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Abstract. Fix primes p and ℓ with ℓ ̸= p. If (A, λ) is a g-dimensional principally polarized
abelian variety, an (ℓ)g-isogeny of (A, λ) has kernel a maximal isotropic subgroup of the
ℓ-torsion of A; the image has a natural principal polarization. In this paper we study the
isogeny graphs of (ℓ)g-isogenies of principally polarized superspecial abelian varieties in
characteristic p. We define three isogeny graphs associated to such (ℓ)g-isogenies – the big
isogeny graph Grg(ℓ, p), the little isogeny graph grg(ℓ, p), and the enhanced isogeny graph
g̃rg(ℓ, p). We apply strong approximation for the quaternionic unitary group to prove both
that grg(ℓ, p) and Grg(ℓ, p) are connected and that they are not bipartite. The connectedness
of the enhanced isogeny graph g̃rg(ℓ, p) then follows. The quaternionic unitary group has
previously been applied to moduli of abelian varieties in characteristic p (sometimes invoking
strong approximation) by Chai, Ekedahl/Oort, and Chai/Oort. The adjacency matrices of
the three isogeny graphs are given in terms of the Brandt matrices defined by Hashimoto,
Ibukiyama, Ihara, and Shimizu. We study some basic properties of these Brandt matrices
and recast the theory using the notion of Brandt graphs. We show that the isogeny graphs
Grg(ℓ, p) and grg(ℓ, p) are in fact our Brandt graphs. We give the ℓ-adic uniformization of
grg(ℓ, p) and g̃rg(ℓ, p). The (ℓ+ 1)-regular isogeny graph Gr1(ℓ, p) for supersingular elliptic
curves is well known to be Ramanujan. We calculate the Brandt matrices for a range of
g > 1, ℓ, and p. These calculations give four examples with g > 1 where the regular graph
Grg(ℓ, p) has two vertices and is Ramanujan, and all other examples we computed with g > 1
and two or more vertices were not Ramanujan. In particular, the (ℓ)g-isogeny graph is not
in general Ramanujan for g > 1.
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1. Introduction

A superspecial abelian variety A/Fp of dimension g is isomorphic to a product of g
supersingular elliptic curves. If g > 1, surprisingly all such products are isomorphic to each
other by Theorem 1 below. Fix a supersingular elliptic curve E/Fp with O = OE = End(E)
a maximal order in the rational definite quaternion algebra Hp ramified at p.

Theorem 1. (Deligne, Ogus [Ogu79], Shioda [Shi79]) Suppose A/Fp is a superspecial abelian
variety with dimA = g > 1. Then A ∼= Eg.

So for dimension g = 1 there are many superspecial abelian varieties (= supersingular elliptic
curves) each with one principal polarization, but for g > 1 there is one superspecial abelian
variety with many principal polarizations.

Let A = (A = Eg, λ) be a principally polarized superspecial abelian variety of dimension
g over Fp with Fp-isomorphism class [A ]. The principal polarization λ is an isomorphism

from A to Â = Pic0(A) satisfying the conditions of Definition 23. The number h = hg(p) of
such isomorphism classes [A ] is finite and is a type of class number. For g ≥ 1 set

SPg(p)0 = {Fp-isomorphism classes [A ]}
= {[A1], . . . , [Ah]} with Aj = (Aj = Eg, λj) if g > 1.

(1)

So, for example,

SP1(p)0 = {supersingular j-invariants in characteristic p} and
#SP1(p)0 = h1(p) = h(Hp), the class number of the quaternion algebra Hp.

A principal polarization λ on the abelian variety A/Fp defines a Weil pairing on A[n] with
(n, p) = 1: ⟨ , ⟩λ,n : A[n]× A[n]→ lµ.. n. For (n, p) = 1, put

Ison(A ) = {maximal isotropic subgroups C ⊆ A[n]} with Ng(n) := # Ison(A ). (2)

Note that Ng(n) is the number of maximal isotropic subgroups of the standard nondegenerate
symplectic Z/nZ-module of rank 2g. In case n = ℓ ̸= p is prime we have

# Isoℓ(A ) =: Ng(ℓ) =

g∏
k=1

(ℓk + 1); (3)

see, for example, [Ple65, p. 419]. Suppose C ⊆ A[ℓ] is a subgroup with corresponding isogeny
ψC : A→ A/C =: A′. Then there is a principal polarization λ′ on A′ so that ψ∗

C(λ
′) = ℓλ if

and only if C ∈ Isoℓ(A ). In this case write A ′ = (A′, λ′) = A /C and say that ψC is an (ℓ)g-
isogeny. If [A ] ∈ SPg(p)0, then [A ′] ∈ SPg(p)0. Such (ℓ)g-isogenies induce correspondences
from the finite set SPg(p)0 to itself. These correspondences can be used to define various
graphs—in this paper we define three (ℓ)g-isogeny graphs: the big isogeny graph Grg(ℓ, p), the
little isogeny graph grg(ℓ, p), and the enhanced isogeny graph g̃rg(ℓ, p). The literature seems
to have only one isogeny graph; this ubiquitous graph is the big isogeny graph Grg(ℓ, p) for
us.
Distinguishing between these three makes many results clearer and more precise. Take

the case g = 1 for example: the little and enhanced isogeny graphs are uniformized by the
Bruhat-Tits tree ∆ = ∆ℓ of SL2(Qℓ); the big isogeny graph Gr1(ℓ, p) is not, cf. Section 8.1.
And it is gr1(ℓ, p) and g̃r1(ℓ, p) which arise from the bad reduction of Shimura curves and
not the familiar big isogeny graph Gr1(ℓ, p) as we show in Section 8.2. For general g ≥ 1,
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the big isogeny graph Grg(ℓ, p) is a regular graph by Theorem 37(c), so it is natural to ask if
it is Ramanujan, whereas the little isogeny graph grg(ℓ, p) and the enhanced isogeny graph
g̃rg(ℓ, p) are not regular.
In this introduction we content ourselves with defining the simplest of the three, the big

isogeny graph Gr = Grg(ℓ, p):

Definition 2. The vertices of the graph Gr = Grg(ℓ, p) are Ver(Gr) = SPg(p)0, so h =
hg(p) = #Ver(Gr). The (directed) edges of Gr connecting the vertex [Ai] ∈ SPg(p)0 to the
vertex [Aj] ∈ SPg(p)0 are

Ed(Gr)ij = {C ∈ Isoℓ(Ai) | [Ai/C] = [Aj]}.

The adjacency matrix Ad(Gr)ij = #Ed(Gr)ij is a constant row-sum matrix by (2):

h∑
j=1

#Ed(Gr)ij =

g∏
k=1

(ℓk + 1). (4)

This paper studies these three (ℓ)g-isogeny graphs via definite quaternion algebras. It
naturally divides into two parts – Part 1 (Sections 2 –4) develops this infrastructure on
definite quaternion algebras; Part 2 (Sections 5 – 9) connects the quaternion infrastructure to
superspecial abelian varieties together with their polarizations and isogenies, and then applies
it to our three isogeny graphs. In Section 2 we prove the foundational material required
on the arithmetic of definite quaternion algebras together with the Hermitian forms and
unitary groups defined from them. Section 3 introduces the Brandt matrices Bg(ℓ) for the
maximal order O of Hp, first defined for g > 1 in the 1980’s by Hashimoto, Ibukiyama, Ihara,
and Shimizu – see [Has80]. Gross’s algebraic modular forms [Gro99] for the quaternionic
unitary group subsequently provided a more general context for these matrices. In Section
4 we extend Brandt matrices to Brandt graphs Brg(ℓ, p) and brg(ℓ, p); we further extend
Brandt graphs to Brandt simplicial complexes in [JZ]. Brandt graphs, like Brandt matrices,
are defined entirely in terms of definite quaternion algebras and as such are amenable to
machine computation. Brandt graphs contain slightly more information than Brandt matrices
– the Brandt matrix Bg(ℓ) is the adjacency matrix of the big Brandt graph Brg(ℓ, p) and the
weighted adjacency matrix of the little Brandt graph with weights brg(ℓ, p) (Proposition 22).

In Part 2 we turn to algebraic geometry. We consider superspecial abelian varieties, their
polarizations, and their isogenies in Section 5. We introduce the key notion of an [ℓ]-polarized
abelian variety and its [ℓ]-dual. Section 6 then defines the three (ℓ)g-isogeny graphs Grg(ℓ, p),
grg(ℓ, p), and g̃rg(ℓ, p). Sections 7 – 9 contain our main results on isogeny graphs, which we
now summarize.

A. Relationship between the quaternion infrastructure and our isogeny graphs.
We prove in Theorem 37 the fundamental result that big isogeny graph is the big Brandt
graph: Grg(ℓ, p) = Brg(ℓ, p). Likewise the little isogeny graph with weights is the little
Brandt graph with weights: grg(ℓ, p) = brg(ℓ, p) (Theorem 39). We further explain how to
get the enhanced isogeny graph g̃rg(ℓ, p) from the little isogeny graph grg(ℓ, p) in Theorem 40.
Because of these theorems our three isogeny graphs can all be defined and computed entirely
in terms of definite quaternion algebras – it is never necessary to write down superspecial
abelian varieties or isogenies. In Section 9, we compute our isogeny graphs for a range of 174
triples (g, ℓ, p) with g = 2, 3 including 13 examples with g = 3 – an impossible feat working
with explicit superspecial abelian varieties and (ℓ)g-isogenies.
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B. Connectedness theorems. It is well known that the ℓ-isogeny graph Gr1(ℓ, p) for
supersingular elliptic curves in characteristic p is connected. A main theorem of this paper is
that the isogeny graphs Grg(ℓ, p), grg(ℓ, p), and g̃rg(ℓ, p) are connected for g ≥ 1; cf. Section
7. This had been conjectured for g = ℓ = 2 in [CDS20, Conjecture 1], for example; we
establish the result here for all ℓ and g ≥ 1. Additionally we prove that Grg(ℓ, p) and
grg(ℓ, p) are not bipartite. Besides results on polarizations, the main ingredients of the proof
for g > 1 are strong approximation for the quaternionic unitary group (Theorem 43) and
Theorem 35 on factoring isogenies which in turn follows from Theorem 36 on the symplectic
group Sp2g over Z/ℓnZ. Note that knowing strong approximation still requires the results on
factoring isogenies to deduce connectedness. The quaternionic unitary group has previously
been applied to moduli of abelian varieties in characteristic p by Chai [Cha95, Prop. 1],
Ekedahl/Oort [Oor01, §7], and Chai/Oort [CO11, Prop. 4.3]; a version of strong approximation
for the quaternionic unitary group is given in [Oor01, Lemma 7.9].
C. ℓ-adic uniformization; Shimura curves when g = 1. Let Γ0 = O[1/ℓ]× viewed

as a subgroup of GL2(Qℓ) with Γ0 its image in PGL2(Qℓ). Similarly let Γ1 = {γ ∈ Γ0 |
NmHp/Q(γ) = 1} with Γ1 its image in PGL2(Qℓ). Let ∆ = ∆ℓ be the Bruhat-Tits tree
for SL2(Qℓ) = Sp2(Qℓ). We prove that gr 1(ℓ, p) = Γ0\∆ℓ and g̃r 1(ℓ, p) = Γ1\∆ℓ as graphs
with weights in Theorem 49. We then generalize this to g > 1 in Theorem 54: Let S2g be
the special 1-skeleton of the Bruhat-Tits building B2g for the symplectic group Sp2g(Qℓ)
as in Remark 46. Let Ug(O[1/ℓ]) be the quaternionic unitary group with GUg(O[1/ℓ]) the
general quaternionic unitary group as in (9). Then we prove grg(ℓ, p) = GUg(O[1/ℓ])\S2g
and g̃rg(ℓ, p) = Ug(O[1/ℓ])\S2g as graphs with weights—see Theorem 54.

When g = 1 we can use this result to connect the ℓ-isogeny graph g̃r 1(ℓ, p) for supersingular
elliptic curves in characteristic p to the bad reduction of Shimura curves. Let B be the
rational quaternion algebra of discriminant ℓp withM⊂ B a maximal order. Let VB/Q be
the Shimura curve parametrizing abelian surfaces with quaternionic multiplication (QM) by
M with MB/Z the coarse moduli scheme model for VB/Q constructed by Drinfeld [Dri76].
ThenMB×Zℓ is an admissible curve in the sense of [JL85, Defn. 3.1], and so has a dual graph
[JL85, Defn. 3.2] G(MB × Zℓ/Zℓ) which is a graph with lengths as in Definition 21(b). We
show in Corollary 52(a) that G(MB ×Zℓ/Zℓ) = g̃r 1(ℓ, p). But the dual graph G(MB ×Zℓ/Zℓ)
governs vanishing cycles on the curve MB × Zℓ/Zℓ: the character group of the Néron model
of the jacobian Jac(VB)/Qℓ is H1(G(MB × Zℓ/Zℓ),Z). The fact that the dual graph of the
Shimura curve VB in characteristic ℓ is an isogeny graph for supersingular elliptic curves
in the different characteristic p is the key to Ribet’s proof [Rib90] of Serre’s Conjecture
“Epsilon”, and so ultimately to Fermat’s Last Theorem.

Generalizing this picture to g > 1 is compelling: Relate grg(ℓ, p), g̃rg(ℓ, p) to vanishing
cycles for higher-dimensional Shimura varieties over Qℓ.
D. The Ramanujan property for Grg(ℓ, p). The big isogeny graph Grg(ℓ, p) is a

regular graph, and one can ask whether it is Ramanujan. If g = 1 it is always Ramanujan,
as follows from the Riemann hypothesis for curves over finite fields. Hence naively one
might expect the Ramanujan property to continue to hold for g ≥ 2 – see, for example,
[CS20, Hypothesis 1]. The adjacency matrix Ad(Grg(ℓ, p)) is the Brandt matrix Bg(ℓ), and
so amenable to machine computation as discussed in A above. In Section 9 we give the
results of checking the Ramanujan property over a range of ℓ and p with g = 2, 3. The
memory requirements grow rapidly with ℓ and especially g; we had no computations finish
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with g > 3. We computed 174 examples with g > 1 and 2 or more vertices and found
only 4 Ramanujan: (g, ℓ, p) = (2, 2, 5), (2, 2, 7), (2, 3, 7), (3, 2, 3) are Ramanujan. They all
have two vertices, although not every 2-vertex Grg(ℓ, p) is Ramanujan. So seemingly for
g ≥ 2 the isogeny graph Grg(ℓ, p) is generically not Ramanujan. In Section 9.1 we compute
Gr 2(2, 11) in terms of superspecial abelian surfaces and Richelot isogenies, thereby giving a
non-Ramanujan example computed entirely by algebraic geometry. In Section 9.2 we likewise
compute Gr 2(2, 7) in terms of abelian surfaces and Richelot isogenies to give a Ramanujan
example computed entirely via algebraic geometry.

