〉), the equiva-

lence of categories (3.5) shows that any dormant pinned D
(m)
S -module of rank 1 is isomorphic

to (S, µa∗(∂〈•〉), 1) for some a ∈ S×. Also, for a, b ∈ S×, (S, µa∗(∂〈•〉), 1) ∼= (S, µb∗(∂〈•〉), 1)

(a, b ∈ S×) if and only if there exists c ∈ (S(m+1))× satisfying b = a · c. Hence, the assignment
a 7→ (S, µa∗(∂〈•〉), 1) gives a well-defined bijection of sets

S×/(S(m+1))×
∼→ Mod(D

(m)
S )⊛1 . (3.12)

Since µa ◦µb = µa·b, we have (S, µa∗(∂〈•〉), 1)⊗ (S, µb∗(∂〈•〉), 1) ∼= (S, µa·b∗(∂〈•〉), 1). This implies
that (3.12) becomes an isomorphism of groups.

Moreover, by composing with [

D

]1, we obtain a bijection

S×/(S(m+1))×
∼→ Mod(D

(m)
S )⊛pm+1−1.

4. Residues and exponents of log differential modules

Let m, K, R, t, and ∂〈•〉 be as in the previous section. This section discusses the residue

and the exponent of a dormant D̆
(m)
R -module. (For the previous work dealing with related

concepts, we refer to [Kin1].) In particular, we examine the exponent of a dormant D̆
(m)
R -

module admitting an m-cyclic vector (cf. Proposition 4.4.1).

4.1. Residue of a D̆
(m)
R -module. Let (E,∇) be a dormant D̆

(m)
R -bundle such that the R-

module E is free and of rank n > 0. For each l = 0, · · · ,m, the pair

(El,∇l
), (4.1)

where ∇l
:= ∇〈pl〉|El , determines a dormant D̆

(0)

R(l)-module (cf. Remark 2.3.1).
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From the equivalence of categories (3.5), the injective morphism τ
↓↑(m+1)
(E,∇) : F (m+1)∗(Em+1)→

E (cf (2.5)) becomes bijective after tensoring with K. Hence, the cokernel

Res(∇) := Coker(τ
↓↑(m+1)
(E,∇) )

of τ
↓↑(m+1)
(E,∇) is of finite length. We will refer to Res(∇) as the residue of ∇.

Note that there exists a natural sequence of inclusions

F (m+1)∗(Em+1) ⊆ F (m)∗(Em) ⊆ · · · ⊆ F (1)∗(E1) ⊆ F (0)∗(E0) = E.

For each integer l with 0 ≤ l ≤ m+ 1, we shall write

Res(∇)l := Im

(
F (l)∗(El)

τ
↓↑(l)
(E,∇)−−−→ E

quotient−−−−→ Res(∇)

)
(⊆ Res(∇)) .

The natural surjection F (l)∗(El) ↠ Res(∇)l induces an isomorphism of R-modules

F (l)∗(El)/F (m+1)∗(Em+1)
∼→ Res(∇)l. (4.2)

Proposition 4.1.1. The collection {Res(∇)l}0≤l≤m+1 forms a decreasing filtration of Res(∇)
satisfying that Res(∇)0 = Res(∇), Res(∇)m+1 = 0, and

Res(∇)l/Res(∇)l+1 ∼= F (l)∗(Res(∇l
))

for every l = 0, · · · ,m. In particular, the following equality holds:

lengthR(Res(∇)) =
m∑
l=0

pl · lengthR(Res(∇
l
)).

Proof. Let us prove the former assertion. It is clear that Res(∇)0 = Res(∇) and Res(∇)m+1 =
0. Next, let us take l ∈ {0, · · · ,m}. The short exact sequence of R(l)-modules

0 −→ F
(1)∗
l (El+1) −→ El −→ Res(∇l

) −→ 0

induces, via application of the functor F (l)∗(−), a short exact sequence

0 −→ F (l+1)∗(El+1)
(
= F (l)∗(F

(1)∗
l (El+1))

)
−→ F (l)∗(El) −→ F (l)∗(Res(∇l

)) −→ 0.

Hence, the assertion follows from this sequence together with (4.2).
The latter assertion follows from the former one because

lengthR(Res(∇)) =
m∑
l=0

lengthR(Res(∇)l/Res(∇)l+1)

=
m∑
l=0

lengthR(F
(l)∗(Res(∇l

)))

=
m∑
l=0

pl · lengthR(Res(∇
l
)).

This completes the proof of this proposition. □
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Example 4.1.2. Let E be a free R(m+1)-module of finite rank. Then, the natural morphism

E → (F (m+1)∗(E))m+1 with respect to the D̆
(m+1)
R -module structure ∇can

(R,∂̆⟨•⟩),E
(cf. (2.3)) is an

isomorphism. This implies that the residue Res(∇can
(R,∂̆⟨•⟩),E

) of ∇can
(R,∂̆⟨•⟩),E

vanishes.

4.2. Dormant D̆
(m)
R -modules of rank 1. Let us take an element a of Z/pm+1Z. Denote by ã

the integer defined as the unique lifting of a via the natural surjection Z ↠ Z/pm+1Z satisfying

0 ≤ ã < pm+1. Then, there exists a unique D̆
(m)
R -module structure

∇a := {∇a,〈j〉}j∈Z≥0
(4.3)

on R satisfying ∇a,〈j〉(t
n) = qj! ·

(
n−ã
j

)
· tn (where

(
n−ã
j

)
:= (n−ã)···(n−ã−j+1)

j!
) for every j, n ∈ Z≥0.

In particular, we have ∇0 = ∂̆〈•〉. The D̆
(m)
R -module (R,∇a) is isomorphic to the unique

extension of the trivial D̆
(m)
R -module (R, ∂̆〈•〉) to t

−ã · R (⊆ K) (cf. Remark 3.1.1). It follows
immediately that ∇a has vanishing pm+1-curvature.

Proposition 4.2.1. (i) Let us express the integer ã as ã =
∑m

l=0 p
l · ãl, where 0 ≤ ãl < p

(l = 0, · · · ,m). Then, the following equalities hold:

lengthR(Res(∇a)) = ã, lengthR(Res(∇a)
l/Res(∇a)

l+1) = pl · ãl
(l = 0, · · · ,m).

(ii) Let a, b ∈ Z/pm+1Z, and write c := b− a. Then, we have

Hom((R,∇a), (R,∇b)) = {µs·tc̃ | s ∈ (R(m+1))×},

where µs′ (for each s
′ ∈ R(m+1)) denotes the endomorphism of R given by multiplication

by s′.
(iii) For each a, b ∈ Z/pm+1Z, we have

(R,∇a)⊗ (R,∇b) ∼= (R,∇a+b), (R∨,∇∨
a )
∼= (R,∇−a).

(iv) Let (E,∇) be a dormant D̆
(m)
R -module with E = R. Then, it is isomorphic to (R,∇a)

for a unique element a of Z/pm+1Z.

Proof. Assertion (i) follows from (4.2) together with the equality
⋂pl

j=0 Ker(∇a,〈j〉) = t
∑l

j=0 p
j ·ãj ·

Rl+1 (⊆ R), which can be verified by induction on l. Assertions (ii) and (iii) follow immediately
from the definition of ∇a.
Here, we shall prove assertion (iv). Let us write ã := lengthR(Res(∇)) and write a for the

image of ã via the quotient Z ↠ Z/pm+1Z. From Proposition 4.1.1 and [Oss4, Proposition
2.8], we have

ã =
m∑
l=0

pl · lengthR(Res(∇
l
)) <

m∑
l=0

pl · (p− 1) ≤ pm+1. (4.4)

Since τ
↓↑(m+1)
(E,∇) : F (m+1)∗(Em+1) → E is injective and E is a free R-module of rank 1, the

R(m+1)-module Em+1 may be identified with R(m+1). This identification gives an identification

F (m+1)∗(Em+1) =
(
F (m+1)∗(R(m+1)) =

)
R, by which the D̆

(m+1)
R -module structure ∇can

(R,∂̆⟨•⟩),Em+1

(cf. (2.3)) corresponds to the trivial one ∂̆〈•〉. Hence, since τ
↓↑(m+1)
(E,∇) is D̆

(m+1)
R -linear, ∇ may
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be identified, via τ
↓↑(m+1)
(E,∇) , with a unique D̆

(m+1)
R -module structure on t−ã ·R (⊆ K) extending

∂̆〈•〉. This implies ∇ = ∇a by (4.4), which completes the proof. □

4.3. Exponent of a dormant D̆
(m)
R -module. Denote by k the residue field of the discrete

valuation ring R. Since k is perfect, R/(t) = k, and R ⊇ k, the t-adic completion R̂ of R is
naturally isomorphic to k[[t]], i.e., the ring of formal power series with coefficients in k (cf. [Ser,

Chapter I, Section 4, Theorem 2]). Now, let (E,∇) be a dormant D̆
(m)
R -module such that the

R-module E is free. The t-adic completion of (E,∇) defines a D̆(m)
k[[t]]-module (Ê, ∇̂). According

to [Kin1, Proposition 1.1.12], there exists an isomorphism of D̆
(m)
k[[t]]-modules

ξ : (Ê, ∇̂) ∼→
n⊕

i=1

(k[[t]], ∇̂di), (4.5)

where d1, · · · , dn ∈ Z/pm+1Z and each ∇̂di (i = 1, · · · , n) denotes the D̆(m)
k[[t]]-module structure

on k[[t]] defined as the t-adic completion of ∇di . It follows from Proposition 4.2.1, (ii), that the
multiset [d1, · · · , dn] depends only on the isomorphism class of (E,∇). (For the definition and
various descriptions concerning a multiset, we refer the reader to [SIYS].)

Definition 4.3.1. In the above situation, the multiset [d1, · · · , dn] is called the exponent of
(E,∇).

Example 4.3.2. Let (E,∇) be as above and (L,∇L) be a dormant D̆
(m)
R -module with L ∼= R.

According to Proposition 4.2.1, (iv), (L,∇L) is isomorphic to (R,∇a) for some a ∈ Z/pm+1Z.
Then, the tensor product (L⊗ E,∇L ⊗∇) forms a dormant D̆

(m)
R -module whose exponent is

[d1 + a, d2 + a, · · · , dn + a].

Remark 4.3.3. For each D̆
(0)
R -module (E ′,∇′), the monodromy (operator) of (E ′,∇′) is

the element µ(E′,∇′) of Endk(k ⊗R E ′) naturally induced by ∇′
〈1〉 via reduction modulo (t)

(cf. [Wak5, Definition 1.46]). If E ′ = R, we have

µ(E′,∇′) ≡ −lengthR(Res(∇′)) mod p. (4.6)

Now, suppose that the exponent of a dormant D̆
(m)
R -module (E,∇) as above is [d1, · · · , dn].

