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Abstract. In the present paper, we study linear equations on tensor powers of the Carlitz
module using the theory of Anderson dual t-motives and a detailed analysis of a specific
Frobenius difference equation. As an application, we derive some explicit sufficient con-
ditions for the linear independence of Carlitz polylogarithms at algebraic points in both
∞-adic and v-adic settings.
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1. Introduction

1.1. Motivation and the main result. Let Gm be the multiplicative group and let
α1, . . . , α` ∈ Gm(Q) = Q×

. Then they are called multiplicatively dependent if there exist
integers n1, . . . , n`, not all zero, such that

αn1
1 ⋯αn`` = 1.

It is natural to ask how to decide if they are multiplicatively dependent. Moreover, let

R ∶= {(n1, . . . , n`) ∈ Z` ∣ αn1
1 ⋯αn`` = 1} ⊂ Z`.
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Can one find a set of generators of R as a Z-module and estimate its size? The estimations
in this direction were first established by Baker using his celebrated theory of linear forms
in logarithms. Another approach is due to Masser, using the geometry of numbers. More
precisely, let K be a number field containing α1, . . . , α`. We identify Gm(K) with P1(K)
minus two points (1 ∶ 0) and (0 ∶ 1) by identifying x with (1 ∶ x). Then we can employ
the usual logarithmic height function on P1(K). For x = (x1, . . . , x`) ∈ Z`, the size of x is
defined by ∣x∣ ∶= max`i=1{∣xi∣}. It was shown in [Mas88, Theorem Gm, p. 253] that there is
a set m of generators for R so that the size ∣m∣ is bounded by an explicit quantity which
involves the number of algebraic points, the heights of these points, and the cardinality of
the roots of unity in K. The main result in the present paper is to study an analogue of
the multiplicative dependence question for the Carlitz module and its higher dimensional
generalizations.

Let Fq be the finite field with q elements, for q a power of a prime number p. Let t, θ,X
be independent variables. Let A ∶= Fq[θ] be the polynomial ring and k ∶= Fq(θ) be its
field of fractions. Let ∣ ⋅ ∣∞ be the normalized non-archimedean absolute value on k so that
∣f/g∣∞ ∶= qdegθ(f)−degθ(g) for f, g ∈ A with g ≠ 0. We denote by k∞ the completion of k with
respect to ∣ ⋅ ∣∞. We further set C∞ to be the completion of a fixed algebraic closure k∞ of
k∞ and we fix k to be the algebraic closure of k inside C∞. For a commutative algebra R
containing A, we set R[τ] to be the twisted polynomial ring subject to the relation τα = αqτ
for α ∈ R. Note that R[τ] can be realized as the Fq-linear endomorphism ring on R.

The Carlitz module is a pair C ∶= (Ga, [⋅]), where ([⋅] ∶= a ↦ [a]) ∶ Fq[t] → k[τ] is an
Fq-algebra homomorphism uniquely determined by [t] ∶= θ + τ . We can associate an Fq-
linear power series expC(X) ∈ kJXK satisfying expC(X) ≡ X(mod Xq) and expC(a(θ)X) =
[a](expC(X)) for all a ∈ Fq[t]. In addition, expC(X) induces an entire, surjective, Fq-linear
map on C∞. Furthermore, the following short exact sequences of Fq[t]-modules commute
for any a ∈ Fq[t]

(1.1)
0 ΛC C∞ C∞ 0

0 ΛC C∞ C∞ 0

a(θ) a(θ)

expC(⋅)

[a]
expC(⋅)

where ΛC ∶= Ker(expC) = Aπ̃ and π̃ ∶= θ(−θ)1/(q−1)∏∞
i=1(1 − θ1−q

i
)−1 ∈ C×∞ for some fixed

(q − 1)th root of −θ. Note that (1.1) could be regarded as an analogue of the analytic
uniformization of the complex multiplicative group Gm. Let n ∈ Z>0. The n-th tensor power
of the Carlitz module, which is a higher dimensional generalization of the Carlitz module,
is the pair C⊗n ∶= (Gn

a , [⋅]n), where ([⋅]n ∶= a ↦ [a]n) ∶ Fq[t] → Matn(k[τ]) is an Fq-algebra
homomorphism uniquely determined by

[t]n ∶=

⎛
⎜
⎜
⎜
⎝

θ 1
θ ⋱

⋱ 1
τ θ

⎞
⎟
⎟
⎟
⎠

∈ Matn(k[τ]).

Note that C⊗1 is simply the Carlitz module.
We denote by C⊗n(k) = Gn

a(k) the k-valued points on the additive group equipped with
the Fq[t]-module structure arising from [⋅]n. Given P1, . . . , P` ∈ C⊗n(k), we say that they
are linearly dependent over Fq[t] if there exist a1, . . . , a` ∈ Fq[t], not all zero, such that

[a1]nP1 +⋯ + [a`]nP` = 0.
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With the analogy between the complex multiplicative group Gm and the Carlitz module C,
one can ask an analogue of the multiplicative dependence problem, that is, how to determine
whether these points are linearly dependent over Fq[t] or not. Moreover, let

G ∶= {(a1, . . . , a`) ∈ Fq[t]` ∣ [a1]nP1 +⋯[a`]nP` = 0} ⊂ Fq[t]`.

One can also ask if we can find a set of generators of G over Fq[t] and estimate its size. We
give an affirmative answer as follows. Let L ⊂ k be a finite extension of k, and for a divisor
D ∈ div(L) we set

L(D) = {f ∈ L× ∣ div(f) +D ≥ 0} ∪ {0}.

For m ∶= (m1, . . . ,m`) ∈ Fq[t]`, we define degt(m) ∶= max`i=1{degt(mi)}.

Theorem 1.1. Let L ⊂ k be a finite extension of k and n ∈ Z>0. Let C⊗n = (Gn
a , [⋅]n)

be the n-th tensor power of the Carlitz module and P1, . . . , P` ∈ C⊗n(L) be distinct non-
zero L-valued points. Then there exists an explicitly constructed divisor D ∈ div(L) and
{m1, . . . ,mν} ⊂ G with bounded degree degt(mi) ≤ n(dimFq L(D)+`) such that rankFq[t]G = ν
and G = SpanFq[t]{m1, . . . ,mν}.

We mention that Denis considered this type of linear dependence problem for a family
of t-modules including tensor powers of the Carlitz module. He established an analogue
of Masser’s result [Den92a, Appendix 2] using his theory of canonical height introduced
in [Den92b]. In the present paper, we adopt a different method and obtain a new upper
bound to this problem. Unlike Denis’ upper bound which is given by the analytic invariant
from the canonical height, the upper bound established in the present paper only includes
the algebraic terms such as the dimension of the Riemann-Roch space L(D) over Fq. Our
approach involves the theory of Anderson’s dual t-motives and the analysis of Frobenius
difference equations. The techniques used here are rooted in [Cha16, KL16] for the study of
characteristic p multiple zeta values, and in [Che23b, Ho20] to the study of linear relations
among algebraic points on Drinfeld modules. In addition, our strategy could be used to
show that the rank of the Fq[t]-module C⊗n(L) is countably infinite (see Theorem 3.4). This
gives an alternative proof of a part of [Kua23, Cor.3.6.1], where Kuan’s method is based on
a generalization of Poonen’s work [Poo95] on local height function of certain t-modules.

1.2. Carlitz polylogarithms at algebraic points. By virtue of Anderson-Thakur [AT90],
it is known that the special values of Carlitz polylogarithm (CPL), and v-adic CPL (v is a
finite place in k) are interpreted by some algebraic points of C⊗n(k). Then, by giving a slight
generalization of this interpretation (see Proposition 4.1), we can apply our techniques of
proving Theorem 1.1 to obtain sufficient conditions of linear/algebraic independence among
the special values of CPLs, and v-adic CPLs, as below.

