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Abstract

Every a in the torus A = R3/2Z3 determines a unique spherical,
Euclidean or hyperbolic triangle T (a) with angles (πai). In this paper
we study the Galois orbits Gal(a) of torsion points a ∈ A, focusing on
the ramification density

ρ(a) =
|{b ∈ Gal(a) : T (b) is spherical}|

|Gal(a)|
·

We show that the closure R of the set of values of ρ(a) is a countable
subset of [0, 1], with 0 and 1 as isolated points. The spectral gaps at
0 and 1 lead to general finiteness statements for the classical triangle
groups ∆(p, q, r) ⊂ SL2(R). For example, we obtain a conceptual
proof, based on equidistribution, that the set of arithmetic triangle
groups is finite.
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1 Introduction

In this paper we study the orbits of the group Gal(Q/Q) on the moduli
space of all triangles, and in particular how often the Galois conjugates of a
given triangle are spherical. This analysis leads to finiteness statements for
the classical hyperbolic triangle groups

∆(p, q, r) ⊂ SL2(R),

including as special cases results of Takeuchi and Waterman–Maclachlan. It
also illuminates the significance of certain Galois–invariant flats in moduli
space, where all triangles are of the same type, and provides a geometric
test for arithmeticity.

Triangles. Consider the torus A = (R/2Z)3. Every a = (a1, a2, a3) ∈ A
determines a unique spherical, hyperbolic or Euclidean triangle T (a) with
angles (πai), and every triangle arises for some a. Thus one can regard A
as the space of all triangles (with ordered, oriented edges; see §4).

Galois orbits. Let a ∈ A be a torsion point, let 〈a〉 ⊂ A be the finite group
it generates, and let

Gal(a) = {b ∈ A : 〈b〉 = 〈a〉}.

If we identify A with a torus in (C∗)3, then the coordinates of a become
roots of unity, and Gal(a) gives its orbit under Gal(Q/Q).

Spectral gaps and ramification. The ramification density of a torsion
point a ∈ A is defined by

ρ(a) =
|{b ∈ Gal(a) : T (b) is spherical}|

|Gal(a)|
·

Let R ⊂ [0, 1] be the set of all possible values of ρ(a), and R its closure. We
refer to R as the ramification spectrum. Let

ρH = inf{ρ(a) : ρ(a) > 0} and

ρS = sup{ρ(a) : ρ(a) < 1}.

In §5 we will show:

Theorem 1.1 The ramification spectrum R is a closed, countable subset of
[0, 1]. In fact R ⊂ Q, and 0 and 1 are isolated points of R.

Corollary 1.2 We have 0 < ρH < ρS < 1.
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The finiteness results that follow depend crucially on these spectral gaps at
0 and 1. As far as typical behavior is concerned, we have:

Theorem 1.3 Let an ∈ A be a sequence of torsion points. Then either

ρ(an)→ 1/3,

or there is a proper closed subgroup of A containing an for infinitely many
n.

Corollary 1.4 The value of ρ(a) is close to 1/3 for most a. More precisely,
for any ε > 0, the set where |ρ(a) − 1/3| > ε is contained in a finite union
of proper closed subgroups of A.

The value of 1/3 is to be expected: if a ∈ A is chosen at random, the
probability that T (a) is spherical is 1/3 (see Figure 1).

Equidistribution. The proofs of the results above rely on a general equidis-
tribution theorem (§2); in the case at hand, it can be stated as follows. Let
a denote the uniform probability measure on Gal(a) ⊂ A, and let B denote
normalized Haar measure on a subtorus B ⊂ A. These measures combine
to give a natural measure a+B on Gal(a) +B.

Theorem 1.5 Let an be a sequence of torsion points in A. Then after
passing to a subsequence, we have

an → a+B

for some torsion point a and subtorus B. Moreover, an ∈ Gal(a) +B for all
n� 0.

For variants of this result which include points of small height, see e.g. [BG,
§4]. The existence of a spectral gap follows from the final statement above,
which is special to roots of unity (points of height zero).

Triangle groups. Next we discuss applications to classical triangle groups.
We will use the shorthand 1/(p, q, r) for (1/p, 1/q, 1/r).

Let p, q, r > 0 be integers such that 1/p + 1/q + 1/r < 1, and let a =
1/(p, q, r). Then T (a) is a hyperbolic triangle. The associated reflection
group acting on H contains, with index two, the cocompact triangle group

∆ = ∆(p, q, r) ⊂ SL2(R),
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which is well–defined up to conjugation. The group ∆ naturally lives inside
the unit group of the ring

B = Q[∆] ⊂ M2(R),

which is a quaternion algebra over the trace field

K = Q(tr g : g ∈ ∆) = Q(cos(π/p), cos(π/q), cos(π/r)).

Note that K is totally real.
At each infinite place v of K, B ⊗K Kv is either a division algebra or

a matrix algebra. In the former case, B is ramified at v, and ∆ is realized
as a subgroup of SU(2); while in the latter case, B splits at v, and ∆ is
realized as a subgroup of SL2(R). As we will see in §7, the ramified places
of B correspond to the spherical triangles in the Galois orbit of T (a), and
hence

ρ(1/(p, q, r)) =
|infinite places v where B is ramified|

|all infinite places v of K|
· (1.1)

By Corollary 1.14 below, there are only finitely many (p, q, r) such that
ρ(1/(p, q, r)) = 0. Thus Corollaries 1.2 and 1.4 imply:

Corollary 1.6 For all but finitely many (p, q, r), the number of infinite
places of K where B is ramified is comparable to the number of places where
it splits. More precisely, we have:

0 < ρH ≤ ρ(1/(p, q, r)) ≤ ρS < 1.

Corollary 1.7 For most values of (p, q, r), the quaternion algebra B is ram-
ified at approximately 1/3 of the infinite places of K.

Example. Letting a = 1/(p, q, r), we have verified that |ρ(a)− 1/3| < 1/10
for more than 89% of the triangle groups ∆(p, q, r) with p, q, r ≤ 100.

Finiteness results. Note that [K : Q] → ∞ as max(p, q, r) → ∞. By
Corollary 1.6, any condition that forces the proportion of ramified places to
go to zero or one as [K : Q] → ∞ defines a finite set of triangle groups. In
particular we have (§7):

Corollary 1.8 (Takeuchi) There are only finitely many arithmetic trian-
gle groups.

Corollary 1.9 (Waterman – Maclachlan) There are only finitely many
totally hyperbolic triangle groups.
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Here ∆ is totally hyperbolic if B is unramified at all infinite places of K.
In the first case, all 76 cocompact arithmetic triangles groups are known;

see [Tak, Theorem 3], [MR, §13.3]. In the second case, covered by [WM,
Theorem 4], the corresponding problem is open; see Conjecture 1.15 below.
In both cases the original proofs of finiteness are more intricate, and different
in spirit, from the proof based on equidistribution we present here.

Geometry of moduli space. We now describe the moduli space of all
triangles in more detail, and analyze the locus where ρ(a) = 0 or 1. The
main results are Theorems 1.10 and 1.12 below. The first plays an important
role in the proofs of Theorems 1.1 and 1.3, and the second is critical for
applications to triangle groups such as Corollary 1.6. Theorem 1.11 gives a
criterion for arithmeticity in terms of moduli space.