For each i = 1, · · · , n, we express the integer d̃i (cf. Section 4.2) as d̃i =
∑m

l=0 p
l · d̃il, where

0 ≤ d̃il < p. Then, it follows from (4.6) together with Propositions 4.1.1 and 4.2.1, (i), that,

for each l = 0, · · · ,m, the monodromy µ
(El,∇l

)
of the D̆

(0)

R(l)-module (El,∇l
) (cf. (4.1)) is

diagonalized and conjugate to the diagonal matrix with diagonal entries −d̃1l, · · · ,−d̃nl mod
p.

Proposition 4.3.4. Let (E,∇) be a dormant D̆
(m)
R -module such that the R-module E is free.

Then, the following three conditions (a)-(c) are equivalent to each other:

(a) The residue Res(∇) of ∇ vanishes;
(b) The exponent of (E,∇) coincides with [0, 0, · · · , 0];
(c) (E,∇) comes from a D

(N−1)
R -module via ηR (cf. (3.2)), meaning that there exists a

D
(N−1)
R -module structure ∇′

(
= {∇′

〈j〉}j
)
with ∇ = {tj · ∇′

〈j〉}j.
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Proof. The equivalence (a)⇐⇒ (b) follows from Proposition 4.2.1, (i), and the existence of the
decomposition (4.5). The equivalence (a) ⇐⇒ (c) follows from the equivalence of categories
asserted in Corollary 3.1.7 and the comments in Remark 3.1.2 and Example 4.1.2 (together

with the fact that τ
↓↑(m+1)
(E,∇) is compatible with the respective D

(m+1)
R -module structures, i.e,

∇can
(R,∂̆⟨•⟩)

and ∇). □

4.4. Relationship with the existence of an m-cyclic vector. The following assertion

helps us to understand the exponents of dormant pinned D̆
(m)
R -modules.

Proposition 4.4.1. Let (E,∇) be a dormant D̆
(m)
R -module such that the R-module E is free

and of rank n > 0. Let [d1, · · · , dn] be the exponent of (E,∇). Then, the following two
conditions (a), (b) are equivalent to each other:

(a) (E,∇) admits an m-cyclic vector;
(b) The inequality n ≤ pm+1 and the equality∑

1≤i<i′≤n

νp

(
d̃i′ − d̃i

)
=
∑
s∈Z>0

n−1∑
j=0

⌊
j

ps

⌋
(4.7)

hold, where for each integer a we denote by νp(a) (∈ Z≥0 t {∞}) the p-adic order of a.

In particular, under the assumption that n ≤ p, (E,∇) admits an m-cyclic vector if and only
if the mod p reductions of d1, · · · , dn are mutually distinct.

Proof. Denote by (Ê, ∇̂) the t-adic completion of (E,∇), and choose an isomorphism ξ :

(Ê, ∇̂) ∼→
⊕n

i=1(k[[t]], ∇̂di) as in (4.5). Let us take an element v of E, which determines an

element v̂ of Ê via the natural morphism E → Ê. Write (ui)
n
i=1 := ξ(v̂) ∈ k[[t]]⊕n. Also, for

each i = 1, · · · , n, we set ui =
∑∞

s=0 ui,s · ts (where ui,s ∈ k). Then, ∇̂di,〈j〉(ui) is expressed as

∇̂di,〈j〉(ui) =
∞∑
s=0

qj! ·
(
s− d̃i
j

)
· ui,s · ts.

The isomorphism ξ preserves the D̆
(m)
k[[t]]-action, so the equality ξ(∇̂〈j〉(v̂)) = (∇̂di,〈j〉(ui))

n
i=1

holds for every j = 0, · · · , n− 1. Hence, {∇̂〈j〉(v̂)}0≤j≤n−1 forms a basis of Ê if and only if the

collection {(qj! ·
(−d̃i

j

)
· ui,0)ni=1}0≤j≤n−1

(
= {(∇di,〈j〉(ui)|t=0)

n
i=1}0≤j≤n−1

)
forms a basis of k⊕n,

i.e., the following three conditions (1)-(3) are fulfilled:

(1) For every i = 1, · · · , n, the element ui,0 belongs to k× (or equivalently, ui ∈ k[[t]]×);
(2) For every j = 0, · · · , n− 1, the integer qj! is invertible in k;

(3) The n× n matrix
((−d̃i

j

))
1≤i≤n,0≤j≤n−1

is invertible.

Condition (2) is equivalent to the inequality n ≤ pm+1. Regarding Condition (3), it follows
from Vandermonde’s determinant that

det
(((−d̃i

j

))
ij

)
=

(
n−1∏
j=0

(−1)j

j!

)
· det

(
(d̃ji )ij

)
= (−1)

n(n−1)
2 ·

∏
1≤i<i′≤n(d̃i′ − d̃i)∏n−1

j=0 j!
.
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The p-adic order of this value (which is nonnegative because it is well-defined as an element
of Fp ⊆ k) can be computed as follows:

νp

(∏
1≤i<i′≤n(d̃i′ − d̃i)∏n−1

j=0 j!

)
= νp

( ∏
1≤i<i′≤n

(d̃i′ − d̃i)

)
− νp

(
n−1∏
j=0

j!

)

=
∑

1≤i<i′≤n

νp

(
d̃i′ − d̃i

)
−

n−1∑
j=0

νp (j!)

=
∑

1≤i<i′≤n

νp

(
d̃i′ − d̃i

)
−
∑
s∈Z>0

n−1∑
j=0

⌊
j

ps

⌋
.

Hence, Condition (3) is fulfilled if and only if the equality (4.7) holds. It follows that we obtain
the implication (a) ⇒ (b).

Conversely, suppose that Condition (b) is satisfied. Then, since k ⊗R E = k ⊗ Ê = k⊕n, we

can take an element v of E such that the induced element v̂ of Ê satisfies ξ(v̂) ∈ (k[[t]]×)⊕n.

According to the above discussion, v̂ defines an m-cyclic vector of (Ê, ∇̂). By the faithful

flatness of the natural homomorphism R →
(
R̂ =

)
k[[t]], we see that v forms an m-cyclic

vector of (E,∇). This implies (b) ⇒ (a), which completes the proof of this proposition. □

Corollary 4.4.2. The exponent of the dormant D̆
(m)
R -module (P̆R,∇P̆R

) (cf. (3.6)) coincides

with [0, 1, · · · , pm+1 − 1].

Proof. Recall that (P̆R,∇P̆R
) has an m-cyclic vector (by the discussion in Section 3.2) and the

free R-module P̆R is of rank pm+1. Hence, the assertion follows from the above proposition. □

Let δ := {d1, · · · , dn} (where di 6= di′ if i 6= i′) be a subset of Z/pm+1Z whose cardinality
equals n. We shall set

δ▼ := {d▼1 , · · · , d▼pm+1−n} (4.8)

to be the subset of Z/pm+1Z with δ t {−d▼1 , · · · ,−d▼pm+1−n} = Z/pm+1Z. It can immediately

be seen that δ▼▼ = δ.
If a dormant D̆

(m)
R -module admits an m-cyclic vector, then it follows from Proposition 4.4.1

that the elements in its exponent are mutually distinct, and hence form a subset of Z/pm+1Z.
In particular, for each subset δ of Z/pm+1Z, it makes sense to speak of a dormant pinned

D̆
(m)
R -module of exponent δ. For each subset δ := {d1, · · · , dn} of Z/pm+1Z whose cardinality

equals n, we shall denote by

Mod(D̆
(m)
R )⊛n,δ

the subset of Mod(D̆
(m)
R )⊛n consisting of dormant pinned D̆

(m)
R -modules of rank n and exponent

δ.

Proposition 4.4.3. The bijection [ ˘

D

]n : Mod(D̆
(m)
R )⊛n

∼→ Mod(D̆
(m)
R )⊛pm+1−n (cf. (3.11)) re-

stricts to a bijection of sets

[ ˘

D

]n,δ : Mod(D̆
(m)
R )⊛n,δ

∼→ Mod(D̆
(m)
R )⊛pm+1−n,δ▼ .
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Proof. Let us take a dormant pinned D̆
(m)
R -module (E,∇, v) classified by Mod(D̆

(m)
R )⊛n,δ. Denote

by (Ê, ∇̂) the t-adic completion of (E,∇). Note that the t-adic completion of (P̆R,∇P̆R
) may

be identified with (P̆k[[t]],∇P̆k[[t]]
). Hence, the t-adic completion ν̂(E,∇,v) of ν(E,∇,v) (cf. (3.7))

specifies a morphism (P̆k[[t]],∇P̆k[[t]]
) → (Ê, ∇̂). We shall fix an isomorphism of D̆

(m)
k[[t]]-modules

ξ : (Ê, ∇̂) ∼→
⊕n

i=1(k[[t]], ∇̂di) as in (4.5). On the other hand, according to Corollary 4.4.2,

there exists an isomorphism ξP : (P̆k[[t]],∇P̆k[[t]]
)

∼→
⊕

d∈Z/pm+1Z(k[[t]], ∇̂d). In particular, we

obtain a surjective morphism

ξ ◦ ν̂(E,∇,v) ◦ ξ−1
P :

⊕
d∈Z/pm+1Z

(k[[t]], ∇̂d)→
n⊕

i=1

(k[[t]], ∇̂di).

From Proposition 4.2.1, (ii), we see that the kernel of this morphism is isomorphic to
⊕

d/∈δ(k[[t]], ∇̂d).

Hence, the dual of this dormant D̆
(m)
k[[t]]-module, i.e., the t-adic completion of (E▼,∇▼), is iso-

morphic to
⊕

d∈δ▼(k[[t]], ∇̂d) (cf. Proposition 4.2.1, (iii)). This means that the exponent of
(E▼,∇▼) coincides with δ▼, which completes the proof. □

5. Dormant PGLn-opers of higher level

In this and the remaining sections, we apply the results on higher-level differential modules
proved so far to discuss the corresponding objects defined on an algebraic curve in characteristic
p > 0. The notion of a PGL(N)

n -oper (i.e., a PGLn-oper of level N) for N > 0 will be defined
in terms of the ring of differential operators of level N − 1 (cf. Definition 5.2.5). Also, we

introduce the radius of a PGL(N)
n -oper by using the local description at each marked point of

the underlying pointed curve (cf. Definition 5.3.2).