We set L0 ∶= 1 and Li ∶= (θ − θq)⋯(θ − θq
i
) ∈ A for each i ≥ 1. For n ∈ Z>0, the n-th CPL

was defined by Anderson and Thakur [AT90] as follows:

(1.2) Lin(z) ∶=∑
i≥0

zq
i

Lni
∈ kJzK.

Note that CPLs can be viewed as an analogue of classical polylogarithms in positive char-
acteristic. The n-th CPL converges at z0 ∈ C∞ with ∣z0∣∞ < ∣θ∣

nq/(q−1)
∞ . It is known due to

Anderson and Thakur [AT90] that the n-th CPL appears as the last entry of a logarithm of
C⊗n at a specific point whenever it is defined (see Section 4.1 for related details).
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Let L0 ∶= 1 and Li ∶= (t − θq)⋯(t − θq
i
) ∈ A[t] for each i ≥ 1. For n ∈ Z>0 and f ∈ C∞[t], we

define

(1.3) Lf ,n(t) ∶=∑
i≥0

f (i)

Lni
∈ C∞JtK,

where f (i) ∈ C∞[t] is the i-th Frobenius twisting defined in (2.1). If f = f0 + f1t +⋯ + fmtm ∈
C∞[t] with fi ∈ C∞ for each 0 ≤ i ≤m, we set ∥f∥ ∶= max0≤i≤m{∣fi∣∞}. By [CY07], it is known
that Lf ,n converges at t = θ whenever ∥f∥ < ∣θ∣

nq/(q−1)
∞ . In particular, when f = z0 ∈ C∞ with

∥f∥ = ∣z0∣ < ∣θ∣
nq/(q−1)
∞ , we have

Lz0,n∣t=θ = Lin(z0).

Thus, Lz0,n can be regarded as a deformation series of Lin(z0). This suggests that Lf ,n(θ)
can be constructed as a CPL at f ∈ C∞[t] with ∥f∥ < ∣θ∣

nq/(q−1)
∞ .

Let L ⊂ k be a finite extension of k. We setML to be the set of places of L. For w ∈ML and
f = f0 + f1t +⋯ + fmtm, we define ordw(f) ∶= minmi=0{ordw(fi)}. By using the study of linear
equations on tensor powers of the Carlitz module, we get a sufficient condition for linear
independence among algebraic points of tensor powers of the Carlitz module. This result is
stated as Theorem 3.4. We can relate the algebraic points to the special values of CPLs by
Proposition 4.1. Then, by applying Yu’s transcendence result [Yu91, Thm. 2.3], we can show
that if algebraic points of tensor powers of the Carlitz module are Fq[t]-linearly independent,
the related special values of CPLs are k-linearly independent (see Lemma 4.4). Combining
Theorem 3.4, Lemma 4.4 and the transcendence result by Chang [Cha14, Thm. 5.4.3], we
obtain the following explicit sufficient condition for the special values of CPLs being linearly
independent.

Theorem 1.2. Let L ⊂ k be a finite extension of k. Let n ∈ Z>0 and fi = p
[i]
0 +p

[i]
1 (t− θ)+⋯+

p
[i]
n−1(t − θ)n−1 ∈ L[t] with p[i]j ∈ L and ∥fi∥ < ∣θ∣

nq/(q−1)
∞ for 1 ≤ i ≤ ` and 0 ≤ j ≤ n − 1. Suppose

that
(1) f1, . . . , f` are linearly independent over Fq[t],
(2) ordw(fi) > 0 for all 1 ≤ i ≤ `, if w ∈ML and w ∣∞,
(3) ordw(fi) ≥ 1 − q for all 1 ≤ i ≤ `, if w ∈ML and w ∤∞.

Then
dimk Spank{Lf1,n(θ), . . . ,Lf`,n(θ)} = `.

Moreover, if ∥fi∥ < ∣θ∣
q/(q−1)
∞ for each 1 ≤ i ≤ `, then

dimk Spank{1,Lf1,1(θ), . . . ,Lf`,1(θ), . . . ,Lf1,n(θ), . . . ,Lf`,n(θ)} = n` + 1.

It is worth mentioning that in the special case fi = αi ∈ L, condition (1) in Theorem 1.2 is
equivalent to saying α1, . . . , α` are linearly independent over Fq since L and Fq[t] are linearly
disjoint over Fq. As an application of [Mis17, Thm. 4.2] (cf. [CY07, Thm. 4.5] and [Pap08,
Thm. 6.4.2]), Theorem 1.2 implies the following algebraic independence result immediately.

Corollary 1.3. Let L ⊂ k be a finite extension of k. Let n1, . . . , nd be d distinct positive
integers, and let f1, . . . , f` ∈ L[t] with ∥fi∥ < ∣θ∣

njq/(q−1)∞ for each 1 ≤ i ≤ ` and 1 ≤ j ≤ d.
Suppose that nj is not divisible by q − 1 for each 1 ≤ j ≤ d, ni/nj is not an integer power of p
for each i ≠ j, and f1, . . . , f` satisfy all the conditions stated in Theorem 1.2. Then

tr.degk k(π̃,Lf1,n1(θ), . . . ,Lf`,n1(θ), . . . ,Lf1,nd(θ), . . . ,Lf`,nd(θ)) = d` + 1.
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Let ε1, . . . , ε` ∈ F×q be distinct elements. For each 1 ≤ i ≤ `, consider γi to be a fixed
(q − 1)-th root of εi. Then Yeo proved in [Yeo22, Lem. 4.23] that for any fixed n ∈ Z>0
and u1, . . . , u` ∈ A, the set of ` values {Lin(ε1u1), . . . ,Lin(ε`u`)} is a k-linearly independent
set. Due to the condition (2) stated in Theorem 1.2, if we set L = K(ε1, . . . , ε`), then one
sees easily that ordw(εiui) ≤ 0 for any ui ∈ A with 1 ≤ i ≤ `, and w ∈ ML with w ∣ ∞.
Thus, Theorem 1.2 does not include his result. However, the sufficient conditions stated in
Theorem 1.2 can be applied to any finite extension of k, rather than just the constant field
extension K(ε1, . . . , ε`).

In fact, we also have a parallel v-adic version of Theorem 1.2 in the following sense. Let
v ∈Mk be a finite place and pv ∈ A be the monic irreducible polynomial in A corresponding
to v. We define the normalized v-adic absolute value on k by setting ∣pv ∣v ∶= (1/q)degθ(pv).
Consider the completion kv of k with respect to ∣ ⋅ ∣v. Let Cv be the v-adic completion of
an algebraic closure of kv. Throughout this article, we fix an embedding ιv ∶ k ↪ Cv. Note
that CPLs converge at z0 ∈ Cv with ∣z0∣v < 1 if we regard (1.2) as v-adic analytic functions
on Cv via the embedding ιv. Inspired by the work of Anderson and Thakur [AT90], Chang
and Mishiba proposed a way to enlarge the defining domain of v-adic CPLs in [CM19] so
that v-adic CPLs are defined at z0 ∈ Cv with ∣z0∣v ≤ 1 (see Section 4.2 for more details). In
this case, we denote by Lin(z0)v its value in Cv. Due to the lack of Chang’s result [Cha14,
Thm. 5.4.3] in the v-adic setting, we only have the following v-adic analogue of Theorem 1.2.

Theorem 1.4. Let L ⊂ k be a finite extension of k. Let n ∈ Z>0 and αi ∈ L with ∣αi∣v ≤ 1 for
1 ≤ i ≤ `. Suppose that

(1) α1, . . . , α` are linearly independent over Fq,
(2) ordw(αi) > 0 for all 1 ≤ i ≤ `, if w ∈ML and w ∣∞,
(3) ordw(αi) ≥ 1 − q for all 1 ≤ i ≤ `, if w ∈ML and w ∤∞.

