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Abstract

For a resolution space (X̃, E) of a normal complex surface singularity (X, o), the

fundamental cycle ZE and maximal ideal cycle ME are important geometric objects

associated to (X, o), which satisfy ME ≥ ZE. In 1966, M. Artin proved that ME = ZE

for all resolutions of all rational singularities. However, for non-rational singularities,

it is a delicate problem whether ME = ZE or not. Any normal surface double point

(i.e., multiplicity two) is a hypersurface singularity defined by z2 = f(x, y). For such

singularities, we prove that ME > ZE holds on the minimal resolution if and only if f

has a canonical decomposition f = f[L]f[c]f[o] in C{x, y} called “Laufer decomposition”.

Moreover, we give a numerical procedure to determine whether ME = ZE or not on

the minimal resolution from the embedded topology of the branch curve singularity

({f = 0}, o).

Keywords Normal surface double points · Fundamental cycles · Maximal ideal cycles ·
Laufer decompositions
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1 Introduction

Let π : (X̃, E)→ (X, o) be a good resolution of a normal complex surface singularity.

Let E =
r∪

i=1

Ei be the irreducible decomposition of the exceptional set. A divisor on

X̃ supported in E is called a cycle. In [2], M. Artin defined the fundamental cycle as

ZE := min{D =
r∑

i=1

aiEi | ai > 0 and DEi ≦ 0 for any i}. It is well-known that the

value Z2
E is independent of the choice of a resolution, and so we put it Z2

X in this paper.

Therefore, Z2
X is a topological invariant of (X, o). The maximal ideal cycle on E is

defined by ME := min{(h ◦ π)E | h ∈ m\{0}} (see [22]), where m is the maximal ideal of

the local ring OX,o and (h ◦ π)E is a cycle
r∑

i=1

vEi
(h ◦ π)Ei for vanishing order vEi

(h ◦ π)

of h ◦ π on Ei. Though ZE is determined by the topological structure of (X, o), ME
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depends on the analytic structure of (X, o). For ME, if we take a suitable succession of

blowing-ups ( ˜̃X, Ẽ) −→ (X̃, E), then −M2
Ẽ
is equal to mult(X, o) (i.e., the multiplicity

of (X, o)). Namely, the maximal ideal cycle is a geometric representation of mult(X, o).

From the definition of ME and ZE, they are anti-nef cycles on E with ME ≥ ZE.

Moreover, Ph. Wagreich proved the following fundamental result.

Theorem 1.1 ([21, Theorem 2.7]). (i) mult(X, o) ≧ −M2
E ≧ −Z2

E.

(ii) If mOX̃ is invertible, then mOX̃ = OX̃(−ME) and mult(X, o) = −M2
E.

In normal surface singularity theory, it is important to consider under what circum-

stances ME = ZE holds. In [8], H. Laufer showed that ME > ZE on the minimal

resolution of a normal double point defined by z2 = y(x4 + y6). Regarding the impor-

tance of the condition ME = ZE, let us mention one fact. In [22], S.S.T. Yau defined

maximally elliptic singularities and proved that those singularities are Gorenstein. The

first named author ([16, Corollary 7.9]) proved that ME = ZE also holds on the minimal

resolutions for those singularities (also see [11,Theorem D]). Conversely, T. Okuma ([13,

Theorem 5.10]) proved the converse (also see [11, Theorem A]). Namely, if (X, o) is a

Gorenstein elliptic singularity and ME = ZE on the minimal resolution, then it is a

maximally elliptic singularity. About the comparison of ME and ZE, we can find many

useful descriptions in §6− §8 and §11 of [12]. We also refer to [7], [9], [10], [14] and [17]

for many types of singularities. Here, we remark that “maximal ideal cycle” is called as

“fiber cycle” in [4] .

From S.S. Abhyanker’s result in [1], we can see that every normal surface double point

is a hypersurface singularity defined by z2 = f(x, y) for an element f in C{x, y} (also

see [5]). We remark that for a hypersurface singularity (X, o) = {zn = f(x, y)}, (X, o) is

normal if and only if f is reduced ([18, Theorem 3.2]). In the following of this section,

let (X, o) be a normal double point defined by z2 = f(x, y) and (X̃, E) a resolution of

(X, o); also (C, o) := ({f = 0}, o)). The comparison problem of ME and ZE for (X, o)

has been studied by H. Laufer and D.J. Dixon as follows.

Theorem 1.2 ([8, Theorem 6.3]). If ME > ZE on the minimal resolution (X̃, E) of

(X, o), then H1(E,R) 6= 0. Namely, if (X, o) has the rational homological sphere link,

then ME = ZE on the minimal resolution.

Theorem 1.3 ([5, Theorem 1 and 2] ). (i) If ord(f) is even, then ME = ZE for any

resolution of (X, o).

(ii) If f is irreducible and ord(f) is odd, then ME = ZE for the minimal resolution.

Therefore, we need to consider the case that ord(f) is odd and f is reducible. A.

Calabri and R. Ferraro in [4] researched the comparison problem in such case. They

defined a figure called the Enriques digraph for (C, o), and proved that the condition
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to ME > ZE is determined in terms of the Enriques digraph (see Theorem 12.2 in [4]).

They used the canonical resolution (see [4], [15]) and studied the multiplicity of strict

transform of X at each step in constructing the canonical resolution. They expressed

2ZE by maximum ideal cycles on such steps ([4,Theorem 11.2]). Using these results,

they arrived at their main result.

Though we research the similar problem, our interests and main results are largely

different from them. We study the Puiseux pairs and the resolution diagram of the

branch curve. However the canonical resolution does not induce the embedded resolution

of the branch curve (cf. as each process needs the condition deg π = ep(V ) in (1.2) [15]

p.3 , see also (1.3) [15] ). Hence we change the resolution method and use the covering

resolution of (X, o) ((3.1) and [5]). (Though Puiseux pairs play crucial roles in our work,

but they do not appear in [4] and [8]).

In the comparison problem between ZE and ME, most results already obtained give

sufficient conditions for ZE = ME. However, it seems also interesting and important to

consider the details of the situation where ZE < ME. In this paper (Theorem 3.11), for

normal double points with ME > ZE, we have shown how E decomposes. Namely, the

resolution graph corresponding to Laufer decomposion consists of three parts, i.e. the

odd part carrying ZE = ME, the Laufer part carrying ME = 2ZE and the contact part

carrying ZE < ME < 2ZE. The components which connect these parts are nothing but

the strict transforms of exceptional curves F1 and F2 which appear by the first and the

second blow ups of the covering resolution. Note that only the role of F1 appears in

Enriques digraph [4, § 12, Fig.2]. First, we show that if ME > ZE, the shape of E has

a specific decomposition. Second, we consider a specific decomposition of f obtained

from the above decomposition of E. Then we prove that the existence of the above

decomposition of f is equivalent to ME > ZE on the minimal resolution. Furthermore,

we provide a numerical procedure to determine from the topology of (C, o) whether

ME = ZE or not.

In §2, we prepare some facts and terminologies on plane curve singularities. In §3, as a
resolution of (X, o) = {z2 = f(x, y)}, we explain the covering resolution over the MSGE-

resolution of (C, o) (see Definition 3.1). Under the condition of ME > ZE on a good

resolution (X̃, E), we prove several facts. Especially, we define the Laufer decomposition

E = E(o) ∪ E(c) ∪ E(L) (Definition 3.10), and show that E has a specific shape. (

Theorem 3.11). From §4 to the end of this paper, in the topological point of view,

we characterize f ∈ C{x, y} such that ME > ZE holds on the minimal resolution of

(X, o). For the purpose, we define elements of three types in C{x, y} (i.e., Laufer type,
contact type and odd type; see Definition 4.1 and 5.1 and 6.1). When ME > ZE holds

on the minimal good resolution, such f is decomposed into a product of at most those
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three types of elements. Those three types of elements in C{x, y} correspond to Laufer

decomposition of E as follows: [Laufer type or 1 ⇔ E(L)], [contact type ⇔ E(c)] and

[odd type ⇔ E(o)].

In §4 (resp. §5), we characterize elements of Laufer (resp. contact) type in terms of

Puiseux pair (see Theorem 4.5 and 5.4). As an improvement of Theorem 1.2, we give a

lower bound for dimRH1(E(ϵ),R) for ϵ = L or c (Theorem 4.9 (ii) and 5.9 (ii)). In §6,
we characterize elements of odd type in terms of Puiseux pair (Theorem 6.4). In §7, we
prove the main result of this paper (see Theorem 7.5).

Theorem 1.4. The relation MX > ZX holds on the minimal resolution if and only if

f has the Laufer decomposition f = f[L]f[c]f[o] in C{x, y} (see Definition 7.1).

Moreover, if f = f[L]f[c]f[o] is the Laufer decomposition, then the w.d.graph for (X, o) is

constructed by suitable gluing of the w.d.graphs for z2 = ℓϵf[ϵ] (ϵ = L and c) and z2 = f[o],

where ℓϵ is a linear form (see Theorem 7.3). In §8, we give a numerical procedure from

the w.d.resolution graph Λ(f) (i.e., the weighted dual graph of the exceptional set plus

the strict transform σ−1
∗ C; see (2.4)) to determine whether ME = ZE holds or not on

the minimal resolution (Procedure 8.2).

To close this section we like to state a problem. It is natural to look forward some

extensions of Laufer decomposition to the cases of multiplicity ≥ 3.

Problem 1.5. Assume that (X,o) is a normal surface singularity with multiplicity ≧ 3

and ME > ZE. For the irreducible decomposition E =
∪r

i=1 Ei of the exceptional set, we

put the ratio γi among the coefficients of ZE and ME as γi := CoeffEi
ME/CoeffEi

ZE

for any i.

(i) What is the maximum of {γi}?
(ii) For the existence of a decomposition of E similar to Laufer decomposition by means

of {γi}, what conditions to (X,o) are necessary?

(iii) If (X, o) = {zn = f(x, y)} and exists a decomposition of E as (ii), study the

Puiseux pairs of irreducible components of f(x,y) which give each subset (similar to

E(L),E(c) and E(o) of the Laufer decomposition).

Notations and terminologies. In this paper, we always use the notations here.

Let f be a reduced element in C{x, y} and f =
r∏

j=1

fj the irreducible decomposition; also

we put (Cj, o) = ({fj = 0}, o). We consider the following as the MGE (i.e., minimal

good embedded)-resolution of (C, o) = ({f = 0}, o):

(1.1) (C2, o)
σ1←− (W1, F (1))

σ2←− · · · σN←− (WN , F (N)) and σ := σ1 ◦ · · · ◦ σN .
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Namely, F ∪ C̃ is simple normal crossing, where F := F (N) and C̃ := σ−1
∗ C is the strict

transform of C by σ. Let C̃j := σ−1
∗ Cj for any j and Pi the center of σi (so P1 = {o})

and Fi := σ−1
i (Pi) for any i. The strict transform (σk+1 ◦ · · · ◦ σN)

−1
∗ Fk (⊂ WN) is also

denoted by Fk; thus F =
N∪
k=1

Fk. We represent the configuration of F ∪ C̃ by Λ(C) or

Λ(f), and call it the w.d.resolution graph (see (2.4)). For a plane curve singularity (C, o),

let To(C)red (or To(f)red) be the reduced form of the tangent cone of (C, o). When f is

irreducible and {(m1, n1), · · · , (mℓ(C), nℓ(C))} is the Puiseux pair of f , let us represent it

by Puisx(C) (or Puisx(f)).

Moreover, we remark that the MSGE (i.e., minimal sufficiently good embedded)-

resolution defined in Definition 3.1 is used very often in this paper. If Eo is a smooth

rational curve on a smooth complex surface and E2
o = −1, then it is called a (−1)-curve.

The maximal ideal cycle and fundamental cycle on the minimal (resp. minimal good)

resolution of a normal surface singularity (X, o) are denoted by MX and ZX (resp. Mo,X

and Zo,X) respectively. In this paper, we consider that a non-singular point is a kind of

rational singularities. Then, for any resolution σ : (W,F ) → (C2, o) of a non-singular

point, the maximal ideal cycle MF and fundamental cycle ZF conicide.

2 Preparation for plane curve singularities

[Irreducible case] Assume that f is irreducible and σ is the MGE-resolution in (1.1)

for (C, o). The figure of the w.d.resolution graph Λ(C) associated to F ∪ σ−1
∗ C is given

as follows (see [3, p.523]):

* C̃

(2.1)
:ℓ(C)-th Puiseux chain• • �

F⟨ℓ(C)⟩
· · · • •· · ·

: 2-nd Puiseux chain (:= P2(C))• • �
F⟨2⟩

· · · • •· · ·

: 1-st Puiseux chain (:= P1(C)),
• • �

F⟨1⟩
· · · • •· · ·

(:= Pℓ(C)(C))· · ·

where F⟨k⟩ ⊂ W⟨k⟩ for k = 1, · · · , ℓ(C); W⟨i⟩ := Wki for ki satisfying σ−1
ki
(Pki) = F⟨i⟩

(1 ≦ ki ≦ N). Let us call F⟨k⟩ the k-th Puiseux root of f for any k. We have mult(C, o) =

ord(f) =
ℓ(C)∏
i=1

mi, where ord(f) is the order of f at the origin {o} ∈ C2.

Here we remark that the intersection number CTo(C)red = n1m2 · · ·mℓ for a suitable

coordinate of C2, but CTo(C)red depends on the choice of a coordinate. For example,

for (C1, o) = {x2 + y5 = 0} and (C2, o) = {(x+ y2)2 + y5 = 0}, they are holomorphically

isomorphic; but C1To(C1)red = 5 and C2To(C2)red = 4. However, we have the following:

(2.2) If n1 < 2m1, then CTo(C)red = n1m2 · · ·mℓ always holds.
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In fact, if σ : (W,F )→ (C2, o) is the blowing-up at the origin and put C1 := σ−1
∗ C and

T1 := σ−1
∗ To(C)red, then C1 intersects T1 transversally from n1 < 2m1; thus CTo(C)red =

(σ∗C)T1 = (mult(C, o)F + C1)T1 = m1m2 · · ·mℓ + (n1 −m1)m2 · · ·mℓ = n1m2 · · ·mℓ.

Example 2.1. Let (C, o) be an irreducible curve singularity given by {x = t18,

y = t24 + t33 + t35}. Then, Puisx(C) = {(3, 4), (2, 11), (3, 35)}. The w.d. (i.e., weighted

dual) resolution graph associated to the MGE-resolution of the curve singularity and the

multiplicity sequence (see [3, p. 517]) are given as follows:

F1 F3 F2F4

F7F5

F9
F8F10

*C̃

-4

24 = 1 · 18 + 6
18 = 3 · 6

6 = 2 · 3
3 = 1 · 2 + 1
2 = 2 · 1

-3

-3-1

-3
F6

9 = 1 · 6 + 3

F⟨1⟩ = F4, F⟨2⟩ = F7, F⟨3⟩ = F10,

P3(C) =
∪10

i=8 Fi.

P1(C) =
∪4

i=1 Fi,

P2(C) =
∪7

i=5 Fi,

Definition 2.2. (i) Assume that mult(C, o) (= m1 · · ·mℓ(C)) is even. If m1 · · ·mk−1

is odd and mk is even, then we put m[LP ](f) (or m[LP ](C)) := mk. Let us call m[LP ](f)

the LP-number (i.e., Laufer-Puiseux number) of f or (C, o).

(ii) Assume that n1m2 · · ·mℓ(C) is even. If n1 is even, then we define m[cP1](f) (or

m[cP1](C)) := m1 and m[cP2](f) (or m[cP2](C)) := n1. If n1m2 · · ·mk−1 is odd and mk

is even (k ≧ 2), then we define m[cPi](f) (or m[cPi](C)) := mk for i = 1, 2. Hence, if

n1 is odd, then m[cP1](f) = m[cP2](f). Let us call m[cP1](f) (resp. m[cP2](f)) the 1-st

(resp. 2-nd) contact-Puiseux number of f or (C, o). We abbreviate it as the cPi-number

(i = 1, 2) of f and use it in Theorem 5.4.

Definition 2.3. (i) ePi
(C) := mult((σ1 ◦ · · · ◦ σi−1)

−1
∗ C,Pi) for any Pi (1 ≦ i ≦ N).

(ii) mult.seq(C, o) := (eP1(C), · · · , ePN
(C)): multiplicity sequence of (C, o).

(iii) If mk0 = m[LP ](C) (resp. m[cP1](C)) for k0 ≧ 2, then we put

e[L](C) (resp. e[c](C)) := mk0+1 · · ·mℓ(C) if k0 < ℓ(C) else e[L](C) (resp. e[c](C)) := 1.