5.1. Logarithmic differential operators. In the rest of the present paper, let us fix a
positive integer N , a nonnegative integer r, and an algebraically closed field k of characteristic
p. Also, let us fix an r-pointed (possibly nonproper) smooth curve

X := (f : X → Spec(k), {σi}1≤i≤r) (5.1)

over k, i.e., a smooth curve X over k together with r marked points {σi}1≤i≤r (⊆ X(k)). The
divisor on X defined as the union of the marked points σi determines a log structure on X;
we shall denote the resulting log scheme by X log. Since X log is log smooth over k, the sheaf of
logarithmic 1-forms ΩXlog of X log/k, as well as its dual TXlog := Ω∨

Xlog , is a line bundle. When
there is no fear of confusion, we write Ω and T instead of ΩXlog and TXlog , respectively.
Next, write Fk (resp., FX) for the absolute Frobenius endomorphism of Spec(k) (resp.,

X). We shall denote by X(N) the base-change k ×FN
k ,k X of X by the N -th iterate FN

k of
Fk; we will refer to it as the N-th Frobenius twist of X over k. Also, the morphism

F
(N)
X/k

(
:= (f, FN

X )
)
: X → X(N) is called the N-th relative Frobenius morphism of X over

k.
Denote by D(N−1)

Xlog (cf. [Mon, Définition 2.3.1]) the ring of logarithmic differential operators

on X log/k (equipped with the trivial (N − 1)-PD structure) of level N − 1. For each integer j,
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we shall write D(N−1)

Xlog,<j
for the OX-submodule of D(N−1)

Xlog consisting of logarithmic differential

operators of order < j. When there is no fear of confusion, we will write D(N−1) (resp., D(N−1)
<j )

instead of D(N−1)

Xlog (resp., D(N−1)

Xlog,<j
). If N ′ is a positive integer with N ′ ≥ N , then there exists

a canonical morphism D(N−1) → D(N ′−1) (cf. [Mon, Section 2.5.1]).
A (left) D(N−1)-module structure on anOX-module E is a leftD(N−1)-action∇ : D(N−1) →
Endk(E) on E extending its OX-module structure. An OX-module equipped with a D(N−1)-
module structure is called a (left) D(N−1)-module. Given a D(N−1)-module (E ,∇), we shall

write E∇ for the subsheaf of E on which D(N−1)
+ acts as zero, where D(N−1)

+ denotes the kernel
of the canonical projection D(N−1) ↠ OX . The sheaf E∇ may be regarded as an OX(N)-module

via the underlying homeomorphism of F
(N)
X/k.

Recall that giving a D(0)-module structure on an OX-module E is equivalent to giving a
logarithmic connection on E , i.e., a k-linear morphism E → Ω ⊗ E satisfying the Leibniz rule.
For each D(N−1)-module structure ∇ on an OX-module E , we shall write

∇ : E → Ω ⊗ E

for the logarithmic connection on E corresponding to the D(0)-module structure induced from
∇ via the canonical morphism D(0) → D(N−1).

Denote by pψXlog the pN -curvature map T ⊗pN → D(N−1) defined in [Ohk, Definition 3.10].
Given a D(N−1)-module (E ,∇), we shall set

pψ(E,∇) := ∇ ◦ pψXlog : T ⊗pN → Endk(E),

which will be called the pN -curvature of (E ,∇). The p1-curvature of a D(0)-module is es-
sentially the same as the p-curvature of the corresponding logarithmic connection (cf. [Ogu,
Section 1.2]).

Definition 5.1.1. Let (E ,∇) be a D(N−1)-module. Then, we shall say that (E ,∇) is dormant
if pψ(E,∇) = 0.

Remark 5.1.2. Let us review a result in the case where r = 0, or equivalently, the log structure
of X log is trivial. Then, our definition of pN -curvature coincides with the p-(N − 1)-curvature
in the sense of [LeQu, Definition 3.1.1]. For each OX(N)-module E , there exists a canonical

(non-logarithmic) D(N−1)
X -module structure ∇can

E on F
(N)∗
X/k (E) with vanishing pN -curvature.

According to [LeQu, Corollary 3.2.4], the assignments (E ,∇) 7→ E∇ and E 7→ (F
(N)∗
X/k (E ,∇can

E ))

determine an equivalence of categories(
the category of

dormant D(N−1)
X -modules

)
∼→
(

the category of
OX(N)-modules

)
. (5.2)

The ring-theoretic counterpart of this equivalence was already mentioned in Corollary 3.1.7.

Here, we shall consider the local description of D(N−1)-modules. Let x be a k-rational
point of X and fix a local function t on X defining x. Suppose that x lies in X \

⋃r
i=1{σi}

(resp.,
⋃r

i=1{σi}). Then, it follows from [PBer1, Proposition 2.2.4] (resp., [Mon, Lemme 2.3.3])
that (the sections of) the restriction of D(N−1) to Dx := Spec(OX,x) may be identified with

D
(N−1)
OX,x

(resp., D̆
(N−1)
OX,x

) defined in (3.1) for R = OX,x. Each D(N−1)-module (E ,∇) induces,
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via restriction to Dx, a D
(N−1)
OX,x

-module (resp., D̆
(N−1)
OX,x

-module) (E ,∇)|Dx . According to [Ohk,

Proposition 3.11], the pN -curvature of (E ,∇)|Dx may be regarded as the restriction to Dx of
the pN -curvature of (E ,∇). In particular, if (E ,∇) is dormant, then the restriction (E ,∇)|Dx

is dormant.

Definition 5.1.3. Let (E ,∇) be a dormant D(N−1)-module such that E is a vector bundle on
X of rank n > 0. Suppose that r > 0. Then, for each i ∈ {1, · · · , r}, the (local) exponent of
(E ,∇) (or, of ∇) at the marked point σi is defined as the exponent of (E ,∇)|Dσi

(cf. Definition
4.3.1).

The following assertion will be applied in the proof of Proposition 7.3.1.

Proposition 5.1.4. Let l be a positive integer with p ∤ l, N a line bundle on X, and ∇N⊗l

a D(N−1)-module structure on the l-th tensor product N⊗l of N with vanishing pN -curvature.
Then, there exists a unique D(N−1)-module structure ∇N on N with vanishing pN -curvature
whose l-th tensor product ∇⊗l

N coincides with ∇N⊗l.

Proof. For each i = 1, · · · , r, denote by ei the exponent of ∇N⊗l at σi. Write ẽ′i for the unique
integer with 0 ≤ ẽ′i < pN and ẽ′i ≡ ei/l mod pN . According to the discussion in Remark 3.1.1,
the trivial D(N−1)-module structure on OX extends uniquely to a D(N−1)-module structure ∇+

on OX(
∑r

i=1 ẽ
′
i · σi) (⊇ OX) with vanishing pN -curvature. The exponent of ∇⊗l

+ ⊗∇N⊗l at σi
is l · ẽ′i − ei = l · (ei/l)− ei = 0. Hence, by Proposition 4.3.4 together with the equivalence of
categories (5.2), there exists a line bundleM on X(N) with (F (N)∗(M),∇can

M ) ∼= (N ′⊗l,∇⊗l
+ ⊗

∇N⊗l), where N ′ := OX(
∑r

i=1 ẽ
′
i · σi)⊗N . IfM′ denotes the line bundle on X corresponding

to M via base-change X(N) ∼→ X by FN
k , then we have M′⊗pN ∼= N ′⊗l. Here, let us take a

pair of integers (a, b) with a · pN + b · l = 1. Then,

N ′ = N ′⊗(a·pN+b·l) ∼= N ′⊗apN ⊗M′⊗bpN = (N ′⊗a ⊗M′⊗b)⊗pN . (5.3)

Let us define L to be the line bundle on X(N) corresponding to N ′⊗a ⊗M′⊗b via base-change
by FN

k . By (5.3), we see that F (N)∗(L) ∼= N ′, i.e., there exists an isomorphism F (N)∗(L) ⊗
OX(−

∑
i ẽ

′
i · σi)

∼→ N . The line bundle N is equipped with the D(N−1)-module structure ∇N
corresponding to ∇can

L ⊗ ∇∨
+ via this isomorphism. The l-th tensor product ∇⊗l

N of ∇N has
vanishing pN -curvature and coincides with ∇N⊗l by its construction. This completes the proof
of this proposition. □

5.2. GLn-opers and PGLn-opers of level N . Let us fix a positive integer n. We shall define
the notion of a GL(N)

n -oper, as follows. (Note that a GL(1)
n -oper is the same as a GLn-oper in

the classical sense.)

Definition 5.2.1. (i) Let us consider a collection of data

F♥ := (F ,∇, {F j}0≤j≤n),

where
– F is a vector bundle on X of rank n;
– ∇ is a D(N−1)-module structure on F ;
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– {F j}0≤j≤n is an n-step decreasing filtration

0 = Fn ⊆ Fn−1 ⊆ · · · ⊆ F0 = F

on F consisting of subbundles such that the subquotients F j/F j+1 are line bundles.

Then, we say that F♥ is a GL(N)
n -oper (or a GLn-oper of level N) on X if, for every

j = 0, · · · , n − 1, the OX-linear morphism D(N−1) ⊗ F → F induced by ∇ restrict to
an isomorphism

D(N−1)
<n−j ⊗Fn−1 ∼→ F j. (5.4)

The notion of an isomorphism between two GL(N)
n -opers can be defined in a natural

manner (so we omit the details).

(ii) Let F♥ := (F ,∇, {F j}j) be a GL(N)
n -oper. Then, we shall say that F♥ is dormant if

pψ(F ,∇) = 0.

Remark 5.2.2. (i) A (dormant) GL
(N)
1 -oper is the same as a (dormant) D(N−1)-module

(F ,∇) such that F is a line bundle.

(ii) In the case of n = 2, a GL
(N)
2 -oper on X is given as a triple (F ,∇,L) consisting of

– a D(N−1)-module (F ,∇) such that F is a rank 2 vector bundle, and
– a line subbundle L of F such that the OX-linear composite

L inclusion−−−−−→ F ∇−→ Ω ⊗F quotient−−−−→ Ω ⊗ (F/L) (5.5)

defines an isomorphism between line bundles.

The following assertion implies that higher-level differential modules with a cyclic vector
may be regarded as ring-theoretic counterparts of GLn-opers of higher level.

Proposition 5.2.3. Let (F ,∇) be a D(N−1)-module such that F is a vector bundle of rank
n. Also, let x be a (possibly generic) point x of X \

⋃r
i=1{σi} (resp.,

⋃r
i=1{σi}). Write

(Fx,∇x) := (F ,∇)|Dx for the D
(N−1)
OX,x

-module (resp., D̆
(N−1)
OX,x

-module) obtained as the restriction

of (F ,∇) to Dx (:= Spec(OX,x)).

(i) Suppose that there exists an n-step decreasing filtration {F j}0≤j≤n on F for which the

collection (F ,∇, {F j}0≤j≤n) forms a GL(N)
n -oper. Then, each generator of the restric-

tion of Fn−1 to Dx defines an (N − 1)-cyclic vector of (Fx,∇x).
(ii) Suppose that there exists an (N − 1)-cyclic vector of (Fx,∇x). For each j = 0, · · · , n,

we shall write F j
x for the OX,x-submodule of Fx generated by the elements ∇x,〈l〉(v) for

l ≤ n− j − 1. Then, there exists an open neighborhood U of x satisfying the following
condition: the filtration {F j

x}j extends to a decreasing filtration {(F|U)j}0≤j≤n of F|U
(i.e., (F|U)j|Dx = F j

x for every j) for which the collection (F|U ,∇|U , {(F|U)j}0≤j≤n)

forms a GL(N)
n -oper on the pointed curve X restricted to U .