Then
dimk Spank{Lin(α1)v, . . . ,Lin(α`)v} = `.

We end up this subsection with the following few remarks. As an analogue of the classical
multiple polylogarithms, for s = (s1, . . . , sr) ∈ (Z>0)r, Chang introduced the s-th Carlitz
multiple polylogarithm (CMPL) in [Cha14], which is defined as follows:

(1.4) Lis(z1, . . . , zr) ∶= ∑
i1>⋯>ir≥0

zq
i1

1 ⋯zq
ir

r

Ls1i1⋯L
sr
ir

∈ kJz1, . . . , zrK.

Linear relations among CMPLs at algebraic points have been studied in [Cha14, CPY19,
CH21, CCM23, IKLNDP22]. But none of them gives explicit sufficient conditions on alge-
braic points so that the special values of CMPLs with fixed s at these points are linearly
independent over k. It is natural to ask whether we have generalizations of Theorem 1.2 for
CMPLs at algebraic points. We hope to tackle this problem in the near future.

At the time of writing this paper, there have been some developments concerning similar
topics about linear relations among CPLs at algebraic points. For example, using the theory
of non-commutative factorization, an abundant family of Eulerian type relations involving
CPLs at algebraic points have been constructed explicitly in [Pel23, Thm. C]. On the other
hand, it has been shown in [GM22, Thm. A] that several linear relations and linearly inde-
pendence results about CPLs at integral points in A can be explained by the integral motivic
cohomology theory introduced in [Gaz24]. It would be interesting to compare these results
with our approaches presented in this paper.
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1.3. Organization. The organization of the present article is given as follows. In Section
2, we first follow closely the exposition in [NP21] to review the theory of t-modules and
Anderson dual t-motives. Then we review the essential properties of tensor powers of the
Carlitz module. In Section 3, we first establish the equivalence between the existence of
Fq[t]-linear relations among algebraic points on tensor powers of the Carlitz module and the
existence of solutions of an explicitly constructed Frobenius difference equation. Then we
give a proof of Theorem 1.1, an analogue of Masser’s result for tensor powers of the Carlitz
module. In Section 4, we recall some results related to CPLs for our later use. Then as
an application of the techniques we develop in Section 3, we prove Theorem 1.2, Corollary
1.3, and Theorem 1.4. Then we derive a concrete sufficient condition for CPLs at algebraic
points to be linearly independent over k in both ∞-adic and v-adic settings.

2. Preliminaries

2.1. Notation.

Fq := A fixed finite field with q elements, for q a power of a prime number p.
∞ := A fixed closed point on the projective line P1(Fq).
A := Fq[θ], the regular functions of P1 away from ∞.
k := Fq(θ), the function field of P1.

k∞ := The completion of k at the place ∞.
C∞ := The completion of a fixed algebraic closure of k∞.
k := A fixed algebraic closure of k with a fixed embedding into C∞.
L := A finite extension of k.

ML := The set of all places in L.
L(D) :={f ∈ L× ∣ div(f) +D ≥ 0} ∪ {0}, the Riemann-Roch space for a divisor D of L.

2.2. Anderson t-modules and dual t-motives. In this section, we recall the notion of
Anderson t-modules [And86] and dual t-motives [ABP04, Definition 4.4.1]. For further in-
formation on these objects, one can consult [BP20, HJ20, NP21]. For n ∈ Z and the field of
Laurent series C∞((t)), we define the n-fold Frobenius twisting by

C∞((t))→ C∞((t))

f ∶=∑
i

ait
i ↦∑

i

aq
n

i t
i =∶ f (n).(2.1)

We denote by k[t, σ] the non-commutative k[t]-algebra generated by σ subject to the fol-
lowing relation:

σf = f (−1)σ, f ∈ k[t].

Note that k[t, σ] contains k[t], k[σ], and its center is Fq[t]. Now we recall the notion of
Anderson dual t-motives.

Definition 2.1 ([ABP04, Section 4.4.1]). An Anderson dual t-motive is a left k[t, σ]-module
M such that

(i) M is a free left k[t]-module of finite rank.
(ii) M is a free left k[σ]-module of finite rank.
(iii) (t − θ)nM ⊂ σM for any sufficiently large integer n.
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We give the following fundamental example of Anderson dual t-motives which plays a
crucial role in our study of the tensor powers of the Carlitz module.

Example 2.2. Let n ∈ Z>0. Then the n-th tensor power of the Carlitz motive is defined by
C⊗n = k[t] with the σ-action given by σf = f (−1)(t − θ)n for each f ∈ k[t]. Note that C⊗n is
a dual t-motive, the set {1} forms a k[t]-basis of C⊗n, and the set {(t − θ)n−1, . . . , (t − θ),1}
forms a k[σ]-basis of C⊗n.

Let R be an Fq-algebra and τ ∶= (x ↦ xq) ∶ R → R be the Frobenius q-th power operator.
We set R[τ] to be the twisted polynomial ring in τ over R subject to the relation τα = αqτ
for α ∈ R. Now we recall the notion of Anderson t-modules.

Definition 2.3 ([And86, Section 1.1]). Let L ⊂ k be a field containing A and d ∈ Z>0. A
d-dimensional t-module defined over L is a pair E = (Gd

a, ρ) where Gd
a is the d-dimensional

additive group scheme over L and ρ is an Fq-algebra homomorphism

ρ ∶ Fq[t]→Matd(L[τ])

a↦ ρa

such that ∂ρt − θId is a nilpotent matrix. Here, for a ∈ Fq[t] we define ∂ρa ∶= α0 whenever
ρa = α0 +∑i≥1αiτ i for αi ∈ Matd(L).

Let F be a subfield of k containing L. Then we denote by E(F ) the F -valued points
of the Anderson t-module E defined over L. More precisely, it is a pair (Gd

a(F ), ρ) of the
F -valued points of Gd

a and the homomorphism ρ defined over L. Given a d-dimensional
Anderson t-module E = (Gd

a, ρ) over L, Anderson [And86] (see [Gos96, Lem. 5.9.3] and
[NP21, Rem. 2.2.3] for related discussions) showed that there exists a unique d-variable
Fq-linear power series

expE
⎛
⎜
⎝

z1
⋮
zd

⎞
⎟
⎠
=
⎛
⎜
⎝

z1
⋮
zd

⎞
⎟
⎠
+∑
i≥1
Qi

⎛
⎜
⎜
⎝

zq
i

1

⋮

zq
i

d

⎞
⎟
⎟
⎠

, Qi ∈ Matd(L)

such that, as formal power series, the following identity holds for any a ∈ Fq[t]
ρa ○ expE = expE ○∂ρa.

The power series expE is called the exponential map of E. The kernel of the exponential
map expE is called the period lattice of E and is denoted by ΛE. The formal inverse of expE
is denoted by logE and is called the logarithm map of E. As a formal power series, logE is
of the form

logE
⎛
⎜
⎝

z1
⋮
zd

⎞
⎟
⎠
=
⎛
⎜
⎝

z1
⋮
zd

⎞
⎟
⎠
+∑
i≥1
Pi

⎛
⎜
⎜
⎝

zq
i

1

⋮

zq
i

d

⎞
⎟
⎟
⎠

, Pi ∈ Matd(L).

Moreover, as formal power series, the following identity holds for any a ∈ Fq[t]
logE ○ρa = ∂ρa ○ logE .

In what follows, we explain how to associate a k[t, σ]-module ME for a given t-module
E = (Gd

a, ρ) over L. We set ME ∶= Mat1×d(k[σ]). It naturally has a left k[σ]-module
structure. The left k[t]-module structure of ME is given in the following way: for each
m ∈ME, we define

(2.2) tm ∶=mρ⋆t .
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Here we define

(2.3) ρ⋆t ∶= α
tr
0 + (α

(−1)
1 )trσ +⋯ + (α

(−r)
s )trσs

whenever ρt = α0 +∑
s
i=1αiτ i with αi ∈ Matd(L). It is clear that ME is free of rank d over

k[σ] and a straightforward computation shows that

(t − θ)dME ⊂ σME.