If we assume that Wik = W⟨k⟩ for k with 1 ≦ k ≦ ℓ(C) and 1 ≦ i1 < · · · < iℓ(C) ≦ N ,

then we have the following (see [3, §8.4 ]):

(2.3)


(i) ePik

(C) = mult((σ1 ◦ · · · ◦ σik−1)
−1
∗ C,Pik) = mk+1 · · ·mℓ(C),

(ii) mk+1 · · ·mℓ(C)| ePi
(C) for any i with 1 ≦ i ≦ ik,

(iii) the k-th Puiseux chainPk(C) in (2.1) =
ik−ik−1∪

ξ=1

Fik−1+ξ.

For (C, o) in Example 2.1, we have i1 = 4, i2 = 7 and i3 = 10 and mult.seq(C, o) =

(18, 6, 6, 6, 6, 3, 3, 2, 1, 1); hence eP1(C) = 18, eP4(C1) = 6 and eP7(C) = 3. More-

over, m[LP ](C) = m2 = 2, m[cP1](C) = m1 = 3, m[cP2](C) = n1 = 4, e[L](C) = 3
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and e[c](C) = 6. Since σ is a resolution of (C2, o), the maximal ideal cycle MF is

equal to the fundamental cycle ZF on F . We can see the following: �CoeffFi
MF�:=

(CoeffF1MF , · · · ,CoeffF10MF ) = (1, 1, 2, 3, 3, 3, 6, 6, 12, 18). Also, P1(C) =
4∪

i=1

Fi, P2(C) =

7∪
i=5

Fi and P3(C) =
10∪
i=8

Fi.

[Reducible case]

Proposition 2.4 (see [3, p.414, p.535]). (i) For two plane curve singularities (C1, o)

and (C2, o), they are equivalent in embedded topology if and only if Λ(C1) = Λ(C2), where

Λ(Ci) is the w.d.resolution graph for i = 1, 2.

(ii) The multiplicity sequence is determined by the w.d.resolution graph.

Let σ⟨j⟩ be the MGE-resolution of (Cj, o) for j = 1, · · · , r. Moreover, let σ̆⟨j⟩ be a

succession of blowing-ups such that σ⟨j⟩◦ σ̆⟨j⟩ gives the MGE-resolution σ of (C, o). From

the uniqueness of MGE-resolution of (C, o), we have σ⟨1⟩ ◦ σ̆⟨1⟩ = · · · = σ⟨r⟩ ◦ σ̆⟨r⟩ = σ.

Definition 2.5. Under the situation above, if Fk (⊂ W(j)) is a Puiseux root of

(Cj, o) := ({fj = 0}, o) (1 ≦ j ≦ r), then the strict transform (σ̆⟨j⟩)
−1
∗ Fk (⊂ WN) is also

called a Puiseux root of (Cj, o). For the i-the Puiseux chain Pi(Cj) of (Cj, o) in W(j), put

P̄i(Cj) (or P̄i(fj)) := (σ̆⟨j⟩)
−1
∗ Pi(Cj) (⊂ WN) and Ii(Cj) := {ξ ∈ I | P̄i(Cξ)∩ P̄i(Cj) 6= ∅}

for I := {1, · · · , r}. Let us define P̃i(Cj) (or P̃i(fj)) :=
∪

ξ∈Ii(Cj)

P̄i(Cξ) for i = 1, · · · , ℓj. We

call P̃i(Cj) (or P̃i(fj)) the i-th Puiseux chain of (Cj, o) in (WN , F (N)). If Fi0 ⊂ P̃i−1(Cj)

and Fi0 ∩ P̃i(Cj) 6= ∅, then we call Fi0 the Puiseux root of P̃i(Cj).

Example 2.6. Assume that (C, o) :=
5∪

j=1

(Cj, o) is given by local parametrizations:

(C1, o) := {x = t6, y = t8 + t13}, (C2, o) := {x = t6, y = t8 + t11}, (Ci, o) := {x =

(−1)it4, y = t7} for i = 3, 4 and (C5, o) := {x = t8, y = t14 + t17}. Then, we can see that

Puisx(C1) = {(3, 4), (2, 13)}, Puisx(C2) = {(3, 4), (2, 11)}, Puisx(C3) = Puisx(C4) =

{(4, 7)} and Puisx(C5) = {(4, 7), (2, 17)}. Using the parametrization of (Cj, o) (j =

1, · · · , 5), we can compute the MGE-resolution σ : (W,F ) → (C2, o) of (C, o), and

obtain the w.d.resolution graph Λ(C) as follows:

*C̃2

F1 F3 F10F4 F11 F2.
-4 -3 -4

-4-1 -1
F12 F14 F13

-1-3

*
*

*C̃5

C̃3

C̃4

*

(2.4)
-3

F5 F9 F6 F8 F7

C̃1

If we put ∆(Cj) := {k | Fk is a Puiseux root of Cj}, then ∆(C1) = {4, 8}, ∆(C2) = {4, 9},
∆(C3) = ∆(C4) = {11} and ∆(C5) = {11, 14}. For the Puiseux chains, P̃1(C1) = · · · =
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P̃1(C5) = (
4∪

i=1

Fi)∪F10∪F11, P̃2(C1) = P̃2(C2) =
9∪

i=5

Fi and P̃2(C5) =
14∪

i=12

Fi. In addition,

the root of P̃2(C1) (resp. P̃2(C5)) is equal to F4 (resp. F11) and so on.

Definition 2.7. (see [3, p.506]). If f is irreducible, then there exists a unique total

order among {F1, · · · , FN} according to the order of blowing-ups. If f is reducible (i.e.,

r > 1), then the strict transforms of all irreducible components of (C, o) are separated

by σ. For C̃j := σ−1
∗ Cj (1 ≦ j ≦ r), we define the following.

(i) Define the partial order among {F1, · · · , FN} according to the order of blowing-

ups. Moreover, if C̃j ∩ Fkj 6= ∅ in WN , then define the order by Fkj ≺ C̃j. The partial

order among {F1, · · · , FN , C̃1, · · · , C̃r} is called the standard order, which is indicated by

“≺”. This partially ordered set has only one minimal element F1 (= σ−1
1 ({o})).

(ii) mult.seq(f) (or mult.seq(C)) := (eP1(C), · · · , ePN
(C)), where ePk

(C) means the

multiplicity of (σ1 ◦ · · · ◦ σk−1)
−1
∗ C at Pk (2 ≦ k ≦ N) and eP1(C) := mult(C, o).

(iii) �CoeffFi
(g)�:= [CoeffF1(g◦σ)F (N), · · · ,CoeffFN

(g◦σ)F (N)] for any g ∈ C{x, y}.

Example 2.8. For (C, o) of Example 2.6, the standard order among {Fi}1≦i≦24 ∪
{Cj}1≦j≦5 is given as follows:

F1 ≺ F2

F9F4

F13 F14≺≺≺F10 F11

F8

F12
≺

≺
≺≺ F3

F5 ≺ F6
C̃2

C̃1

C̃5.

C̃3 C̃4

F7

≺
≺

≺

Then,mult.seq(Cj) are given as follows: (6, 2, 2, 2, 2, 2, 1, 1, 0, · · · , 0) for j = 1; (6, 2, 2, 2, 2, 1,

0, 0, 1, 0, · · · , 0) for j = 2; (4, 3, 1, 0, · · · , 0, 1, 1, 0, 0, 0) for j = 3, 4; (8, 6, 2, 0, · · · , 0, 2, 2, 2, 1, 1)
for j = 5; also mult.seq(C) = (28, 16, 8, 4, 4, 3, 1, 1, 1, 4, 4, 2, 1, 1). For general α, β ∈ C
and f ∈ C{x, y},

�CoeffFi
(αx+ βy)�= [1, 1, 2, 3, 3, 3, 3, 6, 6, 3, 4, 4, 4, 8] and

�CoeffFi
(f)�= [28, 44, 80, 112, 116, 119, 120, 240, 236, 128, 176, 178, 179, 358].

Assume the situation of Definition 2.5. Let Fξ be a Puiseux root of an irreducible

component of (C, o) =
∪r

i=1(Ci, o) and define

(2.5) JFξ
:= {j ∈ I | Fξ is a Puiseux root of Cj} and D(Fξ) :=

∪
j∈JFξ

Cj,

where I := {1, · · · , r}. Then we can easily see the following (see [3, p.512-529]).

Lemma 2.9. Under the situation above, if Fk � Fξ, then ePk
(D(Fξ)) =

∑
j∈JFξ

ePk
(Cj)

is divisible by ePξ
(D(Fξ)).
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In (2.4), F11 is a Puiseux root of C3 and JF11 = {3, 4, 5}; also eP11(D(F11)) =
5∑

j=3

eP11(Cj) = 4. From the computation in Example 2.8, we have eP1(D(F11)) = 16,

eP2(D(F11)) = 12, eP3(D(F11)) = 8 and eP10(D(F11)) = 4.

Definition 2.10. Under the situation of Definition 2.7, let Fi0 (⊂ WN) be a Puiseux

root of Cj (1 ≦ j ≦ r) and η a linear form in C{x, y}.

(i) Fi0 is called the η-root of Cj if CoeffFi0
(η ◦ σ)F (N) is even and CoeffFk

(η ◦ σ)F (N) is

odd for any Puiseux root Fk of Cj with Fk ≺ Fi0 .

(ii) Fi0 is called the Laufer root of Cj if Fi0 is the (αx+ βy)-root of Cj, where α, β are

general elements in C.

(iii) Fi0 is called the contact root of Cj if Fi0 is the ℓ-root of Cj, where ℓ is a linear

form with To(Cj)red = {ℓ = 0}.

(iv) The η-root of Cj is denoted by F[η](Cj); also the Laufer (resp. contact) root of Cj

is denoted by F[L](Cj) (resp. F[c](Cj)).

In Example 2.6, we have To(C)red = {y = 0} and�CoeffFi
(y)�= [1, 2, 3, 4, 4, 4, 4, 8, 8,

5, 7, 7, 7, 14]. From this and computations in Example 2.8, we can easily check that

F[L](C1) = F8, F[L](C2) = F9 and F[c](C1) = F[c](C2) = F4; also F[L](Cj) = F11 for

j = 3, 4, 5 and F[c](C5) = F14. However, C3 and C4 have not the contact roots.

Definition 2.11. Under the same condition as Definition 2.10, consider two different

irreducible plane curve singularities (Ci1 , o) = ({fi1 = 0}, o) and (Ci2 , o) = ({fi2 = 0}, o).

(i) If F[η](Ci1) = F[η](Ci2) for a linear form η, then we say that Ci1 and Ci2 are η-

equivalent and denote it by
[η]

Ci1 ∼ Ci2 (or
[η]

fi1 ∼ fi2).

(ii) If F[L](Ci1) = F[L](Ci2) (resp. F[c](Ci1) = F[c](Ci2)), then we say that Ci1 and

Ci2 are Laufer (resp. contact) equivalent and denote it by
[L]

Ci1 ∼ Ci2 or
[L]

fi1 ∼ fi2 (resp.
[c]

Ci1 ∼ Ci2 or
[c]

fi1 ∼ fi2).

(iii) For any j in I := {1, · · · , r}, we define the following:

I[η](Cj) (or I[η](fj)) := {ξ ∈ I |
[η]

Cξ ∼ Cj} and D[η](Cj) (or D[η](fj)) :=
∪

ξ∈I[η](Cj)

Cξ,

I[ϵ](Cj) (or I[ϵ](fj)) := {ξ ∈ I |
[ϵ]

Cξ ∼ Cj}
and D[ϵ](Cj) (or D[ϵ](fj)) : =

∪
ξ∈I[ϵ](Cj)

Cξ for ϵ = L or c.

In Example 2.6,
[L]

C3 ∼ C4

[L]

∼ C5 and the Laufer root is F11. In addition,
[c]

C1 ∼ C2 and

the contact root is F4. From (2.3) and Definitions 2.3 and 2.11, we can see the following.
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Lemma 2.12. Let η be a linear form with η ∤ f and Lη := {η = 0}. For any j, we

have the following (see Definition 2.3 (iii) for e[L](Cj) and e[c](Cj)).

(i) If Lη 6⊂ To(C)red, then

D[L](Cj)Lη =
∑

ξ∈I[L](Cj)

mult(Cξ, o) = m1(Cj) · · ·m[LP ](Cj)
∑

ξ∈I[L](Cj)

e[L](Cξ).

(ii) If Lη = To(C)red and n1(Cj) < 2m1(Cj) for any j, then

D[c](Cj)Lη =



n1(Cj)
∑

ξ∈I[c](Cj)

e[c](Cξ) if n1(Cj) is even,

n1(Cj)m2(Cj) · · ·m[cPi](Cj)
∑

ξ∈I[c](Cj)

e[c](Cξ) if n1(Cj)m2(Cj) · · ·mk−1(Cj)

is odd and mk(Cj) (= m[cPi](Cj)) is even, where k ≧ 2 and i = 1, 2.

Let h =
r∏

j=1

hj be the irreducible decomposition of a reduced element h of C{x, y}. Let

ℓ be a linear form with ℓ ∤ h and Lℓ := {ℓ = 0}. Let (C, o) (resp. (C̄, o)) be the curve

singularity defined by ℓh = 0 (resp. h = 0) and (Cj, o) := ({hj = 0}, o) for any j. Let

(C2, o)
σ1←− · · · σN←− (WN , F (N)) be the MGE-resolution of (C, o).

Definition 2.13. Under the situation above, let Pk be the center of σk and Fk :=

σ−1
k (Pk) ⊂ Wk (1 ≦ k ≦ N). For simplicity, (σk+1 ◦ · · · ◦ σi)

−1
∗ Fk is also denoted by

Fk for any i with k < i ≦ N ; thus F (N) =
N∪
i=1

Fi. For any k with 1 ≦ k ≦ N and

σ := σ1 ◦ · · · ◦ σN , we define following integers:

λ[Fk] := CoeffFk
((ℓh) ◦ σ)F (N), ℓ[Fk] := CoeffFk

(ℓ ◦ σ)F (N) and

γ[Fk] := CoeffFk
((αx+ βy) ◦ σ)F (N), where α, β are general elements in C.

If Lℓ 6⊂ To(C)red, then ℓ[Fk] = γ[Fk] for any Fk ⊂ F (N). However, we remark that if

(WN , F (N))
τ←− (W ′, F ′) is the blow-up at Q := F1 ∩ σ−1

∗ Lℓ and Fk+1 := τ−1(Q), then

ℓ[Fk+1] = 2 and γ[Fk+1] = 1.

We have λ[F1] = ord(h) + 1 and ℓ[F1] = 1. Also, we can easily see the following:

(2.6) λ[Fk] =
∑

Pk∈Fi

λ[Fi] + ePk
(C̄) + ePk

(Lℓ) and ℓ[Fk] =
∑

Pk∈Fi

ℓ[Fi] + ePk
(Lℓ),

where ePk
(C̄) :=

r∑
j=1

ePk
(Cj); also ePk

(Lℓ) := 1 if Pk ∈ (σ1 ◦· · ·◦σk−1)
−1
∗ Lℓ else ePk

(Lℓ) :=

0. For the i-th Puiseux chain P̃i(Cj), we can easily see the following:

(2.7)
if Fξ1 , Fξ2 ⊂ P̃i(Cj) satisfy Fξ1 ∩ Fξ2 6= ∅ and Fξ1 6= Fξ2 ,

then γ[Fξ1 ] or γ[Fξ2 ] is odd.

Throughout of this paper, we need several discussions on the relations between the

multiplicities of branch locus and orders λ, ℓ and γ in the resolution process.

Let Fk(1), · · · , Fk(r) be irreducible components of F (N) with Fk(j) ≺ C̃j for any j. In

general, it might be happend that there exists different i, j with k(i) = k(j). Hence, for
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Fk(1), · · · , Fk(r), not all of them are different. The strict transform of C̄ onto Wk is also

represented by C̄. Now we shall state the following simple one.

Lemma 2.14. Under the situation of Definition 2.13, let j and Fk(j) be as above. For

this j, the following two conditions are equivalent.

(i) The relation λ[Fk] ≡ ℓ[Fk] mod 2 holds for any k with Fk � Fk(j).

(ii) The multiplicity ePk
(C̄) is even for any k with Fk � Fk(j) .

Proof. As seen in Definition 2.7 (i), F1 is the minimal for the order �. By definition,

we have λ[F1] = ord(h) + 1 and ℓ[F1] = 1. Hence it follows that λ[F1] ≡ ℓ[F1] mod 2 if

and only if eP1(C̄) is even. The assertion is induced from the induction on the standard

partial order by using the relations (2.6). Q.E.D.

Proposition 2.15. Under the situation of Definition 2.13, if ord(hj) is even and

F[ℓ](hj) exists for any j, then the following three conditions are equivalent.

(i) For every hj, λ[Fk] ≡ ℓ[Fk] mod 2 for any k with Fk � F[ℓ](hj) on the standard

order and the ℓ-root F[ℓ](hj) of hj.

(ii) For every hj, ePk
(C̄) is even for any k with Fk � F[ℓ](hj).

(iii) For every hj, ePk
(D[ℓ](Cj)) is even for any k with Fk � F[ℓ](hj).

