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Abstract. Given a complex variety X, suppose there is a degeneration
X of it to a union of toric varieties glued along toric divisors. Then, one

can use tropical curves to study holomorphic curves on X through degenerate

curves on the central fiber X0 of X. In such studies, the case corresponding
to so-called non-superabundant tropical curves is relatively well understood.

This is the case where the curve satisfies a version of transversality. On the

other hand, in the case corresponding to superabundant tropical curves, where
transversality fails, not much is known. The first important step for such a

study is describing the obstruction to deforming degenerate curves on X0 to

generic fibers of X. In this paper, we present a general formula describing
such obstruction. In the study of superabundant tropical curves, allowing

higher-valent vertices (i.e., those with valency greater than three) is essential,

although there has been only few studies of them in this context. Our formula
covers such cases.

1. Introduction

The appearance of graphs in the study of algebraic curves is quite common. In

this context, usually a graph appears as the dual intersection complex of the central

fiber of a suitable degenerating family of algebraic curves. Although any abstract finite

graph can be realized as the dual intersection complex associated with a degenerating

family of algebraic curves (see [2, Appendix B]), the situation is more intricate when one

considers curves embedded in suitable ambient spaces. Now, the graphs have to satisfy

the balancing condition at the vertices, which is the combinatorial counterpart of the

harmonicity, and there are subtler conditions which correspond to the obstructions to

deforming the degenerate algebraic curves.

The situation we consider is the so-called toric degeneration of varieties. Namely,

given a complex variety X, assume that there is a degeneration X of it whose central

fiber X0 is a union of toric varieties glued along toric divisors. We study curves on X via

degenerate curves on X0. When the original variety X itself is toric, the nature of the

graphs associated with such degenerate algebraic curves is efficiently encoded in so-called

tropical curves. G.Mikhalkin started this area of study with his pioneering work [13], in

which he proved the correspondence between imbedded tropical curves of any genus in

R2, and holomorphic curves in toric surfaces specified by the combinatorial data of the

tropical curves. Recently, ideas from non-archimedean geometry are pushing this field

forward (see for example [3]).
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Nevertheless, the nature of degenerate algebraic curves is not yet well understood.

The main obstacle is the presence of obstructions to deforming degenerate curves to

smooth (or, more generally, irreducible) curves. When X is toric, the combinatorial

counterpart of such obstructed curves are superabundant tropical curves. In this paper

and the sequel, we study fundamental aspects of superabundant tropical curves and their

implications for algebraic curves. In particular, we investigate the role of higher-valent

vertices, which has not been studied much so far in spite of its importance in the study

of superabundant tropical curves. We note that higher-valent vertices are studied in

the context of tropical descendant Gromov-Witten invariants (see for example [6, 14]),

where contracted edges representing the ψ-class conditions cause the higher valency. In

this paper, we study higher valency in relation to the superabundance, and there is little

intersection between these studies.

It turns out that our argument works equally well when the original variety X is not

necessarily toric. Namely, in such a case, there is a particular singular locus of the total

space X of codimension three, and when the degenerate curve is generic in the sense

that it does not intersect this locus, our results remain valid with little modifications. It

should be also noted that our study will play a fundamental role not only in the classical

theory of tropical curves, but also in the more recent study of log Gromov-Witten

invariants [1, 4, 8]. Namely, to compute log Gromov-Witten invariants, basically we

need to consider degenerate curves corresponding to all possible tropical curves including

superabundant ones. Therefore, for general study of log Gromov-Witten invariants,

solid understanding of superabundant tropical curves is indispensable, and one of main

reasons why there are few computations of log Gromov-Witten invariants in higher

dimensions is probably the lack of such an understanding. The result of this paper will

be of fundamental importance in this respect. Namely, it computes the h−1 and h0

(which are the dimensions of the obstruction and the tangent spaces, respectively) of

the obstruction theory used in the definition of log Gromov-Witten invariants.

The basic strategy to study curves in algebraic varieties through degeneration is two

fold:

Step 1: First, construct a degenerate algebraic curve in the central fiber of a degen-

erating family of varieties.

Step 2: Then, deform the curve to a general fiber of the family.

Let us assume that the variety X itself is toric for the ease of exposition. Then, the dual

intersection graph of the degenerate curve naturally has the structure of a tropical curve.

When the tropical curve is regular (see Definition 27), the relation to algebraic curves is

quite nice with respect to the both steps above.

On the other hand, when the tropical curve is superabundant, several new phe-

nomena emerge. In this regard, Step 2 has been relatively well studied (see for example

[3, 12, 17, 23]). However, it turns out that Step 1 is as crucial as Step 2, though this

point does not seem to have been studied seriously. The importance of this point will

be particularly clear when one considers tropical curves with higher-valent vertices. In

this paper and the sequel, we develop a general formalism to deal with higher-valent
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vertices, and study the first and second steps using it.

The bridge which connects Step 1 to Step 2 is the calculation of the cohomology

group in which the obstructions to deforming the degenerate algebraic curve lies. The

combinatorial counterpart of the obstruction is the superabundancy of tropical curves.

Therefore, describing the superabundancy effectively is an important problem in the

theory of tropical curves as well as in the theory of algebraic curves. Given a tropical

curve, the following questions immediately arise:

Question 1: Determine whether the tropical curve is superabundant or not.

Question 2: When the tropical curve is superabundant, calculate the number of pa-

rameters of its deformation.

Neither of the problems is easily solved when one looks only at the tropical curve itself.

In Section 7, we will give a general answer to these problems by reducing them to a

calculation of a certain sheaf cohomology group of the algebraic counterpart of tropical

curves (Theorem 57). When the tropical curve is 3-valent and is an immersion, then this

cohomology group is completely determined by the combinatorial data of the tropical

curve. On the other hand, when there are higher-valent vertices in the tropical curve, this

cohomology group is given as the solution space of a certain system of linear equations,

which is not in general determined by the combinatorial data. Here, we give the statement

for the 3-valent and immersive case to give the reader a feeling for what a description of

the obstruction might look like.

Let (Γ, h) be a 3-valent, immersive tropical curve (see Definition 12 and 16). Let L

be the loop part of Γ (see Definition 23) and assume for simplicity that it is connected.

Then, L is a subgraph of Γ with 2- and 3-valent vertices. By cutting L at each 3-valent

vertex, we obtain a set consisting of the union of edges {lm} of Γ. The map h embeds

each lm into Rn, and let Um be the linear subspace spanned by the direction vectors of

the edges and (Um)⊥ be the annihilating subspace in the dual space (Rn)∧. See Example

64 for an illustrated example of this process.

Let {vi} be the set of 3-valent vertices of L, and {li,j}, j = 1, 2, 3, be the subset of

{lm} which contains vi. Define a linear map

α :
∏
m

(Um)⊥ →
∏
i

(Rn)∧

as follows. Namely, let (um) be an element of
∏
m(Um)⊥. Then, the i-th component of

the image α((um)) is given by the sum

ui,1 + ui,2 + ui,3.

Let H be the kernel of the ap α. Then, we have the following, which is equivalent to

Corollary 59.

Theorem 1. The tropical curve (Γ, h) is superabundant if and only if the vector

space H is not zero. Moreover, the space of obstructions to deforming a degenerate

holomorphic curve of type (Γ, h) (see Section 3) is given by H ⊗ C. □
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See Theorem 57 for the claim in the general case.

With this description, we can study correspondence theorems for superabundant

tropical curves [17]. It also gives a basis for studies in various other situations [17, 18,

20].

The basics of the study of higher-valent vertices are given in Sections 5 and 6. The

key point is that although algebraic geometric counterpart of a general higher-valent

vertex is not necessarily easy to handle, such a vertex can be obtained from a standard

higher-valent vertex, whose algebraic geometric counterpart is a line in a projective space.

Using this, we can reduce various calculation on degenerate curves to calculation on a

line in a projective space, which can be done very explicitly. In particular, this enables

us to calculate the obstruction cohomology group in various situations.

So far, we have explained our results in terms of tropical curves. On the side of

algebraic curves, this corresponds to the study of curves on toric varieties through toric

degenerations in the sense of [22]. More general varieties also degenerate into a union of

toric varieties, and we can associate dual intersection graphs with degenerate algebraic

curves on the central fiber of such a degeneration. These graphs also satisfy balancing

conditions at vertices, but they are not globally imbedded in an affine space, unlike the

case of usual tropical curves.

However, most of our calculation concerns the directions normal to the space

spanned by the edges in the loop of the graph, and these directions make sense even if

the graph is not globally embedded in an affine space. Using this fact, when the degener-

ate curve does not intersect the singular locus of the total space X, our results still hold

with little change, see Section 9. When the degenerate curve intersects the singular locus

of X, we need different argument, see [18]. Combining these results, given any variety,

once we have a reasonable degeneration so that we can study degenerate curves on it,

we will be able to deduce large amount of information about curves on the original variety.

Acknowledgments. This paper was originally a part of [19], which was later split.

The author’s study of tropical geometry began from the joint work [22] with B.Siebert,

and many ideas from it appear in this paper, too. It is a great pleasure for the author

to express his gratitude to him. We would also like to express our sincere gratitude to

the referee for their thorough and insightful review of our manuscript. The author was

supported by JSPS KAKENHI Grant Number 18K03313 and 24K06747.

2. Tropical curves

Although most results in this paper are valid in more general situations, we usually

deal with the case of toric degenerations of toric varieties first, and later provide comple-

ments necessary to cover general cases. This is because in the case of toric degenerations

of toric varieties, we can make use of the well established languages in the theory of

tropical curves, and modifications necessary to deal with general cases are usually small.

Thus, we start with introducing some notions in the theory of tropical curves.

First, we recall some definitions about tropical curves, see [13, 22] for more infor-

mation. Let Γ be a weighted, connected finite graph without loops. We allow parallel

edges. Its sets of vertices and edges are denoted by Γ
[0]
, Γ

[1]
, respectively. We write
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by wΓ : Γ
[1] → N \ {0} the weight function. An edge E ∈ Γ

[1]
has adjacent vertices

∂E = {V1, V2}. When Γ is seen as a topological space (see below), we think of V1, V2 as

subsets of E. Let Γ
[0]

∞ ⊂ Γ
[0]

be the set of all 1-valent vertices. We write Γ = Γ \ Γ
[0]

∞ .

