ISOGENY GRAPHS OF SUPERSPECIAL ABELIAN VARIETIES AND
BRANDT MATRICES
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ABSTRACT. Fix primes p and ¢ with £ # p. If (A, A) is a g-dimensional principally polarized
abelian variety, an (¢)9-isogeny of (A, A) has kernel a maximal isotropic subgroup of the
{-torsion of A; the image has a natural principal polarization. In this paper we study the
isogeny graphs of (£)9-isogenies of principally polarized superspecial abelian varieties in
characteristic p. We define three isogeny graphs associated to such (£)9-isogenies — the big
isogeny graph Gry (¢, p), the little isogeny graph gr, (¢, p), and the enhanced isogeny graph
gr,(¢,p). We apply strong approximation for the quaternionic unitary group to prove both
that gr,(¢,p) and Gry(¢,p) are connected and that they are not bipartite. The connectedness
of the enhanced isogeny graph gr,(¢,p) then follows. The quaternionic unitary group has
previously been applied to moduli of abelian varieties in characteristic p (sometimes invoking
strong approximation) by Chai, Ekedahl/Oort, and Chai/Oort. The adjacency matrices of
the three isogeny graphs are given in terms of the Brandt matrices defined by Hashimoto,
Ibukiyama, Thara, and Shimizu. We study some basic properties of these Brandt matrices
and recast the theory using the notion of Brandt graphs. We show that the isogeny graphs
Gry(¢,p) and gr (¢, p) are in fact our Brandt graphs. We give the (-adic uniformization of
gry(€,p) and gr,(¢,p). The (£ + 1)-regular isogeny graph Gr1(¢,p) for supersingular elliptic
curves is well known to be Ramanujan. We calculate the Brandt matrices for a range of
g > 1, £, and p. These calculations give four examples with g > 1 where the regular graph
Gry(£,p) has two vertices and is Ramanujan, and all other examples we computed with g > 1
and two or more vertices were not Ramanujan. In particular, the (¢)9-isogeny graph is not
in general Ramanujan for g > 1.
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1. INTRODUCTION

A superspecial abelian variety A/Fp of dimension ¢ is isomorphic to a product of g
supersingular elliptic curves. If g > 1, surprisingly all such products are isomorphic to each
other by Theorem |I| below. Fix a supersingular elliptic curve E/F, with O = Op = End(FE)
a maximal order in the rational definite quaternion algebra H, ramified at p.

Theorem 1. (Deligne, Ogus [Ogu79], Shioda [Shi79]) Suppose A/F, is a superspecial abelian
variety with dim A =g > 1. Then A = EY.

So for dimension g = 1 there are many superspecial abelian varieties (= supersingular elliptic
curves) each with one principal polarization, but for g > 1 there is one superspecial abelian
variety with many principal polarizations.

Let o = (A = EY, \) be a principally polarized superspecial abelian variety of dimension
g over Fp with Fp—isomorphism class [¢/]. The principal polarization A is an isomorphism
from A to A = Pic°(A) satisfying the conditions of Definition . The number h = h,y(p) of
such isomorphism classes [<7] is finite and is a type of class number. For g > 1 set

SP,(p)o = {F,-isomorphism classes [</]}

= {[],...,[9h]} with o = (A; =FE%)\;)if g > 1. (1)

So, for example,
SP1(p)o = {supersingular j-invariants in characteristic p} and
#SP1(p)o = hi(p) = h(H,), the class number of the quaternion algebra H.,.

A principal polarization A on the abelian variety A/F, defines a Weil pairing on A[n] with
(n,p) =1: (, dan: A[n] x Aln] = pn. For (n,p) =1, put

Iso, () = {maximal isotropic subgroups C' C A[n|} with Ny(n):= #Iso,(«). (2)

Note that N,(n) is the number of maximal isotropic subgroups of the standard nondegenerate
symplectic Z/nZ-module of rank 2¢g. In case n = ¢ # p is prime we have
g
# Isog (o) =: Ny(0) = [ (" + 1); (3)
k=1

see, for example, [Ple65| p. 419]. Suppose C' C A[/] is a subgroup with corresponding isogeny
o A— AJ/C =: A’". Then there is a principal polarization X\ on A’ so that ¢ (\) = (X if
and only if C' € Isoy(«7). In this case write &' = (A’, \') = &/ /C and say that ¢ is an (£)9-
isogeny. If [</] € SP,(p)o, then [27’] € SP,(p)o. Such (¢)%-isogenies induce correspondences
from the finite set SP;(p)o to itself. These correspondences can be used to define various
graphs—in this paper we define three (¢)%-isogeny graphs: the big isogeny graph Gry(¢, p), the
little isogeny graph gr,(¢,p), and the enhanced isogeny graph gr,(¢,p). The literature seems
to have only one isogeny graph; this ubiquitous graph is the big isogeny graph Gry(¢, p) for
us.

Distinguishing between these three makes many results clearer and more precise. Take
the case g = 1 for example: the little and enhanced isogeny graphs are uniformized by the
Bruhat-Tits tree A = A of SLy(Qy); the big isogeny graph Gri(¢, p) is not, cf. Section [8.1]
And it is gry (¢, p) and gry(¢,p) which arise from the bad reduction of Shimura curves and

not the familiar big isogeny graph G (¢, p) as we show in Section 8.2, For general g > 1,
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the big isogeny graph Gr,(¢,p) is a regular graph by Theorem , so it is natural to ask if
it is Ramanujan, whereas the little isogeny graph gr, (¢, p) and the enhanced isogeny graph
gr,(¢,p) are not regular.

In this introduction we content ourselves with defining the simplest of the three, the big
isogeny graph Gr = Gry(¢, p):

Definition 2. The vertices of the graph Gr = Gr,(¢,p) are Ver(Gr) = SP,(p)o, so h =
hy(p) = # Ver(Gr). The (directed) edges of Gr connecting the vertex [<%] € SP,(p)o to the
vertex [o7;] € SP,(p)o are

Ed(Gr)i; = {C € Tsol( ) | [#/C] = []}.
The adjacency matrix Ad(Gr);; = # Ed(Gr);; is a constant row-sum matrix by (2)):

g
Z#Ed (Gr)i; =[] + ). (4)
Jj=1 k=1

This paper studies these three (¢)9-isogeny graphs via definite quaternion algebras. It
naturally divides into two parts — Part 1 (Sections develops this infrastructure on
definite quaternion algebras; Part 2 (Sections [5|— E[) connects the quaternion infrastructure to
superspecial abelian varieties together with their polarizations and isogenies, and then applies
it to our three isogeny graphs. In Section [2| we prove the foundational material required
on the arithmetic of definite quaternion algebras together with the Hermitian forms and
unitary groups defined from them. Section [3|introduces the Brandt matrices B, (¢) for the
maximal order O of H,, first defined for g > 1 in the 1980’s by Hashimoto, Ibukiyama, Ihara,
and Shimizu — see [Has80|. Gross’s algebraic modular forms [Gro99| for the quaternionic
unitary group subsequently provided a more general context for these matrices. In Section
we extend Brandt matrices to Brandt graphs Bry(¢,p) and bry(¢,p); we further extend
Brandt graphs to Brandt simplicial complexes in [JZ]. Brandt graphs, like Brandt matrices,
are defined entirely in terms of definite quaternion algebras and as such are amenable to
machine computation. Brandt graphs contain slightly more information than Brandt matrices
— the Brandt matrix B,(¢) is the adjacency matrix of the big Brandt graph Br,(¢, p) and the
weighted adjacency matrix of the little Brandt graph with weights bry (¢, p) (Proposition .

In Part |2l we turn to algebraic geometry. We consider superspecial abelian varieties, their
polarizations, and their isogenies in Section [5l We introduce the key notion of an [¢]-polarized
abelian variety and its [¢]-dual. Section @ then defines the three (¢)9-isogeny graphs Gr, (¢, p),
gr,(¢,p), and gr, (£, p). Sections (7|~ |§| contain our main results on isogeny graphs, which we
now summarize.

A. Relationship between the quaternion infrastructure and our isogeny graphs.
We prove in Theorem [37] the fundamental result that big isogeny graph is the big Brandt
graph: Gry(¢,p) = Br,({,p). Likewise the little isogeny graph with weights is the little
Brandt graph with weights: gr, (£, p) = bry(¢, p) (Theorem . We further explain how to
get the enhanced isogeny graph gr, (¢, p) from the little isogeny graph gr,(¢,p) in Theorem
Because of these theorems our three isogeny graphs can all be defined and computed entirely
in terms of definite quaternion algebras — it is never necessary to write down superspecial
abelian varieties or isogenies. In Section [0] we compute our isogeny graphs for a range of 174
triples (g, ¢, p) with g = 2, 3 including 13 examples with g = 3 — an impossible feat working

with explicit superspecial abelian varieties and (¢)?-isogenies.
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B. Connectedness theorems. It is well known that the (-isogeny graph Gry (¢, p) for
supersingular elliptic curves in characteristic p is connected. A main theorem of this paper is
that the isogeny graphs Gry(¢, p), gr,(¢,p), and gr, (£, p) are connected for g > 1; cf. Section
[7l This had been conjectured for g = ¢ = 2 in [CDS20, Conjecture 1], for example; we
establish the result here for all ¢ and ¢ > 1. Additionally we prove that Gr,(¢,p) and
grg(é, p) are not bipartite. Besides results on polarizations, the main ingredients of the proof
for g > 1 are strong approximation for the quaternionic unitary group (Theorem and
Theorem [35| on factoring isogenies which in turn follows from Theorem [36| on the symplectic
group Spy, over Z /0"Z. Note that knowing strong approximation still requires the results on
factoring isogenies to deduce connectedness. The quaternionic unitary group has previously
been applied to moduli of abelian varieties in characteristic p by Chai [Cha95, Prop. 1],
Ekedahl/Oort [Oor01} §7], and Chai/Oort |[CO11, Prop. 4.3]; a version of strong approximation
for the quaternionic unitary group is given in |Oor01l, Lemma 7.9].

C. f-adic uniformization; Shimura curves when g = 1. Let Iy = O[1/(]* viewed
as a subgroup of GLy(Q,) with Ty its image in PGLy(Q,). Similarly let T} = {y € T |
Nmy, o(y) = 1} with Iy its image in PGL2(Qy). Let A = A, be the Bruhat-Tits tree
for SL2(Qy) = Sp,y(Qyr). We prove that gry(¢,p) = I'o\A, and gr,(¢,p) = I';\A, as graphs
with weights in Theorem [#9] We then generalize this to g > 1 in Theorem [54} Let Sy, be
the special 1-skeleton of the Bruhat-Tits building By, for the symplectic group Sp,,(Q)
as in Remark [46] Let Uy(O[1//]) be the quaternionic unitary group with GU,(O[1/¢]) the
general quaternionic unitary group as in (9). Then we prove gr,(¢,p) = GUy(O[1/€])\Sz
and gr,(¢,p) = Ug(O[1/€])\Sy, as graphs with weights—see Theorem .

When g = 1 we can use this result to connect the ¢-isogeny graph gr, (¢, p) for supersingular
elliptic curves in characteristic p to the bad reduction of Shimura curves. Let B be the
rational quaternion algebra of discriminant ¢p with M C B a maximal order. Let Vz/Q be
the Shimura curve parametrizing abelian surfaces with quaternionic multiplication (QM) by
M with Mp/Z the coarse moduli scheme model for V5 /Q constructed by Drinfeld [Dri76].
Then Mpg X Zy is an admissible curve in the sense of [JL85, Defn. 3.1], and so has a dual graph
[JL85, Defn. 3.2] G(Mpg x Zy/Z;) which is a graph with lengths as in Definition 21|[b). We
show in Corollary that G(Mp % Zy/Z¢) = gry(¢,p). But the dual graph G(Mp X Z¢/Z)
governs vanishing cycles on the curve Mg x Z;y/7Zy: the character group of the Néron model
of the jacobian Jac(Vp)/Qy is Hi(G(Mp X Z¢/Zy),7). The fact that the dual graph of the
Shimura curve Vg in characteristic ¢ is an isogeny graph for supersingular elliptic curves
in the different characteristic p is the key to Ribet’s proof [Rib90] of Serre’s Conjecture
“Epsilon”, and so ultimately to Fermat’s Last Theorem.

Generalizing this picture to g > 1 is compelling: Relate gr (¢, p), gr,(¢,p) to vanishing
cycles for higher-dimensional Shimura varieties over Q.

