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Abstract. It is proved that any (repetitive) Riemannian manifold of bounded geometry can be realized as

a leaf of some (minimal) Riemannian matchbox manifold without holonomy. Our methods can be adapted to
achieve Cantor transversals or a prescribed holonomy covering, but losing the density of our leaf.

1. Introduction

The present paper relates to the study of which connected manifolds can be realized as leaves of foliations
on compact manifolds, a question that Sondow [50] and Sullivan [51] first posed in the seventies. A manifold
is called a leaf or a non-leaf depending on whether it can be realized or not. Typically, we restrict our
attention to a particular class of foliations (say, of a given codimension or differentiablity class), and then the
literature abounds with known results. The most prominent setting is perhaps codimension one, where Ghys
[27], Inaba et al. [33], and Schweitzer and Souza [47] have constructed non-leaves of dimension 3 and higher;
on the other hand, Cantwell and Conlon [19] have shown that any open connected surface is a leaf. More
recently, Meniño Cotón and Schweitzer [38] have pioneered the use of exotic differential structures to produce
novel examples of non-leaves.

One can try sprinkling some geometry on top of this question by noticing first that a leaf of a foliation on
a compact Riemannian manifold is of bounded geometry; moreover, its quasi-isometry type is independent
of the ambient Riemannian metric. We obtain thus a variation of the original realization problem: Which
connected Riemannian manifolds of bounded geometry are quasi-isometric to leaves of foliations on compact
Riemannian manifolds? Again, results and techniques are plentiful, including the works of Phillips and
Sullivan [41], Januszkiewicz [34], Cantwell and Conlon [16–18], Cass [20], Schweitzer [45,46], Attie and Hurder
[11], and Zeghib [52].

Considering more general ambient spaces, one can also study which manifolds can be realized as leaves on
compact Polish foliated spaces, where the differentiable structure and the Riemannian metric are avaliable
only in the leafwise direction. Schweitzer and Souza [48] have constructed connected Riemannian manifolds
of bounded geometry that are not quasi-isometric to leaves in compact equicontinuous foliated spaces; Hurder
and Lukina have used a coarse quasi-isometric invariant, the coarse entropy, to estimate the Hausdorff
dimension of local transversals when applied to leaves of compact foliated spaces; and Lukina [37] has studied
the Hausdorff dimension of local transversals in a foliated space.

Leaves of compact foliated spaces with leafwise Riemannian metrics are always of bounded geometry. The
authors have proved that, in this setting, the converse statement is also true: every connected Riemannian
manifold of bounded geometry is isometric to a leaf without holonomy in a compact Riemannian foliated
space ([5, Theorem 1.1], see also [7, Theorem 1.5] and [4]).

Our main contribution is a strengthening of this last result.

Theorem 1.1. Any (repetitive) connected Riemannian manifold of bounded geometry is isometric to a leaf
in a (minimal) Riemannian matchbox manifold without holonomy.

The improvement over [5, Theorem 1.1] is twofold: we manage to trivialize the holonomy group of every
leaf and we realize our leaf in a matchbox manifold (a foliated space with totally disconnected transversals).
This last improvement is an extension of a result by Anderson [10, Theorem IIIB], stating that any continuous
flow on a compactum can be raised to a continuous flow on a 1-dimensional compactum.1 Our interest in
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minimal matchbox manifolds without holonomy stems from the work of Clark, Hurder and Lukina ([23], see
also [2]), where they prove that these are inverse limits of compact branched manifolds. This description was
purportedly generalized to arbitrary matchbox manifolds in [36], but it has since been acknowledged that the
proof is not correct.

For example, Theorem 1.1 can be applied to any complete connected hyperbolic manifold with positive
injectivity radius, or to any connected Lie group with a left invariant metric. Some of them are not coarsely
quasi-isometric to any finitely generated group [21,26], yielding compact, minimal, Riemannian matchbox
manifolds without holonomy whose leaves are isometric to each other, but not coarsely quasi-isometric to any
finitely generated group.

Since any smooth C∞ manifold admits a metric of bounded geometry [29], Theorem 1.1 implies that
any C∞ connected manifold can be realized as a leaf of a C∞ matchbox manifold without holonomy. This
includes, for instance, the exotic non-leaves in codimension one constucted in [38].

In the following consequences of Theorem 1.1, the realization of a Riemannian manifold as a leaf is achieved
with some additional properties, but losing the density of that leaf.

Theorem 1.2. Any non-compact connected Riemannian manifold of bounded geometry is isometric to a leaf
in some Riemannian matchbox manifold without holonomy with a complete transversal homeomorphic to a
Cantor space.

Note that, since minimal matchbox manifolds have complete Cantor transversals, Theorem 1.2 is a direct
consequence of Theorem 1.1 if the manifold is repetitive, but not in the general case (Section 5). We also
remark that, when a matchbox manifold is not minimal, the transversal models may contain isolated points
and not be homeomorphic to the Cantor set.

Theorem 1.3. Let M be a connected Riemannian manifold of bounded geometry, and let M̃ be a regular

covering of M . Then M is isometric to a leaf with holonomy covering M̃ in a compact Riemannian matchbox
manifold.

Describing the pairs (M, M̃) that satisfy the statement of Theorem 1.3 with a minimal compact foliated
space seems less feasible. In this regard, Cass [20] has given a quasi-isometric property satisfied by the leaves
of compact minimal foliated spaces with no restriction on the holonomy.

The proof of Theorem 1.1 proceeds in two steps. We begin in Theorem 3.1 by realizing M as a dense leaf
of a (minimal) compact Riemannian foliated space X without holonomy. This step mirrors the techniques

used in [5, Theorem 1.1], where we realize manifolds in a universal space M̂n
∗ consisting of triples [M,x, f ],

where M is a connected Riemannian n-manifold, x ∈M and f : M → H is a smooth function taking values
in a separable Hilbert space. The idea is, given a candidate manifold M , to find a suitable f so that the
closure of {[M,x, f ] | x ∈ M} is the desired foliated space containing M as a leaf. In the construction of
f (Proposition 3.7), an important role is played by a Delone subset X ⊂M , which becomes a (repetitive)
connected graph of finite degree by attaching an edge between any pair of close enough points. Then f is
defined using normal coordinates at the points of X, and a (repetitive) limit aperiodic coloring ϕ of X by
finitely many colors. The existence of ϕ is guaranteed by [6, Theorem 1.4].

The second step of the proof constructs a (minimal) matchbox manifold M without holonomy and a
foliated projection π : M → X whose restrictions to the leaves are diffeomorphisms (Theorem 4.1). Then
X can be replaced with M by considering the lift of the Riemannian metric of X to M. To obtain M, we
introduce a totally disconnected extension of the transversal dynamical system associated to M, a technique
that is most commonly used in the context of actions of countable groups on compact spaces (see [10,24] and

the references therein). This idea is implemented by using again the space M̂n
∗ .

The proofs of Theorems 1.2 and 1.3 use the following common procedure: Let E → M be a Polish flat
bundle with non-compact, locally compact fibers. Realize the manifold M in M as above, and then glue E
to M, obtaining a new compact foliated space M′ (Section 5); choosing E appropriately in each case, M′

satisfies the property stated in the corresponding corollary.

2. Preliminaries

2.1. Partitioned spaces. If X is a topological space equipped with an equivalence relation R, then we call
(X,R) a partitioned space.
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Lemma 2.1. If the saturation of any open subset of X is open, then the closure of any saturated subset of X
is saturated.

Proof. For any saturated A ⊂ X, let x ∈ A and y ∈ R(x). For every open neighborhood U of y, its saturation
R(U) is an open neighborhood of x, and therefore R(U) ∩ A ̸= ∅. Since A is saturated, it follows that
U ∩A ̸= ∅. This shows that y ∈ A, and therefore A is saturated. □

The properties indicated in Lemma 2.1 are well known for the equivalence relations defined by continuous
group actions or foliated structures.

Like in the case of group actions or foliations, a minimal set A in X is a non-empty closed saturated subset
that is minimal among the sets with these properties. Minimality is achieved just when every equivalence
class in A is dense in A.

Given another partitioned space (Y, S), a map f : X → Y is said to be relation-preserving if f(R(x)) ⊂
S(f(x)) for all x ∈ X. The notation f : (X,R) → (Y, S) is used in this case.

2.2. Metric spaces. Let X be a metric space. For x ∈ X and r ∈ R, let S(x, r) = { y ∈ X | d(x, y) = r },
B(x, r) = { y ∈ X | d(x, y) < r } and D(x, r) = { y ∈ X | d(x, y) ≤ r } (the sphere, and the open and closed
balls of center x and radius r). For x ∈ X and 0 ≤ r ≤ s, let C(x, r, s) = B(x, s) \D(x, r) (The open corona
of inner radius r and outer radius s). We may add X as a subindex to all of this notation if necessary.
Consider a subset Q ⊂ X. It is said that Q is (K-) separated if there is some K > 0 such that d(x, y) ≥ K
for all x ̸= y in Q. On the other hand, Q is said to be (C-) relatively dense2 in X if there is some C > 0 such
that

⋃
q∈QD(q, C) = X. A separated relatively dense subset is called a Delone subset.

Lemma 2.2. If Q =
⋃∞

n=0Qn, where Q0 ⊂ Q1 ⊂ · · · and every Qn is K-separated, then Q is K-separated.

Proof. Given x ̸= y in Q, we have x, y ∈ Qn for some n, and therefore d(x, y) ≥ K. □

Lemma 2.3 (Álvarez-Candel [8, Proof of Lemma 2.1]). A maximal K-separated subset of X is K-relatively
dense.

Lemma 2.3 has the following easy consequence using Zorn’s lemma.

Corollary 2.4 (Cf. [9, Lemma 2.3 and Remark 2.4]). Any K-separated subset of X is contained in some
maximal K-separated K-relatively dense subset.

Recall thatX is said to be proper is its bounded sets are relatively compact; i.e., the map d(x, ·) : X → [0,∞)
is proper for any x ∈ X.

Definition 2.5. For A ⊂ X and ε > 0, a subset B ⊂ X is called an ε-perturbation of A if there is a bijection
h : A→ B such that d(x, h(x)) ≤ ε for every x ∈ A.

The following result is an elementary consequence of the triangle inequality.

Lemma 2.6. Let A ⊂ X and let B ⊂ X be an ε-perturbation of A. If A is η-relatively dense in X for η > 0,
then B is (η + ε)-relatively dense in X. If A is τ -separated for τ > 2ε, then B is (τ − 2ε)-separated.

2.3. Riemannian manifolds. Let M be a connected complete Riemannian n-manifold, g its metric tensor,
d its distance function, ∇ its Levi-Civita connection, R its curvature tensor, inj(x) its injectivity radius at
x ∈ M , and inj = infx∈M inj(x) (its injectivity radius). If necessary, we may add “M” as a subindex or
superindex to this notation, or the subindex or superindex “i” when a family of Riemannian manifolds Mi is
considered. Since M is complete, it is proper as metric space.

Let T (0)M =M , and T (m)M = TT (m−1)M for m ∈ Z+. If l < j, then T (l)M is sometimes identified with
a regular submanifold of T (m)M via zero sections. Any Cm map between Riemannian manifolds, h :M →M ′,

induces a map h
(m)
∗ : T (m)M → T (m)M ′ defined by h

(0)
∗ = h and h

(m)
∗ = (h

(m−1)
∗ )∗ for m ∈ Z+.

The Levi-Civita connection determines a decomposition T (2)M = H ⊕ V, as direct sum of the horizontal
and vertical subbundles. Consider the Sasaki metric g(1) on TM , which is the unique Riemannian metric
such that H ⊥ V and the canonical identities Hξ ≡ TξM ≡ Vξ are isometries for every ξ ∈ TM . For m ≥ 2,

consider the Sasaki metric g(m) = (g(m−1))(1) on T (m)M . The notation d(m) is used for the corresponding

2A C-net is similarly defined with the penumbra. If reference to C is omitted, both concepts are equivalent.
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distance function, and the corresponding open and closed balls of center v ∈ T (m)M and radius r > 0 are
denoted by B(m)(v, r) and D(m)(v, r). For l < j, T (l)M is totally geodesic in T (m)M and g(m)|T (l)M = g(l).

Let D ⊂M be a compact domain3 and m ∈ N. The Cm tensors on D of a fixed type form a Banach space
with the norm ∥ ∥Cm,D,g defined by

∥A∥Cm,D,g = max
0≤l≤m, x∈D

|∇lA(x)| .

By taking the projective limit as m→ ∞, we get the Fréchet space of C∞ tensors on D of that type equipped
with the C∞ topology (see e.g. [32]). Similar definitions apply to the space of Cm or C∞ functions on M
with values in a separable Hilbert space (of finite or infinite dimension).

Recall that a C1 map between Riemannian manifolds, h : M →M ′, is called a (λ-) quasi-isometry if there
is some λ ≥ 1 such that λ−1 |v| ≤ |h∗(v)| ≤ λ |v| for all v ∈ TM .

Recall also that a partial map h of M to M ′ is a map from a subset of M to M ′; it is denoted by
h : M ↣ M ′, and its domain and image are denoted by domh and imh. For m ∈ N, a partial map
h :M ↣M ′ is called a Cm local diffeomorphism if domh and imh are open in M and M ′, respectively, and
h : domh → imh is a Cm diffeomorphism. If moreover h(x) = x′ for distinguished points, x ∈ domh and
x′ ∈ imh, then h is said to be pointed, and the notation h : (M,x) ↣ (M ′, x′) is used. The term (pointed)
local homeomorphism is used in the C0 case.

For m ∈ N, R > 0 and λ ≥ 1, an (m,R, λ)-pointed partial quasi-isometry4 (or simply an (m,R, λ)-p.p.q.i.)
is a pointed partial map h : (M,x) ↣ (M ′, x′), with domh = D(x,R), which can be extended to a Cm+1-

diffeomorphism h̃ between open subsets such that D
(m)
M (x,R) ⊂ dom h̃

(m)
∗ and h̃

(m)
∗ is a λ-quasi-isometry of

some neighborhood of D
(m)
M (x,R) in T (m)M to T (m)M ′. The following result has an elementary proof.