We conclude the introduction with brief comments on prior results. The case g = 1 was the
setting for multiple proposals in post-quantum cryptography, and naturally the question of
generalizing to g > 1 arose. Castryck, Decru, and Smith [CDS20] proposed the superspecial
isogeny graph Gr 2(2, p) as a good generalization to abelian surfaces. Previous work often
concentrates on Gr 2(2, p) where computations are feasible using classical Richelot isogenies –
see, for example, Katsura and Takashima [KT20] and the references therein. (In contrast,
we compute Gr g(ℓ, p) by computing Brandt matrices for quaternion algebras.) The paper
[ATY24] gives an alternate definition of Gr g(ℓ, p) and develops this.

Part 1. The quaternion infrastructure

2. Definite rational quaternion algebras

Let H be a definite quaternion algebra over Q with a maximal order OH, main involution
x 7→ x, and reduced norm NmH/Q(x) = Nm(x) = xx. Set H×

1 = {h ∈ H× | NmH/Q(x) = 1}.
The reduced norm Nm : H → Q generalizes to the reduced norm Nm : Matg×g(H) → Q
(given by a multiplicative polynomial of degree 2g in the entries of the matrix). Put

SLg(OH) = {M ∈ Matg×g(OH) | Nm(M) = 1} (5)

with SLg(H) defined analogously. Note that

SLg(OH) = GLg(OH) = {M ∈ Matg×g(OH) |M is invertible}.

Let Ẑ = lim←−Z/nZ be the profinite completion of Z and Q̂ = Ẑ⊗Q the finite adèles of Q.

Then OĤ = OH ⊗ Ẑ is the profinite completion of OH and Ĥ = OĤ ⊗Q is the finite adèles of
H.

2.1. Hermitian matrices. Let g ≥ 1 be an integer. A matrix H ∈ Matg×g(OH) is Hermitian

if H† := H
t
= H. Set

Hg(OH) = {H ∈ Matg×g(OH) | H is positive-definite Hermitian}. (6)

The “Haupt norm” HNm of Braun-Koecher [BK66, Chap. 2, §4] (see also [Mum08, Thm. 6
and proof, §21]) is defined on Hermitian matrices in Matg×g(H) and gives a map HNm :
Hg(OH) → N. It is characterized by HNm(Idg×g) = 1 and Nm(H) = HNm(H)2 for a
Hermitian matrix H ∈ Matg×g(H); see [Eke87, p. 152, 153], where HNm is denoted Pf and is
defined via the usual Pfaffian on skew-symmetric matrices. For an integer d ≥ 1 put

Hg,d(OH) = {H ∈Hg(OH) | HNm(H) = d}. (7)

The group SLg(OH) = GLg(OH) acts on Hg,d(OH) by H ·M =M †HM . Set

Hg,d(OH) := Hg,d(OH)/ SLg(OH) (8)
6



with [H] ∈Hg,d(OH) the class defined by H ∈Hg,d(OH). The sets Hg,d(OH) for d ≥ 1 are
finite.

2.2. Strong Approximation for H×
1 . We now give the statement of strong approximation

followed by several consequences for the multiplicative group of norm-1 quaternions. In
Section 7 we will use strong approximation for the quaternionic unitary group.

2.2.1. Strong approximation. Let k be an algebraic number field with ∞ the set of all
archimedean places of k. Let S ⊇ ∞ be a finite set of places of k. Let G be a linear algebraic
group over k. Let GA be the adèle group of G, GS ⊂ GA be the S-component

∏
v∈S Gkv of

GA, and Gk ⊂ GA be the k-rational points of G embedded diagonally.

Definition 3. The pair (G,S) has strong approximation if GSGk is dense in GA.

Say that a connected noncommutative linear algebraic group G over a field k is k-simple if
it has no positive-dimensional proper normal subgroups. We now give a statement of Strong
Approximation sufficient for our purposes, quoting Platonov and Rapinchuk [PR94, Thm. 7.12].
The general result is due to Kneser [Kne66].

Theorem 4. Let G be a simply connected and k-simple linear algebraic group over a number
field k. Suppose GS is not compact. Then (G,S) has strong approximation.

2.2.2. A key lemma.

Lemma 5. Let H/Q be an arbitrary definite quaternion algebra with maximal order OH, let
I be a fractional right OH-ideal of norm 1, and let ℓ be a prime unramified in H. Then there
exists an element in I ⊗ Z[1/ℓ] of norm 1.

Proof. Let G be the algebraic group over Q associated to H×
1 = {β ∈ H× | Nm(β) = 1}; then

G(Q) = H×
1 . The algebraic group G is simply connected with a simple Lie algebra since

G(R) ∼= SU(2) is. (Let G′ be the algebraic group over Q assoicated to H×, so that G′(Q) = H×

and G′(R) = (H⊗Q R)× is the multiplicative group of Hamilton real quaternions. Note that
G′ doesn’t satisfy the hypotheses of Theorem 4 (Strong Approximation): G′(R) = (H⊗Q R)×
is topologically R4 minus the origin, which is simply connected, but as a Lie group, G′(R)
is R×

>0 × SU(2), which is not simple.) Let S = {ℓ,∞}. By Theorem 4, (G,S) has strong
approximation.
Now consider the subset U ⊂ GA given by the local conditions that at each prime q ̸= ℓ

we have β ∈ (I ⊗ Zq) ∩ G(Qq). Notice that this local condition is the standard one that
β ∈ (OH⊗Zq)× at all finite primes away from the numerator and denominator of the fractional
ideal I, hence U is open. That U is nonempty follows from the fact that every right ideal
in a quaternion algebra is locally principal. Hence we see that U ∩GSGQ is nonempty and
there exists some β ∈ (I ⊗ Z[1/ℓ]) ∩H×

1 . □

Lemma 6. For each positive integer x and any prime ℓ not ramified in H there exists an
element in OH[1/ℓ] of norm x.

Proof. Let I be an (integral) right ideal of OH of norm x and α an element of H also of norm
x. Then α−1I has norm 1 and we may apply Lemma 5 to obtain a β ∈ α−1(I ⊗ Z[1/ℓ]) of
norm 1. Then αβ has norm x and αβ ∈ I ⊗ Z[1/ℓ] ⊂ OH[1/ℓ]. □
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2.2.3. Consequences for Matg×g(OH).

Lemma 7. For any prime q and any Hermitian H ∈ Matg×g(OH ⊗ Z(q)) which is positive
definite of reduced norm 1, there is a matrix M ∈ Matg×g(OH ⊗ Z(q)) such that H =M †M .
The matrix M satisfies NmM = 1.

Proof. Since H has reduced norm 1, there exists some v ∈ (OH⊗Z(q))
g such that x = v†Hv ∈

Z(q) satisfies x /∈ qZ(q) ⊂ Z(q). By positive-definiteness x > 0 and after scaling v we may
assume x−1 is an integer. Then by applying Lemma 6 for ℓ away from q and the ramified
primes of H there exists an α ∈ OH ⊗ Z(q) of norm x−1.
The proof is by induction on g. The assertion is trivial for g = 1: here H = M = 1 ∈
OH ⊗ Z(q). For a general g, let v1 = vα as above. Note that v†1Hv1 = 1 and consider

⟨v1⟩⊥ = {w ∈ (OH ⊗ Z(q))
g | v†1Hw = 0}. The Hermitian form defined by H restricts to a

positive definite Hermitian form of reduced norm 1 on ⟨v1⟩⊥, so we’re reduced to showing the
theorem on ⟨v1⟩⊥ ∼= (OH ⊗ Z(q))

g−1.
Finally we have

1 = Nm(H) = Nm(M †)Nm(M) = Nm(M)2,

so Nm(M) = 1 since Nm(M) is positive. □

2.3. The quaternionic unitary group. If B is an algebra with anti-involution having fixed
ringR andM † is the conjugate-transpose defined using the anti-involution forM ∈ Matg×g(B),
set

Ug(B) = {M ∈ Matg×g(B) |M †M = Idg×g}
GUg(B) = {M ∈ Matg×g(B) |M †M = λ Idg×g with λ ∈ R×}.

(9)

For a Hermitian matrix H ∈ Matg×g(OH) set

UH(OH) = {M ∈ Matg×g(OH) |M †HM = H}.
Let H0 ∈Hg,1(OH) be the Hermitian matrix Idg×g. Then UH0(OH) = Ug(OH) as in (9).

Let L ⊂ Hg be a finitely generated right OH-submodule such that L⊗Q ∼= Hg. Such an L
is principally polarized if there exists a c ∈ Q× such that cH0 restricted to L is OH-valued and
unimodular. We define the dual of L to be

L̂ = c−1L. (10)

Remark 8. Notice that this agrees with the standard definition of dual with respect to a

pairing; thus, if L ⊂ L′ then L̂′ ⊂ L̂ and [L′ : L] = [L̂ : L̂′].

Theorem 9. For M ∈ GUg(Ĥ), set γ(M) equal to the principally polarized right OH-
submodule of Hg given by γ(M) = MOg

Ĥ
∩ Hg. The association M 7→ γ(M) induces a

one-to-one correspondence between GUg(Ĥ)/GUg(OĤ) and the set of principally polarized
right OH-submodules of Hg.

Proof. The module γ(M) is principally polarized since after tensoring with Ẑ, the Hermitian

form is given by M †M which is the identity times a scalar in Q̂×, which can be approximated
by an element of Q×.
This map is well defined since if MU with U ∈ GUg(OĤ) is another representative of the

same class in GUg(Ĥ)/GUg(OĤ), then UO
g

Ĥ
= Og

Ĥ
. Hence MUOg

Ĥ
∩Hg =MOg

Ĥ
∩Hg. It is

8



injective since if MOg
Ĥ
∩Hg =M ′Og

Ĥ
∩Hg, we must have MN =M ′ for some N ∈ GLg(OĤ).

But we also have N =M ′M−1 ∈ GUg(Ĥ). Therefore,

N ∈ GLg(OĤ) ∩GUg(Ĥ) = GUg(OĤ),

and [M ] = [M ′].
Finally, to see that this map is surjective, let L be a principally polarized right OH-

submodule. Since all finitely generated modules over OH are locally free, L is given by

NOg
Ĥ
∩Hg for some N ∈ GLg(Ĥ). The Hermitian form on L⊗ Ẑ is given by N †N , and since

L is principally polarized, cN †N is OĤ-valued and unimodular for some c ∈ Q×. However,
since all integral unimodular Hermitian forms are locally trivial (as follows, for example, from
Lemma 7), there exists a V ∈ GLg(OĤ) such that V †cN †NV is the identity. So we can set

M = NV and have M ∈ GUg(Ĥ) with MOg
Ĥ
∩Hg = NOg

Ĥ
∩Hg = L. □

Definition 10. We define the classes of GUg(OH), denoted Pg(OH), to be the equivalence
classes of principally polarized right OH-submodules of Hg up to left multiplication by

GUg(H). Hence there is a one-to-one correspondence between GUg(H)\GUg(Ĥ)/GUg(OĤ)
and Pg(OH) induced by the map γ of Theorem 9:

Pg(OH) ∼= GUg(H)\GUg(Ĥ)/GUg(OĤ). (11)

There are a finite number of classes of GUg(OH). We will call #Pg(OH) the class number.
It is independent of the choice of maximal order OH since the isomorphism class of OĤ is
independent of OH and consequently we denote it by hg(H). Let the principally polarized
right OH-module Li be a representative of the class [Li] ∈Pg(OH) for 1 ≤ i ≤ h = hg(H).

Remark 11. Notice that L and L̂ belong to the same class. Also note that for U ∈ GUg(H)

we have ÛL = (U−1)†L̂.

When g = 1 we recover the standard description of the ideal classes P1(OH) and the class
number h(H):

P1(OH) ∼= H×\Ĥ×/O×
Ĥ

and h1(H) = h(H) = #H×\Ĥ×/O×
Ĥ
, (12)

cf. [Vig80, §3.5.B].

Theorem 12. If g > 1, then Hg,1(OH) is in one-to-one correspondence with the classes of
GUg(OH), or equivalently with the double cosets

GUg(H)\GUg(Ĥ)/GUg(OĤ).

Proof. We first define the map

ι : Hg,1(OH)→ GUg(H)\GUg(Ĥ)/GUg(OĤ) (13)

by the following procedure: for [H] ∈Hg,1(OH) write H =M †M for M ∈ SLg(H), such an
M exists by Lemma 7. For each prime q write H = N †

qNq with Nq ∈ SLg(OH ⊗ Zq) (again
these exist by Lemma 7). Let N = (Nq) ∈ SLg(OĤ), and notice that (MN−1)†MN−1 = I, so

MN−1 ∈ Ug(Ĥ). Set ι(H) =MN−1 and define the map ι in (13) by

ι([H]) = [ι(H)] = [MN−1]. (14)

We must now prove that the map ι in (14) is well defined, injective, and surjective.
Well-definedness: Suppose M ′ ∈ SLg(H) is another choice of M and N ′ ∈ SLg(OĤ) another
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choice of N satisfying H =M ′†M ′ = N ′†N ′. Then M ′M−1 ∈ Ug(H) and NN ′−1 ∈ Ug(OĤ).
Hence

[M ′N ′−1
] = [(M ′M−1)(MN−1)(NN ′−1

)]

corresponds to the same class as [MN−1] in GUg(H)\GUg(Ĥ)/GUg(OĤ).

Now suppose H ′ ∈Hg,1(OH) is another representative of the same class as H in Hg,1(OH),
i.e., H ′ = U †HU for some U ∈ SLg(OH). Thus if H =M †M = N †N with M ∈ SLg(H) and
N ∈ SLg(OĤ), then

H ′ = (MU)†MU = (NU)†NU

with MU ∈ SLg(H), NU ∈ SLg(OĤ), and MU(NU)−1 =MN−1.
Injectivity: Suppose ι([H]) = ι([H ′]). Let H = M †M = N †N and H ′ = M ′†M ′ = N ′†N ′

with M,M ′ ∈ SLg(H) and N,N ′ ∈ SLg(OĤ). Thus MN−1 = VM ′N ′−1W−1 with V ∈
GUg(H) and W ∈ GUg(OĤ). Set V †V = vI for v ∈ Q× and W †W = wI for w ∈ Ẑ×. Let
U =M−1VM ′ = N−1WN ′ and observe that U ∈ GLg(H) ∩GLg(OĤ) = SLg(OH). Now

H · U = U †HU = (M−1VM ′)†M †MM−1VM ′ =M ′†V †VM ′ = vH ′,

and a similar argument shows H · U = wH ′. Hence v = w ∈ Q× ∩ Ẑ× = Z×. So v = ±1 and
we can rule out −1 since H is definite. Thus [H] = [H ′].