To state these results, it is useful to regard T = R3, the universal cover
of A, as an analogue of Teichmüller space. Let

L =

{
a ∈ Z3 :

3∑
1

ai = 0 mod 2

}
(1.2)

denote the D3 or checkerboard lattice in R3, and let

‖a‖1 =
3∑
1

|ai|

denote the L1–norm. In §4 we will show:

Theorem 1.10 For any a ∈ R3, the triangle T (a) is hyperbolic, Euclidean
or spherical according to whether the L1 distance from a to L, given by

‖a− L‖1 = inf
b∈L
‖a− b‖1,

is < 1, = 1 or > 1.

Using the result above, the partition of T into spherical, Euclidean and
hyperbolic triangles,

T = R3 = S ∪ E ∪H, (1.3)

can be readily described as follows.

1. The Euclidean locus E ⊂ R3 is the union of countably many planes of
the form a1 ± a2 ± a3 = n, where n ∈ Z is odd.
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2. The hyperbolic locus H ⊂ R3 is the union of countable many open,
regular octahedra, namely the unit L1-balls centered at the points of
L.

3. The spherical locus S ⊂ R3 is related to the standard tiling of R3 by
unit cubes of the form [0, 1]3 + p, p ∈ Z3. It consists of countably
many open tetrahedra with vertices in Z3 − L, one inscribed in each
such cube (see Figure 1).

The closures of the components of H and S give a tiling of R3 by regular
octahedra and tetrahedra, with edges of length

√
2. Two tiles of the same

type (S or H) can only meet along an edge or at a vertex.

(0,0,0)

(1,1,1)

Figure 1. The spherical locus in [0, 1]3 is the interior of an inscribed
tetrahedron.

The mapping–class group. Next we describe the analogue of the mapping–
class group Mod(T ) acting on T = R3.

Let U ⊂ O(3) be the symmetry group of the octahedron defined by∑
|ai| ≤ 1. This group of order 48, isomorphic to (±1)3oS3, acts on R3 by

sign changes and coordinate permutations. Let L act on R3 by translations,
and let

Mod(T ) = Lo U.

This is the largest group of affine transformations of R3 preserving the par-
tition H ∪ E ∪ S.

Moduli space. The function ρ(a) lifts from Ator to a Mod(T )–invariant
function on Q3, which we denote by the same symbol. Similarly T (a) lifts
to R3, and for all g ∈ Mod(T ), the triangles T (a) and T (g · a) differ only in
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the ordering and orientation of their edges. Thus we can regard

M = T /Mod(T ) (1.4)

as the moduli space of all triangles.

Normalized angle data. We can also identify M with a compact convex
subset of R3, namely the space of normalized angles:

M∼= {a ∈ R3 : 0 ≤ a1 ≤ a2 ≤ a3 and a2 + a3 ≤ 1}. (1.5)

Every orbit of Mod(T ) meets this copy of M in a unique point, so it also
forms a natural fundamental domain for the mapping–class group.

Arithmeticity. We remark that the natural projection A→M has degree

192 = |L/2Z3| × |(±1)3| × |S3|.

In (§7) we will show:

Theorem 1.11 The group ∆(p, q, r) is arithmetic iff there is a unique hy-
perbolic triangle in the projection of Gal(a) to M, where a = 1/(p, q, r).

For example, ∆(2, 3, 7) is arithmetic because its ‘Galois conjugates’ ∆(2, 3, 7/2)
and ∆(2, 3, 7/3) are spherical. It is easy to recover the list of cocom-
pact arithmetic triangle groups using Theorem 1.11, once one knows that
p, q, r ≤ 30 for all such groups. (The criterion also applies when p, q or
r =∞.)

Exceptional flats. A flat F = a + B ⊂ A is the translate of a closed,
connected subgroup B ⊂ A. Similarly, a flat F = a + V ⊂ R3 is the
translate a vector subspace V .

We can now finally describe the loci where ρ(a) = 0 and ρ(a) = 1.
Consider the following flats in R3:

• S1 = the line defined by a2 = a3 = 1/2;

• H2 = the plane defined by a1 = 0; and

• H1 = the line through (0, 1/2, 1/2) and (−1/2, 0,−1/2).

It is easy to see that ρ(a) = 0 for all a ∈ E (all Galois conjugates remain
Euclidean; cf. Theorem 6.2). The remaining cases are covered by:

Theorem 1.12 There exist finite sets H0 and S0 in M⊂ R3 such that for
all a ∈ Q3 − E,
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0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

Figure 2. The projection of H1 to moduli spaceM.

1. We have ρ(a) = 1 iff a ∈ Mod(T ) · (S0 ∪ S1); and

2. We have ρ(a) = 0 iff a ∈ Mod(T ) · (H0 ∪H1 ∪H2).

Remarks.

1. The set S0 is given explicitly in §6, but at present an explicit descrip-
tion of H0 is unknown; cf. Conjecture 1.15 below.

2. We have ρ(a) = 1 for a ∈ S1 − E because a hyperbolic triangle (of
finite area) can never have two right angles, and this property is Galois
invariant.

3. Similarly, we have ρ(a) = 0 for a ∈ H2 because a spherical triangle
can never have an angle of zero.

4. The locus H1 is more subtle. It corresponds, in R3, to a segment
joining two points on skew edges of the octahedron P defined by
‖a‖1 ≤ 1. (See Figure 5 in §6.) The projection of this segment
to M is given by a family of normalized triples (a1(t), a2(t), a3(t)),
t ∈ [0, 1]; the piecewise–linear functions ai(t) are graphed in Figure 2.
Since

∑
ai(t) < 1 except at the endpoints, the line H1 is essentially

contained in H.

The flats S1, H1 and H2 in R3 each cover a flat in A = R3/2Z3. Using
the fact that 2Z3 has finite index in Mod(T ), we readily obtain:

Corollary 1.13 The locus in A where ρ(a) = 0 or 1 is a finite union of
flats.
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Corollary 1.14 There are only finitely many (p, q, r) such that ρ(1/(p, q, r)) =
0.

Proof. By Theorem 1.12, any torsion point satisfying ρ(a) = 0 is accounted
for by H0, H1 or H2. Since p, q, r are finite, their reciprocals are never 0, so
we have no cases accounted for by H2. Examining Figure 2, we find there is
1 case (up to permutation) accounted for by H1, namely (p, q, r) = (3, 6, 6);
and there are finitely many additional cases accounted for by H0.

Questions.

1. What is the value of ρH? We note that 0 < ρH ≤ ρ((9, 11, 19)/35) =
1/12.

2. What is the value of ρS? We note that 1 > ρS ≥ ρ(1/(2, 3, 11)) = 4/5.
The latter parameter corresponds to an arithmetic triangle group. A
concrete value of ρS would make our proof of Corollary 1.8 effective.

3. Is the ramification spectrum R homeomorphic to the ordinal ω3 + 1?
See Corollary 3.4 for a result in this direction.

We conclude with a conjecture that motivated the present paper.

Conjecture 1.15 There are exactly 11 totally hyperbolic triangle groups.
They are given by (p, q, r) =

(2, 4, 6), (2, 6, 6), (3, 4, 4), (3, 6, 6), (2, 6, 10), (3, 10, 10),

(5, 6, 6), (6, 10, 15) (4, 6, 12), (6, 9, 18), and (14, 21, 42).

These groups are studied in detail in a sequel [Mc]. The first four examples
are arithmetic and commensurable; the next three examples are also com-
mensurable; and for the last three examples, a = 1/(p, q, r) is proportional
to (1, 2, 3). (We note that the line R · (1, 2, 3) meets H in a set of unusually
high density, namely 5/6.)