Proof. (i) ⇔ (ii) If we put Fk(j) := F[ℓ](hj), then the assertion holds by Lemma 2.14.

(ii) ⇒ (iii) We put gξ :=
∏

j∈I[ℓ](hξ)

hj and so h =
s∏

ξ=1

gξ, where I = I[ℓ](hi1) t · · · t I[ℓ](his)

(disjoint union). We prove the assertion by induction on s. If s = 1, then h = g1

and thus ePk
(D[ℓ](h1)) = ePk

(C̄) is even by (ii). Assume that the assertion is correct in

the (s − 1)-th step, and consider the s-th step. Let F[ℓ](hi1) be a maximal ℓ-root with

respect to “� ”. It means that there does not exist hj with F[ℓ](hi1) ≺ F[ℓ](hj). It always

exsists, even if it is not unique. Put Fℓ(i1) := F[ℓ](hi1) and Pℓ(i1) := σℓ(i1)(Fℓ(i1)). Then,

ePℓ(i1)
(D[ℓ](hi1)) = ePℓ(i1)

(C̄) because Fℓ(i1) is a maximal ℓ-root. Hence, ePℓ(i1)
(D[ℓ](hi1))

is even by (ii). From Lemma 2.9, ePk
(D[ℓ](hi1)) is even for any k with Fk � F[ℓ](hi1).

If we put (C ′, o) := ({g2 · · · gs = 0}, o), then ePk
(C ′) = ePk

(C̄) − ePk
(D[ℓ](hi1)) is even

from (ii) and the above. Namely, for any j ∈
s∪

ξ=2

I[ℓ](hiξ), ePk
(C ′) is even for any k with

Fk � F[ℓ](hj). From the hypothesis of induction, ePk
(D[ℓ](hiξ)) is even for any ξ and k

with Fk � F[ℓ](hiξ) (2 ≦ ξ ≦ s).

(iii) ⇒ (ii) Put A(Fk) := {j | Fk ≺ Ĉj} and Ā(Fk) := {j1, · · · , jm ∈ A(Fk) |
[ℓ]

Cjξ 6∼ Cjζ

if 1 ≦ ξ < ζ ≦ m}. Then, ePk
(C̄) =

∑
jξ∈Ā(Fk)

ePk
(D[ℓ](Cjξ)). Hence, (ii) is obtained from

(iii). Q.E.D.

3 Covering resolutions for normal surface double points
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In this section, we explain covering resolutions over the MSGE-resolutions for normal

surface double points. Moreover, we describe some facts under the condition of Z2
X = −1.

Definition 3.1. Under the situation of (1.1), when Di and Dj are different two

irreducible components of F (N)∪ (
r∪

j=1

Ĉj), we put P (Di, Dj) := Di ∩Dj if Di ∩Dj 6= ∅.

Put Σ := {P (Di, Dj) ∈ WN | CoeffDi
(f ◦ σ)WN

and CoeffDj
(f ◦ σ)WN

are odd}. Let

(WN , F (N))
σN+1←− · · ·

σN̂←− (WN̂ , F (N̂)) be the succession of one time blowing-ups at all

points in Σ. Though there are many choices on successions of blowing-ups (C2, o)
σ1←−

· · ·
σN̂←− (WN̂ , F (N̂)), the composition map σ̂ := σ1 ◦ · · · ◦ σN̂ : (WN̂ , F (N̂)) −→ (C2, o)

is uniquely determined by f . We call σ̂ the MSGE ( i.e., minimal sufficiently good

embedded)-resolution of (C, o) := ({f = 0}, o). In [5], such resolution plays a very

important role.

For σ̂ above, consider the covering resolution of a normal double point (X, o) = {z2 =
f(x, y)}. Let p : X −→ C2 be a double covering map induced from C3 → C2 given by

(x, y, z) 7→ (x, y). We have the following diagram (see [5], [19, p.139]):

C3

(C2, o)

∪
(X, o)

(WN̂ , F (N̂))

WN̂ × C
∪

p
σ̂

ϕ1

σ̂×id

φ′
X

(3.1)
X ′ (X̂, Ê),

ϕ2

φX

where X ′ is the fiber product X ×C2 WN̂ and ϕ1 := σ̂ × id|X′ is a birational morphism

and ϕ2 is the normalization map. Since σ̂ is the MSGE-resolution, X̂ is non-singular

and φX is a holomorphic double covering map. Also, π̂ := ϕ1 ◦ ϕ2 : (X̂, Ê) → (X, o)

is a good resolution and we call it the covering resolution over σ̂; put Ĉ := (σ̂)−1
∗ C for

(C, o) = ({f = 0}, o).

Lemma 3.2. ([5, p.107-108]). Put Ei := (φX)
−1
∗ Fi for the map φX in (3.1). Also,

put λi := CoeffFi
(f ◦ σ̂)F̂ for any i and A :=

∪
λi:odd

Fi. Then

(i) if λj is odd, then E2
i =

1

2
F 2
i ;

(ii) if λj is even and Fi does not meet A ∪ Ĉ, then, E2
i = F 2

i ;

(iii) if λj is even and Fi meets A ∪ Ĉ, then, E2
i = 2F 2

i .

Lemma 3.3. (see [19, Lemma 3.1) Let G be an irreducible component Fi or C̄j in

supp((f ◦ σ̂)WN̂
) and Go an irreducible component of the strict transform (φX)

−1
∗ G in

(3.1). Let MF (resp. MÊ) be the maximal ideal cycle on F (resp. Ê). Then

(i) vGo(z ◦ π̂) = vG(f ◦ σ̂)/gcd(2, vG(f ◦ σ̂)) and
vGo(g ◦ σ̂ ◦ φX) = 2 vG(g ◦ σ̂)/gcd(2, vG(f ◦ σ̂)) for any g ∈ C{x, y} ;
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(ii) CoeffEi
MÊ = 2 CoeffFi

MF/gcd(2, vFi
(f ◦ σ̂)) for Ei := (φX)

−1
∗ Fi.

Lemma 3.4. ([21, p.426]). Let π : (X̃, E) −→ (X, o) be a resolution of a normal

surface singularity. Let D1 and D2 be two anti-nef cycles on E (i.e., DjEi ≦ 0 for

any irreducible component Ei of E and j = 1, 2) with D1 ≦ D2. Then D2
1 ≧ D2

2, and

D1 = D2 if and only if D2
1 = D2

2.

In the following, let (X, o) be a normal surface singularity with Z2
X = −1. Let π :

(X̃, E) −→ (X, o) be a resolution and E =
r∪

j=1

Ej the irreducible decomposition.

Definition 3.5. LetD be an anti-nef effective cycle on E. If Ei satisfiesDEi < 0, then

we call Ei a D-negative component. Since Z2
X = −1, there exists a unique ZE-negative

component Eα on E satisfying CoeffEα ZE = 1 and ZEEα = −1.

Lemma 3.6. Assume that there is an anti-nef effective cycle M with M2 = −2 on E.

If we put Z1 := M − ZE and A := supp(Z1), then we have the following.

(i) Z2
1 = −1, ZEZ1 = 0, MZE = MZ1 = −1 and Z1Ei ≦ 0 for any i (6= α).

(ii) Eα 6⊂ A, CoeffEαM = 1, MEα = 0 and Z1Eα = 1.

(iii) A is a connected set with ZA = Z1, and M < 2ZE.

Proof. (i) Since −2 = M2 = Z2
E + 2ZEZ1 + Z2

1 , we have Z2
1 = −1 and ZEZ1 = 0.

Since 0 = ZEZ1 = ZE(M −ZE) = MZE −Z2
X = MZE +1, we have MZE = −1. Hence,

MZ1 = −1 and Z1Ei = MEi ≦ 0 for any i ( 6= α).

(ii) If Eα ⊂ A, then 0 = ZEZ1 ≦ ZEEα = −1 (contradiction). Thus, Eα 6⊂ A and so

CoeffEαM = CoeffEαZE = 1; thus Z1Eα ≧ 0. If Z1Eα = 0, then Z1 is an anti-nef cycle

on E from (i). Then, ZE ≦ Z1 and so Eα ⊂ A. This contradicts to the above. Hence,

Z1Eα > 0 and so −1 = ZEEα = MEα − Z1Eα; thus MEα = 0 and Z1Eα = 1.

(iii) LetA =
s∪

k=1

A(k) be the disjoint union of connected components. Then,
s∑

k=1

ZA(k) ≦

Z1 from (i) and (ii); thus −s ≧
s∑

k=1

Z2
A(k) ≥ Z2

1 = −1. Then, s = 1 and A is connected.

From (i), Z1Ei = MEi ≦ 0 for any Ei with i 6= α. Since Eα 6⊂ A by (ii), Z1 is an

anti-nef cycle on A and so ZA ≦ Z1. From (i), we have −1 = Z2
1 ≦ Z2

A < 0 and

Z1 = ZA ≦ ZE by Lemma 3.4, and so M ≦ 2ZE. If M = 2ZE, then it yields a

contradiction: −2 = M2 = 4Z2
E = −4. Hence, M < 2ZE. Q.E.D.

Proposition 3.7. Assume that π is the minimal or minimal good resolution.

(i) If there exists an anti-nef effective cycle M on E with M2 = −2, then A :=

supp(M − ZE) is not contracted to a rational singularity. Here, a nonsingular point is

considered as a kind of rational singularity.

(ii) When (X, o) is a normal double point, MX = ZX if and only if Mo,X = Zo,X .



14

Proof. (i) For Z1 and A in Lemma 3.6, assume that A is contracted to a rational

singularity (Y, o). Thus, mult(Y, o) = −Z2
A = −Z2

1 = 1 by Artin’ result ([2]). By a

succession of contractions of (−1)-curves τ : (X̃, E) −→ (X̄, Ē) and Lemma 3.6 (ii), Q :=

τ(A) is a non-singular point on X̄ with Q ∈ τ(Eα). As a corollary of intersection theory

(for example, see [6, p.386-395]), we can see that if σ : (W,F ) −→ (C2, o) is a succession of

blowing-ups, we have mult(C, o) = ZFσ
−1
∗ C for a curve singularity (C, o) = (τ(Eα), Q).

Therefore, from multQ(Ē) = ZAEα = Z1Eα = 1, Ē is simple normal crossing. This

contradicts to the assumption that π is the minimal or minimal good resolution.

(ii) Since “if ”part is obvious, we prove “only if ”part. Assume that MX = ZX . If

Mo,X > Zo,X , then M2
o,X = −mult(X, o) = −2 < Z2

o,X = −1 from Theorem 1.1 and

[21, Theorem 2.7]. From (i), A is not contracted to a non-singular point on the minimal

resolution space. This contradicts to MX = ZX . Q.E.D.

Lemma 3.8. Assume the same situation as Lemma 3.6.

(i) There exists a unique irreducible component Eβ of E withMEβ = −1 and CoeffEβ
M =

2. Especially, Eβ is the M-negative component of E.

(ii) Eβ 6= Eα, ZEEβ = 0 and CoeffEβ
ZE = 1.

Proof. (i) Assume that there exist different two M -negative components Eβ1 and Eβ2 .

Then, MEβi
= −1 and CoeffEβi

M = 1 for i = 1, 2. From CoeffEβi
ZE = CoeffEβi

M = 1,

we have ZEEβi
= E2

βi
+ (ZE − Eβi

)Eβi
≦ E2

βi
+ (M − Eβi

)Eβi
= MEβi

. This yields

a contradiction: −1 = Z2
E ≦ ZE(Eβ1 + Eβ2) ≦ MEβ1 + MEβ2 = −2. Hence the M -

negative component Eβ exists uniquely. If MEβ = −2, then CoeffEβ
M = CoeffEβ

ZE = 1

and so it yields a contradiction −1 ≦ ZEEβ ≦ MEβ = −2. Hence, MEβ = −1 and

CoeffEβ
M = 2.

(ii) From Lemma 3.6, we have CoeffEαM = 1. Then, Eα 6= Eβ from (i) and so ZEEβ =

0. Here, assume that CoeffEβ
ZE ≧ 2. From (i), we have CoeffEβ

M = CoeffEβ
ZE = 2.

This yields a contradiction : 0 = ZEEβ = 2E2
β +(ZE−2Eβ)Eβ ≦ 2E2

β +(M −2Eβ)Eβ =

MEβ = −1. Thus, we have CoeffEβ
ZE = 1. Q.E.D.

Lemma 3.9. Put Z2 := 2ZE −M on E (so ZE = Z1 + Z2) and B := supp(Z2).

(i) Z2Eβ = 1, Z2Eα = −2, Eβ 6⊂ B and Z2
2 = −2.

(ii) B is a connected set and ZB = Z2.

Proof. (i) By Lemma 3.8, Z2Eβ = 2ZEEβ − MEβ = 1 and CoeffEβ
M = 2 and

CoeffEβ
ZE = 1; thus Eβ 6⊂ B from the definition of Z2. From Lemma 3.6, Z2Eα =

2ZEEα −MEα = −2. Since MZE = −1 by Lemma 3.6 (i), Z2
2 = −4MZE − 6 = −2.
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(ii) Let B =
s∪

j=1

B(j) be the decomposition of connected components such that Eα ⊂

B(1). Since Z2
2 = −2 by (i), we have that s ≦ 2 and ZB =

2∑
j=1

ZB(j). Assume that

B(2) 6= ∅. Since Z1Ei = 0 for any irreducible component Ei of B(2), we have 0 ≧
ZEEi = (Z1 + Z2)Ei = Z2Ei = (2ZE − M)Ei = −MEi ≧ 0 and then Z2Ei = 0

for any Ei ⊂ B(2). This is a contradiction and so s = 1. Thus B is connected. If

Z2
B = −1, then B = E. This is also a contradiction and so Z2

B = −2. Hence, we have

−2 = Z2
2 ≦ Z2

B = −2 and so Z2 = ZB. Q.E.D.

Definition 3.10. From Lemma 3.6 (iii), we have ZE < ME < 2ZE. For the irreducible

decomposition E =
n∪

i=1

Ei and I := {1, · · · , n}, we put I(L) := {i ∈ I | CoeffEi
M =

2CoeffEi
ZE}, I(o) := {i ∈ I | CoeffEi

M = CoeffEi
ZE} and I(c) := {i ∈ I | CoeffEi

ZE <

CoeffEi
M < 2CoeffEi

ZE}, where I = I(L) t I(c) t I(o) (disjoint union). Let us define

the three subsets of E as follows: E(L) :=
∪

i∈I(L)
Ei, E(c) :=

∪
i∈I(c)

Ei and E(o) :=
∪

i∈I(o)
Ei.

Though Eβ ⊂ E(L) and Eα ⊂ E(o), E(c) may happen to be empty. In this paper, E(o),

E(c) and E(L) are called the odd part of E, the contact part of E and the Laufer part of

E respectively. Also, we call E = E(o) ∪ E(c) ∪ E(L) the Laufer decomposition of E.

Theorem 3.11. Under the situation above, if we put E〈ϵ〉 := E(ϵ)\Eβ for ϵ = L and

o, then we have the following.

(i) E(L) and E(o) are connected sets; also E(c) is a connected set if E(c) 6= ∅.
(ii) If E(c) = ∅, then EαE(L) = EβE(o) = 1; hence, the rough shape of the w.d.graph

of E is given as follows:

-bα -bβ

Eα Eβ
E(o) E(L).(3.2) E〈o〉 E〈L〉

(iii) If E(c) 6= ∅, then there exist irreducible components Eα1 , Eβ1 ⊂ E(c) satisfying

the following conditions:
(iii-1) EαEα1 = EβEβ1 = 1 ; also it may happen to be Eα1 = Eβ1 .

(iii-2) E (o) ∩ E (c) = Eα ∩ Eα1 and E (c) ∩ E (L) = Eβ ∩ Eβ1 .

(iii-3) CoeffEα1
M = CoeffEα1

ZE + 1 and CoeffEβ1
M = 2 CoeffEβ1

ZE − 1 .

(iv) If E(c) 6= ∅, then the rough shape of the w.d.graph of E is given as follows:

-bα -bβ

Eα Eβ

E(c)E(o) E(L).

(3.3)
E〈o〉 E〈L〉-bα1

-bβ1

Eα1 Eβ1
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Proof. Let Z1 := ME − ZE, Z2 := 2ZE −ME, A := supp(Z1) and B := supp(Z2) as

Lemmata 3.6 and 3.9.

(i) By Lemmata 3.6 and 3.9, E(o) ∩ A = Eα ∩ A (resp. E(L) ∩ B = Eβ ∩ B) is one

point; also A and B are connected. Hence E(L) and E(o) are connected. If E(c) 6= ∅ and
E(c) is not connected, then A and B are not connected. This contradicts to Lemmata

3.6 and 3.9.