Surjectivity: Let

[V ] ∈ GUg(H)\GUg(Ĥ)/GUg(OĤ)

with V ∈ GUg(Ĥ). Put V †V = vI for v ∈ Q̂. Put v = ab with a ∈ Q>0 and b ∈ Ẑ×. Then by
Lemma 6 there exist α ∈ H with N(α) = a and β ∈ O×

Ĥ
with N(β) = b. After replacing V

with α−1V β−1 we may assume V ∈ Ug(Ĥ) ⊂ SLg(Ĥ).
We will apply strong approximation to G = SLg(H) with S = {∞}. Note that G∞ is not

compact for g > 1 and hence the pair (G,S) satisfies the conditions of Theorem 4. The
local conditions we will impose at each prime q will be V −1M ∈ SL(OH ⊗ Zq). These are
the standard conditions away from finitely many primes and are trivially nonempty since V
always satisfies them.
Hence there exists M ∈ SLg(H) such that N = V −1M ∈ SLg(OĤ). Thus ι([M †M ]) =

[V ]. □

3. Brandt matrices

3.1. Definition of Brandt matrices. Set hg := hg(H) with Pg(OH) = {[L1], . . . , [Lhg ]}
for principally polarized right OH-modules L1, . . . , Lhg ⊆ Hg. We can now define the Brandt
matrix Bg(n) ∈ Mathg×hg(Z) for a natural number n.

Definition 13. Let g ≥ 1 and n ∈ N. For 1 ≤ j ≤ hg(H) =: hg, set

Ej(g) := {U ∈ GUg(H) | Lj = ULj},
ej(g) := #Ej(g),

B̃g(n)ij := {U ∈ GUg(H) | [Li : ULj] = n2g}, (15)

E(U) := {V ∈ GUg(H) | V Li = Li and V ULj = ULj} for U ∈ B̃g(n)ij,

e(U) := #E(U) for U ∈ B̃g(n)ij.

10



The sets Ej(g), B̃g(n)ij, E(U) above depend on the choice of representatives L1, . . . , Lhg .
However, they change by an explicit one-to-one correspondence if we change the representa-
tives: if L̃j = WjLj for Wj ∈ GUg(H), then in (15) the Wj can be absorbed into the U . In

particular #B̃g(n)ij and #Ej(g) do not depend on the choice of representatives for Pg(OH).

Note that Ej(g) ≤ GUg(H) and E(U) ≤ Ei(g) for U ∈ B̃g(n)ij. Define the equivalence

relation ∼b on B̃g(n)ij by U ∼b U ′ if U = U ′V for some V ∈ Ej(g). Likewise define the

equivalence relation ∼l on B̃g(n)ij by U ∼l U ′ if U = ViU
′Vj for some Vj ∈ Ej(g) and some

Vi ∈ Ei(g). Define the big quotient

Bg(n)
big
ij = B̃g(n)ij/∼b (16)

and the little quotient

Bg(n)
little
ij = B̃g(n)ij/∼l . (17)

Let [U ]b ∈ Bg(n)
big
ij , [U ]l ∈ Bg(n)

little
ij be the equivalence classes of U ∈ B̃g(n)ij . An equivalent

definition is

Bg(n)
big
ij = {L′

j | [Li : L′
j] = n2g and ULj = L′

j for some U ∈ GUg(H)}. (18)

We define an equivalence relation ∼ on Bg(n)
big
ij in (18) by L′

j1
∼ L′

j2
if there exists U ∈

GUg(H) such that ULi = Li and UL′
j1

= L′
j2

; write [L′
j]l for the equivalence class of

L′
j ∈ Bg(n)

big
ij . Then we equivalently have

Bg(n)
little
ij =

(
Bg(n)

big
ij /∼

)
=

{
[L′

j]l | L′
j ∈ Bg(n)

big
ij

}
. (19)

For 1 ≤ i, j ≤ hg, put

Bg(n)ij = #Bg(n)
big
ij =

#B̃g(n)ij
#Ej(g)

and Bg(0)ij = 1/ej(g). (20)

The matrices Bg(n) do not depend on the choice of maximal order OH or on the choice of
representatives for Pg(OH), up to the obvious indeterminacy of simultaneously permuting
the rows and columns. Let Bg(OH) ⊆ Mathg×hg(Z) be the Z-algebra generated by Bg(n),
n ≥ 1. The Z-algebra Bg(OH) does not depend on the choice of maximal order OH and hence
we can denote it as Bg = Bg(H).

Remark 14. In the classical case g = 1, h = h1(H) is the class number of H. Let I1, . . . , Ih
be representatives for the right OH-ideal classes and let Oi be the left order of Ii, 1 ≤ i ≤ h.
We have ei = ei(1) = #O×

i . Definition 13 in the special case g = 1 gives

Ej(1) = O×
j ,

ej := ej(1) = #O×
j ,

B̃1(n)ij = {λ ∈ IiI−1
j | Nmλ = nNm(IiI

−1
j )},

B1(n)ij =
#{λ ∈ IiI−1

j | Nmλ = nNm(IiI
−1
j )}

ej
,

E(λ) = {u ∈ O×
i | λ−1uλ ∈ O×

j } for λ ∈ B̃1(n)ij,

e(λ) = #E(λ) for λ ∈ B̃1(n)ij.

11



In particular, B1(1) = Idh×h and B1(n) ∈ Math×h(Z) for n ≥ 1. The Brandt matrix B1(0)
is B1(0)ij = 1/ej and B1 = B1(H) ⊆ Math×h(Z) is the Z-algebra generated by the Brandt
matrices B1(n), n ≥ 1.

By Theorem 9,
#Hg,1(OH) = hg(H) =: hg = #Pg(OH).

Write

Hg,1(OH) = {[H1], . . . , [Hhg ]} for Hi ∈Hg,1, 1 ≤ i ≤ hg, and (21)

Pg(OH) = {[L1], . . . , [Lhg ]} with Li a principally polarized right OH-submodule of Hg.

First we give an equivalent definition of the Brandt matrix in terms of Hg,1(OH) in case
g > 1. It is convenient to make the following definition.

Definition 15. Suppose H,H ′ ∈Hg,1(OH). For a natural number n set

Un(H,H
′) := {M ∈ Matg×g(OH) |M †HM = nH ′} and

U(H) := U1(H,H).

Note that U(H) acts on Un(H,H
′) by multiplication on the left and U(H ′) acts on Un(H,H

′)
by multiplication on the right. Define an equivalence relation ∼b on Un(H,H

′) by M ∼b MU ′

for U ′ ∈ U(H ′) and set Un(H,H
′)big := Un(H,H

′)/∼b with [M ] ∈ Un(H,H
′)big the class

defined byM ∈ Un(H,H
′). Define an equivalence relation ∼l on Un(H,H

′)big by [M ] ∼l [UM ]
for U ∈ U(H). Set Un(H,H

′)little := Un(H,H
′)big/∼l.

Theorem 16. Let g > 1 with γ as in Theorem 9 and ι as in (14). If [γ(ι([Hi]))] = [Li] and
[γ(ι(Hj))] = [Lj], then we have equivalently

Bg(n)
big
ij = Un(Hi, Hj)

big and

Bg(n)
little
ij = Un(Hi, Hj)

little.

In particular we have

ej(g) = #U(Hj) and

Bg(n)ij = Bg(n)
big
ij =

#Un(Hi, Hj)

ej(g)

for n ≥ 1.

It clearly suffices prove the following lemma.

Lemma 17. Let g > 1. Choose any [H1], [H2] ∈ Hg,1(OH). Let [γ(ι(Hk))] = [Lk] for
k ∈ {1, 2}. There exists a bijective correspondence between {U ∈ GUg(H) | [L1 : UL2] = n2g}
and {B ∈ Matg×g(OH) | B†H1B = nH2}.

Proof. For k ∈ {1, 2}, let [Vk] = ι([Hk]) with Lk = γ(Vk). Let Hk = M †
kMk = N †

kNk, with

Mk ∈ SLg(H), Nk ∈ SLg(OĤ), and Vk =MkN
−1
k ∈ Ug(Ĥ) as in (14).

For B ∈ Matg×g(OH) with B
†H1B = nH2, let UB =M1BM

−1
2 . Notice that B†M †

1M1B =

nM †
2M2 so U †

BUB = n Idg×g and UB ∈ GUg(H). Similarly take WB = N1BN
−1
2 and observe

that WB ∈ GUg(Ĥ) and WB ∈ Matg×g(OĤ). Taking reduced norms, we get Nm(WB) = ng.
12



Therefore, WBOgĤ ⊂ O
g

Ĥ
with

[Og
Ĥ
: WBOgĤ] = n2g. (22)

Notice that UBV2 =M1BN
−1
2 = V1WB. Apply this to (22) gives n2g = [V1OgĤ : V1WBOgĤ] =

[V1OgĤ : UBV2OgĤ]. And intersecting with Hg gives n2g = [L1 : UBL2].
The correspondence B 7→ UB is clearly well-defined and injective. We will now show it is

surjective. Given U ∈ GUg(H) with [L1 : UL2] = n2g, hence tensoring with OĤ we see [V1OgĤ :

UV2OgĤ] = n2g. Let B = M−1
1 UM2 and W = N1BN

−1
2 , so UV2 = M1BN

−1
2 = V1W . Hence,

n2g = [V1OgĤ : V1WOgĤ] = [Og
Ĥ
: WOg

Ĥ
]. Thus, W ∈ Matg×g(OĤ) with Nm(W ) = ng. Since

the Mk’s and Nk’s have reduced norm 1, U also has reduced norm ng; hence, U †U = n Idg×g
since U ∈ GUg(H). Also that means that B ∈ Matg×g(H). But also B = N−1

1 WN2 with
N1, N2 ∈ SL2(OĤ) and W ∈ Matg×g(OĤ), so B ∈ Matg×g(OĤ) and hence B ∈ Matg×g(OH).
Straightforward algebra shows that B†H1B = nH2, and we are done. □

3.2. Brandt matrices: Examples. The Brandt matrices Bg(n) for a maximal order
OH ⊆ H are amenable to machine computation, although the memory requirements rapidly
grow with n and especially g so that few examples are accessible with g = 3. We had no
computations finish for g ≥ 4.

3.2.1. H = H7. Take H = H7, the rational definite quaternion algebra of discriminant 7. The
first class numbers of H7 are: h1(H7) = 1, h2(H7) = 2, h3(H7) = 5. The Brandt matrices
Bg(ℓ) are given in Table 1 below for primes ℓ = 2, 3, 5, 11 and 1 ≤ g ≤ 3. Note that in all
cases Bg(ℓ) has constant row-sum Ng(ℓ) =

∏g
k=1(1 + ℓk) in keeping with Theorem 19(a). A ?

in the table below means that the computation did not finish.

Bg(2) Bg(3) Bg(5) Bg(11)

g = 1 [3] [4] [6] [12]

g = 2

[
11 4
6 9

] [
28 12
18 22

] [
112 44
66 90

] [
928 536
804 660

]

g = 3


45 36 8 32 14
18 27 6 60 24
14 21 30 14 56
4 15 1 101 14
7 24 16 56 32



208 208 0 640 64
104 184 32 640 160
0 112 112 616 280
80 160 44 676 160
32 160 80 640 208

 ? ?

Table 1. Brandt matrices Bg(ℓ) for H7
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3.2.2. H = H11. Now take H = H11, the rational definite quaternion algebra of discriminant
11. The first class numbers of H11 are: h1(H11) = 2, h2(H11) = 5, h3(H11) = 19. Table 2
below gives the Brandt matrices Bg(ℓ) for ℓ = 2, 3, 5, 7 and g = 1, 2. Again in all examples
Bg(ℓ) has constant row-sum Ng(ℓ) =

∏g
k=1(1 + ℓk).

Bg(2) Bg(3) Bg(5) Bg(7)

g = 1

[
1 2
3 0

] [
2 2
3 1

] [
4 2
3 3

] [
4 4
6 2

]

g = 2


3 4 4 0 4
3 6 0 6 0
3 0 3 8 1
0 3 4 8 0
9 0 3 0 3



8 8 4 16 4
6 20 0 12 2
3 0 9 22 6
6 6 11 16 1
9 6 18 6 1



36 32 36 32 20
24 42 24 60 6
27 24 41 58 6
12 30 29 78 7
45 18 18 42 33



80 80 72 128 40
60 128 48 144 20
54 48 94 172 32
48 72 86 176 18
90 60 96 108 46



Table 2. Brandt matrices Bg(ℓ) for H11

3.3. First properties of Brandt matrices. To simplify the discussion, we restrict to the
case of the definite quaternion algebra H = Hp ramified at one finite prime p and choose a
maximal order O = OHp ⊆ Hp.

3.3.1. The classical case: g = 1. We start by reviewing known properties of the classical
Brandt matrices B(n) = B1(n) for O = OHp , n ≥ 0, largely following Gross [Gro87, §1, 2].
Set h = h1(Hp). Almost all the results given are due to Eichler [Eic55].

Remark 18. (a) For n ≥ 0 with (n, p) = 1 the row sums
∑

j B(n)ij are independent of i.

For n ≥ 1 and ℓ ̸= p prime with N1(ℓ) as in (3),∑
j

B(ℓ)ij = N1(ℓ) := ℓ+ 1.

(b) If (m,n) = 1, then B(mn) = B(m)B(n).
(c) B(p) is a permutation matrix with B(p)2 = Idh×h and B(p)k = B(pk).
(d) For a prime ℓ ̸= p and k ≥ 2,

B(ℓk) = B(ℓk−1)B(ℓ)− ℓB(ℓk−2).

(e) Set ej = ej(1) for 1 ≤ j ≤ h. We have ejB(n)ij = eiB(n)ji for 1 ≤ i, j ≤ h. Equivalently,
let v1, . . . , vh be the standard basis of Zh. Define the inner product ⟨vi, vj⟩ = eiδij on Zh.
Then the Brandt matrices B(n), n ≥ 1, are self-adjoint with respect to ⟨ , ⟩.

(f) (Eichler’s mass formula) Let H = Hp. Then

h∑
i=1

1

ei
=
p− 1

24
.
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Equivalently, the sum of any row of B(0) is (p− 1)/24 with B(0) = B1(0) as in (20).
(g) For all m and n we have B(m)B(n) = B(n)B(m).
(h) The commutative Q-algebra B ⊗ Q is semi-simple, and isomorphic to the product of

totally real number fields.

