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Abstract

For a resolution space (X, E) of a normal complex surface singularity (X,0), the
fundamental cycle Zr and maximal ideal cycle Mg are important geometric objects
associated to (X, 0), which satisfy Mg > Zg. In 1966, M. Artin proved that Mg = Zg
for all resolutions of all rational singularities. However, for non-rational singularities,
it is a delicate problem whether Mp = Zg or not. Any normal surface double point
(i.e., multiplicity two) is a hypersurface singularity defined by z? = f(z,y). For such
singularities, we prove that Mg > Zg holds on the minimal resolution if and only if f
has a canonical decomposition f = fiz)fiqfie) in C{z,y} called “Laufer decomposition”.
Moreover, we give a numerical procedure to determine whether My = Zg or not on

the minimal resolution from the embedded topology of the branch curve singularity
({f =0}, 0).

Keywords Normal surface double points - Fundamental cycles - Maximal ideal cycles -

Laufer decompositions
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1 Introduction

Let 7: (X, E) — (X, 0) be a good resolution of a normal complex surface singularity.

Let £ = |J E; be the irreducible decomposition of the exceptional set. A divisor on
i=1
X supported in E is called a cycle. In [2], M. Artin defined the fundamental cycle as

Zp = min{D = i a;F;|a; > 0 and DE; < 0 for any ¢}. It is well-known that the
value Z% is indepez;(lient of the choice of a resolution, and so we put it Z% in this paper.
Therefore, Z% is a topological invariant of (X,0). The mazimal ideal cycle on E is
defined by Mg := min{(hon)g | h € m\{0}} (see [22]), where m is the maximal ideal of

the local ring Ox, and (hom)g is a cycle Y vg, (h o 7)E; for vanishing order vg, (h o )
i=1
of hom on E;. Though Zp is determined by the topological structure of (X,0), Mg
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depends on the analytic structure of (X, 0). For Mg, if we take a suitable succession of
blowing-ups ():(, E) — (X, E), then —M% is equal to mult(X, o) (i.e., the multiplicity
of (X, 0)). Namely, the maximal ideal cycle is a geometric representation of mult(X, o).

From the definition of Mg and Zg, they are anti-nef cycles on E with Mg > Zg.

Moreover, Ph. Wagreich proved the following fundamental result.

Theorem 1.1 ([21, Theorem 2.7]). (i) mult(X,0) = —M3 = —Z%.
(ii) If mOyx is invertible, then mOg = O (—Mg) and mult(X,0) = —M3.

In normal surface singularity theory, it is important to consider under what circum-
stances Mg = Zg holds. In [8], H. Laufer showed that Mg > Zg on the minimal
resolution of a normal double point defined by z? = y(z* + y%). Regarding the impor-
tance of the condition Mp = Zg, let us mention one fact. In [22], S.S.T. Yau defined
maximally elliptic singularities and proved that those singularities are Gorenstein. The
first named author ([16, Corollary 7.9]) proved that Mg = Zg also holds on the minimal
resolutions for those singularities (also see [11,Theorem DJ). Conversely, T. Okuma ([13,
Theorem 5.10]) proved the converse (also see [11, Theorem A]). Namely, if (X, 0) is a
Gorenstein elliptic singularity and Mp = Zg on the minimal resolution, then it is a
maximally elliptic singularity. About the comparison of Mg and Zg, we can find many
useful descriptions in §6 — §8 and §11 of [12]. We also refer to [7], [9], [10], [14] and [17]
for many types of singularities. Here, we remark that “maximal ideal cycle” is called as
“fiber cycle” in [4] .

From S.S. Abhyanker’s result in [1], we can see that every normal surface double point
is a hypersurface singularity defined by z? = f(z,y) for an element f in C{z,y} (also
see [5]). We remark that for a hypersurface singularity (X,0) = {z" = f(x,y)}, (X, 0) is
normal if and only if f is reduced ([18, Theorem 3.2]). In the following of this section,
let (X,0) be a normal double point defined by 2% = f(z,y) and (X, E) a resolution of
(X, 0); also (C,0) := ({f = 0},0)). The comparison problem of Mg and Zg for (X, o)
has been studied by H. Laufer and D.J. Dixon as follows.

Theorem 1.2 ([8, Theorem 6.3]). If Mg > Zg on the minimal resolution (X, E) of
(X,0), then Hi(E,R) # 0. Namely, if (X,0) has the rational homological sphere link,

then Mp = Zr on the minimal resolution.
Theorem 1.3 ([5, Theorem 1 and 2] ). (i) If ord(f) is even, then Mg = Zg for any

resolution of (X,0).

(ii) If f is irreducible and ord(f) is odd, then Mg = Zg for the minimal resolution.

Therefore, we need to consider the case that ord(f) is odd and f is reducible. A.
Calabri and R. Ferraro in [4] researched the comparison problem in such case. They

defined a figure called the Enriques digraph for (C,0), and proved that the condition
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to Mg > Zg is determined in terms of the Enriques digraph (see Theorem 12.2 in [4]).
They used the canonical resolution (see [4], [15]) and studied the multiplicity of strict
transform of X at each step in constructing the canonical resolution. They expressed
27 by maximum ideal cycles on such steps ([4,Theorem 11.2]). Using these results,
they arrived at their main result.

Though we research the similar problem, our interests and main results are largely
different from them. We study the Puiseux pairs and the resolution diagram of the
branch curve. However the canonical resolution does not induce the embedded resolution
of the branch curve (cf. as each process needs the condition degm = e, (V') in (1.2) [15]
p.3, see also (1.3) [15] ). Hence we change the resolution method and use the covering
resolution of (X, 0) ((3.1) and [5]). (Though Puiseux pairs play crucial roles in our work,
but they do not appear in [4] and [8]).

In the comparison problem between Zz and Mg, most results already obtained give
sufficient conditions for Zp = Mg. However, it seems also interesting and important to
consider the details of the situation where Zp < Mg. In this paper (Theorem 3.11), for
normal double points with Mg > Zg, we have shown how E decomposes. Namely, the
resolution graph corresponding to Laufer decomposion consists of three parts, i.e. the
odd part carrying Zg = Mg, the Laufer part carrying Mg = 27 and the contact part
carrying Zp < Mg < 2Zp. The components which connect these parts are nothing but
the strict transforms of exceptional curves F} and F, which appear by the first and the
second blow ups of the covering resolution. Note that only the role of F} appears in
Enriques digraph [4, § 12, Fig.2]. First, we show that if Mg > Zg, the shape of E has
a specific decomposition. Second, we consider a specific decomposition of f obtained
from the above decomposition of . Then we prove that the existence of the above
decomposition of f is equivalent to Mg > Zg on the minimal resolution. Furthermore,
we provide a numerical procedure to determine from the topology of (C,0) whether
Mg = Zg or not.

In §2, we prepare some facts and terminologies on plane curve singularities. In §3, as a
resolution of (X, 0) = {2? = f(x,y)}, we explain the covering resolution over the MSGE-
resolution of (C,0) (see Definition 3.1). Under the condition of Mg > Zg on a good
resolution (X , E), we prove several facts. Especially, we define the Laufer decomposition
E = E(o) U E(c) U E(L) (Definition 3.10), and show that E has a specific shape. (
Theorem 3.11). From §4 to the end of this paper, in the topological point of view,
we characterize f € C{z,y} such that Mg > Zg holds on the minimal resolution of
(X, 0). For the purpose, we define elements of three types in C{x, y} (i.e., Laufer type,
contact type and odd type; see Definition 4.1 and 5.1 and 6.1). When Mg > Zg holds

on the minimal good resolution, such f is decomposed into a product of at most those
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three types of elements. Those three types of elements in C{x,y} correspond to Laufer
decomposition of E as follows: [Laufer type or 1 < E(L)], [contact type < E(c)| and
[odd type < E(o)].

In §4 (resp. §5), we characterize elements of Laufer (resp. contact) type in terms of
Puiseux pair (see Theorem 4.5 and 5.4). As an improvement of Theorem 1.2, we give a
lower bound for dimgH;(E(¢€),R) for e = L or ¢ (Theorem 4.9 (ii) and 5.9 (ii)). In §6,
we characterize elements of odd type in terms of Puiseux pair (Theorem 6.4). In §7, we

prove the main result of this paper (see Theorem 7.5).

Theorem 1.4. The relation Mx > Zx holds on the minimal resolution if and only if
[ has the Laufer decomposition [ = fir)fiqfie in C{z,y} (see Definition 7.1).

Moreover, if f = fz) fiq fo is the Laufer decomposition, then the w.d.graph for (X, o) is
constructed by suitable gluing of the w.d.graphs for z* = (. fiq (¢ = L and ¢) and 2* = f},,
where /. is a linear form (see Theorem 7.3). In §8, we give a numerical procedure from
the w.d.resolution graph A(f) (i.e., the weighted dual graph of the exceptional set plus
the strict transform o, 'C; see (2.4)) to determine whether Mz = Zg holds or not on

the minimal resolution (Procedure 8.2).

To close this section we like to state a problem. It is natural to look forward some

extensions of Laufer decomposition to the cases of multiplicity > 3.

Problem 1.5. Assume that (X,0) is a normal surface singularity with multiplicity = 3
and Mg > Zg. For the irreducible decomposition E = |J;_, E; of the exceptional set, we
put the ratio ; among the coefficients of Zr and Mg as v; := Coeff g, Mg/ Coeffg, Zp
for any i.

(i) What is the mazimum of {v;}?

(i) For the existence of a decomposition of E similar to Laufer decomposition by means
of {~i}, what conditions to (X,0) are necessary?

(iii) If (X,0) = {2" = f(x,y)} and ezists a decomposition of E as (ii), study the
Puiseux pairs of irreducible components of f(x,y) which give each subset (similar to
E(L),E(c) and E(o0) of the Laufer decomposition).

Notations and terminologies. In this paper, we always use the notations here.

Let f be a reduced element in C{z,y} and f = H f; the irreducible decomposition; also

we put (Cj,0) = ({f; = 0},0). We consider the following as the MGE (i.e., minimal
good embedded)-resolution of (C,0) = ({f = 0}, 0):

(1.1) (C%0) <<~ (W, F(1)) <2 ... &5 (Wy,F(N)) and 0 := 0,0+ 0 0.



5

Namely, F'UC is simple normal crossing, where F := F (N) and C := 0 'C is the strict
transform of C' by o. Let C; := o,'C; for any j and P; the center of o; (so P, = {o})
and F; := o; ' (P;) for any 4. The strict transform (opy1 0 --- 0 on) 7 F) (C Wy) is also

N .

denoted by Fj; thus F' = |J Fj. We represent the configuration of F'U C by A(C) or
k=1

A(f), and call it the w.d.resolution graph (see (2.4)). For a plane curve singularity (C, o),

let To(C)rea (or To(f)rea) be the reduced form of the tangent cone of (C,0). When f is
irreducible and {(mq,n1), -, (M), nec))} is the Puiseux pair of f, let us represent it
by Puisxz(C') (or Puisx(f)).

Moreover, we remark that the MSGE (i.e., minimal sufficiently good embedded)-
resolution defined in Definition 3.1 is used very often in this paper. If E, is a smooth
rational curve on a smooth complex surface and E? = —1, then it is called a (—1)-curve.
The maximal ideal cycle and fundamental cycle on the minimal (resp. minimal good)
resolution of a normal surface singularity (X, o) are denoted by My and Zx (resp. M, x
and Z,, x) respectively. In this paper, we consider that a non-singular point is a kind of
rational singularities. Then, for any resolution o : (W, F) — (C?, 0) of a non-singular

point, the maximal ideal cycle My and fundamental cycle Zp conicide.

2 Preparation for plane curve singularities
[Irreducible case] Assume that f is irreducible and o is the MGE-resolution in (1.1)

for (C,0). The figure of the w.d.resolution graph A(C') associated to F' U o, 'C is given
as follows (see [3, p.523]):

T C
__._@ ' """ - —a: :((C)-th Puiseux chain
(2.1) IF“(C» (:= Pycy(C))
o _._F e ... —e! : 2.nd Puiseux chain (:= P5(C))
. F (@) :
""""" e (g —e8
-— . J*S?U_. . 1-st Puiseux chain (:= P;(C)),

where Fiy C Wy for k = 1,--- L(C); Wy = W, for k; satisfying U,;I(Pki) Fu

(1= k; = N). Let us call Fiy the k-th Puiseux root of f for any k. We have mult(C, 0) =
€(C)
ord(f) = ] mi, where ord(f) is the order of f at the origin {0} € C2.
i=1
Here we remark that the intersection number CT,(C),eq = niyms - - -my for a suitable

coordinate of C?, but CT,(C),q depends on the choice of a coordinate. For example,

for (C1,0) = {2® +y> =0} and (Cy,0) = {(z +v*)? + y° = 0}, they are holomorphically

isomorphic; but C17,(C1)req = 5 and CoT,(C),eq = 4. However, we have the following:
(2.2) If ny < 2my, then CT,(C)req = nyms - - - my always holds.
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In fact, if o : (W, F) — (C?,0) is the blowing-up at the origin and put C; := o, 'C and
Ty := 0, T, (C)eq, then Cy intersects Ty transversally from ny < 2my; thus CT,(C)yeq =
(c*C)T1 = (mult(C o) F + C))T1 = mymg -+ -my + (ng — my)ma -+ my = nymy - - - My.

y =t 4+ 33 + 13}, Then, Puisz(C) = {(3,4),(2,11),(3,35)}. The w.d. (i.e., weighted
dual) resolution graph associated to the MGE-resolution of the curve singularity and the

multiplicity sequence (see [3, p. 517]) are given as follows:

Example 2.1. Let (C,0) be an irreducible curve singularity given by {z = ¥

C % 24=1-1846 F<1> = F4, F(Q) = F7, F<3> = F107
F, Fio Fs  18=3-6 \
O—D—3) 9=1-6+3 C) =Uis Fi

Pl( :U’LZ E’
bt 6=2:3  po)=ULE.

