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Equivariantly formal 2-torus actions of complexity one

By Vladimir Gorchakov

Abstract. In this paper we study a specific class of actions of a 2-torus
Zk
2 on manifolds, namely, the actions of complexity one in general position. We

describe the orbit space of equivariantly formal 2-torus actions of complexity

one in general position and restricted complexity one actions in the case of
small covers. It is observed that the orbit spaces of such actions are topological

manifolds. If the action is equivariantly formal, we prove that the orbit space is

a Z2-homology sphere. We study a particular subclass of these 2-torus actions:
restrictions of small covers to a subgroup of index 2 in general position. The

subgroup of this form exists if and only if the small cover is orientable, and

in this case we prove that the orbit space of a restricted 2-torus action is
homeomorphic to a sphere.

1. Introduction.

Let a compact torus T k = (S1)k effectively act on a closed manifold X2n with

nonempty finite fixed points set. The number n−k is called the complexity of the action.

The study of orbit spaces of complexity zero is a well-know subject of toric topology

(See [7]). In [2], A.Ayzenberg showed that the orbit space of a complexity one action in

general position is a topological manifold. In [4], A.Ayzenberg and M.Masuda described

the orbit space of equivariantly formal torus actions of complexity one in general position.

In [3], A.Ayzenberg and V.Cherepanov described torus actions of complexity one in non-

general position.

Similarly, we can study the orbit space of Zk2 action on a manifold Xn. The group

Zk2 is a real analog of T k, it is called a 2-torus. Similarly to the torus case the number

n− k is called the complexity of the action. In [20], L.Yu studied the orbit space of an

equivariantly formal 2-torus action of complexity zero. In [8], V. Buchstaber and S.Terzic

proved that Gr4,2(R)/Z3
2
∼= S4 and Fl3(R)/Z2

2
∼= S3 for real Grassmann manifold G4,2(R)

of 2-planes in R4 and the real manifold Fl3(R) of full flags in R3. In [14], D.Gugnin

proved that Tn/Zn−1
2

∼= Sn for a certain action with isolated fixed points. These are

examples of complexity one actions.

The aim of this paper is to describe the orbit space of equivariantly formal 2-torus

action of complexity one in general position. We also describe complexity one actions in

the case of small covers.

Let us give preliminary definitions and formulate the main results.

Let a 2-torus Zn−1
2 act effectively on a connected closed smooth manifold X = Xn

with nonempty set of fixed points. For a fixed point x ∈ XZn−1
2 of the action we have the

tangent representation of Zn−1
2 at x. Consider αx,1, . . . , αx,n ∈ Hom(Zn−1

2 ,Z2) ∼= Zn−1
2 ,

the weights of the tangent representation at x. The action is said to be in general position
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if for any fixed point x, any n− 1 of the weights αx,1, . . . , αx,n are linearly independent

over Z2. Now we provide a coordinate description of an action in general position in the

case of Rn.
Let G be a subgroup of Zn2 consisting of elements of the following form:

G = {(g1, . . . , gn) ∈ Zn2 : Πni=1gi = 1}, (1)

where gi ∈ {−1, 1}. Since Zn2 acts coordinate-wise on Rn, we have an induced action of

G on Rn, which we call the standard complexity one action.

Remark 1.1. If an action of Zn−1
2 on Rn is in general position, then it is weakly

equivalent to the standard complexity one action, see Proposition 3.3.

C. Lange and M.Mikhailova in [17], [16] studied orbit spaces of linear representations

of finite groups. It follows from their results that Rn/G ∼= Rn for the standard complexity

one action. Using this result and some additional condition, which holds for equivariantly

formal actions, we show that for a Zn−1
2 -action on X in general position the orbit space

Q = X/Zn−1
2 is a topological manifold. If a Zn−1

2 -action is in non-general position, then

Q is a topological manifold with boundary similar to the torus case studied in [10] by

V.Cherepanov.

The action of Zn−1
2 on X is called equivariantly formal if

dimZ2 H
∗(XZn−1

2 ;Z2) = dimZ2 H
∗(X;Z2), (2)

where XZn−1
2 is the fixed point set of Zn−1

2 -action.

Remark 1.2. If an Zn−1
2 -action is in general position, then the fixed point set is

finite and the action is equivariantly formal if and only if |XZn−1
2 | = dimZ2

H∗(X;Z2).

Theorem 1. Let Zn−1
2 act on X = Xn equivariantly formal and in general po-

sition. Then the orbit space Q = X/Zn−1
2 is a topological manifold and H∗(Q;Z2) ∼=

H∗(Sn;Z2).

This theorem is analogous to Theorem 1 in [4].

Let X be a small cover and let G ∼= Zn−1
2 be a subgroup of Zn2 of index 2. Then

we get the restricted G-action of complexity one on X. The subgroup G is called a

2-subtorus in general position for X, if this G-action is in general position. In the case

of small covers, we notice that the condition of existence 2-subtorus in general position

is equivalent to the the condition of orientability of a small cover, which was proved by

H.Nakayama and Y.Nishimura in [18].