(ii) If Ei ⊂ E(o) with i 6= α, then Ei 6= Eβ from Ei 6⊂ E(L) and so Z1Ei = 0. Thus,

Z1E(o) = Z1Eα = 1 from Lemma 3.6 (ii) and so EαE(L) = 1. If Ei ⊂ E(L) and

Ei 6= Eβ, then Ei 6= Eα from Eα 6⊂ E(L) and so Z2Ei = 0. Then, Z2E(L) = Z2Eβ = 1

from Lemma 3.9 (i) and so EβE(o) = 1 .

(iii) Since E(L) =
∪

Ei ̸⊂B

Ei, E(c) =
∪

Ei⊂A∩B
Ei and E(o) =

∪
Ei ̸⊂A

Ei, we have Z1Ei = 0

for any Ei ⊂ E(o)\Eα. Since Z1Eα = 1 by Lemma 3.6 (ii), there exists a unique

irreducible component Eα1 of A satisfying CoeffEα1
Z1 = 1 and EαEα1 = 1. Hence,

E(c)∩E(o) = A∩E(o) = Eα1 ∩Eα is one point. Therefore, CoeffEα1
M = CoeffEα1

ZE +

CoeffEα1
Z1 = CoeffEα1

ZE +1. If Ej ⊂ E(L)\Eβ, then Ej 6= Eα from Eα ⊂ E(o), and so

Z2Ej = 0. Since Z2Eβ = 1 by Lemma 3.9 (i), there exists a unique irreducible component

Eβ1 of B satisfying CoeffEβ1
Z2 = 1 and EβEβ1 = 1; hence E(c)∩E(L) = B∩E(L) = Eβ∩

Eβ1 is one point. Therefore, CoeffEβ1
M = 2CoeffEβ1

ZE−CoeffEβ1
Z2 = 2CoeffEβ1

ZE−1.
(iv) follows easily from (i)-(iii). Q.E.D.

In the following, let (X, o) = {z2 = f(x, y)} be a normal double point and f =
r∏

j=1

fj

the irreducible decomposition. Assume that ord(fj0) is odd (1 ≦ j0 ≦ r). The next

construction of the MSGE-resolution (see Definition 3.1) of (C, o) := ({f = 0}, o) is

useful in the following.

(3.4)



(i) F1 := σ−1
1 ({0}) and P2 =: F1 ∩ (σ1)

−1
∗ Cj0 for (Cj0 , o) := ({fj0 = 0}, o),

(ii) (W1, F (1))
σ2←− (W2, F (2)) is the blowing-up atP2 andF2 := σ−1

2 (P2),

(iii) (W2, F (2))
σ3←− · · ·

σN̂←− (WN̂ , F (N̂)) is a succession of blowing-ups such

that σ̂ := σ1 ◦ · · · ◦ σN̂ is the MSGE-resolution of (C, o).

Let us put Fk := σ−1
k (Pk) for the center Pk of σk, and (σk ◦ · · · ◦ σN̂)

−1
∗ Fk is also denoted

by Fk (1 ≦ k ≦ N̂) and F̂ := F (N̂); hence F̂ =
N̂∪
k=1

Fk. Let π̂ : (X̂, Ê) −→ (X, o) be the

covering resolution over σ̂. Put Ei := (φX)
−1
∗ Fi for any Fi ⊂ F (N̂) and φX of (3.1); also

(Cj, o) := ({fj = 0}, 0) for any j.

Proposition 3.12. Under the situation above, if we put Io := {j ∈ {1, · · · , r} |
ord(fj) is odd} and f⟨⟨o⟩⟩ :=

∏
j∈Io

fj, then we have the following.
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(i) E1 is a smooth irreducible rational curve which is the MÊ-negative component of

Ê and E1 ⊂ Ê(L). Moreover, we have MÊE1 = −1 and ZÊE1 = 0.

(ii) T0(f⟨⟨o⟩⟩)red is a single line. In particular, σ2 and F2 are uniquely determined by

f(x, y).

Proof. (i) From [19, Proposition 3.3], we have MÊ = (αx+ βy)Ê for general elements

α, β of C and E1 satisfies MÊE1 < 0. Since CoeffF1(f ◦ σ̂)F̂ = ord(f) is odd and

CoeffF1((αx+βy)◦σ̂)F̂ = 1, E1 is a smooth irreducible rational curve and CoeffE1MÊ = 2

from Lemma 3.3 (ii). Thus we have M2
Ê
= −2 and MÊE1 = −1. Hence, E1 is the MÊ-

negative component. From Theorem 3.11, we have E1 ⊂ Ê(L). Hence, E1 is not the

ZÊ-negative component and so ZÊE1 = 0.

(ii) Let fj0be any irreducible factor of f⟨⟨o⟩⟩. Let Fj0 be the irreducible component of

F (N̂) with Ej0 ∩ (φX)
−1
∗ Ĉj0 6= ∅ for Ej0 := (φX)

−1
∗ Fj0 , where Ĉj0 := (σ̂)−1

∗ Cj0 . From M.

Noether’s Theorem ([3, p.518]) and the assumption, we have

CoeffFj0
((αx+ βy) ◦ σ̂)F̂ = ord(fj0) ≡ 1 (mod 2)

and

CoeffFj0
(f ◦ σ̂)F̂ = ord(f ◦ fj0) ≡ 0 (mod 2).

Therefore, CoeffEj0
MÊ should be odd by Lemma 3.3 (ii). Since CoeffEi

MÊ is even

for any Ei ⊂ Ê(L), the component Ej0 should be contained in Ê(c) ∪ Ê(o). Now

we assume that there exist mutually distinct functions f1 and f2 in f⟨⟨o⟩⟩ such that

To(f1)red 6= To(f2)red. Then the component E1 = Eβ intersects at least two points with

the component in Ê(c) ∪ Ê(o). This contradicts the configuration (3.2) or (3.3). Hence,

we have the assertion. Q.E.D.

From Proposition 3.12 (ii), we can easily see the following.

Theorem 3.13. For a normal double point (X, o) = {z2 = f(x, y)} and f =
r∏

j=1

fj

the irreducible decomposition, we assume that there are at least two irreducible factors

f1 and f2 of f such that ord(f1) and ord(f2) are odd and To(f1)red 6= To(f2)red. Then,

Z2
X = −2 and so ME = ZE for any resolution space (X̃, E) of (X, o).

Proposition 3.14. Assume Z2
X = −1. Let (X̂, Ê)

π̂−→ (X, o) be the covering resolu-

tion over the MSGE-resolution σ̂ of (C, o) constructed in (3.4). Then,

(i) CoeffF2(f ◦ σ̂)F̂ is even,

(ii) E2 is the ZÊ-negative component of Ê and so E2 is an irreducible curve,

(iii) if we put K(c) := {k ∈ {1, · · · , N̂} | (σ3 ◦ · · · ◦ σN̂)(Fk) = F1 ∩ F2 in W2}, then
Ê(c) =

∪
k∈K(c)

Ek.

Proof. Let us note that F2 is uniquely determined from f by Proposition 3.12 (ii).
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(i) Suppose that CoeffF2(f ◦ σ̂)F̂ is odd. Consider the diagram (3.1) for this case.

Since CoeffF2 MF̂ = 1, we have CoeffE′
2
MÊ = 2 from Lemma 3.3 (ii), where E ′

2 is any

irreducible component of E2. First, assume that CoeffE′
2
ZÊ = 2. From the definition

of Ê(o), we have E ′
2 ⊂ Ê(o). Let

ℓ0∪
i=3

Fi be the union of all components which are

contracted to F1 ∩ F2 by σ3 ◦ · · · ◦ σℓ0 (ℓ0 ≦ N̂). Then we have CoeffFi
MF̂ ≧ 2 for any i

with 3 ≦ i ≦ ℓ0. From Lemma 3.3 (ii), we have

(3.5) CoeffEi
MÊ ≧ 2 for any i with 3 ≦ i ≦ ℓ0.

Since E1 ⊂ Ê(L) and E ′
2 ⊂ Ê(o), there is the ZÊ-negative component Ek0 in

ℓ0∪
i=3

Ei

by Theorem 3.11. Hence, CoeffEk0
MÊ = 1 from Lemma 3.6 (ii); this contradicts to

(3.5). Second, assume that CoeffE′
2
ZÊ = 1; thus E ′

2 ⊂ Ê(L). Let fj0 be an irreducible

factor of f such that ord(fj0) is odd, and Cj0 := {fj0 = 0}. Since (WN̂ , F̂ ) is the

MSGE-resolution space of (C, o), there exists an irreducible component Fj0 of F̂ with

Fj0 ∩ Ĉj0 6= ∅, where Ĉj0 := σ̂−1
∗ Cj0 . Since CoeffĈj0

(f ◦ σ̂)WN̂
= 1, CoeffFj0

(f ◦ σ̂)F̂ is

even. Hence, CoeffEj0
MÊ = CoeffFj0

MF̂ from Lemma 3.3 and CoeffFj0
MF̂ = ord(fj0)

from M. Noether’s theorem; thus CoeffEj0
MÊ is odd. On the other hand, E ′

2 and Ej0 are

contained in a same connected component of Ê\E1 from Theorem 3.11, and E ′
2 ⊂ Ê(L).

Thus, we have Ej0 ⊂ Ê(L) by Theorem 3.11. Hence, CoeffEj0
MÊ is even. This yields a

contradiction. Therefore, CoeffF2(f ◦ σ̂)F̂ is even.

(ii) Since CoeffF2MF̂ = 1 and (i), we have CoeffE′
2
MÊ = CoeffE′

2
ZÊ = 1 for E ′

2 :=

(φX)
−1
∗ F2 from Lemma 3.3 (ii). Hence, we have E ′

2 ⊂ Ê(o). Assume F1 ∩ F2 ∩
(σ1 ◦ σ2)

−1
∗ C = ∅ on W2. Then, E1 ∩ E ′

2 6= ∅ and E1 ⊂ Ê(L) from Proposition 3.12

(i). Since CoeffF1(f ◦ σ̂)F̂ is odd and F1 ∩F2 6= ∅ in WN̂ , E
′
2 is irreducible (i.e., E

′
2 = E2)

in this case. From (i) and CoeffF2MF̂ = 1, we have CoeffE2MÊ = 1 and so E2 ⊂ Ê(o).

Hence, Ê(c) = ∅ and E2 is the ZÊ-negative component by Theorem 3.11 (ii). Assume

F1 ∩ F2 ∩ (σ1 ◦ σ2)
−1
∗ C 6= ∅ in W2. If we take a succession of blowing-ups σ3, · · · , σℓ0 in

(i), then
ℓ0∪
i=3

Fi intersects at one point of Fj for j = 1, 2. From the construction, we can

easily see that CoeffFi
MF̂ ≧ 2 for any i (3 ≦ i ≦ ℓ0). Hence, CoeffEi

MÊ ≧ 2 for any i

(3 ≦ i ≦ ℓ0) by Lemma 3.3 (ii). If E ′
2 is not the ZÊ-negative component, then

ℓ0∪
i=3

Ei con-

tains the ZÊ-negative component Ei0 from E ′
2 ⊂ Ê(o) and Theorem 3.11 (3 ≦ i0 ≦ ℓ0).

Thus, CoeffEi0
MÊ = 1 from Lemma 3.6 (ii) and this contradicts to CoeffEi0

MÊ ≧ 2.

Hence, E ′
2 is the ZÊ-negative component. By the uniqueness of ZÊ-negative component,

E2 is irreducible (i.e., E ′
2 = E2).

(iii) Since E1 (resp. E2) is the MÊ (resp. ZÊ)-negative component by Proposition

3.12 (i) (resp. Proposition 3.14 (ii)), (iii) follows easily from Theorem 3.11 (iv) and the

construction of (X̂, Ê). Q.E.D.
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Assume that Z2
X = −1. From Theorem 1.3 (i), ord(f) is odd and there exists fj0 such

that ord(fj0) is odd. Let L0 := To(fj0)red and ℓ a linear form with L0 = {ℓ = 0}. Let

σ̂ : (WN̂ , F (N̂)) −→ (C2, o) be the MSGE-resolution of (C, o) := ({f = 0}, o) constructed
in (3.4) and π̂ : (X̂, Ê) −→ (X, o) the covering resolution over σ̂.

Definition 3.15. Under the situation above, let Ê = Ê(L)∪Ê(c)∪Ê(o) be the Laufer

decomposition of Ê with respect to MÊ, where Ê(L) 6= ∅ and Ê(o) 6= ∅ and Ê(c) may

be empty. Put F̂ (ϵ) := φX(Ê(ϵ)) for ϵ = L, c or o, where φX is the map in (3.1). Let

I(ϵ) := {j ∈ I | (σ̂)−1
∗ Cj ∩ F̂ (ϵ) 6= ∅}. Let us define elements of three types in C{x, y} as

follows: f[o] :=
∏

j∈I(o)
fj and f[ϵ] :=

∏
j∈I(ϵ)

fj if I(ϵ) 6= ∅ else f[ϵ] := 1 for ϵ = L or c. Since

I = I(L) t I(c) t I(o), we have f = f[L]f[c]f[o]. We call it the weak Laufer decomposition

of f . Further, f[L], f[c] and f[o] are called the Laufer factor of f , the contact factor of f

and the odd factor of f respectively.

Proposition 3.16. Under the same situation as Definition 3.15, let f = f[L]f[c]f[o] be

the weak Laufer decomposition of f . Then, we have the following.

(i) For any irreducible factor fj of f[L], ord(fj) is even.

(ii) ord(f[c]) is even and ord(f[o]) is odd.

Proof. (i) Assume that there is an irreducible factor fj0 of f[L] such that ord(fj0) is odd.

Put Ĉj0 := (σ̂)−1
∗ {fj0 = 0}. Let Fj0 be an irreducible component of F̂ satisfying Fj0 ∩

Ĉj0 6= ∅. Since CoeffFj0
MF̂ = ord(fj0) is odd and CoeffFj0

(f ◦ σ̂)F̂ is even, CoeffEj0
MÊ

is odd by Lemma 3.3. This yields a contradiction because of Ej0 ⊂ Ê(L).

(ii) If f[c] = 1, then ord(f[o]) is odd from the discussion in (i). Thus, assume that

f[c] 6= 1. Put (C[ϵ], o) := ({f[ϵ] = 0}, o) and Ĉ[ϵ] := (σ̂)−1
∗ C[ϵ] for ϵ = L, c and o. Also,

put d := ord(f), d[ϵ] := eP2((σ1)
−1
∗ C[ϵ]) for ϵ = c and o. Then, CoeffF1(f ◦ σ1 ◦ σ2)W2 =

CoeffF1(f ◦ σ̂)WN̂
= d, and CoeffF2(f ◦ σ1 ◦ σ2)W2 = CoeffF2(f ◦ σ̂)WN̂

= d+ d[c] + d[o] is

even from Proposition 3.14 (i). From Theorem 3.11, E2∩ (Ê(L)∪ Ê(c)) is one point and

put it Q̄. Thus, φX |E2 : E2−→F2 is a double covering map which ramified at Q̄. Put

φ̃ := σ3 ◦ · · · ◦ σN̂ ◦ φX and so Q := φ̃(Q̄) = F1 ∩ F2 ∈ W2. Then, Q is a branch point of

a double covering map φ̃|E2 : E2−→F2. From Proposition 3.14 (iii), d[c] is equal to the

intersection number IQ(F2, (σ1 ◦ σ2)
−1
∗ C[c]). Since Q is a branch point of φ̃|E2 , we have

the following:

(3.6) d+ d[c] = IQ(F2, dF1 + (σ1 ◦ σ2)
−1
∗ C[c]) is odd.

In fact, if it is even, φ̃|E2 does not ramify at Q̄; it yields a contradiction. Hence, d[c] is

even and d[o] is odd. Q.E.D.

From the shape of the exceptional set Ê in Theorem 3.11, we derive the following

properties for the branch curve singularity ({f = 0}, o).
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Proposition 3.17. Assume the same situation as Proposition 3.16, and let f =
r∏

j=1

fj

be irreducible decomposition. Then, we have the following.

(i) To(f[o])red is a line (=: Lo), and 2m1(fj) ≦ n1(fj) if fj | f[o] with ord(fj) ≧ 2.

(ii) multP2(σ1)
−1
∗ C[o] = multP1 C[o] = ord(f[o]), where P1 = {o} ∈ C2.

(iii) If f[L] 6= 1, then To(f[L])red 6⊃ Lo.

(iv) If f[c] 6= 1, then To(f[c])red = Lo and multP2(σ1)
−1
∗ C[c] is even.

(v) If f[o] is a linear form, then Ê(o) = E2 and Mo,X > Zo,X (⇐⇒ MX > ZX).

Proof. (i) and (ii). From Proposition 3.14 (ii), E2 := (φX)
−1
∗ F2 is the ZÊ-negative

component of Ê. From Theorem 3.11 (iv) and the construction of Ê = (φX)
−1
∗ F̂ , we

have (σ1 ◦ σ2)
−1
∗ C[o] 6⊃ F1 ∩ F2 in W2. Hence, the assertions of (i) and (ii) follows from

standard arguments on Puiseux pairs.