Non-compact edges of Γ are often called unbounded edges. Let Γ
[1]
∞ be the set of all un-

bounded edges. Let Γ[0],Γ[1] and wΓ be the sets of vertices and edges of Γ and the weight

function of Γ (induced from wΓ in the obvious way), respectively. Note that Γ[1] = Γ
[1]
.

The set of flags of Γ is

FΓ = {(V,E)
∣∣V ∈ ∂E}.

The graphs Γ and Γ have natural topologies as a finite CW complex and its open subset.

If E is an edge of Γ, we call the complement of its adjacent vertices the interior of E and

write it as E◦. Let N be a free abelian group of rank n ≥ 2 and we write NK = N ⊗Z K,

where K = Q,R,C.

Definition 2. We call a continuous map h : Γ → NR an affine semi-imbedding

if for every edge E ∈ Γ[1], the restriction h
∣∣
E

is either an embedding with the image

h(E) contained in an affine line, or a contraction where h(E) is a point. Moreover, if an

unbounded edge is not contracted, then its image must be unbounded, too.

We note the following observation.

Lemma 3. Let h : Γ → NR be an affine semi-imbedding. Let p ∈ h(Γ) be any point

on the image of h. Then, a connected component of h−1(p) is a closed subgraph of Γ, or

a point in the interior of some edge.

Proof. Let B be a connected component of h−1(p). Assume that two points

q1, q2 on an edge E of Γ is contained in B. Then, by definition of affine semi-imbedding,

the entire edge E must be contained in B. In this case, by an inductive argument, it is

easy to see that B is a closed subgraph of Γ. If there are no such pair of points, then B

is a vertex or a point in the interior of an edge. In the former case, B is also a closed

subgraph. This proves the claim. □

Let h be an affine semi-imbedding. Let S ⊂ h(Γ) be the set of points with the

property that p ∈ S if and only if for any neighborhood Op of p in NR, the intersection

Op ∩ h(Γ) is not homeomorphic to an open interval. The following is easy to see.

Lemma 4. Let h be an affine semi-imbedding. Then, the following statements hold.

1. S is a finite set.

2. By adding finite number of vertices to Γ, we can assume that the inverse image

h−1(p) of each p ∈ S consists of closed subgraphs of Γ.

Proof. The first claim is obvious since Γ is a finite graph. As for the second

claim, we take the added vertices to be the points in the interior of some edges mentioned
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in Lemma 3. □

Under the condition of Lemma 4 (2), the image h(Γ) has a natural structure of a

graph as follows.

Definition 5. Let h : Γ → NR be an affine semi-imbedding satisfying the condition

of Lemma 4 (2). We call a point in h(Γ) a vertex if it is the image of some vertex of Γ.

Similarly, we call a subset of h(Γ) an edge if it is the image of some edge of Γ which is

not contracted.

We also have the following.

Lemma 6. In the situation of Definition 5, by further adding finite number of

vertices to Γ, we can assume that the inverse image h−1(p) of a vertex p of h(Γ) is a

union of closed subgraphs.

Proof. By Lemma 3, a connected component of h−1(p) is either a closed

subgraph or a point in the interior of an edge. By taking the latter points to be 2-valent

vertices, the claim follows. □

In this case, the inverse image h−1(E◦) of the interior E◦ of an edge E of h(Γ) is the

union of the interior of the edges of Γ each of which is mapped to E homeomorphically.

Definition 7. We call an affine semi-imbedding h : Γ → NR well-segmented if

it satisfies the condition of Lemma 6. Given an affine semi-imbedding h, we can make

another well-segmented affine semi-imbedding by applying Lemma 4 (2) and Lemma 6.

We call it the well-segmented completion of h, or the well-segmented completion of Γ

with respect to h.

Let h : Γ → NR be an affine semi-imbedding. Let p be a vertex of h(Γ) and Γ1 be

one of the connected components of h−1(p) which is a subgraph of Γ. Note that since we

do not assume h to be well-segmented, there may be other connected components which

are not subgraphs. Then, Γ1 contains several vertices q1, . . . , qa. Let E1, . . . , Eb be the

edges of Γ \ Γ1 emanating from some of q1, . . . , qa.

Definition 8. A parametrized tropical curve in NR is an affine semi-imbedding

h : Γ → NR which satisfies the following conditions.

(i) For every edge E ∈ Γ[1], the image h(E) is either contained in an affine line with a

rational slope, or a point.

(ii) For every vertex V ∈ Γ[0], h(V ) ∈ NQ.

(iii) The following balancing condition holds. Namely, for each vertex p of h(Γ) and

each connected component Γ1 of h−1(p) which is a subgraph, the equality

b∑
j=1

wΓ(Ej)uj = 0 (1)
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holds, using the notation in the above paragraph. Here, uj is the primitive integral

vector of N in the direction of the edge h(Ej) emanating from p.

Remark 9. In [22], h|E is assumed to be an embedding (see [22, Definition 1.1])

for every edge E. The reason why we adopt the above definition is that these general

cases appear naturally when we consider superabundant tropical curves. It is also natural

in view of partially compactifying the parameter space of tropical curves, see Lemma 18.

Lemma 10. Let h : Γ → NR be a parametrized tropical curve. Then, its well-

segmented completion is also a parametrized tropical curve.

Proof. Note that when we take the well-segmented completion of an affine semi-

imbedding, we only add 2-valent vertices to Γ. By definition of affine semi-imbedding,

the balancing condition clearly holds at these vertices. □

Remark 11. When dealing with tropical curves, usually we do not need to take

the well-segmented completion. In fact, the property of being well-segmented is often

incompatible with the claim as Proposition 17 below when there is a map h which is not

an embedding. However, when considering the relationship to holomorphic curves in toric

varieties, it is natural to assume that any connected component of the inverse image of

a vertex of h(Γ) is a subgraph. In general, the property of being well-segmented is not

typically suited to the study of a family of tropical curves, but it provides a useful setup

for studying a fixed tropical curve.

An isomorphism between parametrized tropical curves h : Γ → NR and h′ : Γ′ → NR
is a homeomorphism Φ: Γ → Γ′ respecting the graph structures and the weights such

that h = h′ ◦ Φ.

Definition 12. A tropical curve is an isomorphism class of parametrized tropical

curves. A tropical curve is 3-valent if any vertex of Γ is at most 3-valent. The genus of

a tropical curve is the first Betti number of Γ. When the first Betti number of Γ is zero,

it is often called a tree.

In this paper, we usually assume that a tropical curve (Γ, h) is 3-valent in the sense

above unless otherwise noted. Note that in our definition, there can be 2-valent vertices

in the abstract graph Γ underlying a 3-valent tropical curve. By (i) of Definition 8, we

have a map u : FΓ → N sending a flag (V,E) to the primitive integral vector u(V,E) ∈ N

emanating from h(V ) in the direction of h(E) or to the zero vector. The following

definition offers a slightly abstracted representation of this situation.

Definition 13. A combinatorial type (or simply the type) on a graph Γ is a map

u : FΓ → N . For a type u and a flag (V,E), we write u(V,E) as u(E) when V is clear

from the context, and refer to it as the type of (V,E) or, of E. A tropical curve (Γ, h) is

of type u if for each flag (V,E) of Γ such that E is not contracted, the primitive integral

vector emanating from h(V ) in the direction of h(E) equals u(V,E). In this case, we also

call u the combinatorial type of the tropical curve (Γ, h).
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Remark 14. Note that given a tropical curve of type u, even if a flag (V,E) has

non-zero image by u, the edge E can be contracted, while if u(E) = 0, then E must

be contracted. In general, if we consider a fixed tropical curve, it is useful to assume

u(E) = 0 for contracted edges, while if we consider a family of tropical curves, it is often

useful to adopt the general definition.

Definition 15. The degree of a tropical curve (Γ, h) of type u is the function

∆(Γ, h) = ∆: N \ {0} → N with finite support defined by

∆(Γ, h)(v) := ♯{(V,E) ∈ FΓ|E ∈ Γ[1]
∞ is not contracted by h,w(E)u(V,E) = v, }.

Let e = |∆| =
∑
v∈N\{0} ∆(v). This is the same as the number of unbounded edges of Γ

not contracted by h (not necessarily equal to the number of h(Γ) since some of the edges

may have the same image).

Definition 16. We call a tropical curve (Γ, h) immersive if for any E ∈ Γ[1], the

restriction of h to E is an embedding. Note that even if (Γ, h) is immersive, some of the

edges of Γ (even those emanating from the same vertex) can have the same image.

Proposition 17 ([13, Proposition 2.13]). The space parametrizing immersive

purely 3-valent tropical curves (that is, without 2-valent vertices) of a given combina-

torial type is given by the set of rational points of an open convex polyhedral domain in

the real affine k-dimensional space, where k ≥ e+(n−3)(1−g), if it is non-empty. Here,

e is the number of unbounded edges of Γ as in Definition 15, n is the dimension of the

target space NR, and g is the genus of Γ. If there are r 2-valent vertices, then we have

k ≥ e+ r + (n− 3)(1− g).

Proof. For the reader’s convenience, we recall the outline of the proof given in

[13, Proposition 2.13]. Assume Γ is purely 3-valent. Take a compact connected subgraph

Γ′ ⊂ Γ of genus zero which contains all the vertices. Γ′ has e − 3 + 2g edges (note that

all the edges are bounded), and there are g bounded edges in Γ not contained in Γ′.

Let E1, . . . , Ee−3+2g be these edges. Take a vertex V ∈ Γ′ and assume it is mapped

to the origin of NR. Then, the immersions of Γ′ into NR compatible with the given

combinatorial type are parametrized by the strictly positive orthant

P = {(x1, . . . , xe−3+2g) ∈ Re−3+2g | ∀xi > 0}

of Re−3+2g, whose coordinates correspond to the lengths of the images of Ei, i = 1, . . . , e−
3+ 2g. Tropical curves correspond to the rational points of it, due to the condition that

the vertices are contained in NQ.