Theorem 2. Let X be a small cover. There exists a 2-subtorus in general position

if and only if X is orientable. If such 2-subtorus exist, then it is unique.

If the 2-subtorus in general position exists, then the orbit space is homeomorphic to

the sphere.
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Theorem 3. Let X = Xn be an orientable small cover and let G be the 2-

subtorus in general position for X. Then the orbit space X/G is homeomorphic to the

n-dimensional sphere Sn.

This theorem is analogous to Theorem 5.1 in [2].

We have the following coordinate description of the 2-subtorus in general position.

Remark 1.3. Let X = Xn be an orientable small cover over a simple polytope P ,

let p = Fi1∩· · ·∩Fin be a vertex of P and λi1 , . . . , λin be the corresponding characteristic

vectors. Taking the characteristic vectors as standard generators of Zn2 = {−1, 1}n,
consider the following subgroup:

G = {(g1, . . . , gn) ∈ Zn2 : Πni=1gi = 1}.

Then G is the 2-subtorus in general position.

Now we provide some examples of complexity one actions. In all examples below

actions are equivariantly formal and in general position. In examples 1.5, 1.6 we get

restricted actions on small covers.

Example 1.4. Let Z2 act on S2 by rotation on angle 180◦ around an axis. Then

S2/Z2
∼= S2.

Figure 1. The action of Z2 on S2

Example 1.5. More generally, let Z2 act on a closed orientable surfaceMg of genus

g by 180-degree rotation around the axis, as shown in Figure 2. Then Mg/Z2
∼= S2. If

g = 1, then it is the particular case of the next example. Notice that if g = 0, then

M0 = S2 is not a small cover.

Figure 2. The action of Z2 on M3

Figure 3. The orbit space of the

Z2-action on M3
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Example 1.6. Consider a Z2-action on S1 by the map (x, y) → (x,−y). Taking

the n-fold product, we have a Zn2 -action on the Tn. Let

G = {(g1, . . . , gn) ∈ Zn2 : Πni=1gi = 1}

be the index 2 subgroup of orientation-preserving elements. In [14] it was proved that

Tn/G ∼= Sn.

Two examples below are not small covers.

Example 1.7. Let Z4
2 act on R4 by the standard action. From this we get the

effective action of Z3
2 on the real Grassmann manifold G4,2(R) of 2-planes in R4. In [8]

it was proved that G4,2(R)/Z3
2
∼= S4.

Example 1.8. Let Z3
2 act on R3 by the standard action. From this we get the

effective action of Z2
2 on the real full flag manifold Fl3(R). In [8] it was proved that

Fl3(R)/Z2
2
∼= S3.

Now we provide a possible connection of Theorem 3 with the theory of n-valued

groups. See [6] for the definition of n-valued group and other details. The following

construction can be used to produce n-valued groups.

Let (G, ·) be a group, let A be a finite group with |A| = n and ϕ : A → Aut(G) be

homomorphism to the group of automorphisms of G. Then we have an n-valued group

structure on the orbit space X = G/ϕ(A) as following:

Let π : G→ X be the quotient map. Define n-valued multiplication, i.e. a map

µ : X ×X → (X)n,

where (X)n = Xn/Sn is n-fold symmetric product, by the following formula:

µ(x, y) = [π(u · vai), 1 ≤ i ≤ n, ai ∈ A]

where u ∈ π−1(x), v ∈ π−1(y) and va is the image of the action ϕ(a), a ∈ A on G. See

[6, Thm. 1] for the proof and other details.

In example 1.6 we get a 2n−1-valued topological group structure on the n-sphere Sn

for n ≥ 2. The following problem was posed by V.M.Buchstaber.

Problem 1. Can Theorem 3 be applied to other small covers to provide new ex-

amples of 2n−1-valued group structure on Sn?

For this we need a small cover X with the property that it is a group and Zn2 acts

by group automorphisms.

Non-Example 1.9. We have that RP 3 is diffeomorphic to SO(3,R), hence there

is a Lie group structure on a small cover RP 3. However, Z3
2 does not act by Lie group

automorphisms. Indeed, since all automorphisms of SO(3,R) are inner, we have that

Aut(SO(3,R)) ∼= SO(3,R). There is no finite subgroup in SO(3,R) isomorphic to Z3
2.

Therefore, Z3
2 does not act by group automorphisms.
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2. Preliminaries

In this section we recall some general facts about group actions and 2-torus actions

on manifolds. The main reference about group actions is [5]. The main reference about

equivariantly formal 2-torus actions is [20].