3.3.2. The general case g ≥ 1. We now generalize the results of Remark 18 to the Brandt
matrices Bg(n) of Definition 13 with H = Hp. Put hg = hg(H) and let Bg = Bg(H) be
the Z-subalgebra of Mathg×hg(Z) generated by the Brandt matrices Bg(n) for n ≥ 1 as in
Definition 13.

Theorem 19. (a) For n ≥ 1 with (n, p) = 1,
∑

j Bg(n)ij = Ng(n) as in (2). For n = ℓ ̸= p
prime this gives ∑

j

Bg(ℓ)ij = Ng(ℓ) :=

g∏
k=1

(1 + ℓk)

with Ng(ℓ) as in (3). In particular, the row sums
∑

j Bg(n)ij are independent of i and in

fact only depend on n and g (they do not depend on p).
(b) If (m,n) = 1, then Bg(mn) = Bg(m)Bg(n).
(c) We have ej(g)Bg(n)ij = ei(g)Bg(n)ji for 1 ≤ i, j ≤ hg. Equivalently, let v1, . . . , vhg be

the standard basis of Zhg . Define the inner product ⟨vi, vj⟩g = ei(g)δij on Zhg . Then the
generalized Brandt matrices Bg(n), n ≥ 1, are self-adjoint with respect to ⟨ , ⟩g.

(d) (Mass formula of Ekedahl and Hashimoto/Ibukiyama)

Mg :=

hg∑
i=1

1

ei(g)
=

(−1)g(g+1)/2

2g

{
g∏

k=1

ζ(1− 2k)

}
·

g∏
k=1

{pk + (−1)k}.

Equivalently, the sum of any row of Bg(0) as in (20) is Mg. Note that for g = 1 we have
M1 = (p− 1)/24 and so recover Theorem 18(f).

(e) For all m and n we have Bg(m)Bg(n) = Bg(n)Bg(m).
(f) The commutative Q-algebra Bg ⊗ Q is semi-simple, and isomorphic to the product of

totally real number fields.

Proof. (b): It’s not hard to see that

(Bg(m)Bg(n))ij =
#{U ∈ GUg(H) and Lk p. p. | [Li : Lk] = m2g and [Lk : ULj] = n2g}

ej(g)
,

where p. p. denotes principally polarized. Since m and n are relatively prime given Li,
Lj, and U with [Li : ULj] = (mn)2g there exists a unique principally polarized Lk with
[Li : Lk] = m2g and [Lk : ULj] = n2g. Thus (Bg(m)Bg(n))ij = Bg(mn)ij.

(a): By (b) we may restrict to the case when n = ℓr is a prime power with ℓ ̸= p. Since
each p. p. lattice belongs to precisely one equivalence class, we have using (18) and (20)∑
j

Bg(ℓ
r)ij =

∑
j

#{L′
j p. p. | [Li : L′

j] = (ℓr)2g = ℓ2rg and ULj = L′
j for some U ∈ GUg(H)}

= #{Lj p. p. | [Li : Lj] = ℓ2rg}. (23)
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We now suppose g > 1 so that classes of GUg(OH) can be described by Hermitian matrices
as well as principally polarized lattices as in Theorem 12. The case g = 1 is covered by the
classical results of Eichler in Remark 18.
Set Oℓ = OH ⊗ Zℓ for ℓ ≠ p prime and Hℓ = H ⊗ Qℓ. There is a well-known one-to-one

correspondence ↔ between g× g quaternionic Hermitian matrices and 2g× 2g symplectic (=
nondegenerate alternating) matrices; a reference is [Eke87, §1]. Let e = [ 0 1

−1 0 ] and identify
Oℓ with Mat2×2(Zℓ) so that the main involution on Oℓ becomes

[ a bc d ] =
[
d −b
−c a

]
= e−1 [ a bc d ]

t
e. (24)

Let E be the 2g × 2g block matrix with e’s on the diagonal. The identification of Oℓ with
Mat2×2(Zℓ) gives an identification of Matg×g(Oℓ) with Matg×g(Mat2×2(Zℓ)) = Mat2g×2g(Zℓ);
as notation A ∈ Matg×g(Oℓ) is identified with Ã ∈ Mat2g×2g(Zℓ) so Nm(A) = det(Ã). For a

A ∈ Matg×g(Oℓ) with A† = A
t ∈ Matg×g(Oℓ), (24) implies that

Ã† = E−1ÃtE. (25)

In case A = H is Hermitian so that H† = H, (25) gives

EH̃ = EH̃† = H̃ tE,

so that
(EH̃)t = H̃ tEt = H̃ t(−E) = −H̃ tE = −(EH̃). (26)

This gives the one-to-one correspondence ↔: to the Hermitian matrix H ∈ Matg×g(Oℓ) we
associate the symplectic matrix SH := EH̃ ∈ Mat2g×2g(Zℓ). With Pf denoting the Pfaffian
of a symplectic matrix we have HNm(H) = Pf(SH).
We examine how this correspondence behaves with respect to sublattices. Let L be a

nondegenerate Hermitian right Oℓ-module of rank g such that L⊗Qℓ
∼= Hg

ℓ with Hermitian
form given by H ∈ Matg×g(Oℓ) (so H† = H). Let L′ = AL ⊂ L be an Oℓ-sublattice of
finite index i = [L : L′] for A ∈ Matg×g(Oℓ); then (i) = (Nm(A)2) as ideals in Zℓ and
i = ℓ2 valℓ(Nm(A)). Let H ′ = A†HA be the restriction of H to L′. We have

Nm(H ′) = Nm(A)2Nm(H) = iNm(H), or, |HNm(H ′)| =
√
i |HNm(H)| . (27)

Separately, let L̃ be a rank-2g symplectic Zℓ-lattice with symplectic form S. Let L̃′ :=
ML̃ ⊆ L̃ for M ∈ Mat2g×2g(Zℓ) be a sublattice of finite index ι̃ so (ι̃) = (det(M)) as ideals in

Zℓ with symplectic form S ′ =M tSM given by restricting S to L̃′. Then (Pf(S ′)) = (Pf(S)ι̃)
as ideals in Zℓ. We have

(ι̃) = (det(M)) ⊆ Zℓ, (det(S ′)) = (det(M)2 det(S)), and

(Pf(S ′) = (det(M) Pf(S)) = (ι̃Pf(S)) ⊆ Zℓ. (28)

Now consider L̃ = Z2g
ℓ with S = SH and A ∈ Matg×g(Oℓ) with H ′ = A†HA the restriction

of H to the Oℓ-sublattice L′ = AL, and take M = Ã ∈ Mat2g×2g(Zℓ). Then S ′ = ÃtSÃ the

restriction of S ′ to the Zℓ-sublattice L̃′ = ÃL̃. Note that

SH′ = EÃ†H̃Ã = ÃtEH̃Ã = ÃtSHÃ = S ′ (29)

using (25). Using (27), the indices ι = [L : L′] and ι̃ = [L̃ : L̃′] are related by

ι = ℓ2 valℓ(Nm(A)) = ℓ2 valℓ(det(Ã)) =
(
ℓvalℓ(det Ã)

)2
= ι̃2. (30)
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The problem of computing a given row sum of the Brandt matrix B(ℓr) by (23) is the
following: We are given L = Ogℓ together with a unimodular Hermitian form H ∈ Matg×g(Oℓ)
(so |HNm(H)| = 1). We have to count the Oℓ-submodules ℓrL ⊂ L′ ⊂ L with [L : L′] = ℓ2rg

such that the restriction H ′ of H to L′ satisfies H ′ = ℓrH′ with H′ ∈ Matg×g(Oℓ) unimodular.
Applying the one-to-one correspondence ↔ above induced by H ↔ S = SH and H ′ ↔ S ′ =
SH′ we see that this equivalent to the following computation with symplectic Zℓ-lattices
of rank 2g: given the lattice L̃ = Z2g

ℓ together with a unimodular symplectic pairing S

(unimodular in the sense that Pf(S) ∈ Z×
ℓ ), count the Zℓ-sublattices ℓrL̃ ⊂ L̃′ ⊂ L̃ with

[L̃ : L̃′] = ℓrg such that the restriction S ′ of S to L̃′ satisfies S ′ = ℓrS′ for a unimodular
symplectic matrix S′ ∈ Mat2g×2g(Zℓ). (The indices [L : L′] and [L̃ : L̃′] are related by

(30).) It follows that L̃′/ℓrL̃ is a maximal isotropic subspace of L̃/ℓrL̃ with respect to the
Z/ℓrZ-symplectic pairing on L̃/ℓrL̃ induced by S. Moreover, given the maximal isotropic
subspace L̃′/ℓrL̃ we can recover L̃′ ⊆ L̃. We now remark that all unimodular symplectic
lattices over Zℓ of the same dimension are isomorphic. Hence without loss of generality we
can start with L̃ = Z2g

ℓ and S the standard unimodular symplectic pairing. So the sum of
the entries in any row of the Brandt matrix Bg(ℓ

r) is equal to Ng(ℓ
r) as in (2). In particular

all the row sums of Bg(ℓ
r) are equal and (perhaps surprisingly) do not depend on p.

(c): By definition this is equivalent to proving that #{U ∈ GUg(H) | [Li : ULj] = n2g}
and #{U ∈ GUg(H) | [Lj : ULi] = n2g} are equal. By the comments following (20) we can
replace the L’s with arbitrary representatives of their classes. By Remark 11 we can use their
duals, so

#{U ∈ GUg(H) | [Lj : ULi] = n2g} = #{U ∈ GUg(H) | [L̂j : ̂(U−1)†Li] = n2g}.
But by Remark 8 the right hand side of the above is equal to

#{U ∈ GUg(H) | [(U−1)†Li : Lj] = n2g} = #{U ∈ GUg(H) | [Li : U †Lj] = n2g},
and we are done.

(d): See [Eke87, p. 159] and [HI80, Prop. 9], cf. [Yu06, Thm. 3.1].

(e): The Brandt matrices B(n) are in image of the Hecke algebra for (G,K) with G =

GUg(Ĥ), K = GUg(OĤ) acting on the lattice Z[Pg(OH)] with basis Pg(OH), which is a
space of algebraic modular forms in the sense of [Gro99]. In fact the Brandt matrices B(n)
are linear combinations of standard Hecke operators in the Hecke algebra.

By (b) we may restrict to the case where both m and n are powers of a prime ℓ. Commu-
tativity here is implied by commutativity of the local Hecke algebra for

G = Gℓ = GUg(H⊗ Zℓ), K = Kℓ = GUg(OH ⊗ Zℓ) (31)

Satake proves a structure theorem for this local algebra [Sat63, Thm. 8] which in particular
shows that it is commutative.
Below we give a simple argument for commutativity, worked out in correspondence with

Guy Henniart and Marie-France Vignéras. We use (G,K) as in (31). By Gelfand’s trick
[Lan85, IV, §1, Thm. 1] (see also [Shi94, Prop. 3.8]), it suffices to show that for all elements
M ∈ G we have KMK = KM †K.
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In the case when ℓ = p, by [Shi63, Prop. 3.10] we have that for everyM ∈ G, KMK = KdK
for some diagonal matrix d over the quaternion algebra H⊗Zℓ. We also have KdK = Kd†K
since in the ramified case all ideals are two-sided and principal powers of the unique prime
ideal.
When ℓ ̸= p, the group G is just the symplectic group and we can use [Shi63, Prop. 1.6] to

show that for arbitrary M ∈ G we have KMK = KdK, where d is now in a diagonal matrix
over Qℓ, hence trivially preserved by transpose.
The only complication is making sure (conjugate-)transpose is in fact an anti-involution

in the basis from [Shi63]. However if H is the matrix giving the Hermitian (or symplectic)
form in Shimura’s basis then we have H†HH = H, so H is itself an element of G. And
since for any matrix M ∈ G we have M † = HM−1H−1, (conjugate-)transpose is in fact an
anti-involution.

(f): This follows trivially from (c), (e), and the fact that self-adjoint matrices are semi-simple
with real eigenvalues.

□

We do not know the analogue of Remark 18(d) for our generalized Brandt matrices Bg(n).
For a weak result see [And69, Thm. 3].

4. The big and little Brandt graphs

It is convenient to reformulate Section 3 on Brandt matrices in the broader context of
Brandt graphs. We begin with a general discussion of graphs in order to be precise about the
definitions. We will again use this in Section 6 when we consider the big, little, and enhanced
isogeny graphs.

4.1. Graphs.

Definition 20. A graph Gr has a set of vertices Ver(Gr) = {v1, . . . , vs} and a set of (directed)
edges Ed(Gr). An edge e ∈ Ed(Gr) has initial vertex o(e) and terminal vertex t(e). For
vertices vi, vj ∈ Ver(Gr), put

Ed(Gr)ij = {e ∈ Ed(Gr) | o(e) = vi and t(e) = vj}.
The adjacency matrix Ad(Gr) ∈ Mats×s(Z)is the matrix with

Ad(Gr)ij = #Ed(Gr)ij.

We place no further restrictions on our definition of a graph. Serre [Ser03] requires graphs to
be graphs with opposites: every directed edge e ∈ Ed(Gr) has an opposite edge e ∈ Ed(Gr). An
edge e with e = e is called a half-edge. Serre forbids half-edges; we will call a graph satisfying
his requirements a graph without half-edges. Kurihara [Kur79] relaxes Serre’s definition to
allow half-edges giving the notion of a graph with half-edges. (A graph with half-edges may
have ∅ as its set of half-edges, so every graph without half-edges is a graph with half-edges.)

Definition 21. (a) A graph with weights, or a weighted graph, is a graph with opposites
together with a weight function w mapping vertices and edges to positive integers such
that for each edge e we have w(e) = w(e) and w(e)|w(o(e)) (which implies w(e)|w(t(e))).

(b) Following [Kur79, Defn. 3-1], a graph with lengths is a graph with opposites together with
a length function f mapping edges to positive integers satisfying f(e) = f(e). A graph

18



with weights defines a graph with lengths by setting the length of an edge equal to its
weight and forgetting the weights of the vertices.

(c) The weighted adjacency matrix Aw := Adw(Gr) of a weighted graph Gr with Ver(Gr) =
{v1, . . . , vs} is

(Aw)ij =
∑

e∈Ed(Gr)ij

w(vi)

w(e)
, 1 ≤ i, j ≤ s.