Such an immersion can be extended to a tropical curve from Γ of the given type if

the pairs of vertices attached to the remaining g bounded edges define the lines of correct

slopes. Each of the g edges imposes at most n− 1 linear conditions. That is, each edge

Fi in these g edges determines a linear subspace LFi
⊂ Re−3+2g of codimension at most

n−1, and points in P which can be extended to a tropical curve must lie in LFi
. Further,

those points in P at which the end points ∂Fi of Fi are mapped to the same point in NR
is given by the intersection of P and a hyperplane HFi in Re−3+2g. HFi divides Re−3+2g
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into two pieces. The interior of one of them, which we write by H+
Fi
, has the property

that the points of the intersection P ∩ LFi ∩H+
Fi

correspond to those immersions of Γ′

which can be extended to immersions of Γ′ ∪ Fi compatible with the given type.

Therefore, the points of P which can be extended to a tropical curve from Γ is given

by the intersection

P ∩ (

g⋂
i=1

LFi
) ∩ (

g⋂
i=1

H+
Fi
),

which is an open convex polyhedral domain. It has dimension at least

e − 3 + 2g − g(n − 1) = e − 3 − g(n − 3). There is an additional n-dimensional

freedom of parallel transformation of the image of the vertex V . This proves the claim

for the purely 3-valent case. If there are 2-valent vertices, each one increases the number

of bounded edges by one, and the length of the new edge contributes to the dimension

of the parameter space. □

According to the proof, the rational points in the boundary of the open convex do-

main parametrizing immersive tropical curves have explicit geometric meaning. Namely,

these points correspond to maps from Γ to Rn where some of the bounded edges of Γ are

contracted, while the restriction of the maps to non-contracted edges is still compatible

with the given combinatorial type. Let Γ be a 3-valent graph and we fix a type for it.

Lemma 18. The map h from Γ to Rn corresponding to a rational point in the

boundary of the open convex domain parametrizing immersive tropical curves of the given

type is a tropical curve.

Proof. It suffices to prove the balancing condition at each vertex of the image.

Let p be a vertex of h(Γ). Let Γ1 be a connected component of h−1(p) which is a subgraph

of Γ. It is a closed subgraph of Γ. Let {V1, . . . , Vk} be the set of vertices of Γ1. Let

{Ei,j}, i = 1, . . . , k, be the set of edges emanating from Vi, and not contained in Γ1.

Note that this set may be empty for some i, and that Ei,j is not contracted by h. Then,

the balancing condition at the image of Γ1 means the equality∑
i,j

wΓ(Ei,j)u(Vi, Ei,j) = 0, (2)

here u : FΓ → N is the map associated with the given type. In other words, u(Vi, Ei,j)

is the primitive integral vector in the direction of h(Ei,j) emanating from h(Vi) = p.

Let h′ : Γ → Rn be an immersive tropical curve of the given type corresponding to a

point near the rational boundary point we are dealing with. Let {V1, . . . , Vk, Vk+1, . . . , Vl}
be the set of all the vertices of Γ, At each vertex Vi, the balancing condition holds for

the map h′. Let Bi be the equation as in Definition 8 (iii) associated with Vi. Then,

the equation (2) is nothing but the sum of all the equations Bi, i = 1, . . . , k. Here, note

that if a bounded edge E is contained in Γ1 and if we write its end points by V and V ′,

the contributions wΓ(E)u(V,E) and wΓ(E)u(V ′, E) cancel since u(V,E) = −u(V ′, E).

Thus, the map h also satisfies the balancing condition. □
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Definition 19. Fix a combinatorial type of 3-valent tropical curves whose param-

eter space of immersive curves is non-empty. Then, we define the parameter space of all

3-valent tropical curves of the given combinatorial type as the closure of the parameter

space of immersive curves.

Remark 20. In other words, an element of the parameter space of tropical curves

of a given combinatorial type is a tropical curve which can be deformed into an immersive

tropical curve of that combinatorial type. If there is no immersive tropical curve of the

given combinatorial type, then the corresponding parameter space is defined to be empty

in this paper (see Example 24). Note that if an unbounded edge is contracted, then it can

never be deformed into an immersive tropical curve. Therefore, there is no such a curve

in our parameter space.

The following is an immediate consequence of Proposition 17.

Corollary 21. Let (Γ, h) be a purely 3-valent tropical curve. Then, the parameter

space of 3-valent tropical curves of the given combinatorial type is, if it is not empty,

a closed convex polyhedral domain in the real affine k-dimensional space, where k ≥
e+ (n− 3)(1− g). □

Remark 22. The term ’closed’ in the statement of the corollary does not mean

’compact’. Since we can parallel transport any tropical curve, the parameter space is

always non-compact.

Before stating Assumption A below, we prepare some terminology. Let Γ be a

non-compact finite graph as above.

Definition 23. (i) An edge E ∈ Γ[1] is said to be a part of a loop of Γ if the

graph Γ \ E◦ has the smaller first Betti number than Γ. Here, E◦ = E \ ∂E.

(ii) The loop part of Γ is the subgraph of Γ composed of the union of all parts of the

loops of Γ.

(iii) A bouquet of Γ is a connected component of the loop part of Γ. A subset of a

bouquet which is homeomorphic to a circle is called a loop.

In particular, a bouquet or a loop does not contain unbounded edges.

Example 24. Proposition 17 fails to hold for non-immersive tropical curves.

For example, consider an abstract 3-valent graph Γ which has three unbounded edges

E1, E2, E3 of weight one. Assume that the set Γ \ {E◦
1 , E

◦
2 , E

◦
3} is a bouquet. The

following map h : Γ → R2 gives a tropical curve.

• h maps the ends of E1, E2, E3 to the origin (0, 0) ∈ R2.

• h maps the edges E1, E2, E3 onto the half lines

{(x, 0) | x ≥ 0}, {(0, y) | y ≥ 0}, {(x, y) | x = y ≤ 0},

respectively.
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• h contracts the other part of Γ to (0, 0) ∈ R2.

Then, it is easy to see that there is no deformation of (Γ, h) other than parallel transports.

Therefore, if the genus of Γ is positive and h is not immersive, Proposition 17 does not

always hold. This tropical curve is not contained in the parameter space in the sense of

Definition 19 for any combinatorial type.

Also, even when Γ is a tree, (Γ, h) need not deform into an immersive tropical curve,

see Figure 1.

Figure 1. A tropical curve in R2 which cannot be deformed into an immer-

sive curve, even though the domain abstract graph is a tree. The edge E in

the abstract graph is contracted to the unique vertex of the image. The two

upper edges of the abstract graph are mapped into the horizontal line in R2.

Similarly, the two lower edges are mapped into the other line.

As this example shows, when we take into consideration those maps which cannot

be deformed into immersive ones, it becomes difficult to give a unified treatment of

tropical curves. Therefore, we introduce the following assumption. Let (Γ, h) be a

3-valent tropical curve in the sense of Definition 12. We fix a type of Γ.

Assumption A.

(i) The map h does not contract a loop to a point.

(ii) (Γ, h) can be deformed into an immersive tropical curve of the given type.

Remark 25. 1. When (Γ, h) satisfies Assumption A, we define a part of a loop

of the image h(Γ) as an edge E of Γ which is a part of a loop in Γ and not contracted

by h. We sometimes identify E and its image h(E) if no confusion could occur.

The loop part, a bouquet and a loop of h(Γ) are defined similarly.

2. By (ii) of Assumption A, when a tropical curve (Γ, h) satisfies it, the parameter

space of the given type is a non-empty closed convex polyhedral domain in the real
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affine k-dimensional space, where k ≥ e+(n−3)(1−g), by Corollary 21. The subset

of tropical curves satisfying Assumption A is neither closed nor open in general,

since some of the edges can be contracted while edges in a loop cannot be contracted

simultaneously.

Now, we define the superabundancy of tropical curves. We follow [13, Definition

2.22] so that the definition covers cases where Γ is not necessarily 3-valent. In such a

case, if V ∈ Γ[0] is a k-valent vertex (k ≥ 2), then we define the overvalence ov(v) of v to

be k − 3. In particular, if v is 2-valent, its overvalence is −1. We define the overvalence

ov(Γ) of Γ to be

ov(Γ) =
∑
v∈Γ[0]

ov(v).

Let h : Γ → Rn be any tropical curve. Let c be the number of edges of Γ contracted by

the map h.

We fix a type of Γ. In the proposition below, we assume that if u is the type of

(Γ, h), then u(E) = 0 for any edge E of Γ that is contracted. Then, we have the following

generalization of Proposition 17.

Proposition 26. ([13, Proposition 2.14]) Let (Γ, h) be a tropical curve. Then,

the space parameterizing tropical curves of the given combinatorial type is, if it is not

empty, an open convex polyhedral domain in the real affine k-dimensional space, where

k ≥ e+ (n− 3)(1− g)− ov(Γ)− c. □

Definition 27 ([13, Definition 2.22]). Using the notation in the above paragraph,

we call a tropical curve (Γ, h) of a fixed type regular if the dimension of the convex cone

in Proposition 26 is equal to e + (n − 3)(1 − g) − ov(Γ) − c. If the dimension is larger

than that, then (Γ, h) is called superabundant.

Remark 28. 1. In [21], it was established that any regular tropical curve sat-

isfies Assumption A. More precisely, after changing the weights of contracted edges

of Γ if necessary, there is a regular immersive 3-valent tropical curve (Γ̃, h̃) of a

suitable type ũ with the following property. Namely, there is a tropical curve (Γ̃, h)

in the boundary of the parameter space of tropical curves containing (Γ̃, h̃) in the

sense of Definition 19, such that h can be expressed as a contraction of (Γ̃, h̃).

This means that there is a contraction of some edges q : Γ̃ → Γ compatible with the

weights, satisfying h = h◦q. Thus, Assumption A provides a natural generalization

of the regularity condition, particularly in more general settings.

2. In this paper, we primarily consider tropical curves satisfying Assumption A. In

particular, the type u is not zero on any edge of Γ, which implies c = 0. Further-

more, −ov(Γ) is equal to the number of 2-valent vertices.

To see whether a tropical curve satisfying Assumption A of a given combinatorial

type is superabundant or not, it is enough to check it for an immersive tropical curve

obtained by deforming the original curve. On the other hand, we will see below that the
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superabundancy of an immersive tropical curve can be effectively calculated via algebraic

geometry.

3. Toric varieties associated with tropical curves and pre-log curves on

them

In this section, we recall some notions from algebraic geometry relevant to our

purpose. From now on, we assume tropical curves are well-segmented (see Definition 7)

unless otherwise noted. Also, we assume that unbounded edges are not contracted.