Proposition 2.7. Let h : (M,x) ↣ (M,y) be an (m,R, λ)-p.p.q.i. and h′ : (M,x) ↣ (M,y′) an (m′, R′, λ′)-
p.p.q.i. Then h−1 : (M,y) ↣ (M,x) is an (m,λ−1R, λ)-p.p.q.i. If m′ ≥ m and Rλ + d(x, y) ≤ R′, then
h′h : (M,x) ↣ (M,h′(y)) is an (m,R, λλ′)-p.p.q.i.

In the following two results, E is a (real) Hilbert bundle over M , equipped with an orthogonal connection
∇. Let Cm(M ;E) denote the space of its Cm sections (m ∈ N ∪ {∞}), and Ex its fiber over any x ∈M .

Proposition 2.8 (Cf. [7, Proposition 3.11]). Let S ⊂ C∞(M ;E). Then S is precompact in C∞(M ;E) if and
only if:

(i) sups∈S supD |∇ks| <∞ for every compact subset D ⊂M and k ∈ N; and
(ii) { (∇ks)(x) | s ∈ S } is precompact in5 Ex ⊗

⊗
k T

∗
x0
M for all x ∈M and k ∈ N.

Proof. By definition of the topology of C∞(M ;E), the map

(∇k)k∈N : C∞(M ;E) →
∞∏
k=0

C
(
M ;E ⊗

⊗
k

T ∗M
)

is a topological embedding, so we need to show that every ∇k(S) is precompact in C(M ;E ⊗
⊗

k T
∗M) if

and only if (i) and (ii) are true. This equivalence is given by the version of the Arzelà-Ascoli theorem given
in [12, Chap. X, Sec. 5, Corollary 3]. □

Recall that M is said to be of bounded geometry if injM > 0 and supM |∇mRM | <∞ for all m ∈ N. For a
given manifold M of bounded geometry, the optimal bounds of the previous inequalities will be referred to as
the geometric bounds of M . Let Br = BRn(0, r) (r > 0).

Proposition 2.9 (See [43, Theorem A.1], [44, Theorem 2.5], [42, Proposition 2.4], [25]). M is of bounded
geometry if and only if there is some 0 < r0 < injM such that, for normal parametrizations κx : Br0 →
BM (x, r0) (x ∈M), the corresponding metric coefficients, gij and gij, as a family of C∞ functions on Br0

parametrized by x, i and j, lie in a bounded subset of the Fréchet space C∞(Br0).

3A regular submanifold of the same dimension as M , possibly with boundary.
4The extension h̃ is an (m,R, λ)-pointed local quasi-isometry, as defined in [5]. On the other hand, any (m,R, λ)-pointed

local quasi-isometry defines an (m,R, λ)-pointed partial quasi-isometry by restriction. Thus both notions are equivalent.
5Ex ⊗

⊗
k T ∗

xM ≡ Hom(
⊗

k TxM,Ex) is endowed with the topology of uniform convergence over bounded subsets, induced

by the operator norm. It agrees with the topology of pointwise convergence because dim
⊗

k TxM < ∞.
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Proposition 2.10 (See the proof of [44, Proposition 3.2], [49, A1.2 and A1.3]). Suppose that M is of bounded
geometry. For every τ > 0, there is some map c : R+ → N, depending only on τ and the geometric bounds of
M , such that, for any τ -separated subset X ⊂M , and all x ∈M and δ > 0, we have |D(x, δ) ∩X| ≤ c(δ).

Proposition 2.11. Let X be a τ -separated η-relatively dense subset of a manifold of bounded geometry
M for some 0 < τ < η. Given 0 < ε < τ/2 and σ > 0, let τ ′ = τ − 2ε and η′ = η + ε. Then there is
some 0 < P = P (ε) < σ, depending only on τ , ε, σ and the geometric bounds of M , such that P (ε) → 0 as
ε → 0 and, for every 0 < ρ < P and A ⊂ X satisfying d(a, b) /∈ (σ − ρ, σ + ρ) for all a, b ∈ A, there is an
ε-perturbation X ′ ⊂M of X satisfying A ⊂ X ′ and d(x′, y′) /∈ (σ− ρ, σ+ ρ) for all x′, y′ ∈ X ′. In particular,
X ′ is τ ′-separated and η′-relatively dense.

Proof. By Propositions 2.9 and 2.10, the following properties hold:

(a) There are C,P0 > 0 such that every τ ′-separated subset Y ⊂M satisfies |Y ∩D(y, σ+ ρ+ τ/2)| ≤ C
for all y ∈ Y and 0 < ρ < P0.

(b) There is some K = K(ε) > 0, with K(ε) → 0 as ε→ 0, such that volB(x, ε) ≥ K for all x ∈M .
(c) With the notation of (a) and (b), given 0 < L < K/C, there is some 0 < P = P (ε) ≤ P0, with

P (ε) → 0 as ε→ 0, such that volC(x, σ − ρ, σ + ρ) ≤ L for x ∈M and 0 < ρ < P .

Take any 0 < ρ < P .

Claim 2.12. Let Y ⊂M be a τ ′-separated subset, and let

B = {x ∈ Y | d(x, y) /∈ (σ − ρ, σ + ρ) ∀y ∈ Y } .

Then, for all x ∈ Y \B, there is some x̂ ∈M such that d(x, x̂) < ε and

((Y \ {x}) ∪ {x̂}) ∩ C(x̂, σ − ρ, σ + ρ) = ∅ .

By (a), the subset

Z := { z ∈ X | B(x, ε) ∩ C(z, σ − ρ, σ + ρ) ̸= ∅ } ⊂ X ∩D(x, σ + ρ+ τ/2)

has cardinality at most C. Thus, by (c) and (b), for all x ∈ Y \B,

vol
(
B(x, ε) ∩

⋃
z∈Z

C(z, σ − ρ, σ + ρ)
)
≤

∑
z∈Z

volC(z, σ − ρ, σ + ρ) ≤ CL < K ≤ volB(x, ε) .

So there is some x̂ ∈ B(x, ε) such that x̂ /∈ C(y, σ− ρ, σ+ ρ) for every y ∈ Z. Therefore x̂ /∈ C(y, σ− ρ, σ+ ρ)
for all y ∈ Y , and Claim 2.12 follows.

Let x1, x2, . . . be a (finite or infinite) sequence enumerating the elements of X \ A. Then X ′ is defined
as the union of A and a sequence of elements x′i such that d(x′i, xi) < ε for all i. In particular, X ′ will be
an ε-perturbation of X. Let us define x′i by induction on i as follows. We use the notation X0 = X and
Xi = (Xi−1 \ {xi}) ∪ {x′i} (i ≥ 1). Note that Xi is also an ε-perturbation of X and therefore τ ′-separated.
Assume that Xi−1 is defined for some i ≥ 1. By Claim 2.12, we can take some x′i ∈ X \ Xi−1 such that
d(xi, x

′
i) < ε and Xi ∩ C(x′i, σ − ρ, σ + ρ) = ∅. The resulting set X ′ satisfies the desired properties; in

particular, it is a τ ′-separated η′-relatively dense subset of M by Lemma 2.6. □

Proposition 2.13. Let X be an ε-relatively dense subset of M for some ε > 0, and let h be an isometry of
M . If ε is small enough and h = id on X, then h = id on M .

Proof. Fix any x0 ∈ M and 0 < r0 < injM (x0). For 0 < r ≤ r0, let B̌(r) denote the open ball B(0, r) in
Tx0

M . Moreover let X̌ = exp−1
x0

(X) ⊂ Tx0
M . There is some λ ≥ 1 such that expx0

: B̌(r0) → BM (x0, r0) is a
λ-bi-Lipschitz diffeomorphism. Since X is an ε-relatively dense subset of M , for all x ∈ BM (x0, r0 − ε), there
is some y ∈ X ∩ BM (x0, r0) with dM (x, y) < ε. Hence, for all v ∈ B̌(r0 − ε), there is some w ∈ X̌ ∩ B̌(r0)
with |v − w| < λε. If ε is small enough, it follows that X̌ ∩ B̌(r0) generates the linear space Tx0

M . Since
h∗ = id on X̌ ∩ B̌(r0) because h = id on X, we get h∗ = id on Tx0

M , yielding h = id on M . □
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2.4. Foliated spaces. A foliated space (or lamination) X ≡ (X,F) of dimension n is a Polish space X
equipped with a partition F (a foliated or laminated structure) into injectively immersed manifolds (leaves)
so that X has an open cover {Ui} with homeomorphisms ϕi : Ui → Bi ×Ti, for some open balls Bi ⊂ Rn and
Polish spaces Ti, such that the slices Bi × {∗} correspond to open sets in the leaves (plaques); every (Ui, ϕi)
is called a foliated chart and U = {Ui, ϕi} a foliated atlas. The corresponding changes of foliated coordinates
are locally of the form ϕiϕ

−1
j (y, z) = (fij(y, z), hij(z)). Let pi : Ui → Ti denote the projection defined by

every ϕi, whose fibers are the plaques. The subspaces transverse to the leaves are called transversals; for
instance, the subspaces ϕ−1

i ({∗} × Ti) ≡ Ti are local transversals. A transversal is said to be complete if it
meets all leaves. X is called a matchbox manifold if it is compact and connected, and its local transversals are
totally disconnected.

We can assume that U is regular in the sense that it is locally finite, every ϕi can be extended to a foliated
chart whose domain contains Ui, and every plaque of Ui meets at most one plaque of Uj . In this case, the maps
hij define unique homeomorphisms hij : pj(Ui ∩Uj) → pi(Ui ∩Uj) (elementary holonomy transformations) so
that pi = hijpj on Ui∩Uj , which generate a pseudogroup H on T :=

⊔
i Ti. This H is unique up to Haefliger’s

equivalences [30,31], and its equivalence class is called the holonomy pseudogroup. The H-orbits are equipped
with a connected graph structure so that a pair of points is joined by an edge if they correspond by some hij .
The projections pi define an identity between the leaf space X/F and the orbit space T/H. Moreover we can
choose points yi ∈ Bi so that the corresponding local transversals ϕ−1

i ({yi} × Ti) are disjoint. Then their
union is a complete transversal homeomorphic to T, and the H-orbits are given by the intersection of the
complete transversal with the leaves. If X is compact, then U is finite, and therefore the vertex degrees of
the H-orbits is bounded by the finite number of maps hij . Moreover the coarse quasi-isometry class of the
H-orbits is independent of U in this case.

If the functions y 7→ fij(y, z) are C
∞ with partial derivatives of arbitrary order depending continuously on

z, then U defines a C∞ structure on X, and X becomes a C∞ foliated space with such a structure. Then C∞

bundles and their C∞ sections also make sense on X, defined by requiring that their local descriptions are
C∞ in a similar sense. For instance, the tangent bundle TX (or TF) is the C∞ vector bundle over X that
consists of the vectors tangent to the leaves, and a Riemannian metric on X consists of Riemannian metrics
on the leaves that define a C∞ section on X. This gives rise to the concept of Riemannian foliated space. If
X is a compact C∞ foliated space, then the differentiable quasi-isometry type of every leaf is independent of
the choice of the Riemannian metric on X, and is coarsely quasi-isometric to the corresponding H-orbits (see
e.g. [9, Section 10.3]).

Many of the concepts and properties of foliated spaces are direct generalizations from foliations. Several
results about foliations have obvious versions for foliated spaces, like the holonomy group and holonomy cover
of the leaves, and the Reeb’s local stability theorem. This can be seen in the following standard references
about foliated spaces: [39], [14, Chapter 11], [15, Part 1] and [28].

2.5. Space of pointed connected complete Riemannian manifolds. Let us recall some concepts and
properties used in our main results and their proofs, already used in [5]. Consider pairs (M,x), where M is a
complete connected Riemannian n-manifold and x ∈M . Two such pairs are equivalent (M,x) ∼ (M ′, x′) if
there is pointed isometry ϕ : (M,x) → (M ′, x′). Let Mn

∗ be the Polish space of equivalence classes [M,x] of
pairs (M,x), with the topology induced by the C∞ convergence of pointed Riemannian manifolds. For any
M as above, there is a map ιM :M → Mn

∗ defined by ιM (x) = [M,x]. The images [M ] of all possible maps
ιM form a canonical partition of Mn

∗ , which is considered when using saturations or minimal sets in Mn
∗ .

Intuitively, the space Mn
∗ is constructed as follows: For every isometry class of complete, connected

Riemannian n-manifold, take a representative M and consider the quotient M/ Iso(M). Mn
∗ , as a set, is the

union of all these quotients, and the maps ιM : M → Mn
∗ are just the composition of the quotient and the

inclusion M →M/ Iso(M) → Mn
∗ , the image being denoted by [M ] = {[M,x] | x ∈M}. The topology can

be described in terms of convergence as follows: the sequence [Mn, xn] converges to [M,x] if, for every radius
r > 0, there are embeddings hm : BM (x, r) →Mm for m large enough satisfying that h∗mgMm → gM |B(x,r) in
the C∞ topology; this describes a Polish topology on Mn

∗ [5, Theorem 1.3].
As an illustration, let M be the standard 2-sphere. Then, since Iso(M) acts transitively, [M ] ⊂ M2

∗ is a
singleton and ιM is a constant map. Let L now be the 2-sphere endowed with a modified metric so that
Iso(L) = {id}, then ιL : L→ [L] ⊂ M2

∗ is actually a homeomorphism. Finally, let Ln be homeomorphic to L
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but endowed with the scaled Riemannian metric ngL. Then, for any point x ∈ L, we have [Ln, x] → [R2, p],
where p is any point in the plane.

There are other similar constructions of universal spaces consisting of equivalence classes of pointed objects;
for example, for tilings and graphs [3]. Adopting the same terminology, it is said that M is:

aperiodic: if ιM is injective (idM is the only isometry of M);

limit aperiodic: if M ′ is aperiodic for all [M ′, x′] ∈ [M ]; and
repetitive: if, roughly speaking, every ball is approximately repeated uniformly in M (Section 2.6).

Intuitively, aperiodic means that M has no non-trivial symmetries, whereas limit aperiodic means that
not only M has no non-trivial symmetries, but the same is true for all the limiting manifolds (think of the

sequence of scaled aperiodic 2-spheres converging to the plane). When [M ] is compact, the repetitivity of M

means that [M ] is minimal (Proposition 2.17).
As seen in [3], one can get new universal spaces by considering, instead of equivalence classes of pointed

graphs, equivalence classes of pointed colored graphs where vertices are labeled. Similarly, we can add to the
pairs (M,x) extra structure and thus obtain larger universal spaces where realization of manifolds as leaves
becomes easier. This will be done in the next few sections.