(d) Following [Kur79, §3], if Gr is a graph with half-edges, denote by Gr∗ the graph obtained
by removing the half-edges from Gr. If Gr is a graph with weights, then the graph Gr∗

with half-edges removed is also a graph with weights—the weights are inherited from Gr.
Likewise, if Gr is a graph with lengths, then Gr∗ is a graph with inherited lengths.

Many authors (especially in computer science) call a graph with weights what we have called
a graph with lengths, and accordingly have a different notion of a weighted adjacency matrix.
For the remainder of this section, we let H be a rational definite quaternion algebra with

maximal order OH ⊆ H, main involution x 7→ x, and reduced norm NmH/Q(x) = xx. Let Ẑ
be the profinite completion of Z and Q̂ = Ẑ⊗Q the finite adèles of Q. Set OĤ = OH ⊗ Ẑ
and let Ĥ = OĤ ⊗Q be the finite adèles of H.

The classes of GUg(OH) are

Pg(OH) = {[L1], . . . , [Lh]}
with Li a principally polarized right OH-module and h = hg(H) as in Definition 10. In case
g = 1 the principally polarized right OH-module Li is just a right OH-ideal Ii with left order
the maximal ideal Oi ⊆ H. We will freely use the notation in Definition 13 and Remark 14
of Section 3, which the reader is advised to review.

4.2. The big Brandt graph Brg(n,OH). The vertices of the big Brandt graph Brg(n) :=
Brg(n,OH) are

Ver(Brg(n)) = Pg(OH) = {[L1], . . . , [Lh]}.
The directed edges connecting the vertex [Li] to the vertex [Lj] are

Ed(Brg(n))ij = Bg(n)
big
ij

as in (16) and (18). The graph Brg(n) is a graph without opposites. Moreover it is immediate
from (20) that the adjacency matrix of Brg(n) is the Brandt matrix Bg(n) for OH ⊆ H:

Ad(Brg(n)) = Bg(n). (32)

When g = 1 the big Brandt graph Br 1(n) is the graph constructed by Pizer [Piz98], [Piz90]
from the classical Brandt matrices.

4.3. The little Brandt graph brg(n,OH). The vertices of the little Brandt graph brg(n) :=
brg(n,OH) are

Ver(brg(n)) = Pg(OH) = {[L1], . . . , [Lh]}.
The directed edges connecting the vertex [Li] to the vertex [Lj] are

Ed(brg(n))ij = Bg(n)
little
ij

as in (17) and (19).
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Unlike the big Brandt graph, the little Brandt graph brg(n) is a graph with opposites: the

opposite e of an edge e ∈ Ed(brg(n))ij with e = [L′
j ]l as in (18) is e = [V L̂i]l, where V satisfies

V L̂′
j = Lj with the dual L̂′ of the principally polarized finitely generated right OH-module

L′ with L′ ⊗ Q = Hg defined in (10). The little Brandt graph brg(n) is also a graph with
weights: we set w([Li]) = ei(g) for [Li] ∈ Pg(OH) = Ver(brg(n)) and w([U ]l) = e(U) for
[U ]l ∈ Bg(n)

little
ij = Ed(brg(n))ij in the notation (15). To see that this is well-defined, verify

(a) e(U) = e(U ′) if [U ]l = [U ′]l ∈ Bg(n)
little
ij = Ed(brg(n))ij and

(b) w(e) = w(e) for e ∈ Ed(brg(n))ij.

It follows from the definitions that the weighted adjacency matrix of the little Brandt
graph brg(n) is the usual Brandt matrix Bg(n):

Proposition 22. We have Adw(brg(n)) = Ad(Brg(n)) = Bg(n).

Part 2. Applying the quaternion infrastructure to isogeny graphs

5. Superspecial abelian varieties, their principal and [ℓ]-polarizations, and
their isogenies

In this section X is an abelian variety defined over a field k (not necessarily algebraically

closed) with dual abelian variety X̂ = Pic0(X); A will continue to denote a superspecial
abelian variety. If f : X → Y is a morphism of abelian varieties over k, the dual morphism
f̂ : Ŷ → X̂ is defined over k. For a point x of X, denote by tx translation by x on X; the
isomorphism class of a line bundle L on X is denoted [L]. A homomorphism τ : X → X̂ is

symmetric if τ̂ = τ , where we identify X =
ˆ̂
X via the canonical isomorphism

κX : X
≃−→ ˆ̂

X of [vdGM, Thm. 7.9], for example. (33)

A line bundle L on X gives rise to a symmetric homomorphism φL : X → X̂ which maps
points x of X to [t∗xL⊗L−1]. The Poincaré line bundle on X× X̂ is denoted P . Our standard
reference for abelian varieties is [vdGM], whose modern treatment of polarizations is ideally
suited to our needs here.

Definition 23. (cf. [vdGM, Cor. 11.5, Defn. 11.6].) A polarization of an abelian variety X

over a field k is a homomorphism λ : X → X̂ over k satisfying the equivalent conditions

(a) λ is a symmetric isogeny and the line bundle (idX , λ)
∗P is ample;

(b) there exists a finite separable field extension k ⊆ K and an ample line bundle L on XK

such that λK = φL.

If λ : X → X̂ is a polarization of the abelian variety X, following Mumford [MFK94,
Defns. 7.2, 7.3] define the degree deg(λ) of the polarization λ to be the degree of the isogeny
λ, i.e., # ker(λ). The degree deg(λ) is always a square by the Riemann-Roch theorem:
deg(λ) = d2 with d = χ(L) if λk = φL, see [Mum08, §16]. It is convenient to define the
reduced degree rdeg(λ) of the polarization λ to be

rdeg(λ) =
√
deg(λ). (34)

20



A polarization λ : X → X̂ which is an isomorphism is a principal polarization. If λ : X → X̂ is
a polarization of the abelian variety X and ϕ : X ′ → X is an isogeny, then

ϕ∗(λ) := ϕ̂ ◦ λ ◦ ϕ : X ′ → X̂ ′ (35)

is a polarization of X ′ with

deg(ϕ∗(λ)) = deg(λ) deg(ϕ)2 and rdeg(ϕ∗(λ)) = rdeg(λ) deg(ϕ). (36)

Definition 24. Suppose the abelian varietyX over the field k has dimension g and polarization
λ : X → X̂ with kernel ker(λ). The polarization λ is is an [ℓ]-polarization for a prime ℓ ̸= char k

if ker(λ) ⊆ X[ℓ]. An [ℓ]-polarization λ : X → X̂ has reduced degree rdeg(λ) = ℓr for 0 ≤ r ≤ g.
We say that λ is of type r and (X,λ) is an [ℓ]-polarized abelian variety of type r. An [ℓ]-

polarization of type 0 is a principal polarization. If λ : X → X̂ is an [ℓ]-polarization of type

r, then there is a homomorphism [λ] = [λ]ℓ : X̂ → X such that [λ] ◦ λ is multiplication by ℓ

on X. We will see in Theorem 28 that [λ] is an [ℓ]-polarization of type r̂ := g − r on X̂.

Remark 25. For an abelian variety X over a field k and n ∈ N prime to char k there is a
perfect pairing

⟨ , ⟩n := ⟨ , ⟩X,n : X[n]× X̂[n]→ lµ.. n.
A polarization λ on X gives rise to the Weil pairing

⟨ , ⟩λ,n := ⟨ , ⟩X,λ,n : X[n]×X[n] −→ X[n]× X̂[n]
⟨ , ⟩n−→ lµ.. n with ⟨u, v⟩λ,n = ⟨u, λ(v)⟩n.

Proposition 26. Let X be an abelian variety over a field k with dimX = g. Let P be the
Poincaré line bundle on X × X̂.

(a) Let τ : X → X̂ be a symmetric isogeny. The following are equivalent:
(i) τ is a polarization.
(ii) (n idX , τ)

∗P is an ample line bundle on X for some n ∈ N.
(iii) (n idX , τ)

∗P is an ample line bundle on X for all n ∈ N.
(iv) nτ is a polarization for some n ∈ N.
(v) nτ is a polarization for all n ∈ N.

(b) Let ℓ ̸= char k be a prime. If (X,λ) is an [ℓ]-polarized abelian variety of type g, then
λ = ℓλ′ for a principal polarization λ′ of X.

Proof. (a): As in Definition 23, the symmetric isogeny η : X → X̂ is a polarization if and
only if the line bundle (idX , η)

∗P on X is ample. But

(n idX , η)
∗P = (idX , nη)

∗P = (idX , η)
∗P⊗n = ((idX , η)

∗P))⊗n

by [vdGM, Exercise 7.4], and so (n idX , η)
∗P = (idX , nη)

∗P is ample if and only if (idX , η)
∗P

is ample.
(b): If (X,λ) is an [ℓ]-polarized abelian variety of type g, then λ = ℓλ′ for a symmetric

isogeny λ′ : X → X̂. By (a) we have that λ′ is a principal polarization of X. □

Definition 27. Let A = (A, λ) be an [ℓ]-polarized g-dimensional superspecial abelian variety
over Fp, p ̸= ℓ. We denote its Fp-isomorphism class by [A ].

(a) For 0 ≤ r ≤ g, let SPg(ℓ, p)r be the set of Fp-isomorphism classes [A ] of g-dimensional

[ℓ]-polarized superspecial abelian varieties over Fp of type r. In particular SPg(p)0 :=

SPg(ℓ, p)0 is the set of Fp-isomorphism classes of principally polarized superspecial abelian
varieties. The sets SPg(ℓ, p)r are finite.
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(b) For [A = (A, λ)] ∈ SPg(p)0, set ℓA = ℓ(A, λ) = (A, ℓλ), so [ℓA ] ∈ SPg(ℓ, p)g. Suppose
A ′ = (A, λ′) with [A ′] ∈ SPg(ℓ, p)g. Then there is a principally polarized abelian variety
A = (A, λ) with [A ′] = [ℓA ] by Proposition 26(b). In particular SPg(ℓ, p)g is the set

of Fp-isomorphism classes of g-dimensional superspecial abelian varieties over Fp with
ℓ times a principal polarization. There is a canonical bijection between SPg(p)0 and
SPg(ℓ, p)g and #SPg(ℓ, p)g = hg(p).

Theorem 28. Suppose (X,λ) is a g-dimensional [ℓ]-polarized abelian variety of type r,

0 ≤ r ≤ g, over a field k. Then [λ] = [λ]ℓ as in Definition 24 is an [ℓ]-polarization of X̂ of
type r̂ := g − r.

Proof. Firstly note that [λ] : X̂ → X is symmetric. Let P be the Poincaré bundle on X × X̂
and let Q be the Poincaré bundle on X̂ × X, where we identify

ˆ̂
X = X as in (33). If

s : X × X̂ → X̂ ×X is the switch factors map s(x, y) = (y, x), then s∗(Q) = P . From this it
follows that

([λ], idX̂)
∗P = ([λ], idX̂)

∗s∗Q = (s ◦ ([λ], idX̂))
∗Q = (idX̂ , [λ])

∗Q (37)

as line bundles on X̂. Now [λ] is a polarization of X̂ if and only if the line bundle (idX̂ , [λ])
∗Q

on X̂ is ample as in Definition 23. But since λ : X → X̂ is an isogeny, this is true if and only
if

λ∗(idX̂ , [λ])
∗Q = λ∗([λ], idX̂)

∗P = (ℓ idX , λ)
∗P

is an ample line bundle on X, where we have used (37). But this is true since λ is a
polarization by Proposition 26(a). Since deg([λ] ◦ λ) = ℓ2g and deg(λ) = ℓ2r, it follows that

deg([λ]) = ℓ2r̂. Hence [λ] is an [ℓ]-polarization of X̂ of type r̂. □

Definition 29. Suppose X = (X,λ) is a g-dimensional [ℓ]-polarized abelian variety of type

r, 0 ≤ r ≤ g. The the [ℓ]-dual of X is X̂ = (X̂, [λ]) with the [ℓ]-polarization [λ] on X̂ of type

r̂ as in Proposition 28. If [A ] ∈ SPg(ℓ, p)r, then [Â ] ∈ SPg(ℓ, p)r̂. The association [A ]↔ [Â ]
gives a one-to-one correspondence between SPg(ℓ, p)r and SPg(ℓ, p)r̂.

The [ℓ]-dual Â of A = (A, λ) with [A ] ∈ SPg(p)0 is ℓA as in Definition 27(b) with [ℓA ] ∈
SPg(ℓ, p)0̂ = SPg(ℓ, p)g. Likewise the [ℓ]-dual ℓ̂A of ℓA = (A, ℓλ) with [ℓA ] ∈ SPg(ℓ, p)g is
[A ] ∈ SPg(p)ĝ = SPg(p)0.

Now fix n ∈ N prime to char k. Let λ be a principal polarization on the abelian variety
X over the field k. Then λ defines an alternating and nondegenerate Weil pairing on the
n-torsion X[n] of X

⟨ , ⟩λ,n : X[n]×X[n]→ lµ.. n; (38)

#X[n] = n2g. A subgroup C ⊆ X[n] is n-isotropic if the Weil pairing ⟨ , ⟩λ,n is trivial when
restricted to C. An n-isotropic subgroup C is maximal n-isotropic if there is no n-isotropic
subgroup of X properly containing C. The order of a maximal n-isotropic subgroup of X is
ng. Put

Ison(X ) = {maximal n-isotropic subgroups C ⊆ X[n]}. (39)

For a prime ℓ ̸= char k it is known that

# Isoℓ(X ) = Ng(ℓ) :=

g∏
k=1

(ℓk + 1). (40)
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Define an equivalence relation ∼ on Ison(X ) by C ∼ C ′ if there exists α ∈ Aut(X ) with
α(C) = C ′ for C, C ′ ∈ Ison(X ). Put

ison(X ) = Ison(X )/ ∼ (41)

with [C] ∈ ison(X ) the equivalence class containing C ∈ Ison(X ).
A key fact is that quotienting a principally polarized abelian variety by a maximal isotropic

subgroup gives an abelian variety which is again principally polarized:

Proposition 30. cf. [Mum08, §23, Cor. to Thm. 2] and [Oor74, p. 36]. Suppose X = (X,λ)
is a principally polarized abelian variety over an algebraically closed field k and C ⊆ X[n] with
n prime to char k. Let ψC : X → X/C =: X ′. Then there is a principal polarization λ′ on X ′

so that ψ∗
C(λ

′) = nλ if and only if C ∈ Ison(X ). In this case we write X ′ = (X ′, λ′) = X /C.
Furthermore, if [A ] ∈ SPg(p)0 and (n, p) = 1, then [A ′] ∈ SPg(p)0.