Proof. The assertions follow immediately from the definitions of a GL(N)
n -oper and an (N −1)-

cyclic vector. □

By applying results on differential modules proved in Sections 2 and 3, we can obtain the
following assertion.
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Corollary 5.2.4. (i) Let (F ,∇) be a D(N−1)-module such that F is a vector bundle of
rank n ≤ pN . Also, let x be a k-rational point of X. Then, there exists an open
neighborhood U of x in X and an n-step decreasing filtration {(F|U)j}0≤j≤n on F|U
such that the collection (F|U ,∇|U , {(F|U)j}0≤j≤n) forms a GL(N)

n -oper on the pointed
curve X restricted to U .

(ii) If n > pN , then there are no dormant GL(N)
n -opers on X .

Proof. Assertion (i) follows from Theorem 2.5.6 and Proposition 5.2.3, (ii). Assertion (ii)
follows from Propositions 3.2.1, (i), and 5.2.3, (i). □
Next, we shall define an equivalence relation in the set of dormant GL(N)

n -opers. Let F♥ :=
(F ,∇, {F j}j) be a GL(N)

n -oper on X and (N ,∇N ) a line bundle on X equipped with a D(N−1)-
module structure. According to [Mon, Corollaire 2.6.1], there exists a canonical D(N−1)-module
structure ∇⊗∇N on the tensor product F ⊗N naturally arising from ∇ and ∇N . One may
verify that the collection

F♥
⊗(N ,∇N ) := (N ⊗F ,∇N ⊗∇, {N ⊗ F j}0≤j≤n)

forms a GL(N)
n -oper. If both F♥ and (N ,∇N ) are dormant, then F♥

⊗N is dormant. Now,

let us consider the binary relation “∼” in the set of dormant GL(N)
n -opers on X defined by

F♥ ∼ F ′♥ if and only if F♥
⊗(N ,∇N )

∼= F ′♥ for some (N ,∇N ) as above; this relation in fact

defines an equivalence relation. For each F♥ as above, we shall write

F♥⇒♠

for the equivalence class represented by F♥.

Definition 5.2.5. A PGL(N)
n -oper (or a PGLn-oper of level N) on X is the equivalence

class F♠ (= F♥⇒♠) of a GL(N)
n -oper F♥ on X . A PGL(N)

n -oper is called dormant if it may

be represented by a dormant GL(N)
n -oper.

We shall denote by

Op
Zzz...

N,n,X , or simply Op
Zzz...

n

the set of dormant PGL(N)
n -opers on X .

Remark 5.2.6. It can immediately be seen that ](Op
Zzz...

1 ) = 1 (cf. Remark 5.2.2, (i)). Also,

according to [Moc, Chapter II, Theorem 2.8], Op
Zzz...

2 is nonempty if N = 1. For a general n,

we know that the set Op
Zzz...

n for N = 1 is nonempty when n is sufficiently small relative to p

(cf. [Wak5, Theorem 3.38]). On the other hand, it follows from Corollary 5.2.4 that Op
Zzz...

n = ∅
if n > pN .

5.3. Radius of a dormant PGL(N)
n -oper. Denote by ∆ the image of the diagonal embedding

Z/pNZ ↪→ (Z/pNZ)n. In particular, by regarding it as a group homomorphism, we obtain
the quotient (Z/pNZ)n/∆. Note that the set (Z/pNZ)n is equipped with the action of the
symmetric group Sn of n letters by permutation; this action induces a well-defined Sn-action
on (Z/pNZ)n/∆. Hence, we obtain the sets Sn\(Z/pNZ)n, Sn\(Z/pNZ)n/∆, and moreover,
obtain the natural projection

π : Sn\(Z/pNZ)n ↠ Sn\(Z/pNZ)n/∆. (5.6)
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Each element of Sn\(Z/pNZ)n may be regarded as a multiset of Z/pNZ whose cardinality
equals n.

Remark 5.3.1. Let us consider the case of n = 2. Denote by (Z/pNZ)/{±1} the set of
equivalence classes of elements a ∈ Z/pNZ, in which a and −a are identified. Then, the
assignment a 7→ [a,−a] determines a well-defined bijection

(Z/pNZ)/{±1} ∼→ S2\(Z/pNZ)2/∆. (5.7)

By using this bijection, we will identify S2\(Z/pNZ)2/∆ with (Z/pNZ)/{±1} (cf. the discus-
sion in Section 7).

Let F♠ be a dormant PGL(N)
n -oper on X , and choose a dormant GL(N)

n -oper F♥ :=
(F ,∇, {F j}j) representing F♠. Suppose that r > 0. For each i = 1, · · · , r, denote by δi the
exponent of (F ,∇) at σi. Let us write ρF♠,i := π(δi) ∈ Sn\(Z/pNZ)n/∆. It follows from the
fact mentioned in Example 4.3.2 that the element ρF♠,i does not depend on the choice of the
representative F♥ of F♠.

Definition 5.3.2. (i) We shall refer to ρF♠,i as the radius of F♠ at σi.
(ii) Let ~ρ := (ρi)

r
i=1 be an element of (Sn\(Z/pNZ)n/∆)r. We shall say that F♠ is of

radii ~ρ if ρi = ρF♠,i for every i = 1, · · · , r.

For each ~ρ ∈ (Sn\(Z/pNZ)n/∆)r, we shall denote by

Op
Zzz...

N,n,X ,ρ⃗, or simply Op
Zzz...

n,ρ⃗

the subset of Op
Zzz...

n consisting of dormant PGL(N)
n -opers of radii ~ρ.

Remark 5.3.3. Let us recall the previous study for N = 1. A PGL
(1)
2 -oper is essentially

the same as a torally indigenous bundle in the sense of [Moc, Chapter I, Definition 4.1].
Also, the radii of a dormant torally indigenous bundle on X (which belong to the set Fp,
as proved in [Moc, Chapter II, Proposition 1.5]) is consistent with the radii of the correspond-
ing PGL2-oper via the quotient Fp ↠ Fp/{±1} (= (Z/pZ)/{±1}). According to [Moc, Chapter

II, Proposition 1.4], the set Op
Zzz...

2,(ρ)ri=1
in the case of N = 1 is empty unless ρi ∈ F×

p /{±1} for
every i = 1, · · · , r.

Moreover, for a general n, the radii of a dormant PGL(1)
n -oper introduced above coincides

with the one in the sense of [Wak5, Definition 2.32] under the identification of each element in
Sn\Fn

p/∆ with an Fp-rational point in the adjoint quotient of the Lie algebra pgln.

6. Duality of dormant PGLn-opers

In this section, we establish a duality between dormant PGL(N)
n -opers and dormant PGL

(N)

pN−n
-

opers (cf. Theorem 6.3.1). As a corollary, we will see that there is exactly one isomorphism

class of dormant PGL
(N)

pN−1
-oper (cf. Corollary 6.3.2, (ii)).

We keep the notation in the previous section.
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6.1. Dormant GL
(N)

pN
-opers. Let L be a line bundle on X. We equip D(N−1) ⊗ L with the

D(N−1)-module structure given by left multiplication. We shall write PL for the quotient
of the left D(N−1)-module D(N−1) ⊗ L by the D(N−1)-submodule generated by the image of
pψXlog ⊗ idL : T ⊗pN ⊗L → D(N−1)⊗L. Denote by ∇PL the resulting D(N−1)-module structure
of PL; by construction, (PL,∇PL) has vanishing p

N -curvature. Also, for each j = 0, · · · , pN ,
we shall set Pj

L to be the subbundle of PL defines as

Pj
L := Im

(
D(N−1)

<pN−j
⊗ L inclusion−−−−−→ D(N−1) ⊗ L quotient−−−−→ PL

)
.

The collection of data

P♥
L := (PL,∇PL , {P

j
L}0≤j≤pN )

forms a dormant GL
(N)

pN
-oper on X . Indeed, as discussed in Section 3.2, the restriction of this

data to Dx (= Spec(OX,x)) for each k-rational point x of X \
⋃r

i=1{σi} (resp.,
⋃r

i=1{σi}) defines
a dormant pinned D

(N−1)
OX,x

-module (resp., a dormant pinned D̆
(N−1)
OX,x

-module). In particular, we

obtain a dormant PGL
(N)

pN
-oper P♥⇒♠

L on X .

Next, let (N ,∇N ) be a dormant D(N−1)-module such that N is a line bundle. Since the
tensor product ∇N ⊗∇ has vanishing pN -curvature, the composite

D(N−1) ⊗ (N ⊗L)
(
= D(N−1) ⊗ (N ⊗PpN−1

L )
)

inclusion−−−−−→ D(N−1) ⊗ (N ⊗PL)

∇N⊗∇−−−−→ N ⊗PL

factors through the quotient D(N−1)⊗ (N ⊗L) ↠ PN⊗L. By considering the local description,
we can see that the resulting morphism PN⊗L → N ⊗ PL defines an isomorphism between
dormant GL(N)

n -opers

P♥
N⊗L

∼→ (P♥
L )⊗(N ,∇N ). (6.1)

6.2. Duality for dormant GL(N)
n opers. Next, let F♥ := (F ,∇, {F j}j) be a dormant

GL(N)
n -oper on X with Fn−1 = L. The inclusion L

(
= D(N−1)

<1 ⊗ L
)
↪→ F extends uniquely

to a D(N−1)-linear morphism D(N−1) ⊗L → F . Since (F ,∇) has vanishing pN -curvature, this
morphism factors through the quotient D(N−1) ⊗ L ↠ PL. Thus, we obtain a morphism of
D(N−1)-modules

νF♡ : (PL,∇PL)→ (F ,∇).

By Proposition 5.2.3, (i), the restriction of this morphism to Dx for each point x ofX\
⋃r

i=1{σi}
(resp.,

⋃r
i=1{σi}) may be regarded as a morphism of pinned D

(N−1)
OX,x

-modules (resp., pinned

D̆
(N−1)
OX,x

-modules). Hence, it follows from Proposition 2.5.5, (i), that νF♡ is verified to be
surjective.

Example 6.2.1. Let us consider the dual (P∨
L ,∇∨

PL
) of (PL,∇PL). For each j = 0, · · · , pN ,

we shall write P∨j
L for the OX-submodule of P∨

L defined as the image of the natural injection
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(PL/PpN−j
L )∨ ↪→ P∨

L . In particular, the line subbundle P∨pN−1
L can be identified with Ω⊗(pN−1)⊗

L∨, and we obtain a collection of data

P♥∨
L := (P∨

L ,∇∨
PL
, {P∨j

L }0≤j≤pN ).

For each k-rational point x of X, the restriction of (P∨
L ,∇∨

PL
) to Dx together with a generator

of P∨pN−1
L |Dx may be regarded as the data (3.8). It follows that P♥∨

L forms a dormant GL
(N)

pN
-

oper. Also, the morphism

νP♡∨
L

: (P
Ω⊗(pN−1)⊗L∨ ,∇P

Ω⊗(pN−1)⊗L∨
)→ (P∨

L ,∇∨
PL

)

is compatible, via restriction to Dx, with the morphism (3.9). It follows that νF♡∨
L

defines an

isomorphism P♥
Ω⊗(pN−1)⊗L∨

∼→P♥∨
L of GL

(N)

pN
-opers.