(iii) From Proposition 3.12 (i), E1 := (φX)
−1
∗ F1 is the MÊ-negative component of Ê.

From Theorem 3.11 (iv) and (3.3), we have E〈L〉∩E(c) = ∅; thus (σ1)
−1
∗ C[L]∩(σ1)

−1
∗ C[o] =

∅ from the construction of σ̂. Therefore, To(f[L])red 6⊃ Lo.

(iv) From Proposition 3.14 (iii), (σ1)
−1
∗ C[o] ∩ (σ1)

−1
∗ C[c] 6= ∅ and so To(f[c])red = Lo.

Also, CoeffF2(f ◦ σ̂)F̂ is even by Proposition 3.14 (i). Since CoeffF2(f ◦ σ̂)F̂ = ord(f) +

ord(f[o]) + multP2(σ1)
−1
∗ C[c] and ord(f[o]) is odd by Proposition 3.16, multP2(σ1)

−1
∗ C[c] is

even.

(v) Let L be the line defined by f[o] = 0. If we put Q1 := F1∩F2 and Q2 := F2∩L, then
φ̄ := (σ3 ◦ · · · ◦σN̂ ◦φX)|E2 : E2 → F2 is a double covering map which is ramified only at

{Q1, Q2} from (3.6). Then, E2 is a non-singular rational curve in X̂. Further, we can see

that φ̄(Ê(L)∪Ê(c)) = F1 and φ̄(Ê(o)) = F2; also Ê(o) = E2. Assume that Mo,X = Zo,X .

Let π : (X̃, E) → (X, o) be the minimal good resolution and τ : (X̂, Ê) → (X̃, E) a

succession of contractions of (−1)-curves with π̂ = π ◦ τ . Then, τ(Ê(L)∪ Ê(c)) is a non-

singular point on X̃. Thus, E = τ(E2) and it is a (−1)-curve from Z2
X = −1. Hence,

(X, o) is a non-singular point (contradiction). Q.E.D.

The following result is implicitly described in [4, §11] as a key fact. We describe it

according to our argument.

Theorem 3.18. Let (X, o) be a normal double point defined by z2 = f(x, y) such that

ord(f) is odd.

(i) If Z2
X = −1, then 2Zo,X = (θ ◦ π)E for an element θ ∈ C{x, y} on the minimal

good resolution π̂ : (X̃, E)−→(X, o) and the fundamental cycle Zo,X (:=ZE) on E.

(ii) Z2
X = −1 if and only if there exists an element θ ∈ C{x, y} satisfying the following

three conditions: (I) ord(θ) = 1, (II) 2 | CoeffEi
(θ ◦ π̂)Ê for any i, (III) To(θ)red =
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To(f0)red and TP2(Θ)red 6⊂ TP2(C(1))red, where f0 is an irreducible factor such that ord(f0)

is odd; also Θ := (σ1)
−1
∗ {θ = 0} and C(1) := (σ1)

−1
∗ C for C = {f = 0}.

Proof. First, we prove (ii). Let us prove “only if ”part. Let (u, v) be a local coordinate

of C2 near by {o} such that To(f0)red = {v = 0}. Put θa := v+ au2 for a constant a ∈ C
and La := {θa = 0} and L′

a := (σ1)
−1
∗ La. Let a0 be an element of C such that L′

a0
6⊂

TP2(C(1))red. If we put θ := θa0 and Θ2 := (σ2)
−1
∗ La0 , then θ satisfies (I) and (III). In

addition, from TP2(Θ2)red 6⊂ TP2(C(1))red, we have F2 ⊥ Θ2 (i.e., intersects transversally)

on W2, and so F2 ⊥ Θ̂ on WN̂ for Θ̂ := (σ̂)−1
∗ La0 in WN̂ . Thus, CoeffF2(θ ◦ σ̂)F (N̂) = 2

and E2 ⊥ (φX)
−1
∗ Θ̂ in X̂ since CoeffF2(f ◦ σ̂)F (N̂) is even by Proposition 3.14 (i). We

have CoeffE2(θ ◦ π̂)Ê = 2 from Lemma 3.3 (i). Furthermore, (φX)
−1
∗ Θ̂ is a smooth curve

on X̂ and it has two disjoint connected components intersecting E2 transversally. We

have (θ ◦ π̂)X̂ = (θ ◦ π̂)Ê + (φX)
−1
∗ Θ̂ ∼ 0 on X̂ and E2 is the only irreducible component

of Ê satisfying (θ ◦ π̂)ÊEk < 0. Therefore, we have the following:

A := (θ ◦ π̂)ÊEk =

−2 if k = 2

0 if k 6= 2
and B := ZÊEk =

−1 if k = 2

0 if k 6= 2.

Here, if we put (θ ◦ π̂)Ê =
∑N̂

i=1 aiEi, ZE =
∑N̂

i=1 biEi, then we have two linear equations

on {a1, . . . , aN̂} and {b1, . . . , bN̂} as follows:

A =
∑N̂

i=1(EkEi)ai = −2 for k = 2 else A = 0, and

B =
∑N̂

i=1(EkEi)bi = −1 for k = 1 else B=0 (k = 1, . . . , N̂).

Applying Cramer’s formula, we have

(3.7) (θ ◦ π̂)Ê = 2ZÊ on (X̂, Ê).

Hence, θ satisfies (II).

Next, let us consider “if ”part. If we put Θo := (σ̂)−1
∗ {θ = 0}, then (θ◦ σ̂)F (N̂)+Θo ∼ 0

on WN̂ and CoeffF2(θ ◦ σ̂)F (N̂) = 2 from (I) and (III). Hence, (θ ◦ σ̂)2
F (N̂)

= −2; thus we
have (θ ◦ π̂)2

Ê
= −4. If we put D := (θ ◦ π̂)Ê/2 by (II), then D is an anti-nef cycle on E

and D2 = −1. Hence, D = ZÊ and so Z2
X = −1.

(i) In (3.7), we showed 2ZÊ = (θ ◦ π̂)Ê and so 2Zo,X = (θ ◦ π)E. Q.E.D.

4 Elements of Laufer type in C{x, y}

In [8], H. Laufer showed that the normal double point (X, o) defined by z2 = x(y4+x6)

satisfies Mo,X > Zo,X (i.e., M2
o,X = −2 < Z2

X = −1 from Lemma 3.4). If (Y, o) is a

normal double point defined by z2 = (ax + by)(y4 + x6) with a 6= 0, then Mo,Y > Zo,Y .

Generalizing such property of y4 + x6, we give the following definition.
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Definition 4.1. Let h be a reduced element of C{x, y} and ℓ ∈ C{x, y} a linear

form with {ℓ = 0} 6⊂ T0(h)red. Let (X, o) be a normal double point defined by z2 =

ℓ(x, y)h(x, y). From Proposition 3.7 (ii) and 3.17 (v), we have the following equivalences:

Z2
X = −1 ⇔ Mo,X > Zo,X ⇔ MX > ZX .

If h ∈ C{x, y} satisfies conditions above, then we call h an element of Laufer type. If h

is of Laufer type, then ord(h) is even from Theorem 1.3 (i).

Lemma 4.2. If h =
r∏

j=1

hj is the irreducible decomposition of an element h of Laufer

type, then ord(hj) is even for any j.

Proof. Put (X, o) := {z2 = ℓh} for a linear form with {ℓ = 0} 6⊂ To(h)red. Thus, we

have To(ℓ)red 6= To(hj)red for any j. If there is j0 (1 ≦ j0 ≦ r) such that ord(hj0) is odd,

then Z2
X = −2 from Theorem 3.13. This contradicts to Z2

X = −1. Q.E.D.

From now on, we characterize elements of Laufer type by the w.d.resolution graph

Λ(h) (see Theorem 4.5). Let h =
r∏

j=1

hj be the irreducible decomposition of a reduced

element h ∈ C{x, y} whose order is even. Let ℓ be a linear form with {ℓ = 0} 6⊂ T0(h)red.

Let (X, o) be the normal double point defined by z2 = ℓh. Let π̂ : (X̂, Ê) −→ (X, o) be

the covering resolution over σ̂ as (3.4), and we also put Ei := (φX)
−1
∗ Fi for φX in (3.1).

Lemma 4.3. Under the conditions above, the following three conditions are equivalent:

(i) h is of Laufer type, (ii) MÊ|Ê\E2
= 2ZÊ|Ê\E2

,

(iii) CoeffEi
MÊ is even for any Ei ⊂ Ê with i 6= 2.

Proof. (i) ⇒ (ii). By Proposition 3.17 (v), we have Ê(o) = E2. Since ℓ satisfies the

conditions of θ in Theorem 3.18 (ii), the assertion holds. Also, (ii)⇒ (iii) is obvious and

(iii) ⇒ (i) is proved by Theorem 3.18 (ii). Q.E.D.

Under the situation above, put (C̄, o) := ({h = 0}, o) ⊂ (C2, o) and let τ : (WN̂ , F (N̂))

→ (WN , F (N)) be a succession of contractions of (−1)-curves satisfying σ̂ = σ ◦τ , where
σ : (WN , F (N)) −→ (C2, o) is the MGE-resolution of (C̄, o). For λ[Fk] and γ[Fk] in

Definition 2.13, we have the following.

Proposition 4.4. The following three conditions are equivalent.

(i) h is of Laufer type.

(ii) For any hj, ord(hj) is even and λ[Fk] ≡ γ[Fk] mod 2 for any k with Fk � F[L](hj)

on the standard order and the Laufer root F[L](hj) of hj (Definition 2.7 and 2.10).

(iii) For any hj, ord(hj) is even and ePk
(D[L](Cj)) is even for any k with Fk �

F[L](hj), where Pk = σk(Fk).
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Proof. (i) ⇒ (ii) By Lemma 4.2, ord(hj) is even for any j. Assume that there exists

hj and Fk satisfying λ[Fk] 6≡ γ[Fk] mod 2 and Fk � F[L](hj). If λ[Fk] is even and γ[Fk]

is odd, then CoeffEk
MÊ is odd by Lemma 3.3. This yields a contradiction by Lemma

4.3. Next, assume that λ[Fk] is odd and γ[Fk] is even; thus F1 ≺ Fk from γ[F1] = 1. In

addition, assume that Fk is included in the i-th Puiseux chain P̃i(Cj) (Definition 2.5)

with i ≧ 2. Let Fs be the Puiseux root of P̃i(Cj). From Fs ≺ F[L](hj), γ[Fs] is odd. If

λ[Fs] is even, then CoeffEs MÊ is odd by Lemma 3.3. This contradicts to (i) by Lemma

4.3. Therefore, λ[Fs] is odd. If Fk ∩ Fs 6= ∅ in WN and τ1 is the blowing-up at Fk ∩ Fs,

then Fζ0 := τ1
−1(Fk ∩Fs) (⊂ F (N̂)) satisfies that λ[Fζ0 ] is even and γ[Fζ0 ] is odd. Thus,

CoeffEζ0
MÊ is odd as above, and this contradicts to (i). Therefore, we have Fk ∩Fs = ∅

in WN . Hence, there exists Fξ0 ⊂ P̃i(Cj) satisfying Fξ0 ∩ Fk 6= ∅ in WN . From (2.7),

γ[Fξ0 ] is odd and so λ[Fξ0 ] is odd from (i) and Lemma 3.3. If τ2 is the blowing-up at

Fk ∩ Fξ0 and Fζ0 := τ2
−1(Fk ∩ Fξ0), then λ[Fζ0 ] is even and γ[Fζ0 ] is odd. This yields

a contradiction from (i). If Fk ⊂ P̃1(Cj), then (2.7) holds for P̃1(Cj) and so it yields a

contradiction as above.

(ii)⇒ (i) From Lemma 3.3 (ii), CoeffEk
MÊ is even for any k, j with Fk � F[L](hj). On

the other hand, we can easily see that CoeffFk
MF is even for any k with F[L](hj) � Fk.

Let Fk be an irreducible component of F (N̂)\τ−1
∗ F (N) such that σk(Fk) = Fi1 ∩Fi2 and

Fi1 , Fi2 ≺ F[L](hj), where λ[Fiℓ ] is odd for ℓ = 1, 2. From the hypothesis of (ii), γ[Fiℓ ] is

odd for ℓ = 1, 2. Hence, λ[Fk] and γ[Fk] are even. Therefore, CoeffEk
MÊ is even for any

Ek ⊂ Ê with k 6= 2. Hence, h is of Laufer type by Lemma 4.3; hence (i) ⇔ (ii) holds.

(ii) ⇔ (iii) is proved by Proposition 2.15. Q.E.D.

The following is the main result of this section.

Theorem 4.5. Let h =
r∏

j=1

hj be the irreducible decomposition of a reduced element h

of C{x, y}. Then, h is of Laufer type if and only if every hj satisfies the following two

conditions:
(i) ord(hj) is even, (ii) 2m[LP ](hj) |

∑
k∈I[L](hj)

ord(hk),

where m[LP ](hj) is the LP-number (Definition 2.2 (i)) and I[L](hj) is the set defined in

Definition 2.11 (iii).

Proof. Put Puisx(hj) = {(m1(hj), n1(hj)), · · · , (mℓj(hj), nℓj(hj))} for any j. Assume

that ord(hj) is even for any j. If we put mLj
(hj) = m[LP ](hj), then we have

(4.1)
∑

k∈I[L](hj)

ord(hk) = (
Lj∏
i=1

mi(hj))ePL(j)
(D[L](hj)),

where PL(j) := σL(j)(F[L](hj)) for the Laufer root F[L](hj).
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Let us prove“if”part. From (4.1) and (ii), ePL(j)
(D[L](hj)) is even, because

Lj−1∏
i=1

mi(hj)

is odd. From Lemma 2.9, we have ePL(j)
(D[L](hj)) | ePk

(D[L](hj)) for any k with Fk �
F[L](hj), and so ePk

(D[L](hj)) is even. Therefore, h is of Laufer type from Proposition

4.4 ((iii) ⇒ (i)). Next, let us prove“ only if” part. From Lemma 4.2, (i) is proved.

Since
Lj−1∏
i=1

mi(hj) is odd and ePL(j)
(D[L](hj)) is even by Proposition 4.4 ((i) ⇒ (iii)), we

have 2m[LP ](hj) = 2mLj
(hj) divides

∑
k∈I[L](hj)

ord(hk) from (4.1). Q.E.D.

Corollary 4.6. Let h be an irreducible and reduced element of C{x, y}. Then, h is

of Laufer type if and only if there are at least two even integers mi(h), mj(h) (i < j) in

the Puiseux pair of h.

Corollary 4.7. If h is of Laufer type, then ord(h) ≡ 0 mod 4.

Proof. If h is irreducible, then the assertion is proved by Corollary 4.6. If h is

reducible, then h is decomposed as h =
s∏

ξ=1

h[ξ] for h[ξ] :=
∏

i∈I[L](hjξ
)

hi, where
s∪

ξ=1

I[L](hjξ) =

{1, · · · , r}. From Theorem 4.5 (ii), ord(h[ξ]) is divided by 2m[LP ](hjξ) and m[LP ](hjξ) is

even for any ξ. Q.E.D.

Corollary 4.8. Let g and h be relatively prime two elements in C{x, y}. If g and h

are of Laufer type, then gh is also of Laufer type.

Let π : (X̃, E) −→ (X, o) be any resolution of a normal double point defined by

z2 = f(x, y) and assume M2
o,X = −2 < Z2

X = −1. In [8, Theorem 6.3], H. Laufer

proved that H1(E,R) 6= 0. We consider a lower bound of dimRH1(E,R) (see Theorem

4.9 and 5.9). Let π̂ : (X̂, Ê) −→ (X, o) be the covering resolution over the MSGE-

resolution σ̂ : (WN̂ , F (N̂)) −→ (C2, o) of the ({f = 0}, o). Let ˆ̂π : (
ˆ̂
X,

ˆ̂
E)→ (X, o) be a

resolution such that there exist two succesions of blowing-ups τ1 : (
ˆ̂
X,

ˆ̂
E)→ (X̃, E) and

τ2 : (
ˆ̂
X,

ˆ̂
E)→ (X̂, Ê) satisfying ˆ̂π = π ◦ τ1 = π̂ ◦ τ2. For ϵ = L or c, if we put

(4.2) E〈ϵ〉 := τ1(τ
∗
2 Ê(ϵ)),

then it is easy to see that dimR H1(E〈ϵ〉,R) is independent of the choice of (X̃, E). Let

us call E〈L〉 the Laufer part of E and so on.

Theorem 4.9. Under the situation above, if f[L] 6= 1 (Definition 3.15), then we have

the following.

(i) Let Fk0 be the Laufer root F[L](fj) of fj with fj | f[L]. Then, the Laufer part E〈L〉
contains at least one P1-cycle containing Ek0 or the genus g(Ek0) of Ek0 is greater than

or equal to 1, where Ek0 := τ((φX)
−1
∗ Fk0) for a holomorphic map φX of (3.1).