- R 3=1-2+1 i
1F43 ok 29_-9.1 P3(C) = U, i

Definition 2.2. (i) Assume that mult(C,o0) (= my - --mycy) is even. If my---my_y
is odd and my, is even, then we put m.p(f) (or mp)(C)) := my. Let us call mzp(f)
the LP-number (i.e., Laufer-Puiseuz number) of f or (C,0).

(ii) Assume that nymsg---mycy is even. If ny is even, then we define mpp,)(f) (or
mep](C)) == my and mep,)(f) (or mpep,(C)) == ni. If nymy---my_y is odd and my,
is even (k 2 2), then we define myp,(f) (or mpp)(C)) := my, for i = 1,2. Hence, if
ny is odd, then mp(f) = mpep,)(f). Let us call myp,(f) (vesp. mpp,(f)) the 1-st

(resp. 2-nd) contact-Puiseux number of f or (C,0). We abbreviate it as the cP;-number

(1=1,2) of f and use it in Theorem 5.4.

(il) mult.seq(C,0) := (ep,(C),- - ,epy(C)): multiplicity sequence of (C,0).
(iii) If my, = mprp|(C) (resp. mp,(C)) for ko = 2, then we put

Definition 2.3. (i) ep (C):=mult((cy0---00;_1);'C, P) for any P; (1 <i < N).

eir)(C) (resp. ep(C)) = Mygq1 - - - mycy if ko < £(C) else e (C) (resp. eq(C)) == 1.

If we assume that W;, = Wy, for k with 1 Sk S (C)and 1 Sy < --- < iyey) = N,
then we have the following (see [3, §8.4 |):

(
(i) ep, (C) =mult((g1 0004 1), 'C, Py) = Myy1 -+ - ey,

(2.3) (ii) Mpgr -+ Myl ep,(C) for any ¢ withl < < iy,

I —lk—1

(iii) the k-th Puiseux chain P,(C)in (2.1) = |J F,_ +e-
=1

\

For (C,0) in Example 2.1, we have i; = 4, i = 7 and i3 = 10 and mult.seq(C,0) =

(18,6,6,6,6,3,3,2,1,1); hence ep (C) = 18, ep,(C;) = 6 and ep.(C) = 3. More-
over, mipp|(C) = ma = 2, miep)(C) = mi = 3, mep,(C) = ny = 4, e(C) = 3
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and eyy(C) = 6. Since o is a resolution of (C?,0), the maximal ideal cycle Mp is

equal to the fundamental cycle Zr on F. We can see the following: <Coeft pMp>>:=
(Coeft p, Mg, - -+, Coeffp, . Mp) = (1,1,2,3,3,3,6,6,12,18). Also, P,(C) = L4J F;, P(C) =
7 10 =
iL:JSE and P3(C) = lL:J F;.

[Reducible case]

Proposition 2.4 (see [3, p.414, p.535]). (i) For two plane curve singularities (C1,0)
and (Cy,0), they are equivalent in embedded topology if and only if A(C1) = A(Cy), where
A(Cy) is the w.d.resolution graph fori=1,2.

(il) The multiplicity sequence is determined by the w.d.resolution graph.

Let oy be the MGE-resolution of (Cj,0) for j = 1,---,r. Moreover, let 7 be a
succession of blowing-ups such that o, o0& ;, gives the MGE-resolution o of (C, 0). From

the uniqueness of MGE-resolution of (C,0), we have oy 00y = -+ = 0¢y 0 Gy = 0.

Definition 2.5. Under the situation above, if Fj, (C W) is a Puiseux root of
(Cj,0) == ({fj =0},0) (1 £j <), then the strict transform (5;)); ' Fy (C Wy) is also
called a Puiseux root of (Cj,0). For the i-the Puiseux chain P;(C}) of (C}, 0) in W(;, put
Fy(C) (or Pi(f5)) = (63 ' Pi(Cy) (€ W) and L(Cy) == {§ € I'| Pi(Ce) N Pi(Cy) # 0}

for I :={1,---,7}. Letusdefine P(C;) (or P(f;)):= U Pi(C¢)fori=1,---,0;. We
§eli(Cy)
call B;(C;) (or Pi(f;)) the i-th Puiseuz chain of (Cj,0) in (Wy, F(N)). If F;, C Pi_1(C})

and F,, N P,(C;) # 0, then we call F}, the Puiseuz root of P,(C}).

Example 2.6. Assume that (C,0) := U( ,0) is given by local parametrizations:
(Cr,0) = {z = 1%y =5 +t13}, (O, ) ={z =15y =5+ t'} (C),0) = {z =
(—=1)it*y =t} for i = 3,4 and (Cs,0) := {x = 1%,y = t'* + 7}, Then, we can see that
Puisxz(Cy) = {(3,4),(2,13)}, Puisx(Cs) = {(3,4),(2,11)}, Puisx(Cs) = Puisz(Cy) =
{(4,7)} and Puiszx(Cs) = {(4,7),(2,17)}. Using the parametrization of (Cj,0) (j =
1,---,5), we can compute the MGE-resolution o : (W, F) — (C? 0) of (C,0), and
obtain the w.d.resolution graph A(C ) as follows:

C’Q* 0 >|< é5 *

N F
(2.4) @ Q- @ X @C@—(H 51114OF13
. 4 %
F F. F: F F5.
@1 O 4 @ 3 ijlo D 11 @ 2

If we put A(C;) := {k | F is a Puiseux root of C;}, then A(C}) = {4,8}, A(Cs) = {4, 9},
A(Cs) = A(Cy) = {11} and A(Cs) = {11,14}. For the Puiseux chains, P,(Cy) = --- =




.ﬁ«%):(GFDUFmUEhﬁMCQ:J%K@::GlﬁmﬂﬁMCQ: élﬁlnmﬁﬁmm
the root ofl}i(Cl) (resp. Py(C5)) is equal to F} Z(;Zsp. Fip) and so 0;17.12

Definition 2.7. (see [3, p.506]). If f is irreducible, then there exists a unique total
order among {Fy,--- , Fy} according to the order of blowing-ups. If f is reducible (i.e.,
r > 1), then the strict transforms of all irreducible components of (C,0) are separated
by 0. For C; := 0;'C; (1 £ j £7), we define the following.

(i) Define the partial order among {F},--- , Fy} according to the order of blowing-
ups. Moreover, if C’j N Fy, # 0 in Wy, then define the order by Fy, < C'j. The partial
order among {Fy,- -, Fiy, Cy, -+, C’T} is called the standard order, which is indicated by

“<”. This partially ordered set has only one minimal element F; (= o;'({0})).

(ii) mult.seq(f) (or mult.seq(C)) := (ep,(C),--- ,epy(C)), where ep, (C) means the
multiplicity of (010 -00y_1);'C at P, (2 <k < N) and ep, (C) := mult(C, 0).

(iii) <Coeffp,(g)>:= [Coeffp, (go0)pn), -+, Coeffp, (go0) pn)] for any g € C{z, y}.

Example 2.8. For (C,0) of Example 2.6, the standard order among {F;}1<i<o4 U

{C;}1<j<5 is given as follows:

F4<F5<FGAFQ<C2 ~
R <F<R VR B <O
T Fl(] —</(F11 < F12 < F13 < F14‘< 65.
C13 )\614

Then, mult.seq(C;) are given as follows: (6,2,2,2,2,2,1,1,0,---,0) for j =1; (6,2,2,2,2, 1,
0,0,1,0,---,0) for j = 2; (4,3,1,0,---,0,1,1,0,0,0) for j = 3,4; (8,6,2,0,--,0,2,2,2,1,1)
for j = 5; also mult.seq(C) = (28,16,8,4,4,3,1,1,1,4,4,2,1,1). For general o, 5 € C
and f € C{z,y},

<Coeff ., (az + By)>=[1,1,2,3,3,3,3,6,6,3,4,4,4, 8] and

<Coeff i (f)>= [28, 44,80, 112, 116, 119, 120, 240, 236, 128, 176, 178, 179, 358].

Assume the situation of Definition 2.5. Let F; be a Puiseux root of an irreducible
component of (C,0) = J,_,(C;,0) and define
(2.5)  Jg, :={j € 1| F¢ is a Puiseux root of C;} and D(F¢) := | Cj
]‘GJF5

where [ := {1,--- ,r}. Then we can easily see the following (see [3, p.512-529]).

Lemma 2.9. Under the situation above, if Fy, < Fg, then ep (D(F¢)) = > ep,(C}))
JeJF,

is divisible by ep, (D(F)).
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In (2.4), Fy; is a Puiseux root of C3 and Jp, = {3,4,5}; also ep,(D(F11)) =
5
> ep,(C;) = 4. From the computation in Example 2.8, we have ep (D(Fi;1)) = 16,
j=3
€P2(D<F11)) = 12, €p3(D(F11)) =8 and €p10(D(F11)) =4,

Definition 2.10. Under the situation of Definition 2.7, let F, (C Wy) be a Puiseux
root of C; (1 < j < r) and 7 a linear form in C{z, y}.

(i) Fi, is called the n-root of Cj if Coeffr, (70 0)r) is even and Coeffr, (10 0)pv) is
odd for any Puiseux root F} of C; with Fj, < Fj,.

(ii) £}, is called the Laufer root of C; if F, is the (ax + py)-root of C;, where «, 5 are

general elements in C.

(iii) F}, is called the contact root of C; if F; is the f-root of C;, where ¢ is a linear
form with 75,(C})req = {¢ = 0}.

(iv) The n-root of Cj is denoted by Fj,(C;); also the Laufer (resp. contact) root of C;
is denoted by Fizj(C};) (resp. Fig(Cj)).

In Example 2.6, we have T,(C),eq = {y = 0} and <Coeffr, (y)>=[1,2,3,4,4,4,4,8,8,
5,7,7,7,14]. From this and computations in Example 2.8, we can easily check that
Fip(Ch) = Fs, Fiy(Cy) = Fy and Fig(Cy) = Fig(Cay) = Fy; also Fipy(C;) = Fyy for
Jj =3,4,5 and F4(Cs) = Fi4. However, C3 and Cy have not the contact roots.

Definition 2.11. Under the same condition as Definition 2.10, consider two different
irreducible plane curve singularities (C;,,0) = ({fi; = 0},0) and (C;,,0) = ({fi, = 0}, 0).

(i) If Fy(Ci,) = Fpy(Cy,) for a linear form 7, then we say that C; and Cj, are 7-

[n] [n]
equivalent and denote it by C;, ~ C;, (or fi, ~ fi,).

(i) If Fiy(Ci,) = Fiy(Cy,) (resp. Fiq(Ci,) = Fig(Ci,)), then we say that Cj and
C;, are Laufer (resp. contact) equivalent and denote it by C;, [ri] Ci, or fi [i] fi, (resp.
Ci, E Ci, or fi, ,[ﬂ fin)-

(iii) For any j in I :={1,--- ,r}, we define the following:

1)) or T(£) = {€ € 1| Ce % €y} and Diy(Cy) (or Dy (fy) = .U G
HalCy) (or Talh) = {6 € T1 G~ €}

and Dy(Cj) (or Dig(f;)) : = U Cefore=Lorec.
EET(Cy)

(L] (L] []
In Example 2.6, C3 ~ C4y ~ (5 and the Laufer root is Fi;. In addition, C; ~ C5 and

the contact root is Fy. From (2.3) and Definitions 2.3 and 2.11, we can see the following,.
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Lemma 2.12. Let n be a linear form with n{ f and L, := {n = 0}. For any j, we
have the following (see Definition 2.3 (iii) for e;r)(C;) and e (C;)).

(i) If L, & To(C)req, then

Dyy(Ci)Ly = 32 mult(Cg,0) = ma(C5) - - -mrp(C5) Y eqr(C).
£l (Cy) &el(Cy)
(ii) If L,, = T,(C)pea and ny(C;) < 2my(C)) for any j, then
n(C)) > eq(Ce)if ni(Cy) is even,

§€lg(Cy)

Dy (C5) Ly = nl(Cj)W(Cj)"'m[cPi](le Z( )6[ 1(Ce) if ni(Cy)ma(Cy) -+ - my—1(Cy)
el(C;

| 15 odd and mi(C)) (= mep(C))) is even, wherek 2 2 and i =1,2.

Let h = H h; be the irreducible decomposition of a reduced element h of C{z,y}. Let

¢ be a llnear form with £ 1 h and L, := {¢ = 0}. Let (C,0) (resp. (C,0)) be the curve
singularity defined by ¢h = 0 (resp. h = 0) and (C},0) := ({h; = 0},0) for any j. Let
(C?,0) <& ... &5 (Wy, F(N)) be the MGE—resolutlon of (C,0).

Definition 2.13. Under the situation above, let P, be the center of o, and F} :=

0. '(P,) C Wi (1 £k £ N). For simplicity, (o441 00 0;);1Fy is also denoted by
N

F}, for any ¢ with £ < ¢ < N; thus F(N) = |J F;. For any k with 1 < kK < N and

i=1
0 :=o010---00y, we define following integers:

A[Fy] := Coeff g, ((€h) o 0) p(ny, L[Fi] := Coeffp, (£ 0 o) p(ny and

Y[Fy] := Coeflp, ((ax + By) o o) p(w), where a, (8 are general elements in C.
If Ly & To(C)prea, then ([Fy] = ~v[Fy] for any F, C F(N). However, we remark that if
(Wx, F(N)) < (W', F') is the blow-up at Q := Fi No; 'L, and Fpy; := 774Q), then
([Fyra] = 2 and y[Fj] = 1.

We have A[F] = ord(h) + 1 and ¢[F;] = 1. Also, we can easily see the following:
(26)  AlFi] = > AlF]+ep(C)+en(Le) and ([Fi] = 3 ([F] +ep (L),

PyeF; Py eF;

where ep (C) = Z ep, (C}); also ep, (Lg) :=11if P, € (010 00%_1); "Ly else ep (L) :=

0. For the i-th Pulseux chain E(Cj), we can easily see the following:
if F§17F€2 C R(OJ) satisfy F§1 N F& #* () and Ffl =+ F&,
then ~[Fg, | or v[Fg,] is odd.