Let us write F▼ := Ker(νF♡)∨. Since νF♡ preserves the D(N−1)-action, ∇PL restricts to
a D(N−1)-module structure ∇Ker(ν

F♡ ) on the kernel Ker(νF♡); it induces a D(N−1)-module

structure on F▼, which we denote by ∇▼. For each j = 0, · · · , pN − n, let us define γj to be
the composite

γj : Ker(νF♡)
inclusion−−−−−→ PL ↠ PL/PpN−n−j

L .

By letting F▼j := Im(γ∨j ) (⊆ F▼), we obtain a collection of data

F♥▼ := (F▼,∇▼, {F▼j}0≤j≤pN−n).

Proposition 6.2.2. Let us keep the above notation.

(i) F♥▼ forms a dormant GL
(N)

pN−n
-oper on X . Moreover, there exists a canonical isomor-

phism F♥ ∼→ F♥▼▼ of GL(N)
n -opers.

(ii) Let (N ,∇N ) be a dormant D(N−1)-module such that N is a line bundle. Then, there

exists a canonical isomorphism of GL
(N)

pN−n
-opers

(F♥▼)⊗(N∨,∇∨
N )
∼= (F♥

⊗(N ,∇N ))
▼.

Proof. First, let us consider assertion (i). The formation of F♥▼ is compatible with that of
(E▼,∇▼, v▼) (cf. (3.10)) via restriction to Dx for every point x of X. This implies that F♥▼

forms a dormant GL
(N)

pN−n
-oper (cf. Proposition 5.2.3). Also, let us consider the following

diagram:

0 // Ker(νF♡▼)
inclusion // P

Ω⊗(pN−1)⊗L∨

ν
P♡▼

L

��

ν
F♡▼ // F▼

o id

��

// 0

0 // F∨
ν∨

F♡

// P∨
L quotient

// F▼ // 0.

The right-hand square is commutative because its restriction to Dx for every point x of X is
commutative, as observed in the proof of Theorem 3.3.2, (i). Hence, it induces a morphism

Ker(νF♡▼)
∼→ F∨. By considering the local description again, one verifies that the dual of this

isomorphism specifies an isomorphism F♥ ∼→ F♥▼▼ of GL(N)
n -opers. This completes the proof

of assertion (i).



DIFFERENTIAL MODULES AND DORMANT OPERS OF HIGHER LEVEL 35

Next, we shall prove assertion (ii). Consider the following diagram:

0 // N ∨ ⊗F∨
idN∨⊗ν∨

F♡ //

o

��

N ∨ ⊗ P∨
L

o

��

quotient // N ∨ ⊗Ker(νF♡)∨ // 0

0 // (N ⊗F)∨
ν∨

F♡

// P∨
N⊗L quotient

// Ker(νF♡
⊗(N ,∇N )

)∨ // 0,

where the middle vertical arrow denotes the dual of (6.1) and the left-hand vertical arrow
denotes the canonical isomorphism. Since the left-hand square diagram is commutative, this
diagram induces an isomorphism N ∨ ⊗ Ker(νF♡)∨

∼→ Ker(νF♡
⊗(N ,∇N )

)∨. This isomorphism

specifies an isomorphism (F♥▼)⊗(N∨,∇∨
N )

∼→ (F♥
⊗(N ,∇N ))

▼ of GL
(N)

pN−n
-opers. This completes

the proof of assertion (ii). □

Remark 6.2.3. In this remark, we shall examine the determinant of a GLn-oper. Let F♥ :=

(F ,∇, {F j}j) be as above. Since D(N−1)
<j+1 /D

(N−1)
<j

∼= T ⊗j (j = 0, 1, 2, · · · ), we obtain the
composite of canonical isomorphisms

det(PL)
∼→

pN−1⊗
j=0

Pj
L/P

j+1
L (6.2)

∼→
pN−1⊗
j=0

T ⊗(pN−j−1) ⊗ L

∼→ T ⊗pN (pN−1)/2 ⊗ L⊗pN

∼→ F
(N)∗
X/k (NL),

where NL denotes the line bundle on X(N) corresponding to T ⊗(pN−1)/2 ⊗ L via base-change
X(N) ∼→ X by FN

k . Similarly, there exists an isomorphism

det(F) ∼→ T ⊗n(n−1)/2 ⊗ L⊗n. (6.3)

The D(N−1)-module structure on the determinant bundle det(PL) induced by ∇PL corresponds
to ∇can

NL
via (6.2). Hence, the determinant of ∇▼ corresponds to (∇can

NL
)∨ ⊗ det(∇) via the

following composite of natural isomorphisms:

det(F▼)
∼→ det(Ker(νF♡))∨

∼→ det(PL)
∨ ⊗ det(F) ∼→ F

(N)∗
X/k (NL)

∨ ⊗ det(F).

6.3. Duality for dormant PGL(N)
n opers. By applying Proposition 6.2.2, (i), we obtain a

bijective correspondence(
the set of isomorphism classes

of dormant GL(N)
n -opers on X

)
∼→
(

the set of isomorphism classes

of dormant GL
(N)

pN−n
-opers on X

)
. (6.4)

Moreover, this correspondence and Proposition 6.2.2, (ii), together imply the following asser-
tion, which is a part of Theorem B.
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Theorem 6.3.1. (i) The assignment F♥⇒♠ 7→ F♥▼⇒♠ defines a well-defined bijection of
sets

D

n : Op
Zzz...

n
∼→ Op

Zzz...

pN−n

satisfying

D

pN−n ◦

D

n = id.
(ii) Suppose further that r > 0. Let ~ρ := (ρi)

r
i=1 be an element of (Sn\(Z/pNZ)n/∆)r.

Then,

D

n restricts to a bijection

D

n,ρ⃗ : Op
Zzz...

n,ρ⃗
∼→ Op

Zzz...

pN−n,ρ⃗▼ ,

where ~ρ▼ := (ρ▼i )
r
i=1 (cf. (4.8)).

Proof. Assertions follow from Propositions 4.4.3 and 6.2.2. □
Moreover, the duality theorem established above implies the following assertion, which is

the remaining portion of Theorem B; note that this assertion generalizes results proved by Y.
Hoshi (cf. [Hos1, Theorem A]) and the author (cf. [Wak1, Corollary 4.3.3]).

Corollary 6.3.2. (i) Let L be a line bundle on X and ∇⊚ a dormant D(N−1)-module
structure on T ⊗n(n−1)/2 ⊗ L⊗n. Then, there exists exactly one isomorphism class of

dormant GL
(N)

pN−1
-oper F♥ := (F ,∇, {F j}j) on X such that Fn−1 = L and det(∇) =

∇⊚ under the identification det(F) = T ⊗n(n−1)/2 ⊗ L⊗n given by (6.3).

(ii) There exists exactly one isomorphism class of dormant PGL
(N)

pN−1
-oper, i.e., the follow-

ing equality holds:

](Op
Zzz...

pN−1) = 1.

Moreover, if r > 0, then the radius of the unique dormant PGL
(N)

pN−1
-oper at any marked

point coincides with π([1, 2, · · · , pN − 1]) (cf. (5.6)).

Proof. Assertion (i) follows from the observation that the desired GL
(N)

pN−1
-oper is the unique

one corresponding, via (6.4), to the dormant GL
(N)
1 -oper

(F
(N)∗
X/k (NL)

∨ ⊗ T ⊗n(n−1)/2 ⊗ L⊗n, (∇can
NL

)∨ ⊗∇⊚)

(cf. Remarks 5.2.2, (i), and 6.2.3). Assertion (ii) follows from the bijection

D

1 asserted in

Theorem 6.3.1, (i), and the equalities ](Op
Zzz...

1 ) = ](Op
Zzz...

1,(π([0]),··· ,π([0]))) = 1. □

7. Tamely ramified coverings and dormant PGL2-opers

Recall (cf. [Moc], [Oss2], [Oss4]) that certain tamely ramified coverings with ramification
indices < p between two copies of the projective line can be described in terms of dormant

PGL
(1)
2 -opers. That description is the starting point of the enumerative geometry of dormant

opers because it allows us to translate dormant PGL2-opers on a 3-pointed projective line into
simple combinatorial data. In this section, the situation is generalized to the case of higher
level in order to deal with tamely ramified covering having large ramification indices. Theorem
C will be proved at the end of this section.
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7.1. Dormant PGL2-opers arising from tamely ramified coverings. Denote by P the
projective line over k, i.e., P := Proj(k[x1, x2]). Let X := (X, {σi}ri=1) be as before, and take

an r-tuple of integers ~λ := (λ1, · · · , λr) with 0 < λi < pN (i = 1, · · · , r). We shall write ~ρ :=
(ρ1, · · · , ρr), where ρi := 1

2
· λi ∈ (Z/pNZ)/{±1}. Under the identification (Z/pNZ)/{±1} =

S2\(Z/pNZ)2/∆ defined in (5.7), ~ρ may be regarded as an element of (S2\(Z/pNZ)2/∆)r. We
shall denote by

Covλ⃗

the set of equivalence classes of finite, separable, and tamely ramified coverings φ : X → P
that are ramified at σi with index λi and étale elsewhere. Here, the equivalence relation is
defined in such a way that two coverings φ1, φ2 : X → P1 are equivalent if there exists an
element h ∈ PGL2(k) (= Autk(P)) with φ2 = h ◦ φ1. For each φ as above, we shall denote by
[φ] the element of Covλ⃗ (i.e., the equivalence class) represented by φ.

In what follows, let us construct a map of sets Covλ⃗ → Op
Zzz...

2,ρ⃗ . Let us take an element [φ]
of Covλ⃗, and choose a tamely ramified covering φ representing [φ]. Let σ′

1, · · · , σ′
r′ (0 < r′ ≤ r)

be the mutually distinct points of P such that
⋃r

i=1{φ(σi)} = {σ′
j}r

′
j=1. In particular, P ′ :=

(P, {σ′
j}r

′
j=1) defines an r′-pointed genus-0 curve; we denote the induced log curve by Plog′ .

Since φ is tamely ramified, the morphism φ extends to a log étale morphism φlog : X log → Plog′ .

Write L := OP(−1) ⊗ OP(
∑r′

j=1 σ
′
j), and write τ0 for the OP-linear injection OP(−1) ↪→ O⊕2

P
given by w 7→ (wx1, wx2) for each local section w ∈ OP(−1). Also, let F be a rank 2 vector
bundle on P which makes the following square diagram cocartesian:

OP(−1)
τ0 //

inclusion

��

O⊕2
P

��
L // F .