D. The Ramanujan property for Gr,(¢,p). The big isogeny graph Gr,(¢,p) is a
regular graph, and one can ask whether it is Ramanujan. If g = 1 it is always Ramanujan,
as follows from the Riemann hypothesis for curves over finite fields. Hence naively one
might expect the Ramanujan property to continue to hold for g > 2 — see, for example,
|CS20, Hypothesis 1]. The adjacency matrix Ad(Gry(¢, p)) is the Brandt matrix B,(¢), and
so amenable to machine computation as discussed in A above. In Section [9] we give the
results of checking the Ramanujan property over a range of ¢ and p with ¢ = 2, 3. The
memory requirements grow rapidly with ¢ and especially g; we had no computations finish
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with ¢ > 3. We computed 174 examples with ¢ > 1 and 2 or more vertices and found
only 4 Ramanujan: (g,¢,p) = (2,2,5), (2,2,7), (2,3,7), (3,2,3) are Ramanujan. They all
have two vertices, although not every 2-vertex Gr,(¢,p) is Ramanujan. So seemingly for
g > 2 the isogeny graph Gry(¢, p) is generically not Ramanujan. In Section we compute
Gry(2,11) in terms of superspecial abelian surfaces and Richelot isogenies, thereby giving a
non-Ramanujan example computed entirely by algebraic geometry. In Section [9.2| we likewise
compute Gry(2,7) in terms of abelian surfaces and Richelot isogenies to give a Ramanujan
example computed entirely via algebraic geometry.

We conclude the introduction with brief comments on prior results. The case g = 1 was the
setting for multiple proposals in post-quantum cryptography, and naturally the question of
generalizing to g > 1 arose. Castryck, Decru, and Smith [CDS20] proposed the superspecial
isogeny graph Gra(2,p) as a good generalization to abelian surfaces. Previous work often
concentrates on Gry(2, p) where computations are feasible using classical Richelot isogenies —
see, for example, Katsura and Takashima |[KT20] and the references therein. (In contrast,
we compute Gry(¢,p) by computing Brandt matrices for quaternion algebras.) The paper
[ATY24] gives an alternate definition of Gr,(¢,p) and develops this.

Part 1. The quaternion infrastructure
2. DEFINITE RATIONAL QUATERNION ALGEBRAS

Let H be a definite quaternion algebra over Q with a maximal order Oy, main involution
z — T, and reduced norm Nmpy/q(z) = Nm(z) = 2Z. Set H; = {h € H* | Nmg/g(x) = 1}.
The reduced norm Nm : H — Q generalizes to the reduced norm Nm : Mat,y,(H) — Q
(given by a multiplicative polynomial of degree 2g in the entries of the matrix). Put
SLy(O) = {M € Matyny(Os) | Nm(M) = 1} (5)
with SL,(H) defined analogously. Note that
SLy(On) = GLy(On) = {M € Mat,«,(On) | M is invertible}.

Let Z = @Z/nz be the profinite completion of Z and @ —7® Q the finite adeles of Q.

Then Og = Oy ® Z is the profinite completion of Oy and H= O ® Q is the finite adeles of
H.

2.1. Hermitian matrices. Let g > 1 be an integer. A matrix H € Mat,.,(Og) is Hermitian
it H' .= H' = H. Set

H(On) = {H € Mat,,,(Opn) | H is positive-definite Hermitian}. (6)
The “Haupt norm” HNm of Braun-Koecher [BK66, Chap. 2, §4] (see also [Mum08, Thm. 6
and proof, §21]) is defined on Hermitian matrices in Mat,,(H) and gives a map HNm :
H,(Oy) — N. It is characterized by HNm(Id,«,) = 1 and Nm(H) = HNm(H)? for a

Hermitian matrix H € Mat,y,(H); see [Eke87, p. 152, 153], where HNm is denoted Pf and is
defined via the usual Pfaffian on skew-symmetric matrices. For an integer d > 1 put

H5,4(On) = {H € #;(On) | HNm(H) = d}. (7)
The group SL,(Og) = GL,(Og) acts on 7, 4(Ox) by H-M = MTHM. Set
Hya(On) = H;.4(Ox)/ SLy(Ox) (8)
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with [H] € 7, 4(Ox) the class defined by H € 7 4(Oxy). The sets J, 4(Oy) for d > 1 are
finite.

2.2. Strong Approximation for H;'. We now give the statement of strong approximation
followed by several consequences for the multiplicative group of norm-1 quaternions. In
Section [7| we will use strong approximation for the quaternionic unitary group.

2.2.1. Strong approximation. Let k be an algebraic number field with oo the set of all
archimedean places of k. Let S O oo be a finite set of places of k. Let G be a linear algebraic
group over k. Let G be the adele group of G, Gs C G be the S-component [, ¢ Gy, of
Gy, and G, C G be the k-rational points of G embedded diagonally.

Definition 3. The pair (G, S) has strong approximation if GG, is dense in G,.

Say that a connected noncommutative linear algebraic group G over a field £ is k-simple if
it has no positive-dimensional proper normal subgroups. We now give a statement of Strong
Approximation sufficient for our purposes, quoting Platonov and Rapinchuk [PR94, Thm. 7.12].
The general result is due to Kneser [Kne66].

Theorem 4. Let G be a simply connected and k-simple linear algebraic group over a number
field k. Suppose Gg is not compact. Then (G, S) has strong approximation.

2.2.2. A key lemma.

Lemma 5. Let H/Q be an arbitrary definite quaternion algebra with mazimal order Oy, let
I be a fractional right Og-ideal of norm 1, and let ¢ be a prime unramified in H. Then there
exists an element in I @ Z[1/¢] of norm 1.

Proof. Let G be the algebraic group over Q associated to Hi* = {# € H* | Nm(3) = 1}; then
G(Q) = Hy'. The algebraic group G is simply connected with a simple Lie algebra since
G(R) = SU(2) is. (Let G’ be the algebraic group over Q assoicated to H*, so that G'(Q) = H*
and G'(R) = (H®g R)* is the multiplicative group of Hamilton real quaternions. Note that
G’ doesn’t satisfy the hypotheses of Theorem {4 (Strong Approximation): G'(R) = (H®gR)*
is topologically R* minus the origin, which is simply connected, but as a Lie group, G’(R)
is RZ, x SU(2), which is not simple.) Let S = {¢,00}. By Theorem {4} (G, S) has strong
approximation.

Now consider the subset U C G given by the local conditions that at each prime ¢ # ¢
we have € (I ® Z,) N G(Q,). Notice that this local condition is the standard one that
B € (Ou®Z,)* at all finite primes away from the numerator and denominator of the fractional
ideal I, hence U is open. That U is nonempty follows from the fact that every right ideal
in a quaternion algebra is locally principal. Hence we see that U N GsGg is nonempty and
there exists some € (I ® Z[1/¢]) NH. O

Lemma 6. For each positive integer x and any prime £ not ramified in H there exists an
element in Ogx[l/{] of norm x.

Proof. Let I be an (integral) right ideal of Oy of norm = and « an element of H also of norm

z. Then oI has norm 1 and we may apply Lemma [f| to obtain a 3 € a~'(I ® Z[1/{]) of

norm 1. Then af has norm x and off € I ® Z[1/¢] C On[1/{]. O
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2.2.3. Consequences for Matyx,(On).

Lemma 7. For any prime q and any Hermitian H € Mat gy ,(Ou ® Zy)) which is positive
definite of reduced norm 1, there is a matriz M € Matyy,(On ® Zy) such that H = MTM.
The matriz M satisfies Nm M = 1.

Proof. Since H has reduced norm 1, there exists some v € (Og ® Z(y))? such that z = v Hv €
Zq) satisfies © ¢ qZ) C Zy. By positive-definiteness > 0 and after scaling v we may
assume x ! is an integer. Then by applying Lemma @ for ¢ away from ¢ and the ramified
primes of H there exists an o € Oy ® Z(g) of norm z .

The proof is by induction on g. The assertion is trivial for ¢ = 1: here H = M =1 €
On ® Zy. For a general g, let v; = va as above. Note that vIHvl = 1 and consider
(1)t = {w € (Og ® Z(y)? | viHw = 0}. The Hermitian form defined by H restricts to a
positive definite Hermitian form of reduced norm 1 on {(v;)*, so we’re reduced to showing the
theorem on (v1)* = (Og ® Zy))? .

Finally we have

1 =Nm(H) = Nm(M") Nm(M) = Nm(M)?,
so Nm(M) = 1 since Nm(M) is positive. O

2.3. The quaternionic unitary group. If B is an algebra with anti-involution having fixed
ring R and M is the conjugate-transpose defined using the anti-involution for M € Mat . ,(B),
set
Uy(B) = {M € Matyy,(B) | M'M = Idyx,}
GUy(B) = {M € Matyyy,(B) | MM = A1d,x, with A € R*}.
For a Hermitian matrix H € Mat,y,(On) set
Un(Oy) = {M € Maty(Ox) | MTHM = H}.

Let Hy € #,1(On) be the Hermitian matrix Idgy,. Then Uy, (Oun) = Uy(On) as in (9).

Let L C HY be a finitely generated right Og-submodule such that L @ Q = HY. Such an L
is principally polarized if there exists a ¢ € Q* such that cHj restricted to L is Og-valued and
unimodular. We define the dual of L to be

o~

L=c"L (10)

(9)

Remark 8. Notice that this agrees with the standgrdAdeﬁnition of dual with respect to a
pairing; thus, if L € L/ then L/ C L and [L': L] = [L: L/].

Theorem 9. For M € GUg(ﬁ), set y(M) equal to the principally polarized right Og-
submodule of HY given by v(M) = MOgZ NHY. The association M — (M) induces a

one-to-one correspondence between GUg(]ﬁI)/ GUy(Ogz) and the set of principally polarized
right Og-submodules of HY.

Proof. The module (M) is principally polarized since after tensoring with Z the Hermitian
form is given by M'M which is the identity times a scalar in Q*, which can be approximated
by an element of Q*.
This map is well defined since if MU with U € GU,4(Og) is another representative of the
same class in GU,(H)/ GU,(Og), then UOZ = OZ. Hence MUOZ NHY = MOZ NHY. 1t is
8



injective since if MOZ NHS = M'OZ NHY, we must have MN = M’ for some N € GLy(Og).
But we also have N = M'M~! GUg(]f-\]I). Therefore,

N € GL,(Og) N GU,(H) = GU,(Og),

and [M] = [M'].

Finally, to see that this map is surjective, let L be a principally polarized right Oy-
submodule. Since all finitely generated modules over Oy are locally free, L is given by
NOZ NHY for some N € GLg(]ﬁI). The Hermitian form on L ® Z is given by NTN, and since

L is principally polarized, cNTN is Og-valued and unimodular for some ¢ € Q*. However,
since all integral unimodular Hermitian forms are locally trivial (as follows, for example, from
Lemma (7)), there exists a V' € GLy(Og) such that VIeNTNV is the identity. So we can set

M = NV and have M € GU,(H) with MOZ NHY = NOZ NHY = L. O
Definition 10. We define the classes of GU,(Op), denoted Z,(Op), to be the equivalence
classes of principally polarized right Og-submodules of HY up to left multiplication by
GU,(H). Hence there is a one-to-one correspondence between GU,(H)\ GU,(H)/ GU,(Og)
and Z,(Op) induced by the map 7 of Theorem @

Zy(On) = GU,(H)\ GU,(H)/ GU,(Og). (11)

There are a finite number of classes of GU,(Oy). We will call #%,(Oy) the class number.
It is independent of the choice of maximal order Oy since the isomorphism class of Og is
independent of Oy and consequently we denote it by h,(H). Let the principally polarized
right Og-module L; be a representative of the class [L;] € Z,(Oxy) for 1 <i < h = h,(H).

Remark 11. Notice that L and L belong to the same class. Also note that for U € GU,(H)
we have UL = (U1)TL.

When g = 1 we recover the standard description of the ideal classes &2, (Opy) and the class
number h(H):

2,(Oy) 2 H\H*/OX and  hy(H) = h(H) = #H\H*/OZ, (12)
cf. [Vig80, §3.5.B].

Theorem 12. If g > 1, then %71((9]31) 15 in one-to-one correspondence with the classes of
GU,(On), or equivalently with the double cosets

GU,(H)\ GU,(H)/ GU,y(Og).
Proof. We first define the map
¢ Hy1(On) = GU,(H)\ GU,(H)/ GU, (Og) (13)
by the following procedure: for [H] € 47, 1(Oy) write H = MM for M € SL,(H), such an
M exists by Lemma For each prime ¢ write H = NqTNq with N, € SL,(Oy ® Z,) (again
these exist by Lemma[7). Let N = (N,) € SL,(Og), and notice that (MN~1)TMN~1 = I, so
MN~' € U,(H). Set «(H) = MN~! and define the map ¢ in by
W([H]) = [o(H)] = [MN"T]. (14)

We must now prove that the map ¢ in is well defined, injective, and surjective.