IfME is free of finite rank over k[t], namely it defines an Anderson dual t-motive, then the
t-module E is called t-finite. In this case, we define r ∶= rankk[t]ME to be the rank of the
dual t-motiveME.

We now explain how to recover a t-finite t-module E = (Gd
a, ρ) from its associated Anderson

dual t-motive ME = Mat1×d(k[σ]). Let m = ∑
n
i=0αiσi ∈ME with αi ∈ Mat1×d(k). Then we

define

ε0(m) ∶= αtr
0 , ε1(m) ∶= (

n

∑
i=0
α

(i)
i )

tr

∈ k
d
.

Note that ε0 ∶ME → k
d
is a k-linear map and ε1 ∶ME → k

d
is an Fq-linear map. We have

the following lemma due to Anderson.

Lemma 2.4 (Anderson, [HJ20, Prop. 2.5.8], [NP21, Lem. 3.1.2]). For any a ∈ Fq[t], we have
the following commutative diagrams with exact rows:

0 ME ME k
d

0

0 ME ME k
d

0

a(⋅)

σ(⋅)

a(⋅)

ε0

∂ρa(⋅)

σ(⋅) ε0

and

0 ME ME k
d

0

0 ME ME k
d

0.

a(⋅)

(σ−1)(⋅)

a(⋅)

ε1

ρa(⋅)

(σ−1)(⋅) ε1

In particular, ε0 and ε1 induce isomorphisms of k[t]-modules and Fq[t]-modules respectively:

ε0 ∶ME/σME ≅ Lie(E)(k), ε1 ∶ME/(σ − 1)ME ≅ E(k)

where by Lie(E)(k) we mean the Lie algebra LieGd
a(k) = k

d
equipped with the Fq[t]-module

structure coming from (∂ρ ∶= a↦ ∂ρa) ∶ Fq[t]→Matd(k).

2.3. Tensor powers of the Carlitz module. In what follows, we recall the definition of
the tensor powers of the Carlitz module.

Definition 2.5. Let n ∈ Z>0. Then the n-th tensor power of the Carlitz module is the
t-module given by the pair C⊗n ∶= (Gn

a , [⋅]n), where [⋅]n is uniquely determined by

[t]n ∶=

⎛
⎜
⎜
⎜
⎝

θ 1
θ ⋱

⋱ 1
τ θ

⎞
⎟
⎟
⎟
⎠

∈ Matn(k[τ]).
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Note that the associated k[t, σ]-module is MC⊗n = Mat1×n(k[σ]) whose t-action on the
element m ∈MC⊗n is given by

tm =m[t]⋆n =m(

⎛
⎜
⎜
⎜
⎝

θ
1 θ

⋱ ⋱
1 θ

⎞
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎝

0 ⋯ 0 1
⋱ 0

⋱ ⋮
0

⎞
⎟
⎟
⎟
⎠

σ).

Let {ei}ni=1 be the standard k[σ]-basis ofMC⊗n . Recall from Example 2.2 that C⊗n = k[t] is
the k[t, σ]-module with σ-action given by σf = f (−1)(t − θ)n for each f ∈ k[t]. Since the set
{(t − θ)n−1, . . . , (t − θ),1} forms a k[σ]-basis of C⊗n, for 1 ≤ i ≤ n, the assignment

Θ ∶MC⊗n → C⊗n

ei ↦ (t − θ)n−i
(2.4)

induces an isomorphism of k[σ]-modules between MC⊗n and the dual t-motive C⊗n we
introduced in Example 2.2. In fact, it is straightforward to verify that Θ is an isomorphism
of k[t, σ]-modules, and thus C⊗n is t-finite.

One can show that every element f ∈ C⊗n/(σ − 1)C⊗n admits the unique expression

f = p0 + p1(t − θ) +⋯ + pn−1(t − θ)n−1 + (σ − 1)C⊗n ∈ C⊗n/(σ − 1)C⊗n

where pi ∈ k for 0 ≤ i ≤ n− 1. Then according to Lemma 2.4, the composition ε1 ○Θ−1 defines
an isomorphism of Fq[t]-modules

(ε1 ○Θ−1) ∶ C⊗n/(σ − 1)C⊗n →C⊗n(k)

p0 + p1(t − θ) +⋯ + pn−1(t − θ)n−1 ↦ (pn−1, . . . , p0)tr.
(2.5)

An immediate consequence is the following result which gives a collection of generators of
C⊗n(L). It is also crucial for the later study of the relations between CPLs and the logarithm
of C⊗n.

Lemma 2.6. Let n ∈ Z>0. Let L ⊂ k be a finite extension of k. For each P = (pn−1, . . . , p0)tr ∈
C⊗n(L), we have

P =
n−1
∑
i=0

[ti]n(0, . . . ,0, fi)
tr

where fi = ∑n−1j=i pj(
j
i
)(−θ)j−i for each 0 ≤ i ≤ n − 1. In particular, we have

C⊗n(L) = SpanFq[t]{(0, . . . ,0, α)
tr ∣ α ∈ L}.

Proof. Consider
fP ∶= p0 + p1(t − θ) +⋯ + pn−1(t − θ)n−1 ∈ L[t].

Note that fP can be expressed as

fP = f0 + f1t +⋯ + fn−1tn−1 ∈ L[t],

where fi = ∑n−1j=i pj(
j
i
)(−θ)j−i ∈ L for each 0 ≤ i ≤ n − 1. On the one hand, we have

(ε1 ○Θ−1) (fP ) = (ε1 ○Θ−1) (p0 + p1(t − θ) +⋯ + pn−1(t − θ)n−1) = P.
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On the other hand, we have

(ε1 ○Θ−1) (fP ) = (ε1 ○Θ−1) (f0 + f1t +⋯ + fn−1tn−1)

=
n−1
∑
i=0

[ti]n (ε1 ○Θ−1) (fi)

=
n−1
∑
i=0

[ti]n(0, . . . ,0, fi)
tr.

Here the second equality comes from the fact that ε1○Θ−1 is Fq[t]-linear and the last equation
follows by (2.5) that (ε1 ○Θ−1) (fi) = (0, . . . ,0, fi)tr. The desired result now follows. �

3. Linear equations on tensor powers of the Carlitz module

3.1. The main results. In this section, we follow [Che23b] closely to study the Fq[t]-linear
relations among algebraic points of tensor powers of the Carlitz module. Throughout this
section, we fix L/k to be a finite extension.

Let P1, . . . , P` ∈C⊗n(L). Then we may express

(3.1) Pi = (p
[i]
n−1, . . . , p

[i]
0 )tr ∈ Matn×1(L).

We set

(3.2) fi ∶= p
[i]
0 + p

[i]
1 (t − θ) +⋯ + p

[i]
n−1(t − θ)

n−1 ∈ L[t].

Then for each a1, . . . , a` ∈ Fq[t] we have

(3.3) (ε1 ○Θ−1) (a1f1 +⋯ + a`f`) = [a1]n(P1) +⋯ + [a`]n(P`).

We first give an equivalence between the existence of Fq[t]-linear relations among P1, . . . , P`
and the existence of the solution of a specific Frobenius difference equation.

Lemma 3.1. Given P1, . . . , P` ∈ C⊗n(L) with the expression in (3.1), let fi be defined as in
(3.2) for each 1 ≤ i ≤ `. Then the following statements are equivalent.

(1) There exist a1, . . . , a` ∈ Fq[t] such that

(3.4) [a1]n(P1) +⋯ + [a`]n(P`) = 0.