The trivial D(N−1)

Plog′ -module structure on O⊕2
P extends uniquely to a D(N−1)

Plog′ -module structure
∇F on F . It follows from the various definitions involved that the composite

L inclusion−−−−−→ F ∇F−−→ ΩPlog′/k ⊗F ↠ ΩPlog′/k ⊗ (F/L)

is OP-linear and injective. Moreover, since deg(L) = det(ΩPlog′/k ⊗ (F/L)) (= r′ − 1), this

morphism is an isomorphism. This means that the triple (F ,∇F ,L) forms a dormant GL
(N)
2 -

oper on P ′ (cf. Remark 5.2.2, (ii)). Hence, the pull-back of this data via the log étale

morphism φlog defines a dormant GL
(N)
2 -oper

F♥
ϕ := φlog∗(F ,∇F ,L)

on X .

Proposition 7.1.1. The dormant PGL
(N)
2 -oper F♥⇒♠

ϕ on X represented by F♥
ϕ is of radii

~ρ.

Proof. The problem is the computation of the radii of F♠
ϕ . Let us take i ∈ {1, · · · , r}, and

choose j ∈ {1, · · · , r′} such that σ′
j = φ(σi). Also, choose a local function t on P defining

σ′
j. This local function allows us to identify the formal neighborhood D̂σ′

j
of σ′

j in P with
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Spec(k[[t]]). Since the ramification index of φ at σi is λi, the formal neighborhood D̂σi
of σi in X

may be identified with Spec(k[[t1/λi ]]) and the restriction of φ to D̂σi
may be identified with the

morphism Spec(k[[t1/λi ]]) → Spec(k[[t]]) induced by the natural inclusion k[[t]] ↪→ k[[t1/λi ]]. The

D̆
(N−1)
k[[t]] -module corresponding to the restriction of (F ,∇) to D̂σ′

j
is isomorphic to (k[[t]], ∇̂0)⊕

(t−1 · k[[t]], ∇̂0). It follows that the pull-back of (F ,∇) to φlog restricted to D̂σi
is isomorphic

to (k[[t1/λi ]], ∇̂0)⊕ ((t1/λi)−λi · k[[t1/λi ]], ∇̂0) (which is also isomorphic to (k[[s]], ∇̂0)⊕ (k[[s]], ∇̂λi
)

by putting s := t1/λi). Hence, the exponent of F♥
ϕ at σi coincides with [0, λi], which implies

ρF♡⇒♠
ϕ ,i = ρi. This completes the proof of this proposition. □

Since τ0 is invariant under pull-back by automorphisms of P, the isomorphism class of F♥
ϕ

does not depend on the choice of the representative φ of [φ]. Hence, the above proposition
implies that the assignment [φ] 7→ F♠

ϕ gives a well-defined map of sets

Υλ⃗ : Covλ⃗ → Op
Zzz...

2,ρ⃗ . (7.1)

7.2. Tamely ramified endomorphisms of a 3-pointed projective line. Denote by [0],
[1], and [∞] the k-rational points of P determined by the values 0, 1, and ∞ respectively.
After ordering the three points [0], [1], [∞], we obtain a unique (up to isomorphism) 3-pointed
proper smooth curve

P := (P/k, {[0], [1], [∞]})
of genus 0 over k. In particular, we obtain a log curve Plog over k.
Next, let us take a triple (ρ0, ρ1, ρ∞) of elements of (Z/pNZ)×/{±1}. There exists the triple

of integers (λ0, λ1, λ∞) satisfying the following conditions:

(a) 2 · ρx = λx as elements of (Z/pNZ)/{±1} and 0 < λx < pN for every x = 0, 1,∞;
(b) The sum λ0 + λ1 + λ∞ is odd < 2 · pN .

Let us write O+
P := OP(λ0 · [0]+λ1 · [1]+λ∞ · [∞]). Note that there is a unique D(N−1)

Plog -module

structure ∇+ on O+
P whose restriction to U := P \ {[0], [1], [∞]} coincides with the trivial

D(N−1)
U -module structure on O+

P |U = OU (cf. Remark 3.1.1).
The following assertion is a special case of [Oss1, Theorem 3.3, (ii)]; we shall prove it by a

relatively elementary argument.

Proposition 7.2.1. Let φ : P → P be a tamely ramified covering classified by Cov(λ0,λ1,λ∞)

in the case where “X ” is taken to be P. Then, the points φ([0]), φ([1]), φ([∞]) are mutually
distinct.

Proof. First, we shall suppose that the set φ({[0], [1], [∞]}) consists of one point. By consid-
ering the fiber of φ over this point, we see that deg(φ) ≥ λ0 + λ1 + λ∞. It follows from the
Riemann-Hurwitz formula that

−2 (= 2 · (genus of P)− 2) = −2 · deg(φ) +
∑

x=0,1,∞

(λx − 1) ≤ −(λ0 + λ1 + λ∞)− 3.

Thus, we obtain a contradiction. Next, suppose that φ({[0], [1], [∞]}) consists of two points.
After possibly applying a linear transformation, we may assume that these two elements co-
incide with {[0], [∞]}, and that {[0]} ⊆ φ−1([0]) and {[1], [∞]} ⊆ φ−1([∞]). Hence, φ defines
a tamely ramified covering of Gm (= P \ {[0], [∞]}). Recall that the tame fundamental group
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πtame
1 (Gm) of Gm is isomorphic to Ẑp′ , the maximal prime-to-p quotient of Ẑ := lim←−n∈Z≥0

Z/nZ.
A topological generator σ of πtame

1 (Gm) acts on the fiber over the point near [0] as a cyclic per-
mutation. On the other hand, σ−1 acts on the fiber over the point near [∞] as a product of two
disjoint cyclic permutations. This is a contradiction. Hence, the the image φ({[0], [1], [∞]})
consists of three points. This completes the proof of this assertion. □
Remark 7.2.2. Because of Proposition 7.2.1, each element of Cov(λ0,λ1,λ∞) has a unique rep-
resentative φ : P → P satisfying φ([x]) = [x] for every x = 0, 1,∞. Following [ABEGKM]
(or [BEK]), we call such a covering a dynamical Belyi map.

Now, let us take a dynamical Belyi map φ : P→ P classified by Cov(λ0,λ1,λ∞); this covering
corresponds to a representation of the tame fundamental group πtame

1 (P\{[0], [1], [∞]}) (which is

obtained as a quotient of the profinite completion Π̂0,3 of the group Π0,3 := 〈γ0, γ1, γ∞ | γ0γ1γ∞ =
1〉). Hence, by the above proposition, φ determines three cyclic permutations σ0, σ1, and σ∞
(in the symmetric group Sd of d letters for some d ≥ 1) of orders λ0, λ1, and λ∞, respectively,
satisfying σ0 ◦ σ1 = σ∞. A trivial elementary argument shows that this condition implies the
following inequalities:

|λ0 − λ1| < λ∞ < λ0 + λ1. (7.2)

These inequalities also can be obtained by the inequality deg(φ)
(
= λ0+λ1+λ∞−1

2

)
≥ λ0, λ1, λ∞.

Conversely, suppose that a subgroup of Sd generated by three cyclic permutations σ0, σ1,
σ∞ with σ0 ◦ σ1 = σ∞ has order prime to p. Then, the assignment γx 7→ σx (x = 0, 1,∞)

induces a representation πtame
1 (P\{[0], [1], [∞]})→ Sd because the surjection Π̂0,3 ↠ πtame

1 (P\
{[0], [1], [∞]}) becomes bijective after taking their maximal prime-to-p quotients. In particular,
the corresponding tamely ramified covering is classified by Cov(λ0,λ1,λ∞). See [BEK] for the
study concerning the relationship between such cyclic permutations and dynamical Belyi maps
in characteristic p.

7.3. Dormant PGL2-opers on a 3-pointed projective line. In what follows, we shall prove
that the map Υλ⃗ defined in (7.1) becomes a bijection when X = P. To do this, we construct
its inverse map. We first prove the following proposition.

Proposition 7.3.1. Let F♠ be a dormant PGL
(N)
2 -oper on P. Then, there exists a dormant

GL
(N)
2 -oper F♥ := (F ,∇,L) on P satisfying F♥⇒♠ ∼= F♠ and det(F ,∇) ∼= (O+

P ,∇+),

Moreover, such a GL
(N)
2 -oper is uniquely determined up isomorphism.

Proof. First, we prove the existence portion. Let us take a dormant GL
(N)
2 -oper F♥ :=

(F ,∇,L) on P with F♥⇒♠ ∼= F♠. Since L ∼= ΩPlog ⊗ (F/L) (cf. (5.5)), the following
equalities hold:

deg(O+
P ⊗ det(F)∨) = λ0 + λ1 + λ∞ − deg(L)− deg(F/L)

= λ0 + λ1 + λ∞ + 1− 2 · deg(L).

In particular, the degree of O+
P ⊗ det(F)∨ is even. Hence, it follows from Lemma 5.1.4 that

there exists a dormant D(N−1)

Plog -bundle (N ,∇N ) such that N is a line bundle with N⊗2 ∼=
(O+

P ,∇+)⊗ det(F ,∇F)
∨. By putting (F ′,∇′,L′) := F♥

⊗(N ,∇N ), we have

det(F ′,∇′) ∼= (N ,∇N )⊗2 ⊗ det(F ,∇) ∼= (O+
P ,∇

+).
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Thus, (F ′,∇′,L′) specifies the required GL
(N)
2 -oper.

Next, we shall prove the uniqueness portion. Let F♥
i := (Fi,∇i,Li) (i = 1, 2) be dormant

GL
(N)
2 -opers on P satisfying the required conditions. Since F♥⇒♠

1 = F♥⇒♠
2 , there exists a

dormant D(N−1)

Plog -module (N ,∇N ) such that N is a line bundle and F♥
2
∼= (F♥

1 )⊗(N ,∇N ). If

∇triv denotes the trivial D(N−1)

Plog -module structure on OP, then we have

(OP,∇triv) ∼= det(F2,∇2)⊗ (O+
P ,∇

+)∨

∼= det((N ,∇N )⊗ (F1,∇1))⊗ (O+
P ,∇

+)∨

∼= (N ,∇N )⊗2 ⊗ det(F1,∇1)⊗ (O+
P ,∇

+)∨

∼= (N ,∇N )⊗2.

Since Pic(P) ∼= [OP(1)] · Z, the line bundle N may be identified with OP. Moreover, by the
uniqueness portion of Proposition 5.1.4, ∇N coincides with ∇triv via a fixed identification
N = OP. Thus, we have (F♥

1 )⊗(N ,∇N )
∼= F♥

1 , which implies that F♥
2 is isomorphic to F♥

1 .
This completes the proof of the uniqueness portion. □

Now, let us take a dormant PGL
(N)
2 -oper F♠ on P of radii (ρ0, ρ1, ρ∞). Also, let F♥ :=

(F ,∇,L) be the dormant GL
(N)
2 -oper resulting from Proposition 7.3.1 applied to F♠. In

particular, we have deg(L) = λ0+λ1+λ∞+1
2

and deg(F/L) = λ0+λ1+λ∞−1
2

. Denote by τ the

OP-linear morphism F
(N)∗
P/k (F∇) → F extending the (OP(N)-linear) inclusion F∇ ↪→ F ; the

morphism τ is compatible with ∇can
F∇ (cf. Remark 5.1.2) and ∇. We shall write L♮ := L∩Im(τ).