It is readily verified, using Corollary 7.3 below, that all (p, q, r) above
give totally hyperbolic triangle groups, This list also appears in [WM].

Acknowledgements. I would like to thank Matt Baker and Alan Reid
for many useful conversations. In particular Reid pointed out the reference
[WM].
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2 Galois orbits

In this section we prove an elementary equidistribution result for the Galois
orbits of torsion points on a torus. Theorem 1.5 is a special case of Theorem
2.1 below.

Compact groups and measures. Let A be a compact topological group.
We say A is a torus if it is isomorphic to RN/ZN for some N . A element
a ∈ A is torsion, of order n, if it generates a finite subgroup 〈a〉 ∼= Z/n in
A. We let Ator denote the set of torsion points in A.

The Galois orbit of a torsion point is given by

Gal(a) = {b ∈ A : 〈b〉 = 〈a〉}.

It carries a natural uniform probability measure a, satisfying

a(E) =
|E ∩Gal(a)|
|Gal(a)|

for any Borel set E.
Although we have defined Gal(a) purely in terms of group theory, it

also coincides with the usual Galois orbit of a if we regard A as a subgroup
of the complex torus (C∗)N . For example, when a = ζn = exp(2πi/n) in
A = S1 ⊂ C, the set Gal(a) consists of all the primitive nth roots of unity;
these form a single orbit under Gal(Q/Q), by irreducibility of the cyclotomic
polynomial Φn(z). The corresponding measure is given by

ζn =
1

φ(n)

∑
gcd(i,n)=1

δζin ,

where φ(n) = |(Z/n)∗| is the Euler φ–function and δx is the measure of mass
one supported on x.

Pushforward. The following useful fact is readily verified: if π : A → B
is a homomorphism between tori, and a ∈ A is torsion, then so is b = π(a)
and

π∗(a) = π(a) = b. (2.1)

Galois flats. A Galois flat is a subset of A of the form

G = Gal(a) +B,

where B is a subtorus of A. We can always choose a such that 〈a〉∩B = (e).
We note that torsion points are dense inG, G generates the subgroup 〈a〉+B,
and G is Galois invariant, in the sense that

a ∈ G ∩Ator =⇒ Gal(a) ⊂ G.
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Primitive measures. Every Galois flat G = Gal(a) +B carries a natural
primitive measure, which we denote by

m = a+B.

Here B is the unique translation–invariant measure on B, and m is the
pushforward of a×B to G under addition.

Equidistribution. The next result describes the distribution of Galois
orbits in A. Recall that the space of probability measures on A is compact
(in the weak* topology), so it suffices to analyze limiting measures.

Theorem 2.1 Let an ∈ A be a sequence of torsion points, and suppose the
measures an converge. Then:

(i) There exists a primitive measure such that an → a+B, and
(ii) an ∈ Gal(a) +B for all n� 0.

The existence of spectral gaps will follow from part (ii).

Corollary 2.2 Let an ∈ A be a sequence of torsion points. Then either (i)
there is a closed subgroup of A that contains an for infinitely many n; or
(ii) the Galois orbit of an becomes equidistributed in A as n→∞.

By similar reasoning one can show:

Corollary 2.3 The set of all primitive measures on A is closed, and if

an +Bn → a+B,

then Gal(an) +Bn ⊂ Gal(a) +B for all n� 0.

Corollary 2.4 The set of primitive measures on A is homeomorphic to the
compact, countable ordinal ωN + 1, N = dimA.

Proof. Let Mi denote the set of primitive measures a+B with dimB ≥ i.
In view of Theorem 2.1, the derived set DM0 = M0−M0 is equal to M1. A
similar argument shows that DMi = Mi+1 for every i < N ; and MN consists
of the single point A.
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Characters. We now turn to the proof of Theorem 2.1. The following two
statements are well-known.

Proposition 2.5 For any n ≥ 1, the sum of the primitive nth roots of unity
is equal to the Möbius function µ(n).

Proof. Since for n > 1, the sum of all roots of zn = 1 is zero, the sum σ(n)
of the primitive nth roots of unity satisfies

∑
d|n σ(d) = 0; and evidently

σ(1) = 1. These two identities also hold for µ(n), and determine it uniquely.

Corollary 2.6 The primitive nth roots of unity become equidistributed in
S1 as n→∞.

Proof. The functions zk span a dense subset of C(S1), so it suffices to show
that for k 6= 0, the measure ζn satisfies

Ik(n) = 〈zk, ζn〉 =

∫
S1

zk ζn → 0

as n→∞. First consider the case k = 1. Then I1(n) is just the average of
the primitive nth roots of unity, and by Proposition 2.5, we have

|I1(n)| = |µ(n)|/φ(n) ≤ 1/φ(n)→ 0.

To treat the case of general k, observe that by (2.1), the pushforward or ζn
under zk is ζm, where m = n/ gcd(k, n). Since gcd(k, n) ≤ k, we have

|Ik(n)| = |I1(n/ gcd(k, n))| → 0

in this case as well.

Proof of Theorem 2.1. Let Â ∼= ZN denote the group of characters
χ : A→ S1. Passing to a subsequence, we can assume that the order of the
subgroup of S1 generated by χ(an) converges to a limit M(χ) (possibly ∞)
for all χ. Let

F = {χ ∈ Â : M(χ) <∞}.

It is clear that M(χ1χ2) ≤M(χ1)M(χ2) and M(χ−1) = M(χ); thus F is a
subgroup of Â. Moreover M(χ) ≤ dM(χd), so Â/F is torsion–free. Thus

B = F⊥ =
⋂
{ker(χ) : χ ∈ F}
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is a connected subtorus of A. Choose a complementary torus C ⊂ A. We
then have

A = B × C, and Â = B̂ × Ĉ,

with Ĉ = F .
Write an = (bn, cn) ∈ B × C. Choose a basis (χ1, . . . , χc) for Ĉ. Since

M(χi) < ∞ for all i, the order of cn is uniformly bounded above; thus we
can pass to a subsequence such that cn = c is constant. Then an = (bn, c).

To show m = B × c, it suffices to show that for all χ ∈ Â, we have

〈χ,m〉 = 〈χ,B × c〉 =

{
〈χ, c〉 if χ ∈ Ĉ, and

0 otherwise.

To check this, first suppose χ ∈ Ĉ. By equation (2.1), the projection of an
to C is c; thus

〈χ,m〉 = lim〈χ, an〉 = 〈χ, c〉.

On the other hand, if χ ∈ Â− Ĉ, then M(χ) =∞; thus the order of 〈χ(an)〉
in S1 tends to infinity. This implies, by Corollary 2.6, that the Galois orbit
of χ(an) becomes equidistributed, and hence

〈χ,m〉 = lim〈χ, an〉 = 0.

Thus m = B × c, which is the same as the primitive measure c+B.
The same argument shows that, after passing to a subsequence, we have

an = (bn, c) ∈ B ×Gal(c) = supp(m)

for all n. The same must be true for the original sequence, at least for all
n� 0, else we could have first passed to a subsequence with an 6∈ supp(m)
for all n, and no passage to a further subsequence would rectify this situation.
Finally, B ×Gal(c) = Gal(c) +B.

Remark. The behavior of Galois orbits described above is analogous to
the behavior of unipotent orbits in homogeneous spaces [Rn], [MS]. See also
[Ric] for related results.