Definition 29. A toric variety X defined by a fan Σ is called associated with

a tropical curve (Γ, h) if the set of the rays of Σ contains the set of the rays (that

is, one dimensional cones) spanned by the vectors in the support of the degree map

∆: N \ {0} → N of (Γ, h).

If E is an unbounded edge of h(Γ), there is a unique divisor of X corresponding to

it. We write it by DE and call it the divisor associated with the edge E.

Given a tropical curve (Γ, h) in NR, recall that in our definition, the vertices have

rational coordinates. We can construct a polyhedral decomposition P of NR defined over

Q such that h(Γ) is contained in the 1-skeleton of P in a way that the set of vertices of

h(Γ) is contained in that of P. ([22, Proposition 3.9]).

Definition 30. Given such P, we construct a degenerating family X → A1
C of a

toric variety X associated with (Γ, h) ([22, Section 3], see also Convention 31 below). We

call such a family a degeneration of X defined respecting (Γ, h). Let X0 be the central

fiber. It is a union X0 = ∪v∈P[0]X0,v of toric varieties intersecting along toric strata.

Here, P [0] is the set of the vertices of P.

Convention 31. From now on, we assume that the vertices of h(Γ) are contained

in N , and that if E is a bounded edge of Γ which is not contracted by h, the integral

length of h(E) is a positive integer multiple of its weight.

These conditions can be met by a homothetic expansion. Under these conditions,

the central fiber X0 will be reduced, and we can apply a result in log deformation theory

relevant to us [22, Proposition 7.1].

Definition 32 ([22, Definition 4.1]). Let X be a toric variety. A holomorphic

curve C ⊂ X is torically transverse if it is disjoint from all toric strata of codimension

greater than one. A stable map ϕ : C → X is torically transverse if ϕ−1(intX) ⊂ C is

dense and ϕ(C) ⊂ X is a torically transverse curve. Here, intX is the complement of the

union of toric divisors.

Definition 33. Let C0 be a prestable curve. A pre-log curve on X0 is a stable

map φ0 : C0 → X0 with the following properties.

(i) For any v ∈ P [0], the restriction C0×X0
X0,v → X0,v is a torically transverse stable

map.
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(ii) Let P ∈ C0 be a point which maps to the singular locus of X0. Then, C0 has a

node at P , and φ0 maps the two branches (C ′
0, P ), (C

′′
0 , P ) of C0 at P to different

irreducible components X0,v′ , X0,v′′ ⊂ X0. Moreover, if w′ is the intersection mul-

tiplicity of the restriction (C ′
0, P ) → (X0,v′ , D

′) with the toric divisor D′ ⊂ X0,v′ ,

and w′′ is the similar intersection multiplicity for (C ′′
0 , P ) → (X0,v′′ , D

′′), then

w′ = w′′.

Let X be a toric variety and D be the union of toric divisors. In [22, Definition 5.2],

a non-constant torically transverse map ϕ : P1 → X is called a line if

♯ϕ−1(D) ≤ 3.

In this case, the image of ϕ is contained in the closure of the orbit of the action of a

subtorus of dimension at most two of the big torus acting on X ([22, Lemma 5.2]).

Because we consider more general tropical curves, we need to extend this notion.

Let Γ be a weighted 3-valent tree and h : Γ → NR be a map which gives Γ a structure

of a tropical curve, and assume that the image h(Γ) has only one vertex v. Let E1, . . . , Es
be the unbounded edges of Γ, and E1, . . . ,Es be their images (it can happen that Ei = Ej
for i ̸= j). Note that we are assuming unbounded edges are not contracted. Let X be a

toric variety associated with (Γ, h).

Definition 34. A non-constant torically transverse map ϕ : P1 → X is called of

type (Γ, h), or of type v when h is clear from the context, if ϕ satisfies the following

property:

• Let wi be the weight of Ei. Then, ϕ(P1) has an intersection with the divisor DEi

with intersection multiplicity wi, and there is no intersection between ϕ(P1) and

toric divisors other than these.

Note that when some of E1, . . . ,Es coincide, then there are several intersections

between ϕ(P1) and the corresponding toric divisor.

Let (Γ, h) be a tropical curve satisfying Assumption A. Let v ∈ h(Γ)[0] be a vertex.

The inverse image h−1(v) consists of closed subgraphs of Γ, since we are assuming (Γ, h)

is well-segmented. We write the set of connected components of h−1(v) by {γv(i)},
i = 1, . . . , k, where k is the number of connected components of h−1(v).

Definition 35. Let {Γv(i)} be the set of open subgraphs of Γ such that Γv(i) is

the union of γv(i) and the open parts of the edges emanating from its vertices. See Figure

2 for an illustration. Let Γh be the graph obtained from Γ by contracting each γv(i) to

a vertex, for all v ∈ h(Γ)[0].

The following is obvious.

Lemma 36. There are natural maps

π : Γ → Γh
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and

h : Γh → h(Γ)

satisfying h = h ◦ π. □

Note that for each point q of h(Γ), the inverse image h
−1

(q) is a finite subset of

Γh. In particular, if q is a vertex v ∈ h(Γ)[0], then there is one-to-one correspondence

between the set h
−1

(v) and the set of connected components of h−1(v).

Let X be a toric variety associated with (Γ, h), and X → A1
C be a degeneration

of X defined respecting (Γ, h). Let X0 be the central fiber of this degeneration. Each

vertex v of h(Γ) determines an irreducible component X0,v of X0. Given a pre-log curve

φ0 : C0 → X0, let {C0,v(i)} be the set of irreducible components of C0 whose images by

φ0 is contained in X0,v.

Definition 37. A pre-log curve φ0 : C0 → X0 is called of type (Γ, h) if the following

conditions are satisfied:

• The dual intersection graph of C0 is Γh. In particular, for each v ∈ h(Γ)[0], if

we write h
1
(v) = {v(i)}, then there exist irreducible components corresponding to

these points, which we write by C0,v(i).

• The restriction of φ0 to each C0,v(i) is a torically transverse rational curve of type

(Γv(i), h|Γv(i)
).

The set of unbounded edges of Γh is in bijection with the finite subset of C0 consisting

of the inverse images of toric divisors of irreducible components of X0 which lift to toric

divisors of X. Elements of this set are considered as marked points on C0.

Figure 2. The abstract graph Γ (the picture on the left) is mapped to a

graph in Rn (the picture on the right). The bold line segment in Γ is the

inverse image of the vertex v and the union of the bold line segment and the

dotted line segments in Γ is the subgraph Γv(1) (in this case, {v(i)} = {v(1)}).
In this example, the graph Γh is the same as the picture on the right as an

abstract graph.
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The components {C0,v(i)} are disjoint, since otherwise the graphs Γv(i) and Γv(i′)
have a non-contracting common (open) edge E for some i and i′, but since both of the

ends of E are mapped to the vertex v, the edge E must be contracted. Note that each

C0,v(i) is an irreducible rational curve.

Remark 38 ([22, Definition 5.6]). A pre-log curve φ0 : C0 → X0 is maximally

degenerate if it is of type (Γ, h) for some immersive tropical curve (Γ, h).

Definition 39. A 3-valent tropical curve (Γ, h) is smoothable if there is a pre-log

curve φ0 : C0 → X0 of type (Γ, h) with the following property. Namely, there exists a

family of stable maps over A1
C

Φ: C/A1
C → X/A1

C

such that C/A1
C is a flat family of pre-stable curves whose fiber over 0 is isomorphic to

C0, and the restriction of Φ to C0 is a stable map equivalent to φ0. We also call such a

pre-log curve smoothable.

4. Cohomology groups containing the obstruction

Our goal will be describing the (dual) obstruction cohomology group associated with

degenerate algebraic curves corresponding to a tropical curve satisfying Assumption A

(in particular, it need not be immersive), see Theorem 57.

Contrary to the immersive case (see Corollary 59), the description in a general case

is not purely combinatorial reflecting the fact that higher-valent vertices correspond to

rational curves with k(≥ 4) special points (that is, nodes and marked points), which have

their own moduli. The study of such curves owes a lot to the degeneration technique.

Namely, given a curve we want to investigate, the structure of its degeneration is not

necessarily simple. However, in the degenerate situation, we can reduce various calcula-

tion to the standard case (typically curves of degree one in projective spaces). Thus, we

can obtain important quantities such as obstruction classes rather explicitly.

Let (Γ, h), h : Γ → NR ∼= Rn, be a tropical curve satisfying Assumption A and

X be a toric variety associated with it. Let X → A1
C be a degeneration of X defined

respecting (Γ, h). Let P be a polyhedral decomposition of NR defining X. Assume there

is a pre-log curve φ0 : C0 → X0 of type (Γ, h) (in fact, the result in this section makes

sense even if such a curve does not exist, see Remark 61).

Remark 40. It is in general necessary to allow 2-valent vertices to Γ in order to

assure the property h−1(P [0]) = Γ[0]. Then, there are components of C0 corresponding

to these 2-valent vertices. However, as in the proof of [22, Proposition 7.1], these compo-

nents do not play an essential role in the argument below. Therefore, we usually neglect

them and regard Γ as if it has only 3-valent vertices for the simplicity of presentation.

We can give log structures to C0 and X with the following properties. Namely, we

introduce a natural log structure on X induced naturally from the toric structure of it.

Then, we put a log structure on C0 which is log smooth over the standard log point,
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and strict on φ−1
0 (intX). We can choose it so that the map φ0 naturally lifts to a map

between log schemes. See [22, Section 7] for more details. There are log tangent sheaves

associated with these log structures. There may be several log structures on C0 with

the above properties, however, they have isomorphic log tangent sheaves and the choice

does not affect the argument below. The tangent space and the obstruction space of

the deformation of φ0 are calculated in terms of these sheaves. See [11] for fundamental

properties of log structures.

Suppose that a lift

φk−1 : Ck−1/Ok−1 → X

of φ0 is constructed. Here,

Ok−1 = SpecC[t]/tk

and its log structure is given by

C∗ ⊕ N → C[t]/tk,

which is the identity map on C∗ and sends 1 ∈ N to t. Then, as in the proof of [22, Lemma

7.2], an extension Ck/Ok of Ck−1/Ok−1 exists and such extensions are parametrized by

the space H1(C0,ΘC0/O0
), here ΘC0/O0

is the log tangent sheaf.