(2) There exist a1, . . . , a` ∈ Fq[t] and g ∈ L[t] such that

(3.5) g(1) − (t − θ)ng = a1f1 +⋯ + a`f`.

Proof. By (3.3) we know that the existence of a1, . . . , a` ∈ Fq[t] such that (3.4) holds is
equivalent to a1f1 +⋯+a`f` ∈ (σ − 1)C⊗n. The latter statement is equivalent to the existence
of δ ∈ k[t] such that

a1f1 +⋯ + a`f` = (σ − 1)δ = (t − θ)nδ(−1) − δ.

After defining g ∶= δ(−1), we see that the existence of a1, . . . , a` ∈ Fq[t] such that (3.4) holds
is equivalent to the existence of a1, . . . , a` ∈ Fq[t] and g ∈ k[t] such that (3.5) holds.

Now it remains to check that if there exist a1, . . . , a` ∈ Fq[t] and g ∈ k[t] such that (3.5)
holds, then g is essentially in L[t]. To see this, we apply H.-J. Chen’s approach which is
also adopted in the proof of [KL16, Thm. 2], [Cha16, Thm. 6.1.1], and [Che23b, Lem. 3.1.1].
Let F ∶= a1f1 + ⋯ + a`f`. By comparing degt(⋅) on both sides of (3.5), if degt(g) = m, then
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degt(F) = n +m. Now we express g = g0 + g1t + ⋯ + gmtm and F = F0 + F1t + ⋯ + Fn+mtn+m

where g0, . . . , gm ∈ k and F0, . . . ,Fn+m ∈ L. Then (3.5) implies that

gq0 + g
q
1t +⋯ + gqmt

m = (g0 + g1t +⋯ + gmt
m)

n

∑
j=0

(
n

j
)(−θ)n−jtj

+ (F0 + F1t +⋯ + Fn+mtn+m) .

By comparing the coefficients of tn+m of both sides, we obtain 0 = gm+Fn+m and thus gm ∈ L.
Then by comparing the coefficients of tn+m−1, tn+m−2, . . . , tn inductively, we get the desired
result. �

Based on the previous lemma, we are able to see the connection between the Fq[t]-linear
relations among P1, . . . , P` and the solution space of an explicit Fq[t]-linear system. Recall
that for a place w ∈ML and f = f0+f1t+⋯+fmtm, we have defined ordw(f) = minmi=0{ordw(fi)}.

Theorem 3.2. Given P1, . . . , P` ∈ C⊗n(L) with the expression in (3.1), let fi be defined as
in (3.2) for each 1 ≤ i ≤ ` and

D ∶= ∑
w∈ML

(−Cw) ⋅w ∈ Div(L)

where
Cw ∶= min

1≤i≤`
{ordw(Pi) + (n − 1)ordw(t − θ), ⌊

n

q − 1
⌋ordw(t − θ)}.

Let d ∶= dimFq L(D) and {b1, . . . ,bd} be an Fq-basis of L(D). Then for 1 ≤ i ≤ ` we express
fi = f

[i]
1 b1 + ⋯ + f

[i]
d bd for some f

[i]
1 , . . . , f

[i]
d ∈ Fq[t]. Moreover, the following statements are

equivalent.
(1) There exist a1, . . . , a` ∈ Fq[t] such that

(3.6) [a1]n(P1) +⋯ + [a`]n(P`) = 0.

(2) There exist a1, . . . , a` ∈ Fq[t] and g1, . . . , gd ∈ Fq[t] such that

(3.7) g1b
q
1 +⋯ + gdb

q
d − (t − θ)n(g1b1 +⋯ + gdbd) = (

`

∑
i=1
aif

[i]
1 )b1 +⋯ + (

`

∑
i=1
aif

[i]
d )bd.

Proof. By Lemma 3.1, it suffices to show that (3.5) is equivalent to (3.7). Let g ∈ L[t] such
that

(3.8) g(1) − (t − θ)g = a1f1 +⋯ + a`f`.

Let F ∶= a1f1 +⋯+ a`f`. We claim that ordw(g) ≥ Cw and ordw(F) ≥ Cw for each w ∈ML. We
first note that by (3.1) and (3.2), we have

ordw(F) = ordw(a1f1 +⋯ + a`f`) ≥ min
1≤i≤`

{ordw(p
[i]
0 +⋯ + p

[i]
n−1(t − θ)

n−1)}

≥ min
1≤i≤`

{ordw(Pi)} + (n − 1)ordw(t − θ) ≥ Cw.

To see ordw(g) ≥ Cw, we suppose to the contrary that ordw(g) < Cw. Since ordw(t − θ) =
min{ordw(1),ordw(θ)} ≤ 0, we have

ordw(g) < Cw ≤ ordw(F) − n ⋅ ordw(t − θ).

In particular, we have

ordw((t − θ)
ng) = n ⋅ ordw(t − θ) + ordw(g) < ordw(F).
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Then by comparing both sides of (3.8), we must have
q ⋅ ordw(g) = n ⋅ ordw(t − θ) + ordw(g).

This implies that

n ⋅ ordw(t − θ) = (q − 1) ⋅ ordw(g) < (q − 1) ⋅Cw ≤ (q − 1) ⋅ ⌊
n

q − 1
⌋ordw(t − θ)

which leads to a contradiction. Hence we have ordw(g) ≥ Cw.
Note that we just explained that g,F ∈ L(D)⊗Fq Fq[t] in the sense that if we regard them

as polynomials in variable t, then their coefficients are actually in L(D). Thus, we can
express

g = g1b1 +⋯ + gdbd
for some g1, . . . , gd ∈ Fq[t]. In particular, (3.8) becomes

g1b
q
1 +⋯ + gdb

q
d − (t − θ)n(g1b1 +⋯ + gdbd) = (

`

∑
i=1
aif

[i]
1 )b1 +⋯ + (

`

∑
i=1
aif

[i]
d )bd

as desired. �

To demonstrate Theorem 3.2, we provide the following explicit example.

Example 3.3. We set n = 2, q = 3 and L = k. Consider the following two points

P1 = (
0

θ2 + 1
) , P2 = (

0
θ−1 ) ∈C⊗2(k).

We claim that P1 and P2 are linearly independent over F3[t]. To begin with, we choose
places w =∞, θ, θ2 + 1. By the definition of Cw, we obtain that

Cw =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−3 (w =∞),

−1 (w = θ),

0 (w = θ2 + 1)

.

For the divisor D ∶= 3 ⋅ (∞) + 1 ⋅ (θ) of k, we set
L(D) ∶= L (3 ⋅ (∞) + 1 ⋅ (θ)) = {f ∈ k× ∣ ord∞(f) ≥ −3, ordθ(f) ≥ −1} ∪ {0}.

Then we have
L(D) = F3θ

−1 + F3 + F3θ +⋯ + F3θ
3.

If there are a1, a2 ∈ F3[t] such that [a1]2P1 + [a2]2P2 = 0, by Theorem 3.2, there exist
g1, . . . , g5 ∈ F3[t] so that the following equation holds:
g1(θ

−1)3 + g2 + g3(θ)3 +⋯ + g5(θ
3)3 = (t − θ)2(g1θ

−1 + g2 + g3θ +⋯ + g5θ
3) + a2θ

−1 + a1 + a1θ.

By comparing the coefficients of (θi)3 and θi for −1 ≤ i ≤ 3, we obtain

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
−t2 0 0 0 0 0 −1
2t 1 − t2 0 0 0 −1 0
−1 2t −t2 0 0 −1 0
0 −1 2t −t2 0 0 0
0 0 0 2t −t2 0 0
0 0 0 −1 2t 0 0
0 0 0 0 −1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g1
g2
g3
g4
g5
a1
a2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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One can perform the Gauss-Jordan elimination to the above matrix equation. Then we can
conclude that g1, . . . , g5 and a1, a2 must be zero. Therefore P1, P2 are linearly independent
over F3[t].