3 Spectral gaps

In this section we establish the existence of spectral gaps in a general setting.
Let A = Rn/Zn be a torus as in §2. The following result underlies the

proofs of Theorems 1.1 and 1.3, to be given in §5.
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Theorem 3.1 Let U ⊂ A be an open set such that ∂U is a finite union of
Galois flats. Let R ⊂ [0, 1] be the closure of R = {a(U) : a ∈ Ator}. Then:

1. We have R ⊂ [0, 1] ∩Q;

2. The points 0 and 1 are isolated in R (if they belong to R); and

3. There exists a finite set of Galois flats Gi such that for all a ∈ Ator,
we have a(U) = 0 ⇐⇒ a ∈

⋃n
1 Gi.

We first establish a Noetherian property for Galois flats.

Lemma 3.2 There exist only finitely many maximal Galois flats contained
in a given closed set X ⊂ A.

Proof. Suppose to the contrary. Let Gal(ai)+Bi be an infinite sequence of
distinct maximal flats in X. Passing to a subsequence we can assume that
ai + Bi → a + B for a,B. Since X is closed, this limiting measure is still
supported in X. But we also have Gal(ai) + Bi ⊂ Gal(a) + B ⊂ X for all
i� 0, by Corollary 2.3. This contradicts maximality.

Corollary 3.3 Let G1, G2, . . . , Gn be the maximal Galois flats contained in
X. Then Gal(a) ⊂ X ⇐⇒ a ∈

⋃n
1 Gi.

Proof of Theorem 3.1. Let P be the compact, countable set of primitive
measures on A (defined in §2). Since ∂U is a finite union of Galois flats, any
m ∈ P satisfies m(∂U) = 0 or 1. In the latter case m is supported in ∂U .

Define ρ : P → [0, 1] by ρ(m) = m(U). We claim ρ is continuous.
Indeed, if mn → m in P and m(∂U) = 0, then mn(U) → m(U) by general
principles. Otherwise, as remarked above, m is supported in ∂U , and hence,
by Corollary 2.3, the same is true of mn for all n� 0. Thus mn(U)→ 0 =
m(U), and we have continuity in this case as well.

Since ρ is continuous, ρ(P) is a compact, countable set. Moreover, mea-
sures of the form a are dense in P, so R = ρ(P) and thus R is countable.
Finally we observe ρ(m) ∈ Q for all m ∈ P. This follows from the fact that
the support Gal(a) + B of m, and the open set U , are both locally defined
by rational linear equations on A = Rn/Zn, and

ρ(a+B) =
vol(U ∩ (Gal(a) +B))

vol(Gal(a) +B)
.
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Next let us check that 0 is isolated in R. If not, we can find a sequence
find mn ∈ P such that mn(U) → 0 but mn(U) > 0 for all n. Pass to a
subsequence such that mn → m; then m(U) = 0, so its support is disjoint
from U . But the support of mn is contained in the support of m for all
n� 0, contradicting our assumption that mn(U) > 0.

The proof that 1 is isolated is similar. Suppose mn ∈ P, 0 < mn(U) < 1,
and mn(U)→ 1. As remarked above, since mn(U) > 0 we have mn(∂U) = 0
for all n. Passing to a subsequence, we can also assume that mn → m ∈ P
with m(U) = 1. Since m is supported in U , so is mn for all n � 0. But
mn(∂U) = 0, so mn(U) = 1 for all n� 0, contrary to assumption.

For the final statement, apply Corollary 3.3 to X = A− U .

In view of Corollary 2.4, the proof also shows:

Corollary 3.4 The set R is the continuous image of the countable compact
ordinal ωn + 1, n = dimA.

4 Triangles

In this section we formalize the notion of a triangle, and prove Theorem
1.10. That is, we show that for every a = (a1, a2, a3) ∈ R3 there exists
an essentially unique spherical, Euclidean or hyperbolic triangle T (a) with
angles (πai), and that these three alternatives correspond to

‖a− L‖1 < 1,= 1 or > 1.

Along the way we will show:

Theorem 4.1 Given a, b ∈ T = R3, we have b ∈ Mod(T ) · a if and only if
T (a) is isomorphic to T (b).

This justifies the statement that M = T /Mod(T ) can be regarded as
the moduli space of all triangles.

Geometry of lines. To set the stage, let X denote a complete, simply
connected surface of constant curvature −1, 0 or 1. Then X is isomorphic
to the hyperbolic plane H2, the Euclidean plane E2, or the unit sphere S2.
The automorphism group of X refers to its isometry group when X = H2 or
S2; for E2, we also include similarities.

A line is a complete, oriented geodesic L ⊂ X. We say L and L′ are
parallel if they are disjoint and, in the hyperbolic case, they meet at a point
at infinity.
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Given a pair of unit tangent vectors v, v′ ∈ TpX, and L and L′ the
oriented lines they determine, we define the dot product of these two lines
by

L · L′ = 〈v, v′〉 = cos θ. (4.1)

Here θ is the angle of a rotation about p that moves L to L′. Note that

(−L) · L′ = −(L · L′).

This definition extends in a natural way to parallel lines, with L · L′ = ±1
depending on orientation.

Triangles. A triangle T = (L1, L2, L3) is an ordered triple of oriented lines
T = (L1, L2, L3) in H2, E2 or S2. This definition is chosen to deal uniformly
with different geometries. We adopt the following conventions.

1. With one exception, all three lines are required to be distinct, and
every pair of lines Li and Lj must either be parallel or meet in X.

2. The exception occurs in E2: here, we allow a degenerate triangle in
which all three lines coincide (up to orientation). This case is charac-
terized by the condition that |Li · Lj | = 1 for all i, j.

Quadratic forms. For the proof of Theorem 4.3 we will relate geometry
and quadratic forms. This perspective also fits well with quaternion algebras
(§7).

Motivated by equation (4.1), for each a ∈ R3 we define a quadratic form
on R3 by

Q(a) = 〈ei, ej〉 =


1 − cosπa3 − cosπa2

− cosπa3 1 − cosπa1

− cosπa2 − cosπa1 1

 · (4.2)

Theorem 4.2 We have detQ(a) = 0 if and only if

a1 ± a2 ± a3 = 1 mod 2 (4.3)

for some choice of signs. Otherwise, the form Q(a) has signature (2, 1) or
(3, 0).

Proof. Choose zi ∈ S1 ⊂ C such that 2 cosπai = zi + 1/zi for i = 1, 2, 3.
We then compute

detQ(a) = −(1 + z1z2z3)(z1z2 + z3)(z2z3 + z1)(z3z1 + z2)

4z21z
2
2z

2
3

·
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The numerator vanishes exactly when z1z
±1
2 z±13 = −1, which translates into

condition (4.3).
To check the signature, suppose detQ(a) 6= 0. Let Vi be the subspace

of R3 spanned by (ej , ek), where (i, j, k) is a permutation of (1, 2, 3). Then
detQ(a)|Vi = 1 − cos2 πai. Changing a slightly (without changing the sig-
nature of Q(a)), we can assume that Q(a)|Vi has signature (2, 0) for all i.
Since the diagonal entries of Q(a) are also positive, it follows that Q(a) has
signature (3, 0) or (2, 1).

Note that signature (3, 0) and (2, 1) correspond to detQ(a) > 0 and
detQ(a) < 0 respectively.