Throughout of this paper, we need several discussions on the relations between the

(2.7)

multiplicities of branch locus and orders A, ¢ and + in the resolution process.
Let Fi,- -+, Fi) be irreducible components of F(N) with Fry < C'j for any j. In
general, it might be happend that there exists different 4, j with k(i) = k(j). Hence, for
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Fyy, -+, Firy, not all of them are different. The strict transform of C onto W, is also

represented by C. Now we shall state the following simple one.

Lemma 2.14. Under the situation of Definition 2.13, let j and Fy;) be as above. For

this j, the following two conditions are equivalent.

(i) The relation N[ Fy,] = ([F}] mod 2 holds for any k with Fy, < Fj).

(ii) The multiplicity ep,(C) is even for any k with Fy < Fyj) -

Proof. As seen in Definition 2.7 (i), F} is the minimal for the order <. By definition,
we have A[F1] = ord(h) + 1 and ¢[Fy] = 1. Hence it follows that A\[F}] = ¢[F}] mod 2 if

and only if ep, (C') is even. The assertion is induced from the induction on the standard

partial order by using the relations (2.6). Q.E.D.

Proposition 2.15. Under the situation of Definition 2.13, if ord(h;) is even and
Fig(h;) exists for any j, then the following three conditions are equivalent.

(i) For every h;, A[Fy] = ([F},] mod 2 for any k with Fy, X Fig(h;) on the standard
order and the (-root Fig(h;) of h;.

(ii) For every hy;, ep (C) is even for any k with Fy, < Fig(h;).

(iii) For every h;, ep, (D (C))) is even for any k with Fy, < Fig(h;).

Proof. (i) & (ii) If we put Fjy(;) := Fjg(h;), then the assertion holds by Lemma 2.14.

(ii) = (iii) We put g¢ := [[ h; and so h = f[ ge, where I = Ijg(hy,) U -+ U Tig(hs,)

JE€ g (he) &=1
(disjoint union). We prove the assertion by induction on s. If s = 1, then h = ¢
and thus ep, (Dyj(h1)) = ep,(C) is even by (ii). Assume that the assertion is correct in
the (s — 1)-th step, and consider the s-th step. Let Fj(h;,) be a maximal /-root with
respect to “=< 7. It means that there does not exist h; with Fig(hs,) < Fjg(h;). It always
exsists, even if it is not unique. Put Fy,) := Fig(hi,) and Py,) = 04i,)(Fi,))- Then,
epy.,, (Dig(hiy)) = epg(il)(é’) because Fi;,) is a maximal £-root. Hence, ep,,  (Dig(hi,))
is even by (ii). From Lemma 2.9, ep, (Djg(hi,)) is even for any k with Fj, = Fig(hi,).
If we put (C’,0) := ({g2---gs = 0},0), then ep (C') = ep,(C) — ep,(Dyy(hi,)) is even
from (ii) and the above. Namely, for any j € LSJ Iig(hic), ep, (C") is even for any k with
=2

Fy, = Fg(h;). From the hypothesis of induction, ep, (Dyj(hs,)) is even for any £ and &
with I, < Fig(hi) (22 & S s).

R _ [4]
(i) = (ii) Put A(Fy) = {j | Fx < C;} and A(Fy) := {ju, -+ ,Jjm € A(Fy) | Cj, % Cj,

if 1 £¢&<¢=m}. Then, ep (C)= > ep(Dy(Cj)). Hence, (ii) is obtained from
Je€A(Fy)

(iii). Q.E.D.

3 Covering resolutions for normal surface double points
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In this section, we explain covering resolutions over the MSGE-resolutions for normal

surface double points. Moreover, we describe some facts under the condition of Z% = —1.

Definition 3.1. Under the situation of (1.1), when D; and D, are different two
irreducible components of F'(N) U (O C}), we put P(D;, D;) := D; N D; if D; N D; # 0.
Put ¥ := {P(D;,D;) € Wy| Coefzf:;i(f o 0)w, and Coeffp (f o 0)w, are odd}. Let
(W, F(N)) ¥
points in ¥. Though there are many choices on successions of blowing-ups (C?,0) <~

L (W, F(N)), the composition map & := oy 0 --- 00z : (Wg, F(N)) — (C?,0)

LS (W, F(N)) be the succession of one time blowing-ups at all

is uniquely determined by f. We call 6 the MSGE ( i.e., minimal sufficiently good
embedded)-resolution of (C,0) = ({f = 0},0). In [5], such resolution plays a very

important role.

For 6 above, consider the covering resolution of a normal double point (X, 0) = {z? =
f(x,y)}. Let p: X — C? be a double covering map induced from C* — C? given by
(x,y,2) — (x,y). We have the following diagram (see [5], [19, p.139)]):

oxid
(C3 WNX(C
U U
oy (X0 X 2 (%)
pl A ‘P'Xl A
(€2, 0) T Wy, F(N))

where X' is the fiber product X xc2 Wy and ¢ := ¢ X id|x is a birational morphism
and ¢9 is the normalization map. Since & is the MSGE-resolution, X is non-singular
and @x is a holomorphic double covering map. Also, 7 := ¢ 0 ¢ : (X ,E) — (X, 0)
is a good resolution and we call it the covering resolution over &; put C = (6);1C for

(Ov O) = ({f = O}’O)‘

Lemma 3.2. ([5, p.107-108)). Put E; := (px);'F; for the map ox in (3.1). Also,

put \; := Coeffp, (f 0 6) s for any i and A= |J F;. Then
1 A;:odd
(i) if A; is odd, then E? = 5 2
(i) if \; is even and F; does not meet AU C, then, E? = F?;

(iii) if \; is even and F; meets AUC, then, E? = 2F?.

Lemma 3.3. (see [19, Lemma 3.1) Let G be an irreducible component F; or C; in
supp((f o 0)w) and G, an irreducible component of the strict transform (ox):1G in
(3.1). Let My (resp. M) be the mazimal ideal cycle on F (resp. E). Then

(i) wvg,(z07) =vg(fod)/ged(2,vg(f o)) and
vg,(godopx)=2vg(g00d)/ged(2,va(f o)) for any g € C{z,y} ;
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(ii)  Coeffp, Mz =2 Coeff , Mp/ged(2, vp,(f 0 6)) for E; := (px); ' Fi.

Lemma 3.4. ([21, p.426]). Let 7 : (X,E) — (X,0) be a resolution of a normal
surface singularity. Let Dy and Dy be two anti-nef cycles on E (i.e., D;E; < 0 for

any irreducible component E; of E and j = 1,2) with Dy £ Dy. Then D? = D3, and
Dy = D, if and only if D3 = D3.

In the following, let (X,0) be a normal surface singularity with Z3 = —1. Let 7 :
(X, E) — (X, 0) be a resolution and E = |J E; the irreducible decomposition.
j=1

Definition 3.5. Let D be an anti-nef effective cycle on E. If E; satisfies DE; < 0, then
we call B; a D-negative component. Since Z3% = —1, there exists a unique Zg-negative

component F, on E satisfying Coeffp, Zp =1 and ZgF, = —1.

Lemma 3.6. Assume that there is an anti-nef effective cycle M with M? = —2 on E.
If we put Zy := M — Zg and A := supp(Z;), then we have the following.

(i) Z3=-1,ZpZ1 =0, MZg =MZ, = —1 and Z,E; £ 0 for any i (# «).
(ii) B, ¢ A, Coefftg, M =1, ME, =0 and Z, E, = 1.
(iii) A is a connected set with Za = Zy, and M < 2Zg.

Proof. (i) Since —2 = M? = Z% + 2ZpZ, + Z%, we have Z? = —1 and ZgZ, = 0.
Since 0 = ZpZ) = Zg(M — Zg) = MZg — 7% = MZg + 1, we have M Z = —1. Hence,
MZ, =—1and Z1E; = ME; £ 0 for any i (# «).

(i) If B, C A, then 0 = ZgZ, < ZgE, = —1 (contradiction). Thus, E, ¢ A and so
Coeftg, M = Coeffg, Zrp = 1; thus Z1E, =2 0. If Z1E, = 0, then Z; is an anti-nef cycle
on E from (i). Then, Zp < Z; and so E, C A. This contradicts to the above. Hence,
Z1E,>0andso —1=42gE,=ME, — Z1E,; thus ME, =0 and Z1 E, = 1.

(iii) Let A = kL_Jl A(k) be the disjoint union of connected components. Then, k; Zawy S

Zy from (i) and (ii); thus —s 2 zs: Zf‘(k) > 7% = —1. Then, s = 1 and A is connected.
From (i), Z1FE; = ME; £ 0 fork:alny E; with ¢ # a. Since E, ¢ A by (ii), Z; is an
anti-nef cycle on A and so Z4 < Z;. From (i), we have —1 = Z? < Z% < 0 and
Zy = Zy £ Zp by Lemma 3.4, and so M < 2Zp. If M = 2Zg, then it yields a
contradiction: —2 = M? =472 = —4. Hence, M < 2Zp. Q.E.D.

Proposition 3.7. Assume that 7 is the minimal or minimal good resolution.
(i) If there exists an anti-nef effective cycle M on E with M? = —2, then A =
supp(M — Zg) is not contracted to a rational singularity. Here, a nonsingular point is

considered as a kind of rational singularity.

(ii) When (X, 0) is a normal double point, Mx = Zx if and only if M, x = Z, x .
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Proof. (i) For Z; and A in Lemma 3.6, assume that A is contracted to a rational
singularity (Y;0). Thus, mult(Y,0) = —Z% = —Z = 1 by Artin’ result ([2]). By a
succession of contractions of (—1)-curves 7 : (X, E) — (X, E) and Lemma 3.6 (ii), Q :=
7(A) is a non-singular point on X with Q € 7(E,). As a corollary of intersection theory
(for example, see [6, p.386-395]), we can see that if o : (W, F) — (C?, 0) is a succession of
blowing-ups, we have mult(C,0) = Zro,'C for a curve singularity (C,0) = (1(E,), Q).
Therefore, from muth(E) = ZuE, = Z,E, = 1, E is simple normal crossing. This
contradicts to the assumption that 7 is the minimal or minimal good resolution.

(ii) Since “if "part is obvious, we prove “only if "part. Assume that My = Zy. If
Mo x > Zox, then M2y = —mult(X,0) = —2 < Z2y = —1 from Theorem 1.1 and

21, Theorem 2.7]. From (i), A is not contracted to a non-singular point on the minimal

resolution space. This contradicts to My = Zyx. Q.E.D.

Lemma 3.8. Assume the same situation as Lemma 3.6.

(i) There exists a unique irreducible component Eg of E with M Eg = —1 and Coeff g, M
2. Especially, Eg is the M-negative component of E.

(ii) Ep # Eu, ZpEs =0 and Coeffp, Zp = 1.

Proof. (i) Assume that there exist different two M-negative components Eg, and Eg,.
Then, M Ez, = —1 and CoeffEBiM =1 for i = 1,2. From CoeffEBi Zp = CoeffEBiM =1,
we have ZpEp = Ej + (Zp — Ep,)Es, < Ej + (M — Eg,)Eg, = MEg,. This yields
a contradiction: —1 = Z% < Zp(Es, + Es,) £ MEg + MFEs, = —2. Hence the M-
negative component Eg exists uniquely. If M Eg = —2, then Coeff g, M = Coeffg, Zp = 1
and so it yields a contradiction —1 < ZgFEz < MEz = —2. Hence, MEz = —1 and
Coeftp, M = 2.

(ii) From Lemma 3.6, we have Coefty, M = 1. Then, E, # Ej from (i) and so ZgEjs =
0. Here, assume that Coeffp, Zp = 2. From (i), we have Coeftp,M = Coeftp,Zp = 2.
This yields a contradiction : 0 = ZgEg = 2E5+ (Zp —2Eg)Es < 2E5+ (M —2Eg)Eg =
MEg = —1. Thus, we have Coeffg,Zp = 1. Q.E.D.

Lemma 3.9. Put Zy :=2Zp— M on E (so Zg = Z1 + Z3) and B := supp(Zs).

(i) ZoEs =1, ZyE, = =2, Es ¢ B and Z3 = —2.

(ii) B is a connected set and Zg = Zs.

Proof. (i) By Lemma 3.8, ZyFEs = 2ZgxFEs — MEg = 1 and Coeffgp, M = 2 and
Coeftp, Zp = 1; thus Ejp ¢ B from the definition of Z;. From Lemma 3.6, ZoF, =
27pE, — ME, = —2. Since MZr = —1 by Lemma 3.6 (i), Z3 = —4MZp — 6 = —2.
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(ii) Let B = U B(j) be the decomposition of connected components such that E, C
j=1

2
B(1). Since Z7 = —2 by (i), we have that s < 2 and Zp = ) Zp(j). Assume that
j=1

B(2) # (. Since Z1E; = 0 for any irreducible component E; of B(2), we have 0 =
ZpE;, = (Z1 + Zy)E; = ZoF; = (225 — M)E; = —ME; 2 0 and then Z,F; = 0
for any E; C B(2). This is a contradiction and so s = 1. Thus B is connected. If
Z% = —1, then B = E. This is also a contradiction and so Z3 = —2. Hence, we have

—2=72<7%=-2andso Zy = Zg. QE.D.

Definition 3.10. From Lemma 3.6 (iii), we have Zp < Mg < 2Zg. For the irreducible
decomposition £ = U E; and I := {1,--- ,n}, we put I(L) := {i € I | Coeftg, M =
2 Coeftg, Zg}, 1(0) == {z € 1| Coetfg, M = Coeffg, Zg} and I(c) := {i € I | Coeffg, Zp <
Coeffg, M < 2Coeffg, Zg}, where I = I(L) U I(c) U I(o) (disjoint union). Let us define
the three subsets of E as follows: E(L) := |J E;, E(c):= UE; and E(o):= | E;.

i€I(L) i€l(c) 1€1(o)

Though Es C E(L) and E, C E(0), E(c) may happen to be empty. In this paper, E(o),
E(c) and E(L) are called the odd part of E, the contact part of E and the Laufer part of
E respectively. Also, we call E = E(o) U E(c) U E(L) the Laufer decomposition of E.