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let D ∈ div(L) be the divisor of L constructed in Theorem 3.2. Let
d ∶= dimFq L(D) and {b1, . . . ,bd} be an Fq-basis of L(D). Now we set

W ∶= SpanFq{bi, b
q
i , θ

jbi}1≤i≤d, 1≤j≤n.

Let {λ1, . . . , λd̃} ⊂W be an Fq-basis of W , where d̃ ∶= dimFqW . Then we express (3.7) as

(3.9) Q1(g1, . . . , gd, a1, . . . , a`) ⋅ λ1 +⋯ +Qd̃(g1, . . . , gd, a1, . . . , a`) ⋅ λd̃ = 0

where Qi(X1, . . . ,Xd+`) ∈ Fq[t][X1, . . . ,Xd+`] is a homogeneous polynomial of degree one
in variables X1, . . . ,Xd+` and degt(Qi) ≤ 1 for each 1 ≤ i ≤ d̃. Since λ1, . . . , λd̃ are Fq-
linearly independent, and Fq[t] and L are linearly disjoint over Fq, we obtain λ1, . . . , λd̃ are
Fq[t]-linearly independent. Thus, Qi(g1, . . . , gd, a1, . . . , a`) = 0 for 1 ≤ i ≤ d̃ give rise to an
Fq[t]-linear system

B ⋅ (g1, . . . , gd, a1, . . . , a`)
tr = 0

for some B ∈ Matm×s(Fq[t]) with degt(B) ≤ n and 0 < m = rank(B) < s = d + `. Note
that every solution x of Bxtr = 0 gives a solution of (3.7) and vice versa. Thus, we have a
well-defined surjective Fq[t]-module homomorphism

π ∶ Γ ∶= {x ∈ Fq[t](d+`) ∣ Bxtr = 0}↠ G = {(a1, . . . , a`) ∈ Fq[t]` ∣
`

∑
i=1

[ai]n(Pi) = 0}

(g1, . . . , gd, a1, . . . , a`)↦ (a1, . . . , a`).

By [Che23b, Cor. 2.2.3], there exist Fq[t]-linearly independent vectors x1, . . . ,xs−m with
entries in Fq[t] such that degt(xi) ≤ rank(B) ⋅ degt(B) < n(d + `) and B ⋅ xtr

i = 0 for each
1 ≤ i ≤ s−m. Let ν ∶= rankFq[t]G. Since G is a free Fq[t]-module of rank ν and π is surjective,
there exists an Fq[t]-linearly independent set

{m′
1, . . . ,m

′
ν} ⊂ {π(x1), . . . , π(xs−m)}

such that G0 ∶= SpanFq[t]{m
′
1, . . . ,m

′
ν} ⊂ G is of finite index. In other words, we have

rankFq[t]G0 = rankFq[t]G = ν. Now we apply [Che23b, Lem. 2.2.4] and we get an Fq[t]-basis
{m1, . . . ,mν} of G such that degt(mi) ≤ maxνi=1{degt(m

′
i)} < n(d + `). �

3.2. A sufficient condition for linear independence. Let L ⊂ k be a finite extension
of k. In this section, we will present a linear independence criterion for a specific family of
algebraic points on C⊗n(L). As a consequence, we prove that the dimension of the Fq(t)-
vector space C⊗n(L)⊗Fq[t] Fq(t) is countably infinite.

Theorem 3.4. Let n ∈ Z>0 and Pi = (p
[i]
n−1, . . . , p

[i]
0 )tr ∈ C⊗n(L) for 1 ≤ i ≤ `. We set

fi ∶= p
[i]
0 +⋯ + p

[i]
n−1(t − θ)n−1 ∈ L[t]. Suppose that

(1) f1, . . . , f` are linearly independent over Fq[t],
(2) ordw(fi) > 0 for all 1 ≤ i ≤ `, if w ∈ML and w ∣∞,
(3) ordw(fi) ≥ 1 − q for all 1 ≤ i ≤ `, if w ∈ML and w ∤∞.
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Then
rankFq[t] SpanFq[t]{P1, . . . , P`} = `.

In particular, we have
dimFq(t)C

⊗n(L)⊗Fq[t] Fq(t) = ℵ0.

Proof. Suppose on the contrary that there exist a1, . . . , a` ∈ Fq[t] not all zero such that

[a1]n(P1) +⋯ + [a`]n(P`) = 0.

By Lemma 3.1, there exists g ∈ L[t] such that

g(1) − (t − θ)ng = a1f1 +⋯ + a`f`.

Let F ∶= a1f1 + ⋯ + a`f` ∈ L[t]. Since f1, . . . , f` ∈ L[t] are linearly independent over Fq[t] we
have F ≠ 0 in L[t] and hence g ≠ 0 in L[t].

Let w ∈ML with w ∣∞. Then

ordw(F ) = ordw(a1f1 +⋯ + a`f`) ≥ min{ordw(fi)}
`
i=1 > 0.

Thus, if we express F = F0 + F1t + ⋯ + Fmtm where m ∈ Z≥0 and Fi ∈ L for 0 ≤ i ≤ m, then
ordw(Fi) > 0 for each 0 ≤ i ≤m and w ∈ML with w ∣∞. Since F ≠ 0 in L[t], we may assume
that Fm ≠ 0. Then there exists w ∈ML with w ∤∞ such that

ordw(F ) = min{ordw(Fi)}
m
i=0 ≤ ordw(Fm) < 0.

Note that we must have ordw(g) < 0, otherwise

ordw(F ) = ordw(g
(1) − (t − θ)ng)

≥ min{q ⋅ ordw(g), n ⋅ ordw(t − θ) + ordw(g)}

≥ 0

which leads to a contradiction.
On the other hand, the fact that ordw(g) < 0 implies that

min{q ⋅ ordw(g), n ⋅ ordw(t − θ) + ordw(g)} = q ⋅ ordw(g)

and hence ordw(F ) = q ⋅ ordw(g). Now the inequality

0 > q ⋅ ordw(g) = ordw(F ) = ordw(a1f1 +⋯ + a`f`) ≥ 1 − q

leads to a contradiction because ordw(g) ∈ Z.
Finally, we are going to prove that

dimFq(t)C
⊗n(L)⊗Fq[t] Fq(t) = ℵ0.

Since L is a countable set, it is clear that dimFq(t)C⊗n(L) ⊗Fq[t] Fq(t) ≤ ℵ0. On the other
hand, since C⊗n(k) ⊂C⊗n(L), it is enough to show that dimFq(t)C⊗n(k)⊗Fq[t] Fq(t) ≥ ℵ0.

Let w ∈Mk be a finite place and let fw ∈ A be the monic irreducible polynomial associated
to w. We claim that any finite non-empty subset S of {(0, . . . ,0, f−1w )tr}w∈Mk∖{∞} ⊂ C⊗n(k)
is an Fq[t]-linearly independent set. Indeed, it is clear that {f−1w }w∈Mk∖{∞} is an Fq-linearly
independent set. Also, ord∞(f−1w ) = degθ(fw) > 0 and ordw(f−1w ) = −1 imply that S is an
Fq[t]-linearly independent set by the first part of the proof. Hence

ℵ0 = rankFq[t] SpanFq[t]{(0, . . . ,0, f
−1
v )tr}v∈Mk∖{∞} ≤ dimFq(t)C

⊗n(k)⊗Fq[t] Fq(t).

Now the desired result follows immediately. �



LINEAR EQUATIONS ON TENSOR POWERS OF THE CARLITZ MODULE 15

4. Carlitz polylogarithms

The main purpose of this section is to derive some sufficient conditions for Carlitz poly-
logarithms at algebraic points to be linearly independent over k.