Recall that we have fixed a supersingular elliptic curve E = E/Fp with O = OHp =

OE = End(E); O is a maximal order in the rational quaternion algebra Hp
∼= End0(E) :=

End(E)⊗Q.

Remark 31. For g > 1 polarizations λ on g-dimensional superspecial abelian varieties
A = Eg in characteristic p with rdeg(λ) = d as in (34) are in one-to-one correspondence with
Hg,d(O) as in (7). Explicitly, let λ0 be the product polarization on Eg. Then the polarization
λH corresponding to H ∈Hg,d(O) is

λH : A
H−→ A

λ0−→ Â, (42)

see [IKO86, Prop. 2.8]. Note that for n ∈ N and H ∈Hg,d(O) we have λnH = nλH .

Proposition 32. Let ℓ ̸= p be prime. Let A = Eg/Fp with polarizations λ := λH , λ
′ := λH′

corresponding to positive-definite Hermitian matrices H,H ′ ∈ Hg,d(O) as in (42). Let
ϕ : A→ A be an isogeny of degree ℓgm given by M ∈ Matg×g(O). Then ϕ∗(λ′) = ℓmλ if and
only if M †H ′M = ℓmH.

Proof. By (35)

ϕ∗(λ′) = ϕ̂ ◦ λ′ ◦ ϕ,
which by (42) equals

ϕ̂ ◦ λ0 ◦H ′ ◦ ϕ = M̂λ0H
′M = λ0λ

−1
0 M̂λ0H

′M.

Now λ−1
0 M̂λ0 is the Rosati anti-involution applied to M by definition which equals M † in

the product polarization case. Thus we have

ϕ∗(λ′) = λ0M
†HM = λM†HM .

Hence, ϕ∗(λ′) = λM†HM and since ℓmλ = ℓmλH = λℓmH , we are done by Remark 31. □

This allows us to describe the set SPg(p)0 for g > 1 following [IKO86].

Proposition 33. If g > 1 then the map

Hg,1(O) ∋ [H] 7→ [A (H)], where A (H) = (A, λH),

with O = OHp is a bijection between Hg,1(O) defined in (8) and SPg(p)0.

We thus obtain the following description of SPg(p)0.
23



Theorem 34. (Ibukiyama/Katsura/Oort, Serre) There are one-to-one correspondences ↔
with O = OHp :

(a) For g ≥ 1,

SPg(p)0 ←→Pg(Hp) = GUg(Hp)\GUg(Ĥp)/GUg(OĤp
).

(b) For g > 1,

SPg(p)0 ←→Pg(Hp) = GUg(Hp)\GUg(Ĥp)/GUg(OĤp
)←→H g,1(O) = Hg,1(O)/GLg(O),

where the second one-to-one correspondence is Theorem 12.

Theorem 35. Let A = (A, λ) and A ′ = (A′, λ′) with [A ], [A ′] ∈ SPg(p)0 for g > 1 and let
ℓ ̸= p be a prime. Suppose ψ : A′ → A is an isogeny such that ψ∗(λ) = ℓmλ′ for m ≥ 1. Then
there exist principally polarized superspecial abelian varieties

(A1, λ1) = A1 = A ′ = (A′, λ′), A2 = (A2, λ2), . . . ,Am = (Am, λm),

(Am+1, λm+1) = Am+1 = A = (A, λ)

with (ℓ)g-isogenies ψi : Ai → Ai+1 such that ψ∗
i (λi+1) = ℓλi for 1 ≤ i ≤ m and ψ =

ψm ◦ ψm−1 ◦ · · · ◦ ψ1:

ψ : A′ = A1
ψ1−→ A2

ψ2−→ · · · ψm−1−→ Am
ψm−→ Am+1 = A.

Theorem 35 will follow from the purely algebraic Theorem 36 below.

Theorem 36. Let V be a free Z/ℓnZ-module of rank 2g with a nondegenerate symplectic
pairing

⟨ , ⟩V : V × V −→ Q/Z.
Note that there is an induced nondegenerate symplectic pairing on the ℓ-torsion V [ℓ] ⊆ V

⟨ , ⟩V [ℓ] : V [ℓ]× V [ℓ] −→ Q/Z by ⟨•, •⟩V [ℓ] = ⟨(1/ℓn−1)•, •⟩V .
Let M ⊆ V be a maximal isotropic subspace. Then there exists G ⊆M [ℓ] such that G ⊆ V [ℓ]
is maximal isotropic with respect to ⟨ , ⟩V [ℓ].

Proof. The proof is by induction on g. If g = 1, let G be any line in M [ℓ]. Suppose the
statement is true for g − 1.
Case 1. V [ℓ] ⊆M . In this case let G be any maximal isotropic subgroup of V [ℓ].
Case 2. V [ℓ] ̸⊆ M . In this case there exists N ⊆ V , N ∼= (Z/ℓnZ)2g−1, such that M ⊆ N .
To see this note that M has at most 2g − 1 generators, lift them arbitrarily to ℓn-torsion to
define N .
Note that N⊥ ∼= Z/ℓnZ and ⟨N⊥,M⟩V = 0 since M ⊆ N . So N⊥ ⊆ M by maximality.

Apply the induction hypothesis to M/N⊥ ⊆ N/N⊥: N/N⊥ is rank 2g− 2 over Z/ℓnZ with a
nondegenerate symplectic pairing induced by ⟨ , ⟩V . Also M/N⊥ is isotropic; it is maximal
isotropic since if it were contained in a bigger isotropic subgroup pulling back would contradict
the maximality of M . Hence by the induction hypothesis there exists G̃ ⊆M with N⊥ ⊆ G̃
such that G̃/N⊥ ⊆ (M/N⊥)[ℓ] is maximal isotropic. Now take G = G̃[ℓ]. □

Proof of Theorem 35. The proof is by induction onm. Form = 1 the statement follows from
Proposition 30. Suppose the statement is true for m and consider A ′ = (A, λ′) := (A1, λ1),
A = (A, λ) := Am+2 = (Am+2, λm+2) with [A ], [A ′] ∈ SPg(p)0 for g > 1 and an isogeny
ψ : A′ → A such that ψ∗(λ) = ℓm+1λ′ for m ≥ 1. By Proposition 30, the kernel C ⊆ A′[ℓm+1]
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of ψ is a maximal ℓm+1-isotropic subgroup. Now apply Theorem 36 to the free Z/ℓm+1Z-
module A′[ℓm+1] with the nondegenerate symplectic pairing ⟨ , ⟩λ′,ℓm+1 . This shows there
exists an ℓ-maximal isotropic subgroup G ⊆ C[ℓ] ⊆ A′[ℓ] with respect to the nondegenerate
symplectic pairing ⟨ , ⟩λ′,ℓ.
Let A2 be the principally polarized abelian variety A2 = (A2, λ2) := A ′/G with isogeny

ψ1 = ψG : A1 := A′ → A2. Since G ⊆ C, the isogeny ψ : A′ → A factors as

ψ : A1 = A′ ψ1−→ A2
ψ′
−→ Am+2 = A.

Note that both ℓmλ2 and ψ′∗(λm+2) are polarizations on A2 which pull back under ψ1 to
ℓm+1λ1. Since the Néron-Severi group of an abelian variety is torsion-free, this implies
that ψ′∗(λm+2) = ℓmλ2. Applying the induction hypothesis to ψ′ : A2 → Am+2 with
ψ′∗(λm+2) = ℓmλ2 now concludes the proof. □

6. The big, little, and enhanced isogeny graphs

6.1. The big isogeny graph Grg(ℓ, p). The big (ℓ)g-isogeny graph Gr = Grg(ℓ, p) (often
called simply “the isogeny graph”) is the directed graph with vertices Ver(Gr) = SPg(p)0 =
{[A1 = (A, λ1)], . . . , [Ah = (A, λh)]} with #Ver(Gr) = h = hg(p) and A = Eg/Fp. Its edges
are

Ed(Gr)ij = {C ∈ Isoℓ(Ai) | [Ai/C] = [Aj]} (43)

with Isoℓ(A ) as in (39). A useful reformulation of (43) is the following: Set

Hom(Ai,Aj)ℓ = {isogenies ϕ : Ai → Aj of degree ℓ
g such that ϕ∗(λj) = ℓλi} and

Aut(Aj) = {automorphisms ψ : Ai → Aj}.
Define the equivalence relation ∼b on Hom(Ai,Aj) by ϕ ∼b ϕ′ if there is an automorphism α
of Aj such that ϕ′ = α ◦ ϕ and set Hom(Ai,Aj)ℓ = Hom(Ai,Aj)ℓ/∼b. Then by Proposition
30 we have

Ed(Gr)ij = Hom(Ai,Aj)ℓ and

#Ed(Gr)ij =
#Hom(Ai,Aj)ℓ

#Aut (Aj)
. (44)

We have
∑h

j=1 #Ed(Gr)ij = Ng(ℓ) =
∏g

k=1(ℓ
k + 1); see (40).

Theorem 37. Let O ⊆ Hp be the maximal order End(E) with Bg(ℓ) the Brandt matrix for
the maximal order O. Then
(a) Grg(ℓ, p) = Brg(ℓ,O),
(b) Ad(Grg(ℓ, p)) = Bg(ℓ), and
(c) the big isogeny graph Grg(ℓ, p) is regular of degree Ng(ℓ) =

∏g
k=1(ℓ

k + 1).

Proof. The case g = 1 is classical and well-known: combine Remark 14 with the quaternionic-
ideal description of isogenies of supersingular elliptic curves as in, for example, [Gro87, §2].
So suppose g > 1. (a): With O = OHp , we have

Ver(Grg(ℓ, p)) = Ver(Brg(ℓ,O)) = SPg(p)0 ↔Pg(O)↔H g,1(O) := Hg,1(O)/ SLg(O)
using Theorem 34(b) and the definitions in Sections 6.1 and 4.2. With h = hg and

H g,1(O) = {[H1], . . . , [Hh]} for Hi ∈ Hg,1, 1 ≤ i ≤ h, as in (21) we have SPg(p)0 =
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{[A1 := (A, λH1)], . . . , [Ah := (A, λHh
)]} for A = Eg/Fp by Proposition 33. But now using

the notation of Definition 15 and Theorem 16 we have

Ed(Gr g(ℓ, p))ij = Hom(Ai,Aj)ℓ

= Uℓ(Hi, Hj)
big by Prop. 32

= Ed(Br g(ℓ, p)) by Thm. 16 (45)

Since the edges and vertices of Grg(ℓ, p) and Brg(ℓ,O) correspond, we have Grg(ℓ, p) ∼=
Brg(ℓ,O).
(b): This follows immediately from (a) using (32).
(c): This follows from (b) by Theorem 19 (a). □

Taking the dual isogeny does not give a well-defined involution on Ed(Gr), so the big
isogeny graph Grg(ℓ, p) is not a graph with opposites.

6.2. The little isogeny graph grg(ℓ, p). The little (ℓ)g-isogeny graph gr = grg(ℓ, p) has
vertices Ver(gr) = SPg(p)0, so the big graph Gr and the little graph gr have the same vertices.
The edges of gr are

Ed(gr)ij = {[C] ∈ isoℓ(Ai) | [Ai/C] = [Aj]} (46)

with isoℓ(A ) = Isoℓ(A )/ ∼ as in (41). Given an edge e ∈ Ed(gr)ij with e = [C] ∈ isoℓ(Ai)

we define its opposite edge e ∈ Ed(gr)ji by e = [Ĉ] ∈ isoℓ(Aj) with Ĉ the kernel of the dual
isogeny Aj → Ai. Note that this dual is only well-defined up to ∼; thus, it is an operation
on gr (but not Gr). The little graph gr is therefore a graph with opposites. In general gr is
a graph with half-edges.

Again we can reformulate (46) in terms of isogenies. Recall from Section 6.1 that

Ed(Gr)ij = Hom(Ai,Aj)ℓ; (47)

an isogeny ϕ ∈ Hom(Ai,Aj)ℓ defines a class [ϕ] ∈ Hom(Ai,Aj). Define an equivalence
relation ∼l on Hom(Ai,Aj)ℓ by [ϕ] ∼l [ϕ′] if [ϕ′] = [ϕ ◦ β] for β ∈ Aut(Ai) and set

Hom(Ai,Aj)ℓ = Hom(Ai,Aj)ℓ/ ∼l .
Then

Ed(gr)ij = Hom(Ai,Aj)ℓ. (48)

Definition 38. Define a weight function w on the small graph gr = grg(ℓ, p) by w([A ]) =
#Aut(A ) and w(C) = #Aut(A, λ, C) for the vertex corresponding to [A = (A, λ)] ∈ SP(g, p)
and the edge corresponding to [C] ∈ isoℓ(A ), respectively. Then gr is a weighted graph with
half-edges.

Theorem 39. Let O = End(E) ⊆ Hp and let Bg(ℓ) be the Brandt matrix for O. Then
(a) grg(ℓ, p) = brg(ℓ,O) and
(b) Adw(grg(ℓ, p)) = Ad(Grg(ℓ, p)) = Bg(ℓ).

Proof. (a): Again the case g = 1 is classical and follows from Remark 14.
So suppose g > 1. We have

Ver(gr g(ℓ, p)) = Ver(Gr g(ℓ, p)) = Ver(Br g(ℓ, p)) = Ver(br g(ℓ, p))

from the proof of Theorem 37(a).
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We have

Ed(gr g(ℓ, p))ij = Hom(Ai,Aj)ℓ by (48)

= Uℓ(Hi, Hj)
little by Prop. 32

= Ed(br g(ℓ, p))ij by Thm. 16. (49)

Since the edges and vertices of grg(ℓ, p) and brg(ℓ,O) correspond, we have grg(ℓ, p) ∼= brg(ℓ,O).
(b): The equality of Adw(gr g(ℓ, p)) and Ad(Gr g(ℓ, p)) follows since each edge [C] ∈ Ed(gr g(ℓ, p))
corresponds to a number of edges of Ed(Gr g(ℓ, p))ij equal to the size of the orbit of C under
Aut(Ai) which equals

#Aut(Ai)

#Aut(Ai, λi, C)
=

w([Ai])

w([C])
.

Now apply Theorem 37(b). □

6.3. The enhanced isogeny graph g̃rg(ℓ, p). In the notation of Definition 27, put h = hg(p)
and

SPg(p)0 = {[A1], . . . , [Ah]} = {v1, . . . , vh},
SPg(p)g = {[ℓA1], . . . , [ℓAh]} = {vh+1, . . . , v2h}.

The enhanced (ℓ)g-isogeny graph g̃r = g̃rg(ℓ, p) has vertices

Ver(g̃r) = SPg(p)0
∐

SPg(p)g = {v1, . . . , vh}
∐
{vh+1, . . . , v2h}.