Theorem 3.11. Under the situation above, if we put E(e) :== E(e)\Eg for e = L and
o0, then we have the following.

(i) E(L) and E(o) are connected sets; also E(c) is a connected set if E(c) # 0.

(ii) If E(c) = 0, then E,E(L) = EzE(0) = 1; hence, the rough shape of the w.d.graph

of E is given as follows:

(3.2) E(O)

(iii) If E(c) # 0, then there exist irreducible components E,,,Es C E(c) satisfying

the following conditions:
(ili-1) E,E., = E3Ep, = 1;also it may happen to be E,,, = Ej,.
(ili-2) E(o)NE(c)=E,NE,, and E(c)NE(L) = EzgN Eg,.
(iii-3) Coeftg, M = Coeftg, Zp + 1 and CoeffEﬁ =2 CoeffEﬁl Zp— 1.
(iv) If E(c) # 0, then the rough shape of the w.d.graph of E is given as follows:

E<o>1-"1"£> E<L>1§

(3.3)
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Proof. Let Z) := Mg — Zg, Zy :== 275 — Mg, A :=supp(Z;) and B := supp(Zs) as
Lemmata 3.6 and 3.9.

(i) By Lemmata 3.6 and 3.9, E(o) N A = E, N A (resp. E(L)N B = EzN B) is one
point; also A and B are connected. Hence E(L) and E(o) are connected. If E(c) # () and
E(c) is not connected, then A and B are not connected. This contradicts to Lemmata
3.6 and 3.9.

(ii) If £; C E(o) with i # a, then E; # Eg from E; ¢ E(L) and so Z;E; = 0. Thus,
Z\E(o) = Z1E, = 1 from Lemma 3.6 (ii) and so E,FE(L) = 1. If E; C E(L) and
E; # Eg, then E; # E, from E, ¢ E(L) and so ZyE; = 0. Then, ZoE(L) = ZyEz = 1
from Lemma 3.9 (i) and so EgE(0) =1 .

(iii) Since E(L) = U E;, E(c)= U E; and E(o) = |J E;, we have Z1E; =0

Ei¢B E;CANB E;ZA
for any E; C E(o)\E,. Since Z1E, = 1 by Lemma 3.6 (ii), there exists a unique
irreducible component E,, of A satisfying Coeffs, Z1 = 1 and E,F,, = 1. Hence,
E(c)NE(o) = ANE(o) = Eu, N E, is one point. Therefore, Coeffp, M = Coeffp, Zr+
Coeftp, 7, = Coeftp, Zp+1. If E; C E(L)\Ep, then E; # E, from E, C E(0), and so
ZyE; = 0. Since ZyE3 = 1 by Lemma 3.9 (i), there exists a unique irreducible component
Ep, of B satisfying Coeffp, Zs = 1 and EgEls, = 1; hence E(c)NE(L) = BNE(L) = EgN
Ej, is one point. Therefore, CoeffEBIM =2 Coeﬂ?Eﬁ1 ZE—CoeffEB1 Zy =2 Coeﬂ?Eﬁ1 Zp—1.

(iv) follows easily from (i)-(iii). Q.E.D.

In the following, let (X,0) = {22 = f(x,y)} be a normal double point and f = f[ f
the irreducible decomposition. Assume that ord(f;,) is odd (1 < jo < 7). Thejr_llext
construction of the MSGE-resolution (see Definition 3.1) of (C,0) := ({f = 0},0) is

useful in the following.

/

(i) F:=o07%{0}) and P, =: F N (01);1C, for (Cjy,0) == ({fj, =0}, 0),

(3.4) (ii) (Wi, F(1)) <2 (Wy, F(2)) is the blowing-up at P, and Fy := a5 *(P),
(iil) (Wa, F(2)) <& --- & (W, F(N))is a succession of blowing-ups such

that 6 := 0y 0--- 00y is the MSGE-resolution of (C, o).

\

Let us put Fj, := ak_l(Pk) for the center Py of oy, and (oy 0+ 00g);  F} is also denoted
by Fr (1 <k < N)and F:= F(N); hence F = ij F. Let 7 : (X, E) — (X, 0) be the
covering resolution over 6. Put E; := (px); ' F; fko:rlany F; ¢ F(N) and ¢x of (3.1); also
(Cj,0) = ({f; = 0},0) for any j.

Proposition 3.12. Under the situation above, if we put 1, := {j € {1,---,r} |
ord(f;) is odd} and fuey == 11 f;, then we have the following.

Jj€lo
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(i) Ey is a smooth irreducible rational curve which is the Mp-negative component of
E and E, C E(L) Moreover, we have MzEy, = —1 and ZzE; = 0.

(i)  To(fuoy))rea s a single line. In particular, oo and Fy are uniquely determined by
f(z,y).

Proof. (i) From [19, Proposition 3.3, we have Mz = (ax + Sy)z for general elements
a, of C and E satisfies MzE; < 0. Since Coeffp (f o )z = ord(f) is odd and
Coeft i, ((vx+py)od) z = 1, Ey is a smooth irreducible rational curve and Coeff g, Mz = 2
from Lemma 3.3 (ii). Thus we have M? = —2 and ME, = —1. Hence, E is the Mp-
negative component. From Theorem 3.11, we have F; C E(L). Hence, E; is not the
Z z-negative component and so Z;E; = 0.

(ii) Let fj,be any irreducible factor of fi,)y. Let Fj, be the irreducible component of
F(N) with E;, 0 (¢x)7'Cy, # 0 for Ej, := (ox)7'Fy, where Cj, := (5)7'C},. From M.
Noether’s Theorem ([3, p.518]) and the assumption, we have

Coeftr, ((ax + By) 0 6)p = ord(fj,) =1 (mod 2)

and
Coeftp, (fod)p=ord(fo f;,) =0 (mod 2).

Therefore, Coeff;,, My should be odd by Lemma 3.3 (ii). Since Coeffy, My is even
for any E; C E(L), the component E; should be contained in E(c) U E(0). Now
we assume that there exist mutually distinct functions f; and f; in fy)) such that
To(f1)rea # To(f2)rea- Then the component E; = Ej intersects at least two points with
the component in E(c) U E(o0). This contradicts the configuration (3.2) or (3.3). Hence,

we have the assertion. Q.E.D.
From Proposition 3.12 (ii), we can easily see the following.

Theorem 3.13. For a normal double point (X,0) = {z* = f(z,y)} and f =[] f;
j=1

the irreducible decomposition, we assume that there are at least two irreducible factors
fi and fy of f such that ord(f) and ord(fy) are odd and T,(f1)rea # To(f2)rea- Then,
Z3% = —2 and so Mg = Zg for any resolution space (X, E) of (X, o).

Proposition 3.14. Assume 7% = —1. Let (X, E) SN (X, 0) be the covering resolu-
tion over the MSGE-resolution 6 of (C,0) constructed in (3.4). Then,
(i) Coeftp,(f od)p is even,
(ii) E, is the Zz-negative component of E and so By is an irreducible curve,
(it)) if we put K(c) :=={k € {1,--- ,N} | (630---005)(Fx) = Fy N Fy in Wy}, then
E(¢)= U E

keK(c)
Proof. Let us note that F3 is uniquely determined from f by Proposition 3.12 (ii).
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(i) Suppose that Coeffp,(f o )z is odd. Consider the diagram (3.1) for this case.
Since Coeffp, My = 1, we have Coeff g M = 2 from Lemma 3.3 (ii), where Ej is any

irreducible component of E;. First, assume that Coeffg, Z; = 2. From the definition

. N Lo
of E(o), we have Ej C FE(o0). Let |J F; be the union of all components which are
i=3

contracted to Fy N Fy by o350 --- 00y, (fg £ N). Then we have Coeff s, Mz > 2 for any i
with 3 =i < {y. From Lemma 3.3 (ii), we have

(3.5) Coeft g, Mz 2 2 for any i with 3 =i < 4.

Since By C E(L) and E, C E(0), there is the Zz-negative component Ej, in ioj E;
by Theorem 3.11. Hence, Coeffp, Mz = 1 from Lemma 3.6 (ii); this con‘cradiét:s3 to
(3.5). Second, assume that Coeffr; Z; = 1; thus Ey C E(L). Let fj, be an irreducible
factor of f such that ord(f;,) is odd, and Cj, = {f;, = 0}. Since (W, F) is the
MSGE-resolution space of (C,o0), there exists an irreducible component Fj, of F with
Fj, N Cy, # 0, where C}, := 67'C},. Since Coefféjo(f o6)w, = 1, Coeffp, (fo0)p is
even. Hence, Coeffp, My = Coeffp, My from Lemma 3.3 and Coeffp, My = ord(f;,)
from M. Noether’s theorem; thus Coeff;; M is odd. On the other hand, Ej and Ej, are
contained in a same connected component of £\ By from Theorem 3.11, and E} ¢ E(L).
Thus, we have E;, C E(L) by Theorem 3.11. Hence, Coeffp; M, is even. This yields a
contradiction. Therefore, Coeffp, (f 0 &) is even.

(ii) Since Coeffr, My = 1 and (i), we have Coeffg My = Coeffp, Z; = 1 for Ej :=
(px);'Fy from Lemma 3.3 (ii). Hence, we have E} C E(0o). Assume Fy N Fy N
(01005).'C = 0 on W,. Then, Ey N E} # 0 and E; ¢ E(L) from Proposition 3.12
(i). Since Coeffp(f 0d)s is odd and Fy N Fy # 0 in W, E} is irreducible (i.e., B} = Ey)
in this case. From (i) and Coeffp, M = 1, we have Coeffg, Mz = 1 and so E C E(o).
Hence, E(c) = 0 and E, is the Z s-negative component by Theorem 3.11 (ii). Assume

FinFN(oo 02);10 # () in Wy If we take a succession of blowing-ups o3, -+ , 0y, in

Lo
(i), then J F; intersects at one point of F; for j = 1,2. From the construction, we can
1=

3
easily see that Coeffp M = 2 for any ¢ (3 = ¢ < ¢y). Hence, Coeffy, M = 2 for any ¢

Lo
(3 <1 = {y) by Lemma 3.3 (ii). If £ is not the Zz-negative component, then |J E; con-
i=3

tains the Z;-negative component E;, from E} C E(0) and Theorem 3.11 (3 < ig < o).
Thus, Coeffp, My = 1 from Lemma 3.6 (ii) and this contradicts to Coeffp, My = 2.
Hence, E is the Zz-negative component. By the uniqueness of Z-negative component,
E, is irreducible (i.e., F) = E»).

(ili) Since Ey (resp. Es) is the My (resp. Zz)-negative component by Proposition
3.12 (i) (resp. Proposition 3.14 (ii)), (iii) follows easily from Theorem 3.11 (iv) and the
construction of (X, F). Q.E.D.
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Assume that Z3 = —1. From Theorem 1.3 (i), ord(f) is odd and there exists fj, such
that ord(f;,) is odd. Let Lo := T,(fj,)rea and ¢ a linear form with Ly = {¢ = 0}. Let
&: (Wg, F(N)) — (C?,0) be the MSGE-resolution of (C, 0) := ({f = 0}, 0) constructed

in (3.4) and 7 : (X, E) — (X, 0) the covering resolution over &.

Definition 3.15. Under the situation above, let E = E(L)UE(¢)UE(0) be the Laufer
decomposition of £ with respect to M, where E(L) # § and E(o) # § and E(c) may
be empty. Put F(e) := @x(E(e)) for € = L, ¢ or o, where @y is the map in (3.1). Let
I(e):={jel](5)'C;nF(e) #0}. Let us define elements of three types in C{z,y} as
follows: fio ;= [[ f; and fig:= [[ f;if I(e) # D else fiq :=1for e = L or c. Since

J€I(0) Jel(e)
I'=1(L)ul(c)ul(o), we have f = fir)figfio]- We call it the weak Laufer decomposition

of f. Further, fi1), fiq and fig are called the Laufer factor of f, the contact factor of f
and the odd factor of f respectively.

Proposition 3.16. Under the same situation as Definition 3.15, let f = fir) fie fo be
the weak Laufer decomposition of f. Then, we have the following.

(i) For any irreducible factor f; of fir), ord(f;) is even.

(ii) ord(fiq) is even and ord(fi,)) is odd.

Proof. (i) Assume that there is an irreducible factor f;, of f) such that ord(f;,) is odd.
Put C}, := (6);{f;, = 0}. Let F}, be an irreducible component of F satisfying Fj, N
Cj, # 0. Since Coeffp,, My = ord(fj,) is odd and Coeff, (f o 5)z is even, Coeffp, M
is odd by Lemma 3.3. This yields a contradiction because of Ej;, C E(L).

(i) If fig = 1, then ord(fy) is odd from the discussion in (i). Thus, assume that
fig # 1. Put (Cyq,0) := ({fig = 0},0) and é[e] = (0);'Clq for e = L, ¢ and o. Also,
put d := ord(f), diq = ep,((01);'Clq) for € = ¢ and o. Then, Coeffr, (f 0 01 0 09)w, =
Coeftp, (f 0 0)w, = d, and Coeff,(f 0 01 0 02)w, = Coeftp,(f 0 6)w, = d+dig + djg is
even from Proposition 3.14 (i). From Theorem 3.11, Ey N (E(L)U E(c)) is one point and
put it Q. Thus, ¢x|g, : Fo—F, is a double covering map which ramified at ). Put
p:i=030---0050px and so ) 1= #(Q) = Fy N Fy € W,. Then, @ is a branch point of
a double covering map @|g, : Fa—F,. From Proposition 3.14 (iii), d|q is equal to the
intersection number I (Fy, (01 0 02);'Clq). Since @ is a branch point of p|g,, we have
the following:

(3.6) d+dyy = Ig(Fs, dFy + (01 0 09);'Cly) is odd.
In fact, if it is even, @|p, does not ramify at Q; it yields a contradiction. Hence, djg is
even and dj, is odd. Q.E.D.