Since the restriction of τ to U := P \ {[0], [1], [∞]} is an isomorphism, the quotient sheaf L/L♮

is a torsion sheaf supported on {[0], [1], [∞]}.

Lemma 7.3.2. The length of L/L♮ at the marked point x ∈ {[0], [1], [∞]} is λx. Moreover,
the natural inclusion L/L♮ ↪→ Coker(τ) is an isomorphism.

Proof. Let us fix x ∈ {[0], [1], [∞]}, and choose a local function t defining x. The restriction of

(F ,∇) to the formal neighborhood D̂x of x may be expressed as (k[[t]], ∇̂a)⊕(k[[t]], ∇̂b) for some
integers a, b with 0 ≤ b ≤ a ≤ pN−1. The radius of ∇ at x coincides with ρx by assumption, so
the equality 2 ·ρx = a− b of elements in (Z/pNZ)/{±1} holds. Since det(F ,∇) ∼= (O+

P ,∇+), a
computation using Proposition 4.2.1, (i), of the lengths at x of det(F ,∇) and (O+

P ,∇+) implies
a+ b ≡ λx (mod pN). Hence, since a+ b ≤ 2 · pN , it follows that a+ b is either λx or λx + pN .
We shall prove the claim that a+ b = λx. Suppose, on the contrary, that a+ b = pN +λx. The
condition that 0 ≤ a − b ≤ pN − 1 and 2 · ρx = a− b in (Z/pNZ)/{±1} implies that a − b is
either λx or pN − λx. Since a+ b and a− b have the same parity, the equality a− b = pN − λx
holds. Hence, we have

2 · a = (a+ b) + (a− b) = (pN + λx) + (pN − λx) = 2 · pN .

This implies the equality a = pN , which is a contradiction. This proves the claim.
By the claim just established, we have a+ b = λx and a− b = λx. In particular, a = λx and

b = 0, which means that the restriction of (F ,∇) to D̂x is isomorphic to (k[[t]], ∇̂λx
)⊕(k[[t]], ∇̂0).

It follows that the restriction of Im(τ) to D̂x coincides with tλx · k[[t]] ⊕ k[[t]] (⊆ k[[t]]⊕2). On
the other hand, according to the proof in Proposition 4.4.1, the inclusion L ↪→ F corresponds,

after choosing a suitable trivialization Γ(D̂x,L|D̂x
)

∼→ k[[t]], to the k[[t]]-linear morphism k[[t]]→
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k[[t]]⊕2 given by 1 7→ (u1, u2) for some u1, u2 ∈ k[[t]]×. By taking account of this observation,
we see that the length of L/L♮ at x coincides with λx. Moreover, since the length of Coker(τ)
at x is a+ b = λx, the inclusion L/L♮ ↪→ Coker(τ) turns out to be an isomorphism. □

Lemma 7.3.3. There exists an OP(N)-linear isomorphism γ : O⊕2
P(N)

∼→ F∇.

Proof. Since F∇ is a rank 2 vector bundle on the genus-0 curve P(N), it is isomorphic to the
direct sum of two line bundles. Let us fix an isomorphism γ : OP(N)(a)⊕OP(N)(b)

∼→ F∇, where

a and b are some integers with a ≥ b. The pull-back of γ via F
(N)
P/k defines an isomorphism

γF : OP(p
N · a)⊕OP(p

N · b) ∼→ F
(N)∗
P/k (F∇). It follows from Lemma 7.3.2 that

λ0 + λ1 + λ∞ = length(L/L♮)

= length(Coker(τ))

= deg(F)− deg(FN∗(F∇))

= λ0 + λ1 + λ∞ + pN(a+ b).

This implies b = −a. Next, let us consider the composite

OP(p
N · a) v 7→(v,0)−−−−→ OP(p

N · a)⊕OP(−pN · a)
γF

−→ F
(N)∗
P/k (F∇)

τ−→ F ↠ F/L. (7.3)

We shall suppose that a > 0. The assumption λ0 + λ1 + λ∞ < 2 · pN implies

deg(OP(p
N · a)) ≥ pN >

λ0 + λ1 + λ∞ − 1

2
= deg(F/L).

Hence, the composite (7.3) must be the zero map. It follows that the image I of the inclusion
into the first factor OP(p

N · a) ↪→ OP(p
N · a)⊕OP(−pN · a) is contained in L (⊆ F) via τ ◦ γF .

But, since I is closed under ∇can
OP(N) (a)

⊕∇can
OP(N) (b)

, the line subbundle L must be closed under

∇. This contradicts the fact that the morphism (5.4) for j = 1 is an isomorphism. Thus, we

conclude that a = 0, i.e., γ defines an isomorphism O⊕2
P

∼→ F∇. □

Let γ be as asserted in the above lemma. For convenience, we occasionally use the notation

X to denote the underlying projective line P. The pull-back γF : O⊕2
X

∼→ F
(N)∗
X/k (F∇) of γ by

F
(N)
X/k induces a trivialization P(γF ) : P ×k X

∼→ P(F (N)∗
X/k (F∇)) of the P-bundle P(F (N)∗

X/k (F∇))

associated to F
(N)∗
X/k (F∇). The sheaf L♮, regarded as a line bundle of F

(N)∗
X/k (F∇) via τ , defines

a global section σ : X → P(F (N)∗
X/k (F∇)). Thus, we obtain the composite

φF♠ : X
σ−→ P(F (N)∗

X/k (F∇))
P(γF )−1

−−−−−→ P×k X
pr1−−→ P.

Lemma 7.3.4. The morphism φF♠ : X → P1 defines a tamely ramified covering classified by
the set Cov(λ0,λ1,λ∞) (for X = P).

Proof. Let x be a k-rational point of X. To complete the proof, we shall describe the morphism

φF♠ restricted to the formal neighborhood D̂x of x.

First, suppose that x ∈ {[0], [1], [∞]}. As observed in the proof of Lemma 7.3.2, the D̆
(N−1)
k[[t]] -

module corresponding to the restriction of (F ,∇) to D̂x is isomorphic to (t−λx · k[[t]], ∇̂0) ⊕
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(k[[t]], ∇̂0)
(
∼= (k[[t]], ∇̂λx

)⊕ (k[[t]], ∇̂0)
)
. According to the proof of Proposition 4.4.1, the in-

clusion L ↪→ F restricted to D̂x may be identified, after choosing a suitable trivialization

Γ(D̂x,L|D̂x
)

∼→ k[[t]], with the k[[t]]-linear morphism k[[t]] → t−λx · k[[t]] ⊕ k[[t]] determined by

1 7→ (t−λx ·1, u) for some u ∈ k[[t]]×. Under this identification, the inclusion L♮ ↪→ F
(N)∗
X/k (F∇) re-

stricted to D̂x corresponds to the inclusion t
λx ·k[[t]]→ k[[t]]⊕2 determined by tλx ·1 7→ (1, tλx ·u).

This implies that the restriction of φF♠ to D̂x arises from the k-algebra endomorphism of k[[t]]
given by t 7→ tλx · u. Hence, the ramification index of φF♠ at x coincides with λx.

Next, suppose that x ∈ X \ {[0], [1], [∞]}. The inclusion L ↪→ F restricted to D̂x may be
described, after choosing suitable trivializations of L|D̂x

and F|D̂x
, as the k[[t]]-linear morphism

k[[t]] → k[[t]]⊕2 determined by 1 7→ (1, t · v) for some v ∈ k[[t]]×. Hence, by the same reason as
above, the ramification index of φF♠ at x turns out to be 1, which means that φF♠ is étale at
x. This completes the proof of this lemma. □

Note that the resulting element [φF♠ ] ∈ Cov(λ0,λ1,λ∞) does not depend on the choice of the

trivialization γ : O⊕2
P(N)

∼→ F∇ because γ is uniquely determined up to forward composition with

an element of AutOP(N)
(O⊕2

P(N)) (= PGL2(k)). Thus, the assignment F♠ 7→ [φF♠ ] determines a

well-defined map of sets Op
Zzz...

2,(ρ0,ρ1,ρ∞) → Cov(λ0,λ1,λ∞). One may verify that this map specifies,
by construction, the inverse to the map Υ(λ0,λ1,λ∞). Thus, we have obtained the following
assertion.

Proposition 7.3.5. (Recall that the underlying curve “X ” has been taken to be P.) The
assignments [φ] 7→ F♠

ϕ (i.e, Υ(λ0,λ1,λ∞)) and F♠ 7→ [φF♠ ] constructed above give a bijective
correspondence

Op
Zzz...

2,(ρ0,ρ1,ρ∞)
∼= Cov(λ0,λ1,λ∞)

7.4. Correspondence between tamely ramified coverings and dormant PGL
(N)
2 -opers.

The following proposition (together with Proposition 7.3.5) may be regarded as a variant of
the rigidity assertion for dynamical Belyi maps proved in [LiOs2, Lemma 2.1].

Proposition 7.4.1. Let (ρ0, ρ1, ρ∞) be an element of ((Z/pNZ)/{±1})3. Then, a dormant

PGL
(N)
2 -oper on P of radii (ρ0, ρ1, ρ∞) is, if it exists, uniquely determined. That is to say,

the following inequality holds:

](Op
Zzz...

2,(ρ0,ρ1,ρ∞)) ≤ 1.

Proof. Suppose that Op
Zzz...

2,(ρ0,ρ1,ρ∞) 6= ∅. By the canonical morphism D(0)

Plog → D(N−1)

Plog , each

element of Op
Zzz...

2,(ρ0,ρ1,ρ∞) induces a dormant PGL
(1)
2 -oper of radii (ρ0, ρ1, ρ∞), where ρx (for

x = 0, 1,∞) denotes the image of ρx via the natural surjection (Z/pNZ)/{±1} ↠ Fp/{±1}.
Hence, Op

Zzz...

1,2,P,(ρ0,ρ1,ρ∞) must be nonempty. This fact together with a comment in Remark 5.3.3

implies that (ρ0, ρ1, ρ∞) ∈ (F×
p /{±1})3, or equivalently, (ρ0, ρ1, ρ∞) ∈ ((Z/pNZ)×/{±1})3. In

particular, there exists a triple of integers (λ0, λ1, λ∞) associated to (ρ0, ρ1, ρ∞) satisfying the
conditions (a), (b) described in Section 7.2.

Now, suppose that there exist two dormant PGL
(N)
2 -opers F♠

1 , F♠
2 on P of radii (ρ0, ρ1, ρ∞).