Theorem 4.3 For any a ∈ R3, there exists an essentially unique triangle
T (a) = (L1, L2, L3) such that

Li · Lj = − cosπak (4.4)

for any permutation (i, j, k) of (1, 2, 3). This triangle is hyperbolic, Euclidean
or spherical depending on whether detQ(a) is < 0, = 0 or > 0.

By essentially unique, we mean T (a) ⊂ X is unique up to an automor-
phism of X and an overall change of sign, (L1, L2, L3) 7→ (−L1,−L2,−L3).
These operations clearly preserve Li · Lj .
Proof. Let 〈x, y〉Q be the symmetric bilinear form on R3 with basis (e1, e2, e3)
defined by Q(a).

First suppose detQ(a) > 0. Then Q(a) has signature (3, 0) by Theorem
4.2, the locus 〈x, x〉Q = 1 is isometric to the standard sphere S2, and the
oriented great circles

Li = S2 ∩ e⊥i
satisfy Li · Lj = 〈ei, ej〉Q = − cosπak by the definition of Q(a). Thus
T (a) = (L1, L2, L3) satisfies equation (4.4). Conversely, any other triple of
lines with these inner products determines a basis for R3 with quadratic
form Q(a), establishing uniqueness.

The argument when detQ(a) < 0 is similar. In this case Q(a) has
signature (2, 1). Using the Minkowski model for hyperbolic space, we take
H2 to be one component of the hyperboloid defined by 〈x, x〉Q = −1, and let
Li = H2 ∩ e⊥i as before. Then T (a) = (L1, L2, L3) is the desired hyperbolic
triangle.

Finally suppose detQ(a) = 0. In this case, R = KerQ(a) is typically
one dimensional, and the induced form on R3/R ∼= R2 has signature (2, 0).

16



Then the lines Li = e⊥i ⊂ R2, once displaced from the origin, give desired
Euclidean triangle. When dimR = 2, we obtain a degenerate Euclidean
triangle.

Isomorphic triangles. Let us say triangles T = (L1, L2, L3) and T ′ =
(L′1, L

′
2, L

′
3) in X are isomorphic if there a g ∈ AutX, a permutation σ ∈ S3,

and a choice of signs, such that

(g(L′i)) = (±g(Lσi)) for i = 1, 2, 3.

We can now give the:

Proof of Theorem 4.1. Clearly the isomorphism class of T (a) depends
only on Q(a), which itself is invariant under the action of the subgroup of
finite index (2Z3) o (±1)3 in Mod(T ). Note that reversing the orientation
of L1 has the effect of negating L1 · L2 and L1 · L3, which is the same as
adding (0, 1, 1) to a, since cos(π+ x) = − cos(x). Thus R3/(Lo (±1)) gives
the moduli space of triangles with unoriented edges, and taking the further
quotient by S3 removes their ordering, leaving only the isomorphism class
of T (a).

The cube model. Let P ⊂ [0, 1]3 be the inscribed tetrahedron with
vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1). To help visualize the partition
R3 = H ∪ E ∪ S (see Figure 1), we will show:

Theorem 4.4 Given a ∈ [0, 1]3, the triangle T (a) is Euclidean iff a ∈ ∂P .
It is spherical if a lies in the interior of P , and otherwise hyperbolic.

Proof. The Euclidean case follows from equation (4.3), and the remaining
statements can be verified by computing detQ(a) at the center and vertices
of the cube.

Proof of Theorem 1.10. In view of the fact that the partition S ∪E ∪H,
the L1 metric on R3, and the lattice L are all invariant under Mod(T ), its
suffices to verify that the description of S ∪ E ∪H in terms of ‖a − L‖1 is
correct on the unit cube, which we have just done.

Example: Spherical isosceles triangles. Here is an example that illus-
trates the transition from hyperbolic to spherical geometry and back again.
Fix a small number s > 0, and consider the family of isosceles triangles
T (t, t, s), t ∈ [0, 1]. Let t0 = (1 − s)/2 and t1 = (1 + s)/2. The triangle

17



s
t

t
s Pt

Figure 3. A family of spherical isosceles triangles in the lune Ls.

T (t, t, s) is hyperbolic in the range [0, t0) and (t1, 1]; it is spherical in the
range (t0, t1); and it is Euclidean at the endpoints t0 and t1.

The most interesting behavior occurs in the spherical range. For t ∈
(t0, t1), T (t, t, s) determines a spherical triangle Pt, cut out by a great circle
crossing a lune Ls of angle s; see Figure 3. As t approaches t1 from below,
the triangle Pt expands to fill the whole lune; as it does, the shrinking
complementary triangle Ls − Pt can be rescaled to yield a Euclidean limit.
This limit T (t1, t1, s) serves to connect the spherical and hyperbolic regimes.

Note that for t > t1, there is no embedded spherical triangle with internal
angles (t, t, s), since (by Gauss–Bonnet) its area would exceed that of the
lune Ls. Instead, T (t, t, s) gives a hyperbolic triangle with internal angles
(s, 1− t, 1− t), and the usual orientation of one edge flipped.

Moduli space, reprise. We remark that the embedding M ⊂ R3 given
by equation (1.5) provides each isomorphism class of triangle with a canon-
ical representative T (a) = (L1, L2, L3). This triangle has internal angles
(πa1, πa2, πa3), and it is hyperbolic, Euclidean or spherical depending on
whether

∑
ai < 1, = 1 or > 1. In the spherical case, the great circles

(L1, L2, L3) cut S2 into 8 triangular regions, and among these T (a) has the
smallest area.

Remark: pairs of pants. One can similarly prove that there exists a
unique hyperbolic pair of pants with boundary geodesics of given lengths
`i ≥ 0, i = 1, 2, 3, by replacing the off–diagonal entries of Q(a) with
− cosh(`i/2); cf. [Th, p.83, p.263].

5 Orbits of triangles

In this section we prove our main results on Galois orbits and spectral gaps,
namely Theorems 1.1 and 1.3 and their corollaries. The proofs combine the
equidistribution results from §2 and §3 with the geometric properties of the
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partition
T = R3 = H ∪ E ∪ S (5.1)

established in §4.

Partition of A. Since the partition (5.1) is invariant under Mod(T ), it
descends to a partition

A = A(H) ∪A(E) ∪A(S).

Here A(H) and A(S) are open, and A(E) is the closed set defined by

a1 ± a2 ± a3 = 1 mod 2.

We observe that
volS

volA
=

1

3
, (5.2)

as can be seen geometrically in Figure 1. Clearly A(E) is a finite union of
Galois flats; in fact A(E) = (1, 1, 1) +B′, where

B′ = {a : a1 ± a2 ± a3 = 0 mod 2}

is the union of four subtori in A.

Proof of Theorem 1.1 and Corollary 1.2. Note that ρ(a) = a(A(S))
for all a ∈ Ator. By Theorem 1.10 we have ∂A(S) = ∂A(H) = A(E), and
as just remarked, A(E) is a finite union of Galois flats. Thus we can apply
Theorem 3.1 with U = A(S) to deduce that the ramification spectrum R is
a closed subset of Q ∩ [0, 1] with 0 as an isolated point. To show that 1 is
also an isolated point, apply the same argument with U = A(H).

Corollary 1.2 is immediate.