From the shape of the exceptional set E in Theorem 3.11, we derive the following

properties for the branch curve singularity ({f = 0}, 0).
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Proposition 3.17. Assume the same situation as Proposition 3.16, and let f = [] f;
j=1
be irreducible decomposition. Then, we have the following.

(i) To(fio))rea is a line (=: L), and 2mq(f;) = ni(f;) if f; | fio with ord(f;) = 2.

(ii) multp,(01),'Cly = multp, Cly = ord(fiy), where Py = {o} € C°.

(i) 1f fiy # 1, then To(fiz))rea 7 Lo-

(iv) If fiqg # 1, then T,(fiq)rea = Lo and multp,(01);'Cyy is even.

(v) If fig is a linear form, then E(o) =FEy and M, x > Z,x (<= Mx > Zx).
Proof. (i) and (ii). From Proposition 3.14 (ii), Ey := (¢x),'F> is the Zz-negative

*

-1
*

have (01 0 02);'Cl) 7 F1 N Fy in Wa. Hence, the assertions of (i) and (ii) follows from

component of E. From Theorem 3.11 (iv) and the construction of £ = (px);'F, we
standard arguments on Puiseux pairs.

(iii) From Proposition 3.12 (i), By := (px);'Fy is the Mz-negative component of E.
From Theorem 3.11 (iv) and (3.3), we have E(L)NE(c) = 0; thus (01);'CiiN(01); ' Cly =
0 from the construction of 6. Therefore, T,(fiz))rea 7 Lo-

(iv) From Proposition 3.14 (iii), (01);'Cl N (01);'Clg # 0 and so T,(fig)rea = Lo.
Also, Coeffp,(f 0 &) is even by Proposition 3.14 (i). Since Coeffp,(f 0 7) s = ord(f) +
ord( fi)) + multp,(01); 'Cq and ord(fi,)) is odd by Proposition 3.16, multp,(o1);'Cl is
even.

(v) Let L be the line defined by fi; = 0. If we put Q1 := FiNF, and Q5 := F>NL, then
@ :=(030---0050¢x)|m : E» — F» is a double covering map which is ramified only at
{Q1,Q>} from (3.6). Then, E, is a non-singular rational curve in X. Further, we can see
that G(E(L)UE(c)) = Fy and 3(E(0)) = Fy; also E(0) = E,. Assume that M, x = Z,, x.
Let 7 : (X,E) = (X,0) be the minimal good resolution and 7 : (X,E) — (X,E) a
succession of contractions of (—1)-curves with # = wo7. Then, 7(E(L)U E(c)) is a non-
singular point on X. Thus, F = 7(F) and it is a (—1)-curve from Z3 = —1. Hence,

(X, 0) is a non-singular point (contradiction). Q.E.D.

The following result is implicitly described in [4, §11] as a key fact. We describe it

according to our argument.

Theorem 3.18. Let (X, 0) be a normal double point defined by z* = f(x,y) such that
ord(f) is odd.

(i) If Z% = —1, then 2Z,x = (0 o) for an element § € C{x,y} on the minimal
good resolution 7 : (X, E)—(X,0) and the fundamental cycle Zo x (:=Zg) on E.

(ii) Z3% = —1 if and only if there exists an element 0 € C{x,y} satisfying the following
three conditions: (1) ord(f) =1, (II) 2 | Coeffg, (0 o 7))z for any i, (III) T,(0)rea =
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To(fo)rea and Tp,(©)rea € Tp,(C1))rea, where fo is an irreducible factor such that ord(fo)
is odd; also © = (01); {0 = 0} and C(yy := (01),'C for C = {f = 0}.

Proof. First, we prove (ii). Let us prove “only if "part. Let (u,v) be a local coordinate
of C? near by {0} such that T,(fo)rea = {v = 0}. Put 6, := v+ au? for a constant a € C
and L, := {0, = 0} and L], := (01),"'La. Let ag be an element of C such that L], ¢
Tr,(C(1))rea- If we put 6 := 0,, and Oy := (02); ' Lq,, then 0 satisfies (I) and (III). In
addition, from T'p,(02)rea € Tr,(C(1))red, We have Fy L O, (i.e., intersects transversally)
on Wy, and so Fy L © on Wy for © := (6);"'La, in W. Thus, Coeffp, (6 0 6) 5y = 2
and Ey L (¢x);'0 in X since Coeffp, (f o ) p(x) is even by Proposition 3.14 (i). We
have Coeff, (6 o 7) ; = 2 from Lemma 3.3 (i). Furthermore, (¢x):16 is a smooth curve
on X and it has two disjoint connected components intersecting Fs transversally. We
have (fo7)g = (Ao#) s+ (0x):'O ~ 0 on X and E; is the only irreducible component

of E satisfying (6 o 7) ;Er < 0. Therefore, we have the following:
-2 it k=2 -1 it k=2
A= @on)pE, = and B :=Z E, =
0 if k#2 0 if k#2.

Here, if we put (fo); = Zf\il a;E;, Zp = Zf\il b; E;, then we have two linear equations
on{ay,...,ax} and {by,..., by} as follows:
A= Zil(EkEi)ai = —2for k =2else A =0, and
B=XVN (B.E)b = —1fork=1else B=0 (k=1,...,N).
Applying Cramer’s formula, we have
(3.7)  (o#)p=2Zzon (X,E).

Hence, 6 satisfies (II).
Next, let us consider “if "part. If we put O, := (¢);*{6 = 0}, then (006)px)+O0 ~ 0

on Wy and Coeflp, (0 0 ¢) p () = 2 from (I) and (III). Hence, (6 o 6)2F(N) = —2; thus we
have (6 o 71)% = —4. If we put D := (0 o 7) /2 by (II), then D is an anti-nef cycle on E

and D? = —1. Hence, D = Z; and so Z% = —1.
(i) In (3.7), we showed 2Z; = (Ao 7); and s0 2Z, x = (fom)g. Q.E.D.

4 Elements of Laufer type in C{z,y}

In [8], H. Laufer showed that the normal double point (X, 0) defined by 2? = z(y*+2°)
satisfies My x > Zox (i.e, Mi x = —2 < Z% = —1 from Lemma 3.4). If (Y,0) is a
normal double point defined by z? = (az + by)(y* + 2°) with a # 0, then M,y > Z,y.

Generalizing such property of y* + 2% we give the following definition.
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Definition 4.1. Let h be a reduced element of C{z,y} and ¢ € C{z,y} a linear
form with {¢ = 0} & To(h)req- Let (X,0) be a normal double point defined by 2% =
l(x,y)h(z,y). From Proposition 3.7 (ii) and 3.17 (v), we have the following equivalences:

Zi%=-1 & M,x >Z,x < Myx>Zx.
If h € C{x,y} satisfies conditions above, then we call h an element of Laufer type. If h
is of Laufer type, then ord(h) is even from Theorem 1.3 (i).

Lemma 4.2. If h = ﬁ h; is the irreducible decomposition of an element h of Laufer
type, then ord(h;) is evé;lfor any j.

Proof. Put (X,0) := {2* = (h} for a linear form with {¢ = 0} ¢ T,(h),eq- Thus, we
have T,(€)eq # To(hj)rea for any j. If there is jo (1 < jo < r) such that ord(h;,) is odd,

then Z% = —2 from Theorem 3.13. This contradicts to Z3 = —1. Q.E.D.

From now on, we characterize elements of Laufer type by the w.d.resolution graph

A(h) (see Theorem 4.5). Let h = [] h; be the irreducible decomposition of a reduced
i=1
element h € C{z,y} whose order is even. Let ¢ be a linear form with {¢ = 0} ¢ To(h)ea-

Let (X,0) be the normal double point defined by 22 = ¢h. Let #: (X, E) — (X, 0) be

the covering resolution over ¢ as (3.4), and we also put F; := (px); ' F; for ¢x in (3.1).

*

Lemma 4.3. Under the conditions above, the following three conditions are equivalent:
(i) his of Laufer type, (i) Mpl|p p, = 225l 5\ g,
(iti) Coeffy, My is even for any E; C E with i # 2.

Proof. (i) = (ii). By Proposition 3.17 (v), we have E(0o) = E,. Since / satisfies the
conditions of § in Theorem 3.18 (ii), the assertion holds. Also, (ii) = (iii) is obvious and
(iii) = (i) is proved by Theorem 3.18 (ii). Q.E.D.

Under the situation above, put (C,0) := ({h = 0},0) C (C?,0) and let 7 : (W, F(N))
— (Wy, F(N)) be a succession of contractions of (—1)-curves satisfying 6 = o o7, where
o (Wy,F(N)) — (C%0) is the MGE-resolution of (C,0). For A\[F}] and [F}] in
Definition 2.13, we have the following.

Proposition 4.4. The following three conditions are equivalent.

(i) h is of Laufer type.

(ii) For any h;, ord(h;) is even and N[ Fy,| = v[F},] mod 2 for any k with Fy, = Fir;(h;)
on the standard order and the Laufer root Fir)(h;) of h; (Definition 2.7 and 2.10).

(iii) For any h;, ord(h;) is even and ep, (D (C;)) is even for any k with Fj =
Fipy(hj), where Py = oy (Fy).
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Proof. (i) = (ii) By Lemma 4.2, ord(h;) is even for any j. Assume that there exists
h; and Fj, satisfying A[Fy] # v[Fy] mod 2 and Fj, = Fipj(h;). If A[F}] is even and ~[Fj]
is odd, then Coeffg, My is odd by Lemma 3.3. This yields a contradiction by Lemma
4.3. Next, assume that A[Fy] is odd and ~[F}] is even; thus F; < Fj from v[F;] = 1. In
addition, assume that Fj, is included in the i-th Puiseux chain P;(C;) (Definition 2.5)
with i = 2. Let Fy be the Puiseux root of P;(C;). From Fy < Fyzj(h;), v[Fy] is odd. If
A[Fy] is even, then Coeff g, My is odd by Lemma 3.3. This contradicts to (i) by Lemma
4.3. Therefore, A[Fy] is odd. If F}, N Fy # 0 in Wy and 7 is the blowing-up at Fj, N F,
then Fy, := 7" (Fy N F,) (C F(N)) satisfies that A\[Fy,] is even and 7[F,] is odd. Thus,
Coeft g, My is odd as above, and this contradicts to (i). Therefore, we have F}, N Fy = 0)
in Wy. Hence, there exists Fg, C P;(C;) satistying F, N F), # 0 in Wx. From (2.7),
Y[Fe,] is odd and so A[F,] is odd from (i) and Lemma 3.3. If 75 is the blowing-up at
F, N Fy, and Fy, := 7o Y (Fp N Fy,), then A\[F,] is even and 7[Fg,] is odd. This yields
a contradiction from (i). If Fy, C P(C;), then (2.7) holds for P;(C;) and so it yields a

contradiction as above.

(ii) = (i) From Lemma 3.3 (ii), Coeff g, M, is even for any k, j with F, < Fiz)(h;). On
the other hand, we can easily see that Coeft 5, M is even for any k with Fj [L](h ) X F.
Let F}, be an irreducible component of F(N)\7,'F(N) such that o4(F) = F;, N F,, and
F;., F,, < Fi)(h;), where A[F;,] is odd for £ = 1,2. From the hypothesis of (ii), v[F;

119 7 le] iS
odd for £ = 1,2. Hence, A[Fj;| and v[F}]| are even. Therefore, Coeff g, M is even for any

E), C E with k # 2. Hence, h is of Laufer type by Lemma 4.3; hence (i) < (ii) holds.
(ii) < (iii) is proved by Proposition 2.15. Q.E.D.

The following is the main result of this section.

Theorem 4.5. Let h = H hj be the irreducible decomposition of a reduced element h

of C{x,y}. Then, h is of Laufer type if and only if every h; satisfies the following two
CoNIons: i o ah,) is even, (i) 2mpp(hy)| X ord(he),

kel (hy)
where mp(h;) is the LP-number (Definition 2.2 (i)) and Iy (hy) is the set defined in

Definition 2.11 (iii).
Proof. Put Puisxz(h;) = {(mi(h;),n1(h;)), -+, (mg(h;),ne (hy))} for any j. Assume
that ord(h;) is even for any j. If we put mg,(h;) = mp(h;), then we have
(4.1) >, ord(h) = (H mi(h;))er,, (D) (h;)),
kel (hy) =1
where Ppj) := or(j)(Fir)(h;)) for the Laufer root Fizj(h;).
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L;-1
Let us prove “if” part. From (4.1) and (i), ep, , (D) (h;)) is even, because [] mi(h;)

i=1
is odd. From Lemma 2.9, we have ep, , (Diz)(h;)) | ep, (Dig)(hy)) for any k with Fj, <
Firy(h;), and so ep, (Dyrj(h;)) is even. Therefore, h is of Laufer type from Proposition

4.4 ((iii) = (i)). Next, let us prove “only if” part. From Lemma 4.2, (i) is proved.
L1

Since [] mi(hy) is odd and ep,, (Dir)(hy)) is even by Proposition 4.4 ((i) = (iii)), we

i=1
have 2mpp)(h;) = 2myr,(h;) divides > ord(h) from (4.1). Q.E.D.
kEI[L](hj)

Corollary 4.6. Let h be an irreducible and reduced element of C{x,y}. Then, h is

of Laufer type if and only if there are at least two even integers m;(h), m;(h) (i < j) in
the Puiseux pair of h.

Corollary 4.7. If h is of Laufer type, then ord(h) =0 mod 4.

Proof. If h is irreducible, then the assertlon is proved by Corollary 4 6. If his

reducible, then h is decomposed as h = H hig for hygy:=  [[  hi, where U Iiy(hj,) =
’LEI[L](hjg) £=1

{1,---,r}. From Theorem 4.5 (ii), ord(h ) is divided by 2myzp)(hj,) and mpp)(hy,) is
even for any £. Q.E.D.

Corollary 4.8. Let g and h be relatively prime two elements in C{x,y}. If g and h
are of Laufer type, then gh is also of Laufer type.