Polarizations of type g are just ℓ times a principal polarization, and thus there is a natural
bijection between SPg(p)0 and SPg(p)g. Nevertheless, they correspond to distinct vertices

of g̃r . For SPg(p)g ∋ [Âi] = [ℓAi] = vh+i ∈ Ver(g̃r) and SPg(p)0 ∋ [Aj] = vj ∈ Ver(g̃r), the
edges of g̃r from vh+i to vj are

Ed(g̃r)h+i,j = {[C] ∈ isoℓ(Ai) | [Ai/C] = [Aj]}

with notation as in (41). For SPg(p)0 ∋ [Ai] = vi ∈ Ver(g̃r) and SPg(p)g ∋ [Âj] = [ℓAj] =
vh+j ∈ Ver(g̃r), the edges of g̃r from vi ∈ Ver(g̃r) to vh+j ∈ Ver(g̃r) are

Ed(g̃r)i,h+j = {[Ĉ] ∈ isoℓ(Âi) | [Âi/Ĉ] = [Âj]}

with Â denoting the [ℓ]-dual of A as in Definition 29. In case 1 ≤ i, j ≤ h or h+1 ≤ i, j ≤ 2h,
Ed(g̃r)ij = ∅.
The enhanced isogeny graph g̃r is a graph with opposites: If e ∈ Ed(g̃r)ij the opposite

edge e ∈ Ed(g̃r)ji is the equivalence class of the dual isogeny. We never have e = e, so g̃r is a
graph without half-edges. The graph g̃r is a graph with weights: define w as the order of the
automorphism group as for gr .

Theorem 40. (a) The enhanced isogeny graph g̃r = g̃rg(ℓ, p) is the bipartite double cover of
the little isogeny graph gr = grg(ℓ, p) with inherited weights.

(b) Let A = Ad(gr) and Aw = Adw(gr) = Ad(Grg(ℓ, p)). Then

Ad(g̃r) =

[
0 A
A 0

]
and Adw(g̃r) =

[
0 Aw

Aw 0

]
=

[
0 Bg(ℓ)

Bg(ℓ) 0

]
.

Proof. (a): Let ι : g̃r → g̃r be the involution defined on vertices by ι([A ]) = [Â ] and on
edges such that if e ∈ Ed(g̃r)ij corresponds to the class [C], then ι(e) ∈ Ed(g̃r)i+h,j+h (where
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the indices are added mod 2h) also corresponds to the class [C]. Then ι fixes no vertices and
no edges of g̃r and g̃r/ι = gr . Thus the enhanced graph g̃r is the bipartite double cover of
the little graph gr .
(b): Given (a), the adjacency matrices for g̃r now follow from Theorems 37 and 39. □

7. Connectedness results for isogeny graphs

7.1. Connectedness for g = 1: supersingular elliptic curves. It is well known that the
ℓ-isogeny graph for supersingular elliptic curves in characteristic p is connected. A standard
proof of this result relies on the fact that integral primitive quaternary quadratic forms
represent all sufficiently large integers. There is another proof by Serre [Mes86, p. 223]
using that the space of Eisenstein series of weight 2 for the congruence subgroup Γ0(p) is
1-dimensional. In this section we give the proof using Theorem 4 on strong approximation.
As a byproduct we get that Gr 1(ℓ, p) and gr 1(ℓ, p) are not bipartite. This in turn enables us
to conclude that the enhanced isogeny graph g̃r 1(ℓ, p) is connected.

Let E/Fp, E ′/Fp be supersingular elliptic curves with O = OE = End(E) and O′ = OE′ =
End(E ′) maximal orders in Hp. Then Hom(E,E ′) is an ideal in Hp with left order O′ and
right order O.

Lemma 41. If ψ ∈ Hom(E ′, E) has degree degψ = x ̸= 0, then the right O-ideal
I = {ψ ◦ ϕ | ϕ ∈ Hom(E,E ′)} ⊆ O

has reduced norm x.

Proof. We begin with the case when ψ is separable. Then we have

I = {α ∈ End(E) = O | α̂(ker ψ̂) = 0}.
Thus for each prime power ℓk∥x, I ⊗ Zℓ is of index ℓ2k in O ⊗ Zℓ. Combining these together
we see that I has index x2 in O and hence has reduced norm x.

Now suppose ψ is inseparable. Let ψ′ be a separable map from E ′ to E of degree x′. Let

β = ψ ◦ ψ̂′. Let
I ′ = {ψ′ ◦ ϕ | ϕ ∈ Hom(E,E ′)} ⊆ O.

Then by the above case I ′ has reduced norm x′. Also I = β
x′
I ′ and taking norms of both sides

we get that the reduced norm of I is x. □

Theorem 42. Let ℓ ̸= p be prime.

(a) The big isogeny graph Gr 1(ℓ, p) and the little isogeny graph gr 1(ℓ, p) for supersingular
elliptic curves are connected.

(b) The graphs Gr 1(ℓ, p) and gr 1(ℓ, p) are not bipartite, i.e., given any two supersingular
elliptic curves E and E ′ in characteristic p, there exists an isogeny ϕ : E → E ′ such that
the degree of ϕ is an even power of ℓ.

(c) The enhanced isogeny graph g̃r 1(ℓ, p) is connected.

Proof. (a, b): Let E = E/Fp and E ′ = E ′/Fp be any two supersingular elliptic curves. By
Tate’s theorem E and E ′ are isogenous. Hence there exists an isogeny ψ ∈ Hom(E ′, E) with
some degree x ̸= 0. Consider the right ideal I ⊂ OE defined by I = {ψ ◦ϕ | ϕ ∈ Hom(E,E ′)};
I has reduced norm x by Lemma 41. Let α ∈ Hp be an element of norm x; such an α exists
by the Hasse-Minkowski theorem. Then the fractional right ideal I1 = α−1I has norm 1.
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Now by Lemma 5, there exists an element β ∈ I1⊗Z[1/ℓ] of norm 1. Let ℓn be a sufficiently
high power of ℓ so that ℓnβ ∈ I1. Then αℓnβ ∈ I and thus is equal to ψ ◦ ϕ for some
ϕ ∈ Hom(E,E ′).
Taking the equation αℓnβ = ψ ◦ ϕ and computing norms/degrees, we obtain

NmHp/Q(α)ℓ
2nNmHp/Q(β) = deg(ψ) deg(ϕ).

Since NmHp/Q(α) = deg(ψ) = x and NmHp/Q(β) = 1, we see that the degree of ϕ is ℓ2n. Hence
Gr 1(ℓ, p) and gr 1(ℓ, p) are connected and not bipartite.
(c): Since gr 1(ℓ, p) is connected and not bipartite, its bipartite double cover g̃r 1(ℓ, p) (see
Theorem 40(a)) is connected. □

7.2. Connectedness for g > 1. We now consider the higher-dimensional case; henceforth
suppose g > 1. Here we deduce the connectedness of the isogeny graphs from strong
approximation for the quaternionic unitary group. Strong approximation in this context
has previously been applied to questions of moduli of abelian varieties in characteristic p:
applications to Hecke orbits are in Chai/Oort [CO11, Prop. 4.3] and applications to the
geometry of stratifications are in Ekedahl/Oort [Oor01, §7]; see also Chai [Cha95, Prop. 1].
In particular, Theorem 43 below should be compared with Ekedahl/Oort’s version of strong
approximation in [Oor01, Lemma 7.9]. Combining strong approximation with Proposition
32 and Theorem 35 shows that the isogeny graphs Grg(ℓ, p) and grg(ℓ, p) are connected.
Our strong approximation argument further implies that Grg(ℓ, p) and grg(ℓ, p) are not
bipartite. This in turn is used to show that the enhanced isogeny graph g̃rg(ℓ, p) is connected
— analogously to the g = 1 argument of Theorem 42. Note that [Oor01, §7] treats inseparable
isogenies of superspecial abelian varieties which we do not consider here.

Let H/Q be an arbitrary rational definite quaternion algebra with maximal order OH.

Theorem 43. (cf. [Oor01, Lemma 7.9]) Let ℓ be a prime unramified in H. Then given any
two positive-definite Hermitian matrices H,H ′ ∈ Matg×g(OH) of reduced norm 1, there exists
a matrix M ∈ Matg×g(OH) such that

M †HM = ℓ2nH ′ (50)

for some positive integer n.

Proof. Let M0 ∈ Matg×g(H) satisfy M †
0M0 = H; such an M0 exists by Lemma 7. By the

same lemma, we can assume that H ′ = I.
We are now ready to apply the strong approximation Theorem 4. Let A be the adèles of Q

and G be the quaternionic unitary group

G = Ug(H) = {M ∈ Matg×g(H) |M †M = Idg×g}.
The quaternionic unitary group G is the compact real form of Sp2g, so is simple.

Let S = {ℓ,∞} and set

U = {M ∈ G(A) | (M−1
0 M)q ∈ Matg×g(OH ⊗ Zq) for q ̸= ℓ}. (51)

By Lemma 7 there exists Nq ∈ Matg×g(OH ⊗ Z(q)) such that H = N †
qNq. Then

M0N
−1
q ∈ Ug(OH ⊗Qq) = G(Qq).

The set U ⊆ G(A) in (51) is open and nonempty since (M0N
−1
q ,Mp)q /∈S, p∈S ∈ U for Mp

arbitrary.
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Hence by strong approximation (Theorem 4) there exists M ′ ∈ Matg×g(H) such that
M ′†M ′ = Idg×g and M

−1
0 M ′ ∈ Matg×g(OH[1/ℓ]). Let ℓ

n be a sufficiently high power of ℓ such
that ℓnM−1

0 M ′ ∈ Matg×g(OH). Let M = ℓnM−1
0 M ′. Then

M †HM =M †M †
0M0M = ℓ2nM ′†M ′ = ℓ2n Idg×g .

□

Theorem 44. Let ℓ ̸= p be prime, g > 1, A = Eg, and O = OE = End(E).

(a) The big isogeny graph Grg(ℓ, p) and the little isogeny graph grg(ℓ, p) are connected.
(b) The graphs Grg(ℓ, p) and grg(ℓ, p) are not bipartite, i.e., given any two principal polariza-

tions of A, λH and λH′ with H,H ′ ∈ SLg(O) positive-definite Hermitian matrices, there
exists a path on each graph from the vertex [A ′ = (A, λH′)] to the vertex [A = (A, λH)]
of even length.

(c) The enhanced isogeny graph g̃r g(ℓ, p) is connected.

Proof. Put Gr = Grg(ℓ, p) and gr = grg(ℓ, p).
(a, b): Let

[A = (A, λH)], [A
′ = (A, λH′)] ∈ Ver(Gr) = Ver(gr)

with H,H ′ ∈ SLg(O) positive-definite Hermitian matrices. By Theorem 43, there exists
M ∈ Matg×g(O) with M †HM = ℓ2nH ′ for some positive integer n. Hence by Proposition 32,
the isogeny ψ ∈ End(A) given by M satisfies ψ∗(λH) = ℓ2nλH′ . But then by Theorem 35
there exists a path of length 2n on both gr and Gr connecting the vertex [A ′] to the vertex
[A ].
(c): Since grg(ℓ, p) is connected and not bipartite, its bipartite double cover g̃rg(ℓ, p) (see
Theorem 40 (a)) is connected. □

8. The ℓ-adic uniformization of grg(ℓ, p) and g̃rg(ℓ, p)

Through out this section X will be an arbitrary principally polarized, not necessarily
supersingular, abelian variety.
It is well known that for ℓ ̸= p the supersingular elliptic curves over Fp are in bijective

correspondence with the double cosets

OHp [1/ℓ]
×\GL2(Qℓ)/Q×

ℓ GL2(Zℓ),
with GL2(Qℓ)/Q×

ℓ GL2(Zℓ) corresponding to the vertices of the standard tree for GL2(Qℓ).
We will generalize this form to higher dimension, starting with the definition below.

Definition 45. Let R be a commutative ring and M an R-algebra with an anti-involution
x 7→ x†. We define the unitary group U(M) = {x ∈ M | x†x = 1}. We define the general
unitary group GUR(M) = {x ∈M | x†x ∈ R×}.

Remark 46. Let B2g be the Bruhat-Tits building for GSp2g over Qℓ. The special 1-skeleton
S2g of B2g has vertices the special vertices of B2g which are the vertices of type 0 or g – see,
for example, [She07, Sect. 2,3], and edges the edges of the 1-skeleton of B2g with both ends
special vertices.

Note that the next theorem is true for all principally polarized abelian varieties whether
superspecial or not. Specifically say that for a principally polarized abelian variety the
anti-involution x 7→ x† on End(A) is Rosati. On Eg we take the Rosati (anti-)involution
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corresponding to the product polarization. Hence on Matg×g(OE) we take M 7→M † :=M
t
,

with m 7→ m the main involution of the definite quaternion algebra End(E)⊗Q := End0(E).
Theorems similar to Theorem 47 can be found in the theory of Shimura varieties – see

[Kot92], for example.

Theorem 47. Let X be a principally polarized abelian variety of dimension g over an
algebraically closed field k of characteristic char(k) with ℓ ̸= char(k) a prime. The principally
polarized abelian varieties isogenous to X by ℓ-power isogenies (we require that the principal
polarization be the one induced by the isogeny) are in bijective correspondence with the double
cosets

GU(End(X)[1/ℓ])\GSp2g(Qℓ)/Q×
ℓ GSp2g(Zℓ), (52)

with GSp2g(Qℓ)/Q×
ℓ GSp2g(Zℓ) the vertices Ver(S2g) as in Remark 46. Furthermore, (ℓ)g-

isogenies correspond to the edges Ed(S2g). Specifically, two elements of

GSp2g(Qℓ)/Q×
ℓ GSp2g(Zℓ)

are adjacent if the corresponding homothety classes of unimodular symplectic lattices have
representatives with one having index (ℓ)g in the other. In particular, the principally polarized
superspecial abelian varieties of dimension g are in bijective correspondence with

GU(Matg×g(OE[1/ℓ]))\GSp2g(Qℓ)/Q×
ℓ GSp2g(Zℓ). (53)

Proof. Let T = Taℓ(X) be the Tate module of X, and let V = Taℓ(X)⊗Qℓ, both equipped
with the symplectic Weil pairing. Identify GSp2g(Qℓ) = GSp(V ) and GSp2g(Zℓ) = GSp(T ).
Note that we have an exact sequence

0→ T → V
π−→ X[ℓ∞]→ 0.