Proof of Theorem 1.3 and Corollary 1.4. Let an be a sequence of
torsion points in A. Assume that no subsequence lies in a proper, closed
subgroup of A. Then an → A by Corollary 2.2. Since A(∂A(S)) = 0, we
also have ρ(an) = an(A(S)) → A(A(S)), and A(A(S)) = 1/3 by equation
(5.2) above.

To prove Corollary 1.4 we use the fact that the proper closed subgroups
of A form a countable set, say {A1, A2, A3, . . .}. Let X = {a ∈ Ator :
|ρ(a) − 1/3| > ε}, and suppose X is not contained in

⋃n
1 Ai for any n.

Choose an ∈ X −
⋃n

1 Ai. Then an 6∈ Ai for all n� 1, so ρ(an)→ 1/3, as we
have just seen. This contradicts the definition of X. Thus X is contained
in

⋃n
1 Ai for some n.
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6 Exceptional flats

In this section we prove Theorem 1.12, characterizing the locus in A where
ρ(a) = 0 or 1.

By Theorem 1.10, the partition R3 = H ∪ E ∪ S is invariant under
Mod(T ). We say a flat F = a + V ⊂ R3 of dimension d is essentially
contained in S if F − S has d–dimensional measure zero, and similarly for
H.

Theorem 6.1 Let F ⊂ R3 be a flat of dimension 1 or more. Suppose that F
is maximal among flats essentially contained in S or among flats essentially
contained in H. Then up to the action of Mod(T ), F is either:

1. The line S1 defined by a2 = a3 = 1/2;

2. The plane H2 defined by a1 = 0, or

3. The line H1 passing through (0, 1/2, 1/2) and (−1/2, 0,−1/2) in R3.

This classification is the main step in the proof of Theorem 1.12. The
notation S1, H1 and H2 is the same as in §1.

A B C

Figure 4. A chain of adjacent tetrahedra in S.

Proof. We begin with the spherical case. Let F be a maximal flat essentially
contained in S. Let P be the tetrahedron inscribed in [0, 1]3 with vertices
(1, 1, 1), (1, 0, 0), (0, 1, 0) and (0, 0, 1). By Theorem 1.10, S = Mod(T ) · P ,
so up to the action of Mod(T ), we can assume that F meets the interior of
P . Since the faces of P are all adjacent to cells of H (see Figure 1), F ∩ ∂P
must be contained in the edges of P . This is impossible if dim(F ) = 2, so
dim(F ) = 1.

Since the line F meets the interior of P , it cannot pass through any vertex
of P — if it did, it would also pass through the opposite face. Similarly, F
cannot meet two adjacent edges of P — if it did, then it would lie in the
face they span and not meet the interior of P .
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Thus F must be the unique line joining a pair of points A and B on
opposite edges of P . There is a unique tetrahedron P1 in S sharing the edge
of P0 = P containing B. By the same reasoning, F joins B to a point on
the opposite edge of P1. Continuing this way, we find that F passes through
chain of adjacent tetrahedra, P = P0, P1, P2, . . ., meeting edge to edge. Such
a chain must be parallel to one of the coordinate axis in R3, as can be seen
by considering the chain of circumscribed cubes. The same is true of F ,
and hence of the vector A−B (see Figure 4). Thus up to the action of the
stabilizer of P in Mod(T ), we may assume that A−B = (1, 0, 0), and hence
A = (0, 1/2, 1/2, ), B = (1, 1/2, 1/2), and F = S1.

A

C

B

a

a
A

C

B
a

a

B
A

C

B
C

A

Figure 5. A line segment passing through two adjacent octahedra.
Top, front, side and perspective views are shown.

We now turn to the hyperbolic case. Let F be a maximal flat essentially
contained in H, and let P be the octahedron defined by ‖a‖1 ≤ 1. By
Theorem 1.10, H = Mod(T ) · P . We may assume that F meets the interior
of P , and, by the same reasoning as in the spherical case, that F only meets
the edges of ∂P , not the faces.

If dimF = 2, then F must contain any edge of P that it meets, and it
follows quickly that F coincides with one of the coordinate planes. Up to
the action of Mod(T ), we can assume this plane is H2.

Now assume dimF = 1. Since F is maximal, it does not lie in any
coordinate plane. Thus it does not pass through any of the vertices of P .
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Therefore it joins a pair of points A and B in the interiors of different edges
of P . These edges cannot lie in a common plane. Thus we can assume, up
to the action of Mod(T ), that A and B lie in the configuration shown in
Figure 5.

There is then a unique octahedron P1, adjacent to P0 at B, such that F
joins a pair of points B and C on disjoint, skew edges of ∂P1. As can be seen
from the diagram, the edge of P1 on which C lies is uniquely determined
by the edges of P0 containing A and B. By the same reasoning, these first
two edges uniquely determine an infinite chain of octahedra P0, P1, P2, . . .
containing F , which in turn uniquely determines the direction of F and
hence the vector A−B. Up to the symmetries of P0, we find that A−B =
(1/2, 1/2, 1) and F = H1.

From flats in R3 to flats in A. Next we verify that S1, H1 and H2 give
rise to finite unions of Galois flats in A. To make this precise, let

π : T = R3 → A = R3/2Z3

be the natural projection, and let

A(X) = π(Mod(T ) ·X) ⊂ A

for any subset X in R3.

Theorem 6.2 For X = E,H1, H2 or S1, the locus A(X) ⊂ A is a finite
union of Galois flats.

Proof. It will be convenient to describe flats in A using the coordinates
z = (z1, z2, z3) defined by zj = exp(πiaj). Note that for any integers α =
(α1, α2, α3), the locus in A defined by

zα = zα1
1 zα2

2 zα3
3 = −1

is a finite union of Galois flats. Indeed, it is the preimage of the Galois flat
Gal(−1) ⊂ C∗ under the homomorphism z 7→ zα. We also note that the
intersection of two Galois flats is again a Galois flat, provided it is nonempty.

We begin with A(E). Since E is characterized by the condition a1±a2±
a3 = 1 mod 2, A(E) ⊂ A is the union of the four Galois flats defined by

z1z
±1
2 z±13 = −1.

(This case was also treated in §5.)
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Similarly, we claim that A(H2) is the union of the Galois flats defined
by z2j = 1, j = 1, 2, 3. Indeed, H2 itself is defined by the condition a1 = 0,
so π(H2) is the subgroup of A defined by z1 = 1. The locus π(L + H2)
includes the additional Galois flat defined by z1 = −1. Indeed, adding a
nonzero element of the lattice L just changes zj to −zj for two values of j.
Thus π(L+H2) is defined by z21 = 1. Permuting coordinates, we obtain the
stated description of A(H2).

Next, we show that A(S1) is the union of Galois flats defined by the
condition that z2j = z2k = −1 for some pair of indices j 6= k. Indeed,
S1 is defined by a2 = a3 = 1/2, so π(S1) is the torus translate defined
by z2 = z3 = i. The locus π(S1 + L) is defined by z2 = ±z3 = ±i, or
equivalently z22 = z23 = −1, and the action of S3 ⊂ Mod(T ) permutes these
coordinates to give the stated description of A(S1).

Finally, H1 is the line defined by (0, 1/2, 1/2) + t · (1, 1, 2), t ∈ R, and
thus

π(H1) = {z = (s, is, is2) : s ∈ S1}.

As in the preceding cases, we find that π(H1 + L) is defined by the two
conditions z21 = −z22 and z1z2 = z3, and hence it, along with A(H1), is a
finite union of Galois flats as well.