4.1. Linear relations among CPLs at algebraic points. For n ∈ Z>0, we recall that the
n-th Carlitz polylogarithms (CPLs) is given in (1.2). It is due to Anderson-Thakur [AT90]
that if α ∈ C∞ with ∣α∣∞ < ∣θ∣

nq/(q−1)
∞ , then

(4.1) logC⊗n

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

⋆
⋮
⋆

Lin(α)

⎞
⎟
⎟
⎟
⎠

∈ LieC⊗n(C∞).

In what follows, we give a slight generalization of (4.1) regarding the last entry of logC⊗n at
arbitrary algebraic points P ∈C⊗n(k). This is simply an application of Lemma 2.6 and (4.1).
It also gives an alternate proof of [CCM22, Thm. 4.1.4] (see also [Che23a, Thm. 3.2.10]) in
the case of tensor powers of the Carlitz module.

Proposition 4.1. Let n ∈ Z>0 and P = (pn−1, . . . , p0)tr ∈C⊗n(k) with ∣pj ∣∞ < q−j+
nq
q−1 for each

0 ≤ j ≤ n − 1. If we set fP ∶= p0 + p1(t − θ) +⋯ + pn−1(t − θ)n−1 ∈ k[t], then we have

logC⊗n(P ) =

⎛
⎜
⎜
⎜
⎝

⋆
⋮
⋆

∑
n
j=1∑

n−j
m=0(−1)m(n−j

m
)θn−m−j Lin(θmpn−j)

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

⋆
⋮
⋆

LfP ,n(θ)

⎞
⎟
⎟
⎟
⎠

,

where LfP ,n(t) is the deformation series defined in (1.3) and LfP ,n(θ) ∶= LfP ,n(t) ∣t=θ.

Proof. Note that by Lemma 2.6, we have

(4.2) P =
n−1
∑
i=0

[ti]n(0, . . . ,0, fi)
tr

where fi = ∑n−1j=i pj(
j
i
)(−θ)j−i. The condition ∣pj ∣∞ < q−j+

nq
q−1 for each 0 ≤ j ≤ n − 1 implies that

∣θmpj ∣∞ < q
nq
q−1 for each 0 ≤ j ≤ n − 1 and 0 ≤ m ≤ j. It ensures that all the points P and

(0, . . . ,0, fi)tr for each 0 ≤ i ≤ n − 1 are inside the convergence domain of logC⊗n . Then we
may apply logC⊗n(⋅) on both sides of (4.2) to get

(4.3) logC⊗n(P ) =
n−1
∑
i=0
∂[ti]n logC⊗n(0, . . . ,0, fi)

tr.
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In particular, the n-th coordinate of logC⊗n(P ) equals to
n−1
∑
i=0
θi Lin(fi) =

n−1
∑
i=0
θi Lin(

n−1
∑
j=i
pj(

j

i
)(−θ)j−i)

=
n−1
∑
i=0

n−1
∑
j=i

(−1)j−i(
j

i
)θi Lin(θ

j−ipj)

=
n

∑
i=1

i

∑
j=1

(−1)i−j(
n − j

n − i
)θn−i Lin(θ

i−jpn−j)

=
n

∑
j=1

n

∑
i=j

(−1)i−j(
n − j

n − i
)θn−i Lin(θ

i−jpn−j)

=
n

∑
j=1

n−j
∑
m=0

(−1)m(
n − j

m
)θn−m−j Lin(θ

mpn−j).

Here the second equality comes from the Fq-linearity of Lin(⋅). In the third equality, we
replace i and j by n − i and n − j respectively. The fourth equality is just the change of the
order of the summation. The last equality follows by the change of variables m = i − j.

To complete the proof of this proposition, it remains to explain the second equality in the
statement. Recall from (1.3) that

LfP ,n(θ) =
⎛

⎝
∑
j≥0

f
(j)
P

Lnj

⎞

⎠
∣t=θ.

Note that fP = f0 + f1t +⋯ + fn−1tn−1. Thus,

∑
j≥0

f
(j)
P

Lnj
=∑
i≥0

(f0 + f1t +⋯ + fn−1tn−1)(j)

Lnj

=
n−1
∑
i=0
ti
⎛

⎝
∑
j≥0

f q
j

i

Lnj

⎞

⎠

By specializing at t = θ, we derive that LfP ,n(θ) = ∑
n−1
i=0 θi Lin(fi). The desired result now

follows immediately by comparing with the n-th coordinate of the right-hand-side of (4.3).
�

Remark 4.2. Note that [CCM22, Thm. 4.1.4] and [Che23a, Thm. 3.2.10] use a different
ordering for the coordinate. More precisely, if we set x = (x1, . . . , xn)tr ∈ C⊗n(k), then the
n-th coordinate of logC⊗n(x) is given by ∑nj=1∑

n−j
m=0(−1)m(n−j

m
)θn−m−j Lin(θmxj) which exactly

matches with the formula established in [CCM22, Thm. 4.1.4] and [Che23a, Thm. 3.2.10] for
the special case of C⊗n.

Example 4.3. We mention that Proposition 4.1 can be used to produce linear relations
among CPLs at algebraic points. This is in the same spirit of [Che23a, Ex. 3.2.13]. Let
q = 3, n = 2, and v = (0,1)tr ∈C⊗2(k). Then Proposition 4.1 shows that

logC⊗2([t2 − 1]2v) = logC⊗2 (
2θ
θ2

) = (
⋆

2θLi2(θ) − Li2(θ2)
) .

On the other hand, by the functional equation of logC⊗2 , we have

logC⊗2([t2 − 1]2v) = (θ2 − 1) logC⊗2 (
0
1
) = (

⋆
(θ2 − 1)Li2(1)

) .
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Combining the equations above, we conclude that

2θLi2(θ) − Li2(θ
2) = (θ2 − 1)Li2(1).

By [Yu91, Thm. 2.3], it is known that for each non-zero vector Y = (y1, . . . , yn)tr ∈

LieC⊗n(C∞) satisfying expC⊗n(Y ) ∈C⊗n(k), the n-th coordinate yn is transcendental over k.
Using this transcendence result together with Proposition 4.1, we can deduce the following
result immediately.

Lemma 4.4. Let n ∈ Z>0 and Pi = (p
[i]
n−1, . . . , p

[i]
0 )tr ∈C⊗n(k) for 1 ≤ i ≤ ` with ∣pj ∣∞ < q−j+

nq
q−1

for each 0 ≤ j ≤ n − 1. We set fi ∶= p
[i]
0 +⋯ + p

[i]
n−1(t − θ)n−1 ∈ k[t]. Then

dimk Spank{Lf1,n(θ), . . . ,Lf`,n(θ)} ≥ rankFq[t] SpanFq[t]{P1, . . . , P`}

Proof. Suppose that there is a non-trivial k-linear relations among Lf1,n(θ), . . . ,Lf`,n(θ), that
is, there exist c1, . . . , c` ∈ k not all zero such that

c1Lf1,n(θ) +⋯ + c`Lf`,n(θ)) = 0.

After multiplying denominators of c1, . . . , c` if it is necessary, we may assume that all the
coefficients c1, . . . , c` ∈ A. Now by Proposition 4.1 we set

Yi ∶= logC⊗n(Pi) =

⎛
⎜
⎜
⎜
⎝

⋆
⋮
⋆

Lfi,n(θ)

⎞
⎟
⎟
⎟
⎠

∈ LieC⊗n(C∞)

for each 1 ≤ i ≤ `. We claim that

X ∶= [c1(t)]nP1 +⋯ + [c`(t)]nPn = 0 ∈C⊗n(k).

Let
Y ∶= ∂[c1(t)]nY1 +⋯ + ∂[c`(t)]nY` ∈ LieC⊗n(C∞).