Let a group G act effectively on closed smooth manifold X. In this paper we consider

only smooth action. For a point x ∈ X let Stab(x) denote the stabilizer subgroup of G

and Gx the orbit of x. We define the partition by orbit types

X =
⊔
H⊂G

X(H). (3)

Here X(H) = {x ∈ X : Stab(x) = H}.
We denote the fixed point set of a subgroup H by XH = {x ∈ X : Stab(x) ⊂ H}.
Let x ∈ X(H). We can define the tangent representation of H at x:

H → GL(TxX/TxGx).

Let Vx denote TxX/TxGx. There is the following theorem about G-equivariant

tubular neighborhood.

Theorem 2.1 (The Slice Theorem). There exist a G-equivariant diffeomor-

phism from the G ×Stab(x) Vx onto a G-invariant neighborhood of the orbit Gx in X,

which send the zero section G/Stab(x) onto the orbit Gx.

We now recall the notation of an equivariantly formal action of 2-torus Zk2 , see [20]

for the details.

There is a classical result of E. Floyd.

Theorem 2.2 ([12]). For any paracompact Zk2-space X with finite cohomology

dimension, the fixed point set XZk
2 always satisfies

dimZ2 H
∗(XZk

2 ;Z2) ≤ dimZ2 H
∗(X;Z2). (4)

The next theorem says, when the equality in (4) holds.

Theorem 2.3 ([15]). The equality in (4) holds if and only if the E2 = E∞ for the

Serre spectral sequence of the fibration X → EZk2 ×Zk
2
X → BZk2 .

Definition 2.4. Let a 2-torus Zk2 act on a closed smooth manifold X. The action

is called equivariantly formal over Z2 if there is equality in (4).

Sometimes the degeneration of the Serre spectral sequence at E2 is taken as the

definition of equivariant formality. This definition is equivalent to Definition 2.4 according

to Theorem 2.3. The notation of equivariant formality is similar to the corresponding

notion in the theory of torus actions.

Remark 2.5. If the fixed point setXZk
2 is finite, then 2-torus action is equivariantly
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formal if and only if

|XZk
2 | = dimZ2 H

∗(X;Z2). (5)

This remark is useful to characterize equivariant formality of the particular 2-torus

actions.

Now we briefly remind theory of 2-torus manifolds, i.e. Zn2 -actions of complexity

zero. For the details see [20].

Definition 2.6. Consider a non-free effective smooth action of Zn2 on a closed

connected smooth manifold Xn. Manifold with such action is called a 2-torus manifold.

Recall that a space X with an G-action is weakly equivariantly homeomorphic to a

space Y with an G-action, if there is a homeomorphism f : X → Y and an automorphism

ϕ of G such that f(gx) = ϕ(g)f(x) for all g ∈ G and x ∈ X.

A 2-torus manifold X is called locally standard, if every point in X has an invari-

ant neighbourhood U weakly equivariantly homeomorphic to an open subset W ⊂ Rn
invariant under the following standard Zn2 -action on Rn:

(g1, . . . , gn)(x1, . . . xn) = (g1x1, . . . , gnxn).

Here Zn2 = {−1, 1}n.
For an n-dimensional locally standard 2-torus manifold X, we have that the orbit

space Q = X/Zn2 is connected smooth n-manifold with corners and with non-empty

boundary. In particular, the notation of a face F of Q is well-defined. Manifold with

corners Q is called nice if either its boundary ∂Q is empty or ∂Q is non-empty and

any codimension-k face of Q is a component of the intersection of k different facets, i.e.

codimension-1 faces, in Q. The orbit space Q is a nice manifold with corners. The face

poset of Q, denoted by PQ, is the set of faces of Q ordered by reversed inclusion. If Q is

nice, PQ is a simplicial poset. But in general PQ may not be the face poset of a simplicial

complex.

Definition 2.7. Let Q be a nice manifold with corners.

• Q is called mod 2 face-acyclic if every face of Q(including Q itself) is a mod 2

acyclic space.

• Q is called a mod 2 homology polytope if Q is mod 2 face-acyclic and PQ is the face

poset of a simplicial complex.

L.Yu proved the following criteria of equivariant formality for 2-torus manifolds in

terms of its orbit space.

Theorem 2.8 ([20]). Let X be a 2-torus manifold with orbit space Q.

(i) X is equivariantly formal if and only if X is locally standard and Q is mod 2

face-acyclic.



Equivariantly formal 2-torus actions of complexity one 7

(ii) X is equivariantly formal and H∗(X;Z2) is generated by its degree-one part if and

only if X is locally standard and Q is a mod 2 homology polytope.

3. 2-torus actions of complexity one in general position

In this section we show that an orbit space of certain 2-torus action of complexity

one is a topological manifold. This section extends [2] to 2-torus actions.

Let a 2-torus Zn−1
2 act effectively on a connected closed smooth manifold X = Xn

with nonempty set of fixed points.