On the other hand, the obstruction to lifting the map φk−1 to the next order lies in

H1(C0, φ
∗
0ΘX/A1

C
), here ΘX/A1

C
is the log tangent sheaf relative to the base. As in usual

deformation theory of smooth varieties, there is a following standard result in the log

smooth deformation theory ([11, Proposition 3.9], see also the proof of [22, Lemma 7.2]).

Proposition 41. If H1(C0, φ
∗
0ΘX/A1

C
) vanishes, then the pre-log curve φ0 is

smoothable. □

On the other hand, the sheaf φ∗
0ΘX/A1

C
fits in the exact sequence

0 → ΘC0/O0
→ φ∗

0ΘX/A1
C
→ Nφ0

→ 0. (3)

Here,

Nφ0
= φ∗

0ΘX/A1
C
/ΘC0/O0

is the log normal sheaf. The restriction of Nφ0 to any component C0,v of C0 is isomorphic

to the usual (non-log) normal sheaf of it. Note that we have the natural isomorphism

ΘX/A1
C
≃ N ⊗Z OX,

here N is the free abelian group such that the fan defining a general fiber of X lies in

NR = N ⊗ R.
We have a map between cohomology groups

H1(C0,ΘC0/O0
) → H1(C0, φ

∗
0ΘX/A1

C
).
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The group H1(C0,ΘC0/O0
) is the tangent space of the moduli space of deformations of

C0, and the obstruction classes in H1(C0, φ
∗
0ΘX/A1

C
) which are in the image of the above

map can be cancelled when we deform the moduli of the domain of the stable maps.

Namely, we have the following standard fact.

Proposition 42. If the map H1(C0,ΘC0/O0
) → H1(C0, φ

∗
0ΘX/A1

C
) is a surjection,

then the map φ0 is smoothable.

Proof. Assume we have constructed a log deformation φk : Ck → X, of the map

φ0, where k is a non-negative integer. We fix a log deformation C ′
k+1 of the curve Ck

as a reference. Note that such C ′
k+1 exists since the obstruction H2(C0,ΘC0/O0

) to the

existence of the deformation vanishes. The obstruction to deforming φk to a map from

Ck+1 is calculated as follows.

Take a suitable open covering {Ui} of C0 so that there is a lift φ′
k+1|Ui : Ui,k+1 → X

of the restriction of φk to each of the open set Ui. Here, Ui,k+1 is the restriction of the

structure of the log curve C ′
k+1 to the open subset Ui. The existence of such a covering

follows from the general theory of log smooth deformations.

The set of lifts on Ui forms a torsor over the abelian group of sections Γ(Ui, φ
∗
0ΘX/A1

C
),

and the differences of the lifts on the intersections Ui ∩ Uj determine a φ∗
0ΘX/A1

C
-valued

Čech 1-cocycle, which represents the class α.

On the other hand, by assumption, the class α is mapped to 0 ∈ H1(C0,Nφ0). This

implies that we can perturb each lift φ′
k+1|Ui by a section in Γ(Ui, φ

∗
0ΘX/A1

C
) so that the

differences of the lifts map to zero in Nφ0 not only cohomologically, but also at the level

of cocycles. Let φk+1|Ui
be the perturbed map of φ′

k+1|Ui
satisfying this property. By

the exact sequence (3), it follows that the differences of the lifts give ΘC0/O0
-valued Čech

1-cocycle, where we see ΘC0/O0
as a subsheaf of φ∗

0ΘX/A1
C
in the natural way.

In particular, the class α can be seen as a class of H1(C0,ΘC0/O0
). Note that the

set of log deformations of Ck is a torsor over H1(C0,ΘC0/O0
). Since we have fixed the

reference deformation C ′
k+1, it follows that if we take Ck+1 to be the deformation of Ck

corresponding to the class α relative to C ′
k+1, the maps φk+1|Ui naturally glues into a

global map φk+1 on Ck+1. This proves the claim. □

In other words, the obstruction to smoothing φ0 in fact lies in the cohomology group

H1(C0,Nφ0
). By the Serre duality for nodal curves, we have

H1(C0,Nφ0)
∼= H0(C0,N∨

φ0
⊗ ωC0)

∨.

Here, ωC0
is the dualizing sheaf of the nodal curve C0, which is the sheaf of meromorphic

1-forms with logarithmic poles allowed at the nodes. It is known that ωC0
is an invertible

sheaf.

The purpose of this paper is to calculate these groups. The calculation is based on

gluing local data. We begin with the study of such local pieces.
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5. Computation of the dual obstruction cohomology groups associated

with higher-valent vertices

In the following three sections, we prove the main result, Theorem 57, which de-

scribes the group H0(C0,N∨
φ0

⊗ ωC0)
∨ introduced at the end of the previous section.

Theorem 57 also provides, on the tropical side, the answer to the Questions 1 and 2 in

the introduction for tropical curves satisfying Assumption A. Since the proof includes

several steps, we summarize them here.

As we have just mentioned, our purpose is to compute the groupH0(C0,N∨
φ0
⊗ωC0

)∨,

where φ0 : C0 → X0 is a pre-log curve of some type (Γ, h), see Definition 37. Each

irreducible component C0,v of C0 corresponds to a vertex v of Γh, and the restriction

of φ0 to C0,v gives a torically transverse curve of type (Γv, h|Γv ), using the notation of

Definitions 35 and 37. Our strategy to compute H0(C0,N∨
φ0

⊗ ωC0)
∨ is to first study

the group H0(C0,v, (N∨
φ0

⊗ ωC0)|C0,v )
∨ for each component, and then glue these pieces

together.

When (Γ, h) is a 3-valent, immersive tropical curve, the description of H0(C0,N∨
φ0

⊗
ωC0

)∨ is given by the combinatorics of (Γ, h) (see Corollary 59). However, in general, it is

described as the solution space to a system of linear equations, see Theorem 57. To write

down these equations explicitly, we need detailed information about eachH0(C0,v, (N∨
φ0

⊗
ωC0

)|C0,v
)∨. Dealing directly with the restriction φ0|C0,v

is not easy, however. For

example, if X0,v is the component to which C0,v is mapped, X0,v is often singular, and

there may be no canonical desingularization or nice coordinate systems. Additionally,

the image of C0,v itself is also often singular.

To resolve this difficulty, we note that the map φ0|C0,v factors through a map to an

open toric subvariety PΓ0,h0
of a projective space:

φ0|C0,v
= f ◦ φ,

where

φ : C0,v → PΓ0,h0

is a map whose image is a torically transverse line (i.e., a curve of degree one), and

f : PΓ0,h0
→ X0,v is a toric map, see Proposition 51. When the map φ0|C0,v

itself is

isomorphic to the map φ, then we can describe the group H0(C0,v, (N∨
φ0

⊗ ωC0
)|C0,v

)∨

in detail. We do this in this section, and Lemmas 46, 47, and Remark 49 provide the

desired result. The general case is treated in Section 6, where we combine the results

in this section and the combinatorial data associated to the toric map f . The result is

Lemma 53.

Finally, in Section 7, we glue the local pieces studied so far, applying the com-

patibility condition from Definition 54. Then, based on a combinatorial argument (see

Lemma 56) we derive the main result, Theorem 57.

Now, let us begin the local study. Let Γ0 be a 3-valent tree graph with unbounded

edges (see the beginning of Section 2). Let r be the number of vertices of Γ0. Then, Γ0

has r + 2 unbounded edges. We assume all the edge weights of Γ0 are 1. We write by
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E1, . . . , Er+2

the unbounded edges. Let

h0 : Γ0 → Rn, n ≥ r + 1,

be the map which contracts all the bounded edges and maps the edges Ei onto specific

rays as follows:

Ei → R≥0 · (0, . . . ,
i

1̆, . . . , 0), i = 1, . . . , r + 1,

Er+2 → R≥0 · (−1, . . . ,−1, 0, . . . , 0),

where, in the latter, the first r + 1 components are −1. In particular, h0 maps all the

vertices of Γ0 to the origin. Clearly this satisfies the balancing condition and gives Γ0 a

structure of a tropical curve.

Let (Γ, h), h : Γ → Rn, be a tropical curve satisfying Assumption A which contains

a subgraph such that the restriction of h to it is isomorphic to (Γ0, h0) restricted to a

suitable open connected subset containing all the vertices. We regard the image of this

subset by h0 as a subgraph of h(Γ). Let X be a toric variety associated with (Γ, h)

and X be a toric degeneration of X defined respecting (Γ, h). Let φ0 : C0 → X0 be a

pre-log curve of type (Γ, h). We put a log structure on C0 so that the map φ0 extends

to a morphism between log schemes (with the log structure on X coming from the toric

structure) and the composition of φ0 with the projection X → A1
C is log smooth, see [22,

Section 7].

Remark 43. In general, there exist tropical curves such that there are no degen-

erate holomorphic curves of those types, even if we restrict our attention to embedded

tropical curves. Here, we assume there is a degenerate holomorphic curve of type (Γ, h).

Our purpose is to calculate the cohomology group H1(C0,Nφ0
) or its dual

H0(C0,N∨
φ0

⊗ ωC0
). The sheaf Nφ0

is locally free, and elements of H0(C0,N∨
φ0

⊗ ωC0
)

can be described by gluing sections of N∨
φ0

⊗ ωC0
restricted to irreducible components

of C0. Therefore, we first concentrate on the study of the restriction of N∨
φ0

⊗ ωC0
to

the component C0,v of C0 corresponding to a vertex v of h(Γ) which is modeled on the

unique vertex of h0(Γ0). It is easy to see the following.

Lemma 44. The restriction of Nφ0
to C0,v is isomorphic to

OP1(1)r ⊕On−r−1
P1 .

Proof. It suffices to compute the normal sheaf of a line (that is, a curve of degree

one) on Pr+1 × (C∗)n−r−1. The normal sheaf of a hyperplane in Pr+1 is isomorphic to

the restriction of OPr+1(1) to it. By repeating this, the claim follows. □

Let s be the number of nodes of C0 contained in C0,v. This is the same as the number



Obstructions associated with tropical curves 21

of the edges among h0(E1), . . . , h0(Er+2) which are the restrictions of the bounded edges

of h(Γ).

Lemma 45. We have

dimH0(C0,v,N∨
φ0

⊗ ωC0
|C0,v

) =

{
0, (s = 0, 1)

r(s− 2) + (n− r − 1)(s− 1), (s ≥ 2).