2.6. The space M̂n
∗ . For any n ∈ N, consider triples (M,x, f), where (M,x) is a pointed complete connected

Riemannian n-manifold and f :M → H is a C∞ function to a (separable real) Hilbert space (of finite or infinite
dimension). Two such triples, (M,x, f) and (M ′, x′, f ′), are said to be equivalent if there is a pointed isometry

h : (M,x) → (M ′, x′) such that h∗f ′ = f . Let6 M̂n
∗ = M̂n

∗ (H) be the set7 of equivalence classes [M,x, f ] of

the above triples (M,x, f). A sequence [Mi, xi, fi] ∈ M̂n
∗ is said to be C∞ convergent to [M,x, f ] ∈ M̂n

∗ if,
for any compact domain D ⊂M containing x, there are pointed C∞ embeddings hi : (D,x) → (Mi, xi), for
large enough i, such that h∗i gi → gM |D and h∗i fi → f |D as i→ ∞ in the C∞ topology8. In other words, for
all m ∈ N, R, ε > 0 and λ > 1, there is an (m,R, λ)-p.p.q.i. hi : (M,x) ↣ (Mi, xi), for i large enough, with
|∇l(f − h∗i fi)| < ε on DM (x,R) for 0 ≤ l ≤ m [7, Propositions 6.4 and 6.5]. The C∞ convergence describes

a Polish topology on M̂n
∗ [5, Theorem 1.3] and the evaluation map ev : M̂n

∗ → H, ev([M,x, f ]) = f(x), is
continuous.

We will now review some basic properties of the space M̂∗(n); a more detailed exposition can be found
in [5]. For any connected complete Riemannian n-manifold M and any C∞ function f :M → H, there is a

canonical continuous map ι̂M,f :M → M̂n
∗ defined by ι̂M,f (x) = [M,x, f ], whose image is denoted by [M,f ].

We have [M,f ] ≡ Iso(M,f)\M , where Iso(M,f) denotes the group of isometries of M preserving f . All

possible sets [M,f ] form a canonical partition of M̂n
∗ , which is considered when using saturations or minimal

sets in M̂n
∗ . Any bounded linear map between Hilbert spaces, Φ : H → H′, induces a relation-preserving

continuous map Φ∗ : M̂n
∗ (H) → M̂n

∗ (H
′), given by Φ∗([M,x, f ]) = [M,x,Φf ] (it is relation-preserving because

Φ∗([M,f ]) = [M,Φf ]).

Lemma 2.14. The saturation of any open subset of M̂n
∗ is open, and therefore the closure of any saturated

subset of M̂n
∗ is saturated.

Proof. Let V be the saturation of some open U ⊂ M̂n
∗ , and let [M,x, f ] ∈ V. Since the saturation of

[M,x, f ] is the set [M,f ], this means that there is some y ∈ M such that [M,y, f ] ∈ U. But U is open
and C∞-convergence is defined in terms of pointed partial quasi-isometries, as explained above, so there

are m ∈ N, R, ε > 0 and λ > 1 satisfying that, for all [M ′, y′, f ′] ∈ M̂n
∗ , if there is an (m,R, λ)-p.p.q.i.

h : (M,y) ↣ (M ′, y′) with |∇l(f − h∗f ′)| < ε on DM (y,R) for 0 ≤ l ≤ m, then [M ′, y′, f ′] ∈ U. We can
assume that R > dM (x, y).

Take now any convergent sequence [Mi, xi, fi] → [M,x, f ] in M̂n
∗ ; we will show that necessarily [Mi, xi, fi] ∈

V for i large enough, implying that V is open. For i large enough, by the definition of C∞ convergence, there

6In [5,7,9], the notation M∗(n) and M̂∗(n) was used instead of Mn
∗ and M̂n

∗ , adding the superindex “∞” when equipped with
the topology defined by the C∞ convergence.

7The cardinality of each complete connected Riemannian n-manifold is less than or equal to the cardinality of the continuum,

and therefore it may be assumed that its underlying set is contained in R. With this assumption, M̂n
∗ is a well defined set.

8The Cm+1 embeddings and Cm convergence of [7, Definition 1.1] and [5, Definition 1.2], for arbitrary order m, can be
assumed to be C∞ embeddings and C∞ convergence [32, Theorem 2.2.7].
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is some (m, 2R, λ)-p.p.q.i.
hi : (M,x) ↣ (Mi, xi)

with
|∇l(f − h∗i fi)| < ε

on DM (x, 2R) for 0 ≤ l ≤ m. Since DM (y,R) ⊂ DM (x, 2R), the closure of DM (y,R) is contained in
domhi, so it follows that the restriction hi|K of hi to some compact domain K containing DM (y,R) is a
(m,R, λ)-p.p.q.i.

h : (M,y) ↣ (Mi, hi(y))

satisfying
|∇l(f − h∗i fi)| < ε

on DM (y,R) for 0 ≤ l ≤ m. Hence [Mi, hi(y), fi] ∈ U and [Mi, xi, fi] ∈ V for i large enough.
The last part of the statement follows from the first part and Lemma 2.1. □

In the case of the zero Hilbert space, H = 0, there is a canonical identity of partitioned topological spaces,

M̂n
∗ (H) ≡ Mn

∗ , [M,x, f ] ≡ [M,x]. Hence the following is a particular case of Lemma 2.14.

Corollary 2.15. The saturation of any open subset of Mn
∗ is open, and therefore the closure of any saturated

subset of Mn
∗ is saturated.

Consider an arbitrary equivalence class [M,f ] ≡ Iso(M,f)\M . The Riemannian metric dM induces a
distance function

d([M,x, f ], [M,y, f ]) = inf{dM (u, v) | u, v ∈M, [M,x, f ] = [M,u, f ], [M,y, f ] = [M,v, f ]}

on [M,f ] ∼=M/ Iso(M,f) (see e.g. [13, Thm. 2.1]). Let d̂ : (M̂n
∗ )

2 → [0,∞] be the metric with possible infinite
values induced by dM on every equivalence class [M,f ], and equal to ∞ on non-related pairs.

Lemma 2.16. For every open U ⊂ M̂n
∗ , the map d̂(·,U) : M̂n

∗ → [0,∞] is upper semicontinuous.

Proof. To prove the upper semicontinuity of d̂(·,U) at any point [M,x, f ], we can assume that d̂([M,x, f ],U) <
∞, and therefore there is some y ∈ M such that [M,y, f ] ∈ U. Take a convergent sequence [Mi, xi, fi] →
[M,x, f ] in M̂n

∗ , and let ε > 0. We can also suppose that

d̂([M,x, f ], [M,y, f ]) < d̂([M,x, f ],U) + ε/3 , dM (x, y) < d̂([M,x, f ], [M,y, f ]) + ε/3 .

Since U is open, there are m ∈ N, R > dM (x, y) + ε, 1 < λ < (dM (x, y) + ε/3)/dM (x, y) and 0 < δ < ε so

that, for all [M ′, y′, f ′] ∈ M̂n
∗ , if there is an (m,R, λ)-p.p.q.i. h : (M,y) ↣ (M ′, y′) with |∇l(f − h∗f ′)| < δ

on DM (y,R) for 0 ≤ l ≤ m, then [M ′, y′, f ′] ∈ U. By the convergence [Mi, xi, fi] → [M,x, f ], for i large
enough, there is some (m, 2R, λ)-p.p.q.i. hi : (M,x) ↣ (Mi, xi) with |∇l(f − h∗i fi)| < δ on DM (x, 2R) for
0 ≤ l ≤ m. Since DM (y,R) ⊂ DM (x, 2R), it follows that [Mi, yi, fi] ∈ U for yi = hi(y), and

d̂([Mi, xi, fi], [Mi, yi, fi]) ≤ di(xi, yi) ≤ λdM (x, y) < dM (x, y) + ε/3 < d̂([M,x, f ],U) + ε .

Hence d̂([Mi, xi, fi],U) < d̂([M,x, f ],U) + ε for i large enough. □

It is said that (M,f) (or f) is (locally) non-periodic (or (locally) aperiodic) if ι̂M,f is (locally) injective;
i.e., aperiodicity means Iso(M,f) = {idM}, and local aperiodicity means that the canonical projection
M → Iso(M,f)\M is a covering map. More strongly, (M,f) (or f) is said to be limit aperiodic if (M ′, f ′) is

aperiodic for all [M ′, x′, f ′] ∈ [M,f ]. On the other hand, (M,f) (or f) is said to be repetitive if, given any
p ∈M , for all m ∈ N, R, ε > 0 and λ > 1, the points x ∈M such that

∃ an (m,R, λ)-p.p.q.i. h : (M,p) ↣ (M,x) with |∇l(f − h∗f)| < ε on DM (p,R) ∀l ≤ m (2.1)

form a relatively dense subset of M . This property is independent of the choice of p; this can be checked by
hand or, when [M,f ] is compact—which is the case that we will consider in this paper—, it is a consequence
of the following proposition.

Proposition 2.17. The following holds for any connected complete Riemannian n-manifold M :

(i) If (M,f) is repetitive, then [M,f ] is minimal.

(ii) If [M,f ] is compact and minimal, then (M,f) is repetitive.
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Proof. By Lemma 2.14, [M,f ] is saturated, and therefore its minimality can be considered.

Item (i) follows by showing that [M,f ] ⊂ [M ′, f ′] for every equivalence class [M ′, f ′] ⊂ [M,f ]. In fact, it

is enough to prove that [M,f ] ∩ [M ′, f ′] ̸= ∅ because [M ′, f ′] is saturated. Fix any p ∈ M , and let m ∈ N,
R, ε > 0 and λ > 1. By the repetitiveness of (M,f), for some c > 0, there is a c-relatively dense subset X ⊂M
such that, for all x ∈ X, there is an (m,R, λ1/2)-p.p.q.i. hx : (M,p) ↣ (M,x) with |∇l(f − h∗xf)| < ε/2 and

|∇lh∗xϕ| < 3
2h

∗
x|∇lϕ| on DM (x,R) for 0 ≤ l ≤ m and ϕ ∈ C∞(M). On the other hand, since [M ′, f ′] ⊂ [M,f ],

given any y′ ∈M ′, there are some y ∈M and an (m,λ1/2c+ λR, λ1/2)-p.p.q.i. h : (M ′, y′) ↣ (M,y) so that
|∇l(f − (h−1)∗f ′)| < ε/3 on h(DM ′(x, λ1/2c + λR)) for 0 ≤ l ≤ m. Take some x ∈ X with dM (x, y) ≤ c.
We have DM (y, c) ⊂ h(DM ′(y′, λ1/2c)), and therefore there is some x′ ∈ DM ′(y′, λ1/2c) with h(x′) = x. By
Proposition 2.7, the composite h−1hx defines an (m,R, λ)-p.p.q.i. (M,p) ↣ (M ′, x′). Moreover

|∇l(f − (h−1hx)
∗f ′)| ≤ |∇l(f − h∗xf)|+ |∇l(h∗xf − (h−1hx)

∗f ′)|

≤ |∇l(f − h∗xf)|+
3

2
h∗x|∇l(f − (h−1)∗f ′)| < ε

2
+

3

2

ε

3
= ε

on DM (p,R) for 0 ≤ l ≤ m. Since m, R, ε and λ are arbitrary, we get [M,p, f ] ∈ [M,f ] ∩ [M ′, f ′].
To prove (ii), fix any p ∈M , and take m ∈ N, R, ε > 0 and λ > 1. The set

U = { [M ′, x′, f ′] ∈ M̂n
∗ | ∃ an (m,R, λ)-p.p.q.i. h : (M,p) ↣ (M ′, x′)

with |∇l(f − h∗f ′)| < ε on DM (p,R) ∀l ≤ m }

is an open neighborhood of [M,p, f ] in M̂n
∗ . By Lemma 2.16, and the compactness and minimality of [M,f ],

we have d̂(·,U) ≤ c on M̂n
∗ for some c > 0. It follows that the points x ∈M satisfying (2.1) form a c-relatively

dense subset of M . Since m, R, ε and λ are arbitrary, we get that (M,f) is repetitive. □

The non-periodic and locally non-periodic pairs (M,f) define saturated subspaces M̂n
∗,np ⊂ M̂n

∗,lnp ⊂ M̂n
∗ .

The pairs (M,f), where f is an immersion, define a saturated Polish subspace M̂n
∗,imm ⊂ M̂n

∗,lnp. The

following properties hold [5, Theorem 1.4]:

• M̂n
∗,imm is open and dense in M̂n

∗ .

• M̂n
∗,imm is a foliated space with the restriction of the canonical partition.

• The foliated space M̂n
∗,imm has unique C∞ structure such that ev : M̂n

∗ → H is C∞. Furthermore

ι̂M,f :M → M̂n
∗ is also C∞ for all pairs (M,f) where f is an immersion.

• Every map ι̂M,f : M → [M,f ] ≡ Iso(M,f)\M is the holonomy covering of the leaf [M,f ]. Thus

M̂n
∗,np ∩ M̂n

∗,imm is the union of leaves without holonomy.

• The C∞ foliated space M̂n
∗,imm has a Riemannian metric so that every map ι̂M,f : M → [M,f ] ≡

Iso(M,f)\M is a local isometry.

By forgetting the functions f , we recover the Polish space Mn
∗ [7, Theorem 1.2]. We have Mn

∗ ≡ M̂n
∗ (0),

using the zero Hilbert space. The forgetful or underlying map u : M̂n
∗ → Mn

∗ , u([M,x, f ]) = [M,x], is
continuous. We also have the canonical partition defined by the images [M ] of canonical continuous maps
ιM :M → Mn

∗ , so the following properties hold for n ≥ 2 [7, Theorem 1.3]:

• Mn
∗,lnp is open and dense in Mn

∗ .
• Mn

∗,lnp is a foliated space with the restriction of the canonical partition.
• The foliated space Mn

∗,lnp has a unique C∞ and Riemannian structures such that every map ιM :

M → [M ] ≡ Iso(M)\M is a local isometry. Furthermore u : M̂n
∗,imm → Mn

∗,lnp is a C∞ foliated map.

• Every map ιM :M → [M ] ≡ Iso(M)\M is the holonomy covering of the leaf [M ]. Thus Mn
∗,np is the

union of leaves without holonomy.