For a fixed point x ∈ XZn−1
2 of the action we have tangent representation of Zn−1

2 at

x. Consider αx,1, . . . , αx,n ∈ Hom(Zn−1
2 ,Z2), the weights of the tangent representation

at x, i.e.

TxX ∼= V (αx,1)⊕ . . .⊕ V (αx,n)

where V (αx,i) is a 1-dimensional real representation given by t ·y = αx,i(t)y for t ∈ Zn−1
2

and y ∈ R.

Definition 3.1. The action is said to be in general position if for any fixed point

x, any n− 1 of the weights αx,1, . . . , αx,n are linearly independent over Z2.

Remark 3.2. From The Slice Theorem it follows that all weights of an action are

non-zero if and only if the fixed point set is discrete. Hence, if X is compact, then the

fixed point set is finite.

Let an action be in general position. Since any n− 1 of the weights αx,1, . . . , αx,n ∈
Hom(Zn−1

2 ,Z2) are linearly independent, we have αx,1+ . . .+αx,n = 0 in Hom(Zn−1
2 ,Z2).

Hence, for any t ∈ Zn−1
2 we have

Πni=1α(t)x,i = 1. (6)

Moreover, the condition of general position implies that the tangent representation

at any fixed point is faithful. This motivates the following construction.

Let G be a subgroup of Zn2 consisting of elements of the following form:

G = {(g1, . . . , gn) ∈ Zn2 : Πni=1gi = 1}, (7)

where gi ∈ {−1, 1}. Since Zn2 acts coordinate-wise on Rn, we have an induced action of

G on Rn, which we call the standard complexity one action.

We show below that the orbit space of Rn by the standard complexity one action is

homeomorphic to Rn. Moreover, G is the unique subgroup of Zn2 of index 2 such that

Rn/G ∼= Rn.
Let χ : Zn−1

2 → GLn(R) be a linear representation with weights α1, . . . , αn such that

any n− 1 of the weights are linearly independent. Define ϕ : Zn−1
2 → G by the following

formula ϕ(t) = (α1(t), . . . , αn(t)). Since representation χ is faithful representation and

(6) holds, we have that ϕ is an isomorphism and the following diagram commutes:
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Zn−1
2 GLn(R)

G

χ

ϕ
ψ (8)

Where ψ is the standard complexity one action of G on Rn by coordinates, i.e. g · x =

(g1x1, . . . , gnxn). Hence, we get the following:

Proposition 3.3. Let χ : Zn−1
2 → GLn(R) be a linear representation such that

any n − 1 of its weights are linearly independent. Consider G as in (7). Then Zn−1
2 -

action on Rn is weakly equivalent to the standard complexity one action of G on Rn, i.e.
there exists an isomorophism ϕ : Zn−1

2 → G such that diagram (8) commutes.

In the following proposition we prove that all stabilizers of a 2-torus action in general

position are generated by rotations, i.e. by orthogonal transformations whose fixed-point

subspace has codimension two.

Proposition 3.4. Consider the standard complexity one action of G on Rn. Let

H = Stab(x) be the stabilizer subgroup of any x ∈ Rn. Then the orbit space Rn/H is

homeomorphic to Rn. Moreover, G is the only one subgroup of Zn2 of index 2 such that

Rn/G ∼= Rn.

Proof. Let us describe the stabilizer H of a point x ∈ Rn. For x = (x1, . . . , xn) ∈
Rn let

I = {i ∈ {1, . . . , n} : i ∈ I if xi = 0} = {i1, . . . , ik}

be the set of indices with zero coordinates of x. If |I| < 2, then the stabilizer subgroup

is trivial, hence we can assume that |I| ≥ 2. Consider the following subgroup of Zn2 :

ZI2 = (Z2, 1)
I = {(g1, . . . , gn) ∈ Zn2 : gi ∈ Z2 if i ∈ I, otherwise gi = 1}. (9)

We have that H = ZI2 ∩ G. Taking gi1 , . . . , gik as generators of ZI2, we have that

H = {(g1, . . . , gk) ∈ ZI2 :
∏k

1 gi = 1}. This means that H generated by rotations.

It follows from [16, Thm. A] that the orbit space of this action is homeomorphic to

Rn. From this theorem also follows that any subgroup H of Zn2 such that Rn/H is

homeomorphic to Rn must be generated by rotations, butG = {(g1, . . . , gn) : Πni=1gi = 1}
is the only subgroup in Zn2 of index 2 generated by rotations. □

Corollary 3.5. Suppose Zn−1
2 action on Rn is in general position. Then

Rn/Stab(x) ∼= Rn for the stabilizer subgroup Stab(x) of any x ∈ Rn.