Let m : (X,E) — (X,0) be any resolution of a normal double point defined by
2* = f(z,y) and assume M, y = —2 < Z% = —1. In [8, Theorem 6.3], H. Laufer
proved that Hy(E,R) # 0. We consider a lower bound of dimg H;(E,R) (see Theorem
4.9 and 5.9). Let # : (X,E) — (X,0) be the covering resolution over the MSGE-
resolution & : (W, F(N)) — (C2,0) of the ({f = 0},0). Let 7 : (X E) (X,0) be a
resolution such that there exist two succesions of blowing-ups 7 : (X , E ) — (X , E) and
Ty - ()%,EQ’) — (X, E) satisfying # =7 o7 = ftom. For e =L or ¢, if we put

(4.2) Ele) =71 (r3 E(e)),
then it is easy to see that dimg H;(E(e),R) is independent of the choice of (X, E). Let
us call E(L) the Laufer part of £ and so on.

Theorem 4.9. Under the situation above, if fir) # 1 (Definition 3.15), then we have
the following.

(i) Let Fy, be the Laufer root Firi(f;) of f; with f; | fi). Then, the Laufer part E(L)
contains at least one P'-cycle containing Ey, or the genus g(Ey,) of Ey, is greater than
or equal to 1, where Ey, := 7((px); " Fi,) for a holomorphic map ox of (5.1).

(ii) Let siry(f) be the number of all Laufer roots for fiy (i.e., all Laufer roots of
irreducible factors of fir)). Then, dimg Hi(E(L),R) > si;(f).
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Proof. Since (ii) is obvious from (i), we prove (i). Let f;, be any irreducible factor
of fir). Since ord(f;,) is even by Lemma 4.2, let Fy, := Fi)(f;,) and P, (f;,) the ig-th
Puiseux chain (see Definition 2.5) containing Fj,. Here, we prove the following:

(4.3) Athere exisAt different two irreducible components F;, and Fj, in

Py (fi) U Pyy—1(fj,) such that Fj, N Fy, # 0 and A[F;,] isodd (£ =1,2),
where Py, (f;,) == 1" (P, (f;,)) for the succession of blowing-ups 7 := oy4, 000 :
(W, F(N)) — (Wy, F(N)) such that ¢ o7 is the MSGE-resolution.

First, assume that there are different two irreducible components Fj, and F;, in f’io (fi0)
such that Fj, N Fy, # 0 (£ = 1,2). From (2.7), v[F;,] is odd for § = 1,2; thus A\[F},] is odd
by Proposition 4.4 (ii). Second, assume that Fy, N Py, _1(f;,) # 0. Then, there is a root
F,, of P, (f;,) such that Fj,, N F;, # 0. Hence, y[F,] is odd by (2.7) and so A[F},] is odd
by Proposition 4.4 (ii). Therefore, there is F}, (# Fi,) in P, (f;,) such that Fj, N Fy, # 0.
Since y[Fy,] is even, y[F},] is odd by (2.7). Hence, A[F},] is odd by Proposition 4.4. Thus,
(4.3) is proved.

If Fy, NC;, # 0 or there is Fy, (C Piyy1(fj,)) such that A[F},] is odd and Fy, N Fy, # 0,
then g(Ey,) = 1 from (4.3). Therefore, we may assume that Fj,, N C' = 0 and there is
not Fy, (C P,(f;,) and F, # F;,, F,,) such that \[F},] is odd and F}, N Fy, # 0. Then,
there is Fy, in P, 41(f;,) such that Fy, N Fx, # 0 and A[F},] is even. Thus, there exists
a P'-chain CLSJ Fr. (s21)in F (N) satisfying the following two conditions:

=1
(1) Fr, N Fyy, #0 for 0= ¢ = s —1 and A[Fy]is even for 0 £ < s,
(2) (zoi Fi.) N (F(o) UC) = B and Fy, N (F(0) UC) # 0, where F(o) := oy
= A[Fi]:odd

Then, |J Ej makes a P'-cycle in E(L) of E. Any irreducible component Ej with
¢=0
g(Ey) = 1 and Pl-cycle is not contracted on X (see the correspondence (4.2)). Thus (i)

is proven. Q.E.D.

5 Elements of contact type in C{z,y}

In this section, we characterize elements of C{z,y} which give contact factors for the

weak Laufer decompositions (see Definition 3.15).

Definition 5.1. Let h be a reduced element of C{z,y} and h = f[ h; the irreducible
decomposition. Put Puisz(h;) = {(mi(h;),n1(h;)),- - ,(mgj(hj),{fl_gj(hj))} for each j.
Assume that T,(h),.q = {¢ = 0} for a linear form ¢ with ¢{ h and ny(h;) < 2m;(h;) for
any j. Let (X,0) be a normal double point defined by 2% = ¢h. From Proposition 3.7
(ii) and 3.17 (v), we have the following equivalences:

ZQX:—]_ <~ MO,X >ZO7X & My > Zy.
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If h satisfies the conditions above, then we call i an element of contact type. If h is of

contact type, then ord(h) is even from Theorem 1.3.

For example, if (X,0) = {2? = y(y® + 2®)}, then the w.d.graph and My and Zg on

the minimal resolution are given as follows:

; Mg =2FE, + Ey + 3E3 and Zp = Ey + Ey + 2E5.

Ey ™ Esqq) B

Then M2 = —2 < Zx* = —1 and so y® 4 2® is of contact type.

In the following, we characterize elements of contact type in terms of Puiseux pair

(see Theorem 5.4). Let h = [] h; be the irreducible decomposition of a reduced element
j=1
of C{z,y} such that ord(h) is even. Let ¢ be a linear form in C{z,y} such that L :=

Ty(h)rea = {¢ =0} and £ 1 h. Put (X,0) = {2% = (h} and assume the following:
(C2,0) <~ (W, F(1)) <2 ... &5 (W, F) := (W, F(N)) is the MSGE-

5.1
(5-1) resolution of ({¢h =0}, 0)) constructed as (3.4). Put 6 :=010---00.

Then, oy is the blowing-up at P, := Fy, N (01);'L; also F(1) = F; = o;*({o}) and

Fy = 05 '(P,). Further, let (X, E) N (X, 0) be the covering resolution over &.

Lemma 5.2. Under the condition above, if ny(h;) < 2mq(h;) for any j, then the
following three conditions are equivalent.
(i) h is of contact type, (ii) (Lo 7))y = 22, (iii) Coeffg, (€ o 1) 5 is even for any E; C E
(i #2).

Proof. (ii) = (iii) is obvious. Also, since ¢ satisfies the conditions of 6 in Theorem 3.18,
(i) = (ii) and (iii) = (i) follow directly from Theorem 3.18 (i) and 3.18 (ii) respectively.
Q.E.D.

Proposition 5.3. Under the situation of (5.1), assume that ni(h;) < 2mq(h;) for
any j. If we put L := {{ = 0}, then the following three conditions are equivalent.

(i) h is of contact type.

(ii) For any h;, C;L is even and A[Fy] = ([Fy] mod 2 for any k with Fj, < Fiy(h;)
for the contact root of (C},0) defined in Definition 2.10 (iii), where X[ Fy] and ([Fy] are
integers defined in Definition 2.135.

(iii) For any h;, C;L is even and ep, (Di(h;)) is even for any k with Fy, < Fiq(h;),
where Diq(h;) is defined in Definition 2.11 (iii).

Proof. First we prove that if h is of contact type, then C;L is even for any j. Let
F;, (C F(N)) be the irreducible component which intersects the strict transform C; :=
(6):1C;. Since Coeff( ((Ch)o6)y; = 1 and 6 is the MSGE-resolution, Coeffp, ((¢h)o6)y;

is even. In fact, if Coeffy, (£ 0 &)y is odd, then Coeffp; (€ o 7)x is odd from Lemma
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3.3 (i) and this contradicts to Lemma 5.2. Therefore, C;L = ni(h;)ma(h;) - --my, (h;)
= Coeffp, (£ 06)y; is even.
By replacing y[F] with ¢[F}] and using Lemma 5.2 instead of Lemma 4.3, we can prove

(i) < (ii) < (iil) by the same way as Proposition 4.4, so we omit the detail. Q.E.D.
Now we characterize elements of contact type in terms of Puiseux pair.

Theorem 5.4. Let h = [] h; be the irreducible decomposition of a reduced element

7=1
h of C{z,y} and (C},0) := ({h; = 0},0) for any j. Assume that ny(h;) < 2my(h;) for
any j and T,(h)req is a line L. Consider the following three conditions:
(i) C;L (= ni(hj)ma(hy)---my,(h;)) is even for any j,

(i) 2mppy(hy) | Yo ord(h;) for any j,
iEI[C](hj)

(iil) 2mpepy(h;) | > CiL for any j,

iEI[C](hJ‘)
where mycp,)(h;) is the cPi-number for i = 1,2 (see Definition 2.2 (ii)). Then,

h is an element of contact type < (i) and (ii) hold < (i) and (iii) hold.

Proof. Let ¢ be a lincar form with L = {¢ = 0}. Let (Wg, F(N)) -2 (C2,0) be
the MSGE-resolution of (C,0) := ({¢h = 0},0). Assume that (i) holds. Let Fy, be the
contact root Fig(h;) and Fy, the §-th Puiseux root of (Cj,0) (see (2.1)). Let Ijy(h;)
and Diy(h;) be the sets defined in Definition 2.11 (iii). From Lemma 2.12 (ii), we have

> CiL = Dyy(hj)L = ny(hy)ma(hy) - - -me,(hy) > epy (Ci)
iEI[C](h]') iGI[c](h]')

and > ord(h;) =ma(hy) - me,(h;) > epy(Ch),
iEI[C](hj) ie[[c](hj)
where Py, := on,(Fp,). Therefore, we have the following equivalences:
(5.2)  2mpepy(hy) | >0 ord(hi) < 2| epy (D(g(hy)) & 2mpep,(hy) | > CiL.
iEI[C](hj) ie[[c](hj)
Assume that h is of contact type. Then, C;L is even for any j from Proposition

5.3. Thus (i) holds. In addition, epy (Dig(hy)) = > epy (Ci) is even for any j from

’LEI[C] ]
Proposition 5.3 (iii). Then, (ii) and (iii) hold from (5.2). Hence, if h is of contact type,

then [(i)+(ii)] and [(i)4(iii)] hold. Also, we have [(i)+(ii)] < [(i)+(iii)].

We prove that if (i) and (iii) hold, then & is of contact type. We put mq(h;) := ny(h;)
and m;(h;) := m;(h;) for any i € {2,---,{;}; also mg, (h;) := mp(h;) for k = 1,2.
From (i), C;L = my(hy) - - - my, (h;) is even for any j. Let §; be a positive integer satisfying
me, (hj) = mpp,)(hy) and so Coeff g ;) (€ 0 6)w, = Mmi(h;)- Mg (h;). Thus, we have
CiL = m(hy) - - 1mg (hy)epy (C)), Where Py, := on,(Flq(h;)). Since my(h;) - - - me,—1(h;)

is odd, epy (Dig(h;)) = > epy, (Ci) is even by (iii) and (5.2). From Lemma 2.9,
iEI[C]( )
ep,(D(hj)) = > ep(C;) is even for any k with F, < Fy, = Fjq(h;). Therefore, h
iEI[C](hj)
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is of contact type from Proposition 5.3 ((iii)= (i)). Henceforth, the assertion is proved.
Q.E.D.

Corollary 5.5. Let h be an irreducible and reduced element of C{z,y}. Then h is of

contact type if and only if ni(h) < 2my(h) holds and there are at least two even integers
n {nl(h)a mQ(h)7 T 7m€(h)}

Corollary 5.6. Let h be an irreducible and reduced element of C{xz,y}. Then h is of
contact type and Laufer type if and only if ni(h) < 2mq(h) holds and there are at least
two even integers in {may(h), -, my(h)}.

Proof. Since “if "part is obvious from Corollary 4.6 and 5.5, we prove “only if ”part.
If #{i € {2,---,¢} | my(h) is even } = 1, then my(h) is even from Corollary 4.6.
Hence, ny(h) is odd and so mp,(h) = my,(h) (io = 2) is even. From Theorem 5.4,
2my, (h)|ord(h) and so m;,1(h)---me(h) is even. Q.E.D.

Corollary 5.7. Let g and h be two relatively prime elements in C{z,y} such that
To(9)red = To(h)rea- If g and h are of contact type, then gh is also of contact type.

Corollary 5.8. If h is of contact, then ord(h) is even and greater or equal to 6.

Proof. First, assume that h is irreducible and Puisz(h) = {(mq,n1), -+, (mg,ne)}. If
nq is even, then m; = 3 and there is even m; (i = 2); so ord(h) = mq---my 2 6. If ng
is odd, then there are at least two m;, and m;, which are even (2 < i; < iy < /). Since
my = 2, we have ord(h) = my ---my 2 8. Next we consider the irreducible decomposition
h = f[ h; (r 2 2) such that any h; is not of contact type. From the condition (iii) of
The()jrzzlrn 5.4, there are h;, such that hih,, is of contact type and Fig(h1) = Fig(hi,). If
Fig(hy) appear in the 1-st Puiseux chain, then n,(h;) is even with n;(h;) = 4; hence
my(hy1) 2 3. Then we have ord(h) = ord(hih;,) = 6. If Fiq(hi) appear in the k-th
Puiseux chain (k 2 2), then ord(h) 2 ord(hih;,) = 8. Q.E.D.

For elements of contact type, we describe the result corresponding to Theorem 4.9.

Theorem 5.9. For the irreducible decomposition f = f[ fi of a reduced element f in
C{z,y}, assume the same situation as (4.2). If fiq # 17017’ the contact factor fi of f
(Definition 3.15), then we have the following.

(i) Let Fy, be the contact root Fig(f;) of f; with f; | fiq. Then, the contact part E(c)
contains at least one P'-cycle containing Ey, or g(Ey,) = 1, where Ey, == 7((¢x):  Fiy)
for a holomorphic map ¢x of (3.1).

(ii) Let si(f) be the number of all contact roots for fiq (i.e., all contact roots of
irreducible factors of fiq). Then, dimg Hy(E(c),R) > siq(f).
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Proof. This is proved according to exactly the same argument as Theorem 4.9. If we

exchange as follows: (1) Fizj(h;) = Fig(h;), (2) v(Fr) = ((F;), (3) Proposition 4.4
(ii) = Proposition 5.3 (ii). The assertion is proved similarly to Theorem 4.9. Q.E.D.