Proof of Theorem 1.12. Let us first describe the locus ρ(a) = 0. Let
Gi ⊂ A be the union of the maximal Galois flats of dimension i contained
in the closed set A−A(S), for i = 0, 1, 2. By Lemma 3.2 and Corollary 3.3,
each Gi is a finite union of Galois flats, and ρ(a) = 0 iff a ∈ Ator ∩ (

⋃
Gi).

By the preceding result, we have A(E)∪A(H1)∪A(H2) ⊂ G1 ∪G2. On the
other hand, π−1(G1 ∪G2) is a union of flats of dimension ≥ 1 contained in
R3−S, which are in turn contained in Mod(T ) · (H1 ∪H2) by Theorem 6.1.
Thus we have ⋃

Gi = G0 ∪A(H1) ∪A(H2).

Let H0 = π−1(G0) ∩ M ⊂ R3. Then H0 is finite since G0 is finite, and
A(H0) = G0. Thus for a ∈ Q3 we have

ρ(a) = 0 ⇐⇒ π(a) ∈ A(H0 ∪H1 ∪H2) ⇐⇒ a ∈ Mod(T ) · (H0 ∪H1 ∪H2),

as stated in Theorem 1.12. The proof for ρ(a) = 1 is similar, taking into
account the fact that for torsion points a in the closed set A−A(H), either
ρ(a) = 1 or a ∈ A(E).
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The totally spherical locus. It is straightforward to check that in the
statement of Theorem 1.12, we can take

S0 =



(1/5, 1/5, 2/3)

(1/5, 1/5, 4/5)

(1/5, 1/3, 1/2)

(1/5, 1/3, 3/5)

(1/5, 1/3, 2/3)

(1/5, 2/5, 1/2)

(1/4, 1/4, 2/3)

(1/4, 1/3, 1/2)

(1/3, 1/3, 2/5)

(1/3, 1/3, 1/2)

(1/3, 1/3, 2/3)

(1/3, 2/5, 1/2)

(1/3, 2/5, 3/5)

(2/5, 2/5, 2/5)


.

To compute this list, it suffices to enumerate those a ∈ M such that T (a)
is totally spherical (ρ(a) = 1), and (a2, a3) 6= (1/2, 1/2). When T (a) is
totally spherical, the reflection group it generates must be finite, since the
corresponding quaternion algebra B is definite. Therefore the edges of T (a)
must arise from lines in the tetrahedral, octahedral, or icosahedral tiling of
S2 (Figure 6). This shows the denominators occurring in a must be 5 or less,
leading to the list above. (The infinite family of dihedral tilings is covered
by S1.)

Note that many different spherical triangles give the same reflection
group, since T (a) need not be a fundamental domain for that group.

Figure 6. Triangular tilings of S2.

The totally hyperbolic locus. On the other hand, we do not even know
an upper bound for |H0|. By searching a ∈ M ∩ Q3 with denominators
≤ 200, one can verify the lower bound |H0| ≥ 294. To give just one example,
a = (1, 65, 131)/198 ∈ H0; the projection of its Galois orbit to M gives 20
distinct hyperbolic triangles, the most ‘nearly Euclidean’ of which is T (a)
itself, with

∑
ai = 1− 1/198.
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7 Quaternion algebras

In this section we prove the results used in §1 for applications to triangle
groups, namely equation (1.1), Theorem 1.11 and Corollary 1.8.

Let a = (a1, a2, a3) ∈ A be a torsion point such that T (a) is not Eu-
clidean. Let K(a) denote the totally real field

K(a) = Q(cosπa1, cosπa2, cosπa3) ⊂ R, (7.1)

and let B(a) be the quaternion algebra over K(a) generated by three ele-
ments of norm one, g1, g2, g3, satisfying

Tr(gi) = 2 cosπai, i = 1, 2, 3, and g1g2g3 = −1. (7.2)

We first prove the following generalization of equation (1.1):

Theorem 7.1 For all a ∈ Ator such that T (a) is not Euclidean,

ρ(a) =
|infinite places v of K(a) where B(a) is ramified|

|all infinite places of K(a)|
· (7.3)

Corollary 1.9 on totally hyperbolic triangle groups follows immediately.
Next, we turn to arithmeticity and prove Theorem 1.11; and finally, us-
ing the spectral gap ρS < 1, we show the number of arithmetic triangle
groups is finite (Corollary 1.8). For more effective proofs of finiteness along
quite different lines, see [Tak] and [MR, §11.3].

Note that we allow ai = 0, so the analysis which follows can be applied
to triangle groups ∆(p, q, r) with p, q or r =∞.

Quaternion algebras. We begin with some background material; for more
details, see [MR] and [Voi].

Let K be a field with charK 6= 2, and let B be a quaternion algebra over
K, i.e. a central simple K–algebra of rank 4. There is a natural K–linear
involution x 7→ x′ on B such that (xy)′ = y′x′ and x = x′ if and only if
x ∈ K. The trace and norm from B to K are defined by Tr(x) = x+x′ and
N(x) = xx′. If N(x) = 1 then x′ = x−1.

We can write B = K⊕B0, where B0 is the set of elements of trace zero.
Then x2 = −N(x) for all x ∈ B0. The bracket [x, y] = xy − yx on B takes
values in B0, and satisfies [x, y] = [x′, y′]. Thus for all x, y ∈ B we have:

[x, y]2 = [x, y][x′, y′] = (xy − yx)(x′y′ − y′x′) = Tr(xyx′y′)− 2N(xy). (7.4)

For K = R, the symmetric bilinear form Tr(xy) on B0 is definite if B is a
division algebra, and indefinite if B is split.
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Geometry of brackets. The argument below is inspired by following
observation. Let B = M2(R), and let g, h ∈ SL2(R) be a pair of elliptic ele-
ments fixing distinct points p, q ∈ H. Then the bracket r = [g, h] ∈ PGL2(R)
acts on H by reflection through the line L = pq. This observation allows
one to pass algebraically between triangle groups and reflection groups.

Lemma 7.2 The quaternion algebra B(a) ⊗K(a) R is a division algebra iff
T (a) is spherical.

Proof. Recall that B(a) is generated by three elements of norm 1 with
Tr(gi) = 2 cosπai, i = 1, 2, 3, and g1g2g3 = −1. Let (i, j, k) denote an
arbitrary cyclic permutation of (1, 2, 3), and let ri = [gj , gk]. It is easy to
see that (r1, r2, r3) gives a basis for B0 over K. We will show there exists a
λ ∈ K such that

Tr(rirj) = 2λQij(a), (7.5)

where Q(a) is defined by equation (4.2). By Theorem 4.3, the form Q(a)
is definite when T (a) is spherical an indefinite when it is hyperbolic, so the
Lemma follows.

It remains to establish equation (7.5). Let

λ = −Tr(gkgjgi)− 2.

Since gigjgk = −1, we have gjgk = −g′i; thus equation (7.4) gives

r2i = Tr(gjgkg
′
jg
′
k)− 2 = −Tr(g′ig

′
jg
′
k)− 2 = λ.