Proof. Since action is in general position, we have that the diagram (8) com-

mutes. Therefore, the action is weakly equivalent to the action in Proposition 3.4. □

Remark 3.6. From the previous corollary it follows that the stabilizer subgroup

of an action in general position can not be arbitrary. For example, it can not be H =

{(1, 1, 1, 1), (−1,−1,−1,−1)} and, indeed, R4/H is homeomorphic to the open cone over
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RP 3. This example shows importance of the condition that subgroup is generated by

rotations. Description of all linear representations of finite groups whose orbit spaces are

homeomorphic to Rn can be found in [16].

For the global statement of the previous corollary we need the following condition

on an action:

Every connected component of XH has a Zn−1
2 -fixed point, (10)

where XH = {x ∈ X : H ⊂ Stab(x)}.
The following lemma shows that this condition holds for equivariantly formal action

of 2-torus.

Lemma 3.7 ([20, Lem. 3.2]). Suppose a Zk2-action on a compact manifold X is

equivariantly formal. Then for every subgroup H of Zk2 , the induced action of Zk2( or

Zk2/H) on every connected component N of XH is equivariantly formal, hence N has a

Zk2-fixed point.

Now we can prove the following theorem about the orbit space of complexity one

actions in general position. This is the first part of Theorem 1 from the introduction.

Theorem 3.8. Let Zn−1
2 act on a connected closed smooth manifold X = Xn.

Suppose that the action is in general position and the condition (10) holds. Then the

orbit space Q = X/Zn−1
2 is a topological manifold.

Proof. Let us denote G = Zn−1
2 . Let H = Stab(x) be the stabilizer subgroup of

any x in X, or equivalently x ∈ X(H). Hence, x ∈ N , where N is a connected component

of XH . It follows from the condition (10) that N has a global fixed point x′. By The

Slice Theorem there exist a G - equivariant neighborhood U(x′) of x′ such that U(x′) is

G-diffeomorphic to Tx′X. Since the tangent representation of H at x depends only on a

connected component of XH , we can assume that x is near x′, i.e. x ∈ U(x′). Therefore,

H is a stabilizer subgroup of an action Zn−1
2 on Rn in general position. By The Slice

Theorem every orbit has a G-equivariant neighborhood U such that U is G-equivariantly

homeomorphic to G×H Vx, where Vx = TxX/TxGx. Since the orbit Gx is a discrete set,

we have Vx = TxX. Therefore, U/G ∼= TxX/H ∼= Rn by Corollary 3.5. □

4. Equivariantly formal actions of complexity one

In this section we show that the orbit space of an equivariantly formal action in

general position is a Z2-homology sphere. First of all, we introduce the notion of a face.

For an action of Zn−1
2 on X consider the equivariant filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 = X,

where Xi is the union of the orbits having at most 2i elements and X−1 = ∅. Notice

that
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Xi = {x ∈ X : rk(Stab(x)) ≥ n− 1− i} =
⊔

rkH≥n−1−i

X(H)

and each connected component of X(H) is a smooth submanifold of X, as follows from

The Slice Theorem. There is an orbit type filtration of the orbit space Q = X/Zn−1
2 :

∅ = Q−1 ⊂ Q0 ⊂ Q1 ⊂ · · · ⊂ Qn−1 = Q,

where Qi = Xi/Zn−1
2 and Q−1 = ∅.

Definition 4.1. A closure of any connected component of Qi \ Qi−1 is called a

face of rank i. For a face Fi of rank i we define F−1,i = Fi ∩Qi−1.

Let Fi be a face of Q, consider the quotient map p : X → Q, denote the preimage

of Fi by XFi
= p−1(Fi). Let GFi

= {g ∈ Zn−1
2 : gx = x for any x ∈ XFi

} be the

non-effective kernel of the Zn−1
2 -action on XFi

. Then XFi
is a connected component of

XGFi , therefore XFi is a smooth submanifold of X.

Definition 4.2. Let Fi be a face of Q. The preimage XFi
= p−1(Fi) of Fi

is called face submanifold corresponding to Fi. For a face submanifold XFi
we define

XF−1,i
= p−1(F−1,i).

In the next proposition we show that each XFi
is an equivariantly formal 2-torus

manifold.

Proposition 4.3. Let Zn−1
2 act on X equivariantly formal and in general position.

Let XFi
be the face submanifold corresponding to a face Fi of rank i < n − 1. Then

dimXFi
= i and XFi

is a equivariantly formal 2-torus manifold with an action Zn−1
2 /GFi

.