Well-definedness: Suppose M’ € SL,(H) is another choice of M and N’ € SLy(Og) another
9



choice of N satisfying H = M'"M' = N''N’. Then M’'M~' € U,(H) and NN'~" € U,(Og).
Hence

[M'N"1] = [(M'M ™) (MN (NN
corresponds to the same class as [MN~'] in GU,(H)\ GUg(ﬁ)/ GUy(Og).

Now suppose H' € J,,(Oy) is another representative of the same class as H in 7%, 1(Ogy),
i.e., H = UTHU for some U € SL,(Oy). Thus if H = MM = NTN with M € SL,(H) and
N € SLy(Og), then

H = (MU)'MU = (NU)INU
with MU € SL,(H), NU € SL,(Oz), and MU(NU)~ = MN-L.

Ingectivity: Suppose t([H]) = «([H']). Let H = M'M = NN and H' = M'"TM' = N''N’
with M, M’ € SLy(H) and N,N' € SL,(Og). Thus MN~' = VM'N''W-! with V €
GU,(H) and W € GU,(Oz). Set VIV = oI for v € Q* and WIW = wI for w € Z*. Let
U=M1'WM = N'WN"and observe that U € GL,(H) N GL,(Og) = SLy(On). Now

H-U=UHU =M VM) MMM VM = M VIVM =vH,

and a similar argument shows H - U = wH'. Hence v = w € Q* N Z* =7*. Sov = +1 and
we can rule out —1 since H is definite. Thus [H] = [H'].
Surjectivity: Let R
[V] € GUy(H)\ GU,(H)/ GU,y(Og)

with V € GU,(H). Put VIV = oI for v € Q. Put v = ab with a € Qs and b € Z*. Then by
Lemma |§| there exist a € H with N(a) = a and 8 € O with N(8) = b. After replacing V'

with o'V 37! we may assume V € U,(H) C SL, (H).

We will apply strong approximation to G = SL,(H) with S = {oo}. Note that G is not
compact for g > 1 and hence the pair (G, .S) satisfies the conditions of Theorem . The
local conditions we will impose at each prime ¢ will be V™'M € SL(Oy ® Z,). These are
the standard conditions away from finitely many primes and are trivially nonempty since V'
always satisfies them.

Hence there exists M € SL,(H) such that N = V-'M € SL,(Og). Thus «([MTM])
V].

Ol

3. BRANDT MATRICES

3.1. Definition of Brandt matrices. Set h, := hy(H) with &2 (Oy) = {[Li], ..., [Ln,]}
for principally polarized right Og-modules Ly, ..., Ly, € HY. We can now define the Brandt
matrix By(n) € Maty,, «n,(Z) for a natural number n.

Definition 13. Let ¢ > 1 and n € N. For 1 < j < h,(H) =: hy, set
Ej(g) :={U € GUy(H) | L; = UL;},
ej(9) == #E;(9),
B,(n);; := {U € GU,(H) | [L; : UL;] = n*}, (15)
E(U):={V € GU,(H) | VL; = L; and VUL; = ULj;} for U € B,(n);;,

(
(U) := #E(U) for U € By(n)y;.
10
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The sets E;(g), Eg(n)ij, E(U) above depend on the choice of representatives Ly, ..., Lp,.
However, they change by an explicit one-to-one correspondence if we change the representa-
tives: if L; = W;L; for W; € GU,(H), then in the W, can be absorbed into the U. In
particular #]~3g(n)ij and #FE,;(g) do not depend on the choice of representatives for &, (Oy).

Note that E;(g) < GU,(H) and E(U) < E;(g) for U € ﬁg(n)ij. Define the equivalence
relation ~; on Eg(n)ij by U ~, U if U = U'V for some V € E;(g). Likewise define the
equivalence relation ~; on ﬁg(n),-j by U ~ U it U = V;U'V; for some V; € Ej(g) and some
Vi € Ei(g). Define the big quotient

By (n);* = By(n)y;/ ~ (16)

ij
and the little quotient
By (n)ii" = By(n);j/ ~ - (17)
Let [U], € B,y(n )blg [U]; € By(n)ii*' be the equivalence classes of U € B,(n);;. An equivalent
definition is
B,(n)y¥ = {L; | [L; : L}] =n* and UL; = L} for some U € GU,(H)}. (18)

We define an equivalence relation ~ on Bg( Z‘g in . 18) by L. ~ L, if there exists U €

GUy(H) such that UL; = L; and UL} = L;Q ; write [L} ] for the equivalence class of
L € By(n )blg Then we equivalently have

B, ()™ = (By(n)}y®/~) = {[L))i | L} € By(m)}%} (19)
For 1 <14,j < hy, put

B,y = #B, = £

The matrices By(n) do not depend on the choice of maximal order Oy or on the choice of
representatives for #2,(Opy), up to the obvious indeterminacy of simultaneously permuting
the rows and columns. Let By(Om) € Maty, <, (Z) be the Z-algebra generated by By(n),
n > 1. The Z-algebra B,(Oy) does not depend on the choice of maximal order Oy and hence
we can denote it as B, = B, (H).

and  B,(0);; = 1/e;(g). (20)

Remark 14. In the classical case g = 1, h = hy(H) is the class number of H. Let Iy, ..., I,
be representatives for the right Og-ideal classes and let O; be the left order of I;, 1 < i < h.
We have e; = ¢;(1) = #0O;*. Definition [13|in the special case g = 1 gives

E;(1) = 07,
e i=¢;(1) = #07,
-1 1
#{\ e LI7' | NmA=nNm(I; )}

B i — 5
1(1)i ;

E(\) ={uec O [\ lux€ O} for A € By(n)y,

e(A) = #E(\)  for X € By(n),;.
11



In particular, By(1) = Id,«, and By(n) € Matyy,(Z) for n > 1. The Brandt matrix B;(0)
is B1(0);; = 1/e; and B; = B;(H) C Maty«,(Z) is the Z-algebra generated by the Brandt
matrices Bi(n), n > 1.

By Theorem [9] o
#%ﬂg,l(OH) = hg(H) = hg = #99«9]51)

Write
Hy1(O) = {[Hi],...,[Hpy)} for H; € #,1<i< hgy, and (21)
Py(On) = {[L1],...,[Ln,]} with L; a principally polarized right Og-submodule of HY.

First we give an equivalent definition of the Brandt matrix in terms of JZ,;(Oy) in case
g > 1. It is convenient to make the following definition.

Definition 15. Suppose H, H' € £, ,(Oy). For a natural number n set
U,(H,H') :={M € Matyx,(On) | MTHM =nH'} and
U(H) := U, (H, H).

Note that U(H) acts on U, (H, H') by multiplication on the left and U(H') acts on U,,(H, H")
by multiplication on the right. Define an equivalence relation ~y, on U, (H, H') by M ~, MU’
for U' € U(H") and set U,(H, H'"® := U, (H, H')/~y, with [M] € U, (H, H)"® the class
defined by M € U, (H, H'). Define an equivalence relation ~; on U, (H, H')*® by [M] ~; [UM]
for U € U(H). Set U, (H, H')'"e .= U, (H, H')" /~,.

Theorem 16. Let g > 1 with v as in Theorem 9] and v as in ([14). If [y(«([H]))] = [Li] and
[v(e(H;))] = [Lj], then we have equivalently

B, (n)} = U, (H,, H,)" and
Bg (nﬁijfctle — Un(HZ, Hj)little‘
In particular we have

ej(g) = #U(H;) and
By(n);; = By(n); = W
forn = 1.

It clearly suffices prove the following lemma.

Lemma 17. Let g > 1. Choose any [Hy], [Ha] € #,1(Ox). Let [y(t(Hy))] = [Ly] for
k € {1,2}. There exists a bijective correspondence between {U € GU,(H) | [L; : ULs] = n*}
and {B € Mat,,(Og) | BItH,B = nH,}.

Proof. For k € {1,2}, let [Vi] = o([Hy]) with Ly = v(Vi). Let H, = MM, = N}Ny, with
My, € SLy(H), Ny € SLy(Og), and Vi = MyN; ' € U,(H) as in (14).

For B € Mat,,(Oy) with BIH,B = nH,, let Uz = MyBM; . Notice that Bt MM, B =
nMIM, so UUp = nld,., and Up € GU,(H). Similarly take W = Ny BN; ' and observe

A~

that Wi € GU,(H) and Wp € Maty,,(Og). Taking reduced norms, we get Nm(Wp) = n?.
12



Therefore, V[/'B(’)%I C (’)]%I with

(0% - WpOL] = n*. (22)
Notice that UpVy = My BNy = ViWpg. Apply this to gives n* = [V,0% : ViIWpOF] =
[Vl(’)%l : UB%O%]. And intersecting with HY gives n?9 = [L; : UgLs).

The correspondence B — Up is clearly well-defined and injective. We will now show it is
surjective. Given U € GU,(H) with [Ly : ULy| = n®?, hence tensoring with Og we see V0%
UVQC’)%I] =n%. Let B = MflUMg and W = NIBN;, so UV, = ,MlBN{1 = V4W. Hence,
n* = V0% : ViWOZ] = [0 : WOZ]. Thus, W € Matyx,(Og) with Nm(WW) = n?. Since
the Mj’s and Ni’s have reduced norm 1, U also has reduced norm n¢; hence, UTU = n1d,,
since U € GU,(H). Also that means that B € Matyy,(H). But also B = N;'W N, with
Ni, Ny € SLy(Og) and W € Matyy,(Og), so B € Matgy,(Og) and hence B € Matgyy(Om).
Straightforward algebra shows that BTH,B = nH,, and we are done. U

3.2. Brandt matrices: Examples. The Brandt matrices B,(n) for a maximal order
O C H are amenable to machine computation, although the memory requirements rapidly
grow with n and especially g so that few examples are accessible with ¢ = 3. We had no
computations finish for g > 4.

3.2.1. H = H;. Take H = H, the rational definite quaternion algebra of discriminant 7. The
first class numbers of Hy are: hy(Hy;) = 1, ho(H;) = 2, hg(H;) = 5. The Brandt matrices
By, ({) are given in Table 1 below for primes ¢ = 2,3,5,11 and 1 < g < 3. Note that in all
cases By (¢) has constant row-sum Ny(¢) = [T¢_, (1 + ¢*) in keeping with Theorem [19(a]). A ?
in the table below means that the computation did not finish.

By(2) By(3) By(5)  By(11)
g=1 3] [4] [6] [12]

_ 9 11 4 28 12 112 44 928 536
9= 6 9 18 22 66 90 804 660

45 36 8 32 14] [208 208 0 640 64
18 27 6 60 24| |104 184 32 640 160

g=3 |14 21 30 14 56 0 112 112 616 280 ? 7
4 15 1 101 14| |80 160 44 676 160
7 24 16 56 32| |32 160 80 640 208

TABLE 1. Brandt matrices B,(¢) for Hy
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3.2.2. H = Hy;. Now take H = H;, the rational definite quaternion algebra of discriminant
11. The first class numbers of Hy; are: hy(Hyp) = 2, ho(Hyy) = 5, hg(Hy;) = 19. Table 2
below gives the Brandt matrices By(¢) for £ = 2,3,5,7 and g = 1,2. Again in all examples
B,(¢) has constant row-sum N, (¢) = [[7_, (1 + ¢%).

By(2) By(3) By(5) By (7)
. 1 2 9 9 4 9 4 4
9= 30 3 1 33 6 2
3440 4] [8 8 4 16 4] [36 32 36 32 201 [80 80 72 128 40
3606 0| |62 0 12 2| |24 42 24 60 6 60 128 48 144 20
g=2 (3038 1| [3 0 9 22 6| |27 24 41 58 6 54 48 94 172 32
03480 |6 6 11 16 1| |12 30 29 78 7 A8 72 86 176 18
903 03| (9 6 18 6 1| |45 18 18 42 33| |90 60 96 108 46

TABLE 2. Brandt matrices By(¢) for Hyy

3.3. First properties of Brandt matrices. To simplify the discussion, we restrict to the
case of the definite quaternion algebra H = H, ramified at one finite prime p and choose a
maximal order O = Oy, C H,.

3.3.1. The classical case: g = 1. We start by reviewing known properties of the classical
Brandt matrices B(n) = By(n) for O = Oy,, n > 0, largely following Gross |Gro87, §1, 2].
Set h = hy(H,). Almost all the results given are due to Eichler [Eich5].

Remark 18. (a) For n > 0 with (n,p) = 1 the row sums »_, B(n);; are independent of i.
For n > 1 and ¢ # p prime with N;(¢) as in (3)),

> B(0)ij = N(0) =L +1.

(b) If (m,n) =1, then B(mn) = B(m)B(n).
(c) B(p) is a permutation matrix with B(p)? = Id,x, and B(p)k = B(p").
(d) For a prime ¢ # p and k > 2,
B(%) = B({*"Y)B(¢) — ¢B(1572).
(e) Set e; = e;(1) for 1 < j < h. We have e;B(n);; = e;B(n);; for 1 <14, j < h. Equivalently,
let v1,. .., vy be the standard basis of Z". Define the inner product (vi,vj) = €;0;; on VAR

Then the Brandt matrices B(n), n > 1, are self-adjoint with respect to ( , ).
(f) (Eichler’s mass formula) Let H = H,. Then

h
I p—1
2w
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Equivalently, the sum of any row of B(0) is (p — 1)/24 with B(0) = B;(0) as in (20).
(g) For all m and n we have B(m)B(n) = B(n)B(m).
(h) The commutative Q-algebra B ® Q is semi-simple, and isomorphic to the product of
totally real number fields.

3.3.2. The general case g > 1. We now generalize the results of Remark [18|to the Brandt
matrices By(n) of Definition [13| with H = H,. Put h, = hy(H) and let B, = B,(H) be
the Z-subalgebra of Maty, .p,(Z) generated by the Brandt matrices By(n) for n > 1 as in
Definition 13l

Theorem 19. (a) Forn > 1 with (n,p) =1, >, By(n)iy; = Ny(n) as in [2)). Forn=~_#p

prime this gives
g9

> By(0)iy = Ny(0) == [J(1+ %)
j k=1
with Ny(£) as in [@3). In particular, the row sums > By(n)i; are independent of i and in
fact only depend on n and g (they do not depend on p).

(b) If (m,n) =1, then By(mn) = B,(m)By(n).

(c) We have e;(g)By(n)i; = €i(g)By(n)ji for 1 <i,j < hy. Equivalently, let vy, ... vy, be
the standard basis of Z"s. Define the inner product (v;,v;), = ei(g)d;; on Z"s. Then the
generalized Brandt matrices B,(n), n > 1, are self-adjoint with respect to ( , ),.

(d) (Mass formula of Ekedahl and Hashimoto/Ibukiyama)

M, ;:ie%g) _ o {ﬁc (1 - 2k) }~f[{pk+(—

i=1

Equivalently, the sum of any row of B,(0) as in (20]) is M,. Note that for g =1 we have
M; = (p—1)/24 and so recover Theorem [L8|(f).

(e) For all m and n we have By(m)By(n) = By(n)B,(m).

(f) The commutative Q-algebra B, ® Q is semi-simple, and isomorphic to the product of
totally real number fields.

Proof. (]ED: It’s not hard to see that
#{U € GU,(H) and Ly p. p. | [L; : Ly] = m?I and [Ly : UL;] = n*}
(By(m)By(n));; = . . :
e;(9)
where p. p. denotes principally polarized. Since m and n are relatively prime given L;,

L;, and U with [L; : UL;] = (mn)? there exists a unique principally polarized L; with
[L; : Ly] = m? and [Ly, : UL;| = n*. Thus (B,(m)B,(n))i; = B,(mn);;.

Y

(ED: By (]ED we may restrict to the case when n = ¢" is a prime power with ¢ # p. Since
each p. p. lattice belongs to precisely one equivalence class, we have using and

ZB ar Z#{L/ p.p. | [Li: Lj] = (€)% = (*"9 and UL; = L for some U € GU,(H)}

= #{Lj p. p. | [Lit L] = €2}, (23)
15



We now suppose g > 1 so that classes of GU,(Op) can be described by Hermitian matrices
as well as principally polarized lattices as in Theorem [I2] The case g = 1 is covered by the
classical results of Eichler in Remark [I8l

Set Oy = Oy ® Zy for ¢ # p prime and H, = H ® Q,. There is a well-known one-to-one
correspondence <> between g X g quaternionic Hermitian matrices and 2¢g x 29 symplectic (=

nondegenerate alternating) matrices; a reference is [Eke87, §1]. Let e = [ % {] and identify
O, with Matay2(Zy) so that the main involution on O, becomes

a — - J— - a t

[cg}_[fdc ab}_e 1[(:3] €. (24)

Let E be the 2g x 2¢g block matrix with e’s on the diagonal. The identification of O, with
Matoyo(Z¢) gives an identification of Matyy,(Op) with Mat,y,(Mataxa(Ze)) = Matagxoy(Ze);
as notation A € Mat,,,(Oy) is identified with A € Matogxo4(Z¢) so Nm(A) = det(A). For a
A € Mat,x,(O,) with AT = A e Matyy4(Op), implies that
Al = ET'A'E. (25)
In case A = H is Hermitian so that H' = H, gives
EH = EH' = H'E,
so that 3 3 3 3 3
(EH)'= H'E' = H'(—F) = —H'E = —(EH). (26)
This gives the one-to-one correspondence <»: to the Hermitian matrix H € Mat,,(O,) we
associate the symplectic matrix Sy := EH € Mato,xo,(Zs). With Pf denoting the Pfaffian
of a symplectic matrix we have HNm(H) = Pf(Sy).

We examine how this correspondence behaves with respect to sublattices. Let L be a
nondegenerate Hermitian right Op-module of rank g such that L ® Q, = HJ with Hermitian
form given by H € Mat,x,(O;) (so H' = H). Let L' = AL C L be an O-sublattice of
finite index ¢ = [L : L'] for A € Matyy,(Oy); then (i) = (Nm(A4)?) as ideals in Z, and
i = 2valeNm(4) et H' = ATHA be the restriction of H to L'. We have

Nm(H') = Nm(A)?Nm(H) = i Nm(H), or, |HNm(H')| = Vi |[HNm(H)|. (27)
Separately, let L be a rank-2¢ symplectic Z-lattice with symplectic form S. Let L' :=
ML C L for M € Matagya,4(Z¢) be a sublattice of finite index i so (i) = (det(M)) as ideals in
Z, with symplectic form S’ = M*SM given by restricting S to L’. Then (Pf(S")) = (Pf(S)i)

as ideals in Z,. We have
(1) = (det(M)) C Zy, (det(S")) = (det(M)?det(S)), and
(Pf(S") = (det(M) Pf(S)) = (i Pf(S)) C Z,. (28)

Now consider L = Z?g with S = Sy and A € Matyy,(O;) with H' = ATHA the restriction
of H to the Op-sublattice L' = AL, and take M = A € Matggxas(Z,). Then S” = A'SA the
restriction of S’ to the Zy-sublattice L' = AL. Note that

Sp=EATHA = A'EHA = A'SyA =5 (29)
using (25). Using (27)), the indices ¢ = [L : L'] and i = [L : L'] are related by
L = £2va1g(Nm(A)) _ ngalddct(A)) _ <‘€valg(dctfi)>2 _ ZQ. (30)
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The problem of computing a given row sum of the Brandt matrix B(¢") by is the
following: We are given L = Of together with a unimodular Hermitian form H € Matgy,(Oy)
(so [HNm(H)| = 1). We have to count the Oy-submodules ("L C L' C L with [L: L'] = ¢*9
such that the restriction H' of H to L' satisfies H' = ("H’ with H' € Mat,,(O,) unimodular.
Applying the one-to-one correspondence <> above induced by H «» S = Sy and H' <+ S’ =
Sy we see that this equivalent to the following computation with symplectic Z-lattices
of rank 2g: given the lattice L = Z?g together with a unimodular symplectic pairing S
(unimodular in the sense that Pf(S) € Z)), count the Zs-sublattices ('L C L' C L with
[L : L'] = {9 such that the restriction S’ of S to L’ satisfies S’ = ¢"S’ for a unimodular
symplectic matrix 8" € Matagxag(Z¢). (The indices [L : L'] and [i L] are related by
(B0).) It follows that L'/¢"L is a maximal isotropic subspace of L/¢"L with respect to the
7)07- symplectic pairing on L/E’“L induced by S. Moreover, given the maximal isotropic
subspace L'/¢"L we can recover L' C L. We now remark that all unimodular symplectic
lattices over Z, of the same dimension are isomorphic. Hence without loss of generality we
can start with L = Zj‘f and S the standard unimodular symplectic pairing. So the sum of
the entries in any row of the Brandt matrix By(¢") is equal to Ny(¢") as in (2). In particular
all the row sums of B,({") are equal and (perhaps surprisingly) do not depend on p.

(d): By definition this is equivalent to proving that #{U € GU,(H) | [L; : UL;] = n*%}
and #{U € GU,(H) | [L; : UL;] = n*} are equal. By the comments following we can
replace the L’s with arbitrary representatives of their classes. By Remark [11| we can use their
duals, so

#H{U € GU,(H) | [L, : UL]) = n®} = #{U € GU,(H) | [L; : (U 7L = n2}.
But by Remark [§] the right hand side of the above is equal to
#{U € GU,(H) | [(UT)'L; : Lj] = n*} = #{U € GU,(H) | [L; : U'L;] = n*},

and we are done.
(d): See [Eke87, p. 159] and [HI80, Prop. 9], cf. [Yu06, Thm. 3.1].

(@: The Brandt matrices B(n) are in image of the Hecke algebra for (G, K) with G =
GU,(H), K = GU,(Og) acting on the lattice Z[2,(Ox)] with basis Z,(Ox), which is a
space of algebraic modular forms in the sense of [Gro99|. In fact the Brandt matrices B(n)
are linear combinations of standard Hecke operators in the Hecke algebra.

By we may restrict to the case where both m and n are powers of a prime ¢. Commu-
tativity here is implied by commutativity of the local Hecke algebra for

G == Ge — GUg<H & ZZ), K = Ke GU (OH ® Zg) (31)

Satake proves a structure theorem for this local algebra [Sat63, Thm. 8] which in particular
shows that it is commutative.

Below we give a simple argument for commutativity, worked out in correspondence with
Guy Henniart and Marie-France Vignéras. We use (G, K) as in (31)). By Gelfand’s trick
[Lan85, IV, §1, Thm. 1] (see also [Shi94, Prop. 3.8]), it suffices to show that for all elements
M € G we have KMK = KMTK.
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In the case when ¢ = p, by [Shi63], Prop. 3.10] we have that for every M € G, KM K = KdK
for some diagonal matrix d over the quaternion algebra H ® Z,. We also have KdK = Kd'K
since in the ramified case all ideals are two-sided and principal powers of the unique prime
ideal.

When ¢ # p, the group G is just the symplectic group and we can use [Shi63, Prop. 1.6] to
show that for arbitrary M € G we have KM K = KdK, where d is now in a diagonal matrix
over g, hence trivially preserved by transpose.

The only complication is making sure (conjugate-)transpose is in fact an anti-involution
in the basis from [Shi63]. However if H is the matrix giving the Hermitian (or symplectic)
form in Shimura’s basis then we have HTHH = H, so H is itself an element of G. And
since for any matrix M € G we have M = HM~H~!, (conjugate-)transpose is in fact an
anti-involution.

({): This follows trivially from (), (), and the fact that self-adjoint matrices are semi-simple
with real eigenvalues.
O

We do not know the analogue of Remark [I§|[d) for our generalized Brandt matrices By(n).
For a weak result see [And69, Thm. 3].

4. THE BIG AND LITTLE BRANDT GRAPHS

It is convenient to reformulate Section [3] on Brandt matrices in the broader context of
Brandt graphs. We begin with a general discussion of graphs in order to be precise about the
definitions. We will again use this in Section [6| when we consider the big, little, and enhanced
isogeny graphs.

4.1. Graphs.

Definition 20. A graph Gr has a set of vertices Ver(Gr) = {vy,...,vs} and a set of (directed)
edges Ed(Gr). An edge e € Ed(Gr) has initial vertex o(e) and terminal vertex t(e). For
vertices v;, v; € Ver(Gr), put

Ed(Gr);; = {e € Ed(Gr) | o(e) = v; and t(e) = v;}.
The adjacency matrix Ad(Gr) € Matgys(Z)is the matrix with

We place no further restrictions on our definition of a graph. Serre [Ser03] requires graphs to
be graphs with opposites: every directed edge e € Ed(Gr) has an opposite edge € € Ed(Gr). An
edge e with € = e is called a half-edge. Serre forbids half-edges; we will call a graph satisfying
his requirements a graph without half-edges. Kurihara [Kur79] relaxes Serre’s definition to
allow half-edges giving the notion of a graph with half-edges. (A graph with half-edges may
have () as its set of half-edges, so every graph without half-edges is a graph with half-edges.)

Definition 21. (a) A graph with weights, or a weighted graph, is a graph with opposites
together with a weight function w mapping vertices and edges to positive integers such
that for each edge e we have w(e) = w(€) and w(e)| w(o(e)) (which implies w(e)| w(t(e))).

(b) Following [Kur79, Defn. 3-1], a graph with lengths is a graph with opposites together with
a length function f mapping edges to positive integers satisfying f(e) = f(€). A graph
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with weights defines a graph with lengths by setting the length of an edge equal to its
weight and forgetting the weights of the vertices.
(c¢) The weighted adjacency matrix A,, := Ad,,(Gr) of a weighted graph Gr with Ver(Gr) =

{v1,...,0s} 18
WY o
(Aw)ij = Z W((e))’ 1 S 7’7.] S S.
ecEd(Gr);;

(d) Following [Kur79, §3], if Gr is a graph with half-edges, denote by Gr* the graph obtained
by removing the half-edges from Gr. If Gr is a graph with weights, then the graph Gr*
with half-edges removed is also a graph with weights—the weights are inherited from Gr.
Likewise, if Gr is a graph with lengths, then Gr* is a graph with inherited lengths.

Many authors (especially in computer science) call a graph with weights what we have called
a graph with lengths, and accordingly have a different notion of a weighted adjacency matrix.

For the remainder of this section, we let H be a rational definite quaternion algebra with
maximal order Oy C H, main involution z — 7, and reduced norm Nmyq(z) = 27. Let Z

be the profinite completion of Z and Q = 7 @ Q the finite adeles of Q. Set O =0u® 7
and let H = Oy ® Q be the finite adeles of H.
The classes of GU,(Opy) are
Zy(On) =A{[La], .., [Ln]}

with L; a principally polarized right Oy-module and h = hy(H) as in Definition . In case
g = 1 the principally polarized right Og-module L; is just a right Og-ideal I; with left order
the maximal ideal O; C H. We will freely use the notation in Definition [I3] and Remark
of Section [3] which the reader is advised to review.

4.2. The big Brandt graph Bry(n, Oy). The vertices of the big Brandt graph Br,(n) :=

Bry(n,Oy) are
Ver(Bry(n)) = P¢(On) = {[L4], ..., [Ls]}.
The directed edges connecting the vertex [L;] to the vertex [L;] are

Ed(Bry(n)):; = Bg(n)'??g

ij
as in (16) and (18). The graph Bry(n) is a graph without opposites. Moreover it is immediate
from (20) that the adjacency matrix of Bry(n) is the Brandt matrix By(n) for Oy C H:

Ad(Bry(n)) = By(n). (32)

When g = 1 the big Brandt graph Bri(n) is the graph constructed by Pizer |[Piz98], [Piz90]
from the classical Brandt matrices.

4.3. The little Brandt graph bry(n, Oy). The vertices of the little Brandt graph br,(n) :=

bry(n, On) are
Ver(bry(n)) = Z4(Om) = {[L1],..., [Ln]}.
The directed edges connecting the vertex [L;] to the vertex [L;] are
Ed(bry(n))i; = By (n)ij"e

v

as in and .
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Unlike the big Brandt graph, the little Brandt graph bry(n) is a graph with opposites: the
opposite € of an edge e € Ed(bry(n));; with e = [L}]; as in (18) is € = [V Li],, where V satisfies
VZ; = L; with the dual L’ of the principally polarized finitely generated right Og-module
L’ with I’ ® Q = HY defined in (10). The little Brandt graph bry(n) is also a graph with
weights: we set w([L;]) = e;(g) for [L;] € P4(On) = Ver(bry(n)) and w([U];) = e(U) for
[U]; € By(n);i"'* = Ed(bry(n));; in the notation (I5). To see that this is well-defined, verify

(a) e(U) = e(U) if [U], = [U"]; € B,(n)ie = Ed(br,(n));; and

ij

(b) w(e) = w(e) for e € Ed(bry(n));;.

It follows from the definitions that the weighted adjacency matrix of the little Brandt
graph br,(n) is the usual Brandt matrix B, (n):

Proposition 22. We have Ady(bry(n)) = Ad(Bry(n)) = By(n).

Part 2. Applying the quaternion infrastructure to isogeny graphs

5. SUPERSPECIAL ABELIAN VARIETIES, THEIR PRINCIPAL AND [ﬁ]—POLARIZATIONS7 AND
THEIR ISOGENIES

In this section X is an abelian variety defined over a field k£ (not necessarily algebraically
closed) with dual abelian variety X = Pic?(X); A will continue to denote a superspecial
abelian variety. If f: X — Y is a morphism of abelian varieties over k, the dual morphism
f:Y — X is defined over k. For a point z of X, denote by ¢, translation by z on X; the
isomorphism class of a line bundle L on X is denoted [L]. A homomorphism 7: X — X is

symmetric if 7 = 7, where we identify X = X via the canonical isomorphism

kx: X — X of [vdGM, Thm. 7.9], for example. (33)

A line bundle L on X gives rise to a symmetric homomorphism ¢ : X — X which maps
points z of X to [t*L® L~']. The Poincaré line bundle on X x X is denoted P. Our standard
reference for abelian varieties is [vdGM]|, whose modern treatment of polarizations is ideally
suited to our needs here.

Definition 23. (cf. [vdGM| Cor. 11.5, Defn. 11.6].) A polarization of an abelian variety X
over a field k is a homomorphism \: X — X over k satisfying the equivalent conditions

(a) A is a symmetric isogeny and the line bundle (idx, A\)*P is ample;
(b) there exists a finite separable field extension £ C K and an ample line bundle L on Xy
such that A\x = ¢y

IfA:X - Xisa polarization of the abelian variety X, following Mumford [MFK94,
Defns. 7.2, 7.3] define the degree deg(\) of the polarization A to be the degree of the isogeny
A, i.e., #ker(\). The degree deg()) is always a square by the Riemann-Roch theorem:
deg(A\) = d* with d = x(L) if A\ = ¢r, see [MumO8, §16]. It is convenient to define the
reduced degree rdeg(A) of the polarization A to be

rdeg(A) = y/deg(\). (34)
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A polarization A\: X — X which is an isomorphism is a principal polarization. If \: X — X is
a polarization of the abelian variety X and ¢: X’ — X is an isogeny, then

¢"(\) i=dorog: X' = X/ (35)
is a polarization of X’ with

deg(¢"(A)) = deg(N) deg(¢)®  and  rdeg(¢"(A)) = rdeg()) deg(9). (36)
Definition 24. Suppose the abelian variety X over the field £ has dimension g and polarization
A: X — X with kernel ker(\). The polarization A is is an [¢]-polarization for a prime ¢ # char k
if ker(\) € X[¢]. An [¢]-polarization A: X — X has reduced degree rdeg()\) = ¢ for 0 < r < g.
We say that A is of type r and (X, \) is an [¢]-polarized abelian variety of type r. An [{]-
polarization of type 0 is a principal polarization. If A: X — X is an [{]-polarization of type
r, then there is a homomorphism [A] = [Al;: X — X such that [\] o A is multiplication by ¢
on X. We will see in Theorem 28] that [A] is an [(]-polarization of type 7 := g —r on X.

Remark 25. For an abelian variety X over a field k and n € N prime to char k there is a
perfect pairing K

< ) >n ::< ) >X7n:X[n] XX[TL]—)/,U/H
A polarization A on X gives rise to the Weil pairing

(', dan={(, )xan: X[n] x X[n] — X]n| x X1n] Lo o, With (u, v)x, = (U, A(V))n-
Proposition 26. Let X be an abelian variety over a field k with dim X = g. Let P be the
Poincaré line bundle on X x X.

(a) Let 7: X — X bea symmetric isogeny. The following are equivalent:
(i) 7 is a polarization.
(ii) (nidx,7)*P is an ample line bundle on X for some n € N.
(iii) (nidx,7)*P is an ample line bundle on X for all n € N.
(iv) nT is a polarization for some n € N.
(v) nt is a polarization for all n € N.
(b) Let ¢ # chark be a prime. If (X, \) is an [{]-polarized abelian variety of type g, then
A =N for a principal polarization N of X .

Proof. @: As in Definition , the symmetric isogeny n: X — X is a polarization if and
only if the line bundle (idx,n)*P on X is ample. But

(nidy,n)*P = (idx, nn)*P = (idx,n)"P*" = ((idx,n)*P))*"

by [vdGM, Exercise 7.4], and so (nidx,n)*P = (idx,nn)*P is ample if and only if (idx,n)*P
is ample.

[): If (X,)) is an [(]-polarized abelian variety of type g, then A = £\ for a symmetric
isogeny \: X — X. By (&) we have that X is a principal polarization of X. O

Definition 27. Let o = (A, \) be an [{]-polarized g-dimensional superspecial abelian variety

over IF,,, p # £. We denote its F,-isomorphism class by [#/].
(a) For 0 <r < g, let SP,(¢,p), be the set of F,-isomorphism classes [/] of g-dimensional

[¢(]-polarized superspecial abelian varieties over F,, of type r. In particular SP,(p)y :=
SP,(¢,p)o is the set of [F,-isomorphism classes of principally polarized superspecial abelian

varieties. The sets SP, (¢, p), are finite.
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(b) For [« = (A, X)] € SP,(p)o, set b/ = L(A,\) = (A, lN), so [(e/] € SP,({,p),. Suppose
o' = (A, N) with [«7'] € SP,(¢,p),. Then there is a principally polarized abelian variety
o = (A, \) with [&'] = [&af] by Proposition 26|[b). In particular SP,(¢,p), is the set

of IF -isomorphism classes of g-dimensional superspecial abelian varieties over IF with
l tlmes a principal polarization. There is a canonical bijection between SP,(p )0 and

SP,(¢,p), and #SP,(¢,p), = hy(p).

Theorem 28. Suppose (X, ) is a g-dimensional [(]-polarized abelian variety of type r,
0<r<g, overa field k. Then [\ = [\, as in Definition [24] is an [(]-polarization of X of
type 7 =g — .

Proof. Firstly note that [A] : X — X is symmetric. Let P be the Poincaré bundle on X x X

and let Q be the Poincaré bundle on X x X , where we identify X = X as in (33). If
s: X x X — X x X is the switch factors map s(z,y) = (y, x), then s*(Q) = P. From this it
follows that

(A, 1dg)"P = ([A],idg)"s*Q = (s o ([A],1dg))"Q = (idg, [A])"Q (37)
as line bundles on X. Now [)] is a polarization of X if and only if the line bundle (id ¢, [\])*Q
on X is ample as in Definition . But since A : X — X is an isogeny, this is true if and only
if

N(id g, [A])*Q = A ([A],idg)*P = (Lidx, A)*P
is an ample line bundle on X, where we have used . But this is true since X is a
polarization by Proposition 26(a). Since deg([A] o \) = £%9 and deg(\) = ", it follows that
deg([\]) = ¢*". Hence [\ is an [{]-polarization of X of type . O

Definition 29. Suppose 2" = (X, \) is a g-dimensional [(]-polarized abelian variety of type
r,0<r <g. The the [(|-dual of 2 is 2 = (X, [A]) with the [¢]-polarization [\] on X of type
7 as in Proposition . If [«/] € SP,(¢, p),, then [</] € SP,(£, p);. The association [«7] < [/]
gives a one-to-one correspondence between SP, (¢, p), and SP,(¢, p);.

The [(]-dual & of o = (A, \) with [«] € SP,(p)o is £/ as in Definition (]ED with [(e/] €
SP,(£,p)s = SP,(£,p),. Likewise the [(]-dual £o of Lo/ = (A,()\) with [(.a/] € SP,({,p), is
(/] € SPy(p)g = SPy(p)o-

Now fix n € N prime to chark. Let A be a principal polarization on the abelian variety
X over the field k. Then \ defines an alternating and nondegenerate Weil pairing on the
n-torsion X [n| of X

(0 D X[l x X[n] = s (38)
#X|[n] = n%. A subgroup C C X|n] is n-isotropic if the Weil pairing {( , )\, is trivial when
restricted to C'. An n-isotropic subgroup C' is maximal n-isotropic if there is no n-isotropic
subgroup of X properly containing C'. The order of a maximal n-isotropic subgroup of X is
nd. Put
Iso,(Z") = {maximal n-isotropic subgroups C' C X|n|}. (39)
For a prime ¢ # char k it is known that

g
4 Ts0)( 2 =[] +0. (40)
k=1
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Define an equivalence relation ~ on Iso,(Z") by C ~ C" if there exists a € Aut(Z") with
a(C) =" for C, C" € Iso,(Z7). Put

is0, (Z") = Iso,(Z7)/ ~ (41)
with [C] € is0,(Z") the equivalence class containing C' € Iso,(Z").

A key fact is that quotienting a principally polarized abelian variety by a maximal isotropic
subgroup gives an abelian variety which is again principally polarized:

Proposition 30. cf. [Mum08, §23, Cor. to Thm. 2] and [Oor74, p. 36]. Suppose Z = (X, \)
is a principally polarized abelian variety over an algebraically closed field k and C' C X[n] with
n prime to chark. Let Yo : X — X/C =: X'. Then there is a principal polarization X' on X'
so that Y5(N') = nX if and only if C' € Iso,(Z"). In this case we write ' = (X', N') = 27/C.
Furthermore, if (/] € SP,(p)o and (n,p) =1, then [<'] € SP,(p)o.

Recall that we have fixed a supersingular elliptic curve £ = E /Fp with O = Og, =

Op = End(E); O is a maximal order in the rational quaternion algebra H, = End"(E) :=
End(F) ® Q.

Remark 31. For g > 1 polarizations A on g-dimensional superspecial abelian varieties
A = EY in characteristic p with rdeg(\) = d as in are in one-to-one correspondence with
H,4(0) as in @ Explicitly, let Ag be the product polarization on £9. Then the polarization
An corresponding to H € 7, 4(O) is

At AL A2 4 (42)
see [IKO86, Prop. 2.8]. Note that for n € N and H € 7, 4(O) we have \,g = nAg.
Proposition 32. Let { # p be prime. Let A = EQ/E, with polarizations X\ := \g, N := Ay
corresponding to positive-definite Hermitian matrices H, H' € 7, 4(O) as in . Let
¢ A— A be an isogeny of degree 9™ given by M € Matyy,(O). Then ¢*(X') =™\ if and
only if MTH'M = (™H.

Proof. By A
¢*(N) =goX oo,
which by equals
doAgoH od=MNHM = X' MAH'M.

Now A\, M \o is the Rosati anti-involution applied to M by definition which equals M in
the product polarization case. Thus we have

¢*(N) = ANMTHM = M\ypi g

Hence, ¢*(N) = A\yigar and since ™A = {™ Ay = A\gmy, we are done by Remark O

This allows us to describe the set SP,(p)o for g > 1 following [IKOS6].
Proposition 33. If g > 1 then the map

Hy1(0) 3 [H] — [/ (H)], where o (H) = (A, nr),

with O = O, is a bijection between 5,1(0) defined in and SP,(p)o.

We thus obtain the following description of SP,(p)o.
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Theorem 34. (Ibukiyama/Katsura/Oort, Serre) There are one-to-one correspondences <
with O = OHp .
(a) Forg=>1,
SPy(p)o «— Py(H,) = GU,(H,)\ GU,(H,)/ GU9<O]}AJIP>‘
(b) Forg>1,
SPy(p)o «— Zy(H,) = GU,(Hj)\ GUQ(HP)/GUQ(OEIP) — %Q,I(O) = H,31(0)/ GLy(0),
where the second one-to-one correspondence is Theorem [12]

Theorem 35. Let of = (A, \) and o' = (A, N') with o], [</'] € SP,(p)o for g > 1 and let
¢ # p be a prime. Suppose ) : A" — A is an isogeny such that Y*(\) = £™X for m > 1. Then
there exist principally polarized superspecial abelian varieties

(A, M) = = ' = (AL N), o = (A2, 09), ...
(Ami1, Amy1) = D1 = & = (A, )
with (0)9-isogenies ;2 Ay — Ajp1 such that ¥f(Nig1) = €N\ for 1 < @ < m and ¢ =
Y © Y1 0+ 0Py
i A=Ay Ay, g YA = A
Theorem [35] will follow from the purely algebraic Theorem [36] below.

742{m - (Ama >\m)7

_ Ym

Theorem 36. Let V be a free Z/0"Z-module of rank 2g with a nondegenerate symplectic
PaiTIng

(, Ww:VxV—Q/Z.
Note that there is an induced nondegenerate symplectic pairing on the {-torsion V[{] CV

(. vig:VIAx V] — Q/Z by (e, 0)yg = ((1/0"")e, e)y.

Let M CV be a mazimal isotropic subspace. Then there exists G C M|{] such that G C V[{]
is maximal isotropic with respect to ( , )vig.

Proof. The proof is by induction on g. If ¢ = 1, let G be any line in M[¢]. Suppose the
statement is true for g — 1.

Case 1. V[{] C M. In this case let G be any maximal isotropic subgroup of V[¢].

Case 2. V[{] € M. In this case there exists N C V, N & (Z/("Z)?*~! such that M C N.
To see this note that M has at most 2g — 1 generators, lift them arbitrarily to ¢"-torsion to
define N.

Note that N+ = Z/¢"Z and (N+, M)y = 0 since M C N. So Nt C M by maximality.
Apply the induction hypothesis to M/N+ C N/N+: N/N*t is rank 2g — 2 over Z /("7 with a
nondegenerate symplectic pairing induced by ( , )y. Also M/N+* is isotropic; it is maximal
isotropic since if it were contained in a bigger isotropic subgroup pulling back would contradict
the maximality of M. Hence by the induction hypothesis there exists G C M with N+ C G
such that G/N* C (M/N™+)[(] is maximal isotropic. Now take G' = G/[f]. O

Proof of Theorem [35 The proof is by induction on m. For m = 1 the statement follows from
Proposition [30] Suppose the statement is true for m and consider &’ = (A, X) := (A1, A1),
o = (A, N) == dpyio = (Amsa, Amte) with [], [@7'] € SP,(p)o for ¢ > 1 and an isogeny
¥+ A" — A such that ¢*(\) = ™1\ for m > 1. By Proposition [30} the kernel C' C A’[¢™+1]
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of 1 is a maximal /™"l isotropic subgroup. Now apply Theorem [36| to the free Z/{™17Z-
module A’[(™*!] with the nondegenerate symplectic pairing { , )y gm+1. This shows there
exists an ¢-maximal isotropic subgroup G C C[¢] C A’[¢] with respect to the nondegenerate
symplectic pairing ( , ) e

Let <7 be the principally polarized abelian variety ot = (Ay, A\9) := &7’ /G with isogeny
1 =g: Ay = A" — A,. Since G C C, the isogeny ¢: A" — A factors as

’l/]:Ale,&Agi)Am_i_g:A.
Note that both £™Xs and 9" (\,,12) are polarizations on A, which pull back under ¢ to
™1\ . Since the Néron-Severi group of an abelian variety is torsion-free, this implies

that ¢¥™*(Apma2) = ™A, Applying the induction hypothesis to ¢’ : Ay — A, 1o with
V" (Apa2) = £MAg now concludes the proof. O

6. THE BIG, LITTLE, AND ENHANCED ISOGENY GRAPHS

6.1. The big isogeny graph Gry(£,p). The big (¢)%isogeny graph Gr = Gr,(¢,p) (often
called simply “the isogeny graph”) is the directed graph with vertices Ver(Gr) = SP,(p)o =
{[on = (A, \)], ..., [ = (A, \n)]} with # Ver(Gr) = h = hy(p) and A = E9/F,,. Its edges
are
Ed(Gr)i; = {C € Isoi() | [,/C] = []} (43)
with Isoy(«7) as in (39). A useful reformulation of is the following: Set
Hom(<7;, o7;), = {isogenies ¢: o, — o7; of degree 7 such that ¢*()\;) = ¢\;} and
Aut(e7;) = {automorphisms ¢ : A; — A;}.
Define the equivalence relation ~, on Hom(e7, o7;) by ¢ ~;, ¢’ if there is an automorphism «
of o7 such that ¢’ = o ¢ and set Hom(4, @), = Hom(., <7;);/~. Then by Proposition
B0l we have
Ed(Gr);; = Hom(4, /), and
4 Hom(cF, 7)),
# ( 7”) J # Aut (%)

We have 2?21 #EA(Gr)i; = Ny(0) = TT9_, (¢F + 1); see (40).

(44)

Theorem 37. Let O C H, be the mazimal order End(E) with By({) the Brandt matriz for
the maximal order O. Then

(a) Grg(évp) - Brg(£7 0)7

(b) Ad(Gry(¢,p)) = By(¢), and

(c) the big isogeny graph Gr,(¢,p) is reqular of degree N,(¢) = [_,(¢* +1).

Proof. The case g = 1 is classical and well-known: combine Remark [14] with the quaternionic-
ideal description of isogenies of supersingular elliptic curves as in, for example, [Gro87, §2].

So suppose g > 1. @: With O = O, we have
Ver(Gry(€,p)) = Ver(Bry(£,0)) = SPy(p)o ¢+ Z4(O) ¢+ H 1(0) = #;1(0)/ SL,(O)

using Theorem (]ED and the definitions in Sections and . With h = h, and

H,1(0) = {[Hi],...,[Hy]} for H; € H;,, 1 < i < h, as in (21) we have SP,(p)y =
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{[# = (A, )]s - - -5 [Fh i= (A, Ag,)]} for A = E9/F, by Proposition . But now using
the notation of Definition [[5] and Theorem [16] we have

Ed(Gry(¢, p))i; = Hom(4, 7)),
= U,(H;, H;)"® by Prop.

= Ed(Br,(¢,p)) by Thm. (45)
Since the edges and vertices of Gry(¢,p) and Bry(¢,O) correspond, we have Gry(¢,p) =
Br,(¢,O).
(b): This follows immediately from @ using .
(c): This follows from (]ED by Theorem @ 0

Taking the dual isogeny does not give a well-defined involution on Ed(Gr), so the big
isogeny graph Gry(¢, p) is not a graph with opposites.

6.2. The little isogeny graph gr,(£,p). The little (¢)%-isogeny graph gr = gr (¢, p) has
vertices Ver(gr) = SP,(p)o, so the big graph Gr and the little graph gr have the same vertices.
The edges of gr are

Ed(gr);; = {[C] € isou(#) | [ /C] = |1} (46)
with isoy() = Isoy(«7)/ ~ as in (41]). Given an 1 edge e € Ed(gr);; with e = [C] € iso,(<%)
we define its opposite edge € € Ed(gr);; by € = [C] e iso,(<7;) with C the kernel of the dual
isogeny .o7; — «7;. Note that this dual is only well-defined up to ~; thus, it is an operation
on gr (but not Gr). The little graph gr is therefore a graph with opposites. In general gr is
a graph with half-edges.

Again we can reformulate in terms of isogenies. Recall from Section that

Ed(Gr);; = Hom(<;, o7;)y; (47)

an isogeny ¢ € Hom(<7, ), defines a class [¢] € Hom(<, o). Define an equivalence
relation ~; on Hom(,QZ,,Q%) by [¢] ~ [¢] if [¢'] = [¢p o B] for 5 € Aut(<;) and set

Hom(, ), = Hom(, )0/ ~1 .

Then

Ed(gr);; = Hom(47, 27;),. (48)
Definition 38. Define a weight function w on the small graph gr = gr,(¢,p) by w([#/]) =
# Aut(o/) and w(C') = # Aut(A, A, C) for the vertex corresponding to [/ = (A, A)] € SP(g, p)

and the edge corresponding to [C] € isoy(«7), respectively. Then gr is a weighted graph with
half-edges.

Theorem 39. Let O = End(E) C H,, and let By({) be the Brandt matriz for O. Then
(a) g1, (€. p) = br,(£,0) and
(b) Adw (g7, (€, p)) = Ad(Gry(£, p)) = By(().
Proof. @}: Again the case g = 1 is classical and follows from Remark .
So suppose g > 1. We have
Ver(gry (€, p)) = Ver(Gry(£,p)) = Ver(Bry((, p)) = Ver(bry(¢, p))

from the proof of Theorem @
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We have

Ed(.grg(g)p)) - HOIH '%7 % by .
= U,(H;, H;)"™*° by Prop.
Since the edges and vertices of gr, (¢, p) and bry (¢, O) correspond, we have gr, (¢, p) = bry(¢, O).
([B): The equality of Ady(gr,(¢, p)) and Ad(Gr4(¢, p)) follows since each edge [C] € Ed(gr, (¢, p))
corresponds to a number of edges of EA(Gry(¢,p));; equal to the size of the orbit of C' under
Aut () which equals
pAut()  w(loA)

#Aut(A;, A, C)  w([C])

Now apply Theorem (]ED O

6.3. The enhanced isogeny graph gr, (¢, p). Inthe notation of Deﬁnition put h = hy(p)
and

SPg(p)O = {['Q{l]v BRI ['Q{h]} = {Ula v 7'Uh}7
SP,(p)y = {[tat], ..., [leth]} = {vntr, ..., v}
The enhanced (E)g—isogeny graph gr = gr (¢, p) has vertices

Ver(gr) OHSP —{Ul,~-,Uh}H{Uh+1,~-,UQh}~

Polarizations of type g are just ¢ times a principal polarization, and thus there is a natural
bijection between SP,(p )0 and SP,(p),. Nevertheless, they correspond to distinct vertices

of gr. For SP,(p)y > [#] = [(.%] = vpyi € Ver(gr) and SP,(p)o 3 [«] = v; € Ver(gr), the
edges of gr from Up4i to v; are
Ed(gr)n+i; = {[C] € isou(#) | [/ C] = ]}

with notation as in (&1)). For SP,(p) 3 [] = v; € Ver(gr) and SP,(p), 3 [« = [(.<] =
vpy; € Ver(gr), the edges of gr from v; € Ver(gr) to v4; € Ver(gr) are

Ed(gr)ine; = {[C] € isou() | [#/C] =[]}
with o7 denoting the [(]-dual of &7 as in Definition . Incase 1 <i,j <horh+1<i,j <2h,

Ed(gr)i; = 0.

The enhanced isogeny graph g¢r is a graph with opposites: If e € Ed(gr);; the opposite
edge € € Ed(gr);; is the equivalence class of the dual isogeny. We never have € = e, so gr is a
graph without half-edges. The graph g¢r is a graph with weights: define w as the order of the
automorphism group as for gr.

Theorem 40. (a) The enhanced isogeny graph gr = gr,(¢,p) is the bipartite double cover of
the little isogeny graph gr = gr,(¢,p) with inherited weights.
(b) Let A= Ad(gr) and Ay, = Ady(gr) = Ad(Gry(¢,p)). Then
~, |0 A . 10 Ayl | 0 By
Ad(gr) = [A O} and Ady(gr) = {Aw O] = [Bg(é) 0 } :

Proof. (a)): Let v : gr — gr be the involution defined on vertices by «([«/]) = [;2/ | and on

edges such that if e € Ed(gr);; corresponds to the class [C], then ¢(e) € EA(gr)itn j+n (Where
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the indices are added mod 2h) also corresponds to the class [C]. Then ¢ fixes no vertices and
no edges of gr and gr/t = gr. Thus the enhanced graph gr is the bipartite double cover of
the little graph gr.

(]ED: Given @, the adjacency matrices for gr now follow from Theorems |37 and . 0

7. CONNECTEDNESS RESULTS FOR ISOGENY GRAPHS

7.1. Connectedness for g = 1: supersingular elliptic curves. It is well known that the
(-isogeny graph for supersingular elliptic curves in characteristic p is connected. A standard
proof of this result relies on the fact that integral primitive quaternary quadratic forms
represent all sufficiently large integers. There is another proof by Serre [Mes86, p. 223]
using that the space of Eisenstein series of weight 2 for the congruence subgroup I'g(p) is
1-dimensional. In this section we give the proof using Theorem 4] on strong approximation.
As a byproduct we get that Grq(¢,p) and gr,(¢,p) are not bipartite. This in turn enables us
to conclude that the enhanced isogeny graph gry (¢, p) is connected.

Let E/F,, E'/F, be supersingular elliptic curves with O = O = End(FE) and 0’ = O =
End(E’") maximal orders in H,,. Then Hom(E, E’) is an ideal in H,, with left order O" and
right order O.

Lemma 41. If¢ € Hom(E', E) has degree deg1 = x # 0, then the right O-ideal
I={o¢|¢eHom(E, E)}CO
has reduced norm x.

Proof. We begin with the case when 1 is separable. Then we have
I ={a € End(E) = O | a(kert) = 0}.

Thus for each prime power (*||z, I ® Z; is of index ** in O ® Z,. Combining these together
we see that I has index 22 in O and hence has reduced norm .

Now suppose ¢ is inseparable. Let 1" be a separable map from E’ to E of degree x’. Let
B=1or. Let

I'={¥/ 06| ¢ € Hom(E, E')} C O.

Then by the above case I’ has reduced norm z’. Also I = gl " and taking norms of both sides
we get that the reduced norm of [ is x. 0

Theorem 42. Let { # p be prime.

(a) The big isogeny graph Gri(€,p) and the little isogeny graph gr,(¢,p) for supersingular
elliptic curves are connected.

(b) The graphs Gry({,p) and gr,(¢,p) are not bipartite, i.e., given any two supersingular
elliptic curves B and E' in characteristic p, there exists an isogeny ¢ : E — E' such that
the degree of ¢ is an even power of {.

(¢) The enhanced isogeny graph gr,(¢,p) is connected.

Proof. @, @: Let E = E/F, and E' = E'/F, be any two supersingular elliptic curves. By
Tate’s theorem F and E’ are isogenous. Hence there exists an isogeny ¢ € Hom(E’, F) with
some degree z # 0. Consider the right ideal I C O defined by I = {po¢ | ¢ € Hom(E, E')};
I has reduced norm = by Lemma {1} Let o € Hy, be an element of norm z; such an a exists

by the Hasse-Minkowski theorem. Then the fractional right ideal I; = a~'I has norm 1.
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Now by Lemmalf] there exists an element 3 € I} ® Z[1/¢] of norm 1. Let £" be a sufficiently
high power of ¢ so that ("3 € I;. Then /"3 € I and thus is equal to ¥ o ¢ for some
¢ € Hom(E, E').

Taking the equation af™3 = 1 o ¢ and computing norms/degrees, we obtain

Ny, jg(@)f*" Ny, (3) = deg () deg(¢).

Since Nmy /g(ar) = deg(v)) = z and Nmy, /() = 1, we see that the degree of ¢ is £*". Hence
Gri(¢,p) and gry(¢,p) are connected and not bipartite.

(c): Since gr (¢, p) is connected and not bipartite, its bipartite double cover gr, (¢, p) (see
Theorem [0J(a))) is connected. U

7.2. Connectedness for g > 1. We now consider the higher-dimensional case; henceforth
suppose g > 1. Here we deduce the connectedness of the isogeny graphs from strong
approximation for the quaternionic unitary group. Strong approximation in this context
has previously been applied to questions of moduli of abelian varieties in characteristic p:
applications to Hecke orbits are in Chai/Oort [CO11, Prop. 4.3] and applications to the
geometry of stratifications are in Ekedahl/Oort [Oor01} §7]; see also Chai [Cha95| Prop. 1].
In particular, Theorem 43| below should be compared with Ekedahl/Oort’s version of strong
approximation in [Oor01l, Lemma 7.9]. Combining strong approximation with Proposition
and Theorem |35 shows that the isogeny graphs Gry(f,p) and gr (¢, p) are connected.
Our strong approximation argument further implies that Gr,({,p) and gr,(¢,p) are not
bipartite. This in turn is used to show that the enhanced isogeny graph gr, (¢, p) is connected
— analogously to the g = 1 argument of Theorem . Note that [Oor01}, §7] treats inseparable
isogenies of superspecial abelian varieties which we do not consider here.
Let H/Q be an arbitrary rational definite quaternion algebra with maximal order Oy.

Theorem 43. (cf. [Oor01, Lemma 7.9]) Let ¢ be a prime unramified in H. Then given any
two positive-definite Hermitian matrices H, H' € Mat 4 ,(Om) of reduced norm 1, there exists
a matriz M € Matyy,(On) such that

MYHM = ¢*"H' (50)
for some positive integer n.
Proof. Let M, € Maty,(H) satisfy MJMO = H; such an M, exists by Lemma . By the
same lemma, we can assume that H' = 1.

We are now ready to apply the strong approximation Theorem [d] Let A be the adeéles of Q
and G be the quaternionic unitary group

G = U,(H) = {M € Maty,(H) | MM = Idx,}

The quaternionic unitary group G is the compact real form of Sp,,, so is simple.
Let S = {{, 00} and set

U={M e GA) | (My'M), € Mat,x,(Ou ® Z,) for q # (}. (51)
By Lemma 7| there exists N, € Matg, (O ® Z) such that H = NIN,. Then
MoN; ' € Uy(On ® Q) = G(Qy).

The set U C G(A) in is open and nonempty since (MoN; ", My)q¢s pes € U for M,
arbitrary.
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Hence by strong approximation (Theorem [4) there exists M’ € Matyy,(H) such that
M""M' = 1d,y, and My M’ € Mat x,(On[1/{]). Let £* be a sufficiently high power of £ such
that "My ' M’ € Matyx,(Om). Let M = "My "' M’. Then

MYHM = MYMIMM = (" M" "M’ = (*"1d,,, .

Theorem 44. Let { # p be prime, g > 1, A= EY9, and O = O = End(F).

(a) The big isogeny graph Gry(€,p) and the little isogeny graph gr,({,p) are connected.

(b) The graphs Gry(¢,p) and gr,({,p) are not bipartite, i.e., given any two principal polariza-
tions of A, Ay and A\ with H, H' € SLy4(O) positive-definite Hermitian matrices, there
exists a path on each graph from the vertex /' = (A, Ag')] to the vertex [/ = (A, A\y)]
of even length.

(c) The enhanced isogeny graph gr,({,p) is connected.

Proof. Put Gr = Gr,({,p) and gr = gr,({, p).

| [bf): Let

BY o = (A, )], [« = (A, A\g)] € Ver(Gr) = Ver(gr)

with H, H' € SL,(O) positive-definite Hermitian matrices. By Theorem , there exists
M € Mat,x,(O) with MTHM = ¢*"H' for some positive integer n. Hence by Proposition (32,
the isogeny ¢» € End(A) given by M satisfies ¥*(Ag) = £*"A\g. But then by Theorem
there exists a path of length 2n on both gr and Gr connecting the vertex [«7’] to the vertex
: Since grg(é, p) is connected and not bipartite, its bipartite double cover gﬁ"g(é, p) (see
Theorem [40] () is connected. O

8. THE (-ADIC UNIFORMIZATION OF gr,({,p) AND gr,(¢,p)

Through out this section X will be an arbitrary principally polarized, not necessarily
supersingular, abelian variety.

It is well known that for ¢ # p the supersingular elliptic curves over E) are in bijective
correspondence with the double cosets

O, [1/6]\ GLa(Q0)/Q; GLa(Ze),

with GL2(Qyp)/Q, GL2(Z,) corresponding to the vertices of the standard tree for GL2(Qy).
We will generalize this form to higher dimension, starting with the definition below.

Definition 45. Let R be a commutative ring and M an R-algebra with an anti-involution
x +— x'. We define the unitary group U(M) = {x € M | 2Tx = 1}. We define the general
unitary group GUR(M) = {z € M | 2Tx € R*}.

Remark 46. Let By, be the Bruhat-Tits building for GSp,, over Q. The special 1-skeleton
Syg of Byy has vertices the special vertices of By, which are the vertices of type 0 or g — see,
for example, [She07, Sect. 2,3], and edges the edges of the 1-skeleton of By, with both ends
special vertices.

Note that the next theorem is true for all principally polarized abelian varieties whether
superspecial or not. Specifically say that for a principally polarized abelian variety the

anti-involution x + 2 on End(A) is Rosati. On EY we take the Rosati (anti-)involution
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corresponding to the product polarization. Hence on Mat,y,(Op) we take M +— M f.= Mt,

with m + 7 the main involution of the definite quaternion algebra End(E) ® Q := End’(E).
Theorems similar to Theorem [47| can be found in the theory of Shimura varieties — see
[Kot92], for example.

Theorem 47. Let X be a principally polarized abelian variety of dimension g over an
algebraically closed field k of characteristic char(k) with ¢ # char(k) a prime. The principally
polarized abelian varieties isogenous to X by {-power isogenies (we require that the principal
polarization be the one induced by the isogeny) are in bijective correspondence with the double
cosets

GU(End(X)[1/4])\ GSpa, (Qe)/Q; GSpay,(Ze), (52)
with GSpy,(Qe)/Q; GSpy,(Ze) the vertices Ver(Syy) as in Remark . Furthermore, (£)9-
isogentes correspond to the edges EA(Say). Specifically, two elements of

GSpQg(@f)/Q; GSpQg(ZZ)

are adjacent if the corresponding homothety classes of unimodular symplectic lattices have
representatives with one having index (€)Y in the other. In particular, the principally polarized
superspecial abelian varieties of dimension g are in bijective correspondence with

GU(Matgyg(Op[1/€])\ GSpay (Qr) /Q; GSpay(Ze)- (53)

Proof. Let T = Ta,(X) be the Tate module of X, and let V' = Ta,(X) ® Qy, both equipped
with the symplectic Weil pairing. Identify GSp,,(Q,) = GSp(V) and GSp,,(Z) = GSp(T).

Note that we have an exact sequence
0—=T—=V 5 X[ —0.

Let ¢ : X — X’ be an (-power isogeny to an abelian variety X', principally polarized by
the induced polarization. We will associate to the pair (¢, X') the homothety class of the Z-
lattice T" = m~!(ker ¢) C V. Since the induced polarization on X’ is principal, the symplectic
pairing restricted to 7" is a scalar multiple of a unimodular integral pairing. Conversely, if [T”]
is a homothety class of full-rank Z,-lattices in V' such that symplectic pairing restricted to any
representative is a scalar multiple of a unimodular integral pairing, pick a representative 7"
such that 7" D T. Then m(T") is the kernel of an -power isogeny whose image is principally
polarized. Furthermore, picking a different representative corresponds to composing the ¢
with multiplication by a scalar power of /.

Note that if 1 : X’ — X" is an (¢)%-isogeny, then T” = 71 (ker 1) o ¢) is an extension of 7"
of index (¢)9. Hence the corresponding vertices of the building are adjacent. Conversely, since
both graphs have the same degree all special edges of the building come from (¢)%-isogenies.

Now let A be the set of all homothety classes of full-rank Z,-lattices in V' such that the
restriction of the symplectic pairing is a scalar multiple of a unimodular integral pairing. It is
easy to see that A = GSp(V)/Q; GSp(T) with rQ, GSp(T’) corresponding to the class [rT].

It suffices to show that [rT] and [sT| correspond to isomorphic principally polarized abelian
varieties if and only if [T = [¢sT] for some ¢ € GU(End(X)[1/¢]). After possibly scaling
r, s, and 1 by powers of ¢ we may assume that ¢ € End(X), T = ¢sT, and rT, sT D T.
Therefore 7(rT) = 1(m(sT)). Hence if ker ¢ = 7(rT) and ker ¢/ = 7(sT), then ¢ op = ¢
and both have the same codomain.

31



Conversely, if ¢ and ¢’ have the same codomain, let ¢ = 5 o ¢'. Note that ¢ €
GU(End(X)[1/4]) since it preserves the polarization. Now ¢ o ¢ = deg(¢)¢’. Now let
w(rT) = ker ¢ and 7(sT) = ker(deg(¢)¢’). Then rT" = 1sT', and we are done with the main
claim.

The final assertion with now follows from Theorem [44] O

We now apply Theorem 47| to derive the f-adic uniformization of the isogeny graphs gr, (¢, p)
and gr,(¢,p).

8.1. The case g = 1: f-adically uniformizing gr,(¢,p) and gr,(¢,p). Let A = A,
be the tree for SLy(Q,). The rational definite quaternion algebra H, with maximal order
O = Oy, is ramified at p and split at /. Set

FO = O[l/ﬁ]x and Pl = {’}/ € FO | Nme/Q<’}/) = 1} (54)

We have Ty = O[1/0)* — (H, ®qQ,)* = GLy(Qy) and likewise I'; < GLy(Qy). Let T; be the
image of T'; in PGLy(Qy) for i = 0,1. The groups Iy, I'; are discrete cocompact subgroups of
PGL2(Qy). The groups I'; C GLy(Qy) act on A through their image T'; € PGLy(Qy), i = 0, 1.
Hence the quotients Gry := I''\A = T'}\A and Grq := I'\\A = I't\A are finite graphs with
weights. Kurihara [Kur79, p. 294] shows that the weighted adjacency matrix Ad,, (Grg) is
the Brandt matrix B (¢) for O C H,; we know Ady(gr,(¢,p)) = Bi(¢) by Theorem B9 In
fact, to show Ady(Grg) = By(¢) Kurihara basically shows Gry = bry(¢,p). In [Kur79, p. 296]
it is shown that Gr; (note that our I'; is I'y in [Kur79]) is the bipartite double cover of Gry.
Hence we have

Theorem 48. (Kurihara)
(a) bri(¢,p) = To\Ay = To\Ay as graphs with weights.
(b) T1\A, = T1\Ay is the bipartite double cover of To\Ay = To\Ay.

Theorem 49. (a) gr,(¢,p) = [o\Ar = To\A¢ as graphs with weights.
(b) gri(6,p) = T1\Ay = T1\A, as graphs with weights.

Proof. (&): Combine Theorem 39(a) with Theorem [48](a)).
([): Combine Theorem [A§|(b)) with Theorem {0jfa)). O

Remark 50. (a) The big isogeny graph Gri(¢,p) is not (-adically uniformized by A, since
Gri(¢,p) is not a graph with opposites.

(b) Theorem [49(a)) obviously implies that the isogeny graph gry (¢, p) is connected. Note that
in fact Kurihara [Kur79, p. 291] invokes strong approximation in the course of proving

b?”l (g,p) = Fo\Ag.

8.2. The isogeny graphs gr;(¢,p), gr,(¢,p) and Shimura curves. Theorem {49 in
turn will show that our isogeny graphs gry (¢, p) and gry (¢, p) arise from the bad reduction of
Shimura curves, which we now explain. Let B be the indefinite rational quaternion division
algebra with Disc B = ¢p. Let Vz/Q be the Shimura curve parametrizing principally polarized
abelian surfaces with QM (quaternionic multiplication) by a maximal order M C B. There
is then a model Mp/Z of Vi /Q constructed as a coarse moduli scheme by Drinfeld [Dri76];
see also [JL85]. Let .Z/Z; be the (-adic upper half-plane. The dual graph G(.Z/Z;) of its
special fiber is canonically A = A,. For I' C PGLy(Q,) a discrete, cocompact subgroup,

the quotient T'\.# is the formal completion of a scheme .%+/Z, along its closed fiber. The
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dual graph of its special fiber G(.%5/Z) ~ (I'\A)* as graphs with lengths in the notation of
Definition 21](d)), see [Kur79, Prop. 3.2].
For the formulation below, see |[JL85, Theorems 4.3, 4.4].

Theorem 51. (Cerednik, Drinfeld) Let wy be the Atkin-Lehner involution at ¢ of Mg. Let
Ty be the image of Ty C GLy(Qy) in PGLy(Qy) and similarly for T'y. Let O be the ring of
integers in the unramified quadratic extension of Q.

(a) The scheme Mp X Zy is the twist of Z5 [Z, given by the 1-cocycle

X € H'(Gal(D/Zy), Aut( L, xz, O/90)), where x : Froby — wy :
MB X Zg = (gfl)x.
(b) (MB/’UJ[) X Ze = ng/Zg.

The curve Mp X Z¢/7Zy is an admissible curve in the sense of [JL85, Defn. 3.1]. As such,
the dual graph of its special fiber G(Mp x Z;/Z;) is a graph with lengths as in Definition

21)(0]) by [JL85, Defn. 3.2].
Corollary 52. (a) G(Mp x Zy/Zs) = T1\A = gr,({,p) as graphs with lengths.
(b) G((Mp/we) x Z¢/Zy) = (T\A)* = gr,(¢,p)* as graphs with lengths with (To\A)*,
gry(¢,p)* as in Definition R1|(d).
Proof. This follows from Theorem [51| by [JL85, Prop. 4.2], which in turn is extracted from
[Kur79, §3].
O

8.3. The general case g > 1: £-adically uniformizing gr, (¢, p) and gr, (£, p). Recall
A=FE9 O=End(E) C Hp, and End(A) = Mat,«,(O). Let By, be the Bruhat-Tits building
for Sp,,(Q¢) and Sy its special 1-skeleton as in Remark . Note that GU,(H, ®¢ Q) and
U, (H, ®g Q) as in (9) act on S, with finite quotient.

Theorem 53. (a) bry(¢,0) = GU,(O[1/4])\Say as graphs with weights.
(b) Uy(O[1/€])\Ssq is the bipartite double cover of GUy(O[1/4])\Sa-

Proof. (a]) follows immediately from Theorem [47) since GUy(O[1/£])\Sa, is the same as (53).
(B) follows from (1) since gr, is the bipartite double cover of gr, and PUy(O[1/¢]) is the
subgroup of PGU,(O[1/¢]) that preserves mod 2 distance. O

Theorem 54. (a) gr,((,p) = GUy(O[1/(])\Ssy as graphs with weights.
(b) gr,(¢,p) = Uy(O[1/€])\Ssy as graphs with weights.

Proof. @: Combine Theorem @ with Theorem @
(]ED: Combine Theorem (]ED with Theorem . ([l

Remark 55. (a) Theorem|54{once again immediately implies that the isogeny graphs gr, (¢, p)
and g?g(f ,p) are connected. However, note that the proof of Theorem [54| uses Theorem
which in turn uses Theorem

(b) In case g = 1 we have Spy(Qr) = SL2(Qy), So = Ay, U (O[1/4]) =T, and GU{(O[1/4]) =
['y. Hence for g = 1 we recover Theorem [49]

(c) The big isogeny graph Gry(¢,p) is not uniformized by Sy, as in the g = 1 case (Remark
since it is not a graph with opposites.

(d) There would be great interest in generalizing Theorem [51{ and Corollary |52/ to g > 1.
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9. COMPUTATIONS: THE RAMANUJAN PROPERTY FOR Gry(¢,p) WITH g > 1

9.1. A non-Ramanujan example. To see that the isogeny graph Gr,(¢,p) is in general
non-Ramanujan, consider the case / =2, g = 2, and p = 11. Here there are two supersingular
elliptic curves: E; : 4> = 23 + 1 and Fy : y* = 23 + . There are also two superspecial
genus-2 curves: C; :y?> = 2% + 1 and Cy : y? = 2% + 322 + 1. Hence there are five principally
polarized superspecial abelian surfaces: FE; x E, Ey X FEy, Ey X FE,, and the jacobians
J(Cy), J(Csy), the products taken with the product polarization and the jacobians with their
canonical polarizations. A Richelot isogeny of a principally polarized abelian surface (A, \) is
quotienting by a maximal isotropic subgroup of A[2]. We computed the Richelot isogenies
for these principally polarized abelian surfaces using Magma [BCP97]. The adjacency matrix
for Gry(2,11) is

Ad(Gry(2,11)) =

O O k= W
SO W W w o
O O =~ O
WO =W
o o O O O

3 4

the row-sums of this matrix are all 15 = Ny(2) = (1 + 2)(1 + 22). The eigenvalues of this
matrix are 15, 7 & \/§, and —3 £+ v/3. The second largest of these is 7 + V3 > 2v/14. Hence
the graph is not Ramanujan.

9.2. A Ramanujan example. To see that the isogeny graph Gr,(¢,p) can (rarely) be
Ramanujan, consider the case { = 2, g = 2, and p = 7. In characteristic 7 there is one
supersingular elliptic curve E : y? = 2% — 2 and one superspecial genus-2 curve C' : y? = 2 +x.
There are two principally polarized superspecial abelian surfaces: F x E with the product
polarization and the jacobian J(C') of C' with its canonical polarization. The adjacency
matrix for Gry(2,7) is

Ad(Gra(2,7)) = {” 4} .

’ 6 9

Again, the graph Gry(2,7) is 15-regular and we see that the row sums of Ad(Gry(2,7)) are
all 15. The eigenvalues of this matrix are 15 and 5. Since 5 < 2v/14, the graph Gry(2,7) is

Ramanujan.

9.3. A range of computations. We computed Gry(¢,p) using Theorem [37| by calculating
the Brandt matrix By(¢) for the maximal order O = End(£) C H,. We were able to do
this for all primes p < puax and (g, £, pmax) one of (2,2,311), (2, 3,257), (2,5,173), (3,2,41),
(3,3,23). Hence in these ranges we could determine whether the big isogeny graph Gr, (¢, p)
is Ramanujan.

The graph is trivially Ramanujan, due to having only one vertex, when (g, p) = (2, 2), (2, 3),
or (3,2) and ¢ arbitrary — the number of vertices only depends on (g, p) and not on /.

Otherwise, the only Ramanujan examples we found are when (g, ¢, p) is one of (2,2,5),
(2,2,7), (2,3,7), (3,2,3). (All these graphs have two vertices, but not every two-vertex graph

is Ramanujan.)
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