6 Elements of odd type in C{x,y}

In this section, we characterize elements of C{x, y} which give odd factors for the weak

Laufer decompositions (see Definition 3.15).

Definition 6.1. Let h be a reduced element of C{x, y} such that ord(h) is odd. If h
satisfies one of the following two conditions, then A is called an element of odd type.
(i) ord(h) =1,
(ii) If ord(h) 2 3, then M} = —1 (& M x = —1 from Proposition 3.7 (ii)) for a
normal double point defined by 2? = h(z,y).

Example 6.2. Let hy := y3 + 251 (¢ = 1) and hy = y(y® + 2°)(y> + 27). Put
(Xi,0) = {22 = hi(z,y)} (i = 1,2). Their maximal ideal cycles on the minimal good
resolutions are respectively given as follows. Then we can see that they are of odd type.

O3 A
Mo GO-@O--O M @—a( 13
2 6 11 1 1 3 ) 1

Theorem 6.3. Let (X,0) be a normal double point defined by 2? = f(x,y) with
73 = —1. Let f = fie1fiafio be the weak Laufer decomposition (Definition 3.15). Let
L, be the line T,( fis)req (see Proposition 3.17 (i)).

(i) If fiy # 1, then fir) is of Laufer type and To(fir))rea 7 Lo-
(i) If fig # 1, then fiq is of contact type and To(fiq)rea = Lo-

Proof. Let {(x,y) be a linear form with L, = {¢ = 0}. Put gy := (fj) (vesp.
9 = Cfig) if fiy # 1 (resp. fig # 1); also g = fig if ord(fi)) = 2. By Propo-
sition 3.16, ord(gyq) is odd for any e. By Proposition 3.17 (iii) and (iv), we have
Lo & To(fir))rea if fir) # 1 else Ly = To(fig)rea- For € = L, ¢ or o, let (Y[q,0) be a

normal double point defined by 22 = gy Let (C2,0) <2~ (W, F(1)) <2~ (Wy, F(2)) <2
(Wes, Flg(3)) € -+ &5 (W, Flg(N.) (=t (Wi, Flg)) be the MSGE-resolution of
({9lq¢ = 0},0) constructed as (3.4) and put (g = 01000030 --00n,. Let

(WH, Fq) Tert | el Wy, FM(]\AQ)) be a succession of blowing-ups such that & o
OeNe, © 00,y is the MSGE-resolution of (C,0) := ({f = 0},0). Since the MSGE-
resolution of (C,0) is uniquely determined by f, we have N, = N, = N, (=: N) and
OlL) © OL N, 110 00, 5 = O OO N1 O " 0T,y = Og] ©TpN,41 0 00, 5 (=1 G).
Hence, we can put (W, F) = (Wy

e

A

Fiq(N,)) for any €. Let Fix; (vesp. Fi;) be the strict
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transform of o '(P;) onto W (resp. VVM) for i = 1,2. Let (}A/[E},E’[E]) i, (Yiq,0) (resp.
(X, E) N (X, 0)) be the covering resolution over 6y (resp. ). Then, Ex; = (¢x); ' Fi
(resp. Ex2 := (px);'Fy) is the My (resp. Zp)-negative component from Propositions
3.12 (i) and 3.14 (ii). Hence we have Coeffp, ,Mj = 1 by Lemma 3.6 (ii).

-1
*

For any F; in FH, let us represent (o, ©---0 067]\76) F; by the same notation Fj.

For e =L, ¢, o and any F; C F[e], we can easily see the following:

(A) Coeff g, ((ax + By) 0 01q)

(6.1) § (B) Coeffp, (¢ o &[E])ﬁ[e] = Coeffp, (L0 6),

y = Coeftp, ((ax + By) 0 6) 4 for general «,f € C,

(C) Coeft,(giq © 6[4)&5] = Coeff,(f 0 6)p mod 2.

For e = L and c, let gy, : (f/[g], E[e])—>(W[€], F[E]) be a holomorphic map given as (3.1)
for (Yiq,0); and put Eg; = (¢y, ). F (i = 3,---, No). From (6.1)-B for i = 1,2, the
w.d.resolution graphs of (Fiq\(Fy U F)) U (674); 'Clq and (F(e)\F5) U (6);'Clq coincide,
where F(€) := ox(E(e)) (see Definition 3.15); also Fy := Fy, ) and Fy UF, for e = L, ¢
and o respectively. From (6.1)-(B), we have the following for Fs := (¢x); ' F5.
(6.2) the w.d.graph of Eig\(E.1 U E.5) = the w.d.graph of E(e)\ Es.
Further, by (6.1)-(A) and Lemma 3.3 (ii), we have
(6.3) Coeffp, , Mg, = Coeftp, Mg, for any i with E.; C E’[E].
(i) Assume that fi;; # 1. From (6.1)-(6.3), we have CoeffEL’iME[L] = Coeflpy , M,
and this is even for any i with Er; C Ej\Er 2. From Lemma 4.3, fi;) is of Laufer type.
(ii) Assume that fig # 1. From (6.1)-(6.3), we have Coeffg,, (Eofr[c])EM = Coeffg, (Lo
) Be) and this is even for any F.; C E}g. From Lemma 5.2, f|4 is of contact type. Q.E.D.

In the following, we characterize elements of odd type in terms of Puiseux pair.

Theorem 6.4. Let f = [] f; be the irreducible decomposition of a reduced element f
7=1

in C{x,y}. Then, we have the following.

(1) f is of odd type if and only if (I) ord(f)is odd, (II) T,(f)rea is a line,

(IIT) 2m4(f;) < ni(f;) for any f; withord(f;) = 2.
(ii) Under the situation of Theorem 6.3, fq is of odd type.
Proof. (i) Let 7 : (X,E) — (X,0) = {22 = f(x,y)} be the covering resolution over
the MSGE-resolution ¢ of (C,0) = ({f = 0}, 0) constructed as (3.4).
(=) Since M7 = =2 < Z% = —1, (I) is obvious from Theorem 1.3 (i). We prove
(II) and (III). Let f = fi1)fiqfiq be as in Theorem 6.3, and 7 : (X, E) — (X, E) be a
succession of contractions of (—1)-curves onto the minimal good resolution. If fi) fiq # 1,

then F(L)UE(c) is not contracted to a non-singular point through 7 from Theorems 4.9
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and 5.9. Since Coeff; My > Coeff 5 Z, for E; ¢ E(L) U E(c), we have M, x > Zq x.
As the contraposition, Mix = —1 implies fi)fig = 1 and so f = fi. Hence, (II) and
(III) are proved by Proposition 3.17 (i).

(<) From the conditions (I)-(III), Coeff i, (f06) p(xy (= ord(f)) is odd and Coefl f, (fo
) pvy = 20rd(f) and Coeffp, My, = 1 for i = 1,2. Hence, for E; := (px); ' Fi, we
have Coeff p, Mz = 2 and Coeff g, Mz = 1. For a linear form ¢(x, y) = ax+ By for general
a, f € C, we have My = ((om)y (see [19, Proposition 3.3]). Since 0 ~ (lot) ¢ = Mz+L
and By L L and EsNL =0, we have 0 = ((o71)yFy = (2Ey + Ey + L)E, = 2E} + 2
and so Ey is a (—1)-curve. If 5 : (X, E) — (X, E) is the contraction map of Ey, then
(X, E) is a good resolution of (X,0). Then, L := n(L) intersects E, transversally at
EyNL. Since Mg+ L~ 0, MgEy = —LE, = —1 and MzE; = 0 for any i (i # 2). From
Coeff g, M = Coeff g, My = 1, we have MZ = —1; thus M y = —1.

The assertion (ii) is proved by (i) and Proposition 3.17 (i). Q.E.D.

r

Corollary 6.5. Let f = [] f; be the irreducible decomposition of a reduced element f
j=1
in C{x,y}. Assume that fy,--- , f. are of odd type and r is odd. Then, f is of odd type

Zf and OTLly Zf To(fl)red == To(fr)red-

The above result is induced from Theorem 3.13 and 6.4. The following is a refinement
of Theorem 1.3 (ii) .

Corollary 6.6. Suppose that f is irreducible and ord(f) is odd (= 3). Then,
(i) M2 x = Z% = —1 if and only if 2m(f) < na(f), and (i) My = Z% = —2 if and
only if 2mi(f) > ni(f).

Corollary 6.7. Let (X,0) := {z? = f(x,y)} be a normal double point and f = ﬁ f
the irreducible decomposition in C{z,y}. If 2 < ord(f;) and ni(f;) < 2mq(f;) foi‘_;ny
j, then Z3% = —2.

Proof. From Theorem 1.3 (i), we assume that ord(f) is odd. If M; x = —1, then f is of
odd type. Hence, 2m,(f;) < ny(f;) for any j and this is a contradiction. If M, x > Z, x,
we have ord(fi,) 2 3 from Theorem 6.3 and the assumption. Hence, from Theorem 6.4,

le(fj) é n1<fj) if fj | f[o]- This contradicts to nl(fj) < le(fj> QED

7 Comparison of My and Zx due to Laufer decomposition
for 2> = f(z,y), and the gluing of weighted dual graphs

Let (X,0) be a normal double point defined by 2? = f(z,y). In Theorems 6.3 and
6.4, we proved that if M, x > Z, x on the minimal good resolution, then f has the weak

Laufer decomposition (Definition 3.15) with fiz)fiq # 1. In this section, we will prove its
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converse by introducing the following notion of the Laufer decomposition of f (Corollary
7.4, Theorem 7.5).

Definition 7.1. Let f, fi), fi) and f,) be reduced elements of C{z,y} with f =
fw) fie) flo)- Then, we say that f has the Laufer decomposition if it satisfies the following

three conditions:

(i) f(o) is of odd type and f(L)f(c) 7§ 1.
(ii) If f(L) 7é 1, then f(L) 1S Of Laufer type and T0<f(0))red §Z To(f(L))'red-
(iii) If fi) # 1, then f(y is of contact type and To(fio))red = To(f(c))red-

When the Laufer decomposition of f exists, from the properties of each types (Theo-
rems 4.5 and 5.4 and 6.4), it is determined uniquely up to units of C{z,y}. Moreover,
after showing Z?2 y = —1 under the assumption of the existence of Laufer decomposition
(Corollary 7.4), the components f(r), f) and fq) are naturally recognized to those of
Definition 3.15 and Theorem 6.3. From now on, let fi1y, fo) and f) be elements of
Laufer type, contact type and odd type respectively such that T,( fio))rea = To(f(c))red €
T,(f(r))rea as in Definition 7.1. Let ¢, be a linear form with T,( f())rea = {¢o = 0}. Here,
we define the following:

(7.1) he : =L, fey for e =L and c¢; also h,:= f) if ord(f)) 2 3.

At first, we show that the w.d.graph associated to 22 = f is constructed from w.d.graphs
associated to 2% = h, for e = L, c and o (see Theorem 7.3). Let (Y., 0) be the normal dou-
ble point defined by 2* = h, for any €. Let opg : (Wi, F(N,)) = (C2,0) be the MSGE-
resolution of (C,0) = {he = 0} constructed in (3.4) and 7q : (YM,EM) — (Y, 0)
be the covering resolution over ojg. Let ¢y, : (Y[E], E[e]) — (Wy, ,F(N,)) be the holo-
morphic map in (3.1). We set E.; = (¢v,); F.; for any F.; C F(Ne). Further, let
WEE (}75, Ejq)— (Y, 0) be the minimal good resolution. From the definitions of Laufer,
contact and odd type, we have the conditions M%M =-2< Z?E[e] = —1for e = L and
¢, and Mﬁ;[o] = Z%[O] = —1. Put E[lf]] := Eq\(Ec1 U E.») for e = L and ¢; also put
El[o]] := Ejg\E,2. By Theorem 3.11, the w.d.graph of Ey (¢ = L, ¢ and o) is given as

( .
() D(Ew) = (O—Chu)™ D(E[L]) and b, 22,
EL2 ELl
(o) | () T(Eg): -—F and b.; > 2 for i = 1,2,

Ec,l

(i) p(Ey) = F(E[[o]]) and b,y = 1.

\ [90] Eop

follows:
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In (7.2)-(i), since 0 = Mg, Er» = Ej , + 2 from Coeffy, , Mp = 2, we have E} , = —2.
Further we have E, 5 ~ P! (e = L, c) by the proof of Proposition 3.17 (v), and E, ; ~ P!
(e = L, c) by Proposition 3.12 (i).

Lemma 7.2. In the figures of (7.2), we have the following.

(i) If we put me == (Mg, Blje) ) Fen for € = L and c, then
mp =2br1 —2, zp, =bp1—1, me=2b.; —1 and z. = b, ;.

(ii) If we put m. = (Mg,

me = bcyg, 2. = bc,2 —1 and My = 2, = b072 — 1.

Bld) Eer and 2. == (Zp,

gd)) Ee2 and Ze = (ZE[E]‘E[[eH)Ee,Z for € = ¢ and o, then

Proof. (i) is induced easily from Mg, Ec1 = —1 and Zg E.; =0 for L and c. (i) is
induced easily from M o E.o=0and Z o E.o=2Z o E,» =—-1. QE.D.

Under the situation above, we describe how to obtain I'(E) by gluing I'(Ejz)), I'(E£g)
and F(E[O]).

Theorem 7.3. Let f = fr)fwe)fio) be the Laufer decomposition and m : (X,E) -
(X, 0) the minimal good resolution of (X,0) = {z? = f(x,y)}. Then the w.d.graph T'(E)

s given as follows:

1
if f[L} 7é 1 and f[c] 7’é 1 and ord(f[o}) 2 3.

(i) DB (ea + bz = DD— T (B[l — b

90] Bz i i — 1 and fir% 1 and ord(fiy) = 3.
(i) F(E[[o]])‘i“r(EHLH)
9] 2 Ey

if f[L} 75 1 and f[c] =1 and OTd(f[o}) z 3.