Then
expC⊗n(Y ) = [c1(t)]n expC⊗n(Y1) +⋯ + [c`(t)]n expC⊗n(Y`) =X.

If we write Y = (y1, . . . , yn)tr, then it is clear from the definition that

yn = c1Lf1,n(θ) +⋯ + c`Lf`,n(θ) = 0.

Then Yu’s theorem [Yu91, Thm 2.3] implies that Y is a zero vector and hence X = 0 as
desired. As every k-linear relation among Lf1,n(θ), . . . ,Lf`,n(θ) can be lifted to a Fq[t]-linear
relation among P1, . . . , P`, the desired inequality now follows immediately. �

Remark 4.5. We mention that the same spirit of Lemma 4.4 was already known in [Cha16,
Thm. 5.1.1]. In fact, we have the following identity

(4.4) dimk Spank{π̃
n,Lf1,n(θ), . . . ,Lf`,n(θ)} = 1 + rankFq[t] SpanFq[t]{P1, . . . , P`}.

By Theorem 3.4 and Lemma 4.4, we can deduce Theorem 1.2.

Proof of Theorem 1.2. To prove the first assertion, note that we have

` ≥ dimk Spank{Lf1,n(θ), . . . ,Lf`,n(θ)}

= dimk Spank{Lf1,n(θ), . . . ,Lf`,n(θ)}

≥ rankFq[t] SpanFq[t]{P1, . . . , P`}

= `.



18 YEN-TSUNG CHEN AND RYOTARO HARADA

Here the first inequality is clear from the counting argument, the second equality follows
by [Cha14, Thm. 5.4.3], the third inequality comes from Lemma 4.4, and the last equality
follows by Theorem 3.4.

For the second assertion, we first notice that Lin(fi) is a k-linear combination of Lin(⋅) at
some explicitly constructed algebraic points by Proposition 4.1. Then [Cha14, Thm. 5.4.3]
implies that

dimk Spank{1,Lf1,1(θ), . . . ,Lf`,1(θ), . . . ,Lf1,n(θ), . . . ,Lf`,n(θ)}

= 1 +
n

∑
i=1

dimk Spank{Lf1,i(θ), . . . ,Lf`,i(θ)}.

The desired result now follows immediately from the first assertion. �

Proof of Corollary 1.3. Recall that n1, . . . , nd are d distinct positive integers so that ni/nj
is not an integral power of p for each i ≠ j. By [Mis17, Thm. 4.2] (see also [CY07]), if
π̃ni ,Lf1,ni(θ), . . . ,Lf`,ni(θ) are linearly independent over k, then the set of d` + 1 elements
{π̃,Lfj ,ni(θ) ∣ 1 ≤ i ≤ d, 1 ≤ j ≤ `} are algebraically independent over k. Since f1, . . . , f` ∈
L[t] satisfy the sufficient conditions stated in Theorem 1.2, the desired result follows from
Theorem 3.4 together with (4.4). �

4.2. v-adic CPLs at algebraic points. Recall that CPLs converges at z0 ∈ Cv with ∣z0∣v < 1
if we regard (1.2) as v-adic analytic functions on Cv via the embedding ιv ∶ k → Cv as we
mentioned in the introduction. Let α ∈ k with ∣α∣v < 1. It is known due to Anderson and
Thakur [AT90] that (4.1) still holds in the v-adic setting. More precisely, we have

(4.5) logC⊗n

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

∗
⋮
∗

Lin(α)v

⎞
⎟
⎟
⎟
⎠

∈ LieC⊗n(Cv).

Inspired by the v-twist operation proposed by Anderson and Thakur [AT90, pg. 187],
Chang and Mishiba introduced a way to enlarge the defining domain of CPLs to {α ∈ k ∣

∣α∣v ≤ 1}. To be precise, for α ∈ k with ∣α∣v ≤ 1, the v-adic CPL at α is defined by

Lin(α)v ∶= a
−1 × n-th coordinate of logC⊗n

⎛
⎜
⎜
⎜
⎝

[a(t)]n

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

∈ LieC⊗n(Cv)

whenever a ∈ A so that [a(t)]n(0, . . . ,0, α)tr ∈ C⊗n(k) lies in the v-adic convergence domain
of logC⊗n . Note that [CM19, Prop. 4.1.1] guarantees the existence of such element a ∈ A. In
addition, Yu’s transcendence theorem [Yu91, Thm.3.7] for the last coordinate of logC⊗n is
still valid in the v-adic setting. Now we are able to present a v-adic analogue of Lemma 4.4.

Lemma 4.6. Let α1, . . . , α` ∈ k such that ∣αi∣v ≤ 1 for each 1 ≤ i ≤ `. Then

dimk Spank{Lin(α1)v, . . . ,Lin(α`)v} ≥ rankFq[t] SpanFq[t]{

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α1

⎞
⎟
⎟
⎟
⎠

, . . . ,

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α`

⎞
⎟
⎟
⎟
⎠

}.
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Proof. Suppose that there are non-trivial k-linear relations among Lin(α1)v, . . . ,Lin(α`)v,
that is, there exist c1, . . . , c` ∈ k which are not all zero such that

c1 Lin(α1)v +⋯ + c` Lin(α`)v = 0.

After multiplying denominators of c1, . . . , c` if it is necessary, we may assume that all the
coefficients c1, . . . , c` ∈ A. Let ai ∈ A so that [ai(t)]n(0, . . . ,0, αi)tr ∈C⊗n(k) lies in the v-adic
convergence domain of logC⊗n . We set

Yi ∶= logC⊗n

⎛
⎜
⎜
⎜
⎝

[ai(t)]n

⎛
⎜
⎜
⎜
⎝

0
⋮
0
αi

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

∈ LieC⊗n(Cv)

for each 1 ≤ i ≤ `. We claim that

X ∶= [c1(t)]n[a1(t)]n

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α1

⎞
⎟
⎟
⎟
⎠

+⋯ + [c`(t)]n[a`(t)]n

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α`

⎞
⎟
⎟
⎟
⎠

= 0 ∈C⊗n(k).

Let
Y ∶= ∂[c1(t)]nY1 +⋯ + ∂[c`(t)]nY` ∈ LieC⊗n(Cv).

Then
expC⊗n(Y ) = [c1(t)]n expC⊗n(Y1) +⋯ + [c`(t)]n expC⊗n(Y`) =X.

If we write Y = (y1, . . . , yn)tr, then it is clear from the definition of Y that

yn = c1 Lin(α1)v +⋯ + c` Lin(α`)v = 0.

Then the v-adic version of Yu’s theorem [Yu91, Thm. 3.7] implies that Y is a zero vector
and hence X = 0 as desired. Consequently, we derive

dimk Spank{Lin(α1)v, . . . ,Lin(α`)v} ≥ rankFq[t] SpanFq[t]{[a1(t)]n

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α1

⎞
⎟
⎟
⎟
⎠

, . . . , [a`(t)]n

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α`

⎞
⎟
⎟
⎟
⎠

}

= rankFq[t] SpanFq[t]{

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α1

⎞
⎟
⎟
⎟
⎠

, . . . ,

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α`

⎞
⎟
⎟
⎟
⎠

}.

�

Now we are ready to present the proof of Theorem 1.4. Most of the arguments are parallel
to the proof of Theorem 1.2.

Proof of Theorem 1.4. Note that we have

` ≥ dimk Spank{Lin(α1)v, . . . ,Lin(α`)v}

≥ rankFq[t] SpanFq[t]{

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α1

⎞
⎟
⎟
⎟
⎠

, . . . ,

⎛
⎜
⎜
⎜
⎝

0
⋮
0
α`

⎞
⎟
⎟
⎟
⎠

}

= `.
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Here the first inequality is clear from the counting argument, the second inequality comes
from Lemma 4.6, and the third equality follows by Theorem 3.4. �
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