Similarly we have

rj = [gk, gi] = [gk,−g′kg′j ] = g′kg
′
jgk − g′j ,

and thus

rirj = (gjgk − gkgj)(g′kg′jgk − g′j)
= 2gk − gkgjg′kg′jgk − gkg′kgjgkg′j
= gk(2− Tr(gjg

′
kg
′
jgk)) = −λgk,

using the fact that g′kg
′
j = −gi. Thus

Tr(rirj) = −λTr(gk) = 2λ · (− cosπak)

and Tr(r2i ) = 2λ · 1, which gives equation (7.5).
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Galois groups. Given a ∈ Ator, let n be the order of the cyclic group 〈a〉.
To relate Gal(a) to the infinite places of K(a), we introduce the complex
field:

L(a) = Q(exp(πia1), exp(πia2), exp(πia3)) = Q(ζn).

We have
Q ⊂ K(a) ⊂ L(a) ⊂ C,

and all extensions are Galois. There is a canonical identification of groups,

G = Gal(L(a)/Q) = (Z/n)∗,

under which k ∈ (Z/n)∗ corresponds to the unique automorphism σk of L(a)
satisfying σk(ζn) = ζkn.

Proof of Theorem 7.1. Given k ∈ G, let v be the infinite place of K(a)
defined by |x|v = |σk(x)|. Then we have

Bk = B(k · a)⊗K(k·a) R ∼= B(a)⊗K(a) K(a)v = B(a)v.

Every infinite place v arises in this way, and the number of such places
is [K(a) : Q]. Two different σk determine the same place v exactly when
their difference lies H = Gal(L(a)/K(a)). Since |H| = [L(a) : K(a)], using
Lemma 7.2 we have:

ρ(a) =
|b ∈ Gal(a) : T (b) is spherical|

|Gal(a)|
=
|k ∈ G : Bk is a division algebra|

[L(a) : Q]

=
|H| · |v : B(a)v is a division algebra|

|H| · [K(a) : Q]
.

Canceling the factors of |H| gives (7.3).

Total hyperbolicity. In view of Theorem 1.10, we have:

Corollary 7.3 The group ∆(p, q, r) is totally hyperbolic if and only if

‖ka− L‖1 < 1

for all k ∈ (Z/n)∗, where a = 1/(p, q, r) and n = 2 lcm(p, q, r).

For example, when (p, q, r) = (14, 21, 42), k = 31 is relatively prime to
n = 84, and we have

‖ka− L‖1 = ‖31/(14, 21, 42)− (2, 1, 1)‖1 = 20/21 < 1.
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The same inequality holds for all k ∈ (Z/n)∗, and hence ∆(14, 21, 42) is
totally hyperbolic. A similar check can easily be carried out for all (p, q, r)
appearing in Conjecture 1.15.

Proof of Corollary 1.9. By Theorem 7.1, ∆(p, q, r) is totally hyperbolic
iff ρ(1/(p, q, r) = 0; thus the set of such groups is finite by Corollary 1.6.

Arithmeticity. We now recall material related to arithmeticity of the
group

∆ = 〈g1, g2, g3〉 ⊂ B(a)×

determined by (7.2). For more details, see [MR, §8].
Since arithmeticity is a commensurability invariant, we pass to the sub-

group of finite index ∆0 = 〈g2 : g ∈ ∆〉, whose quaternion algebra

B0(a) = Q[∆0] ⊂ B(a)

is defined over the invariant trace field

K0(a) = Q(cos2(πa1), cos2(πa2), cos2(πa3), cos(πa1) cos(πa2) cos(πa3)).
(7.6)

Note that K0(a) is equipped with an embedding into R, and we have

B(a) = B0(a)⊗K0(a) K(a). (7.7)

The choice of a maximal order O ⊂ B0(a) determines an arithmetic group

Γ = {g ∈ O : N(g) = 1} ⊂ B0(a)×,

with a natural discrete embedding

Γ ⊂ (SU2)
r × (SL2(R))s ⊂

∏
v|∞

B0(a)v. (7.8)

Here v ranges over the infinite places of K0(a), and r and s are the number
of ramified and split places for B0(a). Then as is well known [MR, Thm.
8.3.10],

The group ∆ is arithmetic iff s = 1.

When s = 1, ∆ is commensurable to Γ since both project to lattices in the
unique SL2(R) factor in (7.8).

The marked moduli space M0. To determine the split places of B0(a)
geometrically, we introduce the projection

µ : A = R3/(2Z3)→M0 = R3/(Lo (±1)3).
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HereM0 is the moduli space of triangles with ordered, but unoriented, sides.
There is a natural action of S3 on M0, with quotient the moduli space M
of equation (1.4).

Theorem 7.4 The places v of K0(a) where B0(a) is split correspond bijec-
tively to the hyperbolic triangles in µ(Gal(a)).

Proof. We again use the identification Gal(L(a)/Q) = (Z/n)∗. Every
valuation v on K0(a) has the form |x|v = |σkx|, for some k ∈ (Z/n)∗, and
B0(a)v is split iff T (k · a) is hyperbolic, in view of Lemma 7.2 and equation
(7.7). Thus we need only determine when two different k ∈ (Z/n)∗ give the
same valuation v on K0(a), or equivalently when σk acts trivially on K0(a).
Now it is clear from the definition of K0(a) that σk acts trivially iff there
exist εi = ±1 such that

cosπkai = εi cosπai, i = 1, 2, 3, and ε1ε2ε3 = 1.

But these conditions hold iff µ(a) = µ(ka). Indeed, the first condition holds
iff a and ka are equivalent under the action Z3 o (±1)3, and the second
condition replaces Z3 with L.

Complement. The proof shows that [K0(a) : Q] = |µ(Gal(a))|.

Corollary 7.5 The group ∆ is arithmetic iff there is a unique hyperbolic
triangle in µ(Gal(a)) ⊂M0.

Example. The group ∆ associated to a = 1/(5, 5, 5/2) is arithmetic, even
though T (a) ⊂ H is not the fundamental domain for a reflection group. In
fact ∆ = ∆(2, 5, 5) (see Figure 7).

Proof of Theorem 1.11. For convenience, we have expressed the criterion
for arithmeticity of ∆(p, q, r) in terms of M instead of M0. To justify this
criterion, it suffices to show that for a = 1/(p, q, r), the projection map

p :M0 →M/S3

is injective on µ(Gal(a)).
Injectivity is clear when the denominators (p, q, r) of a are distinct: a

given point in the projection of Gal(a) toM has a unique lift toM0 whose
denominators are in the right order. On the other hand, if a = 1/(p, p, r),
p 6= r, then every point in µ(Gal(a)) is fixed by (12) ∈ S3, so the lift is unique
in this case as well. Finally for a = 1/(p, p, p), S3 acts by the identity on
µ(Gal(a)), so projection to M introduces no new identifications, and the
proof is complete.
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Figure 7. Unfolding the (5, 5, 5/2) triangle.

Remarks. The criterion for arithmeticity just proved is special to a of
the form 1/(p, q, r). When a = (1/5, 2/5, 1/4), the projection of Gal(a) to
M contains a unique hyperbolic triangle, but its projection toM0 contains
two, so ∆ is not arithmetic.

Finiteness: Proof of Corollary 1.8. We conclude by the proving that
the set of arithmetic triangle groups is finite.

Suppose ∆(p, q, r) ⊂ SL2(R) is arithmetic, and let a = 1/(p, q, r). By
virtue of the spectral gap at 1 (Corollary 1.2), we have:

ρ(a) = 1− [K0(a) : Q]−1 ≤ ρS < 1.

Equivalently, we have [K0(a) : Q] ≤ (1−ρS)−1. There are only finitely many
a ∈ Ator satisfying this bound, so there are only finitely many arithmetic
triangle groups.
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