For each j = 1, 2, denote by F♥
j := (Fj,∇j,Lj) the dormant GL(N)

n -oper resulting from



DIFFERENTIAL MODULES AND DORMANT OPERS OF HIGHER LEVEL 43

Proposition 7.3.1 applied to F♠
j . The inclusion F∇

j ↪→ Fj extends to an OP-linear morphism

τj : F
(N)∗
P/k (F∇

j )→ Fj. Let us write L♮
j := Lj ∩ Im(τj) and write ιj for the natural isomorphism

Lj/L♮
j

∼→ Coker(τj) (cf. Lemma 7.3.2). Also, denote by ∇j the D(0)

Plog-module structure on Fj

induced from ∇j. The triple F
♥
j := (Fj,∇j,Lj) defines a dormant GL

(1)
2 -oper, in particular,

induces a dormant PGL
(1)
2 -oper F

♥⇒♠
i on P of radii (ρ0, ρ1, ρ∞). Recall from [Moc, Chapter I,

Theorem 4.4] (cf. Remark 5.3.3) that dormant PGL
(1)
2 -opers on P are completely determined

by their radii. It follows that F
♥⇒♠
1 = F

♥⇒♠
2 . By the uniqueness assertion in Proposition

7.3.1, there exists an isomorphism of GL2-opers α : F
♥
1

∼→ F
♥
2 . This isomorphism restricts

to an isomorphism α|L1 : L1
∼→ L2, which induces, via taking the respective quotients, an

isomorphism α|L1/L♮
1
: L1/L♮

1
∼→ L2/L♮

2. The composite α|Coker(τ1) := ι2 ◦ α|L1/L♮
1
◦ ι−1

1 specifies

an isomorphism Coker(τ1)
∼→ Coker(τ2).

In what follows, we shall prove the commutativity of the following square diagram:

F1
α //

π1

��

F2

π2

��
Coker(τ1)

α|Coker(τ1)

// Coker(τ2),

(7.4)

where πj (j = 1, 2) denotes the natural projection Fj ↠ Coker(τj). Let us take j ∈ {1, 2},
x ∈ {[0], [1], [∞]}. Also, choose a local function t on P defining x. Denote by D̂x the formal
neighborhood of x in P, which may be identified with Spec(k[[t]]). Fix an identification of the

restriction of (Fj,∇j) to D̂x with (k[[t]], ∇̂λx
)⊕ (k[[t]], ∇̂0) (cf. the proof of Lemma 7.3.2). The

isomorphism α restricted to D̂x defines an automorphism α|D̂x
of (k[[t]], ∇̂λx

)⊕(k[[t]], ∇̂0). Here,
we shall use the notation µ(−) to denote the endomorphism of k[[t]] given by multiplication by

(−). Since ρx 6= 0 in Fp/{±1} (or equivalently, λx 6= 0), the automorphism α|D̂x
may be

expressed as µv ⊕ µw for some v, w ∈ k[[t]]× after possibly replacing the fixed identification

(Fj,∇j)|D̂x
= (k[[t]], ∇̂λx

) ⊕ (k[[t]], ∇̂0) with another (cf. Proposition 4.2.1, (ii)). As observed
in the proof of Proposition 4.4.1, the inclusion Lj ↪→ Fj corresponds, after choosing a suitable

trivialization Γ(D̂x,Lj|D̂x
)

∼→ k[[t]], to the k[[t]]-linear morphism k[[t]] → k[[t]]⊕2 given by 1 7→
(uj, 1) for some uj ∈ k[[t]]×. Then, the restriction of α|L1 to D̂x may be expressed as µw, and
the equality vu1 = wu2 holds. Hence, for each (g, h) ∈ k[[t]]⊕2

(
= F1|D̂x

)
, we have

(π2 ◦ α)((g, h)) = π2((vg, wh))

=

(
vg

u2
· u2,

vg

u2
· 1
)
mod Im(τ2)

= ι2

(
vg

u2
mod L♮

2

)
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= (ι2 ◦ α|L1/L♮
1
)

(
vg

wu2
mod L♮

1

)
= (α|Coker(τ1) ◦ ι1)

(
g

u1
mod L♮

1

)
= α|Coker(τ1)

((
g

u1
· u1,

g

u1
· 1
)
mod Im(τ1)

)
= (α|Coker(τ1) ◦ π1)((g, h)).

This shows the desired commutativity of (7.4).
Moreover, the commutativity of (7.4) just proved implies that α restricts, via ι1 and ι2, to

an isomorphism α′ : F
(N)∗
P/k (F∇

1 )
∼→ F

(N)∗
P/k (F∇

2 ). Since F∇
1
∼= F∇

2
∼= O⊕2

P(N) (cf. Lemma 7.3.3),

the morphism

HomOP(N)
(F∇

1 ,F∇
2 )→ EndOP(F

(N)∗
P/k (F∇

1 ), F
(N)∗
P/k (F∇

2 ))

arising from pull-back by F
(N)
P/k is bijective. In particular, α′ comes from an isomorphism

F∇
1

∼→ F∇
2 , and hence α′ is compatible with the respective D(N−1)

Plog -actions ∇can
F∇

1
, ∇can

F∇
2

(cf.

Remark 5.1.2). Since ∇j is the unique D(N−1)

Plog -module structure on Fj extending ∇can
F∇

j
via τj,

the isomorphism α, being an extension of α′, preserves the D(N−1)

Plog -action. It follows that α

defines an isomorphism of GL
(N)
2 -opers F♥

1
∼→ F♥

2 , which induces the equality F♠
1 = F♠

2 .
This completes the proof of this proposition. □

Remark 7.4.2. The proof of the above proposition shows that Op
Zzz...

2,(ρ0,ρ1,ρ∞) = ∅ unless

(ρ0, ρ1, ρ∞) ∈ ((Z/pNZ)×/{±1})3. As mentioned in Remark 5.3.3, this fact for N = 1 was
already verified in [Moc, Chapter II, Proposition 1.4].

We shall write

Cov+ (resp., Cov)

for the set of equivalence classes of finite, separable, and tamely ramified coverings φ : P→ P
satisfying the following conditions:

• The set of ramification points of φ coincides with {[0], [1], [∞]};
• If λx (x = 0, 1,∞) denotes the ramification index of φ at [x], then λ0, λ1, λ∞ satisfy the
inequality λ0+λ1+λ∞ < 2 ·pN (resp., λ0, λ1, λ∞ are all odd and satisfy the inequality
λ0 + λ1 + λ∞ < 2 · pN).

Here, the equivalence relation is defined in such a way that two coverings φ1, φ2 : P → P
are equivalent if there exists an element h ∈ PGL2(k) (= Autk(P)) with φ2 = h ◦ φ1. Since
the identity morphism idP of P defines a tamely ramified covering with ramification indices
(1, 1, 1), the set Cov+ (resp., Cov) is nonempty. By applying some of the results proved so far,
we obtain the following assertion.

Theorem 7.4.3 (cf. Theorem C). The assignment φ 7→ F♠
ϕ gives a 4-to-1 (resp., a 1-to-1,

i.e., bijective) correspondence

Υ+ : Cov+ ↠ Op
Zzz...

N,2,P

(
resp., Υ : Cov

∼→ Op
Zzz...

N,2,P

)
.
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In particular, the set Op
Zzz...

N,2,P is finite and admits an inclusion into the following set:

B⊛
N :=

{
(λ0, λ1, λ∞) ∈ B3

∣∣λ0 + λ1 + λ∞ < 2 · pN and |λ0 − λ1| ≤ λ∞ ≤ λ0 + λ1
}
,

where B denotes the set of positive odd integers a with p ∤ a, a < pN .

Proof. First, we shall consider the former assertion. Let us take a dormant PGL
(N)
2 -oper F♠

classified by Op
Zzz...

N,2,P , and denote by (ρ0, ρ1, ρ∞) the radii of F♠. The result of Proposition

7.4.1 shows that F♠ is the unique dormant PGL
(N)
2 -oper on P of radii (ρ0, ρ1, ρ∞). Now, let

us choose a triple of integers ~λ := (λ0, λ1, λ∞) associated to (ρ0, ρ1, ρ∞) as defined in Section
7.2. As observed in Remark 7.2.2, this triple satisfies the inequalities in (7.2). It follows that
the triples

~λ0 := (λ0, p
N − λ1, pN − λ∞),

~λ1 := (pN − λ0, λ1, pN − λ∞),

~λ∞ := (pN − λ0, pN − λ1, λ∞),

respectively, satisfy conditions (a) and (b) in Section 7.2, and conversely, each triple of integers

satisfying (a) and (b) is one of the four tripes ~λ, ~λ0, ~λ1, ~λ∞. Thus, by Proposition 7.3.5, the
preimage of the element defined by F♠ via Υ+ coincides with {[φλ⃗], [φλ⃗0

], [φλ⃗1
], [φλ⃗∞

]}, where,
for a triple ~λ′ := (λ′0, λ

′
1, λ

′
∞), [φλ⃗′ ] denotes a unique (up to equivalence) covering classified by

Cov+ whose ramification index at [x] (x = 0, 1,∞) is λ′x. This proves the non-resp’d assertion.

Also, the resp’d assertion follows from the fact that only one of the four triples ~λ,~λ0, ~λ1, ~λ∞
satisfies the condition that all factors are odd.

Finally, the latter assertion follows from the resp’d portion of the former assertion (and its
proof). This completes the proof of this theorem. □

Remark 7.4.4. In the case of N = 1, we know that the embedding Op
Zzz...

1,2,P ↪→ B⊛
1 resulting

from Theorem 7.4.3 is bijective (cf. [Moc, Introduction, Theorem 1.3, (2)]). The resulting

correspondence Op
Zzz...

1,2,P
∼= B⊛

1 allows us to translate dormant PGL2-opers into edge-colorings on
trivalent graphs, as well as lattice points of a rational polytope (cf. [LiOs1], [Wak2]). However,
at the time of writing the present paper, the author does not know much about the image of
this map for a general N .

Remark 7.4.5. In [Moc, Chapter II, Definition 2.2], S. Mochizuki introduced the notion of
a(n) (dormant) m-connection (for each nonnegative integer m) on a flat P1-bundle. Here,
we recall its definition briefly. Let X := (X, {σi}i) be as in (5.1). Also, let (P ,∇) be a
flat P-bundle on X log, i.e., a P-bundle P on X equipped with a logarithmic connection ∇
(with respect to the log structure of X log). Denote by Wm+1 the ring of Witt vectors with
coefficients in k of length m + 1. Then, a dormant m-connection on (P ,∇) (of prescribed
radii) is defined as a crystal in P-bundles on the log crystalline site Crys(X log/Wm+1) inducing
(P ,∇) via reduction module p and satisfying some other conditions. The condition of being a
dormant m-connection is described in terms of pm+1-curvature in the sense of [Moc, Chapter
II, the discussion in Section 2.1], which is different from (but closely related to) our definition
of pm+1-curvature because it relies, at least a priori, upon the crystalline structure over Wm+1.
According to [Moc, Chapter IV, Theorem 2.3], there exists a bijective correspondence between
the elements in Cov and the set of dormant (N − 1)-connections on a torally indigenous
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bundle (i.e., a PGL
(1)
2 -oper) on P. By combining this fact with Theorem 7.4.3, we see that

each dormant PGL
(N)
2 -oper on P of radii ~ρ ∈ ((Z/pNZ)×/{±1})3 may be uniquely extended

to a dormant (N − 1)-connection of the same radii.
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