(ii) Let s[L](f) be the number of all Laufer roots for f[L] (i.e., all Laufer roots of

irreducible factors of f[L]). Then, dimR H1(E〈L〉,R) ≥ s[L](f).
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Proof. Since (ii) is obvious from (i), we prove (i). Let fj0 be any irreducible factor

of f[L]. Since ord(fj0) is even by Lemma 4.2, let Fk0 := F[L](fj0) and P̂i0(fj0) the i0-th

Puiseux chain (see Definition 2.5) containing Fk0 . Here, we prove the following:

(4.3)
there exist different two irreducible components Fi1 and Fi2 in

P̂i0(fj0) ∪ P̂i0−1(fj0) such that Fiξ ∩ Fk0 6= ∅ and λ[Fiξ ] is odd (ξ = 1, 2),

where P̂i0(fj0) := η−1(P̃i0(fj0)) for the succession of blowing-ups η := σN+1 ◦ · · · ◦ σN̂ :

(WN̂ , F (N̂)) −→ (WN , F (N)) such that σ ◦ η is the MSGE-resolution.

First, assume that there are different two irreducible components Fi1 and Fi2 in P̂i0(fj0)

such that Fiξ ∩Fk0 6= ∅ (ξ = 1, 2). From (2.7), γ[Fiξ ] is odd for ξ = 1, 2; thus λ[Fiξ ] is odd

by Proposition 4.4 (ii). Second, assume that Fk0 ∩ P̂i0−1(fj0) 6= ∅. Then, there is a root

Fi1 of P̂i0(fj0) such that Fk0 ∩ Fi1 6= ∅. Hence, γ[Fi1 ] is odd by (2.7) and so λ[Fi1 ] is odd

by Proposition 4.4 (ii). Therefore, there is Fi2 (6= Fk0) in P̂i0(fj0) such that Fi2∩Fk0 6= ∅.
Since γ[Fk0 ] is even, γ[Fi2 ] is odd by (2.7). Hence, λ[Fi2 ] is odd by Proposition 4.4. Thus,

(4.3) is proved.

If Fk0 ∩ Ĉj0 6= ∅ or there is Fi3 (⊂ P̂i0+1(fj0)) such that λ[Fi3 ] is odd and Fi3 ∩Fk0 6= ∅,
then g(Ek0) ≧ 1 from (4.3). Therefore, we may assume that Fk0 ∩ Ĉ = ∅ and there is

not Fi3 (⊂ P̂i0(fj0) and Fi3 6= Fi1 , Fi2) such that λ[Fi3 ] is odd and Fi3 ∩ Fk0 6= ∅. Then,
there is Fk1 in P̂i0+1(fj0) such that Fk0 ∩ Fk1 6= ∅ and λ[Fk1 ] is even. Thus, there exists

a P1-chain
s∪

ζ=1

Fkζ (s ≧ 1) in F (N̂) satisfying the following two conditions:
(1) Fkζ ∩ Fkζ+1

6= ∅ for 0 ≦ ζ ≦ s− 1 and λ[Fkζ ] is even for 0 ≦ ζ ≦ s,

(2) (
s−1∪
ζ=1

Fkζ) ∩ (F (o) ∪ Ĉ) = ∅ and Fks ∩ (F (o) ∪ Ĉ) 6= ∅, whereF (o) :=
∪

λ[Fi]:odd

Fi.

Then,
s∪

ζ=0

Ekζ makes a P1-cycle in Ê(L) of Ê. Any irreducible component Ek with

g(Ek) ≧ 1 and P1-cycle is not contracted on X̃ (see the correspondence (4.2)). Thus (i)

is proven. Q.E.D.

5 Elements of contact type in C{x, y}

In this section, we characterize elements of C{x, y} which give contact factors for the

weak Laufer decompositions (see Definition 3.15).

Definition 5.1. Let h be a reduced element of C{x, y} and h =
r∏

j=1

hj the irreducible

decomposition. Put Puisx(hj) = {(m1(hj), n1(hj)), · · · , (mℓj(hj), nℓj(hj))} for each j.

Assume that To(h)red = {ℓ = 0} for a linear form ℓ with ℓ ∤ h and n1(hj) < 2m1(hj) for

any j. Let (X, o) be a normal double point defined by z2 = ℓh. From Proposition 3.7

(ii) and 3.17 (v), we have the following equivalences:

Z2
X = −1 ⇔ Mo,X > Zo,X ⇔ MX > ZX .
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If h satisfies the conditions above, then we call h an element of contact type. If h is of

contact type, then ord(h) is even from Theorem 1.3.

For example, if (X, o) = {z2 = y(y6 + x8)}, then the w.d.graph and ME and ZE on

the minimal resolution are given as follows:

E1

-3 -1
E3E2 [1]

ME = 2E1 + E2 + 3E3 and ZE = E1 + E2 + 2E3.;

Then M2
E = −2 < ZX

2 = −1 and so y6 + x8 is of contact type.

In the following, we characterize elements of contact type in terms of Puiseux pair

(see Theorem 5.4). Let h =
r∏

j=1

hj be the irreducible decomposition of a reduced element

of C{x, y} such that ord(h) is even. Let ℓ be a linear form in C{x, y} such that L :=

To(h)red = {ℓ = 0} and ℓ ∤ h. Put (X, o) = {z2 = ℓh} and assume the following:

(5.1)
(C2, o)

σ1←− (W1, F (1))
σ2←− · · ·

σN̂←− (Ŵ , F̂ ) := (WN̂ , F (N̂)) is the MSGE-

resolution of ({ℓh = 0}, o)) constructed as (3.4). Put σ̂ := σ1 ◦ · · · ◦ σN̂ .

Then, σ2 is the blowing-up at P2 := F1 ∩ (σ1)
−1
∗ L; also F (1) = F1 = σ−1

1 ({o}) and

F2 = σ−1
2 (P2). Further, let (X̂, Ê)

π̂−→ (X, o) be the covering resolution over σ̂.

Lemma 5.2. Under the condition above, if n1(hj) < 2m1(hj) for any j, then the

following three conditions are equivalent.

(i) h is of contact type, (ii) (ℓ ◦ π̂)Ê = 2ZÊ, (iii) CoeffEi
(ℓ ◦ π̂)Ê is even for any Ei ⊂ E

(i 6= 2).

Proof. (ii)⇒ (iii) is obvious. Also, since ℓ satisfies the conditions of θ in Theorem 3.18,

(i) ⇒ (ii) and (iii) ⇒ (i) follow directly from Theorem 3.18 (i) and 3.18 (ii) respectively.

Q.E.D.

Proposition 5.3. Under the situation of (5.1), assume that n1(hj) < 2m1(hj) for

any j. If we put L := {ℓ = 0}, then the following three conditions are equivalent.

(i) h is of contact type.

(ii) For any hj, CjL is even and λ[Fk] ≡ ℓ[Fk] mod 2 for any k with Fk � F[c](hj)

for the contact root of (Cj, o) defined in Definition 2.10 (iii), where λ[Fk] and ℓ[Fk] are

integers defined in Definition 2.13.

(iii) For any hj, CjL is even and ePk
(D[c](hj)) is even for any k with Fk � F[c](hj),

where D[c](hj) is defined in Definition 2.11 (iii).

Proof. First we prove that if h is of contact type, then CjL is even for any j. Let

Fj0 (⊂ F (N̂)) be the irreducible component which intersects the strict transform Ĉj :=

(σ̂)−1
∗ Cj. Since CoeffĈj

((ℓh)◦σ̂)Ŵ = 1 and σ̂ is the MSGE-resolution, CoeffFj0
((ℓh)◦σ̂)Ŵ

is even. In fact, if CoeffFj0
(ℓ ◦ σ̂)Ŵ is odd, then CoeffEj0

(ℓ ◦ π̂)X̂ is odd from Lemma
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3.3 (i) and this contradicts to Lemma 5.2. Therefore, CjL = n1(hj)m2(hj) · · ·mℓj(hj)

= CoeffFj0
(ℓ ◦ σ̂)Ŵ is even.

By replacing γ[Fk] with ℓ[Fk] and using Lemma 5.2 instead of Lemma 4.3, we can prove

(i) ⇔ (ii) ⇔ (iii) by the same way as Proposition 4.4, so we omit the detail. Q.E.D.

Now we characterize elements of contact type in terms of Puiseux pair.

Theorem 5.4. Let h =
r∏

j=1

hj be the irreducible decomposition of a reduced element

h of C{x, y} and (Cj, o) := ({hj = 0}, o) for any j. Assume that n1(hj) < 2m1(hj) for

any j and To(h)red is a line L. Consider the following three conditions:

(i) CjL (= n1(hj)m2(hj) · · ·mℓj(hj)) is even for any j,

(ii) 2m[cP1](hj) |
∑

i∈I[c](hj)

ord(hi) for any j,

(iii) 2m[cP2](hj) |
∑

i∈I[c](hj)

CiL for any j,

where m[cPi](hj) is the cPi-number for i = 1, 2 (see Definition 2.2 (ii)). Then,

h is an element of contact type ⇔ (i) and (ii) hold ⇔ (i) and (iii) hold.

Proof. Let ℓ be a linear form with L = {ℓ = 0}. Let (WN̂ , F (N̂))
σ̂−→ (C2, o) be

the MSGE-resolution of (C, o) := ({ℓh = 0}, o). Assume that (i) holds. Let FN0 be the

contact root F[c](hj) and FN0 the ξ0-th Puiseux root of (Cj, o) (see (2.1)). Let I[c](hj)

and D[c](hj) be the sets defined in Definition 2.11 (iii). From Lemma 2.12 (ii), we have∑
i∈I[c](hj)

CiL = D[c](hj)L = n1(hj)m2(hj) · · ·mξo(hj)
∑

i∈I[c](hj)

ePN0
(Ci)

and
∑

i∈I[c](hj)

ord(hi) = m1(hj) · · ·mξo(hj)
∑

i∈I[c](hj)

ePN0
(Ci),

where PN0 := σN0(FN0). Therefore, we have the following equivalences:

(5.2) 2m[cP1](hj) |
∑

i∈I[c](hj)

ord(hi) ⇔ 2 | ePN0
(D([c](hj))⇔ 2m[cP2](hj) |

∑
i∈I[c](hj)

CiL.

Assume that h is of contact type. Then, CjL is even for any j from Proposition

5.3. Thus (i) holds. In addition, ePN0
(D[c](hj)) =

∑
i∈I[c](hj)

ePN0
(Ci) is even for any j from

Proposition 5.3 (iii). Then, (ii) and (iii) hold from (5.2). Hence, if h is of contact type,

then [(i)+(ii)] and [(i)+(iii)] hold. Also, we have [(i)+(ii)] ⇔ [(i)+(iii)].

We prove that if (i) and (iii) hold, then h is of contact type. We put m̄1(hj) := n1(hj)

and m̄i(hj) := mi(hj) for any i ∈ {2, · · · , ℓj}; also m̄ξk(hj) := m[cPk](hj) for k = 1, 2.

From (i), CjL = m̄1(hj) · · · m̄ℓj(hj) is even for any j. Let ξ1 be a positive integer satisfying

m̄ξ1(hj) = m[cP2](hj) and so CoeffF[c](hj)(ℓ ◦ σ̂)WN̂
= m̄1(hj) · · · m̄ξ1(hj). Thus, we have

CjL = m̄(hj) · · · m̄ξ1(hj)ePN1
(Cj), where PN1 := σN1(F[c](hj)). Since m̄1(hj) · · · m̄ξ1−1(hj)

is odd, ePN1
(D[c](hj)) =

∑
i∈I[c](hj)

ePN1
(Ci) is even by (iii) and (5.2). From Lemma 2.9,

ePk
(D[c](hj)) =

∑
i∈I[c](hj)

ePk
(Ci) is even for any k with Fk � FN1 = F[c](hj). Therefore, h
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is of contact type from Proposition 5.3 ((iii)⇒ (i)). Henceforth, the assertion is proved.

Q.E.D.

Corollary 5.5. Let h be an irreducible and reduced element of C{x, y}. Then h is of

contact type if and only if n1(h) < 2m1(h) holds and there are at least two even integers

in {n1(h),m2(h), · · · ,mℓ(h)}.

Corollary 5.6. Let h be an irreducible and reduced element of C{x, y}. Then h is of

contact type and Laufer type if and only if n1(h) < 2m1(h) holds and there are at least

two even integers in {m2(h), · · · ,mℓ(h)}.
Proof. Since “if ”part is obvious from Corollary 4.6 and 5.5, we prove “only if ”part.

If #{i ∈ {2, · · · , ℓ} | mi(h) is even } = 1, then m1(h) is even from Corollary 4.6.

Hence, n1(h) is odd and so m[cP1](h) = mi0(h) (i0 ≧ 2) is even. From Theorem 5.4,

2mi0(h)|ord(h) and so mi0+1(h) · · ·mℓ(h) is even. Q.E.D.

Corollary 5.7. Let g and h be two relatively prime elements in C{x, y} such that

To(g)red = To(h)red. If g and h are of contact type, then gh is also of contact type.

Corollary 5.8. If h is of contact, then ord(h) is even and greater or equal to 6.

Proof. First, assume that h is irreducible and Puisx(h) = {(m1, n1), · · · , (mℓ, nℓ)}. If
n1 is even, then m1 ≧ 3 and there is even mi (i ≧ 2); so ord(h) = m1 · · ·mℓ ≧ 6. If n1

is odd, then there are at least two mi1 and mi2 which are even (2 ≦ i1 < i2 ≦ ℓ). Since

m1 ≧ 2, we have ord(h) = m1 · · ·mℓ ≧ 8. Next we consider the irreducible decomposition

h =
r∏

j=1

hj (r ≧ 2) such that any hj is not of contact type. From the condition (iii) of

Theorem 5.4, there are hi0 such that h1hi0 is of contact type and F[c](h1) = F[c](hi0). If

F[c](h1) appear in the 1-st Puiseux chain, then n1(h1) is even with n1(h1) ≧ 4; hence

m1(h1) ≧ 3. Then we have ord(h) ≧ ord(h1hi0) ≧ 6. If F[c](h1) appear in the k-th

Puiseux chain (k ≧ 2), then ord(h) ≧ ord(h1hi0) ≧ 8. Q.E.D.

For elements of contact type, we describe the result corresponding to Theorem 4.9.

Theorem 5.9. For the irreducible decomposition f =
r∏

i=1

fi of a reduced element f in

C{x, y}, assume the same situation as (4.2). If f[c] 6= 1 for the contact factor f[c] of f

(Definition 3.15), then we have the following.

(i) Let Fk0 be the contact root F[c](fj) of fj with fj | f[c]. Then, the contact part E〈c〉
contains at least one P1-cycle containing Ek0 or g(Ek0) ≧ 1, where Ek0 := τ((φX)

−1
∗ Fk0)

for a holomorphic map φX of (3.1).

(ii) Let s[c](f) be the number of all contact roots for f[c] (i.e., all contact roots of

irreducible factors of f[c]). Then, dimR H1(E〈c〉,R) ≥ s[c](f).
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Proof. This is proved according to exactly the same argument as Theorem 4.9. If we

exchange as follows: (1) F[L](hj) ⇒ F[c](hj), (2) γ(Fk) ⇒ ℓ(Fk), (3) Proposition 4.4

(ii) ⇒ Proposition 5.3 (ii). The assertion is proved similarly to Theorem 4.9. Q.E.D.

6 Elements of odd type in C{x, y}

In this section, we characterize elements of C{x, y} which give odd factors for the weak

Laufer decompositions (see Definition 3.15).

Definition 6.1. Let h be a reduced element of C{x, y} such that ord(h) is odd. If h

satisfies one of the following two conditions, then h is called an element of odd type.

(i) ord(h) = 1,

(ii) If ord(h) ≧ 3, then M2
X = −1 (⇔ M2

o,X = −1 from Proposition 3.7 (ii)) for a

normal double point defined by z2 = h(x, y).

Example 6.2. Let h1 := y3 + x6ℓ+1 (ℓ ≧ 1) and h2 := y(y3 + x6)(y3 + x7). Put

(Xi, o) = {z2 = hi(x, y)} (i = 1, 2). Their maximal ideal cycles on the minimal good

resolutions are respectively given as follows. Then we can see that they are of odd type.

-3 -1

16

3

2

-7Mo,X1 :

1 1

· · ·

ℓ− 1

· · ·
, -3 -1 -7

[1]1 1.3

Mo,X2 :

Theorem 6.3. Let (X, o) be a normal double point defined by z2 = f(x, y) with

Z2
X = −1. Let f = f[L]f[c]f[o] be the weak Laufer decomposition (Definition 3.15). Let

Lo be the line To(f[o])red (see Proposition 3.17 (i)).

(i) If f[L] 6= 1, then f[L] is of Laufer type and To(f[L])red 6⊃ Lo.

(ii) If f[c] 6= 1, then f[c] is of contact type and To(f[c])red = Lo.