Proof. Note that the restriction ωC0,v
= ωC0

|C0,v
is isomorphic to OP1(−2 + s).

Thus,

H0(C0,v,N∨
φ0

⊗ ωC0
|C0,v

)∼= H0(C0,v, (OP1(−1)r ⊕On−r−1
P1 )⊗OP1(−2 + s))

∼= H0(C0,v,OP1(−3 + s)r ⊕OP1(−2 + s)n−r−1).

The result follows from this. □

For notational simplicity, we assume all the edges E1, . . . , Er+2 are the restrictions

of bounded edges of Γ, so that s = r + 2 (see Remark 49 for general cases). The sheaf

ωC0,v
is the sheaf of meromorphic 1-forms such that they can have logarithmic poles at

the points of C0,v which are nodes of C0. These nodes bijectively correspond to the edges

E1, . . . , Er+2. By the residue theorem, the residues a1, . . . , as at these poles sum up to

zero:

a1 + · · ·+ as = 0.

Let us fix an affine coordinate ζ on C0,v such that the coordinates of the points corre-

sponding to the edges E1, . . . , Er+1, Er+2 are

p1, . . . , pr+1,∞.

Then, we can take

σi =
dζ

ζ − pi
, i = 1, . . . , r + 1

as a basis of the space of sections of ωC0,v .

Recall that the log normal sheaf Nφ0
is the quotient φ∗

0ΘX/A1
C
/ΘC0/O0

and the sheaf

φ∗
0ΘX/A1

C
is naturally isomorphic to the sheaf N ⊗Z OC0 [10, Example 5.6]. Here, N is

the free abelian group of rank n.

We note that Nφ0
is locally free. Then, the sheaf N∨

φ0
⊗ ωC0

|C0,v
can be seen as a

subsheaf of the sheaf of N∨
C -valued meromorphic 1-forms. In particular, a section of the

restriction of N∨
φ0

⊗ ωC0
to the component C0,v can be written in the form

r+1∑
i,j=1

ai,je
∨
i ⊗ σj +

n∑
i=r+2

r+1∑
j=1

ci,je
∨
i ⊗ σj , (4)

where ai,j and ci,j are complex numbers and {ei}, i = 1, . . . , n, is a basis of N such that
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{ei}, i = 1, . . . , r + 1, is a basis of N ∩Nv, where Nv ⊂ NR is the subspace spanned by

the directions of the edges emanating from the vertex v. Note that {ei}, i = 1, . . . , r+1,

can be taken so that ei is the direction vector of h(Ei). The set of vectors {e∨i } is the

dual basis of {ei}.
The stalk of ΘC0/O0

at the point pi corresponding to the edge Ei is spanned

by the slope of the image h(Ei), considered as a subset of N ⊗Z OC0,v . Sections of

Γ(C0,v, (φ
∗
0ΘX/A1

C
/ΘC0/O0

)∨ ⊗ ωC0) must annihilate these vectors, and this condition

implies the following.

Lemma 46. The coefficients of a section
∑r+1
i,j=1 ai,je

∨
i ⊗σj+

∑n
i=r+2

∑r+1
j=1 ci,je

∨
i ⊗

σj of N∨
φ0

⊗ ωC0 |C0,v satisfy

a1,1 = a2,2 = · · · = ar+1,r+1 = 0.

□

A general torically transverse curve of degree one in Pr+1 is defined by the equations

of the following form:

b2X1 +X2 + c2 = 0, b3X1 +X3 + c3 = 0, · · · , br+1X1 +Xr+1 + cr+1 = 0,

where Xi =
xi

xr+2
are affine coordinates of Pr+1 corresponding to e∨i , and xi are homoge-

neous coordinates of Pr+1.

Note that ΘC0/O0
is an invertible sheaf on C0. The image of a local section of it

in φ∗
0ΘX/A1

C
is characterized by the property that it is annihilated by sections of N∨

φ0
.

When

X2X3 · · ·Xr+1 ̸= 0,

there is a local section of ΘC0/O0
whose image in φ∗

0ΘX/A1
C
is given by

X1∂X1
+
X2 + c2
X2

X2∂X2
+ · · ·+ Xr+1 + cr+1

Xr+1
Xr+1∂Xr+1

.

Note that the vector e∨i is naturally identified with the section dXi

Xi
of the pull back of

the log cotangent sheaf

φ∗
0ΩX/A1

C
∼= N∨ ⊗OC0 .

Let ζ be the parameter of C0,v given by φ∗
0X1. Taking ζ in this way, the coordinate

pi of the pole of σi is given by

pi = −ci
bi
, i = 1, . . . , r + 1,

here we take c1 = 0, b1 = −1 (thus, p1 = 0).

Then, the above annihilating condition implies
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r+1∑
i,j=1

ai,j
ζ

ζ − pi
· 1

ζ − pj
= ζ

r+1∑
i,j=1

ai,j

∏
l ̸=i,j(ζ − pl)∏r+1
l=1 (ζ − pl)

= 0.

Thus, we have the following. Let us define a polynomial P (ζ) of ζ by

P (ζ) =

r+1∑
i,j=1

ai,j
∏
l ̸=i,j

(ζ − pl) =

r−1∑
k=0

Ak({ai,j})ζk,

where

Ak({ai,j}) = (−1)r−1−k
r+1∑
i,j=1

∑
J⊂I\{i,j},
|J|=r−1−k

pj1 · · · pjr−1−k
ai,j

is a linear polynomial of ai,j . Here, I = {1, . . . , r + 1}, and in the summation the set

J = {j1, . . . , jr−1−k} runs through all subsets of I \ {i, j} of cardinality r − 1− k.

Lemma 47. The coefficients ai,j of a section
∑r+1
i,j=1 ai,je

∨
i ⊗ σj +∑n

i=r+2

∑r+1
j=1 ci,je

∨
i ⊗ σj of N∨

φ0
⊗ ωC0

|C0,v
satisfy

Ak({ai,j}) = 0, k = 0, . . . , r − 1.

There is no constraint to the constants ci,j. □

Remark 48. Note that Lemmas 46 and 47 give 2r + 1 linear conditions to the

coefficients {ai,j}. These are all the conditions imposed on these coefficients, giving

(r+1)2−(2r+1) = r2 freedom to them. This is compatible with the dimension calculated

in Lemma 45 (with s = r + 2, n = r + 1).

Remark 49. When there are unbounded edges of Γ0 which are also unbounded in

Γ, then the numbers ai,j associated with these edges should be set to zero. Explicitly,

when the edge of direction ej is also unbounded in Γ, then ai,j, i = 1, . . . , r+1 should be

all zero.

6. Dual obstruction spaces for general vertices

So far, we considered tropical curves with a higher-valent vertex whose image is

locally isomorphic to the image of the tropical curve (Γ0, h0) introduced at the beginning

of Section 5. Such a vertex corresponds to a line in a projective space. In this section

we consider more general higher-valent vertices.

Namely, let us take a 3-valent abstract tree Γ1 with r + 2 unbounded edges so that

it is combinatorially isomorphic to Γ0. However, now we allow the edges of Γ1 to have

various weights (both on bounded and unbounded edges). Then, consider a proper map

h1 : Γ1 → Rn = N1 ⊗ R,

where N1 is a free abelian group of rank n, with the following properties:
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• The map h1 contracts all the bounded edges of Γ1.

• The map h1 gives a structure of a tropical curve to Γ1.

As in the previous section, we assume that (Γ1, h1) is a restriction to an open subset of a

larger tropical curve (Γ, h) and all the unbounded edges of Γ1 are restrictions of bounded

edges of Γ.

Remark 50. For applications, it is important to note that the map h1 may send

some of the unbounded edges to the same image. Although the image of these edges is a

half line which corresponds to a toric divisor via the construction in Section 3, a pre-log

curve of type (Γ1, h1) should intersect this toric divisor at several different points of the

domain curve (their images on the toric divisor can be the same).

Let us take a standard basis {e1, . . . , er+1} of Rr+1. Recall that the directions of

the edges of the image h0(Γ0) are given by e1, . . . , er+1 and f = −e1 − · · · − er+1. We

write by E1, . . . , Er+1 and F the unbounded edges of Γ0 which are mapped to the edges

of these directions by h0.

We fix an identification ι of the abstract graphs Γ0 and Γ1. Let

n1, . . . , nr+1 ∈ N1

be the primitive integral vectors of the directions of h1 ◦ ι(E1), . . . , h1 ◦ ι(Er+1). Let

w1, . . . , wr+1 be the weights of these edges.

Then, define a linear map

Ξ: Rr+1 → Rn

by extending the map

ei 7→ wini, i = 1, . . . , r + 1

linearly. It is easy to see that h0(Γ0) is mapped by Ξ onto h1(Γ1). When the map Ξ is

not surjective, we add an n− dim ImΞ dimensional vector space V to Rr+1 and define a

map g : V → Rn so that the map

Ξ⊕ g : Rr+1 ⊕ V → Rn

is an surjection. The choice of g does not affect the following argument. Let us write

Rm := Rr+1 ⊕ V

and choose a basis {e∨1 , . . . , e∨m} of the dual space extending a dual basis {e∨1 , . . . , e∨r+1}
of the above basis of Rr+1 so that {e∨r+2, . . . , e

∨
m} is a basis of (Rr+1)⊥. For notational

simplicity, we write Ξ⊕ g by Ξ̃.

The images of the tropical curves (Γ0, h0) and (Γ1, h1) can be seen as incomplete

fans consisting of one dimensional cones in Rm and Rn, respectively. Let P(Γ0,h0) and
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P(Γ1,h1) be the toric varieties defined by these fans. The map Ξ̃ induces a map fΞ̃ between

toric varieties from P(Γ0,h0) to P(Γ1,h1).

Proposition 51. The map fΞ̃ sends torically transverse curves of type (Γ0, h0) to

torically transverse curves of type (Γ1, h1), and all pre-log curves of type (Γ1, h1) can be

obtained in this way.