(%) Chad>— T(B{e) —Clbra +ber = D= 1(E{L])
E,y
£ if fi) # 1 and fig # 1 and ord(fi,) = 1.

Proof. Let (X, £) —= (X, 0) be the covering resolution over the MSGE-resolution &
of (C,0) constructed in (3.4). If fi # 1 (resp. fo) = 1), then we put (Ce),0) := ({f(e) =
0},0) (resp. = 0) for e = L, c. When C( # 0, from the conditions of T,(f(¢))req in

Definition 7.1, we can see the following;:

(73 Fin(o1009);'Cey £ 0 if e=L or ¢; FoN(01009),'Cley #0 if e=c or o;
FiNFyN(01009),'Cey=0 (resp. #0) if e=L or o (resp. € =c).

We remark that ord(f,)) is odd and ord(fe) = 4 if f # 1 for e = L or ¢ (see

O¢,4 O¢,Ne
e %

Corollary 4.7 and 5.8). When ord(f()) 2 2, let (W, F(2)) <=2 (W, 3, F.(3)) <
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(Wen., Fo(N,)) (= (Wy,, F(Y.))) be a succession of blowing-ups such that ¢y, := oy o

09 0 oy, is the MSGE-resolution of ({h. = 0},0) for h. defined in (7.1), where oy, :=

03000y, for e = Lycand o. Let us put G(Y,) := F(Y,) U (6y,);'C(o (C Y:) and

G(e) == F(e)U U (6);'C; (C Y) for € = L, ¢ and o, where F(e) := px(E(¢)) and
J€Elq

Iy = 1{j € {1,---,r} | (6)7'C; N F(¢) # 0}. Then, we have the equality about the

*

N ~ N

resolution diagrams A(G(e)) = A(G(Y)\(F1 U Fy)) for any e. Thus A(G) is given as
follows:
(7.4) A(G(o)) = — A(G(e)
Fy Fy
For € = L or ¢, A(G(e)) = 0 if and only if fi) = 1; also A(G(0)) = 0 if and only if

ord(f)) = 1. However, A(G(L)) UA(G(c)) # 0 because of fir)fe) # 1.
Let oy, be the identity map if 0 < ord(f()) = 1. Since the MSGE-resolution exists

A(G(L)).

uniquely, we have o, 0 09 0 0y, 0 0y, 0 0y, = 6. We show the following:
(7.5) Coeffp, (f 0 5)p is even, and Coeff 5 M = 1.
If we put d. := multp,((01);'C) for € = ¢ and o, then Coeffg, (h. o 0y )y, = de +
ord(f)) + 2 is even by Proposition 3.14 (i). Since ord(f(,) is even by Definition 5.1,
dc is even. Since d, = ord(f(s)) is odd from Theorem 6.4, we have Coeffp,(f o)y =
d.+ord(f)+d, is even. Since Coeffp, M = 1, Coeff ; M = 1 follows from Lemma 3.3.
Now we show the following assertion:
(7.6) E, is irreducible, and g(Es) = go.

In fact, the double covering x| By E2—>F2 has the ramification point F| N Fy by
the odd-ness of d.+ ord(f) as in arguments after (3.6), and so Fj is irreducible. Further
the remaining ramification points are exactly same as for the case f(,) as seen in (7.4),
hence we have the relation g(E,) = g,.

In this situation, consider the following:

7:(X,E) — (X, E)is a succession of contractions of (—1)-curves with

7.7 N -
(1) 7 =mor,and F; := (px); ' F; for the map ¢x in (3.1) and E; := 7(E;).
From our assumption f(r)f.) # 1, we have M 2 = —2 by Theorem 6.4. Hence we

obtain the relations M EEZ =M ET(EZ) for all 7. Now, we show the following assertions:
(7.8) Ey and E, are not contracted to points by 7.

Since ord(f) is odd, we have MzF; < 0 and MzF, = 0 in (3.1). Hence, Mg7(E;) < 0

holds, so 7(F}) is not contracted to a point. For Fy, let n : (X,E) — (X,E) be a

succession of contractions of (—1)-curves, and set B, := n(F). As same as 7, we have

0= MEEQ = MgFE,. Since Coeffz, Mg = 1, we have E} = —Mg|z_p,Fs.  Since

Coeff 5, M > 2 for E; C E, U E(c) by Theorem 3.11 and (6.1)(A),(B), we conclude the

relation Eg < —2. Hence E2 is not contracted to a point by 7.
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Now we have the following:

~

(7.9) Coeffp, Mg = 2 and Coeffg, Mg =1 for E; .= 7(E;) (i = 1,2).

From now on, we prove the case of (i). By (7.4), we have the decomposition G\(F; U
Fy) = G(L) U G(c) U G(o) satistying A(G(e)) = A(G(Y.))\(Fy U Fy)). Hence we may

N

consider that A(G(Y;)) is embedded into A(G). We have the following:
Coeftr, (f 06); and Coeffp, (he 0 Gy, ) p(y,) are obviously odd,
Coeff,(f 0 0)p and Coeffr, (he 0 6y, ) p(y,) are even by Proposition 3.14 and (7.5),
Coeftr, ,(f 0 6)p = Coeftr,,(he 0 6v.) p(y,ymod 2 for any Fi; C F(Y,) by (6.1)-(B).

~

Therefore, we have T'(E(e)) = T(E(Y)\(Ey U E,)) from A(G(e)) = AG(Y)\(FL U Fy))
and (7.4). Moreover, except for the values of £2 and E?; (i = 1,2), we have I'((E(L) U
Ey)) = D(E[[L]JUEL,), D(r(E(c)UE,UE)) = T(E([]|UE,, UE,,) and I (1(E(0)UE)) =
I(E[o]] U E,2). Hence, from (7.4), I'(E) is given as follows:
P(E(ol)y==Cb)— T(E[ld) —CbO=-I(E[L]).
(1] 2 Ey

From —1 = MgE, = —2b; + my, + m, in Lemma 7.2 (i), we have by = by 1 + b.1 — 1.
Also, 0 = MpFEy = —by + m. + m, and so by = b.o + b, — 1 in Lemma 7.2 (ii). Thus
['(E) is given by (i). We can prove (ii)-(iv) more easily as well, so omit them. Q.E.D.

Corollary 7.4. Assume the same condition as Theorem 7.3. Then, Mx > Zx and
Ey :=7(Ey) (resp. Ey = 1(E,)) is the Mg (resp. Zg)-negative component of E in the
w.d.graphs of (i)-(iv). Hence, the figures of (i)-(iv) give the Laufer decomposition of E.

Proof. In the figure of Theorem 7.3, if f. # 1, then we put Djq := ZE[€]|E[[6]} else
Dig = 0. Also, we define a cycle D on E by D := Dy + D4 + Dy, + Ey + Eb.
Then, DE.; = Zp E.; = 0 for any E.; C E[e]]. For each case of (i)-(iv) in Theorem
7.3, we can see that DE; = 0 and DE, = —1 from Lemma 7.2. Hence, D is an
anti-nef cycle on E and D? = —1. Then, we have D = Zp and Z% = —1. Since
Coeffg, Mg = 2 > Coeffp, Zgp = 1 and (7.8), E; is not contracted to a point on the
minimal good resolution. Thus, £ is the Mg-negative component and M, x > Z, x.
Thus, Mix > Zx from Proposition 3.7 (ii). Further, since ZgpFy = DFEy = —1, Es is the

Zg-negative component. Q.E.D.
Using all results of this paper, we show the following our main result.

Theorem 7.5. Let (X,0) be a normal double point defined by 2? = f(x,y). Then,

the following three conditions are equivalent;

(i) Mx > Zx, (ii) M, x > Z, x, (iii) f has the Laufer decomposition.
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Proof. (i) < (ii) is proved in Proposition 3.7 (ii). (ii) = (iii) is proved by Theorems
6.3 and 6.4 as remarked in the beginning of this section. And finally (iii) = (i) is proved
by Corollary 7.4. Q.E.D.

Example 7.6. Let us consider f(;) := z* + y® (Laufer type), f(.) :=y°+ 2® (contact
type), and f0) := y* + 27 (odd type). Then we have the following:

2 3 (%) <?2)) (12) (%) (%) (%)
506 @D-D-0 and 2=yt : O-O-

= f3: , 22 = 9 @ - and z* = fli .
I > vt E, [ E, ’ E, E; [1]

2
Also, put (X1,0) = {2* = fiyfiofo): (X2,0) = {2* = fofw}, (Xs0) = {z* =
fiyfo} and (X4, 0) := {2? = yfiyfo} Mmp: (Xg,E(E)) — (X, 0) is the minimal good

resolution (¢ =1,--- ,4), then we have the following;:

O3 3 2 O 3
: 2 1O @ 2 T 1 @ 1
9 D)D), I(EED): @D —%—Q
Ey

e, [1] B [ E,
3 2 2
) :3 & i2 CROCING
3): A0, T(EW: —D—B—D.
B, B 1] Ey [1] Ev [l

8 A numerical procedure to determine whether My = Zx

or not from the topology of the branch curve singularity

For a normal double point (X, 0) = {z? = f(x,y)}, consider the following three types

(see Definition 6.1 in [20]):
(8.1) m.itype I: Z% = —2, m.itype I[I: Mx > Zx, m.i.type III: M% = —1.

We call it the mazimal ideal type for (X, o) and it is abbreviated as m.i.type. Then, any
normal double point belongs to one of those m.i.types. Let f = H f;j be the irreducible
decomposition in C{z,y} and (W, F) — (C?,0) the MGE- resolutlon of ({f = 0},0).
Also, put (C},0) := ({f; =0}, 0) for any j.

Remark 8.1. (i) m.i.type of (X,0) is 1 if and only if f is not of odd type and has
not the Laufer decomposition.

(il) m.i.type of (X, 0) is I1 if and only if f has the Laufer decomposition.

(i) m.i.type of (X,0) is 111 if and only if f is of odd type.

Procedure 8.2. We give a procedure to determine the m.i.type of (X,0) from the

w.d.resolution graph A(f) of the plane curve singularity ({f = 0}, 0).
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(1) Compute the fundamental cycle Zp and mult(C}, 0) and Puisz(C}) for any j.
(2) If ord(f) is even, then (X, 0) is of m.i.type I from Theorem 1.3. Thus, let us assume
that ord(f) is an odd integer (= 3) in the following.

(3) Put g .= [ fj- If T,(g)rea is not a line, then (X,0) is of m.i.type I from
ord(f;):odd
Theorem 3.13. Thus, let us assume that 7,(g),eq is a line (=: L,) in the following.

(4) Define three sets as follows:
Afo) :={j € I'|2mi(f;) = m(f;) and To(f;)rea = Lo},
Ae) ={j €I |2mi(f;) > ni(f;) and To(f;)rea = Lo} and
A(L) = {j € 1| To(fy)oea # Lo}, where I:= {1, v},
Put f) := ]El;[@) fj. For e := L or ¢, put f( := 61;[(6 f; if A(e) # 0, otherwise fi¢) =1
Since I = A(o) U A(c) UA(L) (i.e., disjoint union), we have f = fir)fe) f0)
(5) If fizy # 1 and f(1) is not of Laufer type, then (X, o0) is of m.i.type L. If f) # 1
and f() is not of contact type, then (X, o) is of m.i.type L.
(6) Assume that fip)fe) # 1. If fio) # 1 (resp. fio) # 1) and firy (resp. fio)) is of
Laufer (resp. contact) type, then (X, o) is of m.i.type IIL.
(7) If firyfie) = 1, then (X, 0) is of m.i.type III.

Example 8.3. For the irreducible decomposition f = H fj of fin C{z,y}, assume
that the w.d.resolution graph A(f) of (C,0) = {f =0} is glven as follows:

Cy C Cy x
Fig TFN Fis % o Fyg | F3y F31F3
I c. F 3O 3 ¥ —D-O-0O
8.2 7 Fy Ly Fig Fy Foa1 I Fos For
Od-@ @ T 0, RO-BU=E
F 13
F; Fy F5 E, Fy Fio Fii 14 F Fos Fo Fyo
)
5 D O D

where (Cj,0) = ({f; = 0},0).
(1) The fundamental cycle Z is given by <Coeff pZp > =

[1,1,1,2,3,3,6,9,2,3,4,4,4,8,8,16,24,8,8,16,24,1,2,3,3,3,3,6,6,6, 12, 18].
From this, we can see that F} is the Zp-negative component. Hence, we have

mult(C, 0) = Coeff g, Zp = 9, mult(Cy, 0) = mult(Cjs, 0) = Coeff g, Zp = 24,

mult(Cy, 0) = Coeff g, Zp = 18, mult(Cs, 0) = Coeft g, Zr = 6; also

Puisxz(Ch) = {(3,7),(3,23)}, Puisx(Cs) = {(4,5), (2,13),(3,41)},

Puisz(Cs) = {(4,5),(2,13),(3,44)}, Puisz(Cy) = {(3,5),(2,15),(3,49)}

and Puisz(C5) = {(3,5),(2,15)}.
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2) ord(f) = mult(C, 0) = 81 is odd.
3) From A(f), To(f1)rea = To(f2)rea = To(f3)rea and it is a line (=: L,); also L, ¢
fi)rea for i =4, 5.
4) = fi, fc = fafs and fL) = fufs.
5) f(r) is of Laufer type from Theorem 4.5, and Fizj(f(z)) = Fos.
)

6) Let ¢ be a linear form with 7,(C1),ea = {¢ = 0}. Then, <Coeffp, (¢ 0 0)p>=
1,2,3,5,7,7,14,21,3,4,5,5,5, 10, 10, 20, 30, 10, 10, 20, 30] for 1 < i < 21 and Coeff (£ o
0)p = Coeflp, Zp (22 < i < 32). From Theorem 5.4, f(.) is of contact type and Fiq(fe)) =
Fiy. Then, f = fu)fe)fo) is a Laufer decomposition. Hence, if A(f) is given by (8.2),
then (X,0) = {22 = f(z,y)} is always of m.i.type II.

(
(
To(
(
(
(
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