Proof. Let GFi
be the non-effective kernel of the Zn−1

2 -action on XFi
, we have

that

|GFi | = 2n−1−i, (11)

since rkF = i. Consider p−1(F ◦
i ) = {x ∈ XFi

: Stab(x) = GFi
}, where F ◦

i is the interior

of Fi and hence p−1(F ◦
i ) is an open subset of XFi

. Let x′ ∈ XFi
be a fixed point of

action Zn−1
2 on X. Let U(x′) be Zn−1

2 -equivariant neighborhood of x′ such that U(x′) is

Zn−1
2 -equivariant diffeomorphic to Tx′X. We have that p−1(F ◦

i )∩U(x′) ∼= V , where V =

{x ∈ Tx′X : Stab(x) = GFi
} is a linear subspace such that for any x = (x1, . . . , xn) ∈ V

we have xi = 0, where i ∈ I ⊂ {1, . . . , n}, i.e. some coordinates of x are zero. Let

|I| = k be the number of zero coordinates. By Proposition 3.3, we can identify the

stabilizer subgroup GFi with a stabilizer subgroup H of the standard complexity one

action G = {(g1, . . . , gn) ∈ Zn2 : Πni=1gi = 1} on Rn. The subgroup H ⊂ G contains all

(g1, . . . , gn) ∈ G such that gj = −1 for all j ∈ J , where J ⊂ I and |J | is even. Hence, we

have

|GFi
| = |H| =

(
k

0

)
+

(
k

2

)
+ · · ·+

(
k

2⌊k2 ⌋

)
= 2k−1. (12)
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On the other hand, we have |GFi
| = 2n−1−i, therefore k = n− i. Hence, dimXFi

=

n− k = i and rkZn−1
2 /GFi

= i. This action is equivariantly formal by Lemma 3.7. □

In this paper all cohomology groups are taken with coefficients in Z2.

Corollary 4.4. For any face Fi of rank i < n − 1, we have H∗(Fi, F−1,i) =

H∗(Di, ∂Di).

Proof. From Theorem 2.8 it follows that Fi is mod 2 face-acyclic. Hence,

H∗(Fi, F−1,i) = H∗(Di, ∂Di)

by Lefschetz duality. □

Now we introduce Atiyah–Bredon–Franz–Puppe sequence for equivariant cohomol-

ogy. Consider effective Zk2-action on topological manifold X. Then we have the following

sequence

0 → H∗
Zk
2
(X)

i∗→ H∗
Zk
2
(X0)

δ0→ H∗+1
Zk
2

(X1, X0)
δ1→ · · ·

· · · δk−2→ H∗+k−1
Zk
2

(Xk−1, Xk−2)
δk−1→ H∗+k

Zk
2

(X,Xk−1) → 0, (13)

where δi is the connecting homomorphism in the long exact sequence of equivariant

cohomology of the triple (Xi+1, Xi, Xi−1) and Xi is the union of the orbits having at

most 2i elements. If an Zk2-action on X is equivariantly formal, then this sequence is

exact. For the proof see [1],[9]. Also see [13] for the torus case.

Theorem 4.5 ([1, Thm. 10.2]). Suppose that an action of Zk2 on X is equivariantly

formal. Then sequence (13) is exact.

Remark 4.6. This theorem holds under weaker assumptions on X, see [1, Section

4.2] for details.

From exactness of this sequence and previous corollary we immediately get the

following result:

Proposition 4.7. Let Zn−1
2 act on X equivariantly formal and in general position.

Then for the orbit space Q we have Hi(Q,Qn−2) = 0 for i < n− 1.

Proof. To be short denote G = Zn−1
2 . Consider i-th term in (13) with i ≤ n− 2:

H∗+i
G (Xi, Xi−1) ∼=

⊕
XFi

: dimXFi
=i

H∗+i
G (XFi

, XFi
∩Xi−1) ∼=

⊕
Fi : rkFi=i

Hi(Fi, F−1,i)⊗H∗(BGFi
).

The first isomorphism follows from the equivariant version of Mayer-Vietoris se-

quence and the second isomorphism follows from the two facts: the first one is that the

action of group G/GFi
on XFi

\ (XFi
∩Xi−1) is free and second one is given by Corollary

4.4. Therefore, H∗+i
G (Xi, Xi−1) = 0 for ∗ < 0 and i ≤ n− 2. Consider ∗ < 0. Then from
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exactness of sequence (13) we get that Hi
G(X,Xn−2) = 0 for i < n − 1. On the other

hand, we have Hi
G(X,Xn−2) ∼= Hi(Q,Qn−2) since the action of G on X \Xn−2 is free.

Hence, we have Hi(Q,Qn−2) = 0 for i < n− 1. □

Now we can prove Theorem 1 from the introduction.

Theorem 4.8. Let Zn−1
2 act on X = Xn equivariantly formal and in general

position. Then the orbit space Q = X/Zn−1
2 is a Z2-homology n-sphere, i.e. H∗(Q;Z2) ∼=

H∗(Sn;Z2).