Proof. The former claim is obvious. For the latter, let φ1 : P1 → P(Γ1,h1) be a

pre-log curve of type (Γ1, h1). Then, the inverses image φ−1
1 (φ1(P1)) may have several ir-

reducible components, but it is easy to see that each of them intersects the toric boundary

of P(Γ0,h0) with multiplicity one. Then, each of these irreducible components is a line. □

Let

ψ : P1 → P(Γ1,h1)

be a torically transverse curve of type (Γ1, h1). We think of it as the restriction of a

pre-log curve C0 → X0 of type (Γ, h) to a suitable irreducible component of C0. Assume

that ψ is obtained from a line φ : P1 → Pr+1 × (C∗)dimV by composing with fΞ̃ (note

that P(Γ0,h0) is naturally an open subvariety of Pr+1 × (C∗)dimV ). Note that a section of

the sheaf N∨
ψ ⊗ ωC0 |P1 is a meromorphic 1-form on P1 with values in (N1 ⊗ C)∨. Here,

ωC0 |P1 is the restriction of ωC0 to the relevant component of C0.

The map Ξ̃ induces a map between the dual spaces

Ξ̃∗ : (N1 ⊗ C)∨ → (Cm)∨.

Then, the pull back Ξ̃∗N∨
ψ is a sheaf on P1 with values in (Cm)∨. Since the sheaf Ξ̃∗N∨

ψ

is naturally a subsheaf of N∨
φ , sections of Ξ̃

∗(N∨
ψ ⊗ ωC0

|P1) can also be described by the

numbers {ai,j} and {ci,j} given in (4) in Section 5.

Let yi be the point of P1 which is mapped by φ to the toric divisor of Pr+1×(C∗)dimV

corresponding to the edge Ei of Γ0 (i = 1, . . . , r+ 1). The fiber of N∨
φ at each yi can be

identified with the annihilator subspace (Ei)
⊥ in (Cm)∨ of the direction of the edge Ei.

Definition 52. Let Fi be the subspace of (Ei)
⊥ of codimension r + 1− dim ImΞ

which annihilates the kernel of the map

Ξ̃C : Cm → N1 ⊗ C.

It is clear that the fiber of Ξ̃∗N∨
ψ at yi is canonically isomorphic to Fi.

Lemma 53. A section of Ξ̃∗(N∨
ψ ⊗ωC0

|P1) is described by the set of numbers {ai,j}
and {ci,j} with the following properties.

• The vector valued residue

r+1∑
i=1

ai,je
∨
i +

m∑
i=r+2

ci,je
∨
i
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at yj is contained in Fj.

• The conditions given in Lemmas 46 and 47, namely

a1,1 = · · · = ar+1,r+1 = 0

and

Ak({ai,j}) = 0, k = 0, . . . , r − 1

hold.

Proof. It is clear that the conditions for {ai,j} and {ci,j} in the statement are

necessary to define a section of Ξ̃∗(N∨
ψ ⊗ ωC0

|P1).

For a general point z on P1, the fiber of N∨
φ is the annihilator of the (log) tangent

space of φ(z), which can be identified with a subspace of (Cm)∨, and the fiber of Ξ̃∗N∨
ψ is

the subspace Fz ⊂ (Cm)∨ consisting of the vectors which also annihilate the kernel of the

above map Ξ̃C. Therefore, we need to show that if the numbers {ai,j} and {ci,j} satisfy

the conditions in the statement, the value at z of the section of N∨
φ ⊗ωC0

|P1 determined

by {ai,j} and {ci,j} is contained in Fz.

Namely, given the vector valued residue αj =
∑r+1
i=1 ai,je

∨
i +

∑m
i=r+2 ci,je

∨
i at yj as

in the statement, the corresponding section of N∨
φ ⊗ ωC0

|P1 is uniquely given by

r+1∑
j=1

αjσj

as in (4) in the previous section. Since the vectors αj all annihilate the kernel of Ξ̃C, the

value of the section at any point of P1 also annihilates it. This proves the lemma. □

7. Description of the dual obstruction spaces for general global pre-log

curves

The argument so far established the description of the space of sections of the sheaf

N∨
φ0

⊗ ωC0
restricted to a component of a pre-log curve. Now, we consider the global

version of the problem.

Let (Γ, h) be a tropical curve satisfying Assumption A. Let φ0 : C0 → X be a pre-log

curve of type (Γ, h) in a suitable toric degeneration defined respecting (Γ, h). We would

like to give a description of elements of the group

H = H0(C0,N∨
φ0

⊗ ωC0
).

We will do this by gluing local data. Consider a vertex v of the image h(Γ). In

general, the inverse image of v has several connected components. Let us take a subgraph

Γv(i) of Γ as in Definition 37. Then, the restriction of h to Γv(i) is modeled on a map h1
in the previous section.
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To describe H, it is useful to take the graph Γh instead of Γ, see Definition 35.

Recall that the map h : Γ → NR factors through Γh. We write the corresponding map

by h : Γh → NR. Also, let π : Γ → Γh be the natural map, as in Definition 35. Then, we

can identify the images π(Γv(i)) and h(Γv(i)) as abstract topological spaces. We write by

v(i) the unique vertex of Γh in π(Γv(i)).

Using Lemma 53 and Remark 49, we attach data to the subgraph π(Γv(i)) of Γh
as follows. Namely, we attach values aj,l and cj,l to each edge El of π(Γv(i)) in the

following way.

Construction:

1. If El is an unbounded edge of Γh, then all aj,l and cj,l with l fixed is zero, by

Remark 49.

2. Otherwise, the values aj,l and cj,l can take any value satisfying the conditions in

Lemma 53.

This determines a vector

r+1∑
i=1

ai,je
∨
i +

m∑
i=r+2

ci,je
∨
i

in (NC)
∨ ⊂ (Cm)∨ at the point on C0 corresponding to a flag (v(i), El) of Γh (which is a

node or a marked point, depending on whether El is bounded or unbounded). Although

the integer m and the embedding (NC)
∨ ⊂ (Cm)∨ depend on the choice of vertices of

Γh, the space (NC)
∨ makes sense globally. Note that at each vertex v(i), the values aj,l

and cj,l are assigned to all but one edge emanating from it, corresponding to F in the

notation of Section 6. The vector associated with this flag is determined by the residue

theorem.

Definition 54. We say that the set of the values attached to the flags of Γh by

Construction above is a compatible labeling when the sum of the values attached to the

two flags associated with

1. each bounded edge, and

2. each 2-valent vertex

is zero.

This reflects the residue theorem and the relation of the frames

dz1
z1

+
dz2
z2

= 0

of ωC0
at the corresponding node of C0. Here, z1, z2 are coordinates of the two branches

at the node.

By the argument so far, we have the following.
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Proposition 55. The set of elements of the group H0(C0,Nφ0

∨⊗ωC0
) is naturally

bijective to the set of compatible labelings of the flags of Γh. □

Now, we study the set of compatible labelings. Let L = ∪iLi be the loop part of

Γh (Definition 23), where each Li is a bouquet. This is a closed subgraph of Γh. Let us

write ΓT = Γh \L. The closure of a connected component of ΓT is a tree. There are two

types of these trees, namely:

(U) It contains only one flag whose vertex is contained in a loop.

(B) Otherwise.

By inductive argument, it is easy to see that all the flags in a component of type (U)

must have the value zero, including the unique flag whose vertex is contained in a loop.

For the type (B), we have the following result.

Lemma 56. All the flags of a component of type (B), including the flags whose

vertices are contained in the loops, must have the value 0 ∈ N∨
C .

Proof. Note that Γh can be written in the form illustrated in the following figure

(Figure 3).

a b
c

d

e

f

g

h

i

j k

l

m

Figure 3.

Here, each shaded disk corresponds to some component Li of the loop part of Γh.

By definition of {Li}, if we regard these disks as vertices, we obtain another tree Γ′
φ0
.

As we noted above, all the edges contained in the components of type (U) have the

value zero. In Figure 3, this means that all the edges (outside the shaded disks) except

the ones labeled by a, b, c, · · · ,m have the value zero. We call the edges outside the

shaded disks the bridges.
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Now, by the fact that Γ′
φ0

is a tree, it is easy to see that there is a shaded disk such

that the bridges emanating from it have the value zero except one bridge. Let us call

this bridge r and label the remaining bridges emanating from the shaded disc a1, . . . , as.

By the condition that the sum of the values of the edges emanating from each vertex is

zero (the residue theorem), we see that the sum of the values attached to a1, . . . , as, r

is zero. Since a1, . . . , as have the value zero, it follows that r has also the value zero.

By induction on the number of shaded disks, we see that all the bridges, and so all the

edges of the components of type (B) also have the value zero. □

Let us describe the space H = H1(C0,Nφ0
)∨. According to this lemma, we only

need to consider the flags contained in some bouquet in Γh. Let L be a bouquet. Let

{vi} be the set of vertices of L with the valence at least three. Cutting L at each vi, we

obtain a set of the union of segments {lm} in Γh. Let Um be the linear subspace of NC
spanned by the direction vectors of the images of the edges contained in the segments of

lm. The following theorem follows from the argument so far.

Theorem 57. Elements of the space H are described by the following data.

(I) Give the value zero to all the flags not contained in any bouquet.

(II) Give a value in (Um)⊥ ⊂ N∨
C to each of the flags associated with the edges of lm.

(III) The data in (I) and (II) give an element of H if and only if the following conditions

are satisfied.

(a) At each r + 2-valent vertex q of Γh (r ≥ 1), the data in (II) attached to the

flags whose vertex is q satisfy the condition in Lemma 53.

(b) The data in (II) is compatible in the sense of Definition 54. □

There are a few remarks for the notation in this theorem.

Remark 58. 1. Note that the numbers {ai,j} and {ci,j} in Lemma 53 are as-

sociated with edges of the tropical curve (Γ0, h0) in Rr+1, and the data in (II)

determine these numbers through the projection argument in Section 6.

2. As we noted before, the numbers {ai,j} and {ci,j} are associated with r + 1 edges

among the r + 2 edges emanating from q. The residue at the point corresponding

to the remaining edge is determined from them by the residue theorem. For some

choice of r + 1 edges out of the total r + 2 edges, the numbers {ai,j} and {ci,j}
constructed from the data in (I), (II) satisfy the condition (III)(a) above if and

only if the numbers {ai,j} and {ci,j} satisfy it for any choice of r + 1 edges.

This is the most general form of the description of the space H for pre-log curves cor-

responding to tropical curves satisfying Assumption A. When the tropical curve (Γ, h) is

immersive, so that only the case r = 1 appears, it specializes to more explicit description.