Proof. Let ℓ(x, y) be a linear form with Lo = {ℓ = 0}. Put g[L] := ℓf[L] (resp.

g[c] := ℓf[c]) if f[L] 6= 1 (resp. f[c] 6= 1); also g[o] := f[o] if ord(f[o]) ≧ 2. By Propo-

sition 3.16, ord(g[ϵ]) is odd for any ϵ. By Proposition 3.17 (iii) and (iv), we have

Lo 6⊂ To(f[L])red if f[L] 6= 1 else Lo = To(f[c])red. For ϵ = L, c or o, let (Y[ϵ], o) be a

normal double point defined by z2 = g[ϵ]. Let (C2, o)
σ1←− (W1, F (1))

σ2←− (W2, F (2))
σϵ,3←−

(Wϵ,3, F[ϵ](3))
σϵ,4←− · · ·

σϵ,Nϵ←− (Wϵ,Nϵ , F[ϵ](Nϵ)) (=: (Ŵ[ϵ], F̂[ϵ])) be the MSGE-resolution of

({g[ϵ] = 0}, o) constructed as (3.4) and put σ̂[ϵ] := σ1 ◦ σ2 ◦ σϵ,3 ◦ · · · ◦ σϵ,Nϵ . Let

(Ŵ[ϵ], F̂[ϵ])
σϵ,Nϵ+1←− · · ·

σϵ,N̂ϵ←− (WN̂ϵ
, F[ϵ](N̂ϵ)) be a succession of blowing-ups such that σ̂[ϵ] ◦

σϵ,Nϵ+1 ◦ · · · ◦ σϵ,N̂ϵ
is the MSGE-resolution of (C, o) := ({f = 0}, o). Since the MSGE-

resolution of (C, o) is uniquely determined by f , we have N̂L = N̂c = N̂o (=: N̂) and

σ̂[L] ◦ σL,NL+1 ◦ · · · ◦ σL,N̂ = σ̂[c] ◦ σc,Nc+1 ◦ · · · ◦ σc,N̂ = σ̂[o] ◦ σo,No+1 ◦ · · · ◦ σo,N̂ (=: σ̂).

Hence, we can put (Ŵ , F̂ ) := (WN̂ϵ
, F[ϵ](N̂ϵ)) for any ϵ. Let FX,i (resp. Fϵ,i) be the strict
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transform of σ−1
i (Pi) onto Ŵ (resp. Ŵ[ϵ]) for i = 1, 2. Let (Ŷ[ϵ], Ê[ϵ])

π̂[ϵ]−→ (Y[ϵ], o) (resp.

(X̂, Ê)
π̂−→ (X, o)) be the covering resolution over σ̂[ϵ] (resp. σ̂). Then, EX,1 := (φX)

−1
∗ F1

(resp. EX,2 := (φX)
−1
∗ F2) is the MÊ (resp. ZÊ)-negative component from Propositions

3.12 (i) and 3.14 (ii). Hence we have CoeffEX,2
MÊ = 1 by Lemma 3.6 (ii).

For any Fi in F̂[ϵ], let us represent (σϵ,Nϵ+1 ◦ · · · ◦ σϵ,N̂ϵ
)−1
∗ Fi by the same notation Fi.

For ϵ = L, c, o and any Fi ⊂ F̂[ϵ], we can easily see the following:

(6.1)


(A) CoeffFi

((αx+ βy) ◦ σ̂[ϵ])F̂[ϵ]
= CoeffFi

((αx+ βy) ◦ σ̂)F̂ for general α, β ∈ C,

(B) CoeffFi
(ℓ ◦ σ̂[ϵ])F̂[ϵ]

= CoeffFi
(ℓ ◦ σ̂)F̂ ,

(C) CoeffFi
(g[ϵ] ◦ σ̂[ϵ])F̂[ϵ]

≡ CoeffFi
(f ◦ σ̂)F̂ mod 2.

For ϵ = L and c, let φY[ϵ]
: (Ŷ[ϵ], Ê[ϵ])−→(Ŵ[ϵ], F̂[ϵ]) be a holomorphic map given as (3.1)

for (Y[ϵ], o); and put Eϵ,i := (φY[ϵ]
)−1
∗ Fi (i = 3, · · · , Nϵ). From (6.1)-B for i = 1, 2, the

w.d.resolution graphs of (F̂[ϵ]\(F1 ∪F2))∪ (σ̂[ϵ])
−1
∗ C[ϵ] and (F̂ (ϵ)\Fδ)∪ (σ̂)−1

∗ C[ϵ] coincide,

where F̂ (ϵ) := φX(Ê(ϵ)) (see Definition 3.15); also Fδ := F1, ∅ and F1 ∪ F2 for ϵ = L, c

and o respectively. From (6.1)-(B), we have the following for Eδ := (φX)
−1
∗ Fδ.

(6.2) the w.d.graph of Ê[ϵ]\(Eϵ,1 ∪ Eϵ,2) = the w.d.graph of Ê(ϵ)\Eδ.

Further, by (6.1)-(A) and Lemma 3.3 (ii), we have

(6.3) CoeffEϵ,i
MÊ[ϵ]

= CoeffEX,i
MÊ(ϵ) for any i with Eϵ,i ⊂ Ê[ϵ].

(i) Assume that f[L] 6= 1. From (6.1)-(6.3), we have CoeffEL,i
MÊ[L]

= CoeffEX,i
MÊ(L)

and this is even for any i with EL,i ⊂ Ê[L]\EL,2. From Lemma 4.3, f[L] is of Laufer type.

(ii) Assume that f[c] 6= 1. From (6.1)-(6.3), we have CoeffEc,i
(ℓ◦ π̂[c])Ê[c]

= CoeffEX,i
(ℓ◦

π̂)Ê(c) and this is even for any Ec,i ⊂ Ê[c]. From Lemma 5.2, f[c] is of contact type. Q.E.D.

In the following, we characterize elements of odd type in terms of Puiseux pair.

Theorem 6.4. Let f =
r∏

j=1

fj be the irreducible decomposition of a reduced element f

in C{x, y}. Then, we have the following.

(i) f is of odd type if and only if

(I) ord(f) is odd, (II) To(f)red is a line,

(III) 2m1(fj) ≦ n1(fj) for any fj with ord(fj) ≧ 2.

(ii) Under the situation of Theorem 6.3, f[o] is of odd type.

Proof. (i) Let π̂ : (X̂, Ê) → (X, o) = {z2 = f(x, y)} be the covering resolution over

the MSGE-resolution σ̂ of (C, o) = ({f = 0}, o) constructed as (3.4).

(⇒) Since M2
Ê

= −2 < Z2
X = −1, (I) is obvious from Theorem 1.3 (i). We prove

(II) and (III). Let f = f[L]f[c]f[o] be as in Theorem 6.3, and τ : (X̂, Ê) −→ (X̃, E) be a

succession of contractions of (−1)-curves onto the minimal good resolution. If f[L]f[c] 6= 1,

then Ê(L)∪ Ê(c) is not contracted to a non-singular point through τ from Theorems 4.9
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and 5.9. Since CoeffÊi
MÊ > CoeffÊi

ZÊ for Êi ⊂ Ê(L) ∪ Ê(c), we have Mo,X > Zo,X .

As the contraposition, M2
o,X = −1 implies f[L]f[c] = 1 and so f = f[o]. Hence, (II) and

(III) are proved by Proposition 3.17 (i).

(⇐) From the conditions (I)-(III), CoeffF1(f ◦σ̂)F (N̂) (= ord(f)) is odd and CoeffF2(f ◦
σ̂)F (N̂) = 2 ord(f) and CoeffFi

MF (N̂) = 1 for i = 1, 2. Hence, for Ei := (φX)
−1
∗ Fi, we

have CoeffE1MÊ = 2 and CoeffE2MÊ = 1. For a linear form ℓ(x, y) = αx+βy for general

α, β ∈ C, we have MÊ = (ℓ◦ π̂)Ê (see [19, Proposition 3.3]). Since 0 ∼ (ℓ◦ π̂)X̂ = MÊ+L

and E1 ⊥ L and E2 ∩ L = ∅, we have 0 = (ℓ ◦ π̂)X̂E1 = (2E1 + E2 + L)E1 = 2E2
1 + 2

and so E1 is a (−1)-curve. If η : (X̂, Ê) −→ (X̄, Ē) is the contraction map of E1, then

(X̄, Ē) is a good resolution of (X, o). Then, L̄ := η(L) intersects E2 transversally at

E2 ∩ L̄. Since MĒ + L̄ ∼ 0, MĒE2 = −L̄E2 = −1 and MĒEi = 0 for any i (i 6= 2). From

CoeffE2 MĒ = CoeffE2 MÊ = 1, we have M2
Ē
= −1; thus M2

o,X = −1.
The assertion (ii) is proved by (i) and Proposition 3.17 (i). Q.E.D.

Corollary 6.5. Let f =
r∏

j=1

fj be the irreducible decomposition of a reduced element f

in C{x, y}. Assume that f1, · · · , fr are of odd type and r is odd. Then, f is of odd type

if and only if To(f1)red = · · · = To(fr)red.

The above result is induced from Theorem 3.13 and 6.4. The following is a refinement

of Theorem 1.3 (ii) .

Corollary 6.6. Suppose that f is irreducible and ord(f) is odd (≧ 3). Then,

(i) M2
o,X = Z2

X = −1 if and only if 2m1(f) ≦ n1(f), and (ii) M2
o,X = Z2

X = −2 if and

only if 2m1(f) > n1(f).

Corollary 6.7. Let (X, o) := {z2 = f(x, y)} be a normal double point and f =
r∏

j=1

fj

the irreducible decomposition in C{x, y}. If 2 ≦ ord(fj) and n1(fj) < 2m1(fj) for any

j, then Z2
X = −2.

Proof. From Theorem 1.3 (i), we assume that ord(f) is odd. If M2
o,X = −1, then f is of

odd type. Hence, 2m1(fj) ≦ n1(fj) for any j and this is a contradiction. If Mo,X > Zo,X ,

we have ord(f[o]) ≧ 3 from Theorem 6.3 and the assumption. Hence, from Theorem 6.4,

2m1(fj) ≦ n1(fj) if fj | f[o]. This contradicts to n1(fj) < 2m1(fj). Q.E.D.

7 Comparison of MX and ZX due to Laufer decomposition

for z2 = f(x, y), and the gluing of weighted dual graphs

Let (X, o) be a normal double point defined by z2 = f(x, y). In Theorems 6.3 and

6.4, we proved that if Mo,X > Zo,X on the minimal good resolution, then f has the weak

Laufer decomposition (Definition 3.15) with f[L]f[c] 6= 1. In this section, we will prove its
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converse by introducing the following notion of the Laufer decomposition of f (Corollary

7.4, Theorem 7.5).

Definition 7.1. Let f, f(L), f(c) and f(o) be reduced elements of C{x, y} with f =

f(L)f(c)f(o). Then, we say that f has the Laufer decomposition if it satisfies the following

three conditions:
(i) f(o) is of odd type and f(L)f(c) 6= 1.

(ii) If f(L) 6= 1, then f(L) is of Laufer type and To(f(o))red 6⊂ To(f(L))red.

(iii) If f(c) 6= 1, then f(c) is of contact type and To(f(o))red = To(f(c))red.

When the Laufer decomposition of f exists, from the properties of each types (Theo-

rems 4.5 and 5.4 and 6.4), it is determined uniquely up to units of C{x, y}. Moreover,

after showing Z2
o,X = −1 under the assumption of the existence of Laufer decomposition

(Corollary 7.4), the components f(L), f(c) and f(o) are naturally recognized to those of

Definition 3.15 and Theorem 6.3. From now on, let f(L), f(c) and f(o) be elements of

Laufer type, contact type and odd type respectively such that To(f(o))red = To(f(c))red 6⊂
To(f(L))red as in Definition 7.1. Let ℓo be a linear form with To(f(o))red = {ℓo = 0}. Here,
we define the following:

(7.1) hϵ := ℓof(ϵ) for ϵ = L and c; also ho := f(o) if ord(f(o)) ≧ 3.

At first, we show that the w.d.graph associated to z2 = f is constructed from w.d.graphs

associated to z2 = hϵ for ϵ = L, c and o (see Theorem 7.3). Let (Yϵ, o) be the normal dou-

ble point defined by z2 = hϵ for any ϵ. Let σ[ϵ] : (WN̂ϵ
, F (N̂ϵ)) → (C2, o) be the MSGE-

resolution of (C(ϵ), o) = {hϵ = 0} constructed in (3.4) and π̂[ϵ] : (Ŷ[ϵ], Ê[ϵ]) → (Yϵ, o)

be the covering resolution over σ[ϵ]. Let φYϵ : (Ŷ[ϵ], Ê[ϵ]) → (WN̂ϵ
, F (N̂ϵ)) be the holo-

morphic map in (3.1). We set Eϵ,i = (φYϵ)
−1
∗ Fϵ,i for any Fϵ,i ⊂ F (N̂ϵ). Further, let

π[ϵ] : (Ỹϵ, E[ϵ])−→(Yϵ, o) be the minimal good resolution. From the definitions of Laufer,

contact and odd type, we have the conditions M2
E[ϵ]

= −2 < Z2
E[ϵ]

= −1 for ϵ = L and

c, and M2
E[o]

= Z2
E[o]

= −1. Put E[[ϵ]] := E[ϵ]\(Eϵ,1 ∪ Eϵ,2) for ϵ = L and c; also put

E[[o]] := E[o]\Eo,2. By Theorem 3.11, the w.d.graph of E[ϵ] (ϵ = L, c and o) is given as

follows:

(7.2)



Γ(E[[L]])(i) Γ(E[L]) := −bL,1

(ii) Γ(E[c]) := −bc,1Γ(E[[c]])

(iii) Γ(E[o]) := −bo,2Γ(E[[o]])

−bc,2

EL,2 EL,1

Ec,2 Ec,1

Eo,2[go]

and bL,1 ≧ 2,

and bc,i ≧ 2 for i = 1, 2,

and bo,2 ≧ 1.
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In (7.2)-(i), since 0 = ME[L]
EL,2 = E2

L,2 + 2 from CoeffEL,1
ME = 2, we have E2

L,2 = −2.
Further we have Eϵ,2 ' P1 (ϵ = L, c) by the proof of Proposition 3.17 (v), and Eϵ,1 ' P1

(ϵ = L, c) by Proposition 3.12 (i).

Lemma 7.2. In the figures of (7.2), we have the following.

(i) If we put mϵ := (ME[ϵ]
|E[[ϵ]])Eϵ,1 and zϵ := (ZE[ϵ]

|E[[ϵ]])Eϵ,1 for ϵ = L and c, then

mL = 2bL,1 − 2, zL = bL,1 − 1, mc = 2bc,1 − 1 and zc = bc,1.

(ii) If we put m̄ϵ := (ME[ϵ]
|E[[ϵ]])Eϵ,2 and z̄ϵ := (ZE[ϵ]

|E[[ϵ]])Eϵ,2 for ϵ = c and o, then

m̄c = bc,2, z̄c = bc,2 − 1 and m̄o = z̄o = bo,2 − 1.

Proof. (i) is induced easily from ME[ϵ]
Eϵ,1 = −1 and ZE[ϵ]

Eϵ,1 = 0 for L and c. (ii) is

induced easily from ME[c]
Ec,2 = 0 and ZE[c]

Ec,2 = ZE[o]
Eo,2 = −1. Q.E.D.

Under the situation above, we describe how to obtain Γ(E) by gluing Γ(E[L]), Γ(E[c])

and Γ(E[o]).

Theorem 7.3. Let f = f(L)f(c)f(o) be the Laufer decomposition and π : (X̃, E) →
(X, o) the minimal good resolution of (X, o) = {z2 = f(x, y)}. Then the w.d.graph Γ(E)

is given as follows:

Γ(E[[L]])(i) −(bL,1 + bc,1 − 1)

E1[go]

Γ(E[[c]])Γ(E[[o]]) −(bc,2 + bo,2 − 1)

E2
if f[L] 6= 1 and f[c] 6= 1 and ord(f[o]) ≧ 3.

(ii)

E1[go]

Γ(E[[c]])Γ(E[[o]]) −(bc,2 + bo,2 − 1)

E2 if f[L] = 1 and f[c] 6= 1 and ord(f[o]) ≧ 3.

−bc,1

Γ(E[[L]])(iii)

E1[go]

Γ(E[[o]])

E2

if f[L] 6= 1 and f[c] = 1 and ord(f[o]) ≧ 3.

−bL,1−(bo,2 + 1)

−bc,2 Γ(E[[L]])(iv) −(bL,1 + bc,1 − 1)

E1

Γ(E[[c]])

E2
if f[L] 6= 1 and f[c] 6= 1 and ord(f[o]) = 1.