Moreover [M ] is compact if and only if M is of bounded geometry [7, Theorem 12.3] (see also [22], [40,
Chapter 10, Sections 3 and 4]).

Now consider quadruples (M,x, f, v), where (M,x, f) is like in the definition of M̂n
∗ and v ∈ TxM .

An equivalence between such quadruples, (M,x, f, v) ∼ (M ′, x′, f ′, v′), means that there is an isometry
h :M →M ′ defining an equivalence (M,x, f) ∼ (M ′, x′, f ′) with h∗v = v′. The corresponding equivalence
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classes, denoted by [M,x, f, v], define a set TM̂n
∗ , like in the case of M̂n

∗ . Moreover the C∞ convergence

[Mi, xi, fi, vi] → [M,x, f, v] in TM̂n
∗ means that, for allm ∈ N, R, ε > 0 and λ > 1, there is an (m,R, λ)-p.p.q.i.

hi : (M,x) ↣ (Mi, xi), for i large enough, such that |∇l(f − h∗i fi)| < ε on DM (x,R) for 0 ≤ l ≤ m and

(h−1
i )∗vi → v. Like in the case of M̂n

∗ , it can be proved that this convergence defines a Polish topology on TM̂n
∗ .

Moreover there are continuous maps T ι̂M,f : T ∗M → T∗M̂n
∗ , defined by T ι̂M,f (x, v) = [M,x, f, v], whose

images T[M,f ] form a canonical partition of TM̂n
∗ satisfying the same basic properties as the canonical partition

of M̂n
∗ . We also have a continuous forgetful or underlying map u : TM̂n

∗ → M̂n
∗ given by u([M,x, f, v]) =

[M,x, f ].
The above definition can be modified in obvious ways, giving rise to other partitioned spaces with

the same basic properties. For instance, by using cotangent spaces T ∗
xM instead of the tangent spaces

TxM , we get a partitioned space T∗M̂n
∗ , where the partition is defined by the images T∗[M,f ] of maps

T ∗ι̂M,f : T ∗M → T∗M̂n
∗ , given by T ∗ι̂M,f (x, ξ) = [M,x, f, ξ]. Actually, the metrics of the manifolds M define

identities TxM ≡ T ∗
xM , yielding an identity TM̂n

∗ ≡ T∗M̂n
∗ . Next, for k ∈ N, we can also use the tensor

products
⊗

k TxM or
⊗

k T
∗
xM , giving rise to partitioned spaces

⊗
k TM̂

n
∗ and

⊗
k T

∗M̂n
∗ .

For a normed vector space V , or more generally a vector bundle E with a continuous function that restricts
to a norm on each fiber, and r > 0, let

DrV = {v ∈ V | ∥v∥ ≤ r} , DrE = {e ∈ E | ∥r∥ ≤ r} .
Hence, we obtain a fiber bundle Dr(TxM) ⊂ TxM with compact fibers, and also the partitioned subspaces

Dr(TM̂
n
∗ ) of TM̂n

∗ . Similarly, we get partitioned subspaces Dr(T
∗M̂n

∗ ), Dr(
⊗

k TM̂
n
∗ ) and Dr(

⊗
k T

∗M̂n
∗ ),

consisting on the vectors in the disks of center zero and radius r on T∗M̂n
∗ ,

⊗
k TM̂

n
∗ and

⊗
k T

∗M̂n
∗ ,

respectively. A continuous forgetful or underlying map u is defined in all of these spaces with values in M̂n
∗ .

We will use the notation ur,k = u : Dr(
⊗

k TM̂
n
∗ ) → M̂n

∗ .

Proposition 2.18. The map ur,k : Dr(
⊗

k TM̂
n
∗ ) → M̂n

∗ is proper.

Proof. For any compact subset K ⊂ M̂n
∗ , take a sequence [Mi, xi, fi, vi] in (ur,k)

−1(K). Since K is compact,
after taking a subsequence if necessary, we can assume that [Mi, xi, fi] converges to some element [M,x, f ]
in K. Thus there are sequences, mi ↑ ∞ in N, 0 < Ri ↑ ∞, 0 < εi ↓ 0 and 1 < λi ↓ 1, such that, for every
i, there is some an (mi, Ri, λi)-p.p.q.i. hi : (M,x) ↣ (Mi, xi) with |∇l(f − h∗i fi)| < εi on DM (x,Ri) for

0 ≤ l ≤ mi. Since λ
−k
i ≤ |(h−1

i )∗vi| ≤ λki for all i, some subsequence (h−1
ik

)∗vik is convergent in
⊗

k T
∗
xM to

some v with |v| ≤ r. Using hik , it follows that the subsequence [Mik , xik , fik , vik ] converges to [M,x, f, v] in
(ur,k)

−1(K), showing that (ur,k)
−1(K) is compact. □

For all k ∈ N, a well-defined continuous map ∇k :
⊗

k TM̂
n
∗ → H is given by ∇k([M,x, f, v]) = (∇kf)(x, v).

Proposition 2.19. Let M be a complete connected Riemannian n-manifold, and let f ∈ C∞(M,H), x0 ∈M

and r > 0. Then [M,f ] is compact if and only if M is of bounded geometry and ∇k((ur,k)
−1([M,f ])) is

precompact in H for all k ∈ N.

Proof. Assume that [M,f ] is compact to prove the “only if” part. The map u : M̂n
∗ → Mn

∗ defines a map

u : [M,f ] → [M ] with dense image because ιM = uι̂M,f . Moreover, u is continuous, so the image of [M,f ]

must be a dense compact subset of [M ]; since [M ] is closed, it follows that u is surjective and [M ] is compact.

So M is of bounded geometry [7, Theorem 12.3]. Furthermore u−1
r,k([M,f ]) is compact because ur,k is proper,

so ∇k((ur,k)
−1([M,f ])) is precompact in H for all k ∈ N.

The “if” part follows by showing that any sequence [M,f, xp] in [M,f ] has a subsequence that is convergent

in M̂n
∗ . Since [M ] is compact and u : M̂n

∗ → Mn
∗ continuous, we can suppose that [M,xp] converges to some

point [M ′, x′] in Mn
∗ . Take a sequence of compact domains Dq inM ′ such that BM ′(x′, q+1) ⊂ Dq. For every

q, there are pointed C∞ embeddings hq,p : (Dq, x
′) → (M,xp), for p large enough, such that h∗q,pgM → gN

on Dq as p → ∞ with respect to the C∞ topology. Let f ′q,p = h∗q,pf on Dq. From the compactness of

∇k((ur,k)
−1([M,f ])), it easily follows that, for every q and k, we have supp supDq

|∇kf ′q,p| < ∞, and the

elements (∇mf ′q,p)(x
′′, v′′) form a precompact subset of H for any fixed x′′ ∈ Dq and v′′ ∈ Dr(

⊗
k Tx′M ′).

Since
⊗

k Tx′′M ′ is of finite dimension, it follows that the elements (∇mf ′q,p)(x
′′) form a precompact subset
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of H⊗
⊗

k T
∗
x′′M ′. Hence the functions f ′q,p form a precompact subset of C∞(Dq,H) with the C∞ topology

by Proposition 2.8. So some subsequence f ′q,p(q,ℓ) is convergent to some f ′q ∈ C∞(Dq,H) with respect to the

C∞ topology. In fact, arguing inductively on q, it is easy to see that we can assume that each f ′q+1,p(q+1,ℓ) is

a subsequence of f ′q,p(q,ℓ), and therefore f ′q+1 extends f ′q. Thus the functions f ′q can be combined to define a

function f ′ ∈ C∞(M ′,H). Take sequences ℓq,mq ↑ ∞ in N so that

∥f ′ − h∗q,p(q,ℓq)f∥Cmq ,Dq,gN = ∥f ′q − f ′q,p(q,ℓq)∥Cmq ,Dq,gN → 0 .

Hence [M,f, xp(q,ℓq)] → [M ′, f ′, x′] in M̂n
∗ as q → ∞. □

The following is an elementary consequence of Proposition 2.19.

Corollary 2.20. Let M be a complete connected Riemannian n-manifold, and let f ∈ C∞(M,H). Suppose

that dimH <∞. Then [M,f ] is compact if and only if M is of bounded geometry and supM |∇mf | <∞ for
all m ∈ N.

Corollary 2.21. Let M be a complete connected Riemannian n-manifold, let H = H1 ⊕ H2 be a direct sum
decomposition of Hilbert spaces, and let

f ≡ (f1, f2) ∈ C∞(M,H) ≡ C∞(M,H1)⊕ C∞(M,H2) .

Then [M,f ] is compact if and only if [M,f1] and [M,f2] are compact.

Proof. Assume that [M,f ] is compact to prove the “only if” part. Let Πa : H → H2 (a = 1, 2) denote the

factor projections. The induced maps Πa∗ : M̂n
∗ (H) → M̂n

∗ (Ha) define continuous maps Πa∗ : [M,f ] → [M,fa],

whose images are dense because ι̂M,fa = Πa∗ι̂M,f . By the compactness of [M,f ], it follows that these maps

are surjective and the spaces [M,fa] are compact.

Now assume that every space [M,fa] (a = 1, 2) is compact to prove the “if” part. By Proposition 2.19, this
means that M is of bounded geometry and every set ∇m(u−1([M,fa])) is precompact in Ha for all m ∈ N.
Since

∇m(u−1([M,f ])) ⊂ ∇m(u−1([M,f1]))×∇m(u−1([M,f2]))

for every m because (∇mf)(x, ξ) = ((∇mf1)(x, ξ), (∇mf2)(x, ξ)) for all x ∈ M and ξ ∈
⊗

m T ∗
xM , we get

that ∇m(u−1([M,f ])) is precompact in H for all m. Hence [M,f ] is compact by Proposition 2.19. □

Proposition 2.22. Let M be a complete connected Riemannian n-manifold, and let f ∈ C∞(M,H). Then
the following properties hold:

(i) If [M,f ] is a compact subspace of M̂n
∗,imm, then infM |∇f | > 0.

(ii) If infM |∇f | > 0, then [M,f ] ⊂ M̂n
∗,imm.

Proof. This holds because the mapping [M ′, x′, f ′] 7→ |(∇f ′)(x′)| is well defined and continuous on M̂n
∗ . □

Proposition 2.23. In any minimal compact Riemannian foliated space, all leaves without holonomy are
repetitive.

Proof. This is a direct consequence of the Reeb’s local stability theorem and the fact that L ∩ U is relatively
dense in L for all leaf L and open U ̸= ∅ in a minimal compact foliated space [9, Second proof of Theorem 1.13,
p. 123]. □

Example 2.24. For any compact C∞ foliated space X, there is a C∞ embedding into some separable
Hilbert space, h : X → H [14, Theorem 11.4.4]. Suppose that X is transitive and without holonomy, and
endowed with a Riemannian metric. Let M be a dense leaf of X, which is of bounded geometry, and let
f = h|M ∈ C∞(M,H). We have infM |∇f | = minX |∇h| > 0. So X′ := [M,f ] is a Riemannian foliated

subspace of M̂n
∗,imm (Proposition 2.22 (ii)). Since X is compact and without holonomy, and M is dense in X,

it follows from the Reeb’s local stability theorem that the leaves of X′ are the subspaces [L, h|L], for leaves
L of X, and the combination of the corresponding maps maps ι̂L,h|L is an isometric foliated surjective map
ι̂X,h : X → X′. Using that ev ι̂X,h = h, we get that ι̂X,h : X → X′ is an isometric foliated diffeomorphism, and
ev : X′ → H is a C∞ embedding whose image is h(X). Thus X′ is compact and without holonomy, and (M,f)
is limit aperiodic. If moreover X is minimal, then (M,f) is repetitive by Proposition 2.23.
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2.7. The spaces G∗ and Ĝ∗. As auxiliary objects, we will use connected (simple) graphs with finite vertex
degrees, as well as their (vertex) colorings. For convenience, in this subsection, these graphs will be identified
with their vertex sets equipped with the natural N-valued metric on the vertex set. In other parts of the
paper, the graphs will be distinguished from their vertex sets by adding a subscript to the notation, which
refers to the definition of its edges. The natural metric of a connected graph is defined as the minimum length
of graph-theoretic paths (finite sequences of contiguous vertices) between any pair of points. The existence of
geodesic segments (minimizing graph-theoretic paths) between any two vertices is elementary. For such a
graph X, the degree of a vertex x is denoted by degX x (or deg x). The supremum of the vertex degrees is
called the degree of X, denoted by degX ∈ N ∪ {∞}. The natural N-valued metric of X is denoted by dX .