Namely, the condition (III)(a) becomes the following form.
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Corollary 59. In Theorem 57, assume (Γ, h) is immersive, so that Γh = Γ.

Then, the data (I), (II) give an element of H if and only if it is compatible in the sense

of Definition 54 and at each 3-valent vertex v of a bouquet L, the identity

u1 + u2 + u3 = 0

holds. Here, ui are elements of (Um)⊥ attached to the flags whose vertex is v. □

This assertion, together with the following claim, provides a description of super-

abundancy, which answers Questions 1 and 2 in the introduction, for tropical curves

satisfying Assumption A.

Corollary 60. Let (Γ, h) be a 3-valent immersive tropical curve. Then, the

number of parameters to deform it is given by

(n− 3)(1− g) + e+ dimH.

Proof. Let us write the dimension of H0(C0,Nφ0
) by d1 and the dimension of

H1(C0,Nφ0
) by d2. In the proof of [22, Proposition 5.7], it is shown that when the

tropical curve (Γ, h) is immersive, d1 is the same as the dimension of the parameter space

of the corresponding tropical curve. In [22, Proposition 5.7], this claim was proved for

rational tropical curves, but the same proof applies to curves with higher genus, including

superabundant ones. Also, it is known that the dimension of the cohomology group

H0(C0, ω0) equals g (see [9, Exercise 3-4]). Therefore, the dimension of the cohomology

group H1(C0, φ
∗
0ΘX/A1

C
) ∼= H0(C0, ω

⊕n
C0

)∨ equals ng.

Let v be an s-valent vertex of Γh. Then, the restriction ΘC0/O0
|C0,v

is isomorphic

to OP1(2− s). From this, it is easy to see H0(C0,ΘC0/O0
) = 0. On the other hand, by a

straightforward calculation, we obtain dimH1(C0,ΘC0/O0
) = e+ 3g − 3.

Then, by the long exact sequence associated with the sequence (3) after Proposition

41, we have the equality

d1 − d2 = (n− 3)(1− g) + e.

Note that dimH = d2. These observations prove the theorem. □

Remark 61. An important remark concerning Theorem 57 is that the sheaves

φ∗
0ΘX/A1

C
and φ∗

0ΘX/A1
C
/ΘC0/O0

exist even when the map φ0 does not exist globally. They

are constructed by gluing locally free sheaves on each irreducible component at the nodes.

At each node p ∈ C0, the pullback of ΘX/A1
C
and ΘX/A1

C
/ΘC0/O0

are canonically isomor-

phic to NC and NC/CuE, respectively. Here, uE is the direction vector of the image of

the edge E of Γ corresponding to p by the map h. In particular, these isomorphisms do

not depend on the choice of the map φ0|C0,v on the irreducible components of C0. More

specifically, let {v1, v2} be the boundary of the edge E and pi, i=1, 2, be the points of

C0,vi corresponding to the node p. Then, by the above observation, we can identify the

fibers of the pullback of the sheaves at p1 and p2 even if the images φ0|C0,v1
(p1) and

φ0|C0,v2
(p2) do not coincide. In particular, the space H also makes sense and Corollary

60 gives us the degree of freedom to deform the given immersive superabundant tropical
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curve even if a pre-log curve of type (Γ, h) does not exist.

The following is immediate, because when the genus of Γ is one, there is no r-valent

vertex in L with r ≥ 3. See also [23].

Corollary 62. When (Γ, h) is a tropical curve of genus one satisfying Assump-

tion A, then H ∼= U⊥, here U is the linear subspace of NC spanned by the direction

vectors of the segments of the loop of Γ. □

In view of Theorem 57, we give the following definition.

Definition 63. Let (Γ, h) be a tropical curve satisfying Assumption A. Then, the

support of superabundancy of (Γ, h) is the closed subgraph Γss of Γh with the following

property: For any edge E of Γss, there is an element of H such that the value of it on

the flags associated with E is not zero.

Large part of results which are valid for superabundant curves of genus one can be

extended to those tropical curves whose support of superabundancy is the disjoint union

of loops.

8. Examples

Example 64. Let us consider immersive tropical curves Γ1 and Γ2 of genus two

in R3 given in Figure 4.

a

b

c

dΓ1
Γ2

Figure 4.

The curve Γ1 has 6 unbounded edges of the directions

(1, 0, 1), (1, 0,−1), (−1,−1, 1), (−1,−1,−1), (0, 1, 1), (0, 1,−1).

The bounded edges are:

• Three parallel vertical edges of the direction (0, 0, 1).

• Three pairs of parallel edges of the directions
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(1, 0, 0), (−1,−1, 0), (0, 1, 0),

respectively.

The curve Γ2 is a modification of Γ1 at the vertices a and b. Namely:

1. Delete the edge ab as well as the neighboring unbounded edges.

2. Add a pair of parallel unbounded edges of the direction (−1, 0, 0), and a pair of

parallel bounded edges of the direction (1, 1, 0) of the same length.

3. Connect the end points c, d of the bounded edges added in (2) by a segment of the

direction (0, 0, 1).

4. Add unbounded edges of the directions (1, 1, 1), (1, 1,−1) at the vertices c, d, re-

spectively.

Using Corollary 59, it is easy to see that Γ1 is superabundant, while Γ2 is non-

superabundant. Namely, the sets of piecewise linear segments {lm} of these tropical

curves are given by the following three components, respectively (Figure 5).

Figure 5.

We write the corresponding linear subspaces of NC ∼= C3 by Ul1 , Ul2 , etc.. Then,

using the standard nondegenerate quadratic form on C3 to identify it with its dual,

(Ul1)
⊥ ∼= C · (1, 0, 0), (Ul2)

⊥ ∼= C · (0, 1, 0), (Ul3)
⊥ ∼= C · (1,−1, 0).

It is easy to see that the space H for Γ1 is a one dimensional vector space. Thus, Γ1 is

superabundant.

On the other hand, since Ul′1
∼= C3, (Ul′1)

⊥ = {0}. From this, it is easy to see that

the space H for Γ2 is {0}. Therefore, Γ2 is non-superabundant.

Example 65. Plane tropical curves were studied by Mikhalkin [13] in great detail.

There it was shown that any immersive plane tropical curve without multiple edges is

non-superabundant and smoothable. On the other hand, if we only assume Assumption

A, then even 3-valent immersive (in the sense of Definition 16) plane tropical curves can

be superabundant and non-smoothable. The simplest example is given by the one in

Figure 6.

In Figure 6, all the edges except E and F have weight two, while the edges E and

F have weight one. The loop part is the union of E and F , and the space H is one
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Figure 6. The abstract graph (the picture on the left) is mapped into R2.

The edges E and F have the same image (the bold line in the picture on the

right).

dimensional. According to the study in [17], this tropical curve is smoothable if and

only if the lengths of the images of the edges A and B are the same.

9. Toric degenerations of non-toric varieties

So far, our ambient space X is a degeneration of a toric variety X. However, our

argument is valid when a not necessarily toric variety degenerates in a special way.

Namely, suppose a complex variety X of dimension n (we assume it to be reduced and

irreducible, but not necessarily regular or complete) has a degeneration

π : X → A1
C.

Here, π−1(1) is isomorphic to X and the central fiber X0 := π−1(0) is a union of reduced

toric varieties glued along toric divisors. A typical example is the degeneration given by

the equation

f(x0, x1, · · · , xn) + tx0x1 · · ·xk = 0,

in Pn × C, where t ∈ C is the parameter of degeneration, and f is a homogeneous

polynomial of degree k + 1, k ≤ n.

Let X0 = ∪iX0,i be the irreducible components of X0. Each X0,i is a toric variety

and we assume the intersection X0,ij = X0,i ∩X0,j is a toric stratum in both X0,i and

X0,j . Moreover, we assume the following. Namely, suppose the intersection X0,ij is a

toric divisor. Let D be the union of toric divisors of X0,ij . Then, there is a hypersurface

H of X0,ij with the property that at any point p in

X0,ij \ (H ∪D),

there is a neighborhood U in the total space X such that the restriction of π to U is

analytically isomorphic to an open neighborhood of the origin of the variety defined by

xy = tm ⊂ Cn × C.

Here, m is a positive integer independent of p (but it can depend on the pair i, j), and

x, y are parts of standard linear coordinates of Cn.
We consider a curve φ0 : C0 → X0 such that the restriction of φ0 to each component
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of C0 is a torically transverse map of some type vi in the sense of Definition 34. Let Γh
be the dual intersection graph of C0. The vertex vi is naturally considered as a vertex of

Γh. Assume that φ0(C0) does not intersect H for any X0,ij . Then, the local calculation

in Section 6 and the argument in Proposition 55 are valid. Therefore, a result similar

to Theorem 57 holds in this case, too. To provide details, although there is no torus

N ⊗ZC∗ acting on the whole X0, there is such Ni (and a torus Ni⊗ZC∗) associated with

each component X0,i. The type vi specifies a tropical curve with one vertex in (Ni)R,

and the annihilating subspaces of the directions of the edges make sense. If X0,ij is a

toric divisor of X0,i and X0,j , then the vertices vi and vj are connected by an edge Eij
of Γh. The edge Eij determines rays in (Ni)R and (Nj)R. Although we do not have a

natural isomorphism between (Ni)R and (Nj)R, we do have one between the annihilating

subspaces

E⊥
ij ⊂ (Ni)

⊥
R and E⊥

ij ⊂ (Nj)
⊥
R .

These data are enough for the construction of the space (Um)⊥ in the statement of

Theorem 57. Then, elements of the space H are given by attaching vectors of E⊥
ij to the

flags of the graph Γh precisely in the way prescribed in Theorem 57.

Remark 66. Although we do not need it in this paper, one often attaches an inte-

gral affine manifold with singularity to degenerations of a variety like the one considered

above, see for example [7]. A loop around the singular locus in general gives a non-trivial

monodromy of the affine structure, which does not exist in the case of toric degenerations

of toric varieties. The monodromy fixes the directions corresponding to the conormal

vectors of the curve C0, so this picture is compatible with the argument above, where

there was no appearance of a monodromy.

Remark 67. One can also study curves which intersect the singular locus H. These

curves are important in relation to mirror symmetry. Such an intersection contributes

to the space H (so also to the obstruction), but its effect can be calculated in a simple

way at least in a generic situation. See [18].
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