Proof. Let (X̂, Ê)
π̂−→ (X, o) be the covering resolution over the MSGE-resolution σ̂

of (C, o) constructed in (3.4). If f(ϵ) 6= 1 (resp. f(ϵ) = 1), then we put (C(ϵ), o) := ({f(ϵ) =
0}, o) (resp. := ∅) for ϵ = L, c. When C(ϵ) 6= ∅, from the conditions of To(f(ϵ))red in

Definition 7.1, we can see the following:

(7.3)

F1 ∩ (σ1 ◦ σ2)
−1
∗ C(ϵ) 6= ∅ if ϵ = L or c; F2 ∩ (σ1 ◦ σ2)

−1
∗ C(ϵ) 6= ∅ if ϵ = c or o;

F1 ∩ F2 ∩ (σ1 ◦ σ2)
−1
∗ C(ϵ) = ∅ (resp. 6= ∅) if ϵ = L or o (resp. ϵ = c).

We remark that ord(f(o)) is odd and ord(f(ϵ)) ≧ 4 if f(ϵ) 6= 1 for ϵ = L or c (see

Corollary 4.7 and 5.8). When ord(f(ϵ)) ≧ 2, let (W2, F (2))
σϵ,3←− (Wϵ,3, Fϵ(3))

σϵ,4←− · · ·
σϵ,Nϵ←−
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(Wϵ,Nϵ , Fϵ(Nϵ)) (:= (ŴYϵ , F̂ (Yϵ))) be a succession of blowing-ups such that σ̂Yϵ := σ1 ◦
σ2 ◦ σYϵ is the MSGE-resolution of ({hϵ = 0}, o) for hϵ defined in (7.1), where σYϵ :=

σϵ,3 ◦ · · · ◦ σϵ,Nϵ for ϵ = L, c and o. Let us put Ĝ(Yϵ) := F̂ (Yϵ) ∪ (σ̂Yϵ)
−1
∗ C(ϵ) (⊂ Ŷϵ) and

Ĝ(ϵ) := F̂ (ϵ) ∪
∪

j∈I[ϵ]
(σ̂)−1

∗ Cj (⊂ Ŷ ) for ϵ = L, c and o, where F̂ (ϵ) := φX(Ê(ϵ)) and

I[ϵ] := {j ∈ {1, · · · , r} | (σ̂)−1
∗ Cj ∩ F̂ (ϵ) 6= ∅}. Then, we have the equality about the

resolution diagrams Λ(Ĝ(ϵ)) = Λ(Ĝ(Yϵ)\(F1 ∪ F2)) for any ϵ. Thus Λ(Ĝ) is given as

follows:

(7.4) Λ(Ĝ(o)) −c2 Λ(Ĝ(c)) Λ(Ĝ(L)).−c1
F2 F1

For ϵ = L or c, Λ(Ĝ(ϵ)) = ∅ if and only if f(ϵ) = 1; also Λ(Ĝ(o)) = ∅ if and only if

ord(f(o)) = 1. However, Λ(Ĝ(L)) ∪ Λ(Ĝ(c)) 6= ∅ because of f(L)f(c) 6= 1.

Let σYϵ be the identity map if 0 ≦ ord(f(ϵ)) ≦ 1. Since the MSGE-resolution exists

uniquely, we have σ1 ◦ σ2 ◦ σYL
◦ σYc ◦ σYo = σ̂. We show the following:

(7.5) CoeffF2(f ◦ σ̂)F̂ is even, and CoeffÊ2
MÊ = 1.

If we put dϵ := multP2((σ1)
−1
∗ C(ϵ)) for ϵ = c and o, then CoeffF2(hc ◦ σYϵ)F̂ (Yc)

= dc +

ord(f(c)) + 2 is even by Proposition 3.14 (i). Since ord(f(c)) is even by Definition 5.1,

dc is even. Since do = ord(f(o)) is odd from Theorem 6.4, we have CoeffF2(f ◦ σ̂)F̂ =

dc+ ord(f)+ do is even. Since CoeffF2MF̂ = 1, CoeffÊ2
MÊ = 1 follows from Lemma 3.3.

Now we show the following assertion:

(7.6) Ê2 is irreducible, and g(Ê2) = go.

In fact, the double covering φX |Ê2
: Ê2−→F2 has the ramification point F1 ∩ F2 by

the odd-ness of dc+ ord(f) as in arguments after (3.6), and so Ê2 is irreducible. Further

the remaining ramification points are exactly same as for the case f(o) as seen in (7.4),

hence we have the relation g(Ê2) = go.

In this situation, consider the following:

(7.7)
τ : (X̂, Ê)→ (X̃, E) is a succession of contractions of (−1)-curves with
π̂ = π ◦ τ, and Êi := (φX)

−1
∗ Fi for the mapφX in (3.1) andEi := τ(Êi).

From our assumption f(L)f(c) 6= 1, we have M2
E = −2 by Theorem 6.4. Hence we

obtain the relations MÊÊi = MEτ(Êi) for all i. Now, we show the following assertions:

(7.8) Ê1 and Ê2 are not contracted to points by τ .

Since ord(f) is odd, we have MÊÊ1 < 0 and MÊÊ2 = 0 in (3.1). Hence, MEτ(Ê1) < 0

holds, so τ(Ê1) is not contracted to a point. For Ê2, let η : (X̂, Ê) → (X̄, Ē) be a

succession of contractions of (−1)-curves, and set Ē2 := η(Ê2). As same as τ , we have

0 = MÊÊ2 = MĒĒ2. Since CoeffĒ2
MĒ = 1, we have Ē2

2 = −MĒ|Ē−Ē2
Ē2. Since

CoeffÊi
MÊ ≥ 2 for Êi ⊂ Ê1 ∪ Ê(c) by Theorem 3.11 and (6.1)(A),(B), we conclude the

relation Ē2
2 ≤ −2. Hence Ê2 is not contracted to a point by τ .
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Now we have the following:

(7.9) CoeffE1ME = 2 and CoeffE2ME = 1 for Ei := τ(Êi) (i = 1, 2).

From now on, we prove the case of (i). By (7.4), we have the decomposition Ĝ\(F1 ∪
F2) = Ĝ(L) t Ĝ(c) t Ĝ(o) satisfying Λ(Ĝ(ϵ)) = Λ(Ĝ(Yϵ))\(F1 ∪ F2)). Hence we may

consider that Λ(Ĝ(Yϵ)) is embedded into Λ(Ĝ). We have the following:
CoeffF1(f ◦ σ̂)F̂ and CoeffF1(hϵ ◦ σ̂Yϵ)F̂ (Yϵ)

are obviously odd,

CoeffF2(f ◦ σ̂)F̂ and CoeffF2(hϵ ◦ σ̂Yϵ)F̂ (Yϵ)
are even by Proposition 3.14 and (7.5),

CoeffFϵ,i
(f ◦ σ̂)F̂ ≡ CoeffFϵ,i

(hϵ ◦ σ̂Yϵ)F̂ (Yϵ)
mod 2 for any Fϵ,i ⊂ F̂ (Yϵ) by (6.1)-(B).

Therefore, we have Γ(Ê(ϵ)) = Γ(Ê(Yϵ)\(Ê1 ∪ Ê2)) from Λ(Ĝ(ϵ)) = Λ(Ĝ(Yϵ)\(F1 ∪ F2))

and (7.4). Moreover, except for the values of Ê2
i and E2

ϵ,i (i = 1, 2), we have Γ(τ(Ê(L)∪
Ê1)) = Γ(E[[L]]∪EL,1), Γ(τ(Ê(c)∪Ê1∪Ê2)) = Γ(E[[c]]∪Ec,1∪Ec,2) and Γ(τ(Ê(o)∪Ê2)) =

Γ(E[[o]] ∪ Eo,2). Hence, from (7.4), Γ(E) is given as follows:

Γ(E[[o]]) −b2 Γ(E[[c]]) Γ(E[[L]]).−b1
E2 E1[g1]

From −1 = MEE1 = −2b1 + mL + mc in Lemma 7.2 (i), we have b1 = bL,1 + bc,1 − 1.

Also, 0 = MEE2 = −b2 + m̄c + m̄o and so b2 = bc,2 + bo,2 − 1 in Lemma 7.2 (ii). Thus

Γ(E) is given by (i). We can prove (ii)-(iv) more easily as well, so omit them. Q.E.D.

Corollary 7.4. Assume the same condition as Theorem 7.3. Then, MX > ZX and

E1 := τ(Ê1) (resp. E2 := τ(Ê2)) is the ME (resp. ZE)-negative component of E in the

w.d.graphs of (i)-(iv). Hence, the figures of (i)-(iv) give the Laufer decomposition of E.

Proof. In the figure of Theorem 7.3, if fϵ 6= 1, then we put D[ϵ] := ZE[ϵ]
|E[[ϵ]] else

D[ϵ] := 0. Also, we define a cycle D on E by D := D[L] + D[c] + D[o] + E1 + E2.

Then, DEϵ,i = ZE[ϵ]
Eϵ,i = 0 for any Eϵ,i ⊂ E[[ϵ]]. For each case of (i)-(iv) in Theorem

7.3, we can see that DE1 = 0 and DE2 = −1 from Lemma 7.2. Hence, D is an

anti-nef cycle on E and D2 = −1. Then, we have D = ZE and Z2
X = −1. Since

CoeffE1 ME = 2 > CoeffE1 ZE = 1 and (7.8), E1 is not contracted to a point on the

minimal good resolution. Thus, E1 is the ME-negative component and Mo,X > Zo,X .

Thus, MX > ZX from Proposition 3.7 (ii). Further, since ZEE2 = DE2 = −1, E2 is the

ZE-negative component. Q.E.D.

Using all results of this paper, we show the following our main result.

Theorem 7.5. Let (X, o) be a normal double point defined by z2 = f(x, y). Then,

the following three conditions are equivalent;

(i) MX > ZX , (ii) Mo,X > Zo,X , (iii) f has the Laufer decomposition.
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Proof. (i) ⇔ (ii) is proved in Proposition 3.7 (ii). (ii) ⇒ (iii) is proved by Theorems

6.3 and 6.4 as remarked in the beginning of this section. And finally (iii)⇒ (i) is proved

by Corollary 7.4. Q.E.D.

Example 7.6. Let us consider f(L) := x4 + y6 (Laufer type), f(c) := y6 + x8 (contact

type), and f(o) := y3 + x7 (odd type). Then we have the following:

-1-3 -7
-1-3 -1
[1] [1]

z2 = f3 : z2 = yf2 : z2 = yf1 :, .

3
2 1

2
(1)

3
(2)

1
(1)

2
(1)

2
(1)

1
(1)

and
6

E2
E2 E1 E2 E1

Also, put (X1, o) := {z2 = f(L)f(c)f(o)}, (X2, o) := {z2 = f(c)f(o)}, (X3, o) := {z2 =

f(L)fo)} and (X4, o) := {z2 = yf(L)f(c)}. If πℓ : (X̃ℓ, E〈ℓ〉)→ (Xℓ, o) is the minimal good

resolution (ℓ = 1, · · · , 4), then we have the following:

-1-3 -9Γ(E〈1〉) : ,-1-3-1
[1]

-1-3 -9Γ(E〈2〉) : ,-1
[1][1]

2
(1)

2
(1)

3
(2)1

3
2

2
(1)

3
(2)1

3
26 6

E2 E1 E2 E1

-1-3 -8Γ(E〈3〉) : -1
[1]

-1-3 -3Γ(E〈4〉) : -1

2
(1)1

3
2

[1][1]

2
(1)

2
(1)

3
(2)

1
(1)

, .
6

E2 E1
E2 E1

2
(1)

8 A numerical procedure to determine whether MX = ZX

or not from the topology of the branch curve singularity

For a normal double point (X, o) = {z2 = f(x, y)}, consider the following three types

(see Definition 6.1 in [20]):

(8.1) m.i.type I: Z2
X = −2, m.i.type II: MX > ZX , m.i.type III: M2

X = −1.

We call it the maximal ideal type for (X, o) and it is abbreviated as m.i.type. Then, any

normal double point belongs to one of those m.i.types. Let f =
r∏

j=1

fj be the irreducible

decomposition in C{x, y} and (W,F ) −→ (C2, o) the MGE-resolution of ({f = 0}, o).
Also, put (Cj, o) := ({fj = 0}, o) for any j.

Remark 8.1. (i) m.i.type of (X, o) is I if and only if f is not of odd type and has

not the Laufer decomposition.

(ii) m.i.type of (X, o) is II if and only if f has the Laufer decomposition.

(iii) m.i.type of (X, o) is III if and only if f is of odd type.

Procedure 8.2. We give a procedure to determine the m.i.type of (X, o) from the

w.d.resolution graph Λ(f) of the plane curve singularity ({f = 0}, o).
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(1) Compute the fundamental cycle ZF and mult(Cj, o) and Puisx(Cj) for any j.

(2) If ord(f) is even, then (X, o) is of m.i.type I from Theorem 1.3. Thus, let us assume

that ord(f) is an odd integer (≧ 3) in the following.

(3) Put g :=
∏

ord(fj):odd

fj. If To(g)red is not a line, then (X, o) is of m.i.type I from

Theorem 3.13. Thus, let us assume that To(g)red is a line (=: Lo) in the following.

(4) Define three sets as follows:

∆(o) := {j ∈ I | 2m1(fj) ≦ n1(fj) and To(fj)red = Lo},
∆(c) := {j ∈ I | 2m1(fj) > n1(fj) and To(fj)red = Lo} and
∆(L) := {j ∈ I | To(fj)red 6= Lo}, where I := {1, · · · , r}.

Put f(o) :=
∏

j∈∆(o)

fj. For ϵ := L or c, put f(ϵ) :=
∏

j∈∆(ϵ)

fj if ∆(ϵ) 6= ∅, otherwise f(ϵ) := 1.

Since I = ∆(o) t∆(c) t∆(L) (i.e., disjoint union), we have f = f(L)f(c)f(o).

(5) If f(L) 6= 1 and f(L) is not of Laufer type, then (X, o) is of m.i.type I. If f(c) 6= 1

and f(c) is not of contact type, then (X, o) is of m.i.type I.

(6) Assume that f(L)f(c) 6= 1. If f(L) 6= 1 (resp. f(c) 6= 1) and f(L) (resp. f(c)) is of

Laufer (resp. contact) type, then (X, o) is of m.i.type II.

(7) If f(L)f(c) = 1, then (X, o) is of m.i.type III.

Example 8.3. For the irreducible decomposition f =
5∏

i=1

fj of f in C{x, y}, assume

that the w.d.resolution graph Λ(f) of (C, o) = {f = 0} is given as follows:

*

* *

*C1

C2

(8.2)

C4

C5

F1
F2 F9 F10 F11

F3 F4 F5

F6F8F7

F23 F24 F22

F25

F26 F28 F27

F29 F32 F31F30

F12 F14
F13

F18 F20 F21 F19

F16 F17 F15 *C3

-3 -5

-1 -3 -3 -4

-3 -3 -3-1

-7 -3

-3

-4 -1-1

where (Cj, o) := ({fj = 0}, o).
(1) The fundamental cycle ZF is given by �CoeffFi

ZF�=

[1, 1, 1, 2, 3, 3, 6, 9, 2, 3, 4, 4, 4, 8, 8, 16, 24, 8, 8, 16, 24, 1, 2, 3, 3, 3, 3, 6, 6, 6, 12, 18].

From this, we can see that F1 is the ZF -negative component. Hence, we have

mult(C1, o) = CoeffF8ZF = 9, mult(C2, o) = mult(C3, o) = CoeffF21ZF = 24,

mult(C4, o) = CoeffF32ZF = 18, mult(C5, o) = CoeffF28ZF = 6; also

Puisx(C1) = {(3, 7), (3, 23)}, Puisx(C2) = {(4, 5), (2, 13), (3, 41)},

Puisx(C3) = {(4, 5), (2, 13), (3, 44)}, Puisx(C4) = {(3, 5), (2, 15), (3, 49)}

and Puisx(C5) = {(3, 5), (2, 15)}.
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(2) ord(f) = mult(C, o) = 81 is odd.

(3) From Λ(f), To(f1)red = To(f2)red = To(f3)red and it is a line (=: Lo); also Lo 6⊂
To(fi)red for i = 4, 5.

(4) f(o) := f1, f(c) := f2f3 and f(L) := f4f5.

(5) f(L) is of Laufer type from Theorem 4.5, and F[L](f(L)) = F28.

(6) Let ℓ be a linear form with To(C1)red = {ℓ = 0}. Then, �CoeffFi
(ℓ ◦ σ)F�=

[1, 2, 3, 5, 7, 7, 14, 21, 3, 4, 5, 5, 5, 10, 10, 20, 30, 10, 10, 20, 30] for 1 ≦ i ≦ 21 and CoeffFi
(ℓ ◦

σ)F = CoeffFi
ZF (22 ≦ i ≦ 32). From Theorem 5.4, f(c) is of contact type and F[c](f(c)) =

F14. Then, f = f(L)f(c)f(o) is a Laufer decomposition. Hence, if Λ(f) is given by (8.2),

then (X, o) = {z2 = f(x, y)} is always of m.i.type II.
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