Proof. Consider the cohomology spectral sequence associated with the filtration

∅ = Q−1 ⊂ Q0 ⊂ Q1 ⊂ · · · ⊂ Qn−1 = Q,

where Qi = Xi/Zn−1
2 and Q−1 = ∅:

Ep,q1 = Hp+q(Qp, Qp−1) ⇒ Hp+q(Q). (14)

We get that

Ep,q1 = Hp+q(Qp, Qp−1) =
⊕

Fp : rkFp=p

Hp+q(Fp, F−1,p). (15)

From the Corollary 4.4 and Proposition 4.7 it follows that the only non-zero terms

of the first page of the spectral sequence are the 0-th row (Ep,01 , d1) and the n − 1-th

column (En−1,q
1 , d1). We have that the first page of the spectral sequence (14) as shown

in Figure 4.

∗ ∗ · · ·

...

∗

∗

∗

∗

Ep,q1

0 n − 1

0

p

q

0

0

0

Figure 4. The first page of the spectral sequence (14)

We claim that the differential complex in the 0-th row (Ep,01 , d1) is isomorphic to

the degree 0 part of the non-augmented version of Atiyah-Bredon-Franz-Puppe sequence

(13)

0 → H0
Zn−1
2

(X0)
δ0→ H1

Zn−1
2

(X1, X0)
δ1→ · · · δn−3→ Hn−2

Zn−1
2

(Xn−2, Xn−3)
δn−2→ Hn−1

Zn−1
2

(X,Xn−2) → 0.
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Indeed, we have the natural projection map π : XG → X/G such that π((Xi)G) ⊂ Qi for

any i. Therefore, π induces a map between long exact sequences of (Xi+1, Xi, Xi−1)G
and (Qi+1, Qi, Qi−1), hence π

∗ commutes with δi for any i. We claim that the induced

maps in cohomology

π∗ : Hi(Qi, Qi−1) → Hi
G(Xi, Xi−1)

are isomorphisms.

We have that

Hi
G(Xi, Xi−1) =

⊕
XFi

: dimXFi
=i

Hi
G(XFi

, XF−1,i
),

Hi(Qi, Qi−1) =
⊕

Fi : rkFi=i

Hi(Fi, F−1,i).

Since (XFi
, XF−1,i

) is fixed by GFi
and EG = E(GFi

) × E(G/GFi
), we have that

Hi
G(XFi

, XF−1,i
) = Hi

G/GFi
(XFi

, XF−1,i
)⊗Z2

H0(BGFi
). Therefore, it is enough to prove

that the map

π∗ : Hi(Fi, F−1,i) → Hi
G/GFi

(XFi
, XF−1,i

)

is an isomorphism. We have that the action of G/GFi
is free on XFi

\XF−1,i
, therefore

π−1(x) = E(G/GFi
) for any x ∈ Fi \ F−1,i. Hence, from a relative version of the

Vietoris–Begle Theorem (see [19]), it follows that the induced map

π∗ : Hi(Fi, F−1,i) → Hi
G/GFi

(XFi
, XF−1,i

)

is an isomorphism. Since the action is equivariantly formal, the Atiyah-Bredon-Franz-

Puppe sequence (13) is exact. Therefore, the differential complex in the 0-th row

(Ep,01 , d1) is exact.

Hence, we have that the second page of the spectral sequence (14) as shown in

Figure 5.

Z2 0

...

∗

∗

∗

0

Ep,q2

0 n − 1

0

p

q

0

0

0

Figure 5. The second page of the spectral sequence (14)
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We have that Ep,q∞ = 0 for 0 < p+ q ≤ n− 1, therefore Hi(Q) = 0 for i ≤ n− 1. On

the other hand, Q is a topological manifold, hence Hi(Q) ∼= Hi(Sn). □

5. Complexity one actions in case of small covers

In this section we recall the definition of a small cover and prove Theorem 2, 3 from

the introduction. For the details about small covers see [11].

Definition 5.1. Let P = Pn be a simple polytope of dimension n. A small cover

over P is a smooth manifold X = Xn with a locally standard Zn2 -action such that the

orbit space X/Zn2 is diffeomorphic to a simple polytope P as a manifold with corners.

Let π : X → P be a small cover over P . For every face F of P and for every

x, y ∈ π−1(F ◦) the stabilizer group of x and y is the same, i.e. Stab(x) = Stab(y).

Denote this stabilizer group by GF . In particular, if F is a facet, then GF is subgroup

of rank one, hence GF = ⟨λ(F )⟩ for some λ(F ) ∈ Zn2 . Hence, we get the characteristic

function

λ : F → Zn2 ,

from the set F of all facets of P . We denote λ(Fi) by λi. For a codimension k face F

we have that F = F1 ∩ · · · ∩ Fk for some facets F1, . . . , Fk ∈ F , then GF is a subgroup

with rank equal to k and generated by λ1, . . . , λk. Therefore, we have the following

(∗)-condition

(∗) Let F = F1 ∩ · · · ∩ Fk be any codimension k face of P . Then λ1, . . . , λk are

linearly independent in Zn2 .

Conversely, a simple polytope P and a map λ : F → Zn2 satisfying the (∗)-condition
determine a small coverX(P, λ) over P . For the construction ofX(P, λ) and other details

see [11].