Let ϕ : X → X ′ be an ℓ-power isogeny to an abelian variety X ′, principally polarized by
the induced polarization. We will associate to the pair (ϕ,X ′) the homothety class of the Zℓ-
lattice T ′ = π−1(kerϕ) ⊂ V . Since the induced polarization on X ′ is principal, the symplectic
pairing restricted to T ′ is a scalar multiple of a unimodular integral pairing. Conversely, if [T ′]
is a homothety class of full-rank Zℓ-lattices in V such that symplectic pairing restricted to any
representative is a scalar multiple of a unimodular integral pairing, pick a representative T ′

such that T ′ ⊃ T . Then π(T ′) is the kernel of an ℓ-power isogeny whose image is principally
polarized. Furthermore, picking a different representative corresponds to composing the ϕ
with multiplication by a scalar power of ℓ.

Note that if ψ : X ′ → X ′′ is an (ℓ)g-isogeny, then T ′′ = π−1(kerψ ◦ ϕ) is an extension of T ′

of index (ℓ)g. Hence the corresponding vertices of the building are adjacent. Conversely, since
both graphs have the same degree all special edges of the building come from (ℓ)g-isogenies.
Now let ∆ be the set of all homothety classes of full-rank Zℓ-lattices in V such that the

restriction of the symplectic pairing is a scalar multiple of a unimodular integral pairing. It is
easy to see that ∆ ∼= GSp(V )/Q×

ℓ GSp(T ) with rQ×
ℓ GSp(T ) corresponding to the class [rT ].

It suffices to show that [rT ] and [sT ] correspond to isomorphic principally polarized abelian
varieties if and only if [rT ] = [ψsT ] for some ψ ∈ GU(End(X)[1/ℓ]). After possibly scaling
r, s, and ψ by powers of ℓ we may assume that ψ ∈ End(X), rT = ψsT , and rT, sT ⊃ T .
Therefore π(rT ) = ψ(π(sT )). Hence if kerϕ = π(rT ) and kerϕ′ = π(sT ), then ϕ ◦ ψ = ϕ′

and both have the same codomain.
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Conversely, if ϕ and ϕ′ have the same codomain, let ψ = ϕ̂ ◦ ϕ′. Note that ψ ∈
GU(End(X)[1/ℓ]) since it preserves the polarization. Now ϕ ◦ ψ = deg(ϕ)ϕ′. Now let
π(rT ) = kerϕ and π(sT ) = ker(deg(ϕ)ϕ′). Then rT = ψsT , and we are done with the main
claim.
The final assertion with (53) now follows from Theorem 44. □

We now apply Theorem 47 to derive the ℓ-adic uniformization of the isogeny graphs grg(ℓ, p)
and g̃rg(ℓ, p).

8.1. The case g = 1: ℓ-adically uniformizing gr1(ℓ, p) and g̃r1(ℓ, p). Let ∆ = ∆ℓ

be the tree for SL2(Qℓ). The rational definite quaternion algebra Hp with maximal order
O = OHp is ramified at p and split at ℓ. Set

Γ0 = O[1/ℓ]× and Γ1 = {γ ∈ Γ0 | NmHp/Q(γ) = 1}. (54)

We have Γ0 = O[1/ℓ]× ↪→ (Hp⊗QQℓ)
× = GL2(Qℓ) and likewise Γ1 ↪→ GL2(Qℓ). Let Γi be the

image of Γi in PGL2(Qℓ) for i = 0, 1. The groups Γ0, Γ1 are discrete cocompact subgroups of
PGL2(Qℓ). The groups Γi ⊂ GL2(Qℓ) act on ∆ through their image Γi ⊆ PGL2(Qℓ), i = 0, 1.
Hence the quotients Gr1 := Γ1\∆ = Γ1\∆ and Gr0 := Γ0\∆ = Γ0\∆ are finite graphs with
weights. Kurihara [Kur79, p. 294] shows that the weighted adjacency matrix Adw(Gr0) is
the Brandt matrix B1(ℓ) for O ⊆ Hp; we know Adw(gr 1(ℓ, p)) = B1(ℓ) by Theorem 39. In
fact, to show Adw(Gr0) = B1(ℓ) Kurihara basically shows Gr0 = br 1(ℓ, p). In [Kur79, p. 296]
it is shown that Gr1 (note that our Γ1 is Γ+ in [Kur79]) is the bipartite double cover of Gr0.
Hence we have

Theorem 48. (Kurihara)

(a) br 1(ℓ, p) = Γ0\∆ℓ = Γ0\∆ℓ as graphs with weights.
(b) Γ1\∆ℓ = Γ1\∆ℓ is the bipartite double cover of Γ0\∆ℓ = Γ0\∆ℓ.

Theorem 49. (a) gr 1(ℓ, p) = Γ0\∆ℓ = Γ0\∆ℓ as graphs with weights.
(b) g̃r 1(ℓ, p) = Γ1\∆ℓ = Γ1\∆ℓ as graphs with weights.

Proof. (a): Combine Theorem 39(a) with Theorem 48(a).
(b): Combine Theorem 48(b) with Theorem 40(a). □

Remark 50. (a) The big isogeny graph Gr 1(ℓ, p) is not ℓ-adically uniformized by ∆ℓ since
Gr 1(ℓ, p) is not a graph with opposites.

(b) Theorem 49(a) obviously implies that the isogeny graph gr 1(ℓ, p) is connected. Note that
in fact Kurihara [Kur79, p. 291] invokes strong approximation in the course of proving
br 1(ℓ, p) = Γ0\∆ℓ.

8.2. The isogeny graphs gr1(ℓ, p), g̃r1(ℓ, p) and Shimura curves. Theorem 49 in
turn will show that our isogeny graphs gr1(ℓ, p) and g̃r1(ℓ, p) arise from the bad reduction of
Shimura curves, which we now explain. Let B be the indefinite rational quaternion division
algebra with DiscB = ℓp. Let VB/Q be the Shimura curve parametrizing principally polarized
abelian surfaces with QM (quaternionic multiplication) by a maximal orderM⊆ B. There
is then a model MB/Z of VB/Q constructed as a coarse moduli scheme by Drinfeld [Dri76];
see also [JL85]. Let L /Zℓ be the ℓ-adic upper half-plane. The dual graph G(L /Zℓ) of its
special fiber is canonically ∆ = ∆ℓ. For Γ ⊆ PGL2(Qℓ) a discrete, cocompact subgroup,
the quotient Γ\L is the formal completion of a scheme LΓ/Zℓ along its closed fiber. The
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dual graph of its special fiber G(LΓ/Zℓ) ≃ (Γ\∆)∗ as graphs with lengths in the notation of
Definition 21(d), see [Kur79, Prop. 3.2].

For the formulation below, see [JL85, Theorems 4.3′, 4.4].

Theorem 51. (Čerednik, Drinfeld) Let wℓ be the Atkin-Lehner involution at ℓ of MB. Let
Γ0 be the image of Γ0 ⊆ GL2(Qℓ) in PGL2(Qℓ) and similarly for Γ1. Let O be the ring of
integers in the unramified quadratic extension of Qℓ.

(a) The scheme MB × Zℓ is the twist of LΓ1
/Zℓ given by the 1-cocycle

χ ∈ H1(Gal(O/Zℓ),Aut(LΓ1
×Zℓ

O/O)), where χ : Frobℓ 7→ wℓ :

MB × Zℓ = (LΓ1
)χ.

(b) (MB/wℓ)× Zℓ = LΓ0
/Zℓ.

The curve MB × Zℓ/Zℓ is an admissible curve in the sense of [JL85, Defn. 3.1]. As such,
the dual graph of its special fiber G(MB × Zℓ/Zℓ) is a graph with lengths as in Definition
21(b) by [JL85, Defn. 3.2].

Corollary 52. (a) G(MB × Zℓ/Zℓ) = Γ1\∆ = g̃r1(ℓ, p) as graphs with lengths.
(b) G((MB/wℓ) × Zℓ/Zℓ) = (Γ0\∆)∗ = gr1(ℓ, p)

∗ as graphs with lengths with (Γ0\∆)∗,
gr1(ℓ, p)

∗ as in Definition 21(d).

Proof. This follows from Theorem 51 by [JL85, Prop. 4.2], which in turn is extracted from
[Kur79, §3].

□

8.3. The general case g ≥ 1: ℓ-adically uniformizing grg(ℓ, p) and g̃rg(ℓ, p). Recall
A = Eg, O = End(E) ⊆ Hp, and End(A) = Matg×g(O). Let B2g be the Bruhat-Tits building
for Sp2g(Qℓ) and S2g its special 1-skeleton as in Remark 46. Note that GUg(Hp ⊗Q Qℓ) and
Ug(Hp ⊗Q Qℓ) as in (9) act on S2g with finite quotient.

Theorem 53. (a) brg(ℓ,O) = GUg(O[1/ℓ])\S2g as graphs with weights.
(b) Ug(O[1/ℓ])\S2g is the bipartite double cover of GUg(O[1/ℓ])\S2g.
Proof. (a) follows immediately from Theorem 47 since GUg(O[1/ℓ])\S2g is the same as (53).
(b) follows from (1) since g̃r g is the bipartite double cover of gr g and PUg(O[1/ℓ]) is the

subgroup of PGUg(O[1/ℓ]) that preserves mod 2 distance. □

Theorem 54. (a) grg(ℓ, p) = GUg(O[1/ℓ])\S2g as graphs with weights.
(b) g̃rg(ℓ, p) = Ug(O[1/ℓ])\S2g as graphs with weights.

Proof. (a): Combine Theorem 39(a) with Theorem 53(a).
(b): Combine Theorem 53(b) with Theorem 40(a). □

Remark 55. (a) Theorem 54 once again immediately implies that the isogeny graphs grg(ℓ, p)
and g̃rg(ℓ, p) are connected. However, note that the proof of Theorem 54 uses Theorem
47, which in turn uses Theorem 44.

(b) In case g = 1 we have Sp2(Qℓ) = SL2(Qℓ), S2 = ∆ℓ, U1(O[1/ℓ]) = Γ1, and GU1(O[1/ℓ]) =
Γ0. Hence for g = 1 we recover Theorem 49.

(c) The big isogeny graph Grg(ℓ, p) is not uniformized by S2g as in the g = 1 case (Remark
50) since it is not a graph with opposites.

(d) There would be great interest in generalizing Theorem 51 and Corollary 52 to g > 1.
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9. Computations: The Ramanujan property for Grg(ℓ, p) with g > 1

9.1. A non-Ramanujan example. To see that the isogeny graph Grg(ℓ, p) is in general
non-Ramanujan, consider the case ℓ = 2, g = 2, and p = 11. Here there are two supersingular
elliptic curves: E1 : y2 = x3 + 1 and E2 : y2 = x3 + x. There are also two superspecial
genus-2 curves: C1 : y

2 = x6 + 1 and C2 : y
2 = x6 + 3x3 + 1. Hence there are five principally

polarized superspecial abelian surfaces: E1 × E1, E2 × E2, E1 × E2, and the jacobians
J(C1), J(C2), the products taken with the product polarization and the jacobians with their
canonical polarizations. A Richelot isogeny of a principally polarized abelian surface (A, λ) is
quotienting by a maximal isotropic subgroup of A[2]. We computed the Richelot isogenies
for these principally polarized abelian surfaces using Magma [BCP97]. The adjacency matrix
for Gr 2(2, 11) is

Ad(Gr 2(2, 11)) =


3 9 0 3 0
4 3 4 4 0
0 3 6 0 6
1 3 0 3 8
0 0 3 4 8

 ;

the row-sums of this matrix are all 15 = N2(2) = (1 + 2)(1 + 22). The eigenvalues of this
matrix are 15, 7±

√
3, and −3±

√
3. The second largest of these is 7 +

√
3 > 2

√
14. Hence

the graph is not Ramanujan.

9.2. A Ramanujan example. To see that the isogeny graph Grg(ℓ, p) can (rarely) be
Ramanujan, consider the case ℓ = 2, g = 2, and p = 7. In characteristic 7 there is one
supersingular elliptic curve E : y2 = x3−x and one superspecial genus-2 curve C : y2 = x5+x.
There are two principally polarized superspecial abelian surfaces: E × E with the product
polarization and the jacobian J(C) of C with its canonical polarization. The adjacency
matrix for Gr 2(2, 7) is

Ad(Gr 2(2, 7)) =

[
11 4
6 9

]
.

Again, the graph Gr 2(2, 7) is 15-regular and we see that the row sums of Ad(Gr 2(2, 7)) are
all 15. The eigenvalues of this matrix are 15 and 5. Since 5 < 2

√
14, the graph Gr 2(2, 7) is

Ramanujan.

9.3. A range of computations. We computed Grg(ℓ, p) using Theorem 37 by calculating
the Brandt matrix Bg(ℓ) for the maximal order O = End(E) ⊆ Hp. We were able to do
this for all primes p ≤ pmax and (g, ℓ, pmax) one of (2, 2, 311), (2, 3, 257), (2, 5, 173), (3, 2, 41),
(3, 3, 23). Hence in these ranges we could determine whether the big isogeny graph Gr g(ℓ, p)
is Ramanujan.

The graph is trivially Ramanujan, due to having only one vertex, when (g, p) = (2, 2), (2, 3),
or (3, 2) and ℓ arbitrary – the number of vertices only depends on (g, p) and not on ℓ.
Otherwise, the only Ramanujan examples we found are when (g, ℓ, p) is one of (2, 2, 5),

(2, 2, 7), (2, 3, 7), (3, 2, 3). (All these graphs have two vertices, but not every two-vertex graph
is Ramanujan.)
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no. 2, 29–40. MR0422290

[Eic55] Martin Eichler, Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math. 195 (1955),
127–151 (1956).

[Eke87] Torsten Ekedahl, On supersingular curves and abelian varieties, Math. Scand. 60 (1987), no. 2,
151–178. MR914332

[Gro87] Benedict H. Gross, Heights and the special values of L-series, Number theory (Montreal, Que.,
1985), 1987, pp. 115–187.

[Gro99] Benedict H. Gross, Algebraic modular forms, Israel J. Math. 113 (1999), 61–93. MR1729443
[Has80] Ki-ichiro Hashimoto, On Brandt matrices associated with the positive definite quaternion Hermitian

forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 1, 227–245. MR573338
[HI80] Ki-ichiro Hashimoto and Tomoyoshi Ibukiyama, On class numbers of positive definite binary

quaternion Hermitian forms, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 27 (1980), no. 3.
[IKO86] Tomoyoshi Ibukiyama, Toshiyuki Katsura, and Frans Oort, Supersingular curves of genus two and

class numbers, Compositio Math. 57 (1986), no. 2, 127–152. MR827350
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