Given a countable set F , any map ϕ : X → F is called an (F -) coloring of X, and (X,ϕ) is called
an (F -) colored graph. We will take F = Z+ or F = {1, . . . , c} (c ∈ Z+). For a connected subgraph

Y ⊂ X, we will use the notation (Y, ϕ) = (Y, ϕ|Y ). Let Ĝ∗ = Ĝ∗(F ) be the set9 of isomorphism classes

[X,x, ϕ] of pointed connected F -colored graphs (X,x, ϕ) with finite vertex degrees. For R ≥ 0, let ÛR be

the set of pairs ([X,x, ϕ], [Y, y, ψ]) ∈ (Ĝ∗)
2 such that there is a pointed color-preserving graph isomorphism

(DX(x,R), x, ϕ) → (DY (y,R), y, ψ). These sets form a base of entourages of a uniformity on Ĝ∗, which is

metrizable because this base is countable since ÛR = Û⌊R⌋. Moreover it is easy to see that this uniformity

is complete. Equip Ĝ∗ with the corresponding underlying topology. The evaluation map ev : Ĝ∗ → F ,

ev([X,x, ϕ]) = ϕ(x), and the degree map deg : Ĝ∗ → Z+, deg([X,x, ϕ]) = degX x, are well defined and locally

constant. The space Ĝ∗ is also separable; in fact, a countable dense subset of Ĝ∗ is defined by the finite

pointed colored graphs because F is countable. Therefore Ĝ∗ is a Polish space.
Let (X,ϕ) be a connected colored graph with finite vertex degrees, whose group of color-preserving

graph automorphisms is denoted by Aut(X,ϕ). There is a canonical map ι̂X,ϕ : X → Ĝ∗ defined by
ι̂X,ϕ(x) = [X,x, ϕ]. Its image, denoted by [X,ϕ], can be identified with Aut(X,ϕ)\X, and has an induced

connected colored graph structure. All possible sets [X,ϕ] form a canonical partition of Ĝ∗. Like in Lemma 2.14,

it follows that the saturation of any open subset of Ĝ∗ is open, and therefore the closure of any saturated

subset of Ĝ∗ is saturated; in particular, [X,ϕ] is saturated. It is said that (X,ϕ) (or ϕ) is aperiodic (or
non-periodic) if Aut(X,ϕ) = {idX}, which means that ι̂X,ϕ is injective. More strongly, (X,ϕ) (or ϕ) is called

limit aperiodic if (Y, ψ) is aperiodic for all [Y, y, ψ] ∈ [X,ϕ]. On the other hand, (X,ϕ) (or ϕ) is called
repetitive if, for any p ∈ X and R ≥ 0, the points x ∈ X such that there is a pointed color-preserving graph
isomorphism (DX(p,R), p, ϕ) → (DX(x,R), x, ψ) form a relatively dense subset of X. Clearly, this property

is independent of the choice of p. Like in Proposition 2.17, if (X,ϕ) is repetitive, then [X,ϕ] is minimal, and

the reciprocal also holds when [X,ϕ] is compact.
There are obvious versions without colorings of the above definitions and properties, which can be also

described by taking F = {1}. Namely, we get: a Polish space G∗, canonical continuous maps ιX : X → G∗,
ιX(x) = [X,x], whose images, denoted by [X], define a canonical partition of G∗, and the concepts of non-

periodic (or aperiodic), limit aperiodic and repetitive graphs. The forgetful (or underlying) map u : Ĝ∗ → G∗,
u([X,x, ϕ]) = [X,x], is continuous. If X is repetitive, then [X] is minimal, and the reciprocal also holds when

[X] is compact. The closure [X] is compact if and only if degX < ∞. Then, like in Proposition 2.19, we

obtain that [X,ϕ] is compact if and only if degX <∞ and imϕ is finite.
We will use the following graph version of (m,R, λ)-p.p.q.i. (Section 2.3). For R ≥ 0 and λ ≥ 1,

an (R, λ)-pointed partial quasi-isometry (shortly, an (R, λ)-p.p.q.i.) between pointed graphs, (X,x) and
(Y, y), is a λ-bilipschitz pointed partial map h : (X,x) ↣ (Y, y) such that D(x,R) = domh, and therefore
D(y,R/λ) ⊂ imh. This definition satisfies the obvious analogue of Proposition 2.7. The following is a simple
consequence of the fact that graph metrics take integer values.

Proposition 2.25. Let 1 ≤ λ < 2 and R ≥ 0. Any (R, λ)-p.p.q.i. h : (X,x) ↣ (Y, y) between pointed graphs
defines a pointed graph isomorphism h : (domh, x) → (imh, y). In particular, it defines an (R/λ, 1)-p.p.q.i.
(X,x) ↣ (Y, y).

9Each connected graph with finite vertex degrees is countable, and therefore it may be assumed that its underlying set is

contained in N. With this assumption, Ĝ∗ is a well defined set.
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Corollary 2.26. A colored graph (X,ϕ) is repetitive if and only if, given any p ∈ X, for all R > 0 and
1 < λ < 2, the set

{x ∈ X | ∃ a color preserving (R, λ)-p.p.q.i. h : (X, p, ϕ) ↣ (X,x, ϕ) }
is relatively dense in X.

2.8. The space ĈMn
∗ . Fix some countable set F like in Section 2.7. Let ĈMn

∗ = ĈMn
∗ (F ) denote the set

of equivalence classes [M,x,C, ϕ] of quadruples (M,x,C, ϕ), where M is a complete connected Riemannian
manifold of dimension n, x ∈M , C ⊂M a closed subset and ϕ : C → F a locally constant coloring ϕ : C → F ;
an equivalence (M,x,C, ϕ) ∼ (M ′, x′, C ′, ψ′) means that there is a pointed isometry h : (M,x) → (M ′, x′)
with h(C) = C ′ and h∗ϕ′ = ϕ.

Similarly to M̂n
∗ , we have a natural notion of convergence, this time using a version of what is called

Chabauty convergence of closed subsets.

Definition 2.27. The sequence [Mi, xi, Ci, ϕi] is C
∞-Chabauty convergent to [M,x,C, ϕ] if, for any compact

domain D ⊂ M containing x, for all m ∈ N, R > ε > 0 and λ > 1, there is some (m,R, λ)-p.p.q.i.
hi : (M,x) ↣ (Mi, xi), for i large enough, such that:

(a) for all y ∈ DM (x,R − ε) ∩ C, there is some yi ∈ h−1
i (Ci) ⊂ DM (x,R) with dM (y, yi) < ε and

ϕ(y) = ϕihi(yi); and,
(b) for all yi ∈ DM (x,R − ε) ∩ h−1

i (Ci), there is some y ∈ C ∩ DM (x,R) with dM (y, yi) < ε and
ϕ(y) = ϕihi(yi).

Like in [1, Theorem A.17], it can be proved that this convergence defines a Polish topology on ĈMn
∗ ,

although we will not need that fact here. There are canonical continuous maps ι̂M,C,ϕ : M → ĈMn
∗ ,

ι̂M,C,ϕ(x) = [M,x,C, ϕ], whose images, denoted by [M,C, ϕ], form a canonical partition of CMn
∗ satisfying

the obvious version of Lemma 2.14. Each image [M,C, ϕ] can be identified with M/ Iso(M,C, ϕ), where
Iso(M,C, ϕ) is the group of isometries h satisfying h(C) = C and h∗ϕ = ϕ. We say that [M,C, ϕ] (or
(M,C, ϕ)) is

• aperiodic if Iso(M,C, ϕ) = {id}.
• limit aperiodic if Iso(M ′, C ′, ϕ′) = {id} for every [M ′, C ′, ϕ′] ∈ [M,C, ϕ].

3. Realization of manifolds as leaves in compact foliated spaces without holonomy

Theorem 3.1. For any (repetitive) connected Riemannian manifold M of bounded geometry, there is a
(minimal) compact Riemannian foliated space X without holonomy with a leaf isometric to M .

To prove this theorem, the construction of X begins with the following result.

Proposition 3.2. Let M be a connected Riemannian manifold of bounded geometry. For every η > 0, there
is some separated η-relatively dense subset X ⊂M , and some coloring ϕ of X by finitely many colors such
that (M,X, ϕ) is limit aperiodic.

Proof. Let 0 < τ < η. Choose 0 < ε < η − τ and take any (τ + 2ε)-separated (η − ε)-relatively dense subset

X̂ ⊂M (Corollary 2.4). By Proposition 2.11, there are ρ > 0, σ ≥ 3η, and a τ -separated η-relatively dense
subset X such that

dM (x, y) /∈ (σ − ρ, σ + ρ) ∀x, y ∈ X . (3.1)

X is the set of vertices of a graph whose set of edges is

EX,σ = { (x, y) ∈ X2 | 0 < dM (x, y) ≤ σ } .
For the sake of simplicity, the graph (X,EX,σ) is simply denoted by Xσ (see Section 2.7).

Claim 3.3. Xσ is connected, and X ∩DM (x, r) ⊂ DXσ
(x, ⌊r/η⌋+ 1) for all x ∈ X and r > 0.

Let x, y ∈ X and k = ⌊d(x, y)/η⌋+1. SinceM is connected, there is a finite sequence x = u0, u1, . . . , uk = y
such that dM (ui−1, ui) < η (i = 1, . . . , k). Using that X is η-relatively dense in M , we get another finite
sequence x = z0, z1, . . . , zk = y in X so that dM (ui, zi) < η for all i. Then

dM (zi−1, zi) ≤ dM (zi−1, ui−1) + dM (ui−1, ui) + dM (ui, zi) < 3η ≤ σ .
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So, either zi−1 = zi, or (zi−1, zi) ∈ Eσ. Thus, omitting consecutive repetitions, z0, z1, . . . , zk gives rise to a
graph-theoretic path between x and y in Xσ. This shows that Xσ is a connected graph and dXσ (x, y) ≤ k, as
desired.

By Proposition 2.10, there is some c ∈ N such that, for all x ∈M , the disk DM (x, σ) ∩X has at most c
points, obtaining that

degXσ ≤ c . (3.2)

Now [6, Theorem 1.4] ensures that there exists a limit aperiodic coloring ϕ : X → {1, . . . , c}. By the definition
of Eσ, we also get

DXσ
(x, r) ⊂ DM (x, rσ) (3.3)

for all x ∈ X and r ∈ N.
For n = dimM , take a class [M ′, X ′, ϕ′] ⊂ [M,X, ϕ] in ĈMn

∗ ({1, . . . , c}) (Section 2.8). As before, consider
the graph X ′

σ ≡ (X ′, EX′,σ), where

EX′,σ = { (x′, y′) ∈ (X ′)2 | 0 < dM ′(x′, y′) ≤ σ } .

Claim 3.4. We have that:

(a) X ′ is τ -separated and η-relatively dense in M ′,
(b) X ′

σ is connected and X ′ ∩DM ′(x′, r) ⊂ DX′
σ
(x′, ⌊r/η⌋+ 1) for all x′ ∈ X ′ and r > 0,

(c) degX ′
σ ≤ c, and

(d) [X ′, ϕ′] ⊂ [X,ϕ] in Ĝ∗({1, . . . , c}).

Let us prove (a). Given x′ ∈ X ′, m ∈ Z+, R > δ > 0 and λ > 1, there are some x ∈ X and an
(m,R, λ)-p.p.q.i. h : (M ′, x′) ↣ (M,x) such that:

• for all u ∈ D(x′, R−δ)∩X ′, there is some v ∈ h−1(X) ⊂ D(x′, R) with d(u, v) < δ and ϕ′(u) = ϕh(v);
and,

• for all v ∈ D(x′, R− δ)∩h−1(X), there is some u ∈ X ′∩D(x′, R) with d(u, v) < δ and ϕ′(u) = ϕh(v).

For the sake of simplicity, let ȳ = h−1(y) for every y ∈ imh. Since X ∩ h(DM ′(x′, R)), X ′ ∩DM ′(x′, R)
and h(DM ′(x′, R)) are compact, given any 0 < τ , we can assume that λ− 1 and δ are so small that

2λδ < τ . (3.4)

For any y′ ∈ X ′ ∩ DM ′(x′, R − δ), there is some y ∈ X ∩ h(DM ′(x′, R)) such that dM ′(y′, ȳ) < δ and
ϕ′(y′) = ϕ(y). If z ∈ X ∩ h(DM ′(x′, R)) also satisfies dM ′(y′, z̄) < δ, then, by (3.4),

dM (y, z) ≤ λdM ′(ȳ, z̄) ≤ λ(dM ′(y′, z̄) + dM ′(y′, ȳ)) < 2λδ < τ ,

yielding y = z because X is τ -separated. So y is uniquely associated to y′, and therefore the assignment
y′ 7→ y defines a color-preserving map

h̃ : X ′ ∩DM ′(x′, R− δ) → X ∩ h(DM ′(x′, R)) ;

in particular, h̃(x′) = h(x′) = x. Since h is an (m,R, λ)-p.p.q.i., for all y′, z′ ∈ X ′ ∩DM ′(x′, R− δ),

(dM ′(y′, z′)− 2δ)/λ < dM (h̃(y′), h̃(z′)) < λ(dM ′(y′, z′) + 2δ) . (3.5)

Furthermore, either dM (h̃(y′), h̃(z′)) = 0, or dM (h̃(y′), h̃(z′)) ≥ τ because X is τ -separated. So, either
dM ′(y′, z′) < 2δ, or dM ′(y′, z′) > τ/λ − 2δ by (3.5). Letting δ → 0, λ − 1 → 0 and R → ∞, we infer that,

for every y′, z′ ∈ X ′, either d(y′, z′) = 0 or d(y′, z′) ≥ τ ; that is, X ′ is τ -separated and (3.5) yields that h̃ is
injective.

By taking δ and λ− 1 small enough, we can also assume that

λ(σ − ρ+ 2δ) < σ < (σ + ρ− 2δ)/λ . (3.6)

Given y′, z′ ∈ X ′ ∩DM ′(x′, R− δ), let y = h̃(y′) and z = h̃(z′) in X ∩ h(DM ′(x′, R)). If dM ′(y′, z′) < σ − ρ,
then, by (3.6),

dM (y, z) ≤ λdM ′(ȳ, z̄) < λ(dM ′(y′, z′) + 2δ) < σ .

If dM ′(y′, z′) ≥ σ + ρ, then, by (3.6),

dM (y, z) ≥ dM ′(ȳ, z̄)/λ > (dM ′(y′, z′)− 2δ)/λ > σ .
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These inequalities, (3.5) and the injectivity of h̃ show that

h̃ : X ′ ∩DM ′(x′, R− δ) → h̃(X ′ ∩DM ′(x′, R− δ)) (3.7)

is a color-preserving graph isomorphism.
Like in (3.5), for all y′ ∈ X ′ ∩DM ′(x′, R− δ),

(dM ′(x′, y′)− δ)/λ < dM (x, h̃(y′)) < λ(dM ′(x′, y′) + δ) . (3.8)

We use these inequalities to show that

X ∩DM (x, (R− 2δ)/λ) ⊂ h̃(X ′ ∩DM ′(x′, R− δ)) ⊂ X ∩DM (x, λR) . (3.9)

Here, the second inclusion is a direct consequence of (3.8). To show the first inclusion, observe that
DM (x, (R− 2δ)/λ) ⊂ h(DM ′(x,R− 2δ)) because h : (M ′, x′) ↣ (M,x) is an (m,R, λ)-p.p.q.i. Thus, for any
y ∈ X ∩DM (x, (R − 2δ)/λ), we have ȳ ∈ DM ′(x′, R − 2δ) with h(ȳ) = y. Moreover there is some y′ ∈ X ′

such that dM ′(y′, ȳ) ≤ δ. Then dM ′(x′, y′) ≤ dM ′(x′, ȳ) + δ ≤ R− δ, and h̃(y′) = y by the definition of h̃. So

y ∈ h̃(X ′ ∩DM ′(x′, R− δ)), completing the proof of (3.9).
Now, for any y′ ∈ DM ′(x′, (R−2δ)/(λ−η)λ), we get h(y′) ∈ DM (x, (R−2δ)/λ−η) because h : (M ′, x′) ↣

(M,x) is an (m,R, λ)-p.p.q.i. Since X is η-relatively dense, there is some y ∈ M such that d(h(y′), y) ≤ η.

We have y ∈ DM (x, (R− 2δ)/λ) by the triangle inequality. Moreover y ∈ im h̃ by (3.9). So h̃−1(y) ∈ X ′ and

d(y′, h̃−1(y)) < d(y′, ȳ) + δ ≤ λd(h(y′), y) + δ ≤ λη + δ .

Since R is arbitrarily large, and δ and λ− 1 are arbitrarily small, it follows that X ′ is η-relatively dense in
M ′, completing the proof of (a).

Item (b) follows from (a) with the same argument as in Claim 3.3.
Finally, given any A > 0, if R is large enough, and δ and λ− 1 are small enough, then the color-preserving

graph isomorphism (3.7) restricts to a color-preserving graph isomorphism h̃ : DX′
σ
(x′, A) → DXσ

(h̃(x′), A)

by (3.9). Thus (c) follows from (3.2), and (d) follows from the definition of the topology of Ĝ∗({1, . . . , c})
(Section 2.7). This completes the proof of Claim 3.4.

Note that the statement of Proposition 3.2 is stronger when η > 0 is taken smaller.

Claim 3.5. If η is small enough, then (M,X, ϕ) is limit aperiodic.

Consider any class [M ′, X ′, ϕ′] ⊂ [M,X, ϕ] in ĈMn
∗ ({1, . . . , c}), and let h be an isometry of M ′ preserving

X ′ and ϕ′. Then h defines a color-preserving graph automorphism (X ′
σ, ϕ

′). By Claim 3.4 and since (Xσ, ϕ)
is limit aperiodic, we get that h = id on X ′. By Proposition 2.13, it follows that h = id on M ′ if η is small
enough. So (M ′, X ′, ϕ′) is aperiodic, completing the proof of Claim 3.5. □

Corollary 3.6. In Proposition 3.2, we may assume that ϕ(x) ̸= ϕ(y) if x ̸= y ∈ X and d(x, y) < 4η.

Proof. Let ϕ and η be as in the proof of Proposition 3.2. Two points in X at distance < 4η in M are at
distance < 5 with respect to the graph distance dXσ

by Claim 3.3. Since Xσ has finite degree, the cardinality
of the balls BXσ

(x, 5) is uniformly bounded by some constant F > 0, and therefore X ∩B(x, 4η) is uniformly
bounded on x too. Hence, by the pidgeonhole principle, there is some coloring α on X using finitely many
colors and such that different points at distance < 4η in M take different colors. Then the product coloring
ϕ× α uses finitely many colors (at most the product of the numbers of colors used by ϕ and α), and ϕ× α is
limit aperiodic because ϕ is limit aperiodic. □

As explained in Section 2.6, Theorem 3.1 holds with the Riemannian foliated subspace X = [M,f ] ⊂ M̂n
∗,imm

(n = dimM), where f ∈ C∞(M,H) is given by the following result.

Proposition 3.7 (Cf. [5, Proposition 7.1]). Let M be a (repetitive) connected Riemannian manifold. There
is some (repetitive) limit aperiodic f ∈ C∞(M,H), where H is a finite-dimensional Hilbert space, so that
supM |∇mf | <∞ for all m ∈ N and infM |∇f | > 0.

Proof. In Proposition 3.2, we constructed a separated, relatively dense set X ⊂ M and a coloring ϕ of X
such that (M,X, ϕ) is limit aperiodic. The overarching idea of the present proof is to substitute this discrete
set and coloring by a smooth function. However, finding a function satisfying supM |∇mf | <∞ for all m ∈ N
and infM |∇f | > 0 requires some careful choices.
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We begin by fixing r0 > 0 and normal parametrizations κx : Br0 → BM (x, r0) (x ∈ M) like in Propo-
sition 2.9. Now, fix 0 < r < r0 and take X, c and ϕ like in Proposition 3.2 with η = 2r/3. Write
X = {xi | i ∈ I } for some index set I, and let κi = κxi

: Br → BM (xi, r) and ϕi = ϕ(xi) (i ∈ I). X has a
graph structure, already defined in the proof of Proposition 3.2, using σ = 3η = 2r. Since adjacent points x,
y in X are at positive distance less than 4η, we will assume ϕ(x) ̸= ϕ(y) using Corollary 3.6.

Let 0 < ν < r be such that X is ν-separated. For n = dimM , choose some function ρ ∈ C∞
c (Rn) such that

ρ(x) depends only on |x|, 0 ≤ ρ ≤ 1, ρ(x) = 1 if |x| ≤ ν/2, and ρ(x) = 0 if |x| ≥ ν; that is, ρ is a spherically
symmetric bump function on Rn. Let S be an isometric copy in Rn+1 of the standard n-dimensional sphere so
that 0 ∈ S, and take some C∞ map τ : Rn → Rn+1 that restricts to a diffeomorphism Br → S \{0} and maps
Rn \Br to 0. Let V = τ(Br/2) ⊂ S and y0 = τ(0) ∈ V . For every i ∈ I, pulling back by κ−1

i : BM (xi, r) → Br,

we get functions ρi = ρκ−1
i : BM (xi, r) → R and τi = τκ−1

i : BM (xi, r) → S ⊂ Rn+1.
Let ϕ take values in {1, . . . , c}. For every color k ∈ {0, . . . , c}, let Xk be the points of X with ϕ(x) = k.

Then, let fk = (fk1 , f
k
2 ) :M → R×Rn+1 = Rn+2 be the extension by zero of the combination of the compactly

supported functions (ρi, τi) on the disjoint balls BM (xi, r), for xi ∈ Xk. Note that fk2 encodes both Xk

and
⋃

xi∈Xk
B(xi, r); Xk is precisely (fk2 )

−1(y0) and
⋃

xi∈Xk
B(xi, r) is the set of points z with fk2 (z) ̸= 0.

Moreover, for every x ∈ X, we have fk1 (x) = 1 if x ∈ Xk and fk1 (x) = 0 if x /∈ Xk because X is ν-separated
and ρ vanishes outside of Bν/2; thus, f

k
1 encodes the coloring ϕ of X.

Let us now take the Cartesian product of all maps, so

f = (f1, . . . , f c) :M → (Rn+2)c ≡ Rc(n+2).

Claim 3.8. supM |∇mf | <∞ for all m ∈ N and infM |∇f | > 0.

To prove supM |∇mf | <∞, it is clearly enough to prove that supM |∇mfkj | <∞ for all m ∈ N, 1 ≤ k ≤ c

and j ∈ {1, 2}. By definition, fk1 is the extension by 0 of the combination of the maps ρκ−1
i over the

balls BM (xi, r) with ϕ(xi) = k; but supM |∇mκ−1
i | < ∞ for every m by Proposition 2.9 and ρ is fixed, so

we obtain that supM |∇mfk1 | < ∞ for all m and k. The same argument using τ instead of ρ proves that
supM |∇mfk2 | <∞ for all m and k.

In order to show that infM |∇f | > 0, it is enough to show that there isK > 0 so that, for every x ∈M , there
is some k ∈ {1, . . . ,m} such that |∇fk2 | > K. First, note that, by the construction of X in Proposition 3.2,
X is η-relatively dense, with η = 2r/3. This means that the balls BM (x, 2r/3), x ∈ X, still cover M . By
Proposition 2.9, inf |∇κ−1

i | is uniformly bounded from below over the balls BM (xi, 2r/3), so there is K so

that for every x there is i with such that |∇κ−1
i |x > K. Moveover, κ−1

i (x) is inside the Euclidean ball
B2r/3 because κi determines a normal coordinate system. The function τ restricts to a diffeomorphism
Br → S \ {0}, so in particular inf |∇τ | is bounded from below over B2r/3; by reducing K if necessary, we
may assume inf |∇τ | ≥ K over B2r/3. Taking k to be the color ϕ(xi) and applying the chain rule, we obtain

that |∇fk2 |x ≥ K2 and, since x was arbitrary, the claim is proved.
We can write f = (f1, f2), where f1 = (f11 , . . . , f

c+1
1 ) :M → Rc and f2 = (f12 , . . . , f

c+1
2 ) :M → (Rn+1)c ≡

Rc(n+1).
Recall that 0 < r0 < injM is taken like in Proposition 2.9, and therefore the constant 0 < r < r0 can be

chosen as small as desired.

Claim 3.9. If r is small enough, then f is limit aperiodic.

Take any class [M ′, f ′] ∈ [M,f ]. Then [M ′] ∈ [M ], obtaining that injM ′ ≥ injM > r0 and M ′ satisfies the
property stated in Proposition 2.9. We can consider

f ′ = (f ′ 1, . . . , f ′ c+1) :M ′ → (Rn+2)c+1 ≡ R(c+1)(n+2)

with f ′ k = (f ′ k1 , f ′ k2 ) :M ′ → R× Rn+1 ≡ Rn+2. Given x′ ∈M ′, there are sequences, 0 < Rp ↑ ∞ and ηp ↓ 0
in R, mp ↑ ∞ in N, of smooth compact domains Dp ⊂M ′ with BM ′(x′, Rp) ⊂ Dp ⊂ BM ′(x′, Rp+1), and of
C∞ embeddings hp : Dp →M , such that

q ≥ p =⇒ ∥h∗qgM − gM ′∥Cmq ,Dp,gM′ , ∥h∗qf − f ′∥Cmq ,Dp,gM′ < ηq .

Under these conditions, we can show now that the Delone set X on M induces a Delone set X ′ on M ′

and, moreover, X ′ has a canonical graph structure induced from that on X: Let X ′
k = (f ′ k2 )−1(y0) ⊂M ′ and

X ′ = X ′
1 ∪ · · · ∪X ′

c+1. Write X ′ = {x′a | a ∈ A } for some index set A, and let Ak = { a ∈ A | x′a ∈ X ′
k }.
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For any a ∈ Ak, we have DM ′(x′a, r) ⊂ Dp for p large enough. Let x̄a,q = hq(x
′
a) for q ≥ p. Then

fk2 (x̄a,q) → f ′ k2 (x′a) = y0 as q → ∞. By the definition of fk2 , it follows that there is a sequence ia,q ∈ Ik
such that dM (xia,q , x̄a,q) → 0. Given 0 < θ < r/2, we get hq(DM ′(x′a, θ)) ⊂ BM (xia,q , r/2) for q ≥ p large

enough, and κ−1
ia,q

hq = τ−1fk2 hq → τ−1f ′ k2 with respect to the C∞ topology on DM ′(x′a, θ). Thus there is

some normal parametrization κ′a : Br → BM ′(x′a, r) such that τ−1f ′ k2 = κ′ −1
a on DM ′(x′a, θ). Since θ is

arbitrary, we get f ′ k2 = τκ′ −1
a on BM ′(x′a, r/2); in particular, f ′ k2 : BM ′(x′a, r/2) → V is a diffeomorphism.

Now, using the properties of X and the convergence dM (xia,q
, x̄a,q) → 0, it easily follows that X ′ is also

ν-separated and η-relatively dense in M ′, and, for all x′ ∈M ′, the ball BM ′(x′, σ) ∩X ′ has at most c points.
Hence, like in the case of X, the connected graph X ′

σ ≡ (X ′, EX′,σ) satisfies degX
′
σ ≤ c, where

EX′,σ = { (x′a, x′b) | a, b ∈ A, 0 < dM ′(x′a, x
′
b) < σ } .

Let D̃p denote the set of points x′a inX ′ such thatDM ′(x′a, r) ⊂ Dp. From the convergence dM (xia,q
, x̄a,q) → 0,

we also get that, if p and q are large enough with q ≥ p, then, for all a, b ∈ A with x′a, x
′
b ∈ D̃p, we have

(xia,q , xib,q) ∈ EX′,σ if and only if (x′a, x
′
b) ∈ EX′,σ. Thus an injection h̃p,q : D̃p → X is defined by

h̃p,q(x
′
a) = xia,q , and h̃p,q : D̃p → h̃p,q(D̃p) is a graph isomorphism. Moreover, for any N ∈ Z+ and a ∈ A,

we have DX′
σ
(x′a, N) ⊂ D̃p if DM ′(x′a, 2Nr) ⊂ Dp, which holds for p large enough. Then there is a pointed

isomorphism (BX′
σ
(x′a, N), x′a) → (BXσ(xia,q , N), xia,q) if p and q are large enough with q ≥ p, yielding

[X ′
σ, x

′
a] ∈ [Xσ], and therefore [X ′

σ] ⊂ [Xσ].
Furthermore, the original coloring ϕ on X also induces a coloring on X ′. Recall that ϕ(x) = k for x ∈ X if

and only if fk(x) = 1 and fk
′

1 (x) = 0 for all k′ ̸= k. Thus,

f ′k1 (x′a) = lim
q→∞

fk1 (x̄a,q) = lim
q→∞

fk1 (xia,q
) =

{
1 if ϕ(xia,q

) = k for q large enough,

0 otherwise .

So a coloring ϕ′ : X ′ → {1, . . . , c} is defined by taking ϕ′ = k on every X ′
k, where k is the only value with

f ′k1 (x′) = 1 for x′ ∈ X ′, and we have h̃p,qϕ = ϕ′ on DX′
σ
(x′a, N). Hence [X ′

σ, x
′
a, ϕ

′] ∈ [Xσ, ϕ], and therefore

[X ′
σ, ϕ

′] ⊂ [Xσ, ϕ]. Moreover (X ′
σ, ϕ

′) is aperiodic because (X,ϕ) is limit aperiodic.
Let us prove that (M ′, f ′) is aperiodic. Let h be an isometry of M ′ such that h∗f ′ = f ′. Then h∗f ′ kj = f ′ kj

for all k = 1, . . . , c+ 1 and j = 1, 2. So h(X ′) = X ′ and h : X ′
σ → X ′

σ is a graph isomorphism preserving ϕ′.
Since (X ′

σ, ϕ
′) is aperiodic, it follows that h is the identity on X ′. So h = id on M ′ if r is small enough by

Proposition 2.13. This completes the proof of Claim 3.9.
To finish the proof, let us show that we can get (M,f) repetitive if M is repetitive. Define f as above,

then the closure [M,f ] is compact, so it contains some [N, g] with minimal closure. The image of [N, g] by

the forgetful map M̂n
∗ → Mn

∗ is a compact, saturated subset of [M ], so it is in fact all of [M ] because this

set is minimal. Hence, [N, g] = [M,h] for some h, and (M,h) is repetitive because [M,h] is compact and

minimal. Finally, (M,h) is limit aperiodic because [M,h] ∈ [M,f ]. □

4. Replacing compact foliated spaces with matchbox manifolds

Theorem 4.1. For any (minimal) transitive compact C∞ foliated space X without holonomy, there is a C∞

(minimal) matchbox manifold M without holonomy, and there is a C∞ surjective foliated map π : M → X
that restricts to diffeomorphisms between the leaves of M and X.

Proof. Fix any dense leaf M of X, an auxiliary Riemannian metric on X, and a C∞ embedding into some

separable Hilbert space, h : X → H1. Let f1 = h|M and M1 = [M,f1] in M̂n
∗ (H1) (n = dimM). Then (M,f1)

is limit aperiodic, M1 is compact, and we have an induced isometric diffeomorphism between Riemannian
foliated spaces, ι̂X,h : X → M1 (Example 2.24).

There are regular foliated atlases U = {Ui, ϕi} and Ũ = {Ũi, ϕ̃i} of X (i = 1, . . . , c), with foliated charts

ϕi : Ui → Bi×Ti and ϕ̃i : Ũi → B̃i× T̃i, such that Ui ⊂ Ũi and ϕi = ϕ̃i|Ui
. Thus Bi ⊂ B̃i in Rn (n = dimX),

and every Ti is a relatively compact subspace of T̃i. Moreover the projections p̃i = pr2 ϕ̃i : Ũi → T̃i extend the

projections pi = pr2 ϕi : Ui → Ti, and the elementary holonomy transformations h̃ij : p̃i(Ũi∩Ũj) → p̃j(Ũi∩Ũj)

defined by Ũ extend the elementary holonomy transformations hij : pi(Ui∩Uj) → pj(Ui∩Uj) defined by U. Let
I denote the set of all finite sequences of indices in {1, . . . , c} of length ≥ 0; in particular, I contains the empty
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sequence, denoted by ε. For every I = (i0, i1, . . . , ik) ∈ I, let h̃I = h̃ik−1ik · · · h̃i1i0 and hI = hik−1ik · · ·hi1i0 ,
which may be empty maps; if the length of I is less than 2, then we set h̃I to be the identity. There are points

yi ∈ Bi such that the local transversals ϕ̃−1
i ({yi} × T̃i) ≡ T̃i have disjoint closures in X, and therefore we can

realize T̃ :=
⊔

i T̃i as a complete transversal in X (Section 2.4). Hence ϕ−1
i ({yi} × Ti) ≡ Ti and T :=

⊔
i Ti

also have these properties.

Since X is Polish and compact, it is locally compact and second countable, and therefore T̃ is also locally
compact and second countable. Then there is a countable base of relatively compact open subsets Vk (k ∈ N)
of T̃. Fix any relatively compact open subset Si of every T̃i containing Ti, and let S =

⊔
i Si. Given a

metric on T̃ inducing its topology, we can suppose that there is a sequence 0 = k0 < k1 < · · · in N such that
the sets Vkm

, . . . , Vkm+1−1 cover S and have diameter < 1/(m+ 1) for all m ∈ N. Using K = {0, 1}N as a

model of the Cantor space, let ψ : T̃ → K be defined by

ψ(x)(k) =

{
0 if x /∈ Vk

1 if x ∈ Vk .

Since I is countable, KI is homeomorphic to K. Let Ψ : T̃ → KI be the map defined by

Ψ(x)(I) =

{
ψh̃I(x) if x ∈ dom h̃I

0 if x /∈ dom h̃I ,

where 0 ≡ (0, 0, . . . ) ∈ K.

Remark 4.2. Let I = (i0, . . . , ik) and J = (j0, . . . , jl) satisfy ik = j0, and let x ∈ dom h̃I . Then h̃I(x) ∈
dom h̃J if and only if x ∈ dom h̃I·J , in which case h̃I·J(x) = h̃J(h̃I(x)), and the definition of Ψ yields

Ψ(h̃I(x))(J) = Ψ(x)(I · J).

Claim 4.3. For any sequence xa in S, if ψ(xa) is convergent in K, then xa is convergent in T̃, and lima xa
depends only on lima ψ(xa).

The convergence of ψ(xa) in K means that, for every m ∈ N, there is some am ∈ N such that ψ(xa)(k) =
ψ(xb)(k) for all k < km+1 and a, b ≥ am. Since the sets Vkm

, . . . , Vkm+1−1 cover S, it follows that there
is a sequence lm ∈ N such that km ≤ lm < km+1 and xa ∈ Vlm for all a ≥ am. Thus the limit set⋂

m {xa | a ≥ am } is a nonempty subset of
⋂

m Vlm , which consists of a unique point of S because every Vlm
is compact with diameter < 1/(m+ 1). Thus xa is convergent in T̃.

Now let ya be another sequence in S such that ψ(ya) is convergent in K and lima ψ(ya) = lima ψ(xa). We

have already proved that ya is convergent in T̃. Moreover, taking am large enough in the above argument, we
also get ψ(ya)(k) = ψ(xa)(k) for all k < km+1 and a ≥ am. This yields ya ∈ Vlm for all a ≥ am, and therefore
lima ya = lima xa. This completes the proof of Claim 4.3.

Claim 4.4. There is a continuous map ϖ : ψ(S) → S defined by

{x} =
⋂

k∈ξ−1(1)

Vk =⇒ ϖ(ξ) = x , (4.1)

and we have ϖψ = id on S

Let ξ ∈ ψ(S). Then ξ is the limit of some sequence ψ(xn) for xn ∈ S. By Claim 4.3, xn converges to
some point x in S and, moreover, if we take any other sequence yn such that limψ(yn) = ξ, then lim yn = x.

This assignment ξ 7→ x defines a function ϖ : ψ(S) → S, which satisfies (4.1) by the definition of the map ψ.
To show that ϖψ = id on S, take any x ∈ S and let ξ = ψ(x). Taking the constant sequence xn = x, we

see that limxn = x and limψ(xn) = ξ. Therefore ϖ(ξ) = x, as desired.

Remark 4.5. Every map h̃I , I = (i0, . . . , ik), induces a local homeomorphism in ϕ(S), which for simplicity we

will denote again by h̃I . Take a sequence xa in S such that ψ(xa) is convergent in ϕ(S). By Claim 4.3, xa is

convergent inS; assume that limxa ∈ T̃i0 , this clearly determines an open subset of ϕ(S), which will be dom h̃I .

Then we define h̃I(limψ(xa)) = limψ(h̃I(xa)); it is clear with this definition that ϖ(h̃I(ξ)) = h̃I(ϖ(ξ)).
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Similarly, for elements in imΨ(S), we can define h̃I(limΨ(xa)) = limΨ(h̃I(xa)) whenever xa ∈ dom h̃I .

Consider the map Π: imΨ(S) → S given by Π(α) = ϖ(α(ε)). Recall that α is a map I → K and ε ∈ I is
the empty sequence. By the previous claim and the definition of Ψ, Π is a continuous inverse to Ψ which
satisfies Π(h̃I(α)) = h̃I(Π(α)).

At this point, we only need to show that ϖ is continuous. Let ξn be a sequence in ψ(S) converging to
ξ, and let ϖ(ξ) = x. Choose some open set U containing x; since the basic open sets Vi cover S, there is
some Vj such that x ∈ Vj ⊂ U . Since ξn converges to ξ, we have ξn(j) = 1 for n large enough, and therefore
ϖ(ξn) ∈ U for n large enough, as desired. This completes the proof of Claim 4.4.

Let Xi = Ti ∩M and X =
⋃

iXi = T∩M , which is a Delone set in M (see e.g. [9, Proposition 10.5]). For

every i, let λi : X → [0, 1] be a C∞ function with λi = 1 on Ui and λi = 0 on some neighborhood of X \ Ũi

containing T̃ \Si. Fix an embedding σ : KI → R, and let f2 = (f12 , . . . , f
c
2) :M → Rc =: H2, where

f i2(x) =

{
λi(x) · σΨp̃i(x) if x ∈M ∩ Ũi

0 if x ∈M \ Ũi .

We have supM |∇mf2| = maxi supX |∇mλi| <∞ for allm ∈ N. So M2 := [M,f2] is compact by Corollary 2.20.

Consider the C∞ function f = (f1, f2) : M → H := H1 ⊕ H2, and M = [M,f ] in M̂n
∗ (H). Since M1 and

M2 are compact, we get that M is also compact by Corollary 2.21. We have infM |∇f | ≥ infM |∇f1| =
infX |∇h̃| > 0, and therefore M ⊂ M̂n

∗,imm(H) by Proposition 2.22 (ii). The pair (M,f) is limit aperiodic

because (M,f1) is limit aperiodic, and therefore M has no holonomy (Section 2.6).
For a = 1, 2, let Πa : H → Ha denote the corresponding factor projection.

Claim 4.6. Π1∗ : M → M1 is a surjective C∞ foliated map restricting to isometries between the leaves.

This map is foliated because Π1∗ : M̂n
∗ (H) → M̂n

∗ (H1) is relation-preserving (Section 2.6). Moreover it is

C∞, which follows from the description of the C∞ foliated structure of M̂n
∗,imm(H) and M̂n

∗,imm(H1) given in

[5, Section 5].
We have Π1∗ ≡ id : [M,f ] ≡ M → [M,f1] ≡ M by the aperiodicity of (M,f) and (M,f1). So

Π1∗ : M → M1 is surjective since [M,f ] and [M,f1] are dense in the respective compact spaces M and M1.
Obviously, the restrictions of Π1∗ : M → M1 to the leaves are local isometries. Then they are also covering

maps because the leaves are of bounded geometry by the compactness of M and M1. But we have seen
that its restriction to dense leaves, Π1∗ : [M,f ] → [M,f1], is a diffeomorphism, and M and M1 have no
holonomy. Then, using the Reeb’s local stability theorem, it easily follows that Π1∗ : M → M1 restricts to
diffeomorphisms between the leaves. This completes the proof of Claim 4.6.

By Claim 4.6, the map π := (ι̂X,h1)
−1Π1∗ : M → X is also a surjective C∞ foliated map restricting to

isometries between the leaves. Thus every leaf of M is of the form [M ′, f ′], where M ′ is a leaf of X and
f ′ = (f ′1, f

′
2) :M

′ → H, where f ′1 = h|M ′ and [M ′, f ′2] ⊂ M2.
Let p′i : U

′
i := π−1(Ui) → T′

i := π−1(Ti) be defined by p′i([M
′, x′, f ′]) = [M ′, pi(x

′), f ′], for leaves M ′ of X,
and let ϕ′i = (pr1 ϕiπ, p

′
i) : U

′
i → Bi × T′

i, where pr1 : Bi × Ti → Bi is the first factor projection. Using the

description of the C∞ foliated structure of M̂n
∗,imm(H) given in [5, Section 5], it is easy to check that {U ′

i , ϕ
′
i}

is a C∞ foliated atlas of M. Thus T′ =
⋃

i T
′
i ≡

⊔
i T

′
i is a complete transversal of M.

Claim 4.7. The map ev : T′ → H is an embedding whose image is f(X).

Since ev : T′ → H is a continuous map defined on a compact space, and { [M,x, f ] | x ∈ X } is dense in T′,
it is enough to prove that ev : T′ → H is injective. Let [M ′, x′, f ′], [M ′′, x′′, f ′′] ∈ T′ with f ′(x′) = f ′′(x′′).
We can assume that M ′ and M ′′ are leaves of X, x′ ∈ M ′ ∩ T, x′′ ∈ M ′′ ∩ T, f ′ = (f ′1, f

′
2) with f

′
1 = h|M ′ ,

and f ′′ = (f ′′1 , f
′′
2 ) with f

′′
1 = h|M ′′ . Then h(x′) = h(x′′), yielding x′ = x′′ and M ′ =M ′′. On the other hand,

there are sequences x′m and x′′m in M ∩ T converging to x′ in T such that (M,x′m, f2) and (M,x′′m, f2) are
C∞-convergent to (M ′, x′, f ′2) and (M ′, x′, f ′′2 ), respectively. If x

′ ∈ Ti, we can assume that x′m, x
′′
m ∈M ∩Ti

for all m. Writing f ′2 = (f ′12 , . . . , f
′c
2 ) and f ′′2 = (f ′′12 , . . . , f ′′c2 ), we get

lim
m
σΨ(x′m) = f ′i(x′) = f ′′i(x′) = lim

m
σΨ(x′′m) .
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So limm Ψ(x′m) = limm Ψ(x′′m), yielding limm ΨhI(x
′
m) = limm ΨhI(x

′′
m) for all I ∈ I. Since hI(x

′
m) and

hI(x
′′
m) converge to h̃I(x

′) in T, using the Reeb’s local stability theorem and the definition of f2, it follows
that both (M,x′m, f2) and (M,x′′m, f2) are C

∞-convergent to the same triple with first components (M ′, x′).
Therefore f ′2 = f ′′2 , yielding [M ′, x′, f ′] = [M ′′, x′′, f ′′], as desired.

According to Claim 4.7, T′ is homeomorphic to the subspace

f(X) = { (f1(x), f2(x)) | x ∈ X } ⊂ f1(T)× (σ(KI))c .

By the conditions on the functions λi, this subspace is homeomorphic to the subspace⊔
i

{ (x,Ψ(x)) | x ∈ Xi } =
⊔
i

{ (ϖ(ξ), ξ) | ξ ∈ Ψ(Xi) }

=
⊔
i

{
(ϖ(ξ), ξ) | ξ ∈ Ψ(Xi)

}
⊂

⊔
i

Ti ×KI ≡ T×KI ,

which in turn is homeomorphic to the subspace
⋃

i Ψ(Xi) ⊂ KI because ϖ is continuous. So T′ and T′ are
zero-dimensional, obtaining that M is a matchbox manifold.

Now suppose that X is minimal. Then (M,f1) is repetitive (Example 2.24). A simple refinement of the
proof of Proposition 2.23 also shows that (M,f2) is repetitive. In both cases, this property can be described
with the same partial pointed quasi-isometries given by the Reeb’s local stability theorem. So (M,f) is also
repetitive, and therefore M is minimal by Proposition 2.17 (i). □

Theorem 1.1 now follows from Theorems 3.1 and 4.1.

Remark 4.8. As mentioned in Section 1, Theorem 4.1 is an extension to foliated spaces of a theorem proved
by Anderson for flows [10, Theorem IIIB]. In fact, both constructions are almost exactly the same. Suppose,
for the sake of clarifying our construction, that we are dealing with a Z-action instead of a pseudogroup, so we
have a doubly-infinite sequence of iterates of some homeomorphism g : X → X for some Polish space X. Our
construction consists of taking a countable basis {Vk | k ∈ N} and defining the coding map ψ : X → 2N by

ψ(x) =

{
0 if x /∈ Vk

1 if x ∈ Vk .

Then we construct Ψ: X → (2N)Z ≡ 2N×Z, which codifies entire orbits, by

Ψ(x)(z) = ψgz(x) .

(In this case, it is not needed to discriminate whether x ∈ dom gz since dom gz = X.) Finally, we detail in
Remark 4.5 why Ψ has a continuous inverse Π: imΨ → X that is equivariant with respect to the Z-action on
imΨ given by

gz(limΨ(xa)) = limΨ(gz(xa)).

But, in the case of a Z-action, this is just the usual shift map gz(α)(n, z′) = α(n, z′ − z). Note that all of this
holds even though the coding map is not continuous.

Anderson partitions Z into a disjoint union of doubly infinite subsequences, denoted ni, and now the
shift map, instead of moving all elements on Z one step to the right, moves each element to its successor in
the subsequence which contains it. This is the same as considering Z× N and taking the shift map to be
(z, n) 7→ (z + 1, n), where now each horizontal copy of Z corresponds to one of the ni. He takes a family of
sets that are the closures of a basis, which we may denote here by {V k}. The desired zero-dimensional space
is then the set of pairs (x, p) in X × 2N×Z that do not satisfy either of these conditions:

(1) for some n and z, x /∈ gz(V n) and p(n, z) = 1;
(2) for some n and z, x ∈ Cl(X \ gz(V n)) and p(n, z) = 1.

This is easily seen to be equivalent to the set of pairs (x, p) satisfying the following two conditions:

(1) for all n and z, if x ∈ gz(Vn) then p(n, z) = 1; and,
(2) for all n and z, if x ∈ X \ gz(V n) then p(n, z) = 0.

It is elementary to check now that our map Ψ is such that (x,Ψ(x)) satisfies these conditions, and therefore the
map imΨ → X× 2N×Z, given by c 7→ (ϖ(c), c), is an embedding. So, at last, we see that our zero-dimensional
extension is a closed, saturated subspace of Anderson’s.
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Remark 4.9. The argument of the proof of Theorem 4.1 does not entail any contradiction in our constructions
because we do not claim that ψ is a surjective function. We merely claim that it has a left inverse. For
example, consider the map 2N → [0, 1] that sends a sequence x0x1 · · · to the real number with dyadic
expansion 0.x1x2 · · · ; this would correspond to our map ϖ. Indeed, there is no possible surjective section
ψ, but this does not contradict the fact that ϖ is continuous and well-defined. Moreover, this does not
contradict the fact that there are several choices for non-injective, non-continuous sections ψ, that would
correspond to different codings; for example, one may take the convention that a number with two possible
dyadic expansions gets sent to the expansion ending in all zeros. Furthermore, this section ψ satisfies the
property analogous to that of Claim 4.3: if we take a sequence of numbers rn and their dyadic expansions
(given by ψ(rn)) converge, then the sequence rn converges as well, and their limit depends only on the limit
of the dyadic expansions.

The case of the Denjoy construction is similar: there is no surjective section from the circle to the Cantor
set, but one may easily adopt some convention (for example: for the points that get split in two, associate it
to the copy that gets moved in the counter-clockwise direction) and find a section with similar properties as
before. Since coding maps cannot be continuous, one has great flexibility when constructing them.

Regarding our construction, there is one fundamental difference with the last two: we are using open
sets for our coding functions, so we don’t need any conventions or choices to define our map ψ. Taking a
suitable sequence of open sets Vk as explained right before Claim 4.3, we simply define the coding function by
ψ(x)(k) = 1 if x ∈ Vk or ψ(x)(k) = 1 if not. However, we may still find a continuous projection from a Cantor
set to our transversal T which is a left inverse to ψ, and that is precisely the contents of Claims 4.3 and 4.4.

5. Attaching flat bundles to foliated spaces

In this section we will prove Theorems 1.2 and 1.3. The main idea can be explained simply as follows:
consider a circle, denoted S, as a trivial foliated space with one leaf only, and suppose we want to modify this
foliated space so that the holonomy covering of this leaf is R. Consider the universal covering R → S, and
add S to this bundle as a circle “at infinity”, so that we obtain a space X which is the union of S and R with
R accumulating on S on both ends. Such a foliated space can be described as the closure of a non-compact
leaf in the non-orientable Reeb component on the Möbius band. It is easy to check that, in this enlarged
space, the holonomy covering of S is R.

Our strategy will be a generalization of this simple idea: Take a manifold M to realize as a leaf with

holonomy cover M̃ . Using the results from the previous sections, we can realize M as a leaf in a matchbox
manifold without holonomy. Then, we will see that choosing a suitable bundle E →M , adding a copy of M
at infinity, and gluing this copy at infinity and the leaf M inside our matchbox manifold, we obtain a larger
matchbox manifold that still contains M , but now with the desired holonomy cover.

In the following, we will develop the technical tools to make this construction work: Let X ≡ (X,F) be a
compact C∞ foliated space of dimension n, and let M be a leaf of X. On the other hand, let ρ : E →M be a
locally compact flat bundle with typical fiber F and horizontal foliated structure H. This can be described
as the suspension of its holonomy homomorphism h : π1M → Homeo(F ), whose image is its holonomy group
G; they are well defined up to conjugation in Homeo(F ). Any foliated concept of E refers to H. The C∞

differentiable structure of M induces a C∞ differentiable structure of H. Assume that F is a non-compact,
zero dimensional locally compact Polish space; then E is also non-compact, locally compact and Polish. The
notation Ex = ρ−1(x) and EX = ρ−1(X) will be used for x ∈M and X ⊂M .

The one-point compactifications E+
x = {x} ⊔ Ex of the fibers Ex (x ∈M) are the fibers of another C∞

flat bundle ρ+ : E+ → M ; thus E+ ≡ M ⊔ E as sets. Its typical fiber is the one-point compactification
F+ = {∞} ∪ F of F , the leaves of its horizontal foliation H+ are M and the leaves of H, its holonomy
homomorphism h+ : π1M → Homeo(F+) is induced by h, and its holonomy group is denoted by G+. The
more specific notation hx : π1(M,x) → Homeo(F ), h+x : π1(M,x) → Homeo(F+), Gx and G+

x will be used
to indicate the base point x.

Let us topologize X′ = X ⊔ E ∼= X ∪idM
E+ as follows: Take any foliated chart U ≡ B × T of X with ball

B ⊂ Rn and local transversal T. We have M ∩ U ≡ B ×D for some countable subset D ⊂ T. Since the
plaques of U are contractible, ρ has a local trivialization EM∩U ≡ (M ∩ U)× F . Consider the topology on
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T′ = T ⊔ (D × F ) with basic clopen sets of the forms

V = ∅ ⊔ {d} × Vd ≡ {d} × Vd , W =WT ⊔
⋃
z

({z} × (F \Kz)) ,

where d ∈ D, Vd ⊂ F is clopen, WT ⊂ T is clopen, z ∈ WT ∩ D, and Kz ⊂ F is compact and open with
Kz = ∅ for almost all z. Then X′ has a topology with basic open sets of the form

V ≡ ∅ ⊔ (B × {d} × Vd) ≡ B ×V , W ≡ B ×
(
WT ⊔

⋃
z

({z} × (F \Kz))
)
≡ B ×W ,

for all possible foliated charts U ≡ B × T of X, and all d, Vd, WT, z and Kz as above for every foliated chart.
If the foliated atlas is a base of open sets of X, then it is enough to take WT = T to obtain a base of open
sets of X′; in this case, the sets W would be of the form

W ≡ U ⊔
(
B ×

⋃
z

({z} × (F \Kz))
)
,

Using these basic open sets, it is easy to check that X′ is Hausdorff, second countable and compact, and T′ is
in addition zero-dimensional. So X′ is metrizable [35, Proposition 4.6], and hence Polish. In particular, the
sets

U ′ = U ⊔ EM∩U ≡ (B × T) ⊔ (B ×D × F ) = B × T′

are open in X′, and the fibers B × {∗} correspond to open subsets of leaves of F or H. Thus these identities
are foliated charts of a foliated structure F′ on X′, and its leaves are the leaves of F and H. As sets, we can
write X′ ≡ X ∪idM

E+ and T′ ≡ T ∪idD
(D × F+), where we consider D ≡ D × {∞} ⊂ D × F+; we can also

write T′ = T ⊔ ED ≡ T ∪idD
E+

D. Since T′ is zero-dimensional, we have constructed a matchbox manifold.
Consider a regular foliated atlas of X consisting of charts Ui ≡ Bi × Ti, for balls Bi ⊂ Rn and local

transversal Ti. As before, take local trivializations EM∩Ui
≡ (M ∩ Ui) × F of the flat bundle ρ, write

M ∩ Ui ≡ Bi ×Di for countable subsets Di ⊂ Ti, and consider the induced foliated charts U ′
i ≡ Bi × T′

i

of F′, where U ′
i = Ui ⊔ EM∩Ui and T′

i = Ti ⊔ (Di × F ), endowed with Polish topologies. The changes
of coordinates of the foliated charts Ui ≡ Bi × Ti are of the form (y, z) 7→ (fij(y, z), hij(z)), where every
mapping y 7→ fij(y, z) is C

∞ with all of its partial derivatives of arbitrary order depending continuously on z.
Using local trivializations of E and foliated charts of F, we get EM∩Ui

≡ (M ∩ Ui)× F ≡ Bi ×Di × F . The
changes of these local descriptions are of the form (y, z, u) 7→ (fij(y, z), hij(z), gij(z, u)), where the maps gij
are independent of y because E+ is flat. Then the changes of coordinates of the foliated charts U ′

i ≡ Bi × T′
i

are of the form

(y, z′) 7→

{
(fij(y, z

′), hij(z
′)) ∈ Bj × Tj if z′ ∈ Ti

(fij(y, z), (hij(z), gij(z, u))) ∈ Bj × (Dj × F ) if z′ = (z, u) ∈ Di × F .

This map is continuous because ∞ is fixed by the unique continuous extension F+ of the homeomorphism
gij(z, ·) of F . Moreover it is C∞ (in the foliated sense) because only its component fij(y, z

′) or fij(y, z)
depends on y. Thus the charts U ′

i ≡ Bi × T′
i define a C∞ structure on X′ ≡ (X′,F′). The corresponding

elementary holonomy transformations h′ij are combinations of maps hij and gij . Using these foliated charts,

it also follows that X and E are embedded C∞ foliated subspaces of X′, E+ is an injectively immersed C∞

foliated subspace of X′, and the combination π : X′ → X of idX and ρ (or ρ+) is a C∞ foliated retraction.
The fibers of π are

π−1(x) =

{
{x} ⊔ ∅ ≡ {x} if x ∈ X \M
{x} ⊔ Ex = E+

x if x ∈M .

Lemma 5.1. Suppose that the restrictions of ρ to the leaves of H are regular coverings of the leaves of F,
and that the leaf M of F has no holonomy. Then the holonomy group of the leaf M of F′ is isomorphic to the
group of germs at ∞ of the elements of the subgroup G+ ⊂ Homeo(F+).

Proof. With the above notation, fix an index i0 and some point x0 ∈ Di0 ≡ Ti0 ∩M ≡ T′
i0
∩M , considering

Ti0 ⊂ X and T′
i0

⊂ X′. Let c : [0, 1] → M be a loop based at x0. Since the holonomy group of M in X
is trivial, there is a family of leafwise loops cx : [0, 1] → X, depending continuously on x in some open
neighborhood T0 of x0 in Ti0 , such that cx0 = c. Let D0 = Di0 ∩ T0. From the above description of the
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elementary holonomy transformations h′ij , it follows that the holonomy of F′ defined by [c] ∈ π1(M,x0) is
the germ at x0 ≡ (x0,∞) of the homeomorphism gc of T′

i0
= Ti0 ⊔ (Di0 × F ) given by

gc(z
′) =

{
z′ if z′ ∈ T0

(x, hx([cx])(u)) if z′ = (x, u) ∈ D0 × F ,

using [cx] ∈ π1(M,x). Since the restrictions of ρ to the leaves of H are regular coverings of M , we easily
get that h+x ([cx])(u) = u for some x ∈ D0 and u ∈ F+ close enough to ∞ if and only if h+x0

([c])(u) = u for
u ∈ F+ close enough to ∞. So, by restricting every gc to {x0} × F+ ≡ F+, we get an isomorphism from the
holonomy group of the leaf M of F′ at x0 to the group of germs of the elements of G+

x0
at ∞. □

Proofs of Theorems 1.2 and 1.3. Let M be non-compact connected Riemannian manifold of bounded geome-
try. By Theorem 1.1, M is isometric to a leaf in some Riemannian matchbox manifold M without holonomy.
Now Theorems 1.2 and 1.3 follow by considering the foliated space M′ constructed as above with M and an
appropriate flat bundle E over M , and lifting the Riemannian metric of M to M′.

In the case of Theorem 1.2, we can use the trivial flat bundle E =M ×K over M , where K is the Cantor
space. By the density of M in M, it follows that M′ has a compact zero-dimensional complete transversal T′

without isolated points, and therefore T′ is homeomorphic to the Cantor space.

In the case of Theorem 1.3, let Γ denote the group of deck transformations of the given regular covering M̃

of M , equipped with the discrete topology. If Γ is infinite, we can take E = M̃ , whose typical fiber is F = Γ.

If Γ is finite, we can take E = M̃ × Z, whose typical fiber is F = Γ× Z. In any case, F is non-compact, and
the action of Γ on itself by left translations induces a canonical action of Γ on F , which in turn induces an

action on F+. By Lemma 5.1 and the regularity of the covering M̃ of M , the holonomy group of M in M′ is
isomorphic to the group of germs at ∞ of the action of the elements of Γ on F+, which is itself isomorphic to
Γ because the action of Γ on F is free and its extension to an action on F+ fixes ∞. □
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