Theorem 5.2 ([11, Prop. 1.8]). Let X be a small cover over P with characteristic

function λ : F → Zn2 . Then X and X(P, λ) are equivariantly homeomorphic.

Let X be a small cover, let G ∼= Zn−1
2 be a subgroup of Zn2 of index 2, then we get

an restricted G-action of complexity one on X. The subgroup G is called a 2-subtorus

in general position, if this G-action is in general position.

Remark 5.3. Notice that it is possible that a 2-subtorus in general position does

not exist. For example, for the small cover RP 2 over ∆2 there is no 2-subtorus in general

position.

However, we will see that if X is an orientable small cover, then such 2-subtorus

exist. Every subgroup G ⊂ Zn2 with rank n − 1 is determined by some non-zero linear

functional ξ ∈ (Zn2 )∗ by the following G = Ker(ξ). We have the following criteria when

G is in general position.
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Proposition 5.4. Let X = Xn be a small cover, let λi = λ(Fi) be characteristic

vectors. The 2-subtorus G = Ker(ξ : Zn2 → Z2) is in general position if and only if

ξ(λi) = 1, in other words if and only if λi /∈ G, for every facet Fi ∈ F .

Proof. If p = Fi1 ∩ · · · ∩Fin is a vertex of P , then the elements of the dual basis

λ∗i1 , . . . , λ
∗
in

are the weights of the tangent representation of Zn2 in the corresponding fixed

point. Therefore, G = Ker(ξ) is in general position at this fixed point if and only if any

n− 1 of the weights λ∗i1 , . . . , λ
∗
in

are linearly independent in (Zn2 )∗/⟨ξ⟩.
Since λ∗i1 , . . . , λ

∗
in

is a basis, we have that ξ = a1λ
∗
i1
+ · · ·+ anλ

∗
in

belongs to Zn2 for

ai ∈ Z2. Therefore, we have a1λ
∗
i1
+ · · · + anλ

∗
in

= 0 in (Zn2 )∗/⟨ξ⟩ for ai ∈ Z2. We have

that any n − 1 of the weights λ∗i1 , . . . , λ
∗
in

are linearly independent in (Zn2 )∗/⟨ξ⟩ if and

only if all ai are non-zero, i.e. ai = 1 for every i. The last statement is equivalent to

that ξ(λik) = 1 for all ik. □

Corollary 5.5. If G ⊂ Zn2 is in general position, then Stab(x) ̸⊂ G for every

x ∈ X.

Proof. Indeed, Stab(x) is generated by λi for some i. □

Remark 5.6. From the proof, we see that there exist only one 2-subtorus in general

position. If we choose a vertex p = Fi1 ∩ · · · ∩Fin , then the corresponding characterestic

vectors λi1 , . . . , λin form a basis in Zn2 . Taking these vectors as generators of Zn2 , we get

that

G = {(g1, . . . , gn) ∈ Zn2 : Πni=1gi = 1}

in the multiplicative notation.

The condition from Proposition 5.4 is related to the following result of H.Nakayama

and Y. Nishimura.

Theorem 5.7 ([18, Thm. 1.7]). A small cover X = Xn is orientable if and only

if there exist ξ ∈ (Zn2 )∗ such that ξ(λi) = 1 for every face Fi ∈ F .

From this result we get Theorem 2 from the introduction.

Corollary 5.8. Let X be a small cover. There exists a 2-subtorus in general

position if and only if X is orientable.

Now we can prove Theorem 3 from the introduction.

Theorem 5.9. Let X = Xn be an orientable small cover over, let G be the 2-

subtorus in general position for X. Then the orbit space X/G is homeomorphic to the

n-dimensional sphere Sn.

Proof. Let Q = X/G be the orbit space of the G-action, let P = X/Zn2 be the

orbit space of the Zn2 -action. By the definition of a small cover, P is a simple polytope

and dimP = n. Notice that P = Q/(Zn2/G) and we have the quotient map
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p : Q→ Q/(Zn2/G).

If x ∈ P is a free Zn2 -orbit, i.e. x in the interior of P , then p−1(x) = Z2. Otherwise, by

Corollary 5.5 there exist t ∈ Stab(x) such that t /∈ G. Therefore, if a Zn2 -stabilizer group
of x is non-trivial, i.e. x in the boundary of P , then it is a fixed point of Zn2/G-action.
Hence, for x ∈ ∂P we have that p−1(x) is a single point. Since P is contractible, the

map p : Q→ Q/(Zn2/G) admit a section over the interior of Q/(Zn2/G) = P . Therefore,

we have

Q ∼= P × Z2/∼

where (x, 1) ∼ (x,−1) if x ∈ ∂P . Since P is homeomorphic to the n-disc Dn, we have

that

Q ∼= Dn ⊔Dn/∼∼= Sn,

which